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Abstract

Software agents are increasingly employed to negotiate on behalf of human users
as a solution for human disadvantages. Agents are however less adequate at ad-
dressing social dilemmas in which cooperation as best outcome is complicated
due to conflicting interests. Human behaviour in such situations is mediated
by considerations of fairness. An often used model for social dilemmas that
emphasises bilateral negotiation, is the Ultimatum Game. Previous attempts to
accurately model human negotiation behaviour in the Ultimatum Game have
proposed extensions that are exploitable or not realistically applicable to real
negotiation situations. An extension endogenous to such situations is structure
from complex spatial networks, which was shown in other social dilemma mod-
els to provide fairer solutions. Implementations in the Ultimatum Game are
ho(wever limited. In this project, complex network structure is implemented
as an extension of the Ultimatum Game. We study how clustering and degree-
heterogeneity as network characteristics influence the evolution of fair negoti-
ation strategies and allocation outcomes. To accomplish this, a multi-agent
model is designed to simulate the Ultimatum Game played in a population with
differing interaction structure. We find that clustering and degree-heterogeneity
are favourable to the evolution of fair negotiation strategies. Additionally, for
both network characteristics we find an increase in homogeneity for utility per
interaction. Our findings show that fair negotiation behaviour emerges despite
self-interest in structured interactions. They further suggest that an automated
negotiation system embedded in a spatial interaction network is more appropri-
ate for social dilemmas.
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Chapter 1

Introduction

1.1 Negotiation

With interdependence in outcomes but independence in decisions, a negotiation
process is a self-contradicting aspect of social interactions. Nevertheless, the
process of joint decision-making appears in all levels of society, from diplomacy
between nations and lobbying in politics to the division of household chores.
Negotiation is crucial in forming alliances, reaching agreements and resolving
conflict, explaining its ubiquity in life (Baarslag, 2016).

Human performance in negotiations varies with the context in which it occurs
and the needs and preferences of parties involved. Among human shortcomings
in complicated negotiation processes are that humans are influenced by social
cues that may be irrelevant to the negotiation, are limited in the amount of
information they can account for, are too slow for some implementations of
negotiation, and may mediate between their desired outcome and behaviour
out of fear for social conflicts resulting from the negotiation process (Bala &
Chishti, 2017; Filzmoser, 2010). Such limitations of human performance gave
rise to a growing interest in automated negotiation.

In automated negotiation, humans are represented by software agents that
negotiate based on a preference model of their user. The use of software agents
for negotiations yields lower transaction costs and higher transaction volumes
due to higher information processing speed. Software agents are argued to
find better negotiation outcomes due to agents being superior in dealing with
complex problems. Furthermore, use of software agents can relieve cognitive
effort and stress on part of the user (Baarslag, 2016; Baarslag, Kaisers, Gerding,
Jonker, & Gratch, 2017; Filzmoser, 2010).

Automated negotiation addresses a need for flexible and efficient trading and
distribution solutions. Such need is typically found in application domains that
become increasingly decentralised in negotiations and heterogeneous in negotia-
tors. This includes e-commerce which sees increases in independent sellers and
buyers (e.g. Chen, Chao, Godwin, & Soo, 2004; Padovan, Sackmann, Eymann,
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& Pippow, 2002). Apart from competitive markets, automated negotiation
approaches have also been applied to address societal challenges, such as the
distribution of renewable energy through smart energy grids (e.g. Chakraborty,
Baarslag, & Kaisers, 2018; Camarinha-Matos, 2016; Etukudor et al., 2020) and
reducing urban congestion through automating traffic flow (e.g. Gaciarz, Ak-
nine, & Bhouri, 2015; Takahashi, Kanamori, & Ito, 2013).

It is argued that software agents find better negotiation outcomes due to
agents being superior in dealing with complex problems. This superiority may
however not be found for non-competitive problems such as social dilemmas,
in which an outcome is based on the actions of all parties, with self-interested
choices being the most attractive. The difficulty here lies in pure self-interest
on part of all parties leading to sub-optimal solutions for all involved (De Jong,
Uyttendaele, & Tuyls, 2008). The distribution of public resources is a typical
real situation that features this social dilemma (Dawes & Messick, 2000).

Preference models for software agents are usually designed according to clas-
sical game theory, which posits humans to be individually rational and self-
interested. Numerous findings however contest this position by showing that
humans do consider others and are naturally inclined to cooperate, and expect
others to act similarly (e.g. Bowles, Boyd, Fehr, & Gintis, 1997; Fehr & Schmidt,
1999; De Jong, Tuyls, Verbeeck, & Roos, 2005). In steering away from individ-
ually rational and self-interested negotiation behaviour, humans are found to
more adequately address social dilemmas (De Jong et al., 2008). With increas-
ing need for automated negotiation not only in competitive environments but
also as a solution to societal problems, models are needed that more accurately
reflect human considerations and human negotiation behaviour.

1.2 Ultimatum Game

A popular game-theoretic method for studying preference models in negotiation,
is the Ultimatum Game. In the basic setup of this game, two individuals are
involved in a special form of negotiation where one proposes an allocation of
some divisible good. The other player is then left to respond by either accept-
ing the proposed allocation or rejecting it, leaving both players with nothing.
The Ultimatum Game showcases how human behaviour deviates from the clas-
sical game-theoretical model (Güth, Schmittberger, & Schwarze, 1982). The
deviation from the expected behaviour is explained as that human behaviour
is mediated by considerations of fairness. From subsequent behavioural studies
these considerations are shown to be mostly driven by inequity aversion (e.g.
Kahneman, Knetsch, & Thaler, 1986; Bone & Raihani, 2015; Fehr & Schmidt,
1999).

In the evolutionary counterpart of the Ultimatum Game, various computa-
tional models have been proposed that describe the emergence of fairness in a
population, or elicit fairness through implementations that are external to the
agent. The issue with such approaches is that though they contribute to the
body of research into human negotiation behaviour in the Ultimatum Game,
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they may not be applicable to the context of non-competitive automated nego-
tiation. This can be because applied mechanisms are not realistically applicable
in a real scenario or because such external mechanisms require agents to abide
by such mechanisms. The latter cannot be ensured as real implementations
must consider the possibility of agents that are consciously designed to be self-
interested and aim exploit a system (de Jong & Tuyls, 2011).

1.3 Structured Interactions

A solution to the exploitability of a system is to ground a system in mecha-
nisms that constitute general human interaction. As complex networks, social
networks are characterised by natural clustering as well as degree-heterogeneity.
Both these substructures are shown to fortify cooperative strategies in evolu-
tionary games. Regarding clustering, cooperative behaviour is shown to become
feasible through recurring interactions resulting from group formation (Axelrod
& Hamilton, 1981). Group formation results from the introduction of spatiality
in evolutionary games: with interactions occurring locally rather than globally,
cooperative strategies become more resilient to invasion by forming clusters
(Ellison, 1993a; Nowak & May, 1992). With regards to hub forming, hetero-
geneity in neighbourhood size is shown to contribute to the spread and resilience
of strategies (Lieberman, Hauert, & Nowak, 2005). Outside of the Ultimatum
Game, heterogeneity favours cooperative strategies due to the presence of highly
connected and thus influential agents that are resilient against strategic inva-
sions and are more selective to beneficial strategies (F. C. Santos, Pacheco, &
Lenaerts, 2006).

For the Ultimatum Game, the introduction of spatiality is found to favour
fair strategies (Page, Nowak, & Sigmund, 2000; Iranzo, Román, & Sánchez,
2011). Regarding complex, social networks however, only a limited amount
of literature exists that has studied the Ultimatum Game in such settings.
Those that have do point towards benefit for the implementation of social net-
work structure to the Ultimatum Game, but extend the model further to the
context of e.g. the Multiplayer Ultimatum Game (for clustering and degree-
heterogeneity, respectively: F. P. Santos, Santos, & Pacheco, 2018; Bo & Yang,
2010).

1.4 Problem Definition

An increasing need in flexible and efficient trading and distribution solutions
have caused automated negotiation to rise in popularity. Current models are
generally based on classical game-theoretical models of human negotiation be-
haviour, which are shown not to correspond with behavioural experimental re-
sults. With automated negotiation also providing a solution to non-competitive
societal challenges, cooperative models must be developed to adequately ap-
proach social dilemmas.
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Current models predominantly see theoretical benefit in explaining how fair-
ness considerations are formed or incorporate mechanisms that are either not
fit for our scenario, or require the deliberate adherence of agents present in the
system. Therefore the study and development of mechanisms endogenous to
society and human interaction are needed.

Such a mechanism is the presence of structure in social networks. Social
structure in populations is shown to benefit cooperative strategies in various
evolutionary models of social dilemmas. Though many approaches to spatial-
ity and graphs in the Evolutionary Ultimatum Game exist, research on social
structure however is scarce. This has led us to define the following research
questions and hypotheses:

Research Question 1 How does clustering in the topological structure of a
population influence the evolution of fair negotiation behaviour in the Evolution-
ary Ultimatum Game?

In literature we have found that having repeated interactions with the same
individuals is beneficial for fair strategies. This benefit is further extended to
indirect interactions, providing resilience to clusters against invasive strategies.
Therefore we define our first hypothesis as follows:

Hypothesis 1: For population structures with high Clustering Coefficient, we
expect to find population convergence to fairer negotiation strategies in compar-
ison with population structures that demonstrate a lower degree of clustering.

Research Question 2 How does degree-heterogeneity in a population af-
fect the evolution of fair negotiation behaviour in the Evolutionary Ultimatum
Game?

In literature we found that populations with high heterogeneity in the amount
of neighbours are driven to higher offers and acceptance thresholds due to the
presence of nodes with disproportionally high node degree. This effect is at-
tributed to these hub nodes being more resilient against strategic invasions and
being more selective in adopting strategies. Therefore we define our second
hypothesis as follows:

Hypothesis 2: For population structures heterogeneous in degree distribu-
tion we expect to find population convergence to fairer negotiation strategies in
comparison with degree-homogeneous population structures.

Goal of the research

The goal of this project is to study the influence of structured interactions on
the evolution of negotiation behaviour in the Evolutionary Ultimatum Game.
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In this, we hope to find that population structure benefits the emergence of
fair strategies. For this, we develop a model that emulates the Ultimatum
Game dilemma played in a population that is structured according to real social
networks.
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Chapter 2

Literature Review

This chapter discusses relevant literature on fairness in the Ultimatum Game.
The aim of this section is to familiarise the reader with past research on the
Ultimatum Game, evolutionary games and games played in graph structures. It
commences with an overview of findings of fairness in human Ultimatum Game
experiments. Next, we discuss the Ultimatum Game in the context of evolu-
tionary games along with important findings from other relevant evolutionary
games. Lastly, we discuss games on graphs and the Ultimatum Game in graph
structures.

2.1 The Ultimatum Game

The original Ultimatum Game was first analysed by Güth et al. (1982) to study
in detail aspects of negotiation behaviour. In this experiment, two players are
involved with each other in a bilateral negotiation scenario in which one is
assigned the role of proposer and the other that of responder. The proposer is
tasked with allocating a common good such that their offer p ∈ [0, 1] resembles
the amount of the common good they are willing to share, keeping the remainder
1−p for themselves. The responder can only state whether they accept, receiving
the offered amount p, or reject the allocation, leaving both players with an
income of 0. The tendency for the responder to accept is typically explained
by a minimum threshold from which they are or should be willing to accept,
q ∈ [0, 1]. Below q, an offer is deemed undesirable for a responder.

The main aspect of the Ultimatum Game receiving continued interest, is
the discrepancy between expected and observed negotiation behaviour. The
expected behaviour for proposers and responders is for the former to propose
the lowest divisible amount ε and for the latter to have threshold q set to or
below this value. This behaviour is deemed individually rational for each player
in this one-shot scenario: the responder prefers receiving ε over 0. The proposer
in turn prefers receiving as much as possible by offering ε, assuming that the
responder is likely to accept. This state with the lowest possible settings for p
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and q is regarded as the Nash equilibrium for the original Ultimatum Game.
Rather than offering as low as possible, Güth et al. found that the modal offer
p was near a 50% share of the money to be allocated and the average p was
0.35. Of all offers that were as low as possible, most were rejected by the
responder. A second run with the same participants showed a decrease in 50%
splits. However, the average p (0.31) was still far from ε. The explanation that
Güth et al. offer for the observed deviation from the expected rational behaviour
is that for the responder, p should be an appropriate amount deemed fair or
justified. If the offer is deemed lower than a hypothetical amount q they would
be willing to accept, the responder is willing to pay this price as to punish
the proposer. For the proposer, offering an amount higher than ε is motivated
by either considerations of fairness or by the threat of the responder possibly
rejecting p < q.

The analysis from Güth et al. (1982) contradicts the modelling of human ne-
gotiation behaviour according to the homo economicus, the profile of a rational
agent that acts optimally out of self-interest. In the study, human behaviour
is closer to the homo reciprocans-model, as cooperators that retaliate against
non-cooperative, opportunistic agents. Subsequent studies have attempted to
further explain the incongruence between individually rational negotiation be-
haviour and observed behaviour with the pervading question herein being how
fairness considerations mediate in negotiations. In the remainder of this sec-
tion we will discuss fairness definitions in the setting of bilateral negotiations
and distribution and elaborate on further Ultimatum Game extensions for their
findings and explanations for the incongruence between expected and observed
behaviour.

2.1.1 Fairness in distribution mechanisms

Research investigating the processes behind fairness judgments in distribution
mechanisms generally focuses on two aspects. Procedural justice is the extent
to which the procedure of allocation in some form of organisation is deemed a
fair process. Distributive justice refers to how individuals relate to each other
in their outcome of the allocation process (Yaari & Bar-Hillel, 1984). When the
outcome of an allocation process is known, individuals will base their judgments
of fairness on how their revenue relates to comparable others. If this is not known
however, due to only knowing your own revenue and having a small chance
for repeated interactions, individuals will emphasise the procedures leading to
the allocation in their judgments. This stems from the assumption that if the
procedure is fair, the final outcome must be as well (van den Bos, Lind, & Wilke,
2001).

Fair distribution may be regarded as allocating utilities to all individuals
based on what configuration maximises the sum or mean of each their utility.
This approach leads to an equal distribution of utilities with the assumptions
that individuals’ utility functions are similar. On the other hand, one can
assign unequal proportions of goods to individuals based on their needs such
that individuals that have a higher need or a lower valuation of parts of the
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goods, receive more such that their total outcome utility is equal (van den Bos
et al., 2001; de Jong & Tuyls, 2011). These two approaches show a challenge for
fair allocations: whereas assigning equal amounts of goods to each individual
regardless of their own revenue may be deemed fair for one, assigning unequal
quantities of goods to individuals as to minimise inequity in a group may be
deemed fairer for the other.

2.1.2 Fairness in the Ultimatum Game

The original Ultimatum Game has seen several extensions in an attempt to fur-
ther describe fairness considerations and investigate the incongruence between
the expected rational behaviour and behaviour as observed. Following is an
overview of important findings on fairness and fair behaviour that extensions
have offered.

Sequential Bargaining with shrinking common good The sequential
Ultimatum Game is an extension in which the influence of threats and punish-
ment is diminished until the final round such that rational behaviour is more
appealing for both proposer and responder (Ochs & Roth, 1989). In one game,
rejection of an offer leads to a reversal of roles and game progression to the
next round until the final round is reached. Rejection in the final round renders
payoff for both players 0. With each progression to a next round, the common
good to distribute is discounted by a discount rate δ per each new period.

Ochs and Roth found that responders’ behaviour still reflected a prefer-
ence for near-equal splits. Though responders were aware of the total divisible
amount being discounted for each progression, a substantial amount of rejec-
tions for unequal first-round division was observed. Along with these rejections,
near-equal counter-proposals were made in the following round. This behaviour
held even for when gained utility from near-equal counter-proposals was known
to be less than the original offer. Furthermore, first-round proposers with low
offers on average showed the least earnings over the span of multiple games. The
tendency for participants to prefer fair distributions over utility strengthens the
idea of humans acting not out of a purely monetary interest. Rather, humans
are inclined to divide fairly and react to unfair allocations.

Multiplayer Negotiation With the inclusion of multiple players per role,
within-role competitiveness mediates in players’ negotiation behaviour. In play-
ing the Ultimatum Game with multiple proposers and a single responder, the
two proposers both make an offer p1, p2 to which the responder will react. This
leads to a competition among proposers to offer the highest share. This is
because the responder rationally picks max(p1, p2). With multiple negotiators
and a single proposer, this dynamic is turned around as responders now compete
with their thresholds since when (q1, q2) ≤ p, min(q1, q2) will receive p. In both
scenarios, utility was not shared further among group members (Guth, Huck,
& Ockenfels, 1996; Güth & Kocher, 2014).
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Incomplete or Imperfect Information Multiplayer negotiation has seen
further extensions which include alternative player types by ranging the amount
of information responders have of the common good or the allocations made. In
the Ultimatum Game with reduced information, information was either incom-
plete in the amount of a good to be allocated (Guth et al., 1996) or imperfect
in how it was divided among three players (Güth & Van Damme, 1998).

In the incomplete scenario, the Ultimatum Game was played with three
players X, Y and Z such that player X proposes an amount px ∈ [0, 1] to
player Y , after which Y responds and subsequently proposes a non-zero division
py ∈ [0, (px − 2ε)] of the received amount for themselves and player Z. Player
Z acts as a regular responder. The total amount to be allocated was varied
between a high and low setting. All players were aware of the two possible
settings, however only player X had knowledge of the actual amount to be
allocated in the concerning round. In the low amount setting, Y is uncertain of
whether the allocation behaviour of X truly represents fair behaviour or whether
X conceals opportunistic behaviour, consequently influencing the behaviour of
X.

In the imperfect information scenario, player X divides a common good
among all three players including themselves, being the only proposer. Player
Y receives information on how the good is allocated and is able to accept or
reject: player Z has no direct influence at all and only receives the amount
allocated, should Y accept. The amount of information Y has, is varied: infor-
mation is either complete (Y is aware of allocations for all players), incomplete
but relevant (Y is aware only of the amount they will receive themselves) or
incomplete and irrelevant (Y is unaware of their own share; only aware of that
of Z). In this scenario, the behaviour of X is expected to be influenced by the
inferences Y can draw on the allocation based on the amount of information
received.

Both studies concluded that when some possibility of pretending to be fair
arises, proposers become more opportunistic in their demands while fearing
exposure of their unfair allocations. Though the proposers may not be intrin-
sically interested in fair allocations, these observations do show that proposer
behaviour is mediated by fairness considerations. Guth et al. (1996) however
did find that there was a strong positive relationship between higher x and y
propositions, suggesting a kind of non-bilateral reciprocity.

Punishment and Justice Rejection behaviour in the Ultimatum Game may
in part be motivated by a form of punishment on the account of the responder.
Such punishment is motivated by the responder deeming an allocation unfair or
driving opportunistic players to change their future behaviour. In the study of
Kahneman et al. (1986) most subjects preferred to split equally over proposing
a 90 − 10% division (proposer-responder). When in a later stage responders
were asked to split equally an amount C with an opportunistic player or C − ε
with a fair player, nearly all chose the latter. Cooperative players were thus
favoured over non-cooperative ones, though the resulting utility would be less.
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In the further debate of whether punishment occurs due to negativity stem-
ming from breaking cooperative norms or to simply reduce inequality in total
payoff, Raihani and McAuliffe (2012) found that humans are more receptive
to inequity than to experiencing losses. Cheating was punished less when it
was justified by the proposer having less total utility than the responder. Bone
and Raihani (2015) further found that explicit punishment was motivated by
revenge as well as inequity aversion. When individuals could however choose
the severity of punishment as a discount on the other player’s utility, the sever-
ity was motivated predominantly by disadvantageous inequity for the punisher.
Punishment even occurred in the setting where this would lead to a lower total
payoff than when the player would have continued playing without ineffective
punishment. Given possible explanations for ineffective punishment are that
though such punishment is ineffective for the player, it does reduce the stan-
dard deviation of total utilities for the whole group and may change the future
behaviour of the other player.

From the three studies, rejection behaviour and punishment are shown to
result in part from unfair allocations and a disliking for inequity. The negative
affect to inequity and willingness to sacrifice utility provide support in the direc-
tion of humans considering the fairness of distributions, further deviating from
the homo economicus-model. Furthermore, the act of punishment is shown to
have a collective benefit in that though the punisher may not see individual
benefit, punishment contributes in the reduction of inequity within the whole
group.

Summary In this selection of the large amount of extensions that exist for the
Ultimatum Game, we can draw two main conclusions regarding fairness. First,
we find that negotiation behaviour is influenced by fairness considerations and
that such considerations rely on inequity aversion between partners as well as
overall. Second, under extensions of the original Ultimatum Game, fair negoti-
ation can become a more profitable strategy regardless of whether an individual
is concerned with fairness in allocations.

Regarding the influence of fairness considerations, monetary payoffs are
shown to be insufficient in explaining behaviour and do not capture subjects’
utility function (Güth et al., 1982; Ochs & Roth, 1989). The behaviour of both
proposers and responders is influenced by considerations of fairness, though this
does not ensure cooperative behaviour or fair play. Cooperative behaviour does
however elicit reciprocity, not only directly but also indirectly (Kahneman et
al., 1986; Guth et al., 1996). Lastly, fairness judgments in the Ultimatum Game
were based on how equal utility divisions were between players and how equal
the final utility distribution was in the population (Raihani & McAuliffe, 2012;
Bone & Raihani, 2015).

Extending the Ultimatum game provides mechanisms that promote or de-
mote fairness. With less information on either allocations or the total amount
to allocate, proposals become greedier. Also with more recurring interaction,
opportunistic play becomes less profitable. Furthermore, increasing the number
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of players per role can strengthen their positions or elicit competition in mak-
ing or accepting offers. Lastly, providing punishment mechanisms or options to
choose partners may further promote cooperative behaviour through the pos-
sibility of reducing inequity between players and within the whole group, and
enforcing cooperation on behalf of opportunistic proposers.

2.2 Evolutionary Ultimatum Game

Behavioural experiments on the Ultimatum Game have presented findings on
the degree to which fair allocations are preferred, contesting the idea that human
negotiation behaviour is led by a self-interested notion of rationality. Experi-
mental approaches to human behaviour in the Ultimatum Game suggest that
some of the actions observed serve little benefit individually, but do collectively.
Some extensions were further found to promote fair negotiation behaviour by
making fair offering more appealing or allowing for corrective measures on part
of responders.

From behavioural experiments we learn what is seen as fair as well as how
external mechanisms elicit fairness in negotiations. With computational mod-
els however we can simulate the Ultimatum Game and study why and when
fairness emerges, by modelling internal constructs of environments or human
properties. We can thus find settings under which fair negotiation behaviour
is less a deliberate choice and more the most optimal due to environmental
circumstances.

The Evolutionary Ultimatum Game is a computational framework of the
Ultimatum Game that draws from evolutionary game theory and population
dynamics. The evolutionary counterpart results from situating agents in a pop-
ulation in which interactions between agents consist of playing the Ultimatum
Game. The game is played for a set amount of rounds, with mechanisms in
place for agents to change their strategy based on the expected utility. With
agents adapting strategies to what better suits against their opponents, over
time a population converges to a single or set of strategies which best suit that
composition of settings and initial strategies.

In this section we will expand on population dynamic approaches to evolu-
tionary games, among which the Evolutionary Ultimatum Game. In evolution-
ary games, a game denotes the payoff model and possible actions for interactions
between agents. Apart from the game, dynamics are influenced by the further
design of interactions, the composition of a population, how the progression
of the game is further defined and other exogenous constraints put on the dy-
namics in a population. Such components that are exterior to the basic game
itself determine how a population evolves and to what extent population dy-
namics are guided by the underlying game. For the reason that evolutionary
implementations of serious games overlap in their environment as a population
that evolves, we also include findings from other evolutionary games that prove
helpful for our implementation.
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2.2.1 Emergence of Fairness

In discussing how cooperative behaviour can evolve in the Evolutionary Pris-
oner’s Dilemma, Axelrod and Hamilton (1981) explain that fairness in general
may emerge through three mechanisms: kin selection, group selection and reci-
procity. Important for any of these strategies to develop is that the environment
permits cooperative behaviour to exist and improve inclusive fitness: the act of
cooperation must be beneficial among other members of the population that
cooperate and overrule the benefit of opportunistic play. As strategies in the
environment progress and the cooperative sub-population grows, recurring in-
teraction among similar individuals becomes the strongest force behind the fur-
ther evolution of cooperation. These mechanisms can however only exist when
a population is small enough such that the probability of recurring interaction
is sufficiently large and agents have a way of pushing consequences to oppor-
tunistic agents, e.g. when agents can punish opportunistic players, when agents
have memory of other agents’ past moves or when interaction is restricted to
each agent’s direct surroundings.

Work from Traulsen, Hauert, De Silva, Nowak, and Sigmund (2009) in the
Public Goods game suggested that mutation rate (µ) configurations might in-
fluence the interaction between agents: when mutation rate µ→ 0, interaction
becomes less important and dominance of a strategy relies more on its relative
abundance in the population. With larger µ more strategies are found in the
population at a given time because agents mutate and thus explore more with a
benefit for cooperation. Furthermore, Traulsen et al. state that a higher rate of
exploration deemed more fitting for the simulation of cultural evolution as hu-
mans are more prone to exploring their strategic options and being inconsistent
in their behaviour.

Rand, Tarnita, Ohtsuki, and Nowak (2013) confirmed and further studied
the influence of mutation rate on the Evolutionary Ultimatum Game. In the
regular one-shot Evolutionary Ultimatum Game, natural selection is found to
support convergence to the rational solution of the classical Ultimatum Game
setting. When the natural selection rate is weakened however, average q and in
turn p increase. With weakened selection and larger mutation rate µ, average p
increases but q seems relatively unaffected, as the best strategy is the one that
maximises its expected absolute payoff in a heterogeneous population. With
smaller µ, it is however the expected relative payoff that must be maximised
as strategic sub-populations must be able to resist the intrusion of a newly
introduced strategy. The best strategy to then arise is one with higher p and q
that are close together.

Page and Nowak (2001) found that restricting agents’ acceptance thresholds
q to be similar to their offers p, steers a population to the level of equal splits
whereas otherwise would converge to the classical, rational solution. Agents
that offer and accept low, may receive payoff from cases in which they act as
responders but will be rejected as proposers. It will thus be more profitable
to raise offers and acceptance thresholds such that the agent will receive payoff
both as proposer and responder. The empathic strategy (p = q) resembles the
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strategy a population converges to under weakened selection and small mutation
rate from Rand et al. (2013). Page and Nowak (2002) found that the effects of
this form of empathy held even when only a small proportion of agents was con-
strained to empathic play. The issue however is that the independent evolution
of p and q is favoured: when the amount of empathy-constrained agents is al-
lowed to evolve with the population due to higher settings for µ, the population
again converges to the Nash equilibrium strategy from the original Ultimatum
Game.

In above mechanisms the evolution of fairness is stimulated by certain con-
figurations of the Ultimatum Game. They are based on the case of the Ulti-
matum Game where the game is played among agents in the population paired
at random and the expected absolute payoff of a strategy matters more due
to a global nature of interaction. Models with global interaction are fitting for
theoretical analysis. It is however hard to generalise these findings to settings of
social behaviour and interaction. Social creatures typically form structured so-
cial networks where interaction is more frequent among direct neighbours in the
network (Nowak, Tarnita, & Antal, 2010b). Culturally shared behaviours arise
through a high level of information exchange, interaction, common experiences
and common beliefs among a cluster of individuals. But also infrastructure and
city planning have a sense of spatiality in the Euclidean distance between ob-
jects and the frequency of travel on shorter or faster roads between them. For
this reason, research has also focused on the influence of spatial interactions and
population structure on the evolution of cooperation and fairness.

2.2.2 Structured Populations

The presence of structure in populations that are involved in evolutionary games
is found to influence the evolution of population behaviour. Nowak and May
(1992) adapted the work of Axelrod and Hamilton (1981) to introduce spatial-
ity in a simplified version of the Prisoner’s Dilemma with only the two pure
strategies. Having interaction occur only between neighbouring agents can by
itself yield complex and chaotic patterns of interplay between agents. More im-
portantly, in the spatial game chaotically shifting balances were found in which
agents were quick to change strategies without however affecting the proportion
of cooperators in the population, whereas without spatiality the environment
converges to defection. In discussing the success of Tit-for-Tat in their original
Prisoner’s Dilemma, Axelrod and Hamilton (1981) state that the success of Tit-
for-Tat stems from its formation of clusters in which interaction with similar
agents occurs, which evolutionarily stabilises the group. Ellison (1993b) fur-
ther found for the Coordination Game that a crucial determinant for the speed
and configuration of population convergence was whether interactions were of a
global or local nature, as with spatial interactions. Ellison also concluded that
fair strategies benefit from local interaction: interaction among neighbours that
use cooperative strategies evolutionarily stabilises said cooperative behaviour.

Page et al. (2000) applied evolutionary game theory to the Ultimatum Game
to examine the effects of spatiality on fairness. In each round, all agents interact
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with each other after which agents leave offspring in numbers proportional to
their fitness. Offspring agents take their parents’ mutated strategy, with mu-
tation implemented as noise sampled uniformly at random from an interval α
applied to the p and q. In the absence of mutation in the non-spatial case, nat-
ural selection favoured the classical rational solution. The average p however
climbed toward equal splits when rate of mutation increased. This effect was
similar but weaker for q such that p > q. Spatiality was introduced by arrang-
ing agents on a one-dimensional ring with two, and on a two-dimensional lattice
(fixed boundaries) with four neighbours. Agents now play only against their
neighbours and again leave offspring, however proportional to their neighbour-
hood instead of the whole population. In the one-dimensional version, selection
initially globally favoured domination of neighbourhoods with p ≈ q when aver-
age p and q were spread far apart. After development of average p ≈ q, the effect
from clustering arises with the whole population slowly converging to the fair
strategy of equal splits. In the two-dimensional case with four neighbours, total
grid increase (corresponding to the size of the population) caused convergence
to fairer average values for p and q. For every grid size, fairness could only rise
due to the formation of 3× 3 clusters of fair strategies.

In the one-dimensional case, the development of p ≈ q preceded the conver-
gence to fair average p and q. The importance of empathic strategies to the
evolution of fairness was subsequently clarified by Page and Nowak (2001), dis-
cussed earlier. Iranzo et al. (2011) revisited the issue of spatiality and empathy
in expanding both these works. With a population on a 2D lattice with four
neighbours, two settings were defined: the empathic setting in which p = q,
and the independent setting where p and q evolve independently. Each round
the Ultimatum Game is played twice between agents such that each agent once
focally plays the Ultimatum Game against all its neighbours. Role assignment
was either non-random such that each agent plays as proposer and responder
against each neighbour or random with the possibility of playing as either role
twice. Furthermore, strategy updating was either through imitation of the best
in the neighbourhood or imitating a random neighbour with higher payoff with
probability relative to their payoff difference. Mutation was implemented simi-
larly with noise centered around parents’ parameters.

Findings for the empathic setting indicated a general convergence to (p, q) =
1
2 . These final values decreased when adapting the neighbourhood size from
four to eight. In the independent setting with some stochasticity due to propor-
tional imitation or random role assignment, the population mostly converged
to quasiempathic strategies (p, q � 0 and p ≈ q). This was mostly observed
in large (40× 40) networks. Interesting was that for both settings, the absence
of stochasticity enabled multiple strategies to coexist in the final population.
Authors explain that this is possible due to stable spatial configurations and
can thus not be observed on random networks. Furthermore, whereas mutation
caused values p and q to climb in the non-spatial setting (as seen in Page et al.,
2000), the introduction of mutational noise in otherwise deterministic settings
caused the population to converge to the classical Nash equilibrium strategy due
to emphasis on individual play rather than playing as clusters because neigh-
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bours are too dissimilar to oneself. This effect is averted by other introductions
of stochasticity. Lastly, larger populations seem to elicit a fairer population:
average p and q were generally higher for larger grid sizes (Page et al., 2000;
Iranzo et al., 2011).

2.2.3 The Ultimatum Game on graphs

The previous studies on spatiality addressed population structure as neighbour-
hood interaction on a 1D ring and a 2D lattice in which all agents have the
same number of neighbours, k (apart from the edges of the grid). It is however
unlikely to find a population in which all members have the same amount of
connections or influence, whether it be e.g. individual agents in bee colonies,
packs of wolves, companies or in social groups.

Lieberman et al. (2005) addressed the primal effects of differences in the
connectivity of populations on the spread of strategies outside of the Ultimatum
Game. The topology of a population here is defined by a graph or network
in which agents are represented by vertices, with edges between the vertices
denoting whether agents are connected and thus can interact. The application of
graphs on evolutionary processes stems from the important finding that when all
nodes are equal in their connections or accompanied weights, Moran-processes
2.1 are also indicative of dynamics on graphs.

Small spatial populations are more subject to the introduction of new strate-
gies due to random processes such as mutation. For large populations, such in-
fluences make less of a difference whereas natural selection becomes more dom-
inant. This is illustrated with the fixation probability ρ of a newly introduced
mutant, defined by Lieberman et al. as:

ρ =
1− 1/r

1− 1/rN
, (2.1)

where N denotes the size of a population and r denotes the relative fitness of the
mutant compared to the population. The fitness of the population here is taken
as 1. The probability that a mutant takes over a whole population is inversely
proportional to population size. With heterogeneity in connectivity for network
nodes, network substructures can emerge that reduce or amplify the spread of
a single mutant strategy that is more advantageous than its neighbours. This
is due to the difference in connectivity of vertices, meaning the amount of edges
vertices have and thus the amount of vertices that they can influence and get
influenced by. A simple example is that of a star configuration as can be seen in
figure 2.1. The probability for a mutant strategy to take over a whole structure
now becomes

ρ =
1− 1/r2

1/r2N
, (2.2)

amplifying selective difference r in equation 2.1 to r2. Advantageous mutant
strategies are thus amplified whereas for disadvantageous mutant strategies,
the fixation probability is reduced. The work of Lieberman et al. (2005) is
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Figure 2.1: A network in which vertices are configured in a star-like formation. Cen-
tral vertex has 8 neighbours and thus is heavily subject to change as opposed to outer
vertices with each having only the central vertex as neighbour. An advantageous strat-
egy adopted by an outer agent is imitated by the central agent, which quickly spreads
to other agents given that their strategies are disadvantageous to the central agent’s
strategy.
Source: Lieberman et al. (2005)

an approximation to evolutionary dynamics for population structure, based on
evolutionary graph theory.

In further studying scale-free structures, F. C. Santos et al. (2006) found de-
gree heterogeneity to be beneficial to the emergence of cooperative behaviour.
This effect is attributed to the presence of hub nodes that have a disproportion-
ately high amount of connections relative to the rest of the population. Hub
nodes have a higher number of interactions from which revenue can be gained,
as well as a greater sample of strategies to imitate from. With a higher number
of interactions and thus greater probability of receiving non-zero utility, a hub
node is less likely to perform worse than a regular node. If the hub node does
perform worse than one of its neighbours, it will adopt the strategy and remain
until a better performing neighbour surfaces. In turn, neighbouring agents are
likely to adopt well performing strategies of a hub node. Hub nodes thus serve
as strategic amplifiers and filter out bad performing strategies due to their high
selectivity on which strategies to adopt.

Bo and Yang (2010) studied scale-free structures in the Evolutionary Ul-
timatum Game with the addition of incomplete information in other agents’
strategies. Instead of receiving a neighbours strategy when imitating, agents
were to learn the neighbour’s strategy from their interactions. The results were
in contrast to the results from F. C. Santos et al. (2006), indicating that scale-
free network structures were of moderate influence on the development of fair
negotiation behaviour. This result was found when agent degree was accounted
for in comparing fitness levels. In the case of normalised payoff values, pop-
ulations with scale-free network structures showed even less effect on the de-
velopment of fair negotiation behaviour. Their differences in performance is
attributed to the difference in game setting. In the implementation of Bo and
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Yang (2010) however, the establishment of fair strategies is hindered by the ad-
dition of incomplete information due to slowing down the spread of a strategy in
a neighbourhood. Furthermore, strategies present in the population show p and
q being further apart under incomplete information as compared to quasiem-
pathy under complete information. Greater distance between strategy values p
and q benefits opportunistic strategies (Page & Nowak, 2001).

A different approximation to dynamics with population structure is that of
Nowak, Tarnita, and Antal (2010a). The rationale in their study is that humans
not only look at other individuals to imitate their behaviour but also take into
account their own and others’ social group memberships. Only having individ-
ual imitation is deemed as being insufficient in explaining cultural evolutionary
processes. With evolutionary set theory Nowak et al. (2010a) propose a frame-
work in which the population network is dynamic rather than static. Agents
play the Prisoner’s Dilemma with only strategies C and D. A population of N
individuals is distributed over M sets, within which individuals interact. Sets
are defined as a group of vertices which are all interconnected by edges. A visual
representation is displayed in figure 2.2. Individuals can take part in multiple

Figure 2.2: A social group is defined as a set of vertices that are all connected to
each other. Sets are depicted as closed curves. The transition from the left to right
image depicts the change of strategy and social group of the top right agent in the left
image.
Source: Nowak et al. (2010a)

sets. At every time step agents are picked at random to imitate. The imitator at
random selects another agent proportional to its fitness and copies its strategy
s and set inclusions K ⊆ M with probability 1 − µs and 1 − µK respectively:
with probability µs the agent adopts a new randomly chosen strategy and with
µK adopts a random sample of new sets to be included by. With too small
values for µK , individuals mostly belong to the same sets. With too high µK
however, individuals change sets too fast for the group level interactions to have
effect on evolutionary dynamics. An optimal set mutation rate given by the

authors is
√

M
K . A further implementation in the article is that cooperators

only cooperate with agents they have a minimum amount of set overlap with,
L. An agent cooperates i times with another agent if i ≥ L. For lower i, the
agent defects. With L = 1, it is most beneficial for an agent to have K = 1.
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L > 1 favours the evolution of cooperation among agents for any given number
of K.

A measure to evaluate approximations to evolutionary dynamics was intro-
duced by Nowak et al. (2010b). The measure relies on the structure coefficient
σ, that is affected by population size, population structure, the update rule
used and the mutation rate but does not depend on the payoff matrix of a given
game. The influence of σ can be written as a linear inequality in discrete payoff
values:

σa+ b > c+ σd (2.3)

Large well-mixed populations have σ = 1. Structured populations however
generally have σ > 1. With values for σ greater than 1, payoffs on the main
diagonal of the payoff matrix become more important, favouring interaction
among agents with similar strategies. σ thus denotes how competing strategies
are favoured as a result of population structure, size, update rule and mutation
rate. σ is most predictive in cases where natural selection rate is low. A strategy
s is favoured over other strategies s′ if

n∑
s′=1

σa(s,s) + a(s,s′) − a(s′,s) − a(s′,s′) > 0, (2.4)

with a(s,s′) here denoting the payoff an agent with strategy s receives from an
agent with strategy s′. σ is calculated differently for evolutionary graph theory
(i) and evolutionary set theory (ii) approaches:

σ = (k + 1)/(k − 1) (i) (2.5)

σ =
M(2ν + 3) +Kν(ν + 2)

M +Kν(ν + 2)
· ν + 1

ν + 3
(ii) (2.6)

Here, a large population size and low mutation rate are assumed and ν =
2NµK for (ii). In the Prisoner’s Dilemma it is found that selection benefits
cooperators when b/c > k for graphs. For evolutionary set theory, this is b/c >
1 + 2

√
K/M for the optimum µK . For graphs, cooperation is stimulated with

lower connectivity. For social sets, this holds when the amount of sets that
agents belong to is small enough to cluster in social groups effectively.

F. P. Santos, Pacheco, Paiva, and Santos (2017) studied the proceedings
of the Evolutionary Ultimatum Game on a Small-World network, a complex
network type that employs the clustering characteristic of real social networks.
Their version of the Evolutionary Ultimatum Game constituted a multiplayer-
approach to the negotiation dynamics in which one proposer allocates among
a group of agents. With their research, a structural measure of the complexity
of population topology was introduced, named Structural Power (SP ). SP
measures the relative influence that one agent has over other agents through
the average overlap the agent has with others. It was found that with increased
SP, individuals have more relative influence as their proposal and acceptance
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strategies reach a larger number of individuals. In turn, better performing
strategies can spread faster within and between groups.

The work from F. P. Santos et al. (2017) strikes resemblance to that of Nowak
et al. (2010a) in the emphasis on interaction among social groups. From both
studies it can be taken that population structure and the resulting interaction
among clusters of agents with similar strategies supports the development of
fairness in a population. Main differences are however that, apart from imple-
menting their models to different games, Nowak et al. (2010a) propose a model
in which networks are dynamic in cluster composition as well as the number
of clusters present in the network. Their approach utilises different rules for
e.g mutation and strategy updating while noting that these are of effect for the
structural measure that is discussed in Nowak et al. (2010b). In the work of
Lieberman et al. (2005) and F. C. Santos et al. (2006) it was seen that structures
in which a subset of agents has a highly disproportionate amount of connections
compared to the rest of the population, serve as highly selective amplifiers for
strategies. Such selective amplifiers are shown to be beneficial for cooperation
for a range of evolutionary games, by providing central selective hubs. SP is
predictive of the benefit of clusters by denoting the relative influence on other
agents through neighbourhoofd overlap. With high relative influence on neigh-
bours, selectivity in which strategies to adopt and an ensured high overlap in
neighbourhoods with substantial part of a population, we expect SP to be pre-
dictive as well for hubs and their propagation of fair strategies.
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Chapter 3

Background

This chapter offers information on theories relevant to the subject of this thesis
as to provide less familiar readers with a sufficient background on the matter.
It commences with an explanation of the Ultimatum Game and provides in-
troductory information to Game Theory and Network Theory. The Ultimatum
Game is further explained with terminology used throughout this paper.

3.1 Game Theory

Game theory is the study of human strategic behaviour in the attempt of ap-
proximating rationality in mathematical models. It has seen increased use as
a simplification of real-life scenarios. Possible behaviours are quantified to a
set of actions such that human behaviour in a situation and its outcome can
be summarised by how players discriminate between actions given the util-
ity they expect to receive from their chosen actions. A game is defined as
a formal interaction with a finite set of N players and a finite set of actions
A = {A1, A2, ..., An} such that Ai denotes the set of actions player i can take.
An action profile is then a vector of actions a = {a1, a2, ..., an} taken by n
players. The set U = {u1, u2, ..., un} denotes sets of utility functions of which
ui maps for player i the set of actions to a real valued utility. With multiple
interactions, a player can choose to play only one or vary between multiple ac-
tions. To use one same action for each interaction is to have a pure strategy;
in playing with a set of actions, a player is said to have a mixed strategy. We
can thus define a strategy si ∈ Si as the action or set of actions that a player
i chooses to take. Si here denotes the set of all possible strategies for player i.
Finally, the set of strategies taken by n players is defined as a strategy profile
s = {s1, s2, ..., sn}.

A player that is rational aims to maximise its expected utility, E(ui). Should
the actions or strategies of other players be known, a rational player would then
pick the action or strategy that produces the most favourable outcome with
regards to that action- or strategy profile. Figure 3.1 represents a payoff matrix
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Figure 3.1: An n = 2 normal-form game depicting actions for row- and column-player. For
actions C (cooperate) and D (defect) available to each player, possible action profiles are:
CC, CD, DC, DD. The first action and the utility in each cell depict those of the row-player.

for the Prisoner’s Dilemma. In playing the strategy ‘always D ’, DC and DD are
the possible action profiles with outcomes that both are more favourable for the
row player than playing ‘always C ’ with action profiles CC and CD. Because
the row player prefers urow(D,C) = 3 over urow(C,C) = 2 and urow(D,D) = 1
over urow(C,D) = 0, strategy ‘always D ’ is said to strictly dominate ‘always
C ’ because there is no action profile for which playing C would yield an equal
or higher payoff in a single round (Wooldridge, 2009). Let us denote si as a
strategy for player i and s−i = {s1, ..., si−1, si+1, ..., sn} as the strategy profile
of all involved players minus player i. Strict and weak domination are formally
defined as follows:

• A strategy si strictly dominates an alternative strategy s′i when for all
s−i ∈ S−i, ui(si, s−i) > ui(s

′
i, s−i)

• A strategy si weakly dominates an alternative strategy s′i when for all
s−i ∈ S−i, ui(si, s−i) ≥ ui(s′i, s−i) (Shoham & Leyton-Brown, 2008, p.78).

3.1.1 Nash equilibria

An action or strategy that maximises E(ui) with regards to the actions of others
is also defined as a best response. A game may enter a stable state for consec-
utive rounds in which no player will diverge from their current strategy as no
other strategy will yield higher E(ui). Such a stable state from which players
are unlikely to depart, is a Nash equilibrium. In figure 3.1 a Nash equilibrium
is found in action profile DD as playing action D for both players is a strictly
dominating strategy over playing action C. The concept of Nash equilibria can
explain convergence of systems to solutions that are optimal for a given state
of the game but may not be the globally optimal solution. For the Prisoner’s
Dilemma as depicted, both players would receive a higher payoff when both co-
operate to attain a payoff from action profile CC rather than defect and receive
the payoff from action profile DD. Playing D for an individual player however
yields a higher payoff for any action that the opponent chooses to take. There-
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fore, utility maximising players are tempted at any action profile in the game
to play and remain playing D.

A Nash equilibrium is either strict or weak depending on whether the equi-
librium strategy is strictly or weakly dominating. More formally,

• A strategy profile s is a strict Nash equilibrium if, for all agents i and for
all strategies s′i 6= si, ui(si, s−i) > ui(s

′
i, s−i)

• A strategy profile s is a weak Nash equilibrium if, for all agents i and for
all strategies s′i 6= si, ui(si, s−i) ≥ ui(s

′
i, s−i), and s is not a strict Nash

equilibrium,

with s−i = {s1, ..., si−1, si+1, ..., sn} again being a strategy profile s excluding
agent i’s strategy (Shoham & Leyton-Brown, 2008, p.62).

Consider again the Prisoner’s Dilemma from figure 3.1. The Nash equilib-
rium DD is strict as strategy ‘always D’ is strictly dominating over ‘always C’.
Suppose that action profile CC now yields (3, 3). Due to a given player now
being indifferent between actions C and D when the opponent plays C, the
strategy ‘always C ’ is only weakly dominated by ‘always D ’: the given player is
no longer ensured that the latter will perform strictly better regardless of the
opponent’s strategy. Action profile DD is however still a strict Nash equilibrium
because regarding an opponent playing ‘always D’, the best course of action is
to follow suit. Suppose instead we substitute payoffs for DC and CD with (3, 1)
and (1, 3) respectively. Action profile DD is now rendered a weak Nash equilib-
rium because when faced with an ‘always D’-playing opponent, diverting one’s
strategy yields no improvement or decline.

Subgame-Perfect Nash Equilibria

In sequential games with complete information on opponent utility, a refinement
of Nash equilibria can be found. Due to the nature of such games where actions
are taken sequentially rather than simultaneously, subgames can be identified
in which one of the players acts. In figure 3.2, a total of two subgames can be
found (one on either side of the dashed line).

For player A, to always play U may seem a strictly dominating strategy as
uA(UL) > uA(DL) and uA(UR) > uA(DR). Since this is a sequential game
however, player A relies on the consecutive action of player B, knowing that
B will aim to maximise their utility. Because uB(UL) > uB(UR), player A
will only receive 2. By backward induction, it can be seen that player B will
prefer action profile UL over UR and DR over DL. Taking UL and DR into
account, player A prefers DR over UL. Therefore DR is the subgame-perfect
Nash equilibrium in figure 3.2.

Evolutionarily Stable Strategies

A similar sense of stability is found in the presence of strategies when a game
is played in a population of players for an indefinite number of rounds. In such
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Figure 3.2: An n = 2 extensive-form game depicting actions for players A and B. Possible
actions for player A are U (up) and D (down); for player B, these are L (left) and R (right).
Possible action profiles are: UL,UR,DL,DR. The first action is taken by player A. For
corresponding payoffs, the first value is the utility for player A.

a setting, a game is played each round between members of the population who
act according to their strategy. Over the span of multiple rounds, players adapt
their strategies based on the strategies’ average performance in the population.
Through this, a population evolves in its composition of adopted strategies.

Suppose now that the one-versus-one Prisoner’s Dilemma is played among
this evolving population. Though ‘always D’ still is the equilibrium strategy
for one-to-one interactions, u(D,D) = (1, 1) is sub-optimal to u(C,C) = (2, 2)
in accumulating payoff. Therefore it may be beneficial to continually cooperate
(C) with other cooperating opponents rather than defecting (D), which would
subsequently tempt the opponent to defect as well. Because players’ income is
no longer following from a single round interaction but from an iterated game
against multiple players, it can be rational to choose to cooperate continually
even though some opponents choose to defect. Important however is that the
strategy to always cooperate is rewarding enough for the player, meaning that
the amount of cooperating opponents is big enough and that the temptation of
diverting to defection is low enough.

In the above-mentioned scenario, to defect is an evolutionarily stable strat-
egy, meaning that strategies in a population will converge to defection. As
defecting against cooperating opponents yields a higher payoff than cooperat-
ing, an individual may divert to defection. Subsequently, to defect yields a
higher payoff against defecting opponents than to remain cooperating. A homo-
geneous, cooperating population may therefore converge to one in which only
defection remains due to the introduction of defecting individuals. Formally, a
strategy s is a strict ESS and cannot be invaded by another strategy s′ when
these conditions hold, as defined by Smith and Price (1973):

1. E(ui(s, s)) > E(ui(s
′, s)), or

2. if E(ui(s, s)) = E(ui(s
′, s)),

then E(ui(s, s
′)) > E(ui(s

′, s′)) (3.1)

26



We can regard an ESS as another refinement of the Nash equilibrium. A
strategy must be a best response to itself for it to be a strict ESS, similar to
a strict Nash equilibrium. If s is not a best response against itself however
due to s′ faring equally well against s, s must have a benefit against s′ over s′

against itself and must thus at the minimum weakly dominate s′ (Shoham &
Leyton-Brown, 2008).

3.1.2 Evolutionary Dynamics

Mathematical principles such as Nash equilibria and ESSs are used to study the
evolution of players’ behaviour in a population. Evolutionary dynamics can be
generalised to the evolution of species in a biotope or the evolution of human
culture. Populations may alter though the selection of individuals that fare
better relative to others in the population or random mutations that diversify
the population. As shown above, a game theoretical approach is to regard
an environment as a population that is composed of agents utilising different
strategies. With a game specifying how these agents interact, strategies used
by agents can converge to what must be either a local or global optimum for
a given population composition by evolutionary mechanisms such as selection
and mutation.

Such dynamics are simulated within a Multi-Agent System (MAS) in which
agents represent genomes or individuals and are limited in their behaviour to
the strategy they represent. In their interaction with others and through the
implementation of earlier mentioned dynamical mechanisms, the agent popu-
lation converges to the set(s) of best performing agents based on the strategy
they maintain. In applying game theory to the context of an evolving pop-
ulation, we can study recurring interactions between individuals, identify the
characteristics of dynamics between strategies that may be acute or long-term
in their onset and consider the evolution of a strategy in specific environments.
Axelrod and Hamilton (1981) proposed three metrics to determine the success
of a given strategy. The robustness of a strategy refers to how well it can thrive
and remain standing in an environment that can contain any composition of
diverse strategies, the stability of a strategy tells us how easily a strategy can
be invaded by others under given circumstances after it has already formed a
cluster and the initial viability of a strategy denotes whether a strategy can
fixate itself initially in a given environment without going extinct directly.

3.1.3 The Ultimatum Game

The Ultimatum Game is a form of bilateral negotiation where one player receives
a certain amount of a common good and must make an offer p ∈ [0, 1] after which
the responder must react by either accepting the division. Each gets their share
of the common good as per the division if the responder accepts. If the responder
chooses conflict and rejects the division, neither of the players receive anything.
The willingness to accept an offer is often thought of as following from some (in
human experiments often unspecified) acceptance threshold q ∈ [0, 1] such that
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p > ε

p = ε

p ≥ q

p < q

p < q

p ≥ q

proposer responder

Figure 3.3: The Ultimatum Game presented in extensive form. Each branch represents an
action taken by the proposer and responder respectively. Dashed gray lines for the responder
indicate refusal of the offer, leading to payoff of zero. The subgame-perfect Nash equilibrium
outcome is marked red.

a responder is prompted to accept an offer when p ≥ q. The payoff for proposer
(upro) and responder (ures) is as follows:

upro =

{
1− p, if p ≥ q
0, if p < q

ures =

{
p, if p ≥ q
0, if p < q

(3.2)

The players are asymmetric in the actions they can take and move sequen-
tially, such that one player proposes a distribution and the other is left with
the ultimatum of accepting the distribution or rejecting so that both player will
receive nothing. The game is a positive-sum example of a non-cooperative game
as individuals can act out of self-interest at the expense of the other. Both play-
ers at any time have perfect and complete information on the other’s actions in
the sense that they are directly informed of the opponent’s previous choice and
are not restricted in their information on what actions the other can take.

The Ultimatum Game in its simple form was proposed by Güth et al. (1982)
who were interested in finite ultimatum bargaining games in which players, due
to the sequential nature of the game, are involved in one-player subgames such
that their actions should be determined only by the best action they can take
in that subgame. A graphical representation can be found in figure 3.3.

The Ultimatum Game has numerous Nash equilibria if we consider the full
game, which take equal values for p and q. Regarding the game as two separate
subgames however, we can identify a subgame-perfect Nash equilibrium: reason-
ing backwards, a rational responder must accept any proposition p as otherwise
they will receive 0 due to disapproval. With this in mind, the proposer may
suggest any allocation p > 0 as no non-zero offer is expected to be declined and
thus offer the smallest distributable amount. These two actions are the best
actions each player can take in a one round game. Therefore this combination
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of proposing the least possible and accepting (since the least possible is still non-
zero) constitutes a subgame-perfect Nash equilibrium for the Ultimatum Game.
For both players, this dictates the expected behaviour of a rational agent that
aims to maximise its total payoff. This holds even for an iterated game setting
in which players alternate roles where defection is the best option in the last
round, making greedy play also the best action in the prior-to-last and each
preceding round until the first.

3.2 Complex Systems

As a system grows in its number of, the heterogeneity of, the set of actions
for, and the interactions between its components, the system becomes more and
more complex to the point where that system cannot solely be described as
the sum of its parts. Simple behaviour on the component level may result in
complex emergent behaviour on the system level, from the interactions between
those simple constituents (Siegfried, 2014a). A few examples of systems that
we can call complex are governments (as they consist of different branches with
each their own functions, responsibilities and hierarchical substructure), the
human brain (in a neurological sense; as it consists of a large set of neurons that
can be subdivided in regions that each are attributed with a specific purpose
to our processing of certain impulses), and social networks (as individuals are
heterogeneous in the amount of others they are related to, how these relations
are defined, what their beliefs are and which status or permissions they have in
that social network, Bar-Yam, 1998).

Siegfried (2014a) identifies these (non-exhaustive) four typical characteristics
of complex systems:

• state space complexity (complexity in the number of possible states of the
system)

• structural complexity (complexity in the connections between system com-
ponents)

• behavioural and algorithmic complexity (complexity in behaviour and in-
teractions of system components)

• temporal complexity (complexity in time- and state-dependent behaviour
of a system)

A way of representing such complex systems in an abstract, concise manner is
through wiring diagrams, or networks. Expressing complex systems as networks
can clarify the individual components present and the relations that can be
found between them.

3.2.1 Network Concepts

A network is defined as a graph G = (V,E) where V denotes the set of vertices
or nodes in a network (representing the components) and E denotes the set of
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edges or links between those nodes (representing component interactions). The
properties of the network’s structure depend on what it represents. In literature,
terminology from graph theory and network science are often used interchange-
ably. A subtle difference in usage is that graph-theoretical terminology is more
often used in the context of discussing mathematical principles whereas terms
from network science are found regularly in the context of real-world applica-
tions, such as a network underlying to groups of friends or a network representing
corporate connections within a field or city.

Network Science Graph Theory

Network ≡ Graph
Node (n ∈ N) ≡ Vertex (v ∈ V )
Link (l ∈ L) ≡ Edge (e ∈ E)

These terms are commonly used synonymously and they will be used as such
throughout this project.

Undirected and Directed Graphs A network may be depicted as a directed
graph in which edges are arrows directed from a node to another or as an
undirected graph. In an undirected network, an edge exy between nodes x and
y is equivalent to the pair (exy, eyx), denoting a symmetric relationship between
x and y (ignoring any further notion of edge weights for now). How the edges
relate to each other depends on whether relations are hierarchical/ordinal or
not: if x is the father of y, the reverse cannot be true. However, if x is family
of y, the reverse must be true as well, and can thus be expressed through two
reciprocal, directed edges or a single undirected edge.

Multigraph and Weighted Graph Some relations may also require addi-
tional measures to be represented, such as an acquaintance network in which
the degree of interaction is relevant or a network in which not only the presence
of public transit lines between cities matter, but also the amount of lines that
are present. Such networks can be expressed by attaching weights to edges to
express a quantity of that relationship (amount of interaction) resulting in a
weighted graph and/or have multiple edges (public transit lines), thereby mak-
ing it a multigraph (Barabási et al., 2016).

Clusters and Hubs Within a network certain sub-structures can be defined
based on how nodes within these structures are connected. Two structures
relevant for the focus of this project are clusters and hubs.

A set of nodes in a network is defined as a cluster when these nodes show a
high number of connections amongst themselves. This is analogous to the set
of friends for an individual in which most are also friends of each other. Due
to this high density of connections within the set, information possessed by a
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cluster member is likely to reach another cluster node faster than an arbitrary
node in the network.

In the case of multiple nodes being connected to a same node with an absence
or low amount of connections amongst themselves, we define the single node
as a hub. To draw a parallel with the previous analogy, most friends of the
given individual would not regard other members as their friends. Another
analogy for a hub is an individual enjoying a high degree of popularity or status,
such as an individual with a large social media following or a superior in a
hierarchical system. When being passed by hub nodes, information has a larger
reach compared to nodes that have lower degree.

3.2.2 Structural Properties

Real-world networks are subject to some topology stemming from the charac-
teristics of the system it represents and its components. Models exist for the
generation of synthetic networks used for studying such systems. These syn-
thetic networks differ in their structural properties. Below, an explanation of
important structural properties is given followed by an introduction of three
influential network generation models that are used in this project.

The Average Path Length (APL) or Average Shortest Path Length is a
measure for how clustered or connected a network is and thus how efficiently
information can be transferred between any potential pair of nodes. It is the
average of the shortest path lengths between all possible pairs of nodes,

APL =
1

N(N − 1)

N∑
i6=j

s(vi, vj), (3.3)

with N being the total amount of nodes in a network G and s(vi, vj) being the
separation between arbitrary nodes i and j, calculated as the least amount of
edges between them (Pasta, 2019).

The average Clustering Coefficient (CC) denotes the tendency of nodes in
a graph to be clustered together rather than spread apart with less connections.
The more connections between the neighbouring nodes of a focal node, the
higher its individual clustering coefficient will be. Social networks tend to be
strongly clustered. The average clustering coefficient for a network is calculated
as:

CC =
1

N(N − 1)

N∑
i=1

2d−i
di(di − 1)

, (3.4)

with di denoting the amount of neighbours for node i and d−i denoting the
amount of edges between neighbours of node i (Pasta, 2019).

The Degree Distribution (DD) denotes to what extent a network is dis-
tributed or centralised. The degree d of a node is the amount of neighbours
it has. With all degrees in a network known, a frequency distribution can be
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made displaying the proportion of all N nodes for which the degree is d (Pasta,
2019).

The Structural Power of a network denotes the amount of cluster overlap
that nodes have. Structural power can be calculated for a single relationship
(SPij), the average for a single node (SPi) or the overall average for a network
(SPgraph). Whereas the average clustering coefficient of a network represents
the fraction of triads (e.g. two friends that have another friend in common) over
all possible triples in that network, structural power represents the amount of
influence a node i has over another node j through their mutual connections,
relative to the total neighbourhood size of node j (F. P. Santos et al., 2017).
The structural power of node i over node j is calculated as:

SPi,j =

2di,j +
∑
x∈N

di,x × dx,j∑
x∈N

dx,j + 1
, (3.5)

with di,j being 1 if there is an edge between nodes i and j and di,x×dx,j referring
to the amount of neighbours that both i and j are connected to. The average
SP of an agent is:

SPi = |Ri|−1
∑
j∈Ri

SPi,j , (3.6)

with Ri denoting the agents that are reached by agent i directly or indirectly
through a common neighbour. In other words, Ri is the combined set of agents
in the neighbourhood of agent i and the agents in the neighbourhoods agent i
participates in.

The average SP of a network G can then be defined as follows:

SPgraph =

N∑
i=1

SPi

N
(3.7)

When speaking of SPi in general without specifying a specific node, we will
denote this as SPnode. For SPi,j we will use SPpair.

3.2.3 Network Models

Erdős–Rényi (Random Graph)

The random graph model formally introduced by Pál Erdős and Alfréd Rényi
preluded more sophisticated complex network generation models that better
simulated the stochasticity of connections found in real-world networks. In
the Erdős–Rényi model, N isolated nodes are linked randomly pairwise with a
probability p. This is done for every possible pair of nodes in the graph (Erdős
& Rényi, 1960). Figure 3.4 shows three generated ER graphs with varying p.
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Figure 3.4: Erdős–Rényi random graphs generated with N = 100 and p = .03 (i), p = .06
(ii) and p = .10 (iii).

ER graphs are characterised by low average path length and a low clustering
coefficient. This is because the probability of an edge being wired between a
pair of nodes is equal for all possible pairs. Therefore, ER graphs have a low
standard deviation in the amount of edges d that each node has. Statistics for
the ER graphs are shown in table 3.1.

p APL CC SPG
.03 3.759 .0197 .288
.06 2.877 .0737 .202
.10 2.261 .1083 .163

Table 3.1: Structural properties for the generated Erdős–Rényi random graphs depicted in
figure 3.4.

Contrary to real networks, ER graphs show little to no triadic closure or clus-
tering due to the independent, equal probability of connection between nodes.
Real networks also exhibit the formation of larger hubs where a small subset
of nodes exhibits a degree orders of magnitudes higher than others, whereas
ER graphs have a degree distribution that converges to Poisson distribution
(for N � d; when N > d but N 6� d, converges to a binomial distribution)
(Barabási & Albert, 1999; Barabási et al., 2016; Watts & Strogatz, 1998). De-
gree distributions can be found in figure 3.5 (i - iii).
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Figure 3.5: Degree distributions for generated graphs. For Erdős–Rényi: n = 100, p = .03
(i), p = .06 (ii), p = .1 (iii). For Watts-Strogatz: n = 100, K = 4, p = 0 (iv), p = .10 (v),
p = .80 (vi). For Barabási-Albert: n = 100, m = 1 (vii), m = 2 (viii), m = 5 (ix).

Watts-Strogatz (Small-World Network)

The Watts-Strogatz network generator creates small-world networks that exhibit
the first of two general properties of real networks, the formation of clusters
through triadic closures. Watts-Strogatz small-world networks exhibit a low
average path length as found in random graphs and high clustering as found
in lattice graphs. Small-world networks are generated by starting with nodes
oriented on a regular ring lattice with d neighbours from which all edges are
rewired uniformly at random with some probability prewire. With high values
for prewire, generated networks resemble Erdős–Rényi random graphs. Figure
3.6 shows three small-world networks generated with varying probabilities of
rewiring.
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Figure 3.6: Watts-Strogatz small-world networks generated with N = 100, d = 4 and
prewire = 0 (i), prewire = .10 (ii) and prewire = .80 (iii).

Different from random graphs, nodes in the small-world network that have
common neighbours have a higher probability of being connected as well. Due
to the larger overlap in neighbours between nodes, small-world networks also
exhibit a higher average structural power than random graphs. Structural prop-
erties for the small-world networks displayed can be found in table 3.2.

prewire APL CC SPG
.0 12.89 .5 .5
.10 4.591 .3317 .3804
.80 3.462 .0391 .2594

Table 3.2: Structural properties for the generated Watts-Strogatz small-world networks
depicted in figure 3.6

To what degree a network exhibits small-world properties is measured by
its small-worldness. A measure for small-worldness is ω. For ω, the average
path length of a network (APL) is compared with that of an equivalent random
network (APLr) and its clustering coefficient(CC) with that of an equivalent
regular lattice (CCl). Equivalent here refers to having the same amount of
nodes and edges per node. Small-worldness ω is then calculated as:

ω =
APLr
APL

− CC

CCl
(3.8)

Possible outcomes for ω are found in [−1, 1]. For values of ω close to −1,
a network exhibits the APL and CC of a lattice whereas for values close to 1,
its properties resemble those of a random graph. For ω close to 0, a network
features small-world characteristics (Telesford, Joyce, Hayasaka, Burdette, &
Laurienti, 2011).

Small-world networks follow real networks in that there is a higher amount of
clustering and triadic closures, along with network-spanning edges that reduce
the average distance between two arbitrary nodes. However, they do not display
a power relation in their degree distribution and thus do not exhibit degree
heterogeneity as found in real networks.
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Barabási-Albert (Scale-Free Network)

Barabási-Albert scale-free networks do exhibit the presence of hubs in real net-
works. The scale-free networks are generated by starting with m initial nodes
to which in each time-step a new node is attached to m nodes already present
in the graph. Node selection displays preferential attachment, meaning that
higher degree for nodes results in a higher probability of subsequent attachment
by new nodes. This is done until the amount of nodes N is met. The preferential
attachment resembles the preference of individuals to associate themselves with
others who have a large amount of connections or the growth of the World Wide
Web through hyperlinking popular websites. Figure 3.7 shows three generated
scale-free networks with varying m.

Figure 3.7: Barabási-Albert scale-free networks generated with N = 100 and m = 1 (i),
m = 2 (ii) and m = 4 (iii).

The APL and CC for Barabási-Albert scale-free networks are heavily reliant
on the settings for m. For m = 1, nearly all paths cross the small subset of
nodes with high degree without any faster shortcut from one hub to another,
necessitating longer paths between nodes with low degree. And since nodes
are attached preferentially, triadic closures are sparse. The average structural
power is higher for lower m however, caused by the subset of nodes with higher
degree.

m APL CC SPG
1 4.052 .0 .4042
2 3.079 .1149 .2568
4 2.229 .2040 .1898

Table 3.3: Structural properties for the generated Barabàsi-Albert scale-free networks de-
picted in figure 3.7

Contrary to ER graphs and small-world networks, Barabási-Albert scale-
free networks do not consider all nodes to be present at the time of creation.
Therefore Barabási-Albert scale-free networks can also simulate network growth.
Barabási-Albert scale-free networks do model hub formation through preferen-
tial attachment as can be found in some real networks, but fail to include the
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formation of clusters for low settings for m. Scale-free network generators that
do account for the formation of clusters with extreme hub formations however
do exist (e.g. Holme & Kim, 2002; Klemm & Egúıluz, 2001).

3.2.4 Agent-Based Models

Agent-based modelling is a simulation modelling technique with which complex
systems can be represented. An Agent-Based Model (ABM) is built with a
focus on the individual components that comprise the system, rather than the
system itself. Whereas network models can represent the topology or hierarchy
of units constituent to a complex system, ABMs can represent the behaviour
of and interactions between such units. This allows for the modelling of macro
dynamics on the level of the system, as an outcome of micro dynamics on the
level of components.

ABMs are able to:

• capture emergent phenomena, in modelling a system through its smaller
constituents,

• provide a natural description of a system, by focusing on causation behind
emergent behaviour as to recreate it indirectly rather than directly model
said behaviour,

• allow for flexibility in modelling, as properties underlying the system can
be adjusted easily (Bonabeau, 2002).

Agents

The smaller constituents that serve as building blocks for ABMs are agents. An
ABM situates agents in a common simulation environment in and with which
they interact (Siegfried, 2014b). An agent is a software object that perceives its
surroundings through its sensors and has ways to act on it through its effectors
(Russell & Norvig, 2002). There is no single form of agent as their design is
heavily reliant on their purpose. Generally, agents possess the following char-
acteristics as defined by Wooldridge and Jennings (1995, p. 116). An agent
is:

• autonomous in that it has control over its actions and internal state and
operates individually,

• social in its capability of interaction with other agents,

• reactive in perceiving and reacting to changes in their environment, and

• proactive or goal-oriented in changing their environment to pursue a de-
sired goal or state.

Important further characteristics for an agent are that it is rational and
situated (Regli et al., 2009; Russell & Norvig, 2002). The rationality of an
agent refers to having a measure of performance based on its desired state or
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goals for which it aims to improve its performance. Situatedness refers to the
agent being embedded in some environment, whether it be real or virtual, that
the agent can sense and affect.

The internal structure that makes up the agent is referred to as the agent’s
architecture. An agent consists of sensor - and effector components, and may
also include a reasoner component depending on the complexity of the agent’s
behaviour. Sensor components enable an agent to perceive its environment;
effector components enable an agent to interact with it. Reasoner components
refer to modules that enable additional processing on recent or past sensor
information.

Multi-Agent Systems

A Multi-Agent System (MAS) is a system consisting of multiple autonomous
agents that interact with each other and their environment to achieve an indi-
vidual or joint objective. MAS tackle complex problems in a distributed man-
ner: agents contribute to a global solution by individually solving a global or
local problem (Serugendo, Gleizes, & Karageorgos, 2005). Due to limited or
no central management, a typical MAS is self-organising: global, system-level
behaviour is predominantly the aggregate of local, agent-level actions.

Much like an agent, a MAS can be embedded in the real world, integrated
in a physical system (e.g. in building management systems, Priyadarshana et
al., 2017) or fully existing in a virtual environment. Regardless of the imple-
mentation, behaviour found in MAS can be characterised by the following:

• there is an absence of explicit external control : a MAS is itself autonomous
with system reorganisations originating from internal decisions,

• control in MAS is decentralised : the system itself is mostly composed
from its constituent parts with little to no global control on the level of
the system,

• dynamic operation: MAS evolves independently over time without ex-
ternal control, implying continuity of agent behaviour (Serugendo et al.,
2005).

MAS vary in complexity depending on the size of the system, the complexity
of local dynamics and the heterogeneity of those computations. Following these
dimensions, (Regli et al., 2009) define these terms to describe typical MAS:

• monolithic system: system consisting of a single, highly specialised agent
with complex internal computation with a focus on autonomy, proactivity
and continuity,

• median system: system consisting of a small number of agents that are
heterogeneous in their architecture and display moderate computational
complexity with a focus on coordination, cooperation and resource sharing,
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• swarm system: system consisting of a high number of agents that are
predominantly homogeneous in their architecture and of low complexity,
with a focus on emergent behaviour as the aggregate of local dynamics.

It serves the reader right to provide a disambiguation between the definitions
for ABM and MAS. Both techniques imply systems that are defined mostly
by the behaviour of agents as their constituent parts, allowing for emergent
behaviour. Additionally, both can also represent complex systems. Multiple
definitions exist for both ABMs and MAS as both can refer to specific techniques
as well as a framework or mindset that encompass programming approaches. In
this project, Agent-Based Modelling is approached as constructing a model so
that a complex system as found in the real world is represented with the use of
agents. A MAS is approached as a form of decentralised computing on the basis
of agents. Whereas for an ABM the purpose is the resemblance of a real complex
system with emphasis on simulation, a MAS aims to offer a global solution by
convergence of local computations. Both approaches can work in accordance
with each other, with their intersection being a MAS implemented to provide a
global solution to a real world problem that is expressed as a model.
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Chapter 4

Methodology

This chapter provides the methodology for this thesis project. The methodology
is structured as follows. First, our definition of fairness that will be used for the
experiments will be further specified, along with a further specification of our
hypotheses. Then we will discuss our developed Multi-Agent Model in detail
according to ODD protocol.

4.1 Specifications

4.1.1 Fairness

In specifying our criteria on when a result is deemed fair, we will use two def-
initions of fairness for our experiment to reflect procedural fairness as well as
distributional fairness. For our first definition we focus on players’ negotiation
behaviour in that players exhibit fairness in their strategies. We therefore define
fairness as population convergence to an average strategy s = (p, q) that splits
equally and is empathetic:

s = (0.5, 0.5)

Our second definition considers the distribution of utility in a population
in the final round. We define a fair distribution of utility to be one in which
ui = uj for each possible pair of agents, meaning that for the standard deviation
of utilities σu within a population in the last round we have:

σu = 0

These criteria denote what we would ultimately see as perfectly fair strate-
gies and distributions. For our experiments, we focus however on the relative
improvement in fairness of our model under different settings of network charac-
teristics. These criteria are thus used as reference points by which we evaluate
whether the relative difference in strategies and utility distribution between
different population structures is in favour of or against fairness.
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4.1.2 Hypotheses

Having formalised our definition of fairness, we now include this formalisation
in our hypotheses. With a → b we denote that variable a converges in the
direction of value b.

Hypothesis 1a: For population structures with high Clustering Coefficient
(CC), we expect to find s = (p, q)→ (0.5, 0.5), with (p, q) for high CC popula-
tions being greater than (p, q) for low CC populations

Hypothesis 1b: For population structures with high CC, we expect to find
σu → 0, with σu for high CC populations being less than σu for low CC
populations.

Hypothesis 2a: For population structures high in degree-heterogeneity we
expect to find s = (p, q) → (0.5, 0.5), with (p, q) for high degree-heterogeneic
populations being greater than (p, q) for less degree-heterogeneic populations.

Hypothesis 2b: For population structures heterogeneous in degree distribu-
tion we expect to find σu → 0, with σu for high degree-heterogeneic populations
being less than σu for low degree-heterogeneic populations.

4.2 Multi-Agent Model

In the following section we will provide a thorough description of the model
designed for our research aim. We first discuss the model on a general level,
providing the model’s purpose (4.2.1), its entities and variables (4.2.2) and a pro-
cess overview (4.2.3). Secondly, we discuss design concepts and model attributes
(4.2.4). Lastly, we discuss the initialisation (4.2.5) and provide detailed descrip-
tions along with pseudo-algorithms for submodels (4.2.7). The model descrip-
tion follows the ODD (Overview, Design concepts, Details) protocol (Grimm et
al., 2006, 2010; Grimm, Polhill, & Touza, 2017).

4.2.1 Purpose

The purpose of this model is to capture the influence that social network struc-
ture has on the evolution of fair negotiation behaviour in bilateral negotiations.
The model simulates a population of individuals that interact with each of their
neighbours by playing the one-versus-one Ultimatum Game. The population is
structured according to the properties of small-worldness and scale-freeness, as
found in real social networks. Individuals continually and simultaneously inter-
act with their neighbours for a set amount of rounds. Through social comparison
with their neighbours and creatively trying new strategies, individuals attempt
to improve their own negotiation tactics. The idea is that self-interested negoti-
ation tactics are individually rational and optimal when others can be exploited.
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However, individuals have repeated interactions only with their neighbours and
are a source of influence for their neighbours’ negotiation behaviour. When
adopted by neighbours, self-interested negotiation tactics will therefore lead to
sub-optimal results for an individual.

4.2.2 Entities, state variables, scales

This model contains two types of entities, being the individuals and the pop-
ulation. Individuals are represented by agents (and will further be referred to
as such) that inhabit a node in a network. The population is the set of agents,
coupled to a network. The network determines the social structure within the
population, i.e. which agents are connected and can thus interact. Since agents
and nodes are paired bijectively, variables concerning nodes are included in the
state variables for agents.

Agents

Agents represent individuals in a population that are involved in bilateral nego-
tiations with their neighbours. Each agent has an identifier that is unique within
the population and inhabits a node in the social structure network. Agents inter-
act with their set of neighbours by playing the Ultimatum Game, for which each
agent has its own strategy. The resulting payoff from the interactions is stored
as an agent’s revenue, with the agent’s fitness denoting its performance relative
to the size of its neighbourhood and thus the resulting amount of interactions.

There are no discrete types that distinguish sets of agents from others. Each
agent has a unique id and assigned node. Agents are assigned their own neigh-
bourhood and strategy, with similarities with other agents being possible but
unintentional.

Following the classification of Sloman (1999, p. 4-6), our agent can be seen as
a reactive agent. Reactive agents receive information through their sensors and
act on that using their actuators without much processing before taking action
or determining which action to take. The agents are however slightly more
complex than regular reactive agents. Though actions during game interactions
are simple, agents employ a slight sense of reasoning in the comparison of their
performance with that of their neighbours and calculating a probability with
which they exploit neighbours’ strategies. They do not however reason on a
history of previous states in determining consecutive actions, which Sloman
(1999) appoints as the core difference between his class of reactive agents and
his subsequent, and slightly more complex, deliberative agents.

Population

The population is the set of all agents present, along with a social structure net-
work. The population entity is not described by many state variables. Rather,
the population entity is used to address all agents and interaction couples and in
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State variables Brief description
id Agent identifier
node Social structure network node associated with the agent
neighbourhood List of agents that inhabit nodes adjacent to node
strategy Tuple s = (p, q) with p, q ∈ [0, 1] denoting offer value p

and acceptance threshold q for the agent
revenue Sum of all payoffs received in the current round
fitness Performance measure calculated from the revenue

gained and the amount of interactions per round
data List with per round a tuple (p, q, u) containing offer

strategy p, acceptance threshold q and round revenue
u

exemplar A neighbour selected for social comparison in the up-
dating phase

Table 4.1: Table listing all state variables of the agent entity with a brief de-
scription of each variable.

coupling agents to the social structure network. The population entity executes
actions that occur globally, and is by itself the environment for the agents. The
population entity is a central component for model in addressing each agent to
interact with their neighbours by playing the Ultimatum Game, and handling
the update sequence each round. One time step then denotes a single round in
which all interactions have occurred and all agents have updated their strategy.

state variables brief description
agents List of all agents present in the population
graph Generated social structure object that is passed to the

population
edge list List of all connections present between agents in the net-

work

Table 4.2: Table listing all state variables of the population entity with a brief
description of each variable.

The conjunction between population and the social structure network forms
the complete environment for the agents. Agents are paired bijectively to nodes
of a new social structure network for each simulation. This generated network
dictates the structure of the population and thus which agents can and cannot
interact. Nodes have access to the agents on its neighbouring nodes. Figure 4.1
offers a schematic representation of the agent-to-network coupling.

The environment that all agents are situated in and are part of is described
following the environment properties from Russell and Norvig (2002, p. 46) in
table 4.3.

Note that this takes account of the perceived environment from the perspec-
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Figure 4.1: Schematic representation of the coupling of the agent population to a network.
Pentagrams in the lower layer represent nodes, with edges between them. Cylinders in the
upper layer represent individual agents, with dotted phase lines between them indicating the
possibility of interacting. These interaction lines correspond to the edges in the lower layer.

Property Description
inaccessible An agent is not aware of other players’ strategy values

when acting
nondeterministic The agent’s environment is subject to stochasticity beyond

the agent’s control or knowledge
nonepisodic Actions in earlier rounds will affect negotiations in later

rounds, through mutual influence on strategies between
agent and neighbours

static The environment does not change for an agent during de-
liberation before taking action

continuous Strategies for the agents are continuous. Therefor the
strategies of an agent’s neighbours are unlimited in their
configuration.

Table 4.3: Properties of the model’s environment following the classifications of
Sloman (1999).

tive of an arbitrary agent rather than the complete environment.

4.2.3 Process Overview and Scheduling

A flow diagram for the round process of the model is shown in figure 4.2. Each
time step consists of two parts. In the first part, each agent plays the Ultimatum
game with each of their neighbours, storing their resulting payoffs after each
interaction. Agents interact twice per neighbour in a single round; this will
be further explained under interaction in the design concepts (4.2.4). After
all agents have interacted, fitness for each agent is calculated and stored. All
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agents store round performance in their data variable and select an exemplar
neighbour from their neighbourhood.

Figure 4.2: Flowchart showing the process of a single iteration. p denotes the
proposer’s offer strategy; q denotes the responder’s acceptance threshold.

In the second part, agents enter an update process in which each has a chance
of imitating their exemplar neighbour’s strategy or exploring the strategy space
by adopting a newly randomised strategy. This update process is finished when
all selected agents have stored their adapted strategy. The final action in the
process is all revenues being reset to zero before commencing with the next
round.

4.2.4 Design Concepts

Basic Principles The theoretical underpinning for our model stems from
game theory, evolutionary dynamics, evolutionary graph theory and network
science. Our model is designed according to the principles of Agent-Based
Modelling (ABM). Further implementations to our model stem from earlier ap-
proaches to the Evolutionary Ultimatum Game, as are reflected in our update
rules which will be explained under submodels (4.2.7).

Game theory contributes in our use of the Ultimatum Game as a game-
theoretic model of bilateral negotiations. It further contributes in our explana-
tion of behaviour on the local level in our model, being the considerations an
individual has in the UG-model of bilateral negotiations as based on the Nash
equilibrium in the Ultimatum Game.

Following evolutionary game theory and evolutionary dynamics, we extend
this bilateral negotiation model to a population in which the Ultimatum Game
is the mode of interaction. Population members interact for a given amount
of rounds over which they adapt strategies according to fitness and random
exploration. The core principle taken from these theories is that, given enough
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time, the average population strategy will converge toward a single or multiple
attractor points in the strategy space. These attractor points are Evolutionarily
Stable Strategies, from which we deduce that these strategies are actually the
most viable under given settings.

The introduction of a topology in the Evolutionary Ultimatum Game stems
from the principles of Evolutionary Graph Theory. This posits that topological
structure has a strong influence on the evolutionary dynamics occurring within
a population, as shown by e.g. Lieberman et al. (2005). We expand this in-
troduction of topological structure by regarding structures that describe social
networks specifically. With this we include network science, which is, much
like graph theory, the study of graphs/networks. As explained earlier however,
graph theory more so refers to the mathematical approach to graphs/networks
whereas network science refers to the study and description of found networks
in the real world.

Our model is designed as an ABM. Though mathematical modelling is com-
mon in evolutionary game theoretical studies, we believe that ABMs better allow
for a natural description of our intended phenomenon. Furthermore, with use
of an ABM studying our model in different networks requires only the tweaking
of hyperparameters whereas otherwise this would constitute a different mathe-
matical model per structure.

Emergence The explicit behaviour of our model is the local interaction, being
the bilateral negotiation. Slightly less explicit is the exchange of information
(being: strategies) between neighbouring agents, as influenced by population
structure. The most implicit, and emergent property of behaviour in our model
is the aggregate exchange of information throughout the whole population, and
the collective individual convergence to fairer strategies. This behaviour is not
ascribed to individual agents or a central authority. Rather, it emerges from
local, utility-maximising behaviour from agents given their position in the net-
work.

A further emergent property that shows up in the model is selection pressure
versus neutral drift as characteristic of the global dynamics. In short, this is the
degree to which global dynamics are actually controlled by the performance of
a strategy rather than being controlled by stochastic evolutionary mechanisms
such as exploration, respectively.

Adaptation Agents adapt only in their strategies. Adaptation in our Evo-
lutionary Ultimatum Game model is designed according to the evolutionary
game-theoretic principles of exploration and exploitation. An update sequence
is present at the end of each round up until the last. In this update sequence,
both exploration and exploitation occur with a probability.

On the level of a single agent, the exploration probability is exogenous in the
sense of being set as hyperparameter before initialisation and thus being fixed.
The exploitation probability however is calculated for each agent and depends
on the relative performance difference between an agent and its chosen exemplar
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neighbour. Important to note is that exploitation occurs only when an agent is
not selected to explore, and thus when the exploration probability is not met.

Objectives The prime objective for agents to adapt is to maximise their per-
formance, meaning the utility they gain in each round. The more specific
objectives of exploration and exploitation differ but ultimately reflect utility-
maximisation. For exploration, the underlying objective is to explore the strat-
egy space in search of a strategy that might outperform the former strategy
in the agent’s neighbourhood. For exploitation, the objective is to emulate a
neighbour that may be performing better, in the hopes of achieving similar suc-
cess. Depending on the update rule, different interpretations for exploitation
can be ascribed. An update rule that places non-zero exploit probability on
worse performing strategies can still be regarded as exploration within one’s
own field of view, being the neighbourhood.

Learning No form of learning has been applied on the level of individual
agents. As a dynamical system it can be said however that the population as an
entity undergoes a learning process, as found in swarm intelligence. Though this
is our intended use for the model, it is an emergent property and not explicitly
incorporated.

Prediction Agents do not apply any form of prediction in the model.

Sensing Agents can sense their direct surroundings in the sense of having
access to which agents are in their neighbourhood. Agents cannot however
sense any state variable of other agents, apart from exemplar agents’ strategy
and fitness when explicitly given in the update sequence. Furthermore, agents
are only aware of the outcome of an interaction. This will further be explained
under Interaction.

Regarding agents only being aware of the outcome of an interaction due to
the current implementation, we like to address that knowledge of an offer or
acceptance threshold is not necessary for the scenario that the model intends to
simulate. Agents only act based on their current strategy and do not anticipate
on the actions of others; therefore strategic information on neighbours before
acting is also irrelevant and therefore not stored or further accounted for.

Interaction An interaction between agents constitutes playing the one-versus-
one Ultimatum Game. It is implemented as being conducted by a ’central au-
thority’, meaning interacting agents only share their relevant strategy value
(offer or acceptance threshold) with the authority and are returned a payoff de-
pending on the turnout of the interaction. This has been a optimisation choice
rather than explicitly and meaningfully designed.

Furthermore, an interaction constitutes of two bilateral negotiations: in one
round, against one neighbour, an agent is involved in the Ultimatum Game

47



twice. Based on whether role-determination is random or alternating, agents can
either alternate between roles or play as one role twice per round per neighbour.

The choice for two bilateral negotiations follows the implementation by
Iranzo et al. (2011). There are two motivations for this design choice. Firstly,
having two negotiations per round per neighbour emulates the idea of a focal
agent interacting with each of its neighbours before a consecutive agent inter-
acts with its neighbours, allowing for each agent to play once being focal agent
and once being a neighbour of a focal agent.

Secondly, having a higher amount of interactions in a round before the up-
dating sequence increases the probability of an agent using both its offer and
acceptance threshold. Therefore, round revenue is likely to be more represen-
tative of both an agent’s offer and acceptance threshold, meaning an agent has
more interactions it can test its strategy in.

Further interaction between agents occurs in the updating sequence, where
an agent receives the fitness and strategy values of its exemplar neighbour.

Stochasticity Stochasticity is present in exploration and exploitation. For
exploration, as well as initialisation of a simulation, an agent receives a new
strategy composed of (p, q) ∈ [0, 1], sampled uniformly at random.

For exploitation, stochasticity is present in the selection of an exemplar
neighbour, in the probability of adopting the neighbour’s strategy and in an
amount of noise applied to the strategy values of the neighbour, to encourage
local exploration.

Collectives No explicit agent collectives are present in the model. Implicitly,
collectives can be present in the form of substructures in the social structure
network. The social structure network is however in no way dynamic; agent
connections do not change during a simulation and such collectives are in no
way separated from the rest of the population.

Furthermore, the neighbourhood of a given agent can be seen as a collective,
with all interacting indirectly through said agent unless connections also exist
between neighbours.

Observation Data is stored per agent as a tuple (p, q, u) being the offer value
(p), acceptance threshold value (q) and the utility (u) gained in that round.
Main analysis will only cover data from the last round to reflect the converged
population state and final strategies and income for the agents.

In studying the data, we will look at average population p and q as well as
distribution of utility among a population.

Networks This design concept is supplementary and not part of the standard
ODD protocol. We add a small discussion of the social structure networks to
provide some detail before discussing the initialisation of a simulation. Pseu-
docode algorithms for the generation of networks will be provided in the sub-
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models subsection (4.2.7), along with a more in-depth discussion of the network
models.

The social structure of the population of agents in our model is determined by
networks that are generated before commencing the simulation. These networks
are created with the amount of agents (and thus nodes) that will be present in
the population, as well as the average degree of each agent, meaning the amount
of edges that an agent’s node has. The networks are underlying to the model and
have no further influence on the population apart from being used to initialise
agents and determine their neighbours at the start.

4.2.5 Initialisation

At the start of a simulation a generated network is passed to the empty pop-
ulation entity, after which the population generates an agent per node. At
creation, an agent is assigned an ID and random strategy and is linked to the
corresponding network node. After all agents are generated, each agent stores its
neighbouring agents in its neighbourhood list variable. A pseudocode overview
for initialisation is provided in algorithms 1 for the population and algorithm 2
for the agent.

Algorithm 1: Population initialisation

input : Generated network object G
output: Generated agent objects within population object

1 def populate(G):
2 agents←− ∅
3 agentID ←− 0

4 for node in G:
5 agent←− create Agent(node, agentID)

6 add agent to agents
7 agentID += 1

8 for agent i in agents:
9 agent do store neighbouring nodes in list Ki

10 return agents

4.2.6 Input Data

Our model makes no use of external data for initialisation or processes during
simulations.

4.2.7 Submodels

All model parameters and hyperparameters are listed in the following table.
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Algorithm 2: Agent initialisation

input : node, agentID
output: Generated agent object

1 def create Agent(node, agentID):
2 agent←− Agent Object
3 agent id ←− agentID
4 agent node ←− node
5 agent strategy ←− random strategy()

6 agent revenue ←− 0
7 agent fitness ←− 0
8 agent Kagent ←− ∅
9 agent data ←− ∅

10 return agent

Parameter Description
N The total number of agents in the population
nrounds The number of rounds for a simulation
nsim The number of simulations per setting
pi ∈ [0, 1] The offer that a given proposer i will make
qi ∈ [0, 1] The acceptance threshold for a given responder i
si ∈ S A strategy as a tuple (p, q) for a given agent i. S =

{s1, s2, ..., sn} denotes the set of all strategies present in the
population

ui ∈ U The utility received by a given agent i. U = {u1, u2, ..., un}
denotes the set of utilities for all agents

µ The probability of exploring the strategy space by randomis-
ing strategy values p and q of an agent. Synonymous to the
mutation rate in Evolutionary Game Theory literature

α The amount of noise present in exploiting the strategy of another
agent

πij The probability of agent i exploiting the strategy of agent j
fi The fitness for a given agent i
di ∈ D The degree (amount of connections) for agent i. D =

{d1, d2, ..., dn} denotes the set of all degrees present in the pop-
ulation

k ∈ Ki A neighbour from the set of neighbours Ki for agent i, such that
Ki = {k1, k2, ..., kdi}

prewire The probability of rewiring an edge for the Watts-Strogatz
small-world network

γ The value to which counts are raised to model preferential at-
tachment for the scale-free network generator
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Run of the program

Flowchart 4.3 shows a schematic representation of the occurrences during the
complete program. When the program is run, a set of specified networks is
generated according to algorithms 6 and 7. The number of networks generated is
equal to the network settings times the amount of simulations set. All networks
per network setting are individually generated but are however the same in
hyperparameter settings.

After networks are generated, the subset of the networks corresponding to a
network setting is passed to the simulation handler that initialises the popula-
tion. At the end of each simulation, data of the Ultimatum Game is returned to
the simulation handler. This data is stored in a DataFrame after which a new
simulation commences with a new initialisation of the population, with no data
or parameter settings present in the game process from the previous simulation.
When all simulations for a given network setting have passed, simulations are
run with subsequent network setting subsets of the generated networks.

After simulations for all network settings have ended, data is added together
in a final DataFrame that is further used for analysis.

Figure 4.3: Flowchart showing the process of the total program. Single round
description is summarised; more extensive description of the single round can
be found in figure 4.2 and algorithms 3 and 5.
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Ultimatum Game

The Ultimatum Game is an interaction between two neighbouring agents. Al-
gorithm 3 shows the implementation of the actual game progression. In a single
interaction, the proposing agent i shares their offer pi after which agent j will
either accept or reject the offer, dependent on whether pi ≥ qj . If not, both
agents receive nothing. More formally, the utility functions for the proposer uij
and responder uji are defined as:

uij =

{
1− pi, if pi ≥ qj
0, if pi < qj

uji =

{
pi, if pi ≥ qj
0, if pi < qj

(4.1)

Strategies

A strategy for agent i is defined as a tuple si = (p, q) with (p, q) ∈ [0, 1]. Values
for p and q are selected uniformly at random.

Algorithm 4: Random Strategy Generation

def random strategy():
p←− value ∈ [0, 1] sampled uniformly at random
q ←− value ∈ [0, 1] sampled uniformly at random
strategy ←− (p, q)
return strategy

Update Sequence

Algorithm 5 shows the code for the update sequence that is referenced in algo-
rithm 3. The update sequence submodel is developed such that concurrence is
emulated in updating: it is ensured that no agent updates its variable values
before all other agents have calculated their new values.

Update Rule

In the updating sequence, agents that do not explore have a chance of exploiting
their exemplar neighbour’s strategy. The chance of exploiting is calculated with
the fitness of the agent and its exemplar neighbour according to the Fermi
equation for pairwise comparison. The Fermi imitation rule allows for more
local exploration in the strategy space around existing strategies. The Fermi
imitation rule places non-zero probability on any strategy an exemplar may
have. Probabilities do reflect how much better or worse an exemplar’s fitness is
compared to an agent’s own. For an agent i, si becomes sj with probability
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Algorithm 3: Evolutionary Ultimatum Game

input : population, edgelist, nrounds

1 def play(population, edgelist, nrounds):
2 for n in range(nrounds):
3 for pair in edge list:

/* Ultimatum Game is played twice per pair. Here

depicted in the randomRoles-configuration. */

4 for i in range(2):
/* Assign player roles at random. */

5 proposer ←−random choice from pair
6 responder ←− (pair − proposer)
7 if proposer p ≥ responder q:
8 uproposer+ = 1− p
9 uresponder+ = p

/* Agent degree duplified due to double interactions per

neighbour. */

10 for agent i in population:
11 income←− ui
12 fi ←− income / (2 ∗ di)
13 agent’s exemplar j ←− random choice from Ki

14 agent data ←− (si, income)
15 if nrounds 6= final round:
16 update sequence(population)

/* When the final round has ended */

17 dataset←− ∅
18 for agent in population:
19 add agent data to dataset
20 return dataset

πij =
1

1 + e−β(fj−fi)

Note that if fj = fi, the probability of imitating that neighbour πij is .5.
The β in the Fermi equation denotes the selection pressure. For higher values

for β, pressure to exploit strategies with higher fitness becomes increasingly
deterministic. For lower values, the probability of imitating neighbours becomes
less influenced by the relative difference between agents’ fitness values.

Performance Measures

The utility for an agent i is defined as the sum of its payoffs resulting from
playing the Ultimatum Game with all its neighbours,
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Algorithm 5: Update Sequence

input : population

1 def update sequence(population):
2 updateList←− ∅
3 for agent i in population:
4 if random value ∈ [0, 1] < µ:
5 add agent to updateList
6 new strategy for agent←− new random strategy

7 else:
8 πij ←− update rule(agent i, agent’s exemplar j)
9 if random value ∈ [0, 1] < πij:

10 add agent to updateList
11 p, q ←− strategy of agent’s exemplar
12 new strategy for agent←− (p± α, q ± α)

/* Agent strategies are updated only after all agents

have calculated their new strategy. */

13 for agent in updateList:
14 agent strategy ←− new strategy for agent

ui =

Ki∑
j=1

uij . (4.2)

The fitness for an agent i is then defined as the payoff the agent has received
per interaction, weighed by its amount of neighbours:

fi =
ui
2di

(4.3)

Note that the amount of neighbours is doubled, since the agent has two
interactions with each neighbour. The fitness of an agent is reset to zero before
the following round commences.

An alternative definition for fitness used in our second experiment takes into
account the amount of neighbours of the exemplar. Instead of weighing the
utility of agent i by its own degree, ui is weighed by the maximum of agent i’s
and its exemplar j’s degree dj :

fi =
ui

2 max(di, dj)
(4.4)

This is done to increase the weight of degree-heterogeneity between neigh-
bours in exploiting strategies.
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Network generation

The networks that determine the population structure are intended to resemble
real networks as can be found in social groups. As explained in the background
section, small-world networks and scale-free networks resemble such real social
networks in their clustering and hub-forming, respectively. The display of these
social network characteristics underlies our focus on these two network types
in this project. Networks are generated using the Networkx package for the
creation, manipulation, and study of the structure, dynamics, and functions of
complex networks.

Watts-Strogatz (Small-World) Networks The small-world networks gen-
erated according to the methods of Watts and Strogatz have been chosen for
their clustering property which can be varied from regular ring lattices with
high APL and high CC, through small-world networks with low APL and high
CC, towards random networks with low APL and low CC. The algorithm for
small-world network generation is shown in algorithm 6.

Algorithm 6: Watts-Strogatz Network Generator

input : N, d, prewire
output: Small-World Network

1 def watts strogatz graph(N, d, prewire):
2 G←− networkx.Graph()

/* Create a ring by connecting all nodes */

3 nodes←− list(range(N))

/* Then let each node add its d/2 neighbours s.t.

finally each node has d neighbours */

4 for j in range(1, (d/2 + 1)):
5 targets←− list(j, j+1, ..., N, 0, ..., j-1)
6 add edges between bijective pairs from (nodes, targets) to G

/* Then rewire edges with probability prewire */

7 for j in range(1, (d/2 + 1)):
8 targets←−list(j, j+1, ..., N, 0, ..., j-1)
9 for node, target from bijective pairs in (nodes, targets):

10 if random value < prewire:
11 new neighbour ←− random choice(nodes)
12 while new neighbour == node or edge already exists:
13 new neighbour ←− random choice(nodes)
14 else:
15 remove edge from G
16 add new edge to G

17 return G
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Barabàsi-Albert (Scale-Free) Networks Barabàsi-Albert scale-free net-
works are generated with the concept of preferential attachment. d edges are
introduced to a graph structure after which sequentially a new node is added
and attached preferentially to the existing nodes, with nodes with higher degree
having higher probability of receiving an edge.

Algorithm 7: Scale-Free Network Generator

input : N, d, γ
output: Scale-Free Network

1 def scale free graph(N, d, γ):
2 G←− networkx.Graph()

/* Create a ring by connecting all nodes */

3 nodes←− list(range(N))

/* Then let each node add its d/2 neighbours s.t.

finally each node has d neighbours */

4 for j in range(1, (d/2 + 1)):
5 targets←− list(j, j+1, ..., N, 0, ..., j-1)
6 add edges between bijective pairs from (nodes, targets) to G

/* Then rewire all edges */

7 for j in range(1, (d/2 + 1)):
8 targets←−list(j, j+1, ..., N, 0, ..., j-1)
9 for node, target from bijective pairs in (nodes, targets):

10 new neighbour ←− preferentialChoice(nodes)
11 while new neighbour == node or edge already exists:
12 new neighbour ←− preferentialChoice(nodes)
13 if degree for node ≥ n-1 :
14 break out of loop

15 else:
16 remove edge from G
17 add new edge to G

18 return G

The original Barabàsi-Albert scale-free network generation algorithm was
not fitting for our research as it did not allow for a smooth transition from
low to no preferential attachment, to a desired amount. Furthermore, with
the original algorithm no setting could be created that is completely random
or shows no further influence from preferential attachment. Therefore we have
composed a new algorithm fitting to our intended use.

For the generation of our desired scale-free networks we have adapted the
small-world network generator due to its ease in adaptation and the possibility
of creating a structurally simpler graph that is equivalent in nodes and number
of edges, which can then be rewired. Instead of picking a new node uniformly at
random, a probability distribution is calculated based on nodes’ degree at that
time. Algorithm 7 shows the main algorithm for the scale-free network generator
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Algorithm 8: Preferential Attachment

input : N,G, γ
output: Target For New Neighbour

1 def preferentialChoice(nodes,G, γ):
/* Take degree of nodes from G */

2 counts←− list(node degrees from G)
/* Raise all counts by γ and afterwards divide by sum of

counts to calculate preferential probability */

3 counts←− countsγ

4 counts←− counts/sum(counts)

/* pick random node weighed by its preferential

probability */

5 target←− random choice(nodes, probability distribution = counts)
6 return target

which differs only slightly from the algorithm for small-world networks (6), with
the most important distinction being the rewiring of all edges. Algorithm 8
shows the preferential selection of new target nodes.

Our implementation of a smoother preferential attachment centres around
γ, the exponent to which counts are raised to emphasise degree differences in
the calculation of attachment preference. With the current implementation, for
γ = 0 a regular random graph is returned. For γ = 1, our network behaves as
the original algorithm from Barabàsi and Albert.

Standard deviation equations

A further formulation necessary before discussing our experiments is that of
standard deviations within- and between populations. The first formula denotes
the mean of standard deviations for strategy offer values p. This indicates the
average spread of strategies within each population over the given amount of
simulations and thus indicates how homogeneous populations were on average
for a given setting. On this we reason whether population members still showed
discordance in their strategies and utilities in the final round.

σp = n−1sim

nsim∑
i=1

√√√√N−1
N∑
j=1

(pj − p) (4.5)

The second formula pertains to the standard deviation of average p-values
that are found for each population within that setting. This thus focuses on
how strong results for given simulations coincide with each other. With this
we evaluate to what degree a final result is actually predictive of the experi-
mental settings due to similar results occurring in consecutive simulations or
whether the final average strategy values and utility are not representative be-
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cause outcomes are less conclusive due to broader spread. Π refers to the set of
all p-values across simulations, whereas p represents the average offer strategy
value of a single simulation.

σp =

√√√√N−1
N∑
i=1

(pi −Π) (4.6)
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Chapter 5

Results

In this chapter we will present our findings for the Evolutionary Ultimatum
Game played in structured populations. First, preliminary studies on hyperpa-
rameter setting and implementation details are presented with their influence
on population convergence. After, we will explore the influence of population
structure on the evolution of fair negotiation behaviour in the Evolutionary
Ultimatum Game.

5.1 Experiment 1: Clustering in populations

For our first experiment we set out to answer the following research question:

Research Question 1 How does clustering in the topological structure of a
population influence the evolution of fair negotiation behaviour in the Evolution-
ary Ultimatum Game?

First part of our hypothesis is that for graphs with high Clustering Coeffi-
cient (CC) we will find that average population strategy values p and q converge
toward (0.5, 0.5) and will be higher than for graphs with lower CC. The second
part of our hypothesis is that for graphs with high CC we will find that utility
standard deviation σu will approach zero and will be lower than for graphs with
lower CC.

Convergence to higher population average strategy values p and q is expected
due to established strategies in clusters profiting from utility gained from neigh-
bours with similar strategies. Additionally, due to recurring interactions p and
q values can further consolidate due to noise in strategy imitations. Lastly,
in being played by multiple agents, more agents must be converted to an in-
vasive strategy before an established strategy disappears from the population.
With similar strategies in one’s neighbourhood, an agent is more likely to revert
back to the established strategy after being converted, making clusters serve as
memory for established strategies and a buffer against invasions.
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Our expectation of lower standard deviation in final utilities is based on the
(expected) presence of higher average p and q, resulting in fairer distributions
of utilities.

5.1.1 Experimental Setup

For our first experiment, the Evolutionary Ultimatum Game is played with a
population of N = 60 agents with average degree d = 4. The game is played over
10.000 rounds, and we average over 100 simulations for each value of prewire.
For each simulation, a small-world network is generated according to algorithm
6 with associated prewire so as to take into account stochasticity in network
generation. The exploration rate µ is set to 0.001 to ensure the introduction
of new strategies with low enough probability to allow existing strategies to
further develop. For exploitation, agents update strategies according to the
Fermi pairwise comparison rule with selection intensity β = 10 to ensure that
strategies with lower performance can also be adopted. For subtle exploration
surrounding existing strategies through noise, we set α = 0.01.

The main variation in this setup is the value for the rewiring probability
prewire with which we generate our networks using the Watts-Strogatz small-
world network generator. Through the adjustment of values for prewire, we find
graphs generated with differing values for APL, CC and SPgraph. We allow for
appropriate amounts of stochasticity as to provide enough room for agents to
explore the strategy space without losing the possibility for introduced strategies
to get a foothold in the population.

For the experimental setup we performed two preliminary studies on the
effects of average node degree and rewiring probability on structural properties
and population strategy convergence for the current context. Before stating the
results, we will briefly discuss the findings from these studies to further motivate
the choices made for the setup.

Preliminary Studies

Average Degree For lower average degree, populations were found to con-
verge to fairer strategies whereas with higher average degree, populations averted
to the subgame-perfect Nash solution of the classical Ultimatum Game, (p, q)→
0 (Page et al., 2000; Iranzo et al., 2011). Though this was found for the Ulti-
matum Game played on one- and two-dimensional lattices with two, four and
eight neighbours, these findings suggest that node degree has a strong influence
on population convergence regardless of topology. Therefore we conducted a
preliminary study on the effect of average node degree on average population
strategy. Since average degree is of importance to the generation of Watts-
Strogatz small-world networks, we report as well the influence of average degree
on structural network properties.

From the top plot on the influence of average degree (figure 5.1) a strong ini-
tial decline in converged population strategy values is visible for average neigh-
bourhood sizes lower than 8% of total population size N . This follows the
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Figure 5.1: Plot showing influence of average degree d. Top plot shows convergence of aver-
age population (p, q) for realisations with different degrees. Bottom plot shows the progression
of APL, CC and SPgraph. The Evolutionary Ultimatum Game was run with N = 100 agents
and exploration probability µ = 0.005 on a small-world network following prewire = .1.

findings from Iranzo et al. (2011) who report a strong decline in strategy values
in changing the neighbourhood size from 4 to 8 in a population of N = 100.
In the remainder of the plot the values for p and q continue to decline in a less
drastic manner.

The bottom plot from figure 5.1 shows the influence of average degree on
Average Path Length (APL), Clustering Coefficient (CC) and average Struc-
tural Power for nodes in the graph (SPgraph). For APL we find an effect similar
to the strategy values, with a strong decline for values until 8% of total N . A
similar but weaker effect is found for SPgraph, with values increasing from 16%
onward. Regarding CC, we see a slow increase along the values for average
degree.

The importance for APL, CC and SPgraph stem from the amount of adop-
tions needed for a strategy to spread through a population and the amount of
strategic overlap agents have. For a fair strategy to establish, multiple agents
must adopt the strategy such that the utility gained from playing with each
other can outweigh the utility gained from playing intrusive strategies. For fair
strategies to consolidate to quasiempathetic strategies, it is further needed that
interplay with similar strategies is prolonged. For high APL, on average more
adoptions are needed for a newly introduced strategy to reach any other agent
in the population. With less local competition, a fair strategy is less likely to be
intruded by an opportunistic and rapidly adopted strategy. For high CC and
SPgraph, the overlap in neighbourhoods for agents is larger. A single strategy is

61



therefore likely to be played by a larger set of agents that improve the strategy
through local exploration. A strategy being played by a larger set of neighbours
also has a lower likelihood of disappearing since more agents need to adopt a
new strategy for the old to disappear.

Initial increase in average degree in a network shows a strong influence on
APL and average p and q. It is undesirable to have additional influences on
values for p and q, because such influences can lead to the over- or underesti-
mation of the effect of population structure on strategy convergence. Therefore
we select d such that repressive effects of high d on p, q are avoided, while pro-
viding enough stability for differences in d that may occur between agents in a
population. With this reasoning we have chosen to use average degree values
around 8% of the total population size.

Rewiring Probability: For our first experiment we generated different graphs
created with the Watts-Strogatz small-world network generator. The network
generator attains small-world phenomena through placing agents on a regular
ring and then rewiring each edge with a certain probability. For low probabil-
ities, we are likely to end with a network structure close to regular rings. For
high probabilities, networks increasingly resemble random graphs. Both graph
types are defined by different structural properties.

Figure 5.2: Plot of the influence of rewiring probability on structural properties for networks
generated with the Watts-Strogatz small-world network generation algorithm. 200 networks
were generated in the range [0, 1] with steps of 0.005, N = 100 and d = 8. The horizontal
axis is displayed in logarithmic scale.

To decide on an appropriate set of rewiring probabilities, we generated and
studied networks for different values of prewire. Results are depicted in figure 5.2.
APL shows a decline for higher values of the rewiring probability, with reduced
effect for higher probability values. The increase in rewiring probability has an
effect similar on both CC and SPgraph until prewire = 0.1. From there on, CC is
more drastically affected by the rewiring of edges. This difference is explained
by CC being computed as the amount of neighbourhood overlap for direct
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neighbouring nodes, whereas SPgraph takes into account indirect neighbours as
well. A rewired edge therefore has less immediate effect on the set of nodes
SPgraph is calculated on, in comparison with the set for CC.

Our set of probabilities used for the experiment consists of 21 prewire val-
ues from the range [0.0, 0.915]. These values are picked such that all values
are equally spaced along found CC values. With the importance of cluster-
ing in mind, the values are based on CC so that we can compare population
convergence in equal increases for clustering.

5.1.2 Results

We will now discuss our first experiment and results for the first research ques-
tion following the experimental setup above. The results displayed in figure
5.3 and table 5.1 show higher final average population strategy values for low
rewiring probability. A measure for small-worldness, ω, is included in the plot.
For ω < 0 we stray from small-world networks toward regular lattices; for ω > 0
we stray toward random graphs. Our main result is that for rewiring probabil-
ities in the range where ω < 0, we see higher converged population (p, q) than
in the range ω > 0.

Figure 5.3: Plot for converged population strategy values p and q over small-world network
structures with increasing rewiring probability. Shaded areas represent standard deviations
across simulations. The horizontal axis is displayed in logarithmic scale. Gray line shows
ω-measure for small-worldness, with ω = 0 depicted as gray dotted line.

For each setting of prewire, population strategy values have converged such
that p > q and q > 0. Furthermore, results show little difference in standard
deviations for p and q between different rewiring probabilities.

The relation between APL, CC, SPgraph and p, q is displayed in figure
5.4. Values for p and q increase for population structures with higher average
path length, clustering and average structural power. This positive relationship
emphasises the influence of population structure, and specifically clustering, on
fair negotiation. Note that an increase for these structural properties equals a
decrease for prewire. The influence for CC and SPgraph is relatively similar,
with the main difference being the earlier rise of p, q for SPgraph. As explained
earlier, SPgraph and CC are closely related as both measure the overlap in
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prewire p σp∗ σp∗ q σq∗ σq∗

0.0 .3633 3.575 1.957 .3172 4.207 2.779
0.085 .3144 4.511 1.464 .2701 4.951 2.310
0.105 .2916 5.959 1.601 .2459 6.354 2.175
0.915 .2236 5.366 1.581 .1791 5.782 1.806
*: values ×10−2

Table 5.1: Highlight of simulation results for indicated values of prewire. σp denotes the
standard deviation of the average values for p that are found for each population within
that setting, indicating the dissimilarity between simulations. σp denotes the average of
the standard deviations that are found within each population, indicating on average how
dissimilar agents’ p-values are within a population. A mathematical formulation for both σp
and σp is given at the end of our methodological section, submodel 6.

neighbourhood size, with CC having the restriction of only measuring overlap
for direct neighbours between agents.

Figure 5.4: Plot for converged population strategy values p and q over increasing values for
average path length (APL, left), clustering coefficient (CC, centre) and average structural
power (SPgraph, right). Shaded areas represent standard deviations.

Figure 5.5 shows a plot for average income and average standard deviation
of income in populations. The maximum utility agent i can receive with di = 4
in one round is 8, since the Ultimatum Game is played twice per neighbour.
Regarding the average income of agents in the Evolutionary Ultimatum Game,
rewiring probability has little effect on convergence values for u, with only a
slight increase for higher prewire. Values for u differ little between prewire set-
tings, however within a setting do fluctuate between simulations as shown by
the shaded area. The green line shows progression of the standard deviation
of utilities within populations. We find for for lower values for prewire, utilities
within populations differ less than for higher rewiring probabilities, meaning
that clustered populations show a more egalitarian division of utility.

Four settings are selected for local analysis of the effects of clustering on fair-
ness. These settings are the extrema for prewire to study fairness in populations
for the lowest and highest prewire-values, and the two values closest to ω = 0
before and after the tipping point of small-worldness coefficient ω. Data for the
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Figure 5.5: Plot for found average utility u and utility standard deviation within popula-
tions for increasing rewiring probability. Shaded areas represent standard deviations across
simulations. Scale for σu is according to the right y-axis.

local analysis is shown in table 5.1 and figures 5.6 and 5.7. In the histograms
from figure 5.6 we find the spread of all observed final values of p and q for agents
in the given setting, for all simulations. The heatmaps display strategies (p, q)
on a two-dimensional plane with lighter colours indicating a higher frequency
of strategy observations within that bin for the given setting.

First discussing the histograms, we see the set of p and q-values widen and
shift to lower values in the span of prewire = .0 toward prewire = .915. For the
two top settings agents’ p and q show low spread, suggesting that most values
found are near p, q for the given settings as indicated in table 5.1. For the bottom
settings observed p and q are spread out more. From the standard deviations
for p and q within and between simulations found in table 5.1, we derive that
the spread for observed values is explained most by spread in values between
simulations. This indicates that though final states differ between simulations,
the final states of simulations themselves do show homogeneity in strategies and
thus convergence to a strategy for a population.

In the heatmaps we find that for each setting of prewire the spread of agent
strategies is along and above the main diagonal formed by p = q. This indicates
that the modal strategy has p > q, as we have already seen in figure 5.3. For
the top settings shown, we see smaller spread of values along with limited bright
yellow coloured bins, indicating higher homogeneity of values for p and q. In
the bottom heatmaps, strategies show wider spreads that are in total closer to
the attractor (p, q) → (0, 0), the subgame perfect Nash equilibrium from the
original Ultimatum Game.

For the four settings figure 5.7 offers a scatter plot showing further all strat-
egy profiles found in the final state over all simulations. Different from the
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Figure 5.6: Histogram and heatmap showing distribution of p- and q-values for all simula-
tions per highlighted prewire. The diagonal line is the identity line p = q. Bin size for the
heatmaps is 2.5 × 10−2

Figure 5.7: Scatterplot showing distribution of p- and q-values for all simulations per high-
lighted prewire. The diagonal line is the identity line p = q. The colour of a scatter point
displays the utility for the agent it represents, values indicated by the colour bar on the right.

heatmap, the scatter plots show raw values for p and q. Agents’ utility in the
final round is mapped to marker colour. In the scatter plots, we see an increase
in the deviation of agents’ utility values as prewire increases. Furthermore, we
see with increase in prewire that agents’ strategies converge towards the ratio-
nal strategy from the classic Ultimatum Game, (p, q) → 0. As we have also
discussed regarding the deviation between simulations versus within a simula-
tion, we see in the scatter plots that for prewire = .0 and prewire = .085 agents’
strategy values are more consistently present in the same area than for the two
settings past ω.

5.1.3 Summary

With this experiment we set out to find whether clustering in population struc-
ture results in convergence to fairer play for the Evolutionary Ultimatum Game.
Fairness was regarded here as values in offer (p) and acceptance threshold (q)
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moving towards equal splits (0.5, 0.5) as well as spread of utility in the end state
of a simulation. With the use of the Watts-Strogatz small-world generator we
found that in increasing the rewiring probability, leading to decreasing amounts
of clustering (CC,SP ) and average path length (APL), values for p and q de-
creased. This indicates that for populations in which agents are less associated
with the neighbours of their own neighbours (CC), and agents also have less
overlap in their common neighbours with each other (SP ), offers and acceptance
thresholds decrease. This is also to be said of a decrease in APL, indicating
that a faster spread of information from one to another point in the population
leads to agents resorting to more opportunistic strategies, as characterised by
(p, q)→ 0. Regarding egalitarian notions of fairness, we further did not find an
effect for the average amount of utility that agents received from their neigh-
bours. We did however find that for low prewire agents in a population are more
homogeneous in their income.

The effect of clustering on fair negotiation behaviour is explained by agents
having a high number of neighbourhood overlap with their own direct neigh-
bours (CC) and high overlap in their neighbourhood with indirectly connected
agents (SPgraph). With shared neighbours, agents are likely to maintain similar
strategies due to a shared influence on strategy selection and fitness, increasing
homogeneity for subsets of the population. The formation of clusters further-
more makes it possible for cooperative strategies to consolidate, by p and q
growing together due to local exploration. Lastly, sharing neighbours and hav-
ing a higher degree of homogeneity within a cluster provides resilience to invasive
opportunistic strategies. In line with the definition of an evolutionarily stable
strategy, a fair strategy may not provide an agent with high utility when placed
against more opportunistic strategies. If the utility gained from interactions
with similar strategies is however higher than what an opportunistic strategy
would yield against itself, the fair strategy is more likely to remain in the pop-
ulation. In the event of a cluster agent adopting an opportunistic strategy, the
agent is still probable to revert to the former cluster strategy. This is due to its
frequency in the cluster, the imitation model selection being a random process
and worse performing strategies having a non-zero probability of being adopted.
Due to the hardship for opportunistic strategies to spread, a cluster thus also
functions as a filter that is less likely to fully adopt strategies if they are not
truly more profitable.

For population structures determined by low prewire, we found further that
observed values for p and q are more homogeneous than for population structures
with high prewire. We explain this effect by the invasion of new strategies
being delayed due to having to overcome different clusters before being able to
take over a whole population. This conclusion is further strengthened by the
fact that for findings in the region ω < 0, values for p and q decrease only
slightly though regular ring networks (prewire = 0) and small-world networks
(prewire ≈ 0.1) strongly differ in their APL. With lower APL, the total distance
over a population an invasive strategy has to traverse is smaller, thus being
quicker in being adopted across different parts of the population. Though APL
for small-world networks is low, we still see relatively high values for p, q that
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are close to values found in regular ring topologies. We believe that this reduced
effect for low APL on p, q is due to the high degree of clustering still present,
which helps the obstruction of invasions and the retainment of opportunistic
strategies.

5.2 Experiment 2: Degree heterogeneity

For our second experiment we set out to answer the following question:

Research Question 2 How does degree-heterogeneity in a population af-
fect the evolution of fair negotiation behaviour in the Evolutionary Ultimatum
Game?

We hypothesised that for networks that show heterogeneity in the degree
distribution, such as scale-free graphs, we will find that populations converge
to higher strategy values p and q. Furthermore, we expect a lower standard
deviation of utilities σu when corrected for degree-heterogeneity. Values for
p and q are expected to rise due to the presence of hub nodes that have a
disproportionately high node degree compared to the rest of the population,
allowing such hub nodes to be selective in the strategies they exploit. σu is
expected to be smaller as a result of higher average population strategy.

5.2.1 Experimental Setup

To study the effect of heterogeneity in node degree, and thus the amount of
connections agents have, the Evolutionary Ultimatum Game is played by pop-
ulations for which the structure is defined by graphs that differ in their degree
distribution. Our scale-free networks are generated according to algorithms 7
and 8 such that arbitrary node edges are rewired preferentially to nodes with
higher degree. This preference for rewiring nodes is managed by an exponent,
γ, for which we increase the value per setting. We will vary the rate from 0 to
2 with increments of 0.1 for a gradual progression from a random to scale-free
degree distribution. Figure 5.8 shows 6 of total 21 degree distribution settings
as an illustration of the increase in degree heterogeneity for used networks.

The game is played in a population of N = 60 agents, with each agent
having degree d = 4 before edges are rewired. Small increases in initial degree
settings are of little effect on results for the Evolutionary Ultimatum Game on
scale-free graphs (Bo & Yang, 2010). Therefore we retain the same starting
degree, and thus the amount of edges and interactions, as we used for our
first experiment. The game is played over 10.000 rounds, with each setting
consisting of 100 simulations. For each of these simulations, a network with
given γ is generated so that we can take into account stochasticity in the process
of generating the networks. The exploration rate is set to µ = 0.001 so that
the strategy space can be explored while again allowing existing strategies to
further develop. The selection intensity β is set to 10 with the trade-off between
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Figure 5.8: Degree histograms for a subset of graphs showing increase in positive skew of de-
gree distributions as γ increases. Distributions displayed are created from average frequencies
for the set of simulations for given settings.

deterministic imitation of better performing neighbours versus reduced influence
of relative fitness differences in mind. Finally, for noise we again have α = 10.

The aim for this experiment is to study the influence of node degree het-
erogeneity on fair negotiation behaviour in the Evolutionary Ultimatum Game.
Therefore we vary the extent to which, during the rewiring of edges, nodes
with higher degree are preferred over nodes with lower degree. This produces
networks with increasing right-tailed degree distributions. The network gener-
ator is adapted such that for γ = 0 we have a random network, allowing the
comparison of population strategy convergence between random and scale-free
networks. For γ = 1, we find our network generator to behave as the original
Barabási-Albert scale-free networks generator.

We distinguish between two cases for our results: the case in which fitness for
an agent is calculated with its own degree, and the case in which this is calculated
with the highest degree of the two agents that are involved in a comparison
for exploitation. This choice is motivated by Bo and Yang (2010) who found
drastic differences in results when degree-heterogeneity was not accounted for.
Without accounting for degree-heterogeneity, hub agents have less security in
being ensured of high payoffs. The strategy of an agent with only two neighbours
can take over the hub node after a single lucky round. The hub node however
has a large neighbourhood of agents that are likely to play similar strategies
and thus return a previous hub node strategy in a consecutive round, serving as
a form of memory. In order to reason on the influence of implicit versus explicit
involvement of degree-heterogeneity on the hypothesised benefits of hubs we will
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run our experiment in both settings.

Figure 5.9: Plot showing the progression of average path length (APL), clustering coefficient
(CC) and average structural power in the graph (SPgraph) for increase in γ.

Structural Properties for generated graphs Before discussing the results
for our second experiment, we first elaborate on the structural properties of the
generated networks. The progression for APL, CC and SPgraph is shown in
figure 5.9. For APL and CC we can see a clear effect of γ. Note however that
though a decrease for APL is visible, the effect is limited as the decrease is only
small compared to the differences we have seen for small-world networks. The
same can be said for CC. For SPgraph, the effect of γ is limited with a steady
increase visible only for γ ≥ 1.5.

Both random networks and scale-free networks in general show low APL,
however for different reasons. In random networks, APL is low due to nodes
being connected at random, with equal probability for nodes that are close
and nodes that are further away. Consequently, a high number of population-
spanning edges can be found. The low APL for scale-free networks however
does not result from population-traversing edges. Rather, APL for scale-free
networks is low due to most nodes being connected to a small set of hub nodes
with high degree.

This difference in origins for low APL has implications for the spread of
strategies through a network. Paths spanning a network for scale-free networks
are more likely to overlap than for random networks. In scale-free networks
it is therefore important for a strategy to be adopted by a hub node whereas
in random networks, strategies can spread through different paths with less
importance for adoption by specific nodes.

Regarding CC and SPgraph, these measures are both computed locally and
averaged over all nodes to provide a global representation. Whereas nodes in
random networks are likely to show similar local values, nodes in scale-free
networks are highly heterogeneous in degree and therefore also in their neigh-
bourhood size and neighbourhood overlap. This results in averaged values that
are heavily reduced by the high number of nodes that show low local clustering
and SP whereas we can witness high values for hub nodes. A clear example of
the predictability for SPnode for degree heterogeneity can be seen in figure 5.15.
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5.2.2 Results

Now we will discuss our second experiment and results for our second research
question in the experimental setting we have discussed above. As stated in
the experimental setup, the results will be split in two parts to shortly discuss
the influence of implicit versus explicit incorporation of degree-heterogeneity in
exploitation.

Fitness only weighed by agent’s own degree

In the case of fitness being determined by an agent’s own node degree, we found
limited effect of heterogeneity in the amount of neighbours on the evolution of
fair negotiation behaviour in the Evolutionary Ultimatum Game. Results for
our experiment are displayed in figure 5.10. Values for converged population
strategy values p and q are seen to be roughly equal for all settings, with p > q
and q > 0. p maintains an equal distance above q across settings. Furthermore,
standard deviations for simulations do not vary noticeably between settings.

Figure 5.10: Plot for converged population strategy values p and q (left-hand side), and
progression of average utility u and standard deviation σu (right-hand side) over different
values for γ.

The second plot in figure 5.10 shows the progression of average utility and
within-population difference in utility. Regarding the distribution of utility be-
tween settings for γ, we see no noticeable difference in the average utility that is
found within a population across settings, apart from a more stable progression
starting at γ = 1.1. The average utility is found to vary less between simulations
for higher γ settings. We do find however that the standard deviation of utility
increases for higher values for γ, indicating a less egalitarian population with
regards to the income of agents.

Fitness weighed with exemplar’s degree taken into account

For the case where agents take into account the node degree of their exemplar,
we find a slight increase in converged population strategy values p and q for
higher values of γ, as can be seen in the left-side plot of figure 5.11. For all
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settings, p is higher than q and q > 0. Moreover, an increase in standard
deviation can be seen as γ increases, leading us to believe that populations with
heterogeneous degree distributions become more susceptible to advantageous
mutations. Additionally, p and q diverge for γ ≥ 1.3.

Figure 5.11: Plot for average strategy values p and q on the left-hand side, and for average
utility u and standard deviation σu on the right-hand side, over different values for γ.

On the right side in figure 5.11 we see again the distribution of utilities
and the within-population difference in utility. Noticeable is that found average
utility values show less perturbance than those found for the setting in which
node degree is not explicitly taken into account. Regarding the distribution
of utility within a population, we do not find a remarkable difference, with
inequality again increasing with an increase in degree heterogeneity.

Figure 5.12: Plot for converged population strategy values p and q over increasing values
for average path length (APL, left), clustering coefficient (CC, centre) and average structural
power (SPgraph, right). Shaded areas represent standard deviations. Note that for APL, the
horizontal axis is inverted such that progressions follow increase in γ. Middle and right plots
seem distorted due to strategy values as well as SPgraph developing non-monotonically for
initial settings.

The development of p, q for APL, CC and SPgraph is shown in figure 5.12.
Converged population values for p and q rise for decrease in APL. This may
seem remarkable since though low APL is beneficial for opportunistic strategies,
average population strategy is highest for γ = 2.0 with lowest APL. However, in
discussing structural properties before the results we already explained that the
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difference in APL between random and scale-free networks is small in absolute
sense, and low APL for both network types is of different origin. Regarding the
influence of CC on p and q, we observe a modest but turbulent rise with increase
in clustering. This disturbed progression is caused by initial non-monotone
progressions in population strategies and CC for different settings of γ. For
SPgraph, little conclusions can be drawn on connections with the progression of
p and q. As we have seen in figure 5.9, SPgraph shows little relation with γ for
generated networks.

The adjustment of γ for this experiment was used to generate networks that
show increasing amounts of heterogeneity in its degree distributions, following
scale-free networks. The actual heterogeneity in degrees for generated networks
is calculated by the standard deviation of degrees found within a population.
Figure 5.13 displays average strategy values p, q plotted against found values
for heterogeneity. For the left-side plot, we can see better the increase in p
from σd > 1.793 (corresponding to γ = 1.0) and the divergence of p from q
with both values showing a stronger standard deviation between simulations.
In the right-side plot we notice that heterogeneity in income increases linearly
with heterogeneity in degrees, however when divided by degree for each agent
we find that the population becomes more homogeneous in their revenue from
each interaction.

Figure 5.13: Plot showing converged p and q values on the left-hand side, and average utility
u, utility standard deviation σu and relative utility standard deviation σu/d on the right-hand
side, for average degree standard deviation.

Three settings are highlighted in figure 5.14 and table 5.2 that we will further
analyse. All found strategies for the given settings are included in the plot. For
all three settings we see that apart from a small set of outliers all strategies are
converged s.t. at least p ≥ q.

For γ = 0.0, found strategy values show moderate spread along the identity
line with only slight deviation in u compared to γ = 1.0 and γ = 2.0. The spread
for strategy values is explained mostly by differences between simulations, as
can be deduced from table 5.2. The markers are of roughly equal size, meaning
agents show little difference in their degree. This makes sense as γ = 0.0 is the
setting for which the degree distribution is most homogeneous.

For γ = 1.0, we see a broader spread in strategy values along the identity line,
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γ p σp* σp* q σq* σq*

0.0 .2106 6.433 1.209 .1675 6.582 1.536
1.0 .2369 10.01 1.129 .1778 10.14 1.495
2.0 .3271 13.86 1.770 .2173 12.91 1.573
*: values ×10−2

Table 5.2: Overview of simulation results for indicated values of γ. σp denotes the standard
deviation of the average values for p that are found for each population within that setting,
indicating the dissimilarity between simulations. σp denotes the average of the standard
deviations that are found within each population, indicating on average how dissimilar agents’
p-values are within a population.

Figure 5.14: Scatter plot for the spread of values for p and q found in all simulations for
given setting. Marker colour indicates utility for the represented agent with colour mapping
according to colour bar on the right. Marker size represents agent degree. The diagonal line
represents the identity line p = q.

however still with a high amount of overlap. From the table we can again deduce
that the spread of strategies is on account of differences between simulations
rather than within. Apart from a few outliers, the spread in strategies does
seem to be in unison with the set of found values extending towards p, q → 0.5.
Noticeable is that strategies also spread out in perpendicular direction from
the identity line towards the p-axis, indicating that values for p are diverging
from q, compared to values in setting γ = 0.0. Additionally, we can see that
markers differ slightly in size, indicating that degrees are more heterogeneously
distributed compared to γ = 0.0. This is what we expected based on the degree
distribution plots in figure 5.8.

For γ = 2.0 strategies are most spread out for all three settings. Values are
found along most of the identity line, with a subset of strategies being found
slightly below p, q = (0.5, 0.5). Most strategies are however still concentrated
within the area of the past two settings. For this setting, strategies show the
least overlap as is also evident from σp and σq from table 5.2, again indicating
that strategy values differ more between simulations than within.

The scatter plot shows a broader range of differences in colour for γ = 2.0
than for other settings, with brighter coloured markers also being larger in
size. This correspondence between size and utility is to be expected since the
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maximum utility to be received is tied to the number of interactions and thus the
degree an agent has. Something important to notice further is that each larger
marker, representing a hub node, is accompanied by smaller markers sharing
the exact same strategy. We reason that these smaller markers are hub node
neighbours, for which the hub node is of substantial influence on their strategy
and income. This explains why these smaller markers are positioned in the
near-exact same location.

Figure 5.15: Scatter plot showing utility for individual structural power SPnode. Colour
for markers indicates the amount of neighbours, with colours mapped according to colour bar
on the right.

As indicated earlier, the average structural power found in a graph offers
little information for further analysis as it is not discriminant between settings
for γ. Figure 5.15 presents a scatter plot for all values found within indicated
settings for γ. In this scatter plot, the individual structural power for nodes
(SPnode) is plotted against the utility gained in the last round. For γ = 0.0, we
see only limited differences in u as well as SPnode between agents. Discernible
differences in SPnode are explained only by random degree differences between
agents and coincidental differences in neighbourhood overlap. For degree we
see no meaningful and structural difference in colour for agents. Differences
in u are the result of both random degree differences and the high presence of
opportunistic strategies.

For γ = 1.0, we can see a slight influence of degree heterogeneity on the
spread of values. Though we still find similar values for SPnode as in γ =
0.0, agents spread out towards higher values for u. The increase for u for
similar values for SPnode is explained by SPnode no longer being the result of
coincidental overlap in neighbourhoods, but meaningful overlap resulting from
the starting increase in degree for a subset of agents. With higher SPnode,
this subset of agents has a greater influence on the average population strategy.
Furthermore, interactions are assumed to centre more around this subset of
agents than for agents with equally high SPnode in γ = 0.0. Involving the
spread of strategies for γ = 1.0 in figure 5.14, we explain higher u to be due to
the slight presence of hub nodes that are less prone to adapt their strategy and
more likely to have higher values for (p, q).

For γ = 2.0, a strong increase is found for u as well as SPnode and degree.
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The strong increase in SPnode is explained by a strong increase in degree found
for agents and less overlap between agents with low degree. Furthermore, we
see a straighter distribution of agents between SPnode and u, from which we
infer that income for agents is determined more by actual differences in degree.
Along with the strategy distribution from figure 5.14, we furthermore explain
the narrower distribution as resulting from a greater part of interactions being
defined by hub nodes and the lower presence of opportunistic strategies in the
population.

5.2.3 Summary

In this experiment we set out to find whether heterogeneity in node degree
in a population causes populations to converge to fairer bargaining behaviour
in the Evolutionary Ultimatum Game. To answer this, we produced networks
with increasingly heterogeneous degree distributions on which the Evolutionary
Ultimatum Game was played. We again regarded fairness as offer- and accep-
tance threshold values p, q → 0.5 and fair allocations as reduced deviation in
the amount of utility each agent has at the end of the last round. Our reason-
ing for the expectancy of fairer strategy values, as a result of increasing degree
heterogeneity, was in two parts. First, we expected that the disproportionately
large amount of interactions for the hub node would result in the acceptance and
development of fair strategies, and rejection of opportunistic strategies. Second,
we expected average population strategy values to rise due to the increased in-
fluence of hub nodes on the rest of the population. This increased influence is
due to hub nodes’ neighbourhood size and further helped by their centrality in
a network with low average path length, in turn causing a fast spread of fair
strategies. There were then two cases surrounding the origin of selectivity for
hub nodes. One assumes that selectivity arises implicitly due to neighbours
serving as memory which allows hub nodes to revert to old strategies. The
other implements selectivity by tying the calculation of imitation probabilities
to neighbourhood size.

Selectivity arising implicitly A first finding was that for neighbourhood
size to have effect on strategy convergence, it must be explicitly accounted for.
The first case in the results, where an agent’s fitness is only relative to its own
neighbourhood size, showed no distinguishable effect of nodes with dispropor-
tionately higher neighbourhood sizes on population strategies. Fitness for hub
nodes here was expressed as the average income from their interactions.

Though it was foreseen that hub nodes are equally likely to be influenced by
better performing neighbours, we reasoned that the amount of interactions that
are involved in weighing the agent’s fitness caused hub nodes to be less affected
by less fortunate interactions. This in our reasoning should have resulted in hub
nodes remaining with a strategy longer, whilst bringing together values for p
and q to reduce the possible difference between offers given and received. Also,
neighbouring nodes were expected to serve as an additional measure for fair

76



strategies to remain and evolve by functioning as a form of memory for the hub
node.

Whereas we expected hub nodes to profit from interactions with a larger
amount of neighbours, thus allowing for hub nodes to play more risky, fair
strategies, hub nodes did not show influence from their higher degree apart
from the utility that they received. We reason that the absence of influence is
due to the tendency of hub node neighbours to quickly exploit others’ strategies
because of their low degree. In the case where the hub node changes strategies,
hub node neighbours lose a substantial amount of their utility if the new strategy
is incompatible with theirs. Rather than serving as memory, hub neighbours are
therefore more likely to exploit strategies. In the case of remaining with said
strategy, utility is reduced drastically such that the probability to be imitated
by the hub node has shrunk severely. Changes in strategy for the hub node are
thus definitive in the sense of having a low probability of returning to previous
strategies. Without an explicit implementation for selectivity for nodes with
higher degree, we thus do not find beneficial effects of degree heterogeneity on
the evolution of fair behaviour.

Selectivity by explicitly accounting for neighbourhood size When we
do account for neighbourhood sizes in calculating imitation probabilities, we
find that population strategy values p and q converge toward 0.5 as degrees are
more heterogeneously distributed. This leads us to the conclusion that a stricter
selection procedure for hub nodes on which strategies to exploit, allows for the
exploitation and development of fairer strategies.

As degree heterogeneity increased, p was shown to deviate more from q. We
explain this difference between values as being beneficial especially for the hub
agent. This is in two parts. Firstly, with its neighbourhood size a hub agent is
encountered with invasive strategies more often. A low acceptance threshold q
allows a hub agent to gain revenue from such invasive strategies when playing as
responder. Secondly, due to neighbourhood sizes of other agents being included
in imitation probability calculation, agents are more likely to imitate the hub
agent than the reverse. This reduces the time and severity for a hub agent
to have intrusive, opportunistic strategies in their neighbourhood that yield
less utility for the hub node than for the intruder. Without a foothold for
opportunistic strategies to further develop, the costs of accepting and ratifying
lower offers become less than the costs of receiving 0 instead.

Another finding for the influence of degree heterogeneity on fair negotiation
behaviour was that heterogeneity in utility within a population is positively
linearly related to degree heterogeneity. This finding is to be expected when
for every agent i its strategy si ≈ s = (p, q), with p > q, such that income
relative to agents’ neighbours is equal and absolute differences are determined
by how many interactions agents have. When corrected for degree however, we
find that the standard deviation for utilities within populations becomes smaller
with increasing degree heterogeneity. We believe this to be an effect of fairer
offers being made. An important reminder here is that player roles are assigned
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uniformly at random: for each neighbour, an agent has a 25% probability of
playing as responder twice. In a setting with (p, q) → 0, the agent receives a
minimal amount from the interactions with a neighbour. From these findings we
conclude that relative to agents’ degrees, degree heterogeneity in a population
leads to more egalitarian, and thus fairer allocations.
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Chapter 6

Discussion

In this project we set out to study the influence of population structure on the
evolution of fair negotiation behaviour in the Evolutionary Ultimatum Game.
For this, we sought to find how strategy convergence for populations is affected
by two defining characteristics for real networks. One characteristic is clus-
tering, the presence of overlap in connections between two acquaintances. The
other characteristic is hub formation, due to heterogeneity in the amount of con-
nections and thus the amount of influence people have. In this chapter we will
discuss the findings on our experiments and relate our findings to the reviewed
literature. We will discuss our two experiments separately before unifying these
results in a general conclusion and suggesting future directions.

6.1 Clustering

Our first research question pertains to how clustering in population structure
influences the evolution of fair negotiation behaviour in the Evolutionary Ul-
timatum Game. In our experiment we sought to prove that populations that
show a higher degree of clustering in their structure will show convergence to
values close to 0.5 for (p, q) as well as a more egalitarian distribution of utility.
We found that for higher values for Clustering Coefficient (CC) and average
Structural Power in the graph (SPgraph), populations converge to higher av-
erage offers (p) and acceptance thresholds (q) than for populations that show
low CC and SPgraph. Though we have seen in our preliminary studies that
low average path length (APL) is beneficial for the fast spread of opportunistic
strategies, small-world populations, defined by low values for APL but high
values for CC and SPgraph, showed only minimal decrease in p, q compared to
regular rings that possess higher APL. Furthermore, we found that for high
CC and SPgraph agent strategy values were more homogeneous than for low
CC and SPgraph.

Regarding utility gained in the Evolutionary Ultimatum Game, we found
only little effect for the average utility for agents in a population, meaning that
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the amount of successful interactions in the final round was slightly less than
for settings with lower CC and SPgraph. For populations with higher CC and
SPgraph utility was slightly less than for less clustered populations. For the
distribution of utility however we found lower standard deviation of utility for
populations with higher CC and SPgraph.

We attribute the results of our first experiment to the implications of cluster-
ing for the spread of strategies. With more overlap in neighbourhoods between
direct neighbours, as well as indirect neighbours, the spread of a strategy is
more frequent on a local scale. This increases the frequency with which a strat-
egy is played, causing strategy values to grow closer due to local exploration.
Such consolidation of strategy values is needed for fair strategies to survive,
along with the benefit of utility gained from interactions with similar strate-
gies. This last necessity follows from the measures for Evolutionarily Stable
Strategies (ESS). Here it is important to mention however that no strategy in
this implementation can become a strict ESS, such that the only way it can be
invaded is due to mutation. The strict ESS is defined in the context of evolu-
tionary games with deterministic exploitation of strategies. Exploitation for our
experiments is implemented as proportional imitation with imitation probabil-
ity calculated following the Fermi equation. This places non-zero probability
on worse performing strategies, thus making it possible for fair strategies to
destabilise.

Regarding similar studies within the Evolutionary Ultimatum Game, our
findings are in line with research from F. P. Santos et al. (2017) in that pop-
ulations defined by higher CC and SPgraph show convergence in the direction
of (p, q). A distinction to make however is that their research features a multi-
responder approach in which values for p and q denote the share to be divided
among all involved in an interactions, lowering the comparability of results. Fur-
thermore, in their setting exploitation features two randomly selected agents per
round that imitate with probability whereas in this implementation, all agents
have a probability of exploiting as well as a probability of exploring. Further
regarding the findings of Page et al. (2000) and Iranzo et al. (2011), we did not
find our population to actually converge to quasi-empathic strategies (p ≡ q)
before rising p and q. In their studies, quasi-empathy is hypothesised to be
required for a population to converge to stable, fair strategies, and to occur
only in spatial societies. Our results however show that p and q are spread far
apart, meaning converged population strategies are still sensitive to opportunis-
tic strategies that have pi such that p > pi > q. This is possibly due to more
sources of stochasticity in our implementation due to which which the further
consolidation toward p ≡ q is less profitable.

6.2 Degree-heterogeneity

Our second research question concerns how heterogeneity in degree distribution
within a population affects the evolution of fair negotiation behaviour in the
Evolutionary Ultimatum Game. We aimed to find whether higher heterogeneity
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in node degree causes populations to converge to population strategies close to
fair splits as well as a more egalitarian distribution of utility. We motivated
our expectation with two benefits of high node degree. Firstly, in having a high
number of neighbours, the probability for an agent to be successful in part of
its interactions is higher. Therefore higher selectivity on which strategies to
adopt was expected. Secondly, due to its disproportionately high amount of
connections an agent has more influence on the average population strategy at
a given time. In combining the selectivity with the increase in influence, hub
nodes were expected to guide the population towards fairer strategies.

A first finding was that though we assumed that high degree for hub nodes
would be sufficient to elicit selectivity in which strategies to adopt, degree het-
erogeneity showed nearly no effect without explicitly including node degree in
imitation probability calculation. The only effect we did find was an increase
in inequality for the distribution of utility in a population. With an explicit
implementation of selectivity however, we witnessed values for converged pop-
ulation strategy values p and q converge closer toward (05, 0.5) compared to
regular networks with no structural heterogeneity in degree. Converged popu-
lation strategy values however did grow further apart as degree heterogeneity
decreased. Regarding the structural properties for our generated networks, only
APL and CC were somewhat predictive for the direction of p and q. Our gen-
erated graphs did not show a consistent increase in SPgraph; therefore it did not
show a strong relationship with the rise for converged population strategies. Re-
garding the distribution of utility in the explicit selectivity-case, we found little
effect for degree heterogeneity on the average utility found in a population. This
means that degree heterogeneity does not lead to higher payoffs or a higher ratio
of successful interactions. Furthermore, heterogeneity in utility within popula-
tions was positively linear in relation to degree heterogeneity, suggesting that
as populations become more heterogeneous, the distribution of utility does as
well. However when controlled for agent degree, agents were shown to become
more homogeneous in their utilities with increase in degree heterogeneity.

An explanation for why the implicit account of degree in selectivity did
not show effects is that hub node neighbours were more likely than expected to
exploit other agents’ strategies. This was assumed to be due to their low degree,
causing them to lose substantial part of their revenue if it is not successful in an
interaction. In the case of the hub agent changing strategies, hub neighbours
thus do not serve as a sense of memory for the hub agent, making strategy
adaptions for the hub agents more definitive than expected. For the explicit
case, fitness was determined by weighing utility with the maximum amount of
neighbours between the two involved agents, rendering the hub node with the
benefit of being less likely to adapt strategies that perform significantly worse.
We further found p and q to increase for increases in degree heterogeneity. We
explain this with the selectivity for the hub agent, the fast spread of hub agent
strategies due to low APL with most paths running through the hub and the
difficulty for opportunistic strategies to spread through the population due to
most paths running through the hub. Furthermore, with most of the interactions
taking place with a hub agent, the probability for hub strategies to dominate
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the overall set of strategies is high. Though models for imitation are selected at
random, hub neighbours are highly likely to continually imitate the hub agent
due to the weight placed on neighbourhood size in the calculation of imitation
probabilities. Therefore an established strategy played by the hub agent is more
likely to spread throughout the population than to disappear.

In comparing the effect of hubs on the spread of strategies, we find that star
structures indeed increase the spread of strategies as shown by Lieberman et al.
(2005). For our setting of the Evolutionary Ultimatum Game however increased
selection from neighbours did not result in selection for fairer strategies. Rather,
the selection of opportunistic strategies was favoured. This can be explained by
the time necessary for a fair strategy to establish and to consolidate. Strategies
with p and q far apart are easily beaten by opportunistic strategies with lower
p that still allows for successful interaction. With a fair strategy with p and q
close together, surrounding strategies are needed that play a similar strategy as
the small distance between p and q does not allow for high utility otherwise. For
this reason, the presence of star formations without an explicit implementation
for selectivity is not likely to support the convergence of populations to fair
strategies.

Comparing our results with Evolutionary Ultimatum Game findings from
Bo and Yang (2010), we too find a weaker effect for degree-heterogeneity on fair
negotiation behaviour than for clustering. Furthermore, fluctuations discussed
by Bo and Yang (2010) for their scale-free network setting is possibly more
descriptive of scale-free network processes than we thought. In their study,
the fluctuations eventually lessen. It is probable that this disappears due to
them having implemented a form of learning on the level of exploitation, in
which agents may learn to cope with initial strategic turbulence. However, final
distributions of p and q values still show spread and are far apart much like in
the results of our experiments. Beyond that, we however find little agreement.
Bo and Yang (2010) report that the presence of a small amount of nodes with
disproportionately high degree in fact obstructs the evolution of fair negotiation
behaviour, a conclusion that we do not draw from our results. There is however
no strong expectancy of overlap in results. Firstly, the Scale-Free Network
generator for this paper operates differently from the Barabàsi-Albert generator
used in their research and comparable settings for them depend strongly on the
amount of agents and the amount of nodes an agent preferentially attaches
to. Second, Bo and Yang (2010)’s study employs a strictly larger amount of
agents. Third, their research centres around an Evolutionary Ultimatum Game
implementation where agents have incomplete information of the strategies of
their neighbours. Such an extension fundamentally impacts agents’ strategy
development since imitation of neighbours’ strategies requires learning what
neighbours’ strategies are.
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6.3 Conclusion

In this project we examined the evolution of fairness in the Evolutionary Ul-
timatum Game under social network structures. Two research questions were
formulated to address each of the two defining characteristics for social networks.
Our first research question considers the influence of clustering in population
structure on the development of fair negotiation behaviour. Our second re-
search question considers the influence that degree-heterogeneity in population
structure has on the development of fair bargaining behaviour. We designed
two experiments to address each research question separately. Our experiments
showed that both clustering and degree-heterogeneity led to higher offers and
acceptance thresholds and a more egalitarian distribution of utility. These struc-
tural characteristics however did not lead to equal splits and an egalitarian dis-
tribution in the absolute sense. Still, the finding of fairer negotiation strategies
and less inequality in outcomes, for both clustering and degree-heterogeneity,
lead us to conclude that social structure in a population benefits the evolution
of fair negotiation behaviour.

In the Evolutionary Ultimatum Game, only limited studies were performed
to evaluate the influence of social structure on fair negotiation behaviour. Our
results contribute to Evolutionary Ultimatum Game literature by introducing a
model of bilateral negotiation in populations with social structure without fur-
ther extensions. Moreover, this project confirms the direction of earlier findings
in evolutionary games in that fairness and cooperation are favoured by popu-
lation structure according to social networks. Our results further suggest that
fairness considerations in human negotiation may not need to be accounted for
explicitly in preference models. Rather, fairness can occur naturally in networks
with dense social groups and networks in which highly influential individuals
show selectivity in who they let themselves be influenced by.

The beneficiality of social structure for fair negotiation behaviour has im-
plications for the design of automated negotiation systems that confront non-
competitive distribution problems. Rather than extending preference models to
reflect human users, fair and egalitarian allocations may be achieved by situat-
ing interactions in networks similar to human networks. In promoting fairness
with mechanisms that are out of reach for an agent, fair negotiation behaviour
becomes a rational choice rather than imposed. As a result automated nego-
tiation may approximate human performance in social dilemmas not through
the modelling of human preferences, but through the modelling of human con-
straints.

6.4 Future Work

There are few ways in which this work can be extended. In discussing the bene-
fits of heterogeneity in degree, F. C. Santos et al. (2006) hint at the presence of
interaction effects when small-world networks and scale-free networks are com-
bined. Whereas low Average Path Length is generally seen as detrimental for
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the fixation of fair strategies, and random- and small-world networks are char-
acterised by the presence of such population-spanning connections, hub nodes
are said to ameliorate such problems. With the presence of clusters around
hubs however, hubs may see a decrease in their dominating structural power
over other nodes. With reduced influence on surrounding agents and thus re-
duced selectivity, hub nodes will be introduced to foreign strategies more often,
being more prone to adopting self-interested strategies. Hub nodes can thus
experience a reduction in their fairness-promoting characteristics. In such an
event we could see hub nodes functioning more as amplifiers of strategies and
less as selective strategy filters. This in turn contests the buffering property of
agent clusters and the time for a strategy to be introduced throughout clusters.
With clustering and degree-heterogeneity being the two important characteris-
tics that describe structure in social networks, research into the concatenation
of the two and the degrees to which these counteract one another is necessary
for any system to be implemented according to social structure.
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