
master’s thesis

Challenging the frontiers
of computability

On the legacy of the Church-Turing thesis and its
significance in the twenty-first century

Author
Student number

Program
First examiner

Second examiner

Steven Veerbeek
3923363
Artificial Intelligence
Rosalie Iemhoff
Janneke van Lith

utrecht university
The Netherlands
October 22, 2020

CONTENTS

1 Introduction 1

2 Preliminaries 5
2.1 Terminology . 5
2.2 Notation . 6

2.2.1 Models and instances . 6
2.2.2 Strings . 7
2.2.3 Gödel numbers . 8
2.2.4 Enumerations . 9
2.2.5 Characteristic functions and sequences 9

3 Analytical framework 11
3.1 Logical structure . 11
3.2 Domains . 12

3.2.1 θ-translatability . 12
3.2.2 Some proofs of θ-equivalence 16
3.2.3 Further extensions of the equivalence class 20

3.3 Intuitive notion of computability 22
3.4 Models of computation . 22

3.4.1 Inter-model differences . 23
3.4.2 Intra-model differences . 24

3.5 Formal definition of computation 24
3.5.1 Relevance of the C predicate 25
3.5.2 Finding a definition . 26

4 Historical background 29
4.1 A foundational crisis . 29
4.2 Discovery of the undecidable . 33
4.3 General recursive functions . 36

i

ii Contents

4.4 λ-definability and Church’s thesis 39
4.5 Turing machines . 43

5 Critical reception 49
5.1 Church and Gödel on Turing’s work 49
5.2 Criticisms and modifications of the Turing machine 51
5.3 Philosophical evaluations . 52

5.3.1 Epistemological disputes . 52
5.3.2 Sharpening informal notions 54
5.3.3 Mind versus mechanism . 58

5.4 Stronger versions . 66
5.4.1 Machine computation . 66
5.4.2 Physical and quantum computation 67

6 Defying the Turing barrier 69
6.1 Three new ingredients . 69

6.1.1 Interaction . 70
6.1.2 Infinity of operation . 73
6.1.3 Non-uniformity of programs 75

6.2 The Extended Church-Turing thesis 81

7 Discussion 85
7.1 Summary . 85
7.2 Conclusion . 87
7.3 Further research directions . 88

Bibliography 89

Chapter 1

INTRODUCT ION

The development of mathematics toward
greater precision has led, as is well
known, to the formalization of large tracts
of it, so that one can prove any theorem
using nothing but a few mechanical rules.

— Kurt Gödel (1931)

[A] human calculator, provided with
pencil and paper and explicit instructions,
can be regarded as a kind of Turing
machine.

— Alonzo Church (1937a)

As Kurt Gödel observed in the opening paragraph of his pioneering
paper on incompleteness, the early twentieth century had seen an upsurge
in projects that aimed to secure mathematical knowledge in formal ax-

iomatic systems. Perhaps one of the most well-known attempts resulted in the
comprehensive three-volume work Principia Mathematica (PM) by Bertrand Rus-
sell and Alfred North Whitehead in the years 1910–1913. But to strict formalists
such as David Hilbert, PM lacked rigor and failed to adequately separate syntax
from semantics. Hilbert believed that all mathematical thought should be entirely
reduced to a “game” of mechanical manipulation of symbolic expressions, governed
by a set of purely syntactical rules.

By the 1930s, a diversity of terminology had developed to describe the intuitive
notion of finite and mechanical computation; but a precise mathematical definition
was wanting. When in 1928, Hilbert and his student Wilhelm Ackermann posed

1

2 Introduction

their famous Entscheidungsproblem, which asked for a general procedure that
could decide within a finite amount of time whether any given formula of first-
order predicate logic was valid or not, this catalyzed the search for a definition
of computation or “effective calculation”. Some eight years later, several authors
more or less simultaneously proposed different formal models of computation that
were subsequently proved to be equivalent. Two of these models, Alonzo Church’s
λ-calculus and Alan Turing’s independently developed Turing machines, inspired
what we know today as the Church-Turing thesis:

Church-Turing thesis (CTT) Every function that can be computed by an
idealized human being, provided with paper and pencil and explicit instructions, can
be computed by a Turing machine.1

What is often neglected in modern formulations of CTT is the explicit reference to
the human aspect of computation. Remarkable as this may be to a twenty-first
century reader, we should not forget that CTT originated in a time where the only
association that people had with the word “computer” was that of a human worker
performing manual calculations on paper. As a characterization of this original,
human, interpretation of computation, CTT’s validity is still virtually undisputed.
However, much has changed in the world of computation since 1936 and so has our
intuitive understanding of the concept.

The Church-Turing thesis was the first attempt at giving a precise and mathe-
matical delineation of the absolute notion of computability. Furthermore, Turing
showed that it should be possible to build one universal computing machine that em-
bodied the most fundamental principles of computation and could be programmed
to compute any computable function. This discovery would prove to be a pivotal
moment in the history of computation, laying the foundations for entire new fields
of study such as computer science and artificial intelligence. Once technological
advancements had made it possible to turn the universal computer into a phys-
ical reality, we started liberating ourselves from tedious computational tasks by
delegating them to our increasingly powerful and reliable electronic assistants.

As throughout the past decades the digital electronic computer gained ground
at the expense of its human counterpart, an analogous shift took place in our minds:
the concept of computation came to be associated primarily with machines rather
than with humans. We could say that intensionally, the notion of computability
has evolved significantly over the years. But what about its extension? Does the
term “computable” still apply to the same class of functions as it did back in 1936?

Rapid increases in speed and efficiency have undeniably had a fundamental
impact on the way we use and interact with computers. Through advancements in
hardware technology and research in artificial intelligence, electronic computers have
evolved from primitive number crunchers to increasingly complex and autonomous
intelligent agents. However, despite speed and efficiency being important aspects
of computation, we should not let these dramatic results draw our attention away

1 Or, equivalently: is λ-definable.

Introduction 3

from another fundamental question: can modern computers, apart from being much
faster, compute essentially different things than we humans could theoretically do
with paper and pencil? In fact, it is not at all implausible that the bounds within
which modern computers operate are in essence still the ones found by Church and
Turing in 1936. Even in the ever-changing world of computation, the Church-Turing
has stood the test of time exceptionally well and is still used today as a benchmark
for computational power. This makes the thesis relevant as ever, especially to
cutting-edge fields such as artificial intelligence.

On the one hand, artificial intelligence is a groundbreaking field that has
substantially changed our interaction with computers. Through new software
approaches such as machine learning and natural language processing, behavior
emerges that intuitively seems to transcend that of “classical” computers. On
the other hand, this intelligent behavior ultimately relies on a set of elementary
arithmetical and logical operations that can be realized by the most primitive
Turing machine. As such, even the most sophisticated AI algorithms have brought
us no closer to solving the halting problem than we were in 1936. It almost appears
as if with their thesis, Church and Turing stumbled upon some magical barrier; a
“law of nature” that is impossible to bypass.

Or could it be that this “Turing barrier” only exists in our minds? Perhaps there
is a key waiting to be found that will unlock an entire new universe of possibilities.
Perhaps more effort or new insights will one day lead us to this key and free us
from the Turing tarpit. Would the discovery of super-Turing computation bring
about an “intelligence explosion” that leads us to the legendary point of singularity?
Does human intelligence even surpass the Turing barrier? If not, is it even possible
for humans to create machine intelligence that does? Perhaps the Turing barrier
is intrinsic to the human mind but not to nature in general, simply preventing us
from recognizing the super-Turing intelligence that has been around us all along.
It should be clear that the Church-Turing thesis is of fundamental importance to
the field of artificial intelligence. The unsolved problem of whether super-Turing
computation can ever be attained or not has deep implications for the future
development of AI and should therefore be investigated within AI communities.

Since its inception, CTT has been the subject of ongoing debates in several
scientific communities. Some feel that a critical border has already been crossed in
the evolution of the computational paradigm since 1936, leaving CTT inadequate
in today’s context. As a result, several proposals have been made to “update” the
original thesis to cover a wider and more modern notion of computation. Some
of these proposals go as far as to question the adequacy of the Turing machine in
modeling today’s complex spectrum of computational processes, therefore replacing
the model in its entirety or extending it to a possibly more powerful model of
computation. Other, more moderate, proposals merely seek to extend the reach
of the Turing machine by providing a more inclusive description of the intuitive
notion of computation that, in addition to human computation, also applies to
other types of computations, such as those performed by machines in general (e.g.,
Gandy 1980).

In this thesis, we will explore and discuss several challenges to the Church-

4 Introduction

Turing thesis. First, we establish some terminology and notation in chapter 2.
In chapter 3, we formalize the logical structure of the thesis and develop from it
a framework that will serve as a guide for effectively analyzing and comparing
different versions of the thesis in later discussions. In chapter 4, we further analyze
the history leading up to the birth of CTT, followed by a discussion in chapter 5 of
the responses that it has elicited from the scientific community. In chapter 6, we
discuss three developments in modern computation that potentially pose a threat
to CTT and analyze a model of computation and a corresponding extension of
CTT that were proposed by Van Leeuwen and Wiedermann (2001a) in response to
these developments. Finally, in chapter 7, we reflect on the contents of the present
thesis, consider their implications for the status of CTT, and explore directions for
further research.

Chapter 2

PREL IM INAR IE S

In this thesis, we will encounter a considerable number of mathematical notions,
statements and definitions. I have chosen certain terminological and notational
conventions for expressing mathematical concepts and objects, which I will explain
in this chapter.

2.1 Terminology

In the literature on computability theory, it is not always clearly delineated what
is meant by “(general) recursive functions”. In certain contexts, the term is used
to describe the class of partial recursive functions (also known as the µ-recursive
functions). In other contexts it is used synonymously with total recursive functions,
which are a subclass of the partial recursive functions. Likewise, the term “com-
putable” is loosely used for both classes of functions. The difference between these
classes is, however, absolutely crucial to the field of computability theory. Turing
machines implementing the latter class of functions will halt on every input, while
certain inputs may cause a Turing machine implementing a function of the former
kind to loop forever. Therefore, in order to avoid any confusion, it is important to
establish a clear and consistent terminology before starting our discussion.

In the remainder of this thesis, the terms “computable”, “recursive”, and
“decidable” will be used exclusively to refer to those functions, numbers, sets, and
procedures that can be computed or decided within a finite amount of time by some
(total) Turing machine, or equivalently, can be computed by some circle-free Turing
machine (see Turing 1936–7). On the other hand, there are functions that can be
computed for only a subset of their domain. Analogously, there are sets of which
membership can be proved for each member, but not necessarily disproved within
a finite amount of time for each non-member. When describing these types of
functions and sets we will use terms like “partially computable”, “partial recursive”,
“recursively enumerable”, “recognizable”, and “semi-decidable”. Table 2.1 presents
a more comprehensive overview of this terminology.

5

6 Chapter 2

Functions Classes, relations

PR primitive recursive primitive recursive

R
general recursive,
(Turing) computable,
(total) recursive

decidable, recursive

RE partially computable,
partial recursive, µ-recursive

semi-decidable, (Turing) recognizable,
recursively enumerable (r.e.),
computably enumerable (c.e.)

RE non-computable, non-recursive (Turing) unrecognizable

Table 2.1: Terminology used for describing levels of computability. Each row contains
terms that are considered mutually equivalent in terms of computability.
Note that PR ⊂ R ⊂ RE; i.e., all total recursive functions are also partial
recursive, and all decidable sets are also recognizable, etc.

2.2 Notation

When we speak of the set of natural numbers, written N, we will usually mean the
positive integers, i.e., excluding 0: {1, 2, 3, . . .}. If we wish to make the exclusion
or inclusion of 0 explicit, we will write N+ or N0, respectively. The ordinal number
of N is written ω.

2.2.1 Models and instances

For some models of computation more than for others, the conventional terminology
may not always clearly convey the distinction between the model as a general
concept and its concrete instances that each perform a specific computational task.
For example, the term “Turing machine” is used to denote the model as an abstract
set of principles and rules, but it is also used to describe any concrete implementation
of these principles and rules—i.e., an individual machine that is programmed to
compute a particular function. In general, we will distinguish between models
and instances. Thus, Turing machines, λ-calculus, and general recursive functions
are models of computation whose instances are, respectively, Turing machines,
λ-expressions, and Herbrand-Gödel style systems of equations. Models will be
represented by regular uppercase Latin letters (M , N), while calligraphic uppercase
Latin letters (M, N) will be used to denote individual instances of models. We
may also regard a model as a class containing all its instances and writeM∈M to
say thatM is an instance of the model M .

Preliminaries 7

2.2.2 Strings

Strings will be typeset in a typewriter font. This allows us to easily distinguish
between, for example, the integer 523021 and the string 523021.

String representations

In discussions of computing machines or algorithms at higher levels of description,
we are often not concerned with questions about data representation. It suffices to
refer to abstract mathematical objects and operations on them without worrying
about the implementational details. At lower levels of description, however, those
details become more and more important. When developing a formal definition
of a computing system, we will inevitably arrive at a point at which the use of
conceptual descriptions such as “the integer 5” or “the square root of 5” simply no
longer suffices. Ultimately, the operations of a computing machine or formal system
only consist of the manipulation of symbolic expressions. These symbols and their
concatenations into strings have no intrinsic meaning; meaning only comes into
play when we start interpreting them.

The most common way to represent information in computing systems is by
binary digits (or bits). In fact, in expounding his original theory of the Turing
machine, Turing chose to encode information on the machine’s tape in binary format.
In principle we could use any set of symbols we like, but for convenience we will
usually assume that a machine (either physical or theoretical) stores information in
binary format, i.e., as strings over the alphabet {0,1}. We can safely make these
restrictive assumptions on the size of the alphabet without losing computational
power, as was proved in Shannon (1956).

While algorithms usually live at a higher level of description than their im-
plementations in specific machines, it is not uncommon in information processing
tasks to address the problem of data representation already before writing the
algorithm. As Marr (1982, p. 23) points out, the choice of algorithm depends
critically on the particular representation of input and output. Furthermore, taking
into account the representational aspect when specifying an algorithm may expose
certain difficulties early on that could otherwise go unnoticed until they cause
complications at a later stage. For example, while in a high-level specification of
an algorithm there is no need to explicitly distinguish between different types of
numbers, such as 5 and

√
5, at the representational and implementational level

they require fundamentally different strategies. On the one hand, 5 is an integer
and can perfectly and completely be represented by the binary string 101.

√
5, on

the other hand, is a real number and cannot be directly1 represented in a finite
way. One can represent a finite approximation, such as 10.00111100, but this will
always be imperfect.

Since a string does not have any intrinsic meaning, the behavior of one algorithm
can have different interpretations depending on the way we choose to interpret

1 Some real numbers—namely, those that we call computable—can however be represented
indirectly in a finite way by using a string description of an algorithm that computes them.

8 Chapter 2

strings. In fact, we can make algorithms manipulate any type of object or combi-
nation of objects, simply by representing it appropriately in string format so an
algorithm can process it. Whenever we want to refer to the string representation of
an object O, we will write 〈O〉. We can also represent multiple objects O1, . . . , Ok
in a single string by writing 〈O1, . . . , Ok〉.2 In the context of a specific formal
system, we may use the notation x to denote the formal numeral that, according
to either the standard interpretation of that system or some explicitly specified
interpretation, represents the number x in that system.

We are usually not concerned with the particular encoding that is used; when
relevant this will be evident from the context. The only requirements we set for such
encodings is that they are computable and injective (i.e., every object is associated
with a unique string), such that a string representation is always decodable to an
effective definition of the original object.

String operations

Given a string (or sequence) s of length l ≤ ω and some n∈N such that 1 ≤ n ≤ l,
let sn denote the n-th character (element) of s. Furthermore, let sji denote the
finite substring (subsequence) of s ranging from the i-th character (element) up to
and including the j-th, where 1 < j ≤ l and 1 ≤ i < j.

For a given finite alphabet Σ, we let Σ∗ (the Kleene closure of Σ) and Σω

denote the sets of finite and infinite strings over Σ, respectively. Additionally, we
let Σ∞ denote the set Σ∗ ∪ Σω that contains both all finite and all infinite strings
over Σ. We can apply these operators not only to sets of symbols (alphabets), but
also to sets of finite strings. (Σ∗)∗, for example, yields the set of finite sequences of
finite strings over Σ, while (Σ∗)∞ yields the set of both finite and infinite sequences
of finite strings over Σ.

As with individual objects, we will need to represent sets of objects as sets of
strings before we can manipulate them in a useful way. We will represent a set S
by the language LS that consists of the finite string representations of the members
of S:

LS = {〈x〉 | x∈ S} (2.1)

Since recognizer or decider algorithms can only be directly applied to languages,
we will focus our discussion of decidability and recognizability on this specific kind
of sets, while bearing in mind that languages can represent a much wider variety of
sets.

2.2.3 Gödel numbers

As Kurt Gödel famously showed in the development of his incompleteness theo-
rems (Gödel 1931), it is possible to associate each symbol of and each word over
the alphabet of a formal language with a unique natural number, such that given
this natural number, one can always reconstruct from it the original string. We

2 Notation due to Sipser (2013, p. 185).

Preliminaries 9

will use this principle in this thesis, writing psq to denote the Gödel number of the
expression s. We do not need to make any assumptions on the specific function that
is used to realize a Gödel numbering, other than that it is computable and that
there exists an effective procedure by which it can be determined for any natural
number whether it is the Gödel number of some expression and, if so, of which
expression.

The definition of a Gödel numbering requires two functions. The first associates
each symbol of the alphabet with a unique natural number. Thus, strings over
the alphabet will be represented by sequences of natural numbers. The second
function maps these sequences of natural numbers again to unique natural numbers.
By disregarding the first function we can directly apply Gödel numberings to
sequences of natural numbers. We will write px1, . . . , xnq for the Gödel number of
the sequence (x1, . . . , xn). Conversely, ◦n stands for the sequence of natural numbers
of which n is the Gödel number. If n is not a Gödel number of any sequence, ◦n is
the empty sequence and has length 0. It is possible by the methods of Gödel (1931,
p. 182) to effectively obtain ◦

n for any n∈N .

2.2.4 Enumerations

A set is recursively (or computably) enumerable if and only if it is the image of
a computable function. For a given set S, this means that there exists a (total)
computable function σ : N−→S that is also surjective:

(∀x∈ S)(∃n)
[
σ(n) = x

]
. (2.2)

Listing the values of σ (i.e., producing the list σ(1), σ(2), . . .) is an effective enu-
meration procedure for S. While such an enumeration may contain repetitions (as
σ need not be injective), every element of S will eventually be listed by it. We
will therefore say that σ is an enumeration of S. Often, we will treat enumeration
functions as sequences, writing their arguments in subscript; i.e., σ1, σ2, . . . instead
of σ(1), σ(2),

2.2.5 Characteristic functions and sequences

The characteristic (or indicator) function of a set S ⊆ A is the function
1S : A−→{0, 1} that maps every member of A to 1 if it is in S, and to 0 if it is not:

1S(x) =
{

1 if x∈ S

0 if x /∈ S
(2.3)

Let α be an enumeration of A. The binary sequence that is obtained by replacing
all strings in this ordering by their image under 1S is called the characteristic
sequence χS of S:

χS =
(
1S(α1),1S(α2), . . .

)
(2.4)

The i-th digit of a characteristic sequence indicates whether αi is in S or not. If,
for example, we consider the set of prime numbers in their usual non-decreasing
order (i.e., {2, 3, 5, 7, 11, . . .}), its characteristic sequence would be 01101010001

10 Chapter 2

A formal language being a special type of set, the characteristic function of a
language L takes words over the language’s alphabet Σ and maps these to 0 or 1
according as they belong to L or not.

A k-ary relation R ⊆ S1 × . . . × Sk may be considered as a set of k-tuples,
which lets us define the characteristic function3 of R as follows:

1R(x1, . . . , xk) =
{

1 if R(x1, . . . , xk)

0 otherwise
(2.5)

Given enumerations of the individual sets S1, . . . , Sk, we can define a function σ
that is an enumeration of S1 × . . .× Sk. The characteristic sequence of R is then
given by:

χR =
(
1R(σ1),1R(σ2), . . .

)
(2.6)

Similarly, we define the characteristic function of a function to be the characteristic
function of its graph:

1f (x1, . . . , xk, y) =
{

1 if f(x1, . . . , xk) = y

0 otherwise
(2.7)

The characteristic sequence of a function f is obtained by applying the same
principles to the graph of f as were applied to R in eq. (2.6).

3 Gödel (1934) uses the term “representing function” for the same concept (p. 2), with the
conventional difference that the meanings of the output symbols 0 and 1 are precisely opposite to
the ones assigned here.

Chapter 3

ANALY T ICAL FR AMEWORK

Despite the strong position that it has acquired within the theory of computation
since its inception in 1936, the Church-Turing thesis has received a fair share of
criticism. It has been extended, complemented, reformulated and replaced, all of
which resulted in related, but slightly different theses. Before we dive in and risk
finding ourselves tangled up in the complex web of CTT statements, let us take a
moment to ensure that we have a proper understanding of the terrain we are about
to explore.

3.1 Logical structure

Often, there is more to a CTT version than is immediately observable from the
concise statement by which it is introduced. Any claim relies on an implicit
framework of assumptions and definitions. To properly appreciate a claim, it is
therefore crucial to gain insight into the relevant considerations of the author.
While superficial differences between CTT versions tend to catch the eye, a closer
examination might reveal more fundamental differences due to subtle but critical
nuances in these underlying assumptions and definitions. In order to facilitate an
effective analysis and comparison of CTT versions, we will here develop a framework
in which we can comprehensively yet concisely represent any version.

When we abstract away from the specifics of individual instances, we can
identify a logical structure common to most CTT versions, as expressed in the
following formula of first-order logic:

(∀x∈D)
[
U(x)→ (∃M∈M) [C(M, x)]

]
(3.1)

Beside laying bare the basic reasoning structure of CTT, this “skeleton” provides
placeholder predicates that represent the defining elements of any CTT version.
The task of representing a specific version is then reduced to that of “filling in” the
template by providing relevant definitions according to the following scheme:

11

12 Chapter 3

• D represents the domain over which x ranges. Some CTT versions define
computability of functions, while others focus their definition on formal
languages, real numbers, relations, algorithms, or some type of computational
process. Each choice is modeled by a different instantiation of D.

• U stands for some property defined over D. The specificity and degree
of formality in which this property is defined can vary from some vague,
intuitive notion (e.g., “effective calculability”) to a more precise, mathematical
characterization.

• M represents some model of computation, or, equivalently, the class of all
instances of that model (e.g., the class of all Turing machines, or the class of
all lambda expressions).

• C(M, x) defines the relation “M computes x”. For a given CTT version, C
reflects the author’s account of computation with respect to any object x
from the domain D, but is indifferent to the specific model M of whichM is
an instance.

The common part of most versions of CTT is that the computational power of
some (more or less intuitive) notion of computation is identified with that of
some formal model of computation. The above formula will serve throughout this
thesis as a “skeleton” CTT that captures this basic reasoning structure and can be
differentiated into any concrete CTT version by assigning specific interpretations
to the predicates. This method of carefully distilling and isolating each aspect
of a given CTT version provides an accurate and systematic way of comparing
it to other versions. It allows us to easily pinpoint the exact aspect(s) at which
two versions differ (i.e., at D, U , M , and/or C). In the following sections, the
significance of each of the variables of our framework is discussed.

3.2 Domains

The domain D on which a computability statement is based can differ between
versions of CTT. Some versions express the computational power of a model in
terms of the class of formal languages that it can decide. Others characterize this
property by the class of functions the model can compute, or the set of real numbers
of which it can produce the decimals. How do these statements relate to each
other? Do they concern different types of computability, or are they reconcilable?
In this section, we will examine the role of the domain in a CTT version and try to
determine the relationship between CTT versions with different domains.

3.2.1 θ-translatability

While at a superficial level, an algorithm that computes a real number differs
considerably from a procedure that decides a formal language, the principles that
guide both processes are, as we will soon see, essentially the same. In fact, there

Analytical framework 13

often exist very natural ways of associating different CTT domains with one another
in such a way, that a computable (decidable) object in one domain always has a
unique computable (decidable) counterpart in the other domain. Such associations
allow us to indirectly decide formal languages using models of computation whose
domain is the class of integer functions or that of the real numbers, and vice
versa. In literature, these relationships are often simply assumed without explicit
verification. By taking the effort to make these intuitions more precise, we will see
that they are not always entirely trivial and may require explicit proof.

For this purpose, we will make adaptations to two existing definitions and
introduce two new definitions. First, whereas the existing notions of Turing
reducibility (Post 1944) and Turing equivalence are traditionally defined between two
objects of the same class (e.g., two formal languages), we will for our purposes define
generalizations of these concepts that can exist between objects of different types.
Our definition, for example, allows for a formal language to be Turing reducible to
a function of natural numbers. Second, we introduce the notion of θ-translatability
(and the derived notion of θ-equivalence), a type of relative computability defined
“en masse” between the members of two classes of mathematical objects rather than
between individual objects. We will for example see that the class of all formal
languages is θ-equivalent to the class of all functions on natural numbers.

In our definitions we make use of the notion of oracles, which were introduced
by Turing (1939). A P -oracle is a hypothetical problem solver that for a given
computational problem1 P (either computable or not) correctly responds to all
queries regarding P . An oracle machine is a Turing machine that has an oracle at its
disposal, which it may consult at any time during computation and whose answers
it may use freely. Since an oracle may introduce non-computable information into
the process of computation, the input-output relation of an oracle machine need
not be computable. Apart from these oracle calls however, the machine behaves
like a regular Turing machine.

Furthermore, since an oracle is an external entity whose behavior is not deter-
mined by the program of the machine, the input-output behavior of one machine
may vary depending on which oracle is assigned to it. If M∅ denotes an oracle
machine with an “empty” oracle (i.e., a complete Turing machine whose program
specifies all interactions with an oracle but where the oracle itself has yet to be
specified),MP andMQ denote two concrete machines that result from assigning
toM a P -oracle and a Q-oracle, respectively.

Note that in this section we may use the terms “compute” and “computable”
in a broad sense to include the meanings of a number of related terms, such as
“decide”, “decidable”, “recursive”. When a model has the computational power to
compute all computable (not necessarily all) objects from some domain D, we will
refer to such a model as a “D-model”. When calling some model a D-model, this
will always be under the assumption that its procedures are effective, in the sense

1 In this context, by “computational problem” we mean problems that ask for a general
procedure rather than a specific solution; e.g., the general problem of deciding a set S or that
of computing a function f , as opposed to deciding propositions “x∈ S” for specific objects x or
computing specific values f(x), respectively.

14 Chapter 3

that they can be executed in practice and do not make use of any purely theoretical
tools such as oracles.

We will now present a generalized definition of Turing reductions.

Definition 1 Turing reduction
A Turing reduction from a problem P to a problem Q is a machineMQ (i.e., an
oracle machine with a Q-oracle) that computes P .

From this definition, we derive the following definition of Turing reducibility and
Turing equivalence.

Definition 2 Turing reducibility and Turing equivalence
A problem P is Turing reducible to a problem Q, written P ≤T Q, if there exists a
Turing reduction from P to Q.
If both P ≤T Q and Q ≤T P , the problems are Turing equivalent, written P ≡T Q.

Instead of saying that “the decision problem of a set S” is Turing reducible to “the
problem of computing a function f” we will often simply state that S is Turing
reducible to f , or alternatively that S is f -computable. An S-oracle, for a given
set S ⊆ N, is then an oracle that on input n ∈ N responds with “yes” or “no”
(or, equivalently, 1 or 0) according as n ∈ S or not. An f -oracle, for a given
function f : Nk−→N, is an oracle that for every input tuple (n1, . . . , nk) returns the
value of f(n1, . . . , nk). As a final example, a γ-oracle, for a given infinite sequence
γ ∈ {0,1}ω, is an oracle that on input i∈N returns the digit γi, or, alternatively,
the entire sub-sequence γi1.

We will now introduce θ-translations, which establish a “deep” one-to-one
correspondence between the objects in one class and a subset of the objects in another
class, such that one universal series of instructions converts any computational
procedure for an object in the first class to a computational procedure for its image
in the second class, and vice versa.

Definition 3 θ-translation
A θ-translation is an injective mapping θ : A−→B between two classes of mathe-
matical objects A and B, satisfying the following inverse conditions:

1. There exists an oracle machine U∅ such that ∀a∈A, Ua computes θ(a).

2. There exists an oracle machine R∅ such that ∀a∈A, Rθ(a) computes a.

In simple terms, a θ-translation together with the definitions of two “reduction
machines” U∅ and R∅ explains how, by fixed effective2 procedures, every object in

2 That is, the programs of the reduction machines U∅ and R∅ are effective. Of course, it still
depends on the degree of computability of a and θ(a) whether the global input-output relations of
Ua and Rθ(a) are computable or not.

Analytical framework 15

one class A can be (i) matched with a unique object in a second class B, and (ii)
computed relative to this object in B. One of the consequences of conditions 1 and
2 is that the objects that a θ-translation associates with one another will always
be Turing equivalent, i.e., a ≡T θ(a) for every a∈A. However, the two conditions
go further than that. While Turing equivalence is already satisfied when for every
a ∈ A there exists some Turing reduction to θ(a) (and vice versa), it is essential
to the definition of a θ-translation that two “universal” Turing reductions U∅ and
R∅ suffice to reduce every object to its image and vice versa.

Why would it be undesirable to allow the Turing equivalences between objects
and their images to be realized by a diverse, non-uniform set of Turing reductions?
This becomes particularly clear in cases where the objects in question are computable.
The relation a ≤T b, and thus the existence of an oracle machineMb that computes
a, holds for any b if a is computable. Instead of relying critically on its oracle for
computing a, such a machine can simply ignore its oracle altogether and compute
a “from scratch”. While this technically qualifies as a reduction from a to b, in
reality the procedure is entirely independent from b. In other words, this approach
potentially leaves the computation of A-objects decoupled from that of B-objects,
telling us nothing about how computability statements regarding both classes relate
to each other.

By demanding the existence of two universal reduction machines, we enforce
that θ-translations do not just associate objects with random objects of the same
Turing degree, but that a sort of isomorphism exists between every object and
its image and that the reduction procedure for each object truly depends on an
oracle of its image, with the procedure itself being nothing more than a universal
“conversion shell”.

Definition 4 θ-translatability and θ-equivalence
A class A is θ-translatable to a class B, written A ≤θ B, if there exists a θ-translation
from A to B.
If both A ≤θ B and B ≤θ A, the classes are θ-equivalent, written A ≡θ B.

Note that a θ-equivalence can only exist between two classes of the same cardinality.
However, to prove a θ-equivalence between two classes it is not required that a
bijective θ-translation exists between them. In section 3.2.2 we will see examples
where θ-equivalences are proved by demonstrating the existence of two distinct
non-surjective θ-translations.

Theorem 1
If A ≤θ B, any B-model can be converted into an A-model.

Proof. We make the following observations:

1. Since A ≤θ B, there exists a θ-translation θ : A−→B and an oracle machine
R∅ that can be made to compute any a∈A by “plugging in” a θ(a)-oracle.

16 Chapter 3

2. If some model of computation M is a B-model, this means that for every
computable b∈B there exists an instanceMb ∈M that computes b.

3. By definition, θ(a)∈B is computable if and only if a is computable.

Now define the following class of machines:

N = {RM | M∈M },

where RM is the reduction machine described in observation 1, but with M
incorporated as an actual subroutine rather than an oracle. As a result, the
machines in N all represent procedures that can be effectively3 carried out.

From observations 2 and 3 it follows that for every computable a ∈ A there
exists an instanceMθ(a) ∈M that computes θ(a). This, in combination with the
definition of N , means that for every computable a ∈ A there exists a machine
RMθ(a) ∈ N that computes a. To sum up: by injecting each procedure from M
into a uniform “conversion shell”, we have obtained a new class of procedures N
that constitutes an A-model.

Based on theorem 1, we can draw the following conclusion about the role of the
domain in a CTT version: for any two classes of mathematical objects A and B
where A ≡T B, it does not essentially matter whether a CTT version’s domain is
A or B, as any A-model can be converted into a B-model, and vice versa.

3.2.2 Some proofs of θ-equivalence

In this section we prove the mutual θ-equivalence of the following three domains:

Γ := {0,1}ω (infinite binary sequences)

Φ := {f : Nk−→N | k ∈N} (total functions on natural numbers)

Π := P(N) (subsets of the natural numbers)

The proof consists of defining a θ-translation θAB : A−→B between each ordered
pair (A,B) of these domains.4 We will only do this for pairs where A 6= B, since
any domain is trivially θ-equivalent with itself. The relational structure of the
statements below is visualized in fig. 3.1.

1. Φ ≡θ Π.
Proof. We will prove both Φ ≤θ Π and Π ≤θ Φ.

3 Depending on whether the architecture of the model M is Turing machine-based or not, the
subroutineM may or may not be directly executable as an integral part of R. However, even if
the execution of the subroutine requires a temporal transfer of control to an external procedure
that realizes M, we may, since M was defined as an A-model, assume that its procedures are
effective and, thus, that every procedure RM as a whole is effective.

4 When it is clear from context which particular mapping is denoted, we will omit the subscript
and superscript and simply write θ.

Analytical framework 17

Φ

Π Γ

1a

1b

2b

2a

3b

3a

Figure 3.1: An arrow from class A to class B expresses the proposition A ≤θ B. Each
arrow is labeled with a number, referring to the corresponding proof.

a) Φ ≤θ Π.
Define the θ-translation θΦ

Π from total functions of natural numbers to
sets of natural numbers:

θΦ
Π(f) = {pn1, . . . , nk,mq | f(n1, . . . , nk) = m} (3.2)

where k is the arity of f .
There exists an oracle machine U∅ that for every k-ary function f ∈Φ,
when supplied with an f -oracle, decides the set θ(f) as follows:

Uf (n) =
{
accept if | ◦n| = k + 1 ∧ f(◦n1, . . . ,

◦
nk) = ◦

nk+1

reject otherwise
(3.3)

Here, ◦n denotes the sequence of natural numbers of which n is the Gödel
number (see section 2.2.3).
Conversely, an oracle machineR∅ can be constructed that, when supplied
with a θ(f)-oracle, computes f as follows:

Rθ(f)(n1, . . . , nk) = µm
[
pn1, . . . , nk,mq∈ θ(f)

]
, (3.4)

where µ is the least number (or minimization) operator. This characteri-
zation is guaranteed to yield a value for every k-tuple of natural numbers
within a finite amount of steps and is therefore effective,5 since, owing
to the fact that f is a total function, the following holds:

(∀n1, . . . , nk)
[
(∃m)

[
pn1, . . . , nk,mq∈ θ(f)

]]
. (3.5)

5 Of course, these and the following oracle machine definitions are only effective relative to the
oracle in question. Only in cases where the object represented by the oracle is itself computable,
will the procedure as a whole be computable (since the oracle would be unnecessary and could be
replaced with a subroutine that actually computes the object).

18 Chapter 3

b) Π ≤θ Φ.
Define the mapping θΠ

Φ from sets of natural numbers to total functions
of natural numbers:

θΠ
Φ(S) = 1S . (3.6)

Every set S ⊆ N is simply associated with its characteristic function. I
trust that the immediate and intuitive nature of this particular reducibil-
ity relation allows me to leave the rest of its proof implicit.

2. Π ≡T Γ.

Proof. We will prove both Π ≤θ Γ and Γ ≤θ Π.
a) Π ≤θ Γ.

Define the mapping θΠ
Γ from sets of natural numbers to infinite binary

sequences:
θΠ

Γ (S) =
(
1S(1),1S(2), . . .

)
. (3.7)

Every set S ⊆ N is associated with its characteristic sequence χS (see
section 2.2.5).
An oracle machine U∅ exists that for every set S ⊆ N, when supplied
with an S-oracle, computes the sequence θ(S) by an infinite process that,
starting with i = 1, consists of printing a 1 or a 0 on the i-th square of
the machine’s tape according as its oracle confirms or denies that i∈ S,
incrementing i by 1, and repeating the process forever.
Conversely, an oracle machineR∅ can be constructed that, when supplied
with a θ(S)-oracle, decides S in the following manner:

Rθ(S)(n) =
{
accept if θ(S)n = 1

reject otherwise
(3.8)

b) Γ ≤θ Π.
Define the mapping θΓ

Π from infinite binary sequences to sets of natural
numbers:

θΓ
Π(γ) = {i∈N | γi = 1}, (3.9)

For every binary sequence γ, the set θ(γ) consists of all indices of γ that
hold a 1.
There exists an oracle machine U∅ that for every sequence γ ∈ Γ, when
supplied with a γ-oracle, decides the set θ(γ) as follows:

Uγ(n) =
{
accept if γn = 1

reject otherwise
(3.10)

Analytical framework 19

Conversely, we can construct an oracle machine R∅ that, when supplied
with a θ(γ)-oracle, computes γ by an infinite process that, starting with
i = 1, consists of printing a 1 or a 0 on the i-th square of the machine’s
tape according as its oracle confirms or denies that i∈ θ(γ), incrementing
i by 1, and repeating the process forever.

3. Γ ≤T Φ.
Proof. We will prove both Γ ≤θ Φ and Φ ≤θ Γ.
a) Γ ≤θ Φ.

An adequate mapping θΓ
Φ from infinite binary sequences to total functions

of natural numbers can be obtained by composition of the previously
defined functions θΓ

Π and θΠ
Φ :

θΓ
Φ = θΠ

Φ ◦ θΓ
Π. (3.11)

There exists an oracle machine U∅ that for every sequence γ ∈ Γ, when
supplied with a γ-oracle, computes the function θ(γ) as follows:

Uγ(n) = γn. (3.12)

Conversely, an oracle machine R∅ can be defined that, when supplied
with a θγ-oracle, computes γ by an infinite process that, starting with
i = 1, consists of printing on the i-th square of the machine’s tape the
value of θ(γ) that it receives from its oracle for argument i, incrementing
i by 1, and repeating the process forever.

b) Φ ≤θ Γ.
An adequate mapping θΦ

Γ from total functions of natural numbers to
infinite binary sequences can be obtained by composition of the previously
defined functions θΦ

Π and θΠ
Γ :

θΦ
Γ = θΠ

Γ ◦ θΦ
Π. (3.13)

There exists an oracle machine U∅ that for every k-ary function f ∈Φ,
when supplied with an f -oracle, computes the sequence θ(f) by an
infinite process that, starting with i = 1, consists of printing on the i-th
square of the machine’s tape a digit ci as determined by the formula in
eq. (3.14), incrementing i by 1, and repeating the process forever.

ci =
{

1 if |◦ı| = k + 1 ∧ f(◦ı1, . . . , ◦ık) = ◦
ık+1

0 otherwise
(3.14)

Conversely, an oracle machineR∅ can be constructed that, when supplied
with a θ(f)-oracle, computes f as follows:

Rθ(f)(n1, . . . , nk) = µm
[
θ(f)pn1,...,nk,mq = 1

]
(3.15)

20 Chapter 3

As was the case with eq. (3.4), the fact that f is a total function
guarantees the effectiveness of this definition.

The mutual associability among these classes shows us that the notion of com-
putability defined by a version of CTT is not necessarily restricted to any particular
domain. The notions of decidability of a set, computability of an integer function,
and computability of an infinite binary sequence are all translatable into each other
and are therefore merely different manifestations of one common, universal notion
of computability. The particular type of mathematical objects in terms of which
an author chooses to express the computational power of a model often depends
on the relevant context. As different as the resulting CTT versions may look on
the surface, they may still express the same notion of computability. This can
however only be properly assessed if we manage to reconcile the different domains
by establishing an appropriate mapping between them, as we did for the three
domains above by means of θ-translations.

3.2.3 Further extensions of the equivalence class

Of course, the three classes whose θ-equivalence we just proved are by no means the
only members of their equivalence class. While these θ-equivalences are particularly
intuitive and easy to prove, we may come up with equivalence proofs for several
other classes of mathematical objects. We will briefly discuss a number of candidates
here.

Sets of finite sequences of natural numbers

First, consider the class Υ of all sets of finite natural number sequences:

Υ = P
({

(n1, . . . , nk)
∣∣ k ∈N ∧ ni ∈N} ∪ {∅}). (3.16)

It is easily seen that Υ ≡θ Π. By associating every set of natural number sequences
with the set of Gödel numbers of these sequences we obtain a θ-translation that
proves Υ ≤θ Π. Conversely, Π ≤θ Υ can be proved by associating every subset S of
the natural numbers with the set of singleton sequences {(n) | n∈ S}.

Formal languages

Intuitively, a natural extension can then be made from sets of natural number
sequences to formal languages by associating symbols with natural numbers and
words with sequences of natural numbers. This however raises a problem: while
an individual formal language is usually defined over a finite alphabet, there is no
upper bound to the size of an alphabet and thus we must assume that the set of all
distinct symbols one can choose from—or the union of all possible alphabets—is
infinite in size. In order to be able to successfully associate each symbol with a

Analytical framework 21

unique natural number, this set must be recursively enumerable. As far as the
author is aware, no algorithm is available that produces such an enumeration.

We could of course adopt a more pragmatic strategy and choose to consider only
the class of formal languages whose alphabet is (or can be replaced with) a subset
of, say, the (finite) set of Unicode characters. Let us write ΛU to denote this class.
By associating each Unicode character with a unique natural number and thus each
Unicode string with a unique natural number sequence, and conversely each natural
number sequence with a unique Unicode string (e.g., the sequence (129, 5, 70, 82654)
with the string (129, 5, 70, 82654)), we can easily prove that ΛU ≡θ Υ (and thus
that ΛU ≡θ X for all X ∈ {Γ,Φ,Π,Υ}).

Real numbers

Another intuitive direction for expansion of the equivalence class is from infinite
binary sequences to real numbers. In fact, Alan Turing used binary sequences
to represent real numbers on the tape of his Turing machine. Strictly speaking
however, Turing’s way of associating binary sequences with real numbers lacks the
uniqueness that is required of a θ-translation—in either direction. First, Turing only
represented the fractional parts of real numbers, meaning that many real numbers
were associated with the same binary sequence. This can easily be resolved by
adopting a different strategy for associating real numbers with binary sequences
such that the integer part of a number is included in its representation. Such a
mapping allows us to prove R ≤θ Γ. In practice of course, Turing’s notation often
suffices for the computation of real numbers in the form of infinite binary sequences.

Conversely, Turing’s representation does not associate every binary sequence
with a unique real number, in the sense that every real number is represented by
two distinct sequences. As counter-intuitive as it may have appeared to us when
we were first confronted with it, we have all come to accept that the numerals
0.9 (where 9 stands for an infinite sequence of 9s) and 1 denote the same number.
Analogously, Turing’s conventions associate any two sequences p01 and p10 (with
p ∈ {0,1}∗) with the exact same set of numbers. For Turing this was no serious
problem as his paper only concerned the representation of real numbers by binary
sequences, and not vice versa. For our purpose however of proving not only R ≤θ Γ,
but also Γ ≤θ R and thus R ≡θ Γ, we would like for every pair of infinite binary
sequences to be associated with two distinct real numbers. To achieve this, we may
define a θ-translation θΓ

R such that it maps the infinite binary sequences onto a
nowhere dense subset of the real numbers such as the Cantor ternary set, as shown
in the following example:

θΓ
R (γ) =

∞∑
i=1

2γi
3i (3.17)

Such a mapping has the desirable property that no two binary sequences map to
the same real number, i.e., it is injective—even bijective when we consider the
Cantor set as the codomain. For any two binary sequences p01 and p10 (with
p∈ {0,1}∗), there is an entire interval between the two real numbers they represent.

22 Chapter 3

Of course the mapping is far from surjective, since it reaches only a fraction of the
real numbers in the unit interval; but this is irrelevant in the present situation.
What we were looking for was a mapping from binary sequences to real numbers
that is injective, which is the case fore the given definition of θΓ

R .

3.3 Intuitive notion of computability

In his renowned paper on computable numbers, Turing asserted that the numbers
that can be computed by his machine include “all numbers which would naturally be
regarded as computable” (Turing 1936–7, pp. 230, 249). While the former class of
numbers can be effectively and unambiguously defined (namely, using the definition
of the Turing machine), the composition of the latter is left entirely to the intuition
of the reader. To assert a mathematical relation between these classes, as Turing
did, produces an epistemologically interesting situation. Different interpretations
of the phrase “which would naturally regarded as computable” could obviously
lead to different evaluations of this assertion. To further complicate the situation,
many alternative terms circulated that aimed to describe the elusive concept of
computability, such as Church’s “effective calculability”, and Gödel’s “mechanical
procedure”, each with their own subtleties. These ambiguities led to interesting
philosophical discussions on the epistemological status of CTT and the nature of
computation, as we will see later in section 5.3.

As with Turing’s original formulation, most CTT versions follow a pattern
where some (more or less) intuitive notion of computability is formalized in terms
of a formal model of computation. We will model the intuitive notion using the
U predicate. Beside viewing U as a predicate, we will also use it to refer to its
extension, i.e., the subclass of the domain D whose members this notion applies to.
In effect, when modeling Turing’s thesis, we will let D denote the set of all (real)
numbers, U(x) will mean “x would naturally be regarded as computable”, and
additionally, U will refer to those real numbers “which would naturally be regarded
as computable”.

3.4 Models of computation

One of the central components of any CTT version is the model of computation. A
model of computation can be viewed as an abstract and idealized computer, which is
used to facilitate reasoning about the computability of functions and the complexity
of algorithms. The computational power6 of a model can be characterized in terms
of the class of functions (or, as we saw in the previous section, languages, numbers,
etc.) that it can compute. The extent of this class depends on the capabilities and
limitations of the model. The significance of a CTT version then lies in asserting
that some intuitively defined class of objects U is included in the computational
power of a certain model M , i.e., that M is powerful enough to compute U . Note

6 In the context of computability theory, we use the term computational power to refer to what
a model or machine can compute, not to how fast or efficiently this can be done.

Analytical framework 23

that, given a CTT version and the corresponding model of computation, we will
use the symbol M to denote that model as a general concept, as well as the class
of all instances of that model.

Two models are considered computationally equivalent if they compute the
same class of functions. In the 1930s, it was discovered that several independently
developed models of computation—among which the Turing machine and Alonzo
Church’s lambda calculus—were in fact computationally equivalent. This remark-
able equivalence arose in a time where mathematicians and logicians were desperate
to formalize the notion of “computability” or “effective calculability”, which until
then only existed as a vague, intuitional concept. Whether or not satisfactory as a
definition (see also section 5.3.1), the Turing machine and equivalent models came
to be the benchmark of computability, the corresponding class of functions generally
being referred to as the “computable” or “recursive” functions. The challenge to
breach the magical Turing barrier inspired many new models of computation, some
of which were adaptations of existing models, while others sprang from fundamen-
tally new ideas. In this section we will have a quick glance at the most common
types of computational models.

3.4.1 Inter-model differences

While it was only after developing his computing machine that Turing became aware
of Church’s work, he was quick to realize that the classes of Turing-computable
functions and lambda-definable functions coincided. The shared conjecture by
Turing and Church that this class of functions represented a very fundamental
notion of computability came to be known as the Church-Turing thesis. Earlier,
it had already been established that Kurt Gödel’s notion of “general recursive
functions” (Gödel 1934) corresponded with lambda-definability, and in the same
year that Turing developed his machine, Emil Post published a very similar and
computationally equivalent system which he referred to as “formulation 1” (Post
1936). Due to their mutual equivalence, these models can in theory be used
interchangeably to express a CTT version, although depending on the context, one
may be more convenient to use than another.

The equivalence between these and many other models is truly remarkable,
especially when considering how much their definitions vary. There are models,
such as the Turing machine and the random-access machine (RAM, Cook and
Reckhow 1973), which are conceived of as actual (yet idealized) machines, their
computational process being described in terms of interacting hardware mecha-
nisms. Other models, including lambda calculus, general recursive functions, and
combinatory logic (Curry 1930; Schönfinkel 1924) are defined at a more abstract,
functional, level. Then there exist models, like the cellular automaton “Game of
Life” by John Conway (Gardner 1970), in which multiple operations are executed
in parallel, as opposed to the sequential character of the previously discussed mod-
els. Arguably, recurrent neural networks (RNN) can be used as Turing-complete
models of computation as well (Siegelmann and Sontag 1992), although this view is
controversial (see Graves, Wayne, and Danihelka 2014; Weiss, Goldberg, and Yahav

24 Chapter 3

2018).

3.4.2 Intra-model differences

Apart from differences between models, many variations can exist within one model.
In particular the Turing machine, being arguably the most well-studied of all models
of computation, has been the subject of numerous modifications, extensions, and
alternative definitions. We will here discuss some common variants that can be
shown to be equivalent in computing power to the classical Turing machine.

Whereas Turing’s original work implies a one-way infinite tape, we could just
as easily imagine the machine operating on a tape that extends infinitely in both
directions. Of course this does not make any difference in terms of computational
power: we can represent any two-way infinite tape on a one-way infinite tape, for
example by “folding” the tape at a certain square, as demonstrated in Davis, Sigal,
and Weyuker (1994, pp. 163–164).

It can sometimes be very convenient to define a Turing machine as having
multiple tapes, as this enables one to keep input values, intermediate computations,
and output values clearly separated. This too, however, does not affect the com-
putational power of the machine, as is proved by Hartmanis and Stearns (1965,
p. 293). In the same paper (p. 297) it is shown that a two-dimensional tape (i.e., a
grid of squares) similarly has no effect in terms of computability.

Lastly, we will explore the consequences of allowing non-deterministic elements
in the definition of a Turing machine. In his 1936 paper, Turing repeatedly
stresses that the behavior of the machine at any moment is fully determined
by its configuration and the symbol that is read from the tape at that moment.
Let us now consider a non-deterministic variant of the Turing machine that for
any configuration-symbol combination makes an arbitrary choice between several
actions. In effect, a computation of such a machine forms a tree, each path of which
represents one possible course of the process. A non-deterministic Turing machine
is then said to accept its input if any of these paths terminates in an accepting state.
Lewis and Papadimitriou (1998) provide a detailed discussion on non-deterministic
Turing machines, including a proof that these machines, too, are no more powerful
than ordinary Turing machines.

3.5 Formal definition of computation

As modeled in 3.1, the computational power of a model M is usually expressed
in terms of some intuitively defined class U ⊆ D,7 by asserting that for every
object x∈U there exists an instanceM of M that computes x. But what do we
really mean when we say that “M computes x”?8 While the meaning of such a
phrase would appear to be quite straightforward, we will see that subtle differences

7 Here, we use the symbol U to denote the extension of the predicate U . Also, we assume that
the universe of discourse is D, and as such that U ⊆ D (i.e., U has no members outside of D).

8 Note that, depending on the context, “computes” may be replaced with “decides”, “simulates”,
etc.

Analytical framework 25

in intuitions can have significant consequences. It is therefore important to take
account of the particular definition of computation on which an author bases his
or her characterization of computability. When representing a CTT version in our
analytical framework, we will use the binary C predicate to represent the definition
of computation that underlies that particular version. In this section we will discuss
the relevance of this definition to the appraisal of a CTT version, and how we can
find it for a given version.

3.5.1 Relevance of the C predicate

Given a CTT version with domain D, our objective is to formalize the author’s
conception of the relation “computes” with respect to D. Note that here we do
not pursue a definition of computation in general, but one that specifies what it
means to compute a specific type of objects, namely that which is defined in D.
On the other hand, we are looking for a definition that is as general as possible,
in the sense that it cannot use any model-specific terms or mechanisms (“tape”,
“halt”, etc.), as to not gratuitously preclude any models from implementing it. Our
definition of C should thus specify a minimum set of sufficiently abstract conditions
that, when all satisfied by some model instanceM with respect to an object x∈D,
guarantee the truth9 of the proposition “M computes x”. In simpler terms, we
are looking for those criteria that eventually lead the author to judge one model
adequate to compute some class U , and another not.

In fact, divergences of judgments about CTT versions easily arise as a result of
discrepancies between these criteria. While some authors maintain liberal criteria
and require only that a model can realize a certain extensional input-output relation,
others may involve additional factors and set further requirements on the course of
a computation. For example, one may impose complexity bounds on the process,
as a means to ensure that computation is not only possible in theory, but also
feasible in practice. Restrictions like this can be relevant in complexity-theoretic
approaches to CTT, such as the Extended Church-Turing thesis, which states
that “any ‘reasonable’ model of computation can be efficiently simulated on a
probabilistic Turing machine (an efficient simulation is one whose running time
is bounded by some polynomial in the running time of the simulated machine)”
(Bernstein and Vazirani 1997).

Another interesting question is to which degree a simulation of a computational
process should be able to reproduce the technical aspects of the atomic operations
involved in that process. It seems reasonable not to be too demanding in this
respect, given the multitude of possible computational techniques and hardware
mechanisms, which cannot reasonably be expected to be captured in one single
model. In this context, Copeland and Shagrir (2019, p. 68) point out that

[a] thesis aiming to limit the scope of algorithmic computability to Turing
computability should thus not state that every possible algorithmic

9 That is, the truth of this proposition as interpreted by the author of the relevant CTT
version.

26 Chapter 3

process can be performed by a Turing machine. The way to express
the thesis is to say the extensional input-output function ια associated
with an algorithm α is always Turing-computable; ια is simply the
extensional mapping of α’s inputs to α’s outputs. The algorithm the
Turing machine uses to compute ια might be very different from α itself.

But what if an algorithm or physical process does not have clearly delineated inputs
and outputs? How should we for example model an interactive computation that
consists of continuous and overlapping streams of inputs and outputs? We will
return to these questions in section 6.1.

A last example concerns the representation of objects from the domain. While
total functions from integers to integers are relatively easy to represent using a
finite model—one that can transform the (finite) representation of an input integer
into the (finite) representation of its image under that function would do—we will
sometimes encounter domains whose representations pose a greater challenge. For
example, how should we represent values that are drawn from a continuum, like real
numbers? Such values are often not easily captured in finite representations. Does
it suffice when they can be approximated up to any desired precision? It seems that
Turing (1936–7) would have answered this question in the affirmative—at least for
values on the output side of a computation—given his elaboration of a machine that
“computes” a real number by successively printing its decimals. Deutsch (1985), on
the other hand, clearly distinguishes between “simulation” and “perfect simulation”,
where the former concerns itself with discrete approximation of real variables and
is therefore considered insufficient for modeling continuous systems in classical
physics.

3.5.2 Finding a definition

Unfortunately, authors do not typically state the exact definitions of computation
that inspired their computability statements. It can however be expected that a
statement of this kind, especially when it deviates considerably from traditional
theories, is accompanied by a detailed commentary. We will often need to infer an
author’s views on computation from this commentary. Both low-level and high-level
discussions of a model can offer valuable clues that may help us reconstruct the
implicitly present definition of computation.

For a given CTT version that involves a model M , a domain D, and some
subclass U of D, the author will most likely provide a more or less formal description
of how the model works, and what the computation of an object from U would look
like. Unless the author maintains an extremely narrow definition of computation,
this does not mean that the given description was intended to outline the only
possible way in which such an object can be computed. Rather, it will probably
have been presented to exemplify a more general quality of the model, leaving room
for many equally adequate alternative implementations. Consider, for example, the
question of whether to represent integers in binary or decimal notation, which in
many contexts will make no meaningful difference and is merely a matter of choice.

Analytical framework 27

Moreover, the author might not even consider the ability to compute U to be an
exclusive quality of M . It could be that a fundamentally differently defined model
that somehow allows the same abstract principle to be implemented, would have met
with similar approval by the author. It is therefore this more fundamental principle
at the root of an author’s understanding of computation which we would like to
express in our definition, abstracting away from any distracting implementational
details.

The challenge is then to identify which elements exactly are those implementa-
tional details that can be chipped away, and which elements we should preserve
and incorporate in the definition. Let us consider the following example. An author
presents a model M that is supposed to simulate all algorithms. To demonstrate
this ability, the author provides a definition of an instanceM of M that simulates
John Conway’s Game of Life (Gardner 1970). While Game of Life explicitly requires
all cells to be updated simultaneously in a single time step,M is defined to simulate
these updates in a serial manner over the course of multiple time steps. This last
fact is significant, since it tells us that an exact replication of every atomic step of an
algorithm is, as it appears not essential to the author’s concept of “simulation”. As
it appears from this minimal example, the author considers the result of a process
more relevant to the concept of computation or simulation than the process itself.

As was mentioned before, further clues with respect to the pursued definition
may be sought in higher-level discussions of the model. Considering the extensive
corpus of existing literature on computability theory, one will need to provide a
new theory with proper justification in order to warrant its legitimacy in relation
to established or competing theories. It is often in such arguments about the
legitimacy of a CTT version that one’s conception of computation most notably
manifests itself. Given definitions of U and M , a corresponding CTT statement in
the form of eq. (3.1) might be accepted by one person while rejected by another.
Similarly, an author may contend that (and hopefully explain why) while one model
suffices for the purpose of computing D, another does not. Such differentiations
help us pinpoint the pivotal principles that motivate the definition of C that we
are after.

Note that the level of detail at which a definition of computation can be
reconstructed depends on the amount of information that can be extracted from
an author’s account. While some CTT versions are accompanied by exhaustive
reflections, others are defined in very general terms, limiting the rigor with which
the C predicate can be defined. Our analytical framework thus furthermore helps
expose differences in degree of detail between CTT versions that might not be
visible on initial inspection.

Chapter 4

HI STOR ICAL BACKGROUND

The genesis of the Church-Turing thesis was by no means an isolated event, but
rather the culmination of a momentous historical process that gripped mathematical
communities over the early decades of the twentieth century. Hence, if we only
focused on CTT’s technical aspects without taking note of the relevant circumstances
from which it originated, our analysis would surely be deficient. In this chapter, we
place CTT in a historical perspective by reviewing the events that led to its original
formulation and discussing the responses that it elicited from the scientific world.

4.1 A foundational crisis

The beginning of the twentieth century was a turbulent yet exciting time in the
world of mathematics. The field found itself in a “foundational crisis” following the
discovery of a number of unsettling paradoxes, among which was Russell’s paradox
in 1901 (communicated to Gottlob Frege in Russell 1902). Motivated by a pressing
need to secure the status of mathematics as a legitimate science, several ambitious
projects were launched to cure the field of its flaws. One such effort by Alfred
North Whitehead and Bertrand Russell brought forth the highly influential work
Principia Mathematica (PM), published in the years 1910–1913. The aim of the
authors was to formalize all of classical mathematics in a system of symbolic logic
using a minimal set of axioms and inference rules, while avoiding the problematic
paradoxes and contradictions.

Despite the great impact that PM has had on the development of mathematics,
it was not embraced by all as a solution to the crisis. Among the skeptics was the
German mathematician David Hilbert, one of the most respected mathematicians
of the time. While being a fierce advocate of the axiomatic approach, to Hilbert a
system that merely avoids existing paradoxes was not enough. He insisted that in
order to restore the reputation of mathematics, we should build our theories on
axioms from which it can be shown to be impossible at all (“überhaupt unmöglich”,
Hilbert 1917, p. 411) to derive contradictions. In other words, Hilbert required

29

30 Chapter 4

that the solution be accompanied by a consistency proof. A formal theory T is
(syntactically) consistent if there is no formula φ for which both φ itself and its
negation ¬φ can be proved from T (or, if there is no φ such that T ` φ∧¬φ). Earlier
attempts had only resulted in relative consistency proofs, reducing for example the
consistency of Euclidean geometry to that of analysis (alternatively referred to in
literature as “arithmetic of real numbers” or “second-order arithmetic”). However,
a further reduction seemed impossible and thus Hilbert pinned his hopes on finding
a direct proof of consistency for analysis, a problem that had remained unsolved
since the turn of the century, when it was Hilbert himself who presented it as the
second of his famous 23 problems at the International Congress of Mathematicians
in Paris (Hilbert 1900, pp. 264–266).

In 1921, he further specified his proposal for the “refounding of mathematics”
in a series of lectures that he held at the University of Hamburg (Hilbert 1922).
In these lectures, he expressed a strong confidence in the possibility of restoring
the unimpeachable reputation of mathematics through proving the consistency of
analysis (Hilbert 1922, p. 162; translation from Ewald 1996, p. 1121):

[A] satisfactory conclusion to the research into [the foundations of
mathematics] can only be attained by the solution of the problem of the
consistency of the axioms of analysis. If we can produce this proof, then
we can say that mathematical statements are in fact incontestable and
ultimate truths—a piece of knowledge that (also because of its general
philosophical character) is of the greatest significance for us.

In fact, this was not the first time that Hilbert made an effort to solve his second
problem. Much earlier, in 1905, he had already sketched a consistency proof for the
axioms of analysis. It was however not long before the French mathematician Henri
Poincaré discovered that Hilbert’s proof relied on a circular reasoning structure,
a flaw that took Hilbert a while to come to terms with. To make matters worse,
Hilbert’s ambitions were further plagued by the emergence of a rivaling mathematical
philosophy known as intuitionism, founded by the Dutch mathematician L.E.J.
Brouwer and supported by Hilbert’s own former student Hermann Weyl. A radical
critique of classical mathematics, intuitionism rejected several well-established
principles in mathematics and logic, such as Aristotle’s law of the excluded middle
(i.e., A ∨ ¬A). Particularly disturbing to Hilbert was Brouwer’s aversion to Georg
Cantor’s theory of transfinite numbers and the concept of actual or completed
infinity, achievements that Hilbert greatly cherished.1

In his bold new attempt, Hilbert set out to salvage existing mathematics—
including the theories that were under attack from the intuitionistic camp—by
proving its consistency using methods so uncontroversial that even his adversaries
would have no other option than to agree. In order to ban the circularities that
Poincaré discovered in his earlier attempt, Hilbert introduced a rigid distinction

1 See, for example, Hilbert 1926, p. 167, where he calls Cantor’s theory “the most admirable
flower of the mathematical intellect and in general one of the highest achievements of purely
rational human activity” (Van Heijenoort 1967, p. 373).

Historical background 31

between two types of mathematics. First, he would develop mathematics and logic
together in a purely formal system, yielding mathematics proper (“die eigentliche
Mathematik”, Hilbert 1922, p. 174; Ewald 1996, p. 1131)—a formal language
consisting of all axioms and theorems of existing mathematics. Then, the consistency
proof of the axioms of mathematics proper was to be constructed within a new
kind of mathematics which Hilbert called metamathematics (“Metamathematik”)
or proof theory (“Beweistheorie”).

To eliminate each and every possibility of Brouwer and his followers rejecting
his consistency proof, Hilbert chose to restrict himself to those basic modes of
inference whose validity appeared to him as immediate, intuitive, and indisputable.
This finitary standpoint2 (“finiter Standpunkt”), presented most comprehensively
in Hilbert (1926), ruled out the use of controversial modes of inference—such as
the application of quantifiers to infinite totalities—at the level of metamathematics,
while imposing no such restrictions on the methods of mathematics proper. By
following this strategy, Hilbert hoped to conclusively establish the legitimacy of
transfinite reasoning within mathematics on a finitary (and thus intuitionistically
admissible) basis (Hilbert 1923, p. 156; Ewald 1996, p. 1140):

We therefore see that, if we wish to give a rigorous grounding of math-
ematics, we are not entitled to adopt as logically unproblematic the
usual modes of inference that we find in analysis. Rather, our task is
precisely to discover why and to what extent we always obtain correct
results from the application of transfinite modes of inference of the sort
that occur in analysis and set theory. The free use and the full mastery
of the transfinite is to be achieved on the territory of the finite!

In fact, though Hilbert never gave a precise delineation of which methods were to
be considered “finitary”, it is argued that they were even more restrictive than
would have been required by Brouwer (e.g., Davis 2018, p. 94; Ewald 1996, pp. 1116,
1168).

Together with his assistant Paul Bernays and his student Wilhelm Ackermann,
and in collaboration with John von Neumann and Jacques Herbrand, Hilbert would
devote much of the 1920s to the development of this grand project, which came to
be known as “Hilbert’s program”. As of 1928, substantial progress had been made
and Hilbert was confident that victory was within reach.

In that same year, Hilbert and Ackermann published a textbook called Grund-
züge der theoretischen Logik, in which they presented two related problems for
first-order predicate logic (FOL), referred to as the “restricted functional calcu-
lus” (“engere Funktionenkalkül,” Hilbert and Ackermann 1928). First, the authors
presented a proof system and asked whether it is semantically complete: can all
semantically (or universally) valid formulas of first-order logic (i.e., those formulas
that are true under every possible interpretation of the system) be syntactically
derived from its axioms (p. 68)? For the more elementary propositional calculus

2 An alternative translation for the German “finit” that is commonly found in literature is
“finitistic”.

32 Chapter 4

found in Principia Mathematica, completeness had already been confirmed several
years earlier, first by Emil Post and later by Paul Bernays. For FOL, however, no
such proof existed yet.

The second problem concerned the decidability of FOL and other logical systems.
Aptly named “das Entscheidungsproblem”3, it asked for a procedure that, within
a finite number of steps, decides for any given logical expression whether that
expression is universally valid or not (p. 73). Note that the Entscheidungsproblem
is in principle not concerned with provability (or derivability), which is a strictly
syntactic notion, but rather with the semantic notion of validity. However, for
systems that are sound and (semantically) complete, these two notions coincide.
As with the problem of completeness, the Entscheidungsproblem is relatively easy
to solve for propositional logic: the validity of propositions can easily be tested
using truth tables. For FOL, however, the Entscheidungsproblem did not have
an obvious solution. In their textbook, Hilbert and Ackermann stress that “the
Entscheidungsproblem should be considered the main problem of mathematical
logic” (p. 77).

Striking in Hilbert and Ackermann’s formulation is the apparent absence of
restraint in assuming the existence of such a procedure. It is characteristic of
Hilbert’s uncompromisingly optimistic attitude toward the acquisition of mathe-
matical knowledge, which he most famously expressed at the conclusion of a speech
in his birthplace Königsberg, shortly after he retired in 1930 (Hilbert 1930a, p. 387;
Ewald 1996, p. 1165):

For the mathematician there is no ignorabimus, nor, in my opinion,
for any part of natural science. . . . The real reason why Comte was
unable to find an unsolvable problem is, in my opinion, that there are
absolutely no unsolvable problems. Instead of the foolish ignorabimus,
our answer is on the contrary:

Wir müssen wissen,
Wir werden wissen.

(We must know,
We shall know.)

3 While Hilbert and Ackermann’s formulation of 1928 is often presented as the first introduction
of the Entscheidungsproblem, Hilbert’s student Heinrich Behmann had formulated the problem
in a general form as early as 1921 in a lecture entitled “Entscheidungsproblem und Algebra der
Logik” (Mancosu and Zach 2015, p. 176):

[Axiomatizations of symbolic logic show] us, like the rules of chess, only what one
may do, and not what one should do. The latter remains—in the one as in the other
case—a question of inventive thinking, of lucky combination. We, however, require
a lot more: not only the individual operations but also the path of calculation as
a whole should be specified by rules, in other words, an elimination of thinking in
favor of mechanical calculation. If a logical or mathematical statement is given,
the required procedure should give complete instructions for determining whether
the statement is correct or false by a deterministic calculation after finitely many
steps. The problem thus formulated I want to call the general decision problem [das
allgemeine Entscheidungsproblem].

Historical background 33

4.2 Discovery of the undecidable

Around 1930, a new player entered the scene. Kurt Gödel, a young Austrian4

logician, chose Hilbert and Ackermann’s first problem—that of proving the semantic
completeness of first-order logic—as the subject of his doctoral dissertation. Under
the supervision of Hans Hahn he succeeded in proving that indeed, all universally
valid formulas of FOL are theorems of Hilbert and Ackermann’s proof system—
i.e., can be proved from the axioms using the inference rules (Gödel 1929, 1930).
Beside being an significant result in its own right, Gödel’s completeness theorem
was also a major advancement toward a solution to the Entscheidungsproblem (of
first-order logic). By showing that all valid formulas of FOL were provable, half of
the problem had been solved: what remained was to verify that conversely, non-
validity—or, which by the same completeness result had been confirmed equivalent,
unprovability—of formulas could be effectively determined as well. In modern
terminology, Gödel had shown that validity (provability) in FOL is semi-decidable,
but it had yet to be proved that it is indeed decidable.

In contrast to the purely logical system considered for the Entscheidungsproblem,
the aim of Hilbert’s program was to formalize logic together with mathematics in
one all-encompassing system. For such a mathematical system, a proof of mere
semantic completeness did not suffice. Whereas semantic completeness requires
only that a system can prove all logically valid sentences of a formal language,
for a mathematical theory it was deemed desirable that for every sentence φ of
the language, either φ or its its negation could be proved. The latter type of
completeness is generally referred to as syntactic completeness5, as it is defined
solely in terms of formal derivability and does in principle not involve the notions
of truth or validity. Only when a theory is interpreted in terms of some model,
its sentences come to express meaningful propositions about the domain of the
particular model. Hilbert himself maintained an equivalent notion of syntactic
completeness, but characterized it slightly differently—here in relation to number
theory as the intended model (Hilbert 1929, p. 140; Mancosu 1998, p. 232):

The assertion of the completeness of the axiom system for number
theory can also be stated in this way: If a formula belonging to number
theory, but not provable in it, is added to the axioms of number theory,
then a contradiction can be derived from the extended axiom system.

While work on Hilbert’s program by Ackermann and Von Neumann was producing
promising results, Gödel chose to join the cause and adopt the problem of proving
the consistency of analysis as his next challenge. Tragically however, in the process
he made an unnerving but fundamental discovery that relentlessly crippled Hilbert’s

4 Gödel was born in 1906 in the Austro-Hungarian town of Brünn. When after World War I
Czechoslovakia declared independence from the defeated Austro-Hungarian empire, Brünn became
Brno and Gödel officially became a Czechoslovak citizen. In 1924 Gödel moved to Vienna where
received Austrian citizenship in 1929.

5 Syntactic completeness is also called “negation completeness”, “formal completeness”, “de-
ductive completeness”, and “maximal completeness”.

34 Chapter 4

program instead. That is to say, he stumbled across an inherent limitation of formal
systems that simply rules out the possibility of formalizing all of mathematics in a
system that is both syntactically complete and consistent—which happened to be
the very aim of Hilbert’s program.

Gödel (1931) discovered that, curiously, in every consistent6 axiomatic system
that is powerful enough to support basic arithmetic, it is possible to formulate
propositions that can neither be proved nor disproved using the rules of the system.
In his paper he developed a formal system P which corresponds with the arithmetical
part of Russell and Whitehead’s Principia Mathematica. For this system and all
extensions of it with recursive classes of axioms, Gödel proved the existence of
undecidable formulas.

At the time that PM was written, it was widely recognized that many problem-
atic paradoxes and contradictions in mathematics arose from use of self-referential
constructions. As such, Russell and Whitehead had gone to great lengths to make
sure that their system was free from all forms of self-reference. Gödel invented an
ingenious mechanism by which he was able to bypass this principle and introduce a
“hidden” form of self-reference into ordinary arithmetical sentences of P . Known
today as “Gödel numbers”, he associated each symbol, formula, and proof of the
system with a unique natural number. Under this mapping, each formula, which
by the usual interpretation of the system asserts certain properties of natural num-
bers, receives an alternative interpretation as expressing propositions about other
formulas of the same system—it could even be made to refer to itself. Exploiting
this principle, Gödel created a sentence similar in spirit to the well-known Liar’s
paradox, which could be read as saying “I am unprovable in P ”. In a way, Gödel had
blurred the line between metamathematics and ordinary mathematics by showing
that the former can be brought into the realm of the latter.

The significance of Gödel’s self-referential sentence—we will call it GP , the
“Gödel sentence” of P—becomes evident when we consider its provability in P .
If we assume that GP is provable, then we must accept the proposition that it
expresses, namely that GP is unprovable—a direct contradiction with our initial
assumption. If, on the other hand, we assume that ¬GP is provable, we obtain
a proposition that says “GP is not unprovable in P”, i.e., that GP is provable in
P—which leaves us with a syntactically inconsistent system, since both GP and
its negation are provable in it. Thus, neither GP nor ¬GP can be provable in P ,
making GP a formally undecidable (“formal unentscheidbare”) proposition of P ,
and P itself a syntactically incomplete system.

Unfortunately for Hilbert, Gödel showed that undecidable sentences not only
6 Gödel’s original proof of his first incompleteness theorem only concerns so-called “ω-consistent”

systems, a notion stronger than “simple” consistency. Whereas simple consistency only requires
that a system S does not prove two formulas that directly contradict each other (i.e., (∀φ) [¬(S `
φ ∧ ¬φ)]), ω-consistency requires that there is no property P of the natural numbers such that

(∀n) [S ` P (n)] ∧ S ` (∃n) [¬P (n)].

Rosser (1936) proved by constructing his own undecidable “Rosser sentence” that Gödel’s incom-
pleteness result can be generalized to simply consistent systems. When speaking of Gödel’s first
theorem, we will tacitly assume the inclusion of Rosser’s improvement.

Historical background 35

exist in the specific system P , but in every7 consistent formal system that is
capable of representing a certain basic part of arithmetic. Moreover, in addition
to this first incompleteness theorem he proved a second theorem, stating that any
consistent mathematical theory that can represent the addition and multiplication of
integers cannot prove its own consistency—let alone that severely restricted finitary
methods suffice for proving the consistency of infinitary mathematics. Suddenly,
things looked very bad for Hilbert’s program.

It is not surprising that Gödel’s incompleteness theorems have become widely
recognized as one of the most significant results ever achieved in mathematical logic.
Although conjectures concerning the possibility of incompleteness had been made
by several mathematicians in the preceding years, Gödel was the first to provide
a rigorous proof that, in defiance of Hilbert’s “Wir müssen wissen, wir werden
wissen”, mathematical problems exist that are unsolvable.

However, we must note that the kind of (un)decidability that Gödel speaks of
is, as the title of the work suggests, a strictly formal one: given a mathematical
statement φ, it does not concern the existence of a procedure for determining the
truth value of φ, nor is it about the possibility of deciding whether φ is a theorem
of a certain formal system S. Rather, Gödel considers a statement φ decidable in a
formal system S if the axioms and rules of inference of S suffice to derive either φ
or ¬φ as a theorem. As such, this type of decidability can only be expressed relative
to a certain formal system. A sentence that is undecidable in one system might very
well be decided by a stronger system or, as Gödel points out, by metamathematical
considerations.

After proving his first incompleteness theorem, Gödel carries the discussion
of (formal) decidability from individual sentences to classes and relations. An
n-ary relation8 R between natural numbers is said to be strongly representable
(“entscheidungsdefinit”)9 in a system S if there is a formula ρ in the language of S
with n free variables, such that for every n-tuple of natural numbers (x1, . . . , xn)
the following holds:

R(x1, . . . , xn)⇒ S ` ρ(x1, . . . , xn),

¬R(x1, . . . , xn)⇒ S ` ¬ρ(x1, . . . , xn),
(4.1)

where x denotes the formal numeral that represents the natural number x in S. By
associating any n-ary function f with an equivalent (n+1)-ary relation F , such that
f(x1, . . . , xn) = y ⇔ F (x1, . . . , xn, y), we have also defined strong representability
for functions.

7 Actually, the general form in which Gödel’s results are expressed here was adopted by
Gödel only after Turing’s construction of the Turing machine, which Gödel called “a precise and
unquestionably adequate definition of the general concept of formal system”. In his original 1931
paper, the result was only stated for a more definite, yet very comprehensive class of systems.

8 Gödel treats classes as unary relations.
9 The word “entscheidungsdefinit” has been translated in many different ways in scientific liter-

ature. The most commonly found translations include “numeralwise expressible”, “(numeralwise)
decidable”, “binumerable”, and “strongly representable”.

36 Chapter 4

4.3 General recursive functions

Earlier in his paper, Gödel defined an extensive class of functions which we know
today as the primitive recursive functions.10 This class consists of functions that
are either a constant function or the successor function, or can be derived from
these by simple forms of substitution and recursion (induction). A relation is then
primitive recursive if its characteristic function (see eq. (2.5)) is primitive recursive.
After introducing the notion of strong representability, Gödel notes that, by a proof
given earlier in the paper, all primitive recursive relations (and as a consequence all
primitive recursive functions) are strongly representable in his arithmetical system
P .

Due to the fact that P is recursively axiomatizable (i.e., it can be decided
within a finite amount of time whether some well-formed formula φ is an axiom of
P), it is possible to enumerate all of its proofs. Whereas the property of strong
representability (in P) of a primitive recursive function f in itself only asserts
the existence of a proof for every computation of f , the recursive axiomatizability
of P additionally ensures that this proof can be found within a finite number of
steps. During a lecture in the spring of 1934 at the Institute for Advanced Study
in Princeton, New Jersey, Gödel remarked (Gödel 1934, p. 3):

[Primitive recursive] functions have the important property that, for
each given set of values of the arguments, the value of the function
can be computed by a finite procedure. Similarly, [primitive] recursive
relations (classes) are decidable in the sense that, for each given n-tuple
of natural numbers, it can be determined by a finite procedure whether
the relation holds or does not hold (the number belongs to the class or
not), since the representing function is computable.

While presumably motivated by his discoveries in the context of the system P ,
Gödel here detached the notions of computability and decidability from any definite
formalisms. In contrast to other mathematical notions such as provability or
representability, which can only be expressed relative to some formal system, the
property of “being computable (decidable) by a finite procedure” stands on its own.
In the same way that Hilbert’s Entscheidungsproblem is indifferent to the particular
form of its solution, as long as it decides each sentence of FOL in a finite number
of steps, a function can be regarded “computable” in general whenever there exists
some mechanism in which it can be fully represented. The problem was that at
the time, this absolute understanding of computability only existed as a vague,
intuitive notion, and had not been clearly demarcated by a mathematical definition.
In a footnote to the above passage Gödel acknowledges this, but speculates that
extending the class of primitive recursive functions by allowing more advanced
forms of recursion might cause it to coincide with the class of computable functions.

10 In his 1931 paper, Gödel calls these functions simply “rekursiv”. Since Kleene (1936a),
“primitive recursive” has become the most common term to denote this class, distinguishing it
from what Gödel would later (1934) introduce as “general recursive” functions.

Historical background 37

That not all forms of recursion are captured by primitive recursiveness had
already been suggested and proved some years earlier by Hilbert (1926, p. 185) and
Ackermann (1928), respectively. Central to this proof was a function, known today
as the Ackermann function, whose definition made use of a recursion on multiple
variables, which was not reproducible using primitive recursions. Motivated by the
existence of such non-primitive forms of recursion and returning to his speculations,
Gödel concludes his Princeton lectures with a section named “General recursive
functions”, where he poses “the question what one would mean by ‘every recursive
function’” (p. 26). Adapting a personal suggestion by the French mathematician
Jacques Herbrand, he then goes on to present a new, more comprehensive defini-
tion of recursiveness that incorporates the aforementioned types of non-primitive
recursive functions.

The main idea of Herbrand’s suggestion was to consider a function f recursive
if it can be defined by a system of equations E, whose equations express values
of f in terms of its own values and those of other recursive functions, such that
each value of f is deducible from E by a series of substitution steps. To guarantee
the effectiveness of the definition, Gödel further specified the types of substitutions
and derivations that were allowed, and required that for each n-tuple of natural
numbers (x1, . . . , xn), there exists exactly one m such that f(x1, . . . , xn) = m can
be derived from E. This criterion ensures that f is a total function. Thus, an n-ary
function f is general recursive in the Herbrand-Gödel sense if:

(∃E)
[
(∀x1, . . . , xn)(∃!m)

[
E ` f(x1, . . . , xn) = m

]]
(4.2)

Expanding on Gödel’s rather succinct introduction, Stephen C. Kleene (1936)
proved that the general recursive functions can be constructed from the primitive
recursive functions by the addition of a single operator. Complementing the existing
operations of substitution and primitive recursion, this µ-operator11 searches for
the least natural number that satisfies a given relation. Given an (n + 1)-ary
general recursive relation R and the natural numbers x1, . . . , xn, the expression
µy
[
R(x1, . . . , xn, y)

]
denotes the least natural number y for which R(x1, . . . , xn, y)

holds. Consider the function φ:

φ(x) = µy
[
ρ(x, y) = 0

]
, (4.3)

where ρ is assumed to be a general recursive function. Using an auxiliary function
σ, the following set of equations is a Herbrand-Gödel-style recursive definition of
φ:12

σ(0, x, y) = y,

σ
(
S(z), x, y

)
= σ

(
ρ(x, S(y)), x, S(y)

)
φ(x) = σ

(
ρ(x, 0), x, 0

)
,

(4.4)

11 In Kleene (1936a), the author uses for this operator the symbol ε. Other commonly used names
include “minimization operator”, “least-number operator”, “least search operator”, “unbounded
search operator”.

12 Example taken from Kleene (1936a) and Davis (1982).

38 Chapter 4

primitive recursive

(tota
l) general recursive

partial recursive

Figure 4.1: The recursion hierarchy

where S is the successor function. To guarantee that these equations obey the
Herbrand-Gödel definition, one additional restriction is required. To meet the
criterion expressed in (4.2), the function ρ must, beside being general recursive,
satisfy the following condition:

(∀x)(∃y)
[
ρ(x, y) = 0

]
. (4.5)

What Kleene proved in his normal form theorem is that every general recursive
function φ can be defined using only primitive recursion and a single instance of
the µ-operator in the following form:

φ(x1, . . . , xn) = ψ(µy [R(x1, . . . , xn, y)]), (4.6)

where ψ is a primitive recursive function and R a primitive recursive relation and,
analogous to eq. (4.5), (∀x1, . . . , xn)(∃y) [R(x1, . . . , xn, y)] (Kleene 1936a, p. 736).

Later, Kleene (1938, 1943) explored the consequences of omitting the latter
condition. For the function φ in eq. (4.3), this means that there might be natural
numbers x for which no y exists such that ρ(x, y) = 0. Clearly, for such numbers, φ
has no value. Accordingly, attempts to recursively resolve the value of φ(x) using
the equations of eq. (4.4) will never reach the base case and terminate, resulting in
infinite iterations over the natural numbers. Permitting the unrestricted use of the
µ-operator in function definitions thus violates Gödel’s requirement that for every
tuple of arguments a function should have exactly one value (eq. (4.2)). Kleene
noted that the Herbrand-Gödel definition could be modified to include partial
functions by relaxing this requirement so that it only requires the existence of at
most one value for every tuple of arguments (Kleene 1938, p. 152). The resulting
class of partial recursive functions “[includes] the general recursive functions as
those which are defined for all sets of arguments.” (Kleene 1943, p. 50, see also
fig. 4.1) Due to its definability in terms of the µ-operator, the same class is often
referred to by the term “µ-recursive functions”.

Despite his conjecture that a more general notion of recursiveness might coincide
with that of finite computability, Gödel was wary of asserting that his definition of
general recursive functions was sufficiently exhaustive to realize this equivalence.
Some 30 years after his 1934 lectures, he explained in a letter to Martin Davis:
“However, I was, at the time of these lectures, not at all convinced that my concept
of recursion comprises all possible recursions” (Davis 1982, p. 8) In fact, it would

Historical background 39

take Gödel another two years and a fresh insight from a young British mathematician
before he finally abandoned his reluctance and embraced the significance of his own
work.

4.4 λ-definability and Church’s thesis

While staying in Princeton for his lectures at the Institute of Advanced Study, Gödel
had a discussion on computability with Alonzo Church, an American mathematician
who taught at Princeton University. Not unlike Gödel’s notion of finite computabil-
ity, Church used the term “effectively calculable” to informally describe those
functions whose values can be obtained by a finite (or effective) procedure.13 Using
modern terminology, Kleene (1981, p. 56) later characterized effective calculability
as follows:

For partial functions, the “effective calculability” of φ means that there
is an algorithm that leads in a finite number of steps to the value of
φ(n) for any n for which the value is defined, and that for any other
n leads to no value (either by terminating in a situation that does not
give a value or else by continuing ad infinitum).

In the spirit of Hilbert’s program, Church had been developing a new system for
mathematical logic since the late 1920s, which he published in two papers (Church
1932, 1933). Among other functions, the system defines an abstraction operator
λ which binds variables in formulas. Church introduced this operator to avoid
ambiguities in mathematical expressions arising from the use of free variables. For
example, the expression x+ 1 (where x is a free variable) can be interpreted either
as a number (the successor of some definite number x) or as a definition of a
function (the successor function; in this case x is no definite number but merely
a placeholder). Using the λ-notation, we can distinguish between these cases by
binding x and writing λx[x+ 1] when we wish to denote the function.

The application of a function λx[M] to a term L is written {λx[M]}(L). When
no syntactical ambiguities can arise, {F}(L) will be abbreviated to F (L) and
λx1[. . . λxn[M] . . .] will be written λx1 . . . xn ·M to increase readability. For similar
reasons, we write F (L1, . . . , Ln) to denote the λ-expression {. . . {F}(L1) . . .}(Ln).
Church defined several rules for converting one λ-expression into another without
changing the meaning of the expression. The first is known today as α-conversion
and simply enables the replacement of bound occurrences of a variable with another,
previously unused variable. If M is α-convertible into L, we will write M→αL. For
example: λx ·x→αλy ·y. The second conversion rule allows an expression of the
form λx·M(L) to be converted intoM [xL], which stands for the result of substituting
L for all free occurrences of x in M . We will say that λx ·M(L) β-reduces to M [xL],
written λx ·M(L)→βM [xL]. Thus, λx ·3x+ 5 (2)→β 3 · 2 + 5. An expression is in
normal form when no more β-reductions are possible. If B is a normal form of A,

13 The intuitive meaning of effective calculability is discussed in greater detail in section 5.3.2.

40 Chapter 4

written A→β∗B, then B is unique in the sense that every other normal form of A
is α-convertible into B (Church and Rosser 1936, p. 479):

(∀A,B,C)
[
(A→β∗B ∧A→β∗C)→ (C→αB)

]
(4.7)

Strictly speaking, the arithmetical symbols that I have been using in the previous
examples (“+”, “1”, etc.) are not part of Church’s formal system. In fact, his
system used a very modest alphabet that beside symbols for variables and some
punctuation characters only contained a handful of predefined function symbols.
Church defined the positive integers as follows (Church 1933, p. 863):

1 −→ λfx ·f(x).

S −→ λρfx ·f(ρ(f, x)),
(4.8)

where S stands for the successor function. Now the expression that stands for the
integer 2 is obtained by applying the successor function to the expression that
stands for 1, followed by a series of β-reductions until a normal form is reached:14

2 −→ λρfx ·f(ρ(f, x)) (λgy ·g(y))

→β λfx ·f(λgy ·g(y) (f, x))

→β λfx ·f(f(x)).

(4.9)

In the same fashion, the numeral for 3 is obtained by computing S(2), yielding
λfx · f(f(f(x))). Generalizing, the Church numeral n of a natural number n is
λfx ·fn(x), where fn stands for the n-fold composition of f . When a λ-expression
F expresses a (partial) function f : Nn−→N, such that

(∀x1, . . . , xn)
[
f(x1, . . . , xn) = y ⇐⇒ F (x1, . . . , xn)→β y

]
, (4.10)

we say that F λ-defines f , and that f is λ-definable.15

After defining lambda expressions for the operations of addition, multiplication,
and subtraction, and translating Peano’s axioms for arithmetic to formulas of
his system, Church expressed his intentions to develop the full theory of positive
integers in his system, before proceeding with those of the rational and real numbers.
Regarding the implications of Gödel’s incompleteness theorems for the possibility of
a (finitary) consistency proof for his system, he notes (Church 1933, pp. 842–843):

The impossibility of such a proof of freedom from contradiction for the
system of Principia Mathematica has recently been established by Kurt
Gödel. His argument, however, makes use of the relation of implication
U between propositions in a way which would not be permissible under
the system of this paper, and there is no obvious way of modifying the

14 Note that for the sake of readability, I additionally applied the α-conversion λfx ·f(x)→α

λgy ·g(y) to the argument.
15 Kleene (1981, p. 55) notes that, while the concept had been around since 1931–32, the term

“λ-definability” did not appear in publications until Church (1936a) and Kleene (1936b).

Historical background 41

argument so as to make it apply to the system of this paper. It therefore
remains, at least for the present, conceivable that there should be found
a proof of freedom from contradiction for our system.

Evidently, Church cherished the hope that the differences between his system and
those considered in Gödel (1931) would suffice to escape the daunting spell of the
second incompleteness theorem. He turned out to be right, be it in a way he had
most likely not envisaged. In 1935, his students Stephen C. Kleene and J. Barkley
Rosser, with whom he had been working on the system for years, discovered that
the system was inconsistent, making all sentences, including the one asserting the
consistency of the system, provable (Kleene and Rosser 1935). This discovery left
Church with no other choice than to abandon his ambitious project. Yet, while the
logical system as a whole had suffered a fatal blow, it appeared that his efforts had
not been entirely futile. The sub-theory of λ-definability had remained unaffected
and could be salvaged to live on as an independent theory, now known as the
(untyped) λ-calculus.

Just how strong the notion of λ-definability was had slowly become clear in
the preceding years. In their attempt to develop the theory of positive integers in
Church’s logic, the need arose for Church and Kleene to define several basic functions
in the system. Kleene (1981, pp. 56–57) recalls that it took them considerable
effort to come up with a definition for the predecessor function. In 1932, just when
Church was about to succumb to despair, Kleene saw how to use the λ-notation to
realize the intended definition (p. 57):

When I brought this result to Church, he told me that he had just
about convinced himself that there is no λ-definition of the predecessor
function.
The discovery that the predecessor function is after all λ-definable
excited our interest in what functions are not just definable in the full
system but actually λ-definable.

In the period that followed, Kleene confirmed the λ-definability of more and more
functions. In a letter to Paul Bernays, Church wrote (Sieg 1997, pp. 155, 158):

The results of Kleene are so general and the possibilities of extending
them apparently so unlimited that one is led to conjecture that a
[λ-]formula can be found to represent any particular constructively
defined function of positive integers whatever. It is difficult to prove
this conjecture, however, or even to state it accurately, because of the
difficulty in saying precisely what is meant by “constructively defined”. A
vague description can be given by saying that a function is constructively
defined if a method can be given by which its values could be actually
calculated for any particular positive integer whatever.

Church been playing with this conjecture at least since late 1933, when Rosser
confronted him with yet another function that had turned out to λ-definable (Sieg

42 Chapter 4

1997, p. 159). By early 1934, around the time that Gödel started his series of
lectures at the Institute of Advanced Study,16 he had grown a strong confidence
in the power of λ-definability and even thought of using it as a definition for
constructive definability (or effective calculability). In a letter to Kleene, he reports
how Gödel responded to this proposal (Davis 1982, p. 9):

In regard to Gödel and the notions of recursiveness and effective calcula-
bility, the history is the following. In discussion [sic] with him the notion
of lambda-definability, it developed that there was no good definition of
effective calculability. My proposal that lambda-definability be taken
as a definition of it he regarded as thoroughly unsatisfactory. I replied
that if he would propose any definition of effective calculability which
seemed even partially satisfactory I would undertake to prove that it
was included in lambda-definability. His only idea at the time was that
it might be possible, in terms of effective calculability as an undefined
notion, to state a set of axioms which would embody the generally
accepted properties of this notion, and to do something on that basis.

Shortly after this conversation, Gödel would propose his definition of general
recursive functions. As we have seen in the previous section however, Gödel
“was not at all convinced that [his] concept of recursion comprises all possible
recursions”, and only hinted at the equivalence between finite computation (or
effective calculability) and recursiveness. This did not dissuade Church and his
collaborators from carrying through the proposed proof that general recursiveness
was included in λ-definability. Indeed, they found that λ-definability and general
recursiveness are equivalent—that is, the class of λ-definable functions and the class
of Herbrand-Gödel general recursive functions are exactly the same class (Kleene
1936b).

This astounding coincidence only strengthened Church’s conjecture regarding
the correspondence between λ-definability (or equivalently, as was now established,
general recursiveness) and effective calculability. He first published his thesis in
his 1936 paper “An Unsolvable Problem of Elementary Number Theory” (Church
1936a), where he proposed to “define the notion . . . of an effectively calculable
function of positive integers by identifying it with the notion of a [general] recursive
function of positive integers (or of a λ-definable function of positive integers).”
(Church 1936a, p. 356) In a footnote, he explained (p. 346, footnote 3):

The fact . . . that two such widely different and (in the opinion of the
author) equally natural definitions of effective calculability turn out
to be equivalent adds to the strength of the reasons . . . for believing
that they constitute as general a characterization of this notion as is
consistent with the usual intuitive understanding of it.

We will model Church’s thesis as follows:

16 See Davis (1982, p. 8) for a more detailed account of the chronology of these events.

Historical background 43

Analysis Church’s thesis

D := Functions of positive integers f : Nk−→N

U(f) := “f is effectively calculable.”
M := Herbrand-Gödel style systems of equations

C(M, f) := “For every possible tuple of arguments (n1, . . . , nk) ∈ Nk
(where k is the arity of f), it is possible to find the value of
f(n1, . . . , nk) within a finite amount of time using justM.”

Since our definition of C is model-independent (see section 3.5.2), we can represent
the “λ-definability-oriented” version of Church’s thesis simply by redefining M as
the set of λ-expressions.

In the final section of his 1936 paper, Church addressed the “unsolvable problem”
that the paper’s title refers to. Under his proposed definition of effective calculability
as λ-definability, he proved that there exists no effectively calculable function that,
given two λ-expressions A and B, decides whether A is convertible into B or not
(by a series of α-conversions and/or β-reductions). Contrary to Gödel’s earlier
undecidability results, which only concerned decidability relative to a certain formal
system, Church had now confirmed the existence of problems for which no solution
exists in general. As a direct result of this theorem, Church showed that Hilbert’s
Entscheidungsproblem is unsolvable for any ω-consistent17 system of symbolic
logic in which the integers are represented. In such systems, Gödel numberings
can be used to express propositions like “A is convertible into B”. A solution
to the Entscheidungsproblem requires that every such proposition is decidable,
contradicting the finding that no effectively calculable function of this sort exists.

Church’s proof did however not cover systems of pure first-order logic, for which
Hilbert and Ackermann originally posed the Entscheidungsproblem. Since these
systems contain no integers, the Gödel numbering method does not apply. In “A
Note on the Entscheidungsproblem” (1936), Church strengthened his earlier results
by showing that even for the “bare” logical calculus of Hilbert and Ackermann, the
Entscheidungsproblem has no solution. After Gödel’s disturbing discovery of the
incompleteness theorems, this was the final blow for Hilbert’s program.

4.5 Turing machines

In the same year that Church’s paper was published, the British mathematician
Alan Turing independently arrived at a similar result. His findings were published
in the 1936 volume of the Proceedings of the London Mathematical Society under the
now famous title “On Computable Numbers, with an Application to the Entschei-
dungsproblem”. Analogous to Church’s notion of effective calculability, but initially

17 See footnote 6.

44 Chapter 4

applied to numbers instead of functions, Turing used the term “computable” to
informally describe “the real numbers whose expressions as a decimal are calculable
by finite means.” To make this notion precise, he developed in detail a theoretical
machine whose operations, he believed, “include all those which are used in the
computation of a number.”

It is important to note that in the 1930s, the terms “computer” and “compu-
tation” were naturally and almost exclusively associated with human beings and,
respectively, the process by which they performed calculations using paper and
pencil. The digital electronic computers that rule the world today were nowhere
to be found yet. As such, the phrase “calculable by finite means” would in the
first place be understood in this human sense. It is evident that Turing had this
sense in mind when designing his automatic machine (or a-machine), which since
Church (1937a) we know as the Turing machine. At the outset of his exposition,
he explicitly grafted the idea of his machine onto that of “a man in the process
of computing a real number” (Turing 1936–7, p. 231). Turing then proceeded
to outline the constituent parts and processes of his machine—some of which
are readily recognizable as mechanical abstractions of those involved in human
computation—resulting in a device that could be likened to a simplified typewriter
that operates automatically and deterministically once it is set in motion. Later in
his paper, Turing in a “direct appeal to intuition” (p. 249) undertook to further
justify his design choices, explaining each as an abstraction of some aspect of human
computation.

As a one-dimensional abstraction of the gridded paper in an arithmetic book,
Turing imagined an infinite tape running through a machine, divided into “squares”
of which each could hold at most one symbol. The limited amount of information
that a human can attend to at one moment he mimicked by allowing the machine
to “scan”, and thus be directly aware of, only a single square at a time. At each
moment, the machine may write a new symbol on the scanned square if it is blank,
or otherwise erase a scanned symbol, and subsequently shift its “attention” one
square to left or right. The “state of mind” of a human calculator, which may
include his or her memory of previously encountered information, is represented
by a variable called the “m-configuration”. At any moment, the combination of
the m-configuration and the currently scanned symbol determine the next action(s)
to be taken by the machine. The schema that unambiguously prescribes per pair
of m-configurations and scanned symbols the action(s) that should be taken and
the next m-configuration to be assumed is called the “program” of the machine.
Since Turing required that the sets of symbols (the alphabet) and of possible
m-configurations be finite, so will be the program of the machine.

A few minor variations aside, Turing’s description so far is the essential definition
of the Turing machine as it is still in use today. While Turing was less rigid in
this respect, we will distinguish between on the one hand this “bare” definition,
and on the other hand the remainder of his description as an implementational
convention that one may as well choose to fill in differently. Following Post (1947),
who maintains a similar distinction, we will speak of “Turing machines” and “Turing
convention-machines”, respectively. Turing chose to compute only the fractional

Historical background 45

parts of real numbers, represented by infinite binary strings whose digits occupy
alternate squares on the (one-way infinite) tape. Calling these digit-bearing squares
“F -squares”, he designated the remaining intermediate squares—the“E-squares”—
as scrap paper, which could contain other symbols beside 0 and 1. Printing and
erasing symbols could be done freely on any E-square at any moment, whereas
the digits on the F -squares should always form a continuous sequence starting at
the leftmost square—Turing called this sequence “the sequence computed by the
machine”—and could not be erased once printed.

Furthermore, if a machine’s program causes it to endlessly keep printing digits
on F -squares, it will be called a “circle-free” machine, while one that definitively
stops printing digits after a finite amount of time is called “circular”. Note that
a circular machine does not necessarily halt altogether once it stops printing new
digits; it may or may not continue to run, possibly still printing symbols on E-
squares. The computable numbers then, according to Turing’s definition, are those
real numbers x for which there exists a circle-free Turing convention-machineM
such that the sequence of digits computed by M is the binary notation of the
fractional part of x. Based on Turing’s description, we construct the following
model:

Analysis Turing’s thesis

D := R

U(x) := “x could naturally be regarded as computable (by an ideal-
ized human calculator).”

M := Circle-free Turing convention-machines (as specified in Tur-
ing 1936–7)

C(M, x) := “For any k ∈ N, M can produce the first k digits of 〈x〉
within a finite amount of time.”

As a consequence of Turing’s convention of only representing the fractional parts of
real numbers, each binary sequence γ represents not a single number x, but a class
X of (mostly) integer-spaced numbers, with for every x∈X:

x = s · (n+
∞∑
i=1

γi · 2−i) (4.11)

for some n∈N0 and with s = 1 or s = −1.
Of course, we could easily alter Turing’s convention as to include their integer

part and make each sequence (and thus each machine) represent a unique number.
One example18 would be to divide a sequence γ into three parts, the first of which

18 Adapted from Turing (1938).

46 Chapter 4

consists of a single digit indicating the sign of the number that is represented. Then
follows a sequence of digits 1 of length n that represents the (absolute value of the)
integer part of the number. The end of this sequence of 1s is marked with a single
0. Finally, the remaining sequence c, of which the first digit c1 is the (n + 3)-th
digit of γ, represents the fractional part of the number. Such a sequence γ then
represents the following unique real number x:

x = (2γ1 − 1) · (n+
∞∑
i=1

ci · 2−i). (4.12)

While this method preserves Turing’s convention of using a strictly binary alphabet,
we are even free to expand the alphabet to include all decimal digits, a minus sign,
and a dot to construct Turing machines that compute real numbers in their more
readable decimal representation.

As demonstrated in section 3.2, computation of real numbers, binary sequences
and functions of natural numbers can be quite naturally expressed in terms of
each other. In fact, Turing suggested the possibility of generalizing his results
to “computable functions of an integral variable or a real or computable variable,
computable predicates, and so forth.” (Turing 1936–7, p. 230) In the same paper
he developed a simple definition of computable unary integer functions by Turing
convention-machines (p. 254). With every function f : N −→ N he associated
a binary sequence γ such that between every n-th and (n + 1)-th digit 0 in γ,
there are exactly f(n) digits 1. For every γ that is computable (i.e., there exists
a Turing convention-machine that computes it) the corresponding function f is
also computable. While of course requiring slightly more inventive association
strategies, such definitions can be generalized to functions of multiple variables.
Turing even expressed his intentions to develop “the theory of functions of a real
variable expressed in terms of computable numbers” (p. 230), but this he never
fully carried through.

Turing made the crucial observation that a universal Turing machine could be
defined that mimics the behavior of any other machine whose program it receives
encoded on its tape. Whereas the original Turing convention-machine computed a
fixed number determined by a “hardcoded” program, the universal machine could
be programmed to compute any computable number by allowing its program to be
delivered by the user as a variable piece of “software”. Essentially, Turing had here
laid the foundations for the modern all-purpose digital computer. Furthermore,
apart from strictly imitating the behavior of the machine whose program it is
supplied with, a machine could also be made to analyze this behavior and answer
questions about it. In the second part of his paper, Turing employed this property
to prove a number of fundamental theorems about the nature of computation.
Reminiscent of Church’s results, yet entirely independently, he demonstrated the
existence of generally undecidable problems of mathematics.

First, he proved that there exists no Turing machine that, when provided
with the program of a Turing convention-machine, decides whether that machine is
circle-free or not. Next, Turing proved that “there can be no machine E which, when

Historical background 47

supplied with the [program] of an arbitrary machineM, will determine whetherM
ever prints a given symbol (0 say).” (Turing 1936–7, p. 248) The former problem
is closely related, but not identical to the now more well-known halting problem,
while the latter problem foreshadowed Rice’s theorem.

Finally, Turing arrived at his “application to the Entscheidungsproblem”. Using
his previously proved theorems, he showed that no Turing machine can decide for
every formula of Hilbert and Ackermann’s predicate calculus whether that formula
is provable in the system or not. In other words, the Entscheidungsproblem is
unsolvable for first-order logic and any system or theory based upon it. Working at
King’s College in Cambridge, England, Turing wrote his paper while unaware of the
developments in Princeton. Unknowingly, he had arrived at the exact same result
as his transoceanic colleague, while using a completely different method. Kleene
(1981, p. 61) reports that Turing only learned about λ-definability and general
recursiveness “just as he was ready to send off his manuscript, to which he then
added an appendix outlining a proof of the equivalence of his computability to
λ-definability.”

As Church and Kleene had previously proved the equivalence of λ-definability
and general recursiveness, Turing computability now became the third in a row
of very different yet equivalent characterizations of computability. While Gödel
remained reluctant to assert the equivalence of his notion of general recursiveness
to that of effective calculability, Church and Turing posed their theses. The name
“Church-Turing thesis” seems to have been proposed as late as 1967 by Kleene
(1967, p. 232, emphasis in original):

So Turing’s and Church’s theses are equivalent. We shall usually refer
to them both as Church’s thesis, or in connection with that one of its
three versions which deals with “Turing machines” as the Church-Turing
thesis.

In fact, a fourth equivalent model had been developed by the Polish-American
mathematician Emil Post, also in 1936.19 Under the name “formulation 1” he
introduced a formalization of the process of computation that was remarkably
similar to Turing’s (Post 1936). Like Turing, Post considers a one-dimensional
sequence of “spaces or boxes” that can be marked with symbols. Unlike Turing,
computation in Post’s scenario is not carried out by an automatic machine, but
by a “problem solver or worker” operating according to a fixed set of rules. Post,
being acquainted with the work of Church and Gödel but not with that of Turing,
hypothesized that his formulation was logically equivalent to general recursiveness,
although he did not proceed to prove this.

19 Tragically, this was not the first time that Post had a brilliant idea of his own overshadowed by
other publications. In the early 1920s he anticipated Gödel’s first incompleteness theorem, based
on an assumption which is equivalent to the Church-Turing thesis (Davis 1965, p. 338). Reluctant
to publish his findings before having verified this assumption, he saw Gödel reap the glory in 1931.
Post’s account of this anticipation (Post 1941) was printed in Davis (1965, pp. 340–433).

Chapter 5

CR IT ICAL RECEPT ION

From minor corrections and smart reformulations to fundamental objections and
radical extensions, the Church-Turing thesis has since its inception stirred up a
lively and fruitful debate across multiple fields of science. Moreover, it laid the
foundations for the development of the digital electronic computer and inspired an
entire new academic discipline known today as computability theory or recursion
theory. In this chapter, we analyze and evaluate a selection of the challenges,
criticisms, and alternatives that the revolutionary statement has received over the
years.

5.1 Church and Gödel on Turing’s work

Despite Turing’s fundamentally different methods and his ignorance of the work
of Church and Gödel, his approach to characterizing computability had yielded
an equivalent definition. Should there have been any lingering doubts in Church’s
mind about the validity of his thesis, they must surely have been dispelled when
Turing’s work appeared. In fact, it appears that Church came to consider Turing’s
analysis superior to his own (Church 1937a, p. 43):

As a matter of fact, there is involved here the equivalence of three
different notions: computability by a Turing machine, general recursive-
ness in the sense of Herbrand-Gödel-Kleene, and λ-definability in the
sense of Kleene and the present reviewer. Of these, the first has the
advantage of making the identification with effectiveness in the ordinary
(not explicitly defined) sense evident immediately—i.e. without the
necessity of proving preliminary theorems. The second and third have
the advantage of suitability for embodiment in a system of symbolic
logic.

In a paper from 1938, Church furthermore described (an “adoption of”) Turing’s
idea as “Perhaps the the most convincing form in which [the] definition of an

49

50 Chapter 5

effective process can be put” (Church 1938, p. 227), listing it as the first candidate,
followed by Herbrand-Gödel general recursiveness and finally his own λ-definability.

Even for the ever skeptic Gödel, who earlier dismissed Church’s proposal to take
λ-definability as a definition of effective calculability as “thoroughly unsatisfactory”,
it appears that Turing’s work finally bridged the gap between the existing intuitive
notions of computation and the formalizations by Church and himself. As opposed
to the latter two, which were defined purely in abstract mathematical terms,
Turing’s definition of computability naturally developed from the starting point of
“a man in the process of computing a real number”. This may have appealed to
Gödel’s earlier intuitions that the notion of effective calculability might be defined
by stating “a set of axioms which would embody the generally accepted properties
of this notion, and to do something on that basis.” In any event, the publication of
Turing’s pivotal paper had a dramatic impact on Gödel’s attitude toward Church’s
thesis. Somewhere in the late 1930s—Shagrir (2006, p. 400) suspects the year to be
1938—he declared that it “was established beyond any doubt by Turing” that his
own definition of general recursiveness “really is the correct definition of mechanical
computability” (Gödel 193?, p. 168).

Later he declared (Gödel 1951, pp. 304–305):
The greatest improvement was made possible through the precise def-
inition of the concept of finite procedure, which plays a decisive role
in these results. There are several different ways of arriving at such a
definition, which, however, all lead to exactly the same concept. The
most satisfactory way, in my opinion, is that of reducing the concept of
finite procedure to that of a machine with a finite number of parts, as
has been done by the British mathematician Turing.

Turing’s contributions furthermore provided the basis for a generalization of Gödel’s
incompleteness theorems. In a 1964 postscript to his 1934 lectures in Princeton,
Gödel wrote (Davis 1965, pp. 71-72, emphasis in original):

In consequence of later advances, in particular of the fact that, due to
A.M. Turing’s work, a precise and unquestionably adequate definition
of the general concept of formal system can now be given, the existence
of undecidable arithmetical propositions and the non-demonstrability
of the consistency of a system in the same system can now be proved
rigorously for every consistent formal system containing a certain amount
of finitary number theory.
Turing’s work gives an analysis of the concept of “mechanical procedure”
(alias “algorithm” or “computation procedure” or “finite combinatorial
procedure”). This concept is shown to be equivalent with that of a
“Turing machine”.

Gödel further expressed his inclination toward Turing’s approach in a footnote to
the above passage, where he referred to Church’s definitions of effective calculability
by general recursiveness and λ-definability as “previous equivalent definitions of
computability, which, however, are much less suitable for our purpose. . . .”

Critical reception 51

5.2 Criticisms and modifications of the Turing machine

Despite being quickly recognized for its significance, the extensive exposure that
Turing’s paper has enjoyed through the years has also laid bare a sizable number of
flaws and errors. In his 1965 anthology The Undecidable, Martin Davis introduced
Turing’s paper saying “This is a brilliant paper, but the reader should be warned
that many of the technical details are incorrect as given. . . . In any case, it may
well be found most instructive to read this paper for its general sweep, ignoring the
petty technical details.” (p. 115) Paul Bernays called Turing’s attention to some of
the errors and Turing subsequently corrected them in a follow-up paper in 1938.

In the decades that followed, multiple authors proposed further corrections
and modifications to the Turing machine, some of which have largely superseded
Turing’s original conventions. As a result, a modern reader might be surprised to
find that Turing’s description of his machine differs considerably from the form in
which it is usually presented today. That said, the modifications mainly concern
practical conventions and the errors, while great in number, are mostly technical and
do not invalidate the fundamental ideas involved, which were truly groundbreaking
and are relevant today as ever.

Emil Post, who with his strikingly similar formulation 1 must have been a
perceptive reader of Turing’s paper, dedicated an appendix to his 1947 paper to
correcting and elucidating Turing’s description of the universal machine. The body
of that same paper concerned an unsolvability proof of the “problem of Thue” (also
known as the word problem for semigroups). Post found that in order to carry
out this proof with a Turing machine, he needed to modify Turing’s formulation.
Beside using a two-way rather than one-way infinite tape and simplifying the
representation of a machine’s program, Post disposed of Turing’s convention of
using alternating F and E-squares. Furthermore, Turing had required—probably
due to his specific focus on computing binary sequences—that a digit, once printed,
could not be erased. Post instead allowed the printing and erasing of symbols at
arbitrary times on arbitrary squares of the tape. Similarly, Turing did not in the
context of computing infinite sequences consider the option that a machine could
be intentionally designed to halt after a finite number of steps. Post explicitly
included the possibility of defining no actions for certain target configurations, such
that machines will halt upon reaching them.

Jack Copeland’s The Essential Turing (2004) contains a—possibly unsent—
letter by Turing, addressed to Alonzo Church, in which Turing responds to Post’s
comments (Turing 1948?):

Post observes that my initial description of a machine differs from
the machines which I describe later in that the latter are subjected
to a number of conventions (e.g. the use of E and F squares). These
conventions are nowhere very clearly enumerated in my paper and
cast a fog over the whole concept of a “Turing machine”. Post has
enumerated the conventions and embodied them in a definition of a
“Turing convention machine”.

52 Chapter 5

My intentions in this connection were clear in my mind at the time the
paper was written; they were not expressed explicitly in the paper, but
I think it is now necessary to do so. It was intended that the “Turing
machine” should always be the machine without attached conventions,
and that all general theorems about machines should apply to this
definition. To the best of my belief this was adhered to. On the other
hand when it was a question of describing particular machines a host of
conventions became desirable.

In the same book, Copeland published a critique of Turing’s paper by Donald
Davies, who from the late 1940s worked with Turing on one of the first programmed
computers (Davies 2004). In his extensive analysis, Davies proposed a number of
corrections and improvements to Turing’s universal machine. Clearly, in the process
of designing his machine Turing was guided by proof-theoretical considerations
rather than practical feasibility and efficiency. As a result, implementations of
Turing’s (corrected) original design would be rather slow and unmanageable. In
the final section of his critique, Davies redesigned the universal Turing machine as
to facilitate testing the correctness of his modifications. After running a successful
simulation of a Turing machine, he concluded that “There can be reasonable
confidence that there are no further significant errors in Turing’s design” (p.
103).

5.3 Philosophical evaluations

Unlike the technical presentation of the Turing machine, which after a number of
corrections and improvements has more or less stabilized into a standard form, the
philosophical content of CTT has fueled an ongoing debate that even today is far
from settled. In particular, the thesis generates a seemingly irreconcilable tension
between intuition and mathematical rigor, making it an unusual but all the more
interesting statement.

5.3.1 Epistemological disputes

What is striking in Church’s writings regarding his thesis is that he not only
hypothesized (the extension of) the notion of effective calculability to be included
in that of general recursiveness (or Turing computability or λ-definability), but
proposed to take the latter as a definition of the former. Post, on the other hand,
took a more cautious approach with his formulation 1 and explicitly criticized
Church for not doing so (Post 1936, p. 105, emphasis in original):

The writer expects the present formulation to turn out to be logically
equivalent to recursiveness in the sense of the Gödel-Church development.
Its purpose, however, is not only to present a system of a certain logical
potency but also, in its restricted field, of psychological fidelity. In the
latter sense wider and wider formulations are contemplated. On the
other hand, our aim will be to show that all such are logically reducible

Critical reception 53

to formulation 1. We offer this conclusion at the present moment as a
working hypothesis. And to our mind such is Church’s identification of
effective calculability with recursiveness.

Then, in a footnote:

Actually the work already done by Church and others carries this
identification considerably beyond the working hypothesis stage. But
to mask this identification under a definition hides the fact that a
fundamental discovery in the limitations of the mathematicizing power
of Homo Sapiens has been made and blinds us to the need of its continual
verification.

This continual verification, Post argued, would “change this hypothesis not so much
to a definition or to an axiom but to a natural law.” In line with Post’s position,
Kleene in 1943 was likely the first to characterize Church’s statement as a “thesis”,
explaining that it was motivated by the “heuristic fact” that “such functions
(predicates) as have been recognized as being effectively calculable (effectively
decidable) . . . have turned out always to be general recursive. . . .” (Kleene 1943,
p. 60) In a review of Post’s 1936 paper, Church defended his view (Church 1937b):

[Post] does not . . . regard his formulation as certainly to be identified
with effectiveness in the ordinary sense, but takes this identification as
a “working hypothesis” in need of continual verification. To this the re-
viewer would object that effectiveness in the ordinary sense has not been
given an exact definition, and hence the working hypothesis in question
has not an exact meaning. To define effectiveness as computability by
an arbitrary machine, subject to restrictions of finiteness, would seem
to be an adequate representation of the ordinary notion, and if this is
done the need for a working hypothesis disappears.

The characterizations by Post and Kleene further imply that CTT is not a mathe-
matical statement in the sense that it can be subjected to absolute mathematical
proof or refutation, but only corroborated by evidence. Kleene later emphasized
this aspect, arguing that Church’s statement “is a thesis rather than a theorem,
in as much as it proposes to identify a somewhat vague intuitive concept with a
concept phrased in exact mathematical terms, and thus is not susceptible of proof.”
(Kleene 1967, p. 232)

It appears that the disagreement between Church and Post stemmed from
different views on the status of the notion of effective calculability. Implicit in
Post’s characterization of Church’s thesis as a working hypothesis appears to be
the assumption that humanity somehow shares a universal intuitive understanding
of the concept of effective calculability such that, even in the absence of a precise
definition, our intuitions will always agree on the extension of this concept. If
this were the case, Post’s approach of “continual verification” could be successful
and eventually lead us, as Post expected, either to unanimously reject CTT or to
gradually come to accept it as a natural law. Church, who might not have been

54 Chapter 5

convinced that our understanding of effective calculability is really absolute and
universal, deemed such a program meaningless as long as an exact definition for
“effectiveness in the ordinary sense” was lacking.

Curiously, Church did not further investigate the intuitive qualities of effective
calculability to see if a more precise definition could be constructed directly from
these. In fact, he barely analyzed the intuitive meaning of the concept at all,
confining himself to shallow observations such as “a function is constructively defined
if a method is given by which its value could be actually calculated for any particular
positive integer whatever.” (Sieg 1997, p. 158) Instead, he simply proposed to
take the existing notions of general recursiveness and λ-definability as a definition,
seeking a posteriori justification in the systems’ extensional correspondence with the
intuitive notion. Such a definition could not satisfy Gödel, who suggested that an
adequate definition should “embody the generally accepted properties” of effective
calculability. Evidently, Gödel pursued a more intensionally motivated definition
that directly accounted for the existing intuitions.

To the satisfaction of Gödel, Turing finally introduced a model that seemed to
embody the generally accepted properties of effective calculability. Unlike Church,
Turing quite convincingly substantiated his claim—that Turing machines machines
could compute “all numbers which would naturally be regarded as computable”—
by showing how the principles and operations that were usually involved in the
computation of a number could be naturally reduced to mechanic counterparts in a
Turing machine. Yet, he acknowledged that “[all] arguments which can be given
are bound to be, fundamentally, appeals to intuition, and for this reason rather
unsatisfactory mathematically.” (Turing 1936–7, p. 249) Thus, while agreeing with
Church on the vague intuitive nature of the existing notion of computability, Turing
nevertheless made an effort to translate these vague intuitions into more concrete
principles, which then guided the development of his model.

Still, even though Church and Gödel embraced Turing’s contribution as a
definition of effective calculability, a satisfactory definition should in my opinion not
be sought in some model that implements these principles, but rather in a coherent
and model-independent formulation of these principles themselves. In a similar
way, Sieg (2002, p. 290) speaks of “sharpening the informal notion, formulating its
general features axiomatically, and investigating the axiomatic framework.” Such a
sufficiently precise intensional definition would potentially break Church’s argument
against Post. His identification of effective calculability with general recursiveness or
λ-definability would indeed reduce to a working hypothesis, which would, in theory,
be disproved as soon as a function is found that is verifiably effective according to
this axiomatic definition, but not general recursive or λ-definable. The next section
covers several attempts at capturing the intuitive notion of effective calculability
directly in a more workable definition.

5.3.2 Sharpening informal notions

In the previous section, we have paid no attention to the origins and contents of
the intuitive understandings of effective calculability or computability that existed

Critical reception 55

in the early 1930s.1 We should not forget that the work of both Church and Turing
was done in the direct context of investigations into the Entscheidungsproblem, of
which Hilbert and Ackermann had stated that it “is solved if one knows a procedure
that allows one to decide the validity . . . of a given logical expression by a finite
number of operations.” (Hilbert and Ackermann 1928, p. 73, translation from
Sieg 1994, p. 77) Unlike other mathematical problems of the day, a solution to the
Entscheidungsproblem did not depend on any demarcated set of admissible methods,
or on the inherent limits of some formal system. This especially complicated the
construction of an unsolvability proof. In order to be able to prove that no
procedure exists that satisfies the description given by Hilbert and Ackermann, a
precise characterization of the extension of this description was required.

In the light of Hilbert’s formalist mindset, which manifested itself most promi-
nently in his ambitions to capture the whole of mathematics in one all-encompassing
formal theory, it was most natural to assume that Hilbert had in mind a determin-
istic procedure whose execution would, for any given logical expression, require
nothing more than the rote-like processing of an unambiguously specified list of
instructions. His student Heinirch Behmann had stressed in 1921 that it was essen-
tial to the character of the Entscheidungsproblem2 “that as method of proof only
entirely mechanical calculation according to given instructions, without any activity
of thinking in the narrower sense, is allowed.” (Mancosu and Zach 2015, p. 176)
Furthermore, it would be pointless to conceive of procedures whose operations
exceed the capacities of the human mind and body, as, contrary to the present day,
humans were the only relevant computing agents at the time. This human-centered
conception of effective computation is supported by Robin Gandy in a comment on
Church’s thesis (Gandy 1980, pp. 123–124):

Both Church and Turing had in mind calculation by an abstract human
being using some mechanical aids (such as paper and pencil). The word
“abstract” indicates that the argument makes no appeal to the existence
of practical limits on time and space. The word “effective” in the thesis
serves to emphasize that the process of calculation is deterministic—
not dependent on guesswork—and that it must terminate after a finite
time.

Turing was the first3 to justify his thesis by a direct appeal to these intuitive, or
“generally accepted” principles of effective computation. While Turing’s analysis
holds the key to his intuitive understanding of effective calculability, references to

1 For a more thorough analysis of the developments that contributed to the emergence and
relevance of the notion of effective calculability I refer the reader to Sieg (1994).

2 See also footnote 3 of chapter 4.
3 Although Turing’s work was done more or less simultaneously with that of Post, we focus

here on Turing’s work for two reasons. First, Turing’s development is more thorough and complete.
Second, while Post’s model is very similar to that of Turing, his justification is very different—in
fact, opposite—as Sieg (1994, pp. 91–92) emphatically points out: “[Turing] did not try to extend
a narrow notion reducibly and obtain in this way additional quasi-empirical support; rather, he
analyzed the intended broad concept and reduced it to a narrow one—once and for all.”

56 Chapter 5

these principles are to be found dispersed across the text and are never aggregated
into an explicit “set of axioms”, as Gödel had suggested to Church in 1934.

The central question in Turing’s analysis is “What are the possible processes
which can be carried out in computing a number?” Three arguments are presented,
followed by a demonstration of “examples of large classes of numbers which are
computable”. The most innovative and distinguishing part of Turing’s argumentation
is found in his argument I, where he most directly tries to answer the central question
“by a direct appeal to intuition”. In accordance with our foregoing discussion of
the historical context, Gandy (1988, p. 77) observes that this argument “makes
no reference whatsoever to calculating machines. Turing machines appear as a
result, as a codification, of his analysis of calculation by humans.” What are now,
according to Turing, the fundamental axioms of human computation?

Sieg (1994, 1997, 2002) isolates five restrictive conditions4 from Turing’s analysis
of human computation, comprising two boundedness conditions (B), two locality
conditions (L), and one determinacy condition (D):

(B.1) There is a fixed bound on the number of symbolic configurations a com-
putor5 can immediately recognize.

(B.2) There is a fixed bound on the number of internal states a computor can be
in.

(L.1) A computor can change only elements of an observed symbolic configura-
tion.

(L.2) A computor can shift attention from one symbolic configuration to another
one, but the new observed configuration must be within a bounded distance
of the immediately previously observed configuration.

(D) A computor’s internal state together with the observed configuration fixes
uniquely the next computation step and the next internal state.

These axioms can be used to derive an explicit definition for Turing’s underlying
intuitive interpretation of computability:

Definition 5 Computability (Turing)
A number can be naturally regarded as computable if it can be computed by an
abstract human computor satisfying all axioms (B), (L), and (D).

Following Gandy, we take “abstract” to mean that no appeal is made to the
existence of practical limits on time and space, and, additionally, that the computor
is assumed to make no mistakes. The claim that the Turing-computable numbers
include “all numbers which would naturally be regarded as computable” can then
be reinterpreted using this definition to obtain a more precise statement.

4 The formulation presented here is taken from Sieg (2002).
5 Sieg, following a convention suggested by Robin Gandy, uses the word “computor” to refer

to “a human computing agent who proceeds mechanically.” (Sieg 2002, p. 395)

Critical reception 57

Analysis Turing’s thesis (reinterpreted)

D := R

U(x) := “x can be computed by an abstract human computor satisfy-
ing the boundedness conditions (B), the locality conditions
(L), and the determinacy condition (D).”

M := Circle-free Turing convention-machines (as specified in Tur-
ing 1936–7)

C(M, x) := “For any k ∈ N, M can produce the first k digits of 〈x〉
within a finite amount of time.”

Whereas Turing’s axioms, as interpreted by Sieg, focus on the properties and
limitations of the elementary operations that a human being carries out in the
process of computation, Copeland (1997) takes a slightly different approach and
characterizes effectiveness at the level of the method:

A method, or procedure, M , for achieving some desired result is called
“effective” (or “systematic” or “mechanical”) just in case:

1. M is set out in terms of a finite number of exact instructions
(each instruction being expressed by means of a finite number of
symbols);

2. M will, if carried out without error, produce the desired result in
a finite number of steps;

3. M can (in practice or in principle) be carried out by a human
being unaided by any machinery except paper and pencil;

4. M demands no insight, intuition, or ingenuity, on the part of the
human being carrying out the method.

A function, then, is effectively calculable if there exists an effective procedure that
computes it.

In both the Turing-Sieg and the Copeland accounts of effectiveness, the central
themes are finiteness and determinism. Turing, in the opening statement of “On
Computable Numbers”, described the computable numbers as “the real numbers
whose expressions as a decimal are calculable by finite means.” Likewise, in
the context of computability or effectiveness, Gödel often spoke of “finite” and
“mechanical” procedures. In fact, even though in practice computing was still done
almost exclusively by humans, the idea that computation was a task that could in
principle be carried out by machines was by no means novel. As far back as the
seventeenth century, Gottfried Leibniz had designed mechanical calculators and
even described a framework that could be seen as anticipating Turing’s universal

58 Chapter 5

machine.6
In the more immediate context of Hilbert’s program, Heinrich Behmann, when

emphasizing the mechanical character of mathematical proof methods, had added
that “One might, if one wanted to, speak of mechanical or machine-like [maschi-
nenmäßigem] thinking. (Perhaps one can one day even let it be carried out by a
machine.)” (Mancosu and Zach 2015, p. 176) In a lecture held in December 1933,
Gödel underlined the purely formal character of rules of inference in formal systems
and suggested that they “could be applied by someone who knew nothing about
mathematics, or by a machine.” (Gödel 1933, p. 45)

5.3.3 Mind versus mechanism

Thus it appears that the qualities of being finite and mechanical were generally
considered essential to effective procedures. But what justified these assumptions?
What withheld mathematicians from thinking of infinite algorithms or computation
by non-mechanical procedures? Turing, having claimed that the computable
numbers are calculable by finite means, sought provisional justification “in the
fact that the human memory is necessarily limited.” (Turing 1936–7, p. 231) The
formulation of his boundedness conditions (labeled (B.1) and (B.2) by Sieg), which
he presented later in his paper, could be interpreted as an elaboration on the former
statement (p. 250):

We may suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations. We will also suppose
that the number of states of mind which need be taken into account is
finite. The reasons for this are of the same character as those which
restrict the number of symbols. If we admitted an infinity of states of
mind, some of them will be “arbitrarily close” and will be confused.

Andrew Hodges, in his 1983 biography of Alan Turing, considers it “a bold act of
imagination, a brave suggestion that ‘states of mind’ could be counted, on which to
base his argument. It was especially noteworthy because in quantum mechanics,
physical states could be ‘arbitrarily close’.” (Hodges 2012, p. 134) Gödel, despite his
earlier laudatory comments on Turing’s work, also expressed his misgivings about
Turing’s “states of mind” argument in a critical note7 entitled “A philosophical
error in Turing’s work” (Gödel 1972, p. 306). In this short note, Gödel posits that
Turing in his paper “gives an argument which is supposed to show that mental
procedures cannot go beyond mechanical procedures.” Gödel objects:

6 An interesting account of the developments that started with Leibniz and culminated in
Turing’s universal machine is given by Martin Davis in his book The Universal Computer: The
Road from Leibniz to Turing.

7 An alternative formulation of Gödel’s note is presented in Wang (1974, pp. 325–326), where
Gödel does not speak explicitly about convergence to infinity in the course of a procedure, but in
the course of the development of the mind in general.

Critical reception 59

What Turing disregards completely is the fact that mind, in its use, is
not static, but constantly developing, i.e., that we understand abstract
terms more and more precisely as we go on using them, and that more
and more abstract terms enter the sphere of our understanding. There
may exist systematic methods of actualizing this development, which
could form part of the procedure. Therefore, although at each stage the
number and precision of the abstract terms at our disposal may be finite,
both (and, therefore, also Turing’s number of distinguishable states of
mind) may converge toward infinity in the course of the application of
the procedure.

Gödel thus rejected Turing’s assumption that the effective number of states of
mind involved in a human computation procedure is necessarily finite. Given
the abundance of occasions where Gödel associated computation explicitly with
“finite” and “mechanical” procedures, this seems a rather odd statement. In a 2006
article, the Israeli philosopher Oron Shagrir analyses Gödel’s objections and tries to
reconcile the ostensibly contradictory attitudes that he maintained toward Turing’s
paper. In our discussion of Gödel’s objection, we will roughly follow the structure
of Shagrir’s analysis, supplementing it with additional material.

In the postscriptum to his 1934 Princeton lectures, added in 1964, Gödel also
alluded to the existence of non-mechanical procedures (“i.e., such as involve the
use of abstract terms on the basis of their meaning”), asserting that the question of
whether they exist “has nothing whatsoever to do with the adequacy of the definition
of ‘formal system’ and of ‘mechanical procedure’.” (Gödel 1934, p. 370) After stating
some generalizations of his incompleteness theorems due to Turing’s contributions,
he warned that these generalizations may not apply to non-mechanical theories
and procedures, and that they “do not establish any bounds for the powers of
human reason, but rather for the potentialities of pure formalism in mathematics.”8

Reflecting on the question whether the classes of finite procedures and recursive
procedures coincide, which he raised in footnote 3 of his 1934 lectures, Gödel was
willing to “answer affirmatively” for his notion of general recursiveness only “if
‘finite procedure’ is understood to mean ‘mechanical procedure’”. Apparently, the
potential power of finite non-mechanical procedures formed a significant obstacle for
Gödel to fully and unconditionally embrace the momentous mathematical results
of the 1930s.

Gödel further elucidated his perspective on the relationship between minds and
machines in 1951, when he interpreted his incompleteness results as follows (Gödel
1951, p. 310):

So the following disjunctive conclusion is inevitable: Either . . . the
human mind (even within the realm of pure mathematics) infinitely
surpasses the powers of any finite machine, or else there exist absolutely

8 In a footnote to his 1972 note “A philosophical error in Turing’s work”, Gödel suggests that
the entire note may be regarded as a footnote to be placed after the word “mathematics” in the
just quoted part of his 1964 postscriptum.

60 Chapter 5

unsolvable diophantine problems . . . (where the case that both terms
of the disjunction are true is not excluded, so that there are, strictly
speaking, three alternatives). It is this mathematically established fact
which seems to me of great philosophical interest.

Hao Wang (1974, p. 324), who was in close touch with Gödel in the early 1970s,
asserts that “Gödel thinks Hilbert was right in rejecting the second alternative”, i.e.,
the one asserting that there exist absolutely unsolvable problems. With respect to
Gödel’s 1972 note on Turing’s “states of mind” argument, Wang further reports (p.
326):

In our discussions Gödel added the following. Turing’s argument be-
comes valid under two additional assumptions, which today are generally
accepted, namely: 1 There is no mind separate from matter. 2 The
brain functions basically like a digital computer. (2 may be replaced
by: 2′ The physical laws, in their observable consequences, have a finite
limit of precision.) However, while Gödel thinks that 2 is very likely
and 2′ practically certain, he believes that 1 is a prejudice of our time,
which will be disproved scientifically (perhaps by the fact that there
aren’t enough nerve cells to perform the observable operations of the
mind).

Gödel, who had a sustained interest in theology and considered himself a theist (Gö-
del 1986, p. 14; Wang 1987, p. 18), strongly believed in a world separate from and
not bounded by the physical. In this light, it is no surprise that he considered
Turing’s argument, which, according to him, was “supposed to show that mental
procedures cannot go beyond mechanical procedures”, inconclusive. But was Gödel
justified in ascribing these physicalist convictions to Turing? Sieg (1997, p. 171)
thinks not:

Let me emphasize that Turing’s analysis is neither concerned with ma-
chine computations nor with general human mental processes. Rather, it
is human mechanical computability that is being analyzed, and the spe-
cial character of this intended notion motivates the restrictive conditions
that are brought to bear by Turing.

On the one hand it is true that Turing, when formulating his boundedness conditions,
did not explicitly make any assertions with regard to human mental processes in
general. He simply supposed that the number of states which need be taken into
account is finite. On the other hand, as Shagrir (2006, p. 410, footnote 40) remarks,
Turing did state in section 1 of his paper that the justification for characterizing
the computable numbers as “those whose decimals are calculable by finite means . . .
lies in the fact that the human memory is necessarily limited”, and later introduced
his argument I saying that it “is only an elaboration of the ideas of §1.”

Let us for the moment assume that, as Sieg suggests, Turing intended his
restrictions to apply only to the number of states that need to be taken account
in the particular case of mechanical calculation. Shagrir (2006, p. 410) finds this
proposal problematic:

Critical reception 61

If the number of states of mind in general may be infinite, or at least
unbounded, is there any reason to think that with respect to calculation
the number of states of mind is bounded? It would seem that an implicit
assumption is being made here, to the effect that that the process of
(human) calculation is associated with a cognitive “module” with a
finite number of states of mind. But this assumption is exceedingly
contentious, and renders Turing’s analysis, and Gödel’s reasons for
extolling it, vulnerable to obvious objections.

If we read Turing’s analysis carefully, however, we must conclude that he did not
explicitly make any assumptions of the kind brought up by Shagrir. Turing did
not deny that the actual number of states of mind that a human being enters in
the process of computation might be infinite; he expressed a suspicion that “If we
admitted an infinity of states of mind, some of them will be ‘arbitrarily close’ and
will be confused.” (p. 250) The idea expressed in this terse remark was further
elaborated by Wang (1974, p. 93):

An alternative way of defending this application of the principle of
finiteness is to remark that since the brain as a physical object is finite,
to store infinitely many different states, some of the physical phenomena
which represent them must be “arbitrarily” close to each other and
similar to each other in structure. These items would require an infinite
discerning power, contrary to the fundamental physical principles of
today.

Gödel—who, as we saw earlier, ascribed “a finite limit of precision” to the phys-
ical laws—evidently appreciated this subtlety, admitting that at each stage of a
procedure the “number of distinguishable states of mind” may be finite. The real
error that Turing made, according to Gödel, was disregarding the dynamic nature
of the mind, i.e., the idea that the number and complexity of abstract terms in
our “sphere of understanding” increases over time, as a result of which the number
of distinguishable states of mind “may converge toward infinity in the course of
the application of the procedure.” Gödel assumed here, as Webb (1990, p. 300) de-
scribes, “that by understanding [abstract terms] more precisely we become capable
of states which are themselves more and more complicated.” He did admit, though,
that such processes were at the time “far from being sufficiently understood to
form a well-defined procedure” and that “the construction of a well-defined [finite
non-mechanical] procedure which could actually be carried out (and would yield a
non-recursive number-theoretic function) would require a substantial advance in
our understanding of the basic concepts of mathematics.”

One could argue that, contrary to Gödel’s allegations, Turing did anticipate the
possibility of a dynamic mind with abstract concepts whose complexity evolves over
time. Only, whereas Gödel believed that the the different stages of complexity should
be represented by a sequence of distinct states, Turing regarded the complexity of
a state at any moment as a property to be reflected in the contents of the tape
rather than the state itself, as appears from his suggestion that “the use of more

62 Chapter 5

complicated states of mind can be avoided by writing more symbols on the tape.”
(p. 250) As Webb (1990, p. 300) points out, this principle of relocating the source
of complexity from program to tape found its ultimate application in the design of
the universal Turing machine, which despite its fixed and finite set of states can
simulate any machine of any complexity. By providing the universal machine with
the description of a Turing machine on its tape, Turing (1947, p. 383) explained,
“the complexity of the machine to be imitated is concentrated in the tape and does
not appear in the universal machine proper in any way.”

According to Webb, then, Gödel’s objection finds its origins in the following
discrepancy between Gödel’s thinking and Turing’s:

Gödel was presumably not convinced, the universal machine notwith-
standing, that all the states entered by a human computer using “finite
non-mechanical procedures” could always be compensated for in Tur-
ing’s purely symbolic manner, for in such states it just might exploit the
meanings of ever more abstract concepts of proof and infinity to grasp
infinitely complicated combinatorial relations. It is really this kind of
possibility more than any convergence to an infinity of states that could
undermine Turing’s arguments, but, far from having disregarded it com-
pletely, it seems that Turing himself must have initially thought such
an objection plausible; yet once he discovered the universal machine
he saw that it could indeed compensate symbolically for a surprisingly
wide class of increasingly complicated machine states.

The idea that the complexity of the dynamic human mind could be accounted for by
symbolic representations was supported by Post, as his following remark concerning
“the dualism of the physical world versus the mental world” bears witness (Post
1941, p. 431):

Fundamental is the distinction between the static outer symbol-space
with its assumed capacity for bearing symbol-complexes of unbounded
complexity, and the dynamic mental world with, however, its obvious
limitations. This has been fully emphasized by Turing in his finite
number of mental states hypothesis

After all, it does appear to be the case that, contrary to Sieg’s suggestion, Tur-
ing believed his restrictive conditions to be a direct consequence of the inherent
limitations of the human mind (or, perhaps, more specifically, the human brain)
rather than merely motivated by “the special character” of the notion of human
mechanical computability. Turing however, possibly foreseeing the controversy that
his “states of mind” argument would provoke, proposed in his argument III to
“avoid introducing the ‘state of mind’ by considering a more physical and definite
counterpart of it.” This physical counterpart consisted of a “note of instructions”
in which, after every step, the computer precisely specifies how the work is to be
continued, allowing him at any moment “to break off from his work, to go away
and forget all about it, and later to come back and go on with it.” Where in

Critical reception 63

argument I the state of mind of the human computer is regarded as an integral part
of the computational process, argument III dissociates the state of the computation
from the internal state of its executor and stores it in an independent symbolic
representation. Hodges (2012, p. 136) concurs that

these arguments were quite different. Indeed, they were complementary.
The first put the spotlight upon the range of thought within the indi-
vidual – the number of “states of mind”. The second conceived of the
individual as a mindless executor of given directives. Both approached
the contradiction of free will and determinism, but one from the side
of internal will, the other from that of external constraints. These
approaches were not explored in the paper, but left as seeds for future
growth.

The juxtaposition that Hodges describes is what might explain Gödel’s ambivalent
sentiments regarding Turing’s analysis. It is argued (e.g., Webb 1990, p. 297) that
Gödel directed his misgivings only at Turing’s argument I, but nonetheless accepted
his analysis as a whole by virtue of his argument III. This seems plausible as
argument III does not involve any contentious assumptions concerning the nature
of the human mind. The view of the human computer as a “mindless executor”
of a finite set of instructions furthermore seems to be in accordance with Gödel’s
recurring use of the terms “mechanical” and “finite” in the context of computational
procedures. Gödel’s perspective on Turing’s work might be best summarized in the
words of Webb (1990, p. 302), namely “that all Turing was really analyzing was
the concept of ‘mechanical procedure’, but that in his arguments for the adequacy
of his analysis he overstepped himself by dragging in the mental life of a human
computer.”

One question remains however. What, if not the nature of the human mind,
underlay Gödel’s conviction that computational procedures should be finite and
mechanical? As opposed to argument I, argument III provides no such justification;
it merely describes a mechanism that obeys these principles. Also, it should be
clear from the foregoing discussion that Gödel seriously considered the existence
of non-mechanical procedures that transcend their mechanical counterparts. Yet,
somehow it seems that he did not ascribe to such procedures any appreciable role
in the world of mathematics.

Shagrir (2006) argues that Gödel’s fixation on finite and mechanical computation
was not so much rooted in exclusionary convictions regarding the nature of human
computation, but rather reflected the methods of the mathematical tradition in
the context of which he did his work. As we saw earlier, Gödel began his career
at the zenith of Hilbert’s finitist program. In fact, with his doctoral dissertation
he tackled one of the main problems that Hilbert’s program was facing at the
time. And although it is now generally accepted that Gödel’s incompleteness
theorems delivered a deathblow to Hilbert’s program, Gödel in his 1931 paper still
expressed the belief9 that his second incompleteness theorem does not “contradict

9 Only two years later, Gödel conceded that it was very unlikely that Hilbert’s program could

64 Chapter 5

Hilbert’s formalistic viewpoint. For this viewpoint presupposes only the existence
of a consistency proof in which nothing but finitary means of proof is used, and
it is conceivable that there exist finitary proofs that cannot be expressed in the
formalism of P” (Gödel 1931, p. 197, 1986, p. 195)

Shagrir contrasts Gödel’s thorough awareness of the historical context with the
relative nescience of Turing, whom he depicts as being “hardly aware of the fierce
foundational debates.” (Shagrir 2006, p. 412) Congruent with this characterization,
Gödel had a tendency of evaluating Turing’s work against the backdrop of the
foundational developments, showing particular interest in its consequences for his
own incompleteness results. Indeed, he found in the Turing machine a “precise
and unquestionably adequate definition of the general concept of formal system”,
which enabled him to confirm that his incompleteness theorems apply not just to
the very comprehensive class of systems described in his 1931 paper, but to “every
consistent formal system containing a certain amount of finitary number theory.”
(Gödel 1986, p. 195, 1934, p. 369) That the notion of formal system is entirely
captured by the definition of the Turing machine he explained by noting that for
every formula-enumerating Turing machine, there exists a formal system that has
the same provable formulas, and vice versa (computation thus becomes analogous
to proof in a formal system).

The restriction to finite mechanical procedures, Gödel argued, “is required
by the concept of formal system, whose essence it is that reasoning is completely
replaced by mechanical operations on formulas.” (Gödel 1934, p. 370) Why, then,
should we not allow formal systems that are governed by infinite or non-mechanical
procedures? Gödel did not explicitly answer this question; he merely invoked
the constraints that were conventionally imposed on the definition of a formal
system by formalists such as Hilbert. Shagrir (2006, pp. 410–411) conjectures that
underlying these constraints was a principle of “public accessibility”: the idea that
a description of a proof or procedure must be complete and unambiguous as to
ensure its perfect appreciation or execution by another human being. Thus, Sieg
(2006, p. 200) argues, “it was the normative demand of radical intersubjectivity
between humans that motivated the step from axiomatic to formal systems.” This
seems a very reasonable demand, but why should intersubjectivity between humans
necessarily involve finiteness constraints?

In this context, Shagrir cites Sieg (2006) and Webb (1990) as holding that
the finiteness constraints with respect to intersubjectivity, too, trace back to
Turing’s “limited human memory” argument, thereby cancelling out the essential
difference between Turing’s arguments I and III and effectively fusing them into a
single argument. This analysis is, in my opinion, not entirely satisfactory. While
granting the contrived character of the following scenario, it is in theory possible
for (idealized) human beings to convey infinite procedures10 in such a manner that

ever succeed, recognizing that “it seems that not even classical arithmetic can be proved to be
non-contradictory by [intuitionistic methods], because this proof . . . would be expressible in
classical arithmetic itself, which [by the second incompleteness theorem] is impossible.” (Gödel
1933, p. 52)

10 The notion of infinity intended here pertains to the spatial size of the communication by

Critical reception 65

they can be perfectly interpreted and executed by other human beings. Imagine
that one person starts writing an algorithm, line by line. Assuming that this first
person continues this process infinitely, another person might at some point start
reading and executing the algorithm. Should the second person sooner or later
catch up with the first person, or be referenced by the algorithm to a line that has
not yet been written down by the first person, the second person will pause the
execution of the algorithm until the required line has become available, at which
point the execution is resumed. Proceeding in this manner, every instruction will
eventually be reached and executed. Furthermore, a process of this kind need not
depend on more than a finite number of internal states—and this holds for the
writer as well as for the executor of the algorithm.

An alternative, and, in the given context, more satisfactory reason for rejecting
infinite procedures can be found in the epistemic role of the formal system (and, by
analogy, of computation) in Hilbert’s finitist ideology. Recall that Hilbert sought to
secure mathematics—including its more controversial transfinite theories—in one
complete axiomatic formal system, the consistency of which was to be proved in a
metamathematical framework using only the most uncontroversial and intuitive
methods. If, however, a complete specification of the axioms and rules governing a
formal system cannot be given by a finite communication, it is impossible to reach
a conclusive verdict about the consistency of the system by metamathematical
considerations—let alone when restricting oneself to finitary methods. Note that
I am not saying that, conversely, if such a specification can be given by a finite
communication, it must be possible to prove or disprove its consistency; merely that
to the pre-Gödelian formalist, the latter was at the very least a viable option—as
Hilbert’s fierce polemic against the pessimistic “ignorabimus” attests—while the
possibility of a consistency proof on the basis of an infinite description could be
ruled out beforehand.

To sum up: critics have argued that Gödel’s finiteness and mechanicalness
constraints on formal systems ultimately trace back—be it by a detour—to the same
source as Turing’s “states of mind” argument, thereby invalidating the distinction
between Turing’s arguments I and III on which Gödel allegedly based his 1972
critique of Turing’s analysis. Our foregoing observations suggest a substantially
different explanation though; namely that the constraints that Gödel appealed
to were not rooted in the inherent limitations of the human mind, but in the
requirement of metamathematical evaluability that was so crucial to Hilbert’s
foundational program. According to this reading, then, Turing was praised by
Gödel for his accurate analysis of finite and mechanical computation by human
beings, but at the same time rebuked for supposing that the origins of the finitude
lay in the human condition. On Gödel’s account, the restrictive factor was not

which a procedure is conveyed rather than the temporal aspects of its execution. A simple example
of an infinite procedure in this sense is an algorithm that is given by a (countably) infinite list of
instructions, each of which orders the addition of 1 to the value of a certain variable, as opposed
to an alternative formulation of the algorithm where the same infinite repetition is instructed
through a finite sequence of commands (e.g., in the form of a loop). Of course, not all infinite
procedures can be conveyed by a finite number of instructions.

66 Chapter 5

the human mind, which he believed “infinitely surpasses the powers of any finite
machine”, but, as Shagrir (2006, p. 412) expresses it, the “role [of computation] in
the foundational project, which is defining a formal mathematical system.”

5.4 Stronger versions

All disagreements on justification aside, Turing and Gödel did agree on the con-
clusion of Turing’s analysis: that all human finite and mechanical computation
could be simulated by Turing machines. Although difficult to prove or disprove, to
this day, no serious objections to this interpretation of the Church-Turing thesis
have emerged. But now that such a precise and powerful model of computation
had become available, a new question arose: how powerful is it really? What more,
beside human computation, could be accounted for by Turing machines? Does
the class of Turing computable processes also include computations by modern
electronic computers? In this section, we briefly discuss several previously published
proposals to strengthen CTT by extending or reformulating the informal notion of
computation (U) that it is supposed to capture.

5.4.1 Machine computation

After 1936, and not unrelated to the work of Turing himself, a shift occurred in the
way we think about computation. With the advent of digital electronic computers,
we started transferring more and more responsibilities to machines, as they outper-
formed humans in terms of both speed and reliability on many computational tasks.
As a result, when CTT is introduced in contemporary textbooks, we are primed
to understand words like “computation” and “computability” in terms of mostly
electronic devices.11 Particularly, the word “algorithm”, although having existed for
centuries, has evolved to be associated almost exclusively with computing machines,
rather than humans. But does the Turing machine, which was modeled after a
human being using only pencil and paper, stand up to the mind-blowing feats of
modern computing machinery?

Turing analyzed the process of finite and mechanical computation as carried
out by a human being. Consequently, some of the restrictive conditions described
by Turing are relevant specifically to human computation, but do not necessarily
apply to computation by machines. Robin Gandy, who had been a student and
friend of Turing, published an influential paper in 1980 in which he analyzed the
concept of machine computation. Although an extension of CTT toward machine
computation may appear as trivial to some, Gandy argues that there are some
important differences (1980, pp. 124–125):

[There] are crucial steps in Turing’s analysis where he appeals to the fact
that the calculation is being carried out by a human being. One such
appeal is used to justify the assumption that the calculation proceeds

11 For concrete examples of this bias toward machine-based interpretations of CTT, see Shagrir
(2002, p. 227).

Critical reception 67

as a sequence of elementary steps. A human being can only write one
symbol at a time. But, if we abstract from practical limitations, we
can conceive of a machine which prints an arbitrary number of symbols
simultaneously.

Gandy refers to John Conway’s Game of Life (Gardner 1970) as an example of such
a scenario, emphasizing that there “can be no guarantee that a further effort of
imagination may not result in a device to which Turing’s analysis is inapplicable.”
Then follows an analysis of “discrete deterministic mechanical devices” (referred to
by some commentators as “Gandy machines”), resulting in the formulation of a
set of four general principles. Anything computable by a machine satisfying these
principles, Gandy then argues, is computable by a Turing machine.

Analysis Gandy’s thesis

D := unspecified
U(x) := “x is calculable by a discrete deterministic machine satisfying

Gandy’s principles I–IV.”
M := Turing machines

C(M, x) := “M computes x.”

5.4.2 Physical and quantum computation

Another derivative of the Church-Turing thesis goes one step further by asserting
that in fact all physical processes are Turing computable. Stephen Wolfram (1985),
advancing a “physical form of the Church-Turing hypothesis”,12 suggests that
“universal computers are as powerful in their computational capabilities as any
physically realizable system can be, so that they can simulate any physical system.”
(p. 735) While several arguments against physical versions of CTT have emerged
in literature, Copeland and Shagrir (2019) point out that most of these arguments
are either “highly artificial” or rely on initial conditions whose physical possibility
is disputed.

David Deutsch, in a famous paper published in the same year as Wolfram’s,
considers a similar extension of CTT (Deutsch 1985, p. 99):

I propose to reinterpret Turing’s “functions which would naturally be
regarded as computable” as the functions which may in principle be
computed by a real physical system. For it would surely be hard to
regard a function “naturally” as computable if it could not be computed
in Nature, and conversely.

12 Copeland (1997) advises to abstain from using the names of Church and Turing when
denoting “distant cousins” of CTT such as this, “since neither Church nor Turing endorsed, nor
even formulated, any such proposition.”

68 Chapter 5

By replacing Turing’s vague and intuitive notion of computation by this “more
physical” and “unambiguous” formulation, Deutsch arrives at “the physical version
of the Church-Turing principle”: “Every finitely realizible physical system can be
perfectly simulated by a universal model computing machine operating by finite
means”. Note that Deutsch uses the general description of a “universal model
computing machine” and avoids stating his thesis specifically in terms of the
universal Turing machine. In classical physics, he argues, the latter fails to satisfy
the hypothesis since it cannot “perfectly simulate” classical systems, whose possible
states13 “necessarily form a continuum” and therefore outnumber those of any
Turing machine (whose possible states are at most countably infinite in number).

Deutsch argues that unlike classical physics, which he discards as being “false”,
quantum theory is compatible with his physical version of CTT. He observes,
however, that every existing model of computation is a classical system in the
sense that it assumes the full measurability of all its states; an assumption that
is incompatible with quantum theory. A model that can simulate all physical
systems down to the quantum level would thus have to be a truly quantum model
of computation. To this end, Deutsch describes a quantum generalization of the
universal Turing machine. Beside “perfectly simulating every finite, realizible
physical system”, including any Turing machine, this universal quantum computer
Q would be able to “simulate various physical systems, real and theoretical, which
are beyond the scope of the universal Turing machine” (p. 107), including systems
that generate true random numbers. Furthermore, Deutsch suggests that quantum
parallelism may in some cases offer gains in terms of computation time that could
not be achieved in classical models of computation. As remarkable as the physical
realization of a quantum computer would be, however, Deutsch admits that the
benefits of quantum computation “do not include the computation of non-recursive
functions.”

Analysis Deutsch’s thesis

D := Physical systems
U(S) := “S is finitely realizable.”
M := The universal quantum computer Q14

C(M, S) := “M ‘perfectly simulates’ S, i.e.,M is functionally
indistinguishable from S.”

13 In this context, “state” refers not only to what Turing calls “state of mind” or “m-
configuration”, but to what he would call the “complete configuration”, which is the m-
configuration, the number of the scanned square, and the contents of the tape together.

14 Strictly speaking, we should define M here as the set {Qπ | π ∈Π}, where Π is the set of all
possible programs for Q and Qπ is the universal quantum computer Q prepared with program π.

Chapter 6

DEFY ING THE TUR ING BARR IER

At the core of even the most sophisticated behavior of today’s computers lies a small
set of very basic arithmetic and logic operations, none of which transcend the limits
of paper and pencil methods. Yet, when considering the previously inconceivable
achievements that the digital revolution has made possible, it seems natural to
expect that our understanding of the phrase “[that] which would naturally be
regarded as computable” has evolved accordingly since 1936. Has our intuitive
notion of computability changed fundamentally? Does this new notion entail types
of computation that the good old Turing machine fails to capture?

6.1 Three new ingredients

At the turn of the twenty-first century, Wegner (1997) argues that this is indeed the
case. He observes that computers at the time no longer follow the straightforward
input-output pattern of the Turing machine. Rather, they maintain a constant
exchange of information with their environment, receiving input and producing
output throughout the entire process of computation. Interactiveness, the author
claims, has become an essential property of the intuitive notion of computation and
leads to behavior that is not reducible to that of a Turing machine.

While Van Leeuwen and Wiedermann (2001a) do consider interaction as a key
ingredient to realizing super-Turing computing power, they do not share Wegner’s
belief that it does so on its own. In addition to interaction, they recognize two more
ways in which contemporary computing systems diverge notably from the Turing
machine paradigm. First, infinity of operation refers to the view according to which
the entire lifespan of a computing system is considered a single computation. Even
when the machine is switched off, the authors explain, its data can be preserved
and used again in future sessions, thereby blurring the boundaries between distinct
computations and resulting in one possibly infinite computation. Second, the fact
that a system’s program may change on the go through hardware or software
updates and thus may treat equal inputs differently at different times, is called non-

69

70 Chapter 6

uniformity of programs. Only in the interplay of these three properties, the authors
argue, arises behavior that truly transcends the power of the Turing machine. In
the following sections, each of the three properties will be discussed separately.

6.1.1 Interaction

Peter Wegner (1997) notices a paradigm shift in the world of computing technology
that he characterizes as a shift from algorithmic computation to interactive com-
putation. Traditional computation, as displayed by Turing machines, is a clearly
delineated, deterministic process that uses an algorithm to calculate functions on
its input. Once the input has been prepared, the machine is set in motion and
“plays” the algorithm, not accepting any further communication with the outside
world until an output has been produced. Modern computing systems, however,
operate in a very different manner. Instead of computing one final output from
predefined inputs, they are situated in a rich environment from which they receive
a continuous stream of inputs, combining them with earlier results to produce a
likewise never-ending stream of outputs. Not only has interaction between a system
and its operator become much richer through peripherals such as microphones and
cameras, but systems now also communicate intensively with each other through
world wide networks such as the internet.

Due to their inability to simulate the passage of time or to process external input
while computing, Wegner argues, Turing machines fail to capture interactiveness,
which he considers an essential property of modern computation. Consequently, he
abandons CTT and introduces the idea of interaction machines, which he describes
as an extension to the Turing machine that supports dynamic interaction with
the outside world. In Wegner (1998) he further explains that interaction machines
operate on “interaction histories”, which are described as time-sensitive streams that
can be interactively extended. Since inputs to Turing machines are finite strings
and since functions are too strong an abstraction to model time, Wegner contends
that Turing machines are too weak capture interactive behavior. A formally defined
example of an interaction machine is presented by Goldin et al. (2004) in the form
of the Persistent Turing Machine (PTM), which is essentially a three-tape Turing
machine that processes infinite input streams by continuously repeating a process
of reading an input from its input tape, processing it on its work tape, and writing
an output to its output tape.

We might derive from the theory of interaction machines a CTT version that
is represented by the following instantiation of our model:

Defying the Turing barrier 71

Analysis Interactive Church-Turing thesis

D := The set of all computational processes
U(x) := “x is an interactive computation, i.e., it may receive inter-

mediate inputs and produce intermediate outputs.”
M := Interaction machines that allow time-dependent dynamic

interaction with their environments (e.g., PTMs)
C(M, x) := “M can simulate x, including the temporal aspects of its

input and output operations.”

Although interaction machines might overall provide a more elegant model of the
process of interactive computation, I am convinced that they are of no added value
with respect to the characterization of computability. It appears that Wegner’s
critique of CTT is rooted in a fundamental misconception regarding the very point
of the thesis and of computability theory in general. This misconception expresses
itself mainly in the C predicate of the above model. CTT was formulated as
a statement about the theoretical concept of computability—i.e., what can be
computed—rather than the practical aspects of computational processes—i.e., how
it is computed. This may seem counterintuitive, as a major part of CTT consists of a
model of computation that defines in detail some process of computation. However,
ultimately it is not this specific process that matters to CTT, but the abstract
function that it establishes between input and output. It is for this reason that CTT
should not be understood as a definition of algorithms in general, as is sometimes
wrongly stated, but rather as a characterization of algorithmic computability, i.e.,
the class of functions they can compute.

As is elaborated in Copeland and Shagrir (2019, p. 68), CTT concerns the
input-output relation that an algorithmic process realizes, but is indifferent as to
the process itself. A computational procedure is considered Turing-computable as
long as its input-output function can be computed by a Turing machine. Whether
the intermediate steps that the Turing machine uses are identical to those of the
procedure is irrelevant. As such, the fact that a definition of the Turing machine
does not allow for certain elementary operations such as parallel cell updates in
John Conway’s Game of Life, is by no means problematic as long as the same final
result can be achieved using other (serial) mechanisms. Wegner, however, does not
appear to acknowledge this principle (Wegner 1998, p. 317):

Interaction cannot be expressed by or reduced to transformations (func-
tions). Time is a nonfunctional property since the effect of functions
(algorithms) does not depend on their computation time or on the time
at which the effect occurs. Interaction extends computing to computable
nonfunctions over histories rather than noncomputable functions over
strings. Airline reservation systems and other reactive systems provide

72 Chapter 6

interactive services over time that cannot be specified by functions.

However, while computation time may have an influence on the course of a compu-
tation, this does not say anything about the computability of the process.

To illustrate this point, let us consider the following model of interactive
computation by Van Leeuwen and Wiedermann (2006), of which preliminary
versions appeared in Van Leeuwen and Wiedermann (2000) and Van Leeuwen and
Wiedermann (2001c). A component C and its environment E communicate with
each other by exchanging symbols. The sequence e = (e0, e1, e2, . . .) represents
the stream of information that C receives from E, where et is the symbol that is
sent at time step t. Likewise, C’s output to E is represented by the sequence c =
(c0, c1, c2, . . .). The interaction pair (e, c) then captures the interactive computation
of C in response to E. At some moments, C or E may have nothing to send, which
is represented by the silent symbol τ . It is assumed that for any t, C first becomes
aware of et at the next time step t+ 1, and vice versa. Furthermore, communication
is always initiated by E, meaning that c0 has a fixed value of τ . Finally, another
important thing to note is that for any t, ct is fully determined by the combination
of C’s program and (e0, e1, . . . , et−1), while et is indeterministic with respect to
the interaction history and can take on any possible value.

The following informal theorem and proof are loosely adapted from Theorem 1
and its proof in Van Leeuwen and Wiedermann (2006):

Theorem 2
Given a component C and its environment E, it is possible to define a Turing
machineMC (or, equivalently, recursively define a function) that for any interactive
computation (e, c) between C and E and any t∈N, when given (e0, e1, . . . , et) as
input, produces (c0, c1, . . . , ct) as output.

Proof. For the sake of convenience, we designMC as a three-tape Turing machine
with separate input, work, and output tapes. Note however, that it is possible
to define an equivalent one-tape Turing machine, as is discussed in chapter 3.
Given any sequence x = (x0, x1, . . . , xt)∈ {0, 1, τ}∗ on its input tape, we letMC

simulate C’s program, reading the next input symbol whenever C would. Likewise,
whenever C would output a symbol, we letMC write the same symbol to its output
tape, including τ ’s. MC halts after it has processed xt−1 (i.e., xt is ignored). It
follows that whenever x equals (e0, e1, . . . , et) for some interactive computation
(e, c) between C and E,MC will output (c0, c1, . . . , ct).

Despite the fact thatMC cannot simulate C’s behavior in “real time”, accepting
new external input as it computes, it does transform the same input into the same
output, making it functionally—and thus in terms of computability—equivalent
to C. We should conclude that time is an irrelevant factor with regard to ques-
tions of computability. The fact that Turing machines cannot perfectly simulate
the temporal aspects of interactive processes does not imply anything about the
computability of those processes. Wegner’s objection that a Turing machine cannot

Defying the Turing barrier 73

handle the passage of external time is therefore not a valid argument against the
validity of CTT.

6.1.2 Infinity of operation

We have so far paid little attention to the fact that both Wegner (1997) and Van
Leeuwen and Wiedermann (2006) mainly consider not finite, but infinite compu-
tations. The “infinity” here originates from the fact that modern computers can
store the results of their computations, possibly later combining these results with
new inputs, thereby forming a process that can be regarded as a single compu-
tation that lasts for the entire (theoretically infinite) lifetime of the device.1 To
Wegner’s argument the aspect of infinity seems to be no more than an incidental
property, while Van Leeuwen and Wiedermann consider it essential for achieving
super-Turing computing power. Contrary to earlier papers by the same authors
(e.g., Van Leeuwen and Wiedermann, 2001; 2001), where “infinity of operation” is
treated as a distinct property, it is here interwoven with the definition of interactive
computation, as implied by the so-called interactiveness condition (Van Leeuwen
and Wiedermann 2006, p. 123):

For all times t, when E sends a non-τ signal to C at time t, then C
sends a non-τ signal to E at some time t′ with t′ > t (and vice versa).

Any interactive computation obeying this condition, once initiated by E, never
ends. Interaction pairs will thus always consist of two infinite sequences. This
infinite behavior, the authors claim, leads to super-Turing computation power. I
will now present several arguments that contradict this claim.

First, note that the supposed super-Turing power of interactive computations
critically depends on these computations being infinite—if this is not the case,
ordinary Turing machine suffice to simulate them, as we demonstrated in theorem 2.
Yet, I would like to point out that the practice of promoting infinity as an intrinsic
property of interactive computation is disputable to say the least. Since computa-
tions are processes that necessarily involve a temporal component, their infinity is
only a potential one. At no stage in the process, a computation can be said to have
reached a state of actual or “completed” infinity. With every passing moment, one
of two events occurs: either the process terminates, or it is extended by a finite
amount of time. Whether the newly defined end point is definitive or temporary,
the length of a computation is always naturally bounded to a finite amount by the
“current moment”.

This means that, by theorem 2, at any moment in time t, it is possible for
any interactive computation (e, c) of some component C and its environment
E that started at some time t′ ≤ t in the past, to define a Turing machine or
classically computable function that, given (et′ , et′+1, . . . , et), reproduces C’s entire
output history (ct′ , ct′+1, . . . , ct). How the computation evolves in the future, is

1 Note that we are here speaking of infinity as a property of an object from the domain (viz.,
an interactive computation), irrespective of the process that is used to simulate this computation.

74 Chapter 6

computable by neither an interaction machine nor a Turing machine, as a result of
the assumption that E’s behavior is indeterministic and unpredictable. Before ct+k
can be determined for any k, both C itself and any Turing machine simulating C will
have to await moment t+k, since this is the moment at which they become “aware”
of the final symbol that is required for the computation of ct+k. Evidently, in reality
there are no interactive input-output relations that a classical Turing machine
cannot realize. It is only the choice of representing interactive computations by
infinite sequences that creates the false impression of completed infinity, and thus
of uncomputability by Turing machines.

For theoretical purposes, however, we might prefer to think of time as a
more abstract variable, independently of the way and order in which we humans
experience it. In this context, it is certainly interesting to consider infinite time
sequences as an exercise to reason about mathematical limits. Here I would like to
point out that the concept of infinity itself is nothing new to CTT. While Turing
machines are usually defined to compute functions from finite input strings to finite
output strings, Turing (1936–7) originally designed a machine that computes the
(fractional part of the) decimal expansion of a real number. Since this consists of
an infinite series of digits, the process of printing these digits is necessarily infinite.

Suppose that we have a machine M that computes some computable real
number x according to Turing’s original conventions. WhenM is set to work on an
empty tape, its behavior consists of writing down the fractional digits of x one by
one. WhileM’s output string develops progressively and is finite at each moment
t ∈ N, we can imagine its total output as a unique infinite string 〈x〉 that is the
result of taking t to the limit. Recall from section 3.2 that we can equivalently
represent x by the set Sx ⊆ N that contains all indexes i of the binary representation
of x that contain a 1:

Sx = {i | 〈x〉i = 1} (6.1)

The machineN that decides Sx is then equivalent toM, as a result of the equivalence
between x and Sx. Alternatively, we could define N such that on input 〈i〉 it not
only outputs the single digit 〈x〉i, but the entire substring of 〈x〉 up to and including
〈x〉i, i.e., 〈x〉i1. We then have a machine that for any number i∈N computes the
first i decimals2 of x. Traditionally, those real numbers whose finite approximations
can be computed to an arbitrary degree of precision by Turing machines such as
M and N are considered the “computable” real numbers. Apparently, the fact
that these machines are unable to explicitly reproduce the full decimal expansion of
those numbers within a finite amount of time has never been considered a serious
problem in computability theory. The fact that they can reproduce x up to any
desired number of decimals, and thus implicitly represent x in its entirety, suffices.

From our observations in this particular example we might infer the more
general principle that an infinite sequence may be considered computable if there
exists a Turing machine that can compute finite approximations of the sequence
up to any degree of accuracy. If we were to extend this principle to the context

2 Note that while the term “decimal” is somewhat confusing in this context, we refer here to
the fractional digits of the binary representation of x.

Defying the Turing barrier 75

of interactive computations—which I believe is a natural thing to do—this would
mean that an interactive computation (e, c) should be considered computable if
there is a Turing machine that can compute (c0, c1, . . . , ct) for any t ∈ N. From
theorem 2 it follows that such a Turing machine can be defined for any interactive
computation. Whenever such a machine is provided with a finite prefix of e of any
length, it will output the corresponding prefix of c of the same length, much like N
produces the finite prefix 〈x〉i when given i as input. It would therefore be rather
inconsistent to consider x computable, while not treating (e, c) as such.

6.1.3 Non-uniformity of programs

In their 2006 paper, Van Leeuwen and Wiedermann aimed to improve Wegner’s
theory of interactive computation toward super-Turing computing power by sup-
plementing it with their interactiveness condition, which ensures infinite behavior.
In Van Leeuwen and Wiedermann (2001a), the authors take their quest for non-
effectivity a step further. In addition to accommodating interaction and infinity of
operation, they include a mechanism in their model that, separately from the regular
input channels, lets external information enter into the system while computing.
This mechanism serves to simulate hardware or software updates that might be
performed by an external operator during the lifetime of a system. Since interactive
computation is viewed as an ongoing process spanning the entire lifetime of a
system, intermediate changes in its constitution have an immediate effect on the
course of computation. This quality of computing systems of not having a fixed, but
evolving program, is referred to by the authors as “non-uniformity of programs”.

Interactive Turing machines with advice

Van Leeuwen and Wiedermann ground their theory of interactive, non-uniform
computation in the classical Turing machine model. They extend the definition of
the Turing machine in two stages. First, they implement interaction and infinity
of operation by equipping a Turing machine with finitely many input and output
ports, through which it continuously receives and outputs symbols. At each time
step, one symbol is delivered to every input port, and one symbol is sent to every
output port. Silent moments (both at input ports and output ports) are represented
by the “empty symbol” τ . Such an interactive Turing machine (ITM) is similar
in functionality and computational power to the models found in Van Leeuwen
and Wiedermann (2000, 2001c, 2006) and Goldin (2000). In the second stage,
non-uniformity of programs is introduced in the model to mimic the modification
of hardware or software by an external operator. In choosing an appropriate
mechanism to model such changes, the authors take account of two considerations
(Van Leeuwen and Wiedermann 2001a, p. 1145):

We want this change to be quite independent of the current input
read by the machine up to the moment of change. If this wouldn’t
be the case, one could in principle enter ready-made answers to any
pending questions or problems that are being solved or computed into

76 Chapter 6

the machine, which is not reasonable. By a similar argument we do
not want the change to be too large, as one could otherwise smuggle
information into the machine related to all possible present and future
problems.

Van Leeuwen and Wiedermann find a suitable candidate in advice functions, as
used in the study of non-uniform complexity theory by Karp and Lipton (1980).
The general idea behind advice functions was conceived as early as 1939 by Alan
Turing, who in his Ph.D. thesis introduced so-called “oracles”, which serve as
black boxes that provide Turing machines with external, possibly non-computable
information (Turing 1939). An advice function is any function h : N −→{0,1}∗
and can be either recursive or not. In order to meet the two “realism conditions”
stipulated in the above citation, the authors impose two constraints on the use
of advice functions. First, when a (non-interactive) Turing machine with advice
(TMA) receives an input string x, it may consult its advice function using only
the length |x| of this input string. This ensures that the advice function does
not provide problem-specific information, as required by the first condition. The
second condition—that the change should not be too large—is implemented by
setting an upper bound for the length of advice strings. Only advice functions h
are allowed that, for any n∈N, produce an advice string h(n) of which the length
|h(n)| is bounded by a polynomial in n. Hereafter, we will refer to such functions
as “polynomially bounded advice functions”.

Traditionally used in the context of classical Turing machines, Van Leeuwen
and Wiedermann slightly adapt the theory of advice functions in order to use them
with interactive Turing machines. Recall that ITMs process one symbol at a time
at each input port. Therefore, the principle of calling advice functions with the
length of an input string does not directly translate to this context. Instead, the
authors choose to let the advice string depend on the time t at which the advice
function is called. More specifically, they allow ITMs to call their advice function at
any time t > 0, but only for values of at most t. Note that, since an ITM receives
exactly one symbol per input port at each time step, all total input strings received
up to moment t are of length t. Again, only advice functions are allowed that are
polynomially bounded (this time in t). The resulting composite model, which is
an adaptation of the Turing machine that features both interactivity and advice
functions, is naturally called an interactive Turing machine with advice (ITMA).

The adequacy of advice functions in modeling non-uniformity

Regarding the bare aim of introducing non-uniformity of programs into the Turing
machine, advice functions do qualify as effective candidates. When considering them
as an integral part of the machine, they can cause the machine to treat one and the
same input value differently at different times. On a more practical level however,
I believe that as a means of realistically modeling the evolution of a computer
program, the use of advice functions leads to undesirable side effects and is moreover
superfluous. Since an advice function can be any recursive or non-recursive function,

Defying the Turing barrier 77

the abstract mathematical model of Turing machines with advice has super-Turing
computing power and is in theory perfectly able to solve all kinds of classically
undecidable problems, such as the halting problem. The mechanism that advice
functions are supposed to model, however, namely the execution of system updates
in a real-world scenario, obviously does not give rise to such super-Turing qualities.
This uncomfortable discrepancy is rooted, I think, in two—in the present context
somewhat unfortunate—properties of advice functions and can easily be resolved
within the bounds of the classical Turing machine paradigm. In this section I will
first sketch the undesirable situation, followed by descriptions of the two responsible
properties and a proposed solution.

Van Leeuwen and Wiedermann demonstrate the theoretical power of Turing
machines with advice by defining a (non-interactive) Turing machine with advice
that is able to solve a variant of the halting problem. This variant asks for an
algorithm that decides the set K of “encodings of those Turing machines that accept
their own encoding” (Van Leeuwen and Wiedermann 2001a, p. 1147). In classical
computability theory, K is recursively enumerable. In other words, there exists a
classical Turing machine that accepts all members of K, but does not necessarily
reject every Turing machine description that does not belong to K within a finite
amount of time. Next, the authors propose that there exists a Turing machine with
linearly bounded advice that decides K, and therefore does halt on every input
(Proposition 5 in Van Leeuwen and Wiedermann 2001a). To prove this proposition,
the TMA in question is defined as follows (Van Leeuwen and Wiedermann 2001a,
pp. 1147–1148):

Define an advice function f as follows. For each n it returns the
encoding 〈N 〉 of the machine N for which the following holds: 〈N 〉 is
of length n, N accepts 〈N 〉, and N halts on input 〈N 〉 after performing
the maximum number of steps, where the maximum is taken over all
machines with an encoding of length n that accept their own encoding.
If no such machine exists for the given n, f returns a fixed default
value corresponding to a machine that halts in one step. It is easily
seen that f exists and is linearly bounded. On an arbitrary input w,
machine A works as follows. First it checks whether w is the encoding
of some Turing machine. If not then A rejects w. Otherwise, if w is the
encoding 〈M 〉 of some Turing machine M , then A asks its advice for
the value f(n), with n = |w|. Let f(n) = 〈N 〉, for some machine N . A
now simulates both M and N , on inputs 〈M 〉 and 〈N 〉, respectively, by
alternating moves, one after the other. Now two possibilities can occur:
1. N will stop sooner than M . That is, M has not accepted its input

by the time N stops. Since the time of accepting 〈N 〉 by N was
maximum among all accepting machines of the given size, we may
conclude that M does not accept w. In this case A does not accept
w either.

2. M will stop not later than N . Then A accepts w if and only if M
accepts w.

78 Chapter 6

Clearly A stops on every input and accepts K.

Formally, the definition of f perfectly obeys all criteria and constraints set by the
authors. It receives only the lengths of A’s input values, and is not just polynomially,
but even linearly bounded. Yet, it violates both of the previously communicated
realism conditions. Due to the deceptively short length of f ’s output values, one
may naively assume that its contribution to the computational process of A is of
minor significance. However, I will argue that on the contrary, the solution to the
problem lies entirely in these little advice values, while A itself only performs an
auxiliary role.

This will become evident when we consider the meaning of f ’s output value.
For any n ∈ N, f(n) is a Turing machine description that, among all length n
descriptions of Turing machines that accept their own encoding, describes a Turing
machine that does so after a maximum number of computation steps. Though we
cannot specify a full algorithm for f , we can infer from its description the following
global definition:

f(n) =

〈N 〉 if Kn = ∅

arg max
s∈Kn

g(s) otherwise, (6.2)

where N is some Turing machine that halts in one step, Kn is the (finite) subset of
K that consists of all encodings of length n, and g : K−→N is a function such that
g(〈M〉) is the number of steps that a Turing machineM takes to terminate on its
own description.

From this definition, it becomes clear that for each n, the value of f(n) depends
on a full knowledge of the set Kn. For example, the arg max function ranges over
Kn, which requires some method of deciding which strings belong to Kn and which
do not. Since the domain of f is N, and

⋃
n∈NKn = K, full knowledge of the

values of f inevitably implies full knowledge of K. The very functionality that
A is designed to achieve is thus already implicitly present in its advice function
f . In other words, the actual work of deciding K is done entirely “behind the
scenes” by f . The only thing that prevents f from directly providing A with the
ready-made answer is the constraint that A may not consult f for a particular input
string, but only for its length. However, this has been easily bypassed by letting f
“encode” its answer in a generalized form. What remains for the Turing machine
itself is a routine procedure that simply recovers an input-specific answer from this
generalized answer—note that a single advice value implicitly contains the answers
to all inputs of a certain length. The fact that this is possible shows that the
system fails to meet both realism conditions, which demand that no “ready-made
answers to any pending questions” or information “related to all possible present
and future problems” can be entered into the machine.

While I am aware that Proposition 5 was presented by Van Leeuwen and
Wiedermann as a purely theoretical example with the intention of demonstrating
the computational power of advice functions, as opposed to a realistic simulation of
the evolution of an actual computing system, it nevertheless shows that the present
model fails to safeguard the prerequisite realism conditions set by the authors.

Defying the Turing barrier 79

The problem I am trying to point out is not that advice functions are unable to
model the non-uniformity that is found in modern computing systems as a result
of software or hardware updates; on the contrary, my objection is that they are too
powerful and that a more natural model should be sought that fits the real-world
situation more tightly as to not create false impressions in terms of computing
power. I will now discuss the two properties of the present model that I think are
mainly responsible for these false impressions and propose a simple solution.

First, the authors’ choice to model system updates as a function is, though
not incorrect technically, in my opinion unnatural and somewhat misleading. In
the ITMA model, the input from the unpredictable environment is assumed to
appear spontaneously at the input ports during computation, without specification
in advance. The execution of system updates however—while likewise described
by the authors as “unpredictable”—is modelled by a definite function, creating
the impression that their contents and execution times are established beforehand
for the course of the entire computation. Furthermore, functions are often used in
mathematics to describe some meaningful pattern, be it definable in a recursive
way or not. Especially in the case of advice functions, they are expected to be
prescriptive: their values are expected to be related to their arguments according to
some mathematical principle. In the ITMA model of Van Leeuwen and Wiedermann,
on the other hand, advice functions are used in a purely descriptive way: there
is no meaningful or mathematically predictable relation between arguments (i.e.,
time) and values (i.e., contents of system updates); it is more or less random.
This property, in combination with the infinite duration of computations, does
make the advice functions in the ITMA model technically non-recursive, but in
a way that is fundamentally different from the non-recursiveness of a procedure
that solves the halting problem. Van Leeuwen and Wiedermann recognize this
difference (van Leeuwen and Wiedermann 2001a, pp. 1152–1153):

Do the results in this paper mean that now we are able to solve some
concrete, a priori given undecidable problems with them? The answer
is negative. What we have shown is that some computational evolution-
ary processes which by their very definition are of an interactive and
unpredictable nature, can be modeled a posteriori by interactive Turing
machines with advice. In principle, observing such a running process
in sufficient detail we can infer only a posteriori, after we noted them,
all its computational and evolutionary characteristics (such as the time
and the nature of their changes).

In other words, in reality system updates “present” themselves to a computing
machine in irregular and unpredictable ways very similar to those in which ordinary
input values appear at input ports. I therefore believe that advice functions, which
are mainly associated with prescriptive patterns and even a priori undecidability,
are a rather unnatural choice for modeling system updates.

A second reason for rejecting advice functions as a model of system updates is
that advice functions are easily mistaken as being an integral part of the Turing
machine, while operators effectuating system changes clearly are not part of the

80 Chapter 6

computer. In fact, in the tradition of oracle machines and Turing machines with
advice, machines consulting non-recursive oracles are commonly regarded as having
super-Turing computing power. In more abstract complexity-theoretic settings it
can be useful to consider the advice function as a component within the machine,
but in our concrete scenario it should be clear that the source of changes in system
architecture (be it a human operator or another system to which it is connected
via, for example, the internet) is strictly external to the machine. Therefore, we
should treat the operator’s contributions to the computational process as such and
avoid the spurious impression that the machine as a whole acquires super-Turing
computing powers as a result of the execution of system updates.

In order to better reflect the real-world situation, we could choose not to
implement a distinct mechanism within the machine for simulating hardware or
software updates, but rather process the contents of these updates via the “regular”
input channels. Like input values, we should not assume system updates to follow
any predictable pattern. In accordance with Van Leeuwen and Wiedermann’s
realism conditions, we want their contents to be in principle independent from
any ongoing computational processes. It is therefore unnecessary and, as we have
seen in the case of advice functions, even rather undesirable to extend existing
definitions by equipping Turing machines with dedicated quasi-integrated modules
for simulating system updates. A system update should be presented to the machine
as an independent input value. This way of modeling system updates does not
require the development of any new models, but can be easily implemented within
existing frameworks such as the classical Turing machine or Van Leeuwen and
Wiedermann’s interactive Turing machine.

In interactive Turing machines, for example, one input port may be reserved
for receiving system updates. At each time step, there either appears a new update
at this port or nothing happens at all. An update, unlike regular input values, may
consist of more than one symbol. The machine will at each step of a computation
first check for available updates. If any are available, these will be executed before
the values at the regular input ports are read. As we have seen in section 6.1.2,
infinite interactive computations can be simulated up to an arbitrary finite number
of time steps by classical Turing machines. In this scenario, too, can system updates
be simulated as regular input values. Similarly to the interactive scenario, one
tape of the Turing machine is reserved for system updates. Since only a finite
portion of the process is simulated, the number of system updates that could have
been executed in the relevant time frame must be finite, too. This means that
before the simulation is started, the “update tape” can be prepared with the entire
update history, where each update is marked with the time step at which it should
be offered to the machine. During simulation, the Turing machine will at each
simulated time step check the update tape for updates and, if any are specified for
the concerned time step, execute them before processing regular input values.

The approaches presented here ensure that any external information entering
the system is explicitly registered as input, thereby preventing the false impression
of super-Turing computing power as a result of “hidden” inputs. In the purely
hypothetical case then that system updates are used to compute, say, non-recursive

Defying the Turing barrier 81

functions, it will always be fully transparent that this super-Turing computing
power did not arise from within the machine itself but was injected from an external
source. In the end we must conclude that non-uniformity of programs as caused by
system changes does not pose a significant threat to the classical Turing machine
paradigm. The use of advice functions to model this phenomenon, while strictly
speaking not “incorrect”, turns out to be a superfluous brute force solution to a
problem that can be elegantly solved without appeal to any additional machinery.

6.2 The Extended Church-Turing thesis

According to Van Leeuwen and Wiedermann, the three new ingredients described
in the previous section put such a strain on the Turing machine paradigm, that in
its original form it does not suffice to describe modern computation anymore. They
therefore propose to extend the Church-Turing thesis accordingly (Van Leeuwen
and Wiedermann 2001a, p. 1143):

Extended Church-Turing thesis Any (non-uniform interactive) compu-
tation can be described in terms of interactive Turing machines with advice.

Analysis Extended Church-Turing thesis (ECTT)

D := The set of all computational processes
U(x) := “x is non-uniform and interactive” (as defined in Van Leeu-

wen and Wiedermann 2001a)
M := The set of Interactive Turing Machines with Advice (as

defined in Van Leeuwen and Wiedermann 2001a)
C(M, x) := “Over the course of one (possibly infinite) run,M can ingest

x’s full input history and transform it into x’s full output
history.”

On the basis of the arguments presented in the previous section, I believe that there
is no necessity for an extension of CTT such as the one proposed by Van Leeuwen
and Wiedermann. We have seen that the classical Turing machine is perfectly
capable of simulating all three of the new ingredients, showing that they have
brought about no fundamental changes in computing power.

When breaking down ECTT as we did in our model above, we may notice
another oddity. Most CTT versions compare some model of computation to a
class of mathematical or mechanical objects that, depending on the input values
that they receive, produce different output values. In other words, these objects,
such as functions or physical machines, represent a certain input-output pattern.
The extended Church-Turing thesis, on the other hand, considers as its domain

82 Chapter 6

not general input-output patterns, but isolates individual processes that convert
a distinct input stream into a distinct output stream, without regard for the
mechanisms from which they originated. In effect, a model instance M aiming
to simulate some computation need only successfully transform the input to that
particular computation into the correct output, in principle allowing arbitrary
behavior on any other input. It seems more natural to consider not individual
computations, but the components performing them as the domain of this thesis.
Using the terminology from Van Leeuwen and Wiedermann (2006), a model instance
M aiming to simulate a component C then needs to produce the correct output to
any input history originating from the environment E.

Why did Van Leeuwen and Wiedermann not take this approach with their
extended Church-Turing thesis? The answer might be found in another disadvantage
of the use of advice functions. In order to see this, let us extend the notational
conventions of Van Leeuwen and Wiedermann (2006) to include non-uniformity
and describe the computations of a non-uniform interactive component C with
k input ports and l output ports as an interaction tuple (e1, . . . , ek, c1, . . . , cl, u),
abbreviated3 as (e, c, u), where ei = ((ei)1, (ei)2, . . .) is the i-th input stream,
cj = ((cj)1, (cj)2, . . .) is the j-th output stream, and u = (u1, u2, . . .) is the update
stream. For each t ∈ N0, un is a string that is either empty or represents the
contents of a system update. At each time step t, C first checks whether ut contains
a system update or not. If yes, the system update is processed. Next, C reads and
processes the (possibly empty) symbols et that have appeared at its input ports
and writes the (possibly empty) symbols ct to its output ports.

As with the input streams, the contents of the updates that will be offered to a
component are completely unpredictable and unknown at the start of computation.
Since the component itself operates deterministically, the course of the compu-
tational process is determined entirely by the contents of the input and update
streams, which will each evolve along one of infinitely many possible paths. The
disadvantage of modeling system updates with advice functions that emerges here
is that a given advice function can model only one specific course of the computa-
tional process. As a result, each ITMA does not model a non-uniform interactive
component as a whole, but only a single possible course of its computational process.
If we wish to simulate an alternative course for the same component, we need to
replace our advice function, resulting in a different ITMA.

This situation can be easily resolved by adopting the approach outlined at the
end of section 6.1.3 and disposing of advice functions altogether, instead reserving a
regular input channel for receiving system updates. This means that in our model
of ECTT, we can not only change our domain D such that it becomes a thesis
about computing devices rather than individual computations, but also define M
to be simply the set of Interactive Turing Machines (i.e., without advice), without
sacrificing computational power. Furthermore, we established that the interactive
computations of ITMs and even ITMAs can be satisfactorily simulated in a finite

3 We will also write et to denote the t-th symbols of all k input streams, i.e., (e1)t, . . . , (ek)t.
Also, following van Leeuwen and Wiedermann (2006), we will write preft(e) to denote the length-t
prefixes of all input streams.

Defying the Turing barrier 83

way on a regular (i.e., non-interactive and without advice) Turing machine. If we
carry through this change in our model, we obtain the following model:

Analysis Extended Church-Turing thesis (modified)

D := The set of discrete modern computing devices
U(x) := “Each of x’s computations can be described by an interaction

tuple (e, c, u).”
M := The set of classical Turing machines

C(M, x) := “For any t∈N0, when provided with preft(e) and preft(u) of
some computation (e, c, u) of x,M produces preft(c) within
a finite amount of time.”

Chapter 7

DI SCUS S ION

In this master’s thesis we have discussed the historical origins, legacy, and episte-
mological status of the Church-Turing thesis, as well as its role and relevance in
today’s computational paradigm. Embedded in the context of Hilbert’s formalist
program and inspired by Gödel’s shocking incompleteness results, the 1930s saw the
development of several equivalent models of computation. The quasi-mathematical
hypothesis that these models, or specifically that of the Turing machine, adequately
capture the intuitive notion of computation that existed at the time, has become
known as the Church-Turing thesis. Since the 1930s, the Church-Turing thesis has
been the subject of heated philosophical debates, inspired numerous adaptations
and extensions, initiated entire new branches of mathematics, and was arguably
the spark that ignited the digital revolution which has been radically changing
the world to this day. In this final chapter, we will reflect on the contents of this
thesis, draw a final conclusion, evaluate our methods and explore further research
directions.

7.1 Summary

We designed an analytical framework that uses the common logical structure of
CTT and its derivatives to enable their structured breakdown into components and
facilitate effective comparison. We used this framework to model several historical
and modern versions of CTT, which exposed a great variety in approaches and
underlying assumptions about the nature of computation. First, we reviewed the
historical background from which CTT emerged and analyzed the original papers
by Church, Turing, and others in which it was first communicated. Next, we
discussed a number of criticisms and alternative versions that appeared in response
to CTT. One particularly interesting philosophical remark came from Kurt Gödel,
who on the one hand praised Turing for his correct analysis of human mechanical
computation, but on the other hand criticized him for asserting that the finite
and mechanical nature of computation was a result of limitations on the human

85

86 Chapter 7

mind. Gödel believed that instead, the human mind is immaterial and “infinitely
surpasses” any finite machine. We argued that from Gödel’s perspective, the finite
and mechanical nature of computation was more likely to be rooted in the role of
formal systems in Hilbert’s finitist ideology.

Other CTT versions that we discussed include Gandy’s thesis about machine
computation, and Deutsch’s thesis about physical computation in general. In
particular, we analyzed a paper by Van Leeuwen and Wiedermann from 2001, in
which the authors argued that due to three new ingredients of modern computing,
the Turing machine did no longer suffice in describing the present day computational
paradigm. Instead, they proposed a new model called Interactive Turing Machines
with Advice (ITMA), which extends the classical Turing machine in two ways.
First, interactivity and infinity of operation are accommodated by allowing the
machine to receive a continuous stream of input symbols throughout the process of
computation, as opposed to a finite input string that is prepared before the start of
computation. Second, non-uniformity of programs is accommodated by equipping
the machine with an advice function whose values are used to simulate software or
hardware updates that are executed in the course of computation.

While the model by Van Leeuwen and Wiedermann is not faulty, we argued
that the three ingredients that were put forward by the authors do not give rise to
properties that require a more powerful model of computation than the classical
Turing machine. For each of the three ingredients, we showed how they can be
satisfactorily modeled using a classical Turing machine. While a Turing machine
cannot model the temporal aspects of interactive computation, in the sense that it
can process input values that are presented spontaneously throughout the process of
computation, it can nevertheless in an “offline” fashion transform any finite prefix of
one or multiple input streams of an interactive computation into the corresponding
output streams. This ability to realize a certain input-output relation, regardless
of the temporal or algorithmic particularities, is what constitutes the essence of
computing power.

Concerning the alleged infinity of modern computations and the inability of
classical Turing machines to simulate this infinity, we argued that, first, in reality
computations never actually reach a state of “true” infinity, and second, that
the ability to approximate infinite processes up to an arbitrary finite degree is
sufficient for the type of simulation considered here. We furthermore showed that
non-uniformity of programs, as caused by the execution of system updates, can
be perfectly processed via a regular input tape. This solution not only obviates
the need for additional machinery, but also makes the computational process more
transparent than is the case with advice functions, which obscure part of the
transformation process from input to output.

Finally, we used the considerations above to reformulate Van Leeuwen and
Wiedermann’s Extended Church-Turing thesis in terms of regular Turing machines.
This reformulation had the additional advantage that each Turing machine can be
used to simulate every possible computational process of a non-uniform interactive
computing device, whereas the specificity of advice functions prohibited ITMAs
from being able to simulate more than one possible course of a computational

Discussion 87

process.

7.2 Conclusion

The world in which the Church-Turing thesis was first posed was in many respects
a different world from the one we live in today. In just eighty years, CTT has
seen the deceptively simple idea of an automatic computing machine evolve into an
omnipresent physical reality that has reshaped our daily lives in ways we could not
have imagined. In this light, it is no wonder that the relevance of CTT to today’s
computational paradigm has been called into question by critics. It is difficult to
imagine that a primitive device such as the Turing machine could account for the
immensely complex behavior displayed by modern artificial intelligence. Yet, it
seems that the Turing machine has stood the test of time surprisingly well. Although
modern computers have substantially benefited from an exponential growth of
processing power and through peripheral devices and massive interconnectivity can
achieve things that a bare Turing machine cannot physically achieve in a reasonable
amount of time, “under the hood” the principles governing the computational
process have not fundamentally changed.

That said, if we wish to accurately evaluate the relevance and adequateness
of CTT in today’s computational paradigm, we should first make precise what
we mean by “Church-Turing thesis”. As we have seen, a plethora of related but
essentially different versions of CTT have entered the scene that tend to obscure
the original intention of CTT: to characterize the process of human computation.
Even Gödel, who believed that human mental processes in general could never be
simulated by finite machines, adhered to the idea that the process of computation,
as carried out by humans, was nevertheless of a finite and mechanical nature. We
may safely assert that in its original human interpretation, CTT is as credible today
as it was in the 1930s.

Whether the Turing machine is an adequate model of modern computation
is, thus, strictly speaking a different question that has nothing to do with the
validity of CTT. On the other hand, human computation was virtually the only
type of computation that existed in the 1930s, which means that at the time,
human computation was computation in general. It is therefore still worth asking
if our modern understanding of the concept of computation can still be adequately
modeled by the Turing machine. As regards the three properties of interaction,
infinity of operation, and non-uniformity of programs as described by Van Leeuwen
and Wiedermann (2001a), I contend that the Turing machine still suffices and does
not need to be replaced with a more extensive or more powerful model.

There are several other possible directions in which CTT can be “stretched”.
Deutsch (1985) proposed to not only consider computations in the classical sense,
as performed by either humans or human-made machines, but physical processes
in general. While considering all classical models of computation incompatible
with quantum theory and promoting the theoretical quantum computer instead
for several alleged benefits, Deutsch admits that even the quantum computer will

88 Chapter 7

not be able to solve classically undecidable problems, such as the halting problem.
Another direction that could be explored is inspired by Gödel’s argument against
the finiteness of the human mind. Note that if all physical processes turned out
to be Turing-computable, this would not necessarily invalidate Gödel’s argument.
As Wang (1974) pointed out, Gödel admitted that the human brain “functions
basically like a digital computer”. On the other hand, he strongly rejected the idea
that there exists no mind separate from matter. A CTT-version that claimed the
Turing-computability of all physical processes of the human brain would therefore
probably have met with Gödel’s approval, whereas he believed that the human
mind as a whole, which he might have conceived as an entity consisting of a physical
brain receiving input from an immaterial source, does transcend the Turing barrier.

In this thesis we have pointed out that no serious arguments exist against the
validity of the original, human version of CTT. Additionally, we have encountered
no convincing counterexamples to the adequateness of the Turing machine in
modeling today’s computational paradigm, which led us to propose an extension of
CTT that not only applies to human computation, but to the interactive, infinite,
and non-uniform computations as performed by modern computers as well. As
several authors such as Emil Post and Stephen Kleene have argued in regard
to the epistemological status of CTT in its original form, I believe it is equally
difficult if not impossible to provide a conclusive proof for the stronger assertion
that modern computation can be simulated by Turing machines. Yet, we can state
that its credibility is at least reinforced by the fact that each of the three potential
counterexamples discussed in this thesis proved unconvincing after all.

7.3 Further research directions

Of course, by no means do I wish to assert that the survey presented here is
exhaustive in the sense that it has considered all available criticisms and alternatives
to CTT. A decisive answer about the validity of CTT can therefore never be given.
Many interesting developments in modern computing were left unexplored: while
we scratched the surface of quantum computing, it would be worth investigating
the subject in greater depth. In recent years, quantum computing has attracted
attention due to speculations, and finally an official announcement by Google in
2019 that so-called quantum supremacy had been achieved (Arute et al. 2019).
While still a major complexity-theoretic breakthrough, quantum supremacy does not
mean that functions have become computable that are not (in theory) computable
by a Turing machine.

B I BL IOGRAPHY

Ackermann, Wilhelm F.
1928 Zum Hilbertschen Aufbau der reellen Zahlen, Mathematische Annalen, vol. 99,

pp. 118–133, doi: 10.1007/BF01459088. English translation in Van Heijenoort
(1967, pp. 493–507).

Arute, Frank, Kunal Arya, Ryan Babbush, Dave Bacon, et al.
2019 Quantum supremacy using a programmable superconducting processor, Na-

ture, vol. 574, pp. 505–510, doi: 10.1038/s41586-019-1666-5.

Bernstein, Ethan and Umesh Vazirani
1997 Quantum Complexity Theory, SIAM Journal on Computing, vol. 26, pp. 1411–

1473, doi: 10.1137/S0097539796300921.

Cabessa, Jérémie and Alessandro E. P. Villa
2014 On Interactively Computable Functions, http://jcabessa.byethost32.com/

papers/CabessaVillaCiE14.pdf (visited on May 15, 2020).

Church, Alonzo
1932 A Set of Postulates for the Foundation of Logic, Annals of Mathematics,

vol. 33, pp. 346–366, doi: 10.2307/1968337.
1933 A Set of Postulates For the Foundation of Logic (second paper), Annals of

Mathematics, vol. 34, pp. 839–864, doi: 10.2307/1968702.
1936a An Unsolvable Problem of Elementary Number Theory, American Journal of

Mathematics, vol. 58, pp. 345–363, doi: 10.2307/2371045.
1936b A Note on the Entscheidungsproblem, The Journal of Symbolic Logic, vol. 1,

pp. 40–41, doi: 10.2307/2269326.
1937a [Review of “On Computable Numbers, with an Application to the Entschei-

dungsproblem” by A. M. Turing], The Journal of Symbolic Logic, vol. 2,
pp. 42–43, doi: 10.2307/2268810.

1937b [Review of “Finite combinatory processes—formulation 1” by E. L. Post], The
Journal of Symbolic Logic, vol. 2, p. 43, doi: 10.2307/2268811.

1938 The constructive second number class, Bulletin of the American Mathematical
Society, vol. 44, pp. 224–232, doi: 10.1090/S0002-9904-1938-06720-1.

89

https://doi.org/10.1007/BF01459088
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1137/S0097539796300921
http://jcabessa.byethost32.com/papers/CabessaVillaCiE14.pdf
http://jcabessa.byethost32.com/papers/CabessaVillaCiE14.pdf
https://doi.org/10.2307/1968337
https://doi.org/10.2307/1968702
https://doi.org/10.2307/2371045
https://doi.org/10.2307/2269326
https://doi.org/10.2307/2268810
https://doi.org/10.2307/2268811
https://doi.org/10.1090/S0002-9904-1938-06720-1

90 Chapter 7

Church, Alonzo and J. Barkley Rosser
1936 Some Properties of Conversion, Transactions of the American Mathematical

Society, vol. 39, pp. 472–482, doi: 10.2307/1989762.

Cook, Stephen A. and Robert A. Reckhow
1973 Time bounded random access machines, Journal of Computer and System

Sciences, vol. 7, pp. 354–375, doi: 10.1016/S0022-0000(73)80029-7.

Copeland, B. Jack
1997 The Church-Turing Thesis, in Stanford Encyclopedia of Philosophy, ed. by

Edward N. Zalta, https://plato.stanford.edu/entries/church-turing/
(visited on May 29, 2020).

2004 (ed.) The Essential Turing: Seminal Writings in Computing, Logic, Philosophy,
Artificial Intelligence, and Artificial Life: Plus The Secrets of Enigma (Oxford:
Clarendon Press).

Copeland, B. Jack and Oron Shagrir
2019 The Church-Turing thesis: logical limit or breachable barrier?, Communica-

tions of the ACM, vol. 62, no. 1, pp. 66–74, doi: 10.1145/3198448.

Curry, Haskell B.
1930 Grundlagen der Kombinatorischen Logik, American Journal of Mathematics,

vol. 52, pp. 509–536, doi: 10.2307/2370619.

Davies, Donald W.
2004 Corrections to Turing’s Universal Computing Machine, in Copeland (2004),

pp. 103–124.

Davis, Martin D.
1965 (ed.) The Undecidable: Basic Papers On Undecidable Propositions, Unsolvable

Problems And Computable Functions (Hewlett, N.Y.: Raven Press).
1982 Why Gödel didn’t have Church’s thesis, Information and Control, vol. 54,

pp. 3–24, doi: 10.1016/S0019-9958(82)91226-8.
2018 The Universal Computer: The Road from Leibniz to Turing, 3rd ed. (Boca

Raton, Fla.: CRC Press), doi: 10.1201/9781315144726.

Davis, Martin D., Ron Sigal, and Elaine J. Weyuker
1994 Computability, Complexity, and Languages: Fundamentals of Theoretical Com-

puter Science, 2nd ed. (San Francisco: Morgan Kaufmann), doi: 10.1016/
B978-0-08-050246-5.50012-X.

Deutsch, David E.
1985 Quantum theory, the Church-Turing principle and the universal quantum

computer, Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences, vol. 400, pp. 97–117, doi: 10.1098/rspa.1985.0070.

https://doi.org/10.2307/1989762
https://doi.org/10.1016/S0022-0000(73)80029-7
https://plato.stanford.edu/entries/church-turing/
https://doi.org/10.1145/3198448
https://doi.org/10.2307/2370619
https://doi.org/10.1016/S0019-9958(82)91226-8
https://doi.org/10.1201/9781315144726
https://doi.org/10.1016/B978-0-08-050246-5.50012-X
https://doi.org/10.1016/B978-0-08-050246-5.50012-X
https://doi.org/10.1098/rspa.1985.0070

Bibliography 91

Ewald, William B.
1996 (ed.) From Kant to Hilbert: A Source Book in the Foundations of Mathematics,

vol. 2 (Oxford: Oxford University Press).

Gandy, Robin O.
1980 Church’s Thesis and Principles for Mechanisms, in Studies in Logic and the

Foundations of Mathematics, vol. 101: The Kleene Symposium, ed. by Jon
Barwise, H. Jerome Keisler, and Kenneth Kunen (Elsevier), pp. 123–148, doi:
10.1016/S0049-237X(08)71257-6.

1988 The Confluence of Ideas in 1936, in The Universal Turing Machine: A Half-
Century Survey, ed. by Rolf Herken, 2nd ed. (Oxford: Oxford University
Press), pp. 51–102.

Gardner, Martin
1970 Mathematical Games. The fantastic combinations of John Conway’s new

solitaire game “life”, Scientific American, vol. 223, no. 4, pp. 120–123, doi:
10.1038/scientificamerican1070-120.

Gödel, Kurt F.
1929 Über die Vollständigkeit des Logikkalküls, Doctoral dissertation, University

of Vienna. Reprinted and translated in Gödel (1986, pp. 60–101), rewritten
in Gödel (1930).

1930 Die Vollständigkeit der Axiome des logischen Funktionenkalküls, Monatshefte
für Mathematik und Physik, vol. 37, pp. 349–360, doi: 10.1007/BF01696781.
English translation in Van Heijenoort (1967, pp. 582–591) and Gödel (1986,
pp. 102–123).

1931 Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I, Monatshefte für Mathematik und Physik, vol. 38, pp. 173–198,
doi: 10.1007/BF01700692. English translations in Davis (1965, pp. 4–38),
Van Heijenoort (1967, pp. 596–616), and Gödel (1986, pp. 144–195).

1933 The present situation in the foundations of mathematics, in Gödel (1995),
pp. 45–53.

1934 On undecidable propositions of formal mathematical systems, in Gödel (1986),
pp. 346–371. Notes taken by S. C. Kleene and J. B. Rosser of a series of
lectures given by Gödel at the Institute for Advanced Study in Princeton;
first printed in Davis (1965, pp. 41–74).

193? JUndecidable diophantine propositionsK, in Gödel (1995), pp. 164–175. Manu-
script taken from handwritten notes in English.

1951 Some basic theorems on the foundations of mathematics and their implications,
in Gödel (1995), pp. 304–323. Manuscript of Gödel’s “Gibbs Lecture”, given
at Brown University.

1972 Some Remarks on the Undecidability Results, in Gödel (1990), pp. 305–306.
1986 Collected Works, vol. I: Publications 1929–1936, ed. by Solomon Feferman,

John W. Dawson Jr., Stephen C. Kleene, Gregory H. Moore, et al. (New York:
Oxford University Press).

https://doi.org/10.1016/S0049-237X(08)71257-6
https://doi.org/10.1038/scientificamerican1070-120
https://doi.org/10.1007/BF01696781
https://doi.org/10.1007/BF01700692

92 Chapter 7

Gödel, Kurt F.
1990 Collected Works, vol. II: Publications 1938–1974, ed. by Solomon Feferman,

John W. Dawson Jr., Stephen C. Kleene, Gregory H. Moore, et al. (New York:
Oxford University Press).

1995 Collected Works, vol. III: Unpublished essays and lectures, ed. by Solomon
Feferman, John W. Dawson Jr., Warren Goldfarb, Charles Parsons, et al.
(New York: Oxford University Press).

Goldin, Dina Q.
2000 Persistent Turing machines as a model of interactive computation, in Lec-

ture Notes in Computer Science, vol. 1762: Foundations of Information and
Knowledge Systems, First International Symposium, FoIKS 2000, ed. by Klaus-
Dieter Schewe and Bernhard Thalheim (Berlin Heidelberg: Springer-Verlag),
pp. 116–135, doi: 10.1007/3-540-46564-2_8.

Goldin, Dina Q., Scott A. Smolka, Paul C. Attie, and Elaine L. Sonderegger
2004 Turing machines, transition systems, and interaction, Information and Com-

putation, vol. 194, pp. 101–128.

Graves, Alex, Greg Wayne, and Ivo Danihelka
2014 Neural Turing Machines, arXiv: 1410.5401.

Hartmanis, Juris and Richard E. Stearns
1965 On the Computational Complexity of Algorithms, Transactions of the Ameri-

can Mathematical Society, vol. 117, pp. 285–306, doi: 10.2307/1994208.

Hilbert, David
1900 Mathematische Probleme, Nachrichten von der Gesellschaft der Wissenschaf-

ten zu Göttingen, Mathematisch-physikalische Klasse, pp. 253–297. Lecture
given at the International Congress of Mathematicians in Paris, held 6–12
August 1900. Partial English translation in Ewald (1996, pp. 1096–1105).

1917 Axiomatisches Denken, Mathematische Annalen, vol. 78, pp. 405–415. Lecture
delivered to the Schweizerische Mathematische Gesellschaft, 11 September
1917. English translation in Ewald (1996, pp. 1105–1115).

1922 Neubegründung der Mathematik. Erste Mitteilung, Abhandlungen aus dem
Mathematischen Seminar der Universität Hamburg, vol. 1, pp. 157–177, doi:
10.1007/BF02940589. Series of lectures given at the University of Hamburg,
25–27 July 1921. English translation in Ewald (1996, pp. 1115–1134) and
Mancosu (1998, pp. 198–214).

1923 Die logischen Grundlagen der Mathematik, Mathematische Annalen, vol. 88,
pp. 151–165, doi: 10.1007/BF01448445. Lecture delivered to the Deutsche
Naturforscher Gesellschaft in Leipzig, September 1922. English translation in
Ewald (1996, pp. 1134–1148).

1926 Über das Unendliche, Mathematische Annalen, vol. 95, pp. 161–190, doi:
10.1007/BF01206605. Lecture delivered at the Weierstraß memorial meeting
of the Westfälische Mathematische Gesellschaft in Münster, 4 June 1925.
English translation in Van Heijenoort (1967, pp. 367–392).

https://doi.org/10.1007/3-540-46564-2_8
https://arxiv.org/abs/1410.5401
https://doi.org/10.2307/1994208
https://doi.org/10.1007/BF02940589
https://doi.org/10.1007/BF01448445
https://doi.org/10.1007/BF01206605

Bibliography 93

1929 Probleme der Grundlegung der Mathematik, in Atti del Congresso Interna-
zionale dei Matematici, Bologna 3–10 settembre 1928 (VI) (Bologna: Nicola
Zanichelli), vol. 1, pp. 135–141. Reprinted in Hilbert (1930b), of which an
English translation appeared in Mancosu (1998, pp. 227–233).

1930a Naturerkennen und Logik, Naturwissenschaften, vol. 18, pp. 959–963, doi: 10.
1007/BF01492194. Lecture given at the Kongress der Gesellschaft Deutscher
Naturforscher und Ärzte in Königsberg, September 1930. English translation
in Ewald (1996, pp. 1157–1165).

1930b Probleme der Grundlegung der Mathematik, Mathematische Annalen, vol. 102,
pp. 1–9, doi: 10.1007/BF01782335. English translation in Mancosu (1998,
pp. 227–233).

Hilbert, David and Wilhelm F. Ackermann
1928 Grundzüge der theoretischen Logik (Berlin: Julius Springer). English transla-

tion of the second edition (1938) in Hilbert and Ackermann (1950).
1950 Principles of Mathematical Logic, ed. by Robert E. Luce, trans. by Lewis

M. Hammond, George G. Leckie, and F. Steinhardt (New York: Chelsea
Publishing Company).

Hodges, Andrew
2012 Alan Turing: The Enigma (London: Vintage). Originally published in 1983

(UK: Burnett Books/Hutchinson; USA: Simon & Schuster).

Hofstadter, Douglas R.
1979 Gödel, Escher, Bach: an Eternal Golden Braid (New York: Basic Books).

Immerman, Neil
2004 Computability and Complexity, in Stanford Encyclopedia of Philosophy, ed. by

Edward N. Zalta, https://plato.stanford.edu/entries/computability/
(visited on Jan. 10, 2020).

Karp, Richard M. and Richard J. Lipton
1980 Some Connections Between Nonuniform and Uniform Complexity Classes, in

STOC ’80: Proceedings of the Twelfth Annual ACM Symposium on Theory of
Computing, ed. by Raymond E. Miller, Walter A. Burkhard, Richard J. Lipton,
and Seymour Ginsburg (New York: Association for Computing Machinery),
pp. 302–309, doi: 10.1145/800141.804678.

Kleene, Stephen C.
1936a General recursive functions of natural numbers, Mathematische Annalen,

vol. 112, pp. 727–742, doi: 10.1007/BF01565439.
1936b λ-definability and recursiveness, Duke Mathematical Journal, vol. 2, pp. 340–

353, doi: 10.1215/S0012-7094-36-00227-2.
1938 On Notation for Ordinal Numbers, The Journal of Symbolic Logic, vol. 3,

pp. 150–155, doi: 10.2307/2267778.

https://doi.org/10.1007/BF01492194
https://doi.org/10.1007/BF01492194
https://doi.org/10.1007/BF01782335
https://plato.stanford.edu/entries/computability/
https://doi.org/10.1145/800141.804678
https://doi.org/10.1007/BF01565439
https://doi.org/10.1215/S0012-7094-36-00227-2
https://doi.org/10.2307/2267778

94 Chapter 7

Kleene, Stephen C.
1943 Recursive Predicates and Quantifiers, Transactions of the American Mathe-

matical Society, vol. 53, pp. 41–73, doi: 10.2307/1990131.
1967 Mathematical Logic (New York: Wiley).
1981 Origins of Recursive Function Theory, Annals of the History of Computing,

vol. 3, pp. 52–67, doi: 10.1109/MAHC.1981.10004.

Kleene, Stephen C. and J. Barkley Rosser
1935 The Inconsistency of Certain Formal Logics, Annals of Mathematics, vol. 36,

pp. 630–636, doi: 10.2307/1968646.

Lewis, Harry R. and Christos H. Papadimitriou
1998 Elements of the Theory of Computation, 2nd ed. (Upper Saddle River, N.J.:

Prentice-Hall).

Mancosu, Paolo
1998 (ed.) From Brouwer to Hilbert: The debate on the foundations of mathematics

in the 1920s (New York: Oxford University Press).

Mancosu, Paolo and Richard Zach
2015 Heinrich Behmann’s 1921 lecture on the decision problem and the algebra of

logic, The Bulletin of Symbolic Logic, vol. 21, pp. 164–187, doi: 10.1017/
bsl.2015.10.

Marr, David C.
1982 Vision: A Computational Investigation into the Human Representation and

Processing of Visual Information (San Francisco: W.H. Freeman and Com-
pany).

Post, Emil L.
1936 Finite combinatory processes—formulation 1, The Journal of Symbolic Logic,

vol. 1, pp. 103–105, doi: 10.2307/2269031.
1941 Absolutely unsolvable problems and relatively undecidable propositions: Ac-

count of an anticipation, in Davis (1965), pp. 340–433.
1944 Recursively enumerable sets of positive integers and their decision problems,

Bulletin of the American Mathematical Society, vol. 50, pp. 284–316, doi:
10.1090/S0002-9904-1944-08111-1.

1947 Recursive unsolvability of a problem of Thue, The Journal of Symbolic Logic,
vol. 12, pp. 1–11, doi: 10.2307/2267170.

Rosser, J. Barkley
1936 Extensions of Some Theorems of Gödel and Church, The Journal of Symbolic

Logic, vol. 1, pp. 87–91, doi: 10.2307/2269028.

Russell, Bertrand A. W.
1902 Letter to Frege, in van Heijenoort (1967), pp. 124–125.

https://doi.org/10.2307/1990131
https://doi.org/10.1109/MAHC.1981.10004
https://doi.org/10.2307/1968646
https://doi.org/10.1017/bsl.2015.10
https://doi.org/10.1017/bsl.2015.10
https://doi.org/10.2307/2269031
https://doi.org/10.1090/S0002-9904-1944-08111-1
https://doi.org/10.2307/2267170
https://doi.org/10.2307/2269028

Bibliography 95

Schönfinkel, Moses I.
1924 Über die Bausteine der mathematischen Logik, Mathematische Annalen,

vol. 92, pp. 305–316, doi: 10.1007/BF01448013.

Shagrir, Oron
2002 Effective Computation by Humans and Machines,Minds and Machines, vol. 12,

pp. 221–240, doi: 10.1023/A:1015694932257.
2006 Gödel on Turing on Computability, in Ontos Mathematical Logic, vol. 1:

Church’s Thesis After 70 Years, ed. by Adam Olszewski, Jan Woleński, and
Robert Janusz (Frankfurt: De Gruyter, Ontos Verlag), pp. 393–419.

Shannon, Claude E.
1956 A universal Turing machine with two internal states, in Annals of Mathematics

Studies, vol. 34: Automata Studies, ed. by Claude E. Shannon and John
McCarthy (Princeton: Princeton University Press), pp. 157–165, doi: 10.
1515/9781400882618-007.

Sieg, Wilfried
1994 Mechanical Procedures and Mathematical Experience, in Mathematics and

Mind, ed. by Alexander George (New York: Oxford University Press), pp. 71–
117.

1997 Step by Recursive Step: Church’s Analysis of Effective Calculability, The
Bulletin of Symbolic Logic, vol. 3, pp. 154–180, doi: 10.2307/421012.

2002 Calculations by man and machine: conceptual analysis, in Lecture Notes in
Logic, vol. 15: Reflections on the Foundations of Mathematics: Essays in
Honor of Solomon Feferman, ed. by Wilfried Sieg, Richard Sommer, and
Carolyn Talcott (Ithaca, N.Y.: Association for Symbolic Logic, Cambridge
University Press), pp. 390–409, doi: 10.1017/9781316755983.019.

2006 Gödel on computability, Philosophia Mathematica, vol. 14, pp. 189–207, doi:
10.1093/philmat/nkj005.

Siegelmann, Hava T. and Eduardo D. Sontag
1992 On the computational power of neural nets, in COLT ’92: Proceedings of

the fifth annual workshop on Computational learning theory, ed. by David
Haussler (New York: Association for Computing Machinery), pp. 440–449,
doi: 10.1145/130385.130432.

Sipser, Michael F.
2013 Introduction to the Theory of Computation, 3rd ed. (Boston, Mass.: Cengage

Learning).

Turing, Alan M.
1936–7 On Computable Numbers, with an Application to the Entscheidungsproblem,

Proceedings of the London Mathematical Society, 2nd ser., vol. 42, pp. 230–265,
doi: 10.1112/plms/s2-42.1.230. Corrected in Turing (1938).

https://doi.org/10.1007/BF01448013
https://doi.org/10.1023/A:1015694932257
https://doi.org/10.1515/9781400882618-007
https://doi.org/10.1515/9781400882618-007
https://doi.org/10.2307/421012
https://doi.org/10.1017/9781316755983.019
https://doi.org/10.1093/philmat/nkj005
https://doi.org/10.1145/130385.130432
https://doi.org/10.1112/plms/s2-42.1.230

96 Chapter 7

Turing, Alan M.
1938 On Computable Numbers, with an Application to the Entscheidungsproblem.

A Correction, Proceedings of the London Mathematical Society, 2nd ser.,
vol. 43, pp. 544–546, doi: 10.1112/plms/s2-43.6.544.

1939 Systems of Logic Based on Ordinals, Proceedings of the London Mathematical
Society, 2nd ser., vol. 45, pp. 161–228, doi: 10.1112/plms/s2-45.1.161.

1947 Lecture on the Automatic Computing Engine, in Copeland (2004).
1948? Draft of a Letter from Turing to Alonzo Church Concerning the Post Critique,

in Copeland (2004), p. 102.

Van Heijenoort, Jean L. M.
1967 (ed.) From Frege to Gödel: A Source Book in Mathematical Logic, 1879–1931

(Cambridge, Mass.: Harvard University Press).

Van Leeuwen, Jan and Jiří Wiedermann
2000 On Algorithms and Interaction, in Lecture Notes in Computer Science,

vol. 1893: Mathematical Foundations of Computer Science 2000, 25th In-
ternational Symposium, MFCS 2000, ed. by Mogens Nielsen and Branislav
Rovan (Berlin Heidelberg: Springer-Verlag), pp. 99–113, doi: 10.1007/3-
540-44612-5_7.

2001a The Turing Machine Paradigm in Contemporary Computing, in Mathematics
Unlimited — 2001 and Beyond, ed. by Björn Engquist and Wilfried Schmid
(Berlin Heidelberg: Springer-Verlag), pp. 1139–1155, doi: 10.1007/978-3-
642-56478-9_59.

2001b Beyond the Turing limit: Evolving interactive systems, in Lecture Notes
in Computer Science, vol. 2234: SOFSEM 2001: Theory and Practice of
Informatics, 28th Conference on Current Trends in Theory and Practice of
Informatics, ed. by Leszek Pacholski and Peter Ružička (Berlin Heidelberg:
Springer-Verlag), pp. 90–109, doi: 10.1007/3-540-45627-9_8.

2001c A computational model of interaction in embedded systems. Technical Report
UU-CS-2001-02, Department of Computer Science, Utrecht University.

2006 A Theory of Interactive Computation, in Interactive Computation: The New
Paradigm, ed. by Dina Q. Goldin, Scott A. Smolka, and Peter Wegner (Berlin
Heidelberg: Springer-Verlag), pp. 119–142, doi: 10.1007/3-540-34874-3_6.

Wang, Hao
1974 From Mathematics to Philosophy (London: Routledge & Kegan Paul), doi:

10.4324/9781315542164.
1987 Reflections on Kurt Gödel (Cambridge, Mass.: The MIT Press).

Webb, Judson C.
1980 Synthese library, vol. 137: Mechanism, Mentalism, and Metamathematics:

An Essay on Finitism (Dordrecht: Springer Science+Business Media), doi:
10.1007/978-94-015-7653-6.

1990 Introductory note to [Gödel (1972)], in Gödel (1990), pp. 281–304.

https://doi.org/10.1112/plms/s2-43.6.544
https://doi.org/10.1112/plms/s2-45.1.161
https://doi.org/10.1007/3-540-44612-5_7
https://doi.org/10.1007/3-540-44612-5_7
https://doi.org/10.1007/978-3-642-56478-9_59
https://doi.org/10.1007/978-3-642-56478-9_59
https://doi.org/10.1007/3-540-45627-9_8
https://doi.org/10.1007/3-540-34874-3_6
https://doi.org/10.4324/9781315542164
https://doi.org/10.1007/978-94-015-7653-6

Bibliography 97

Wegner, Peter
1997 Why Interaction is More Powerful Than Algorithms, Communications of the

ACM, vol. 40, no. 5, pp. 80–91, doi: 10.1145/253769.253801.
1998 Interactive foundations of computing, Theoretical computer science, vol. 192,

pp. 315–351, doi: 10.1016/S0304-3975(97)00154-0.

Weiss, Gail, Yoav Goldberg, and Eran Yahav
2018 On the Practical Computational Power of Finite Precision RNNs for Language

Recognition, arXiv: 1805.04908.

Wolfram, Stephen
1985 Undecidability and Intractability in Theoretical Physics, Physical Review

Letters, vol. 54, pp. 735–738, doi: 10.1103/PhysRevLett.54.735.

Zach, Richard
2003 Hilbert’s Program, in Stanford Encyclopedia of Philosophy, ed. by Edward N.

Zalta, https://plato.stanford.edu/entries/hilbert-program/ (visited
on Dec. 17, 2019).

https://doi.org/10.1145/253769.253801
https://doi.org/10.1016/S0304-3975(97)00154-0
https://arxiv.org/abs/1805.04908
https://doi.org/10.1103/PhysRevLett.54.735
https://plato.stanford.edu/entries/hilbert-program/

	Introduction
	Preliminaries
	Terminology
	Notation
	Models and instances
	Strings
	Gödel numbers
	Enumerations
	Characteristic functions and sequences

	Analytical framework
	Logical structure
	Domains
	Theta-translatability
	Some proofs of theta-equivalence
	Further extensions of the equivalence class

	Intuitive notion of computability
	Models of computation
	Inter-model differences
	Intra-model differences

	Formal definition of computation
	Relevance of the C predicate
	Finding a definition

	Historical background
	A foundational crisis
	Discovery of the undecidable
	General recursive functions
	l-definability and Church's thesis
	Turing machines

	Critical reception
	Church and Gödel on Turing's work
	Criticisms and modifications of the Turing machine
	Philosophical evaluations
	Epistemological disputes
	Sharpening informal notions
	Mind versus mechanism

	Stronger versions
	Machine computation
	Physical and quantum computation

	Defying the Turing barrier
	Three new ingredients
	Interaction
	Infinity of operation
	Non-uniformity of programs

	The Extended Church-Turing thesis

	Discussion
	Summary
	Conclusion
	Further research directions

	Bibliography

