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Abstract

Modern particle physics experiments are constantly searching for signs pointing to New
Physics (NP) beyond the Standard Model (SM). One possible source for finding NP effects
is Charge-Parity (CP) violation in particle-anti-particle mixing of neutral Bd(s) mesons.
The strength of this CP violation can be parameterised by a weak mixing phase φd(s).
Accurately measuring the weak mixing phase φd(s) and comparing it to SM predictions
can provide a signal for NP. Because these mixing phases cannot be directly calculated
from Quantum Chromodynamics (QCD), they require experimental input in order to
make predictions. It has been known for some time that the results for the mixing phases
based on experiments are contaminated by contributions from higher order Feynman
diagrams known as penguin diagrams. Controlling these penguin contributions will be
necessary in order to improve the precision of these mixing phases in the future. In
this thesis the formalism for controlling these penguin contributions is explored. Using
the GammaCombo software package a fit is made to the parameters describing these
contributions as well as the weak mixing phase φd(s). Experimental input in the form
of CP asymmetries in B0

s → J/ψK0
S, B0

d → J/ψK0
S, B0

d → J/ψπ0, B0
s → J/ψφ and

B0
d → J/ψρ0 decays is used for making a global fit to all parameters. This global fit

allows for a direct extraction of the mixing phase φd(s) from the experimental input and
does not require input from QCD calculations. The values for the mixing phases found
using this approach agree with currently available measurements. Finally, the signal for
NP is explored, as well as how it might change with more accurate experimental input
in the future.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics [1] has known a great amount of successes
over years, the biggest example of which is probably the discovery of the Higgs boson at
the LHC complex in 2012 [2, 3], answering a question that had stood for many years.
How do particles get their mass? Another question of similar importance, which as of yet
does not have a definitive answer, is why we only observe regular matter in our universe?
This question is interesting because when matter is created from pure energy, both matter
and antimatter are believed to be created in equal parts. However, some mechanism has
lead to an imbalance between matter and antimatter, leaving us only with the former.
A possible solution to this problem came to light with the discovery of Charge-Parity
(CP) violation in the kaon system by Cronin and Fitch in 1964 [4], providing one of the
three conditions for matter-antimatter asymmetry as proposed by Sakharov [5]. In this
experiment they observed the decay of a neutral kaon into two charged pions which, at
that time, could not be explained via conventional physics, thereby opening the door for
CP violating effects. CP violation, simply put, introduces an asymmetry between the
decay amplitudes of particles and their antiparticle counterparts. Using this and the fact
that matter can oscillate into antimatter and vice versa, it would lead to regular matter
becoming the dominant component in the universe over time1.

In 1974, in order to explain the phenomenon of CP violation, Kobayashi and Maskawa
proposed an extension of Cabbibo quark mixing matrix from 1963 [6, 7]. This new matrix,
which is now known as the Cabbibo-Kobayashi-Maskawa (CKM) matrix included three
generations of quarks and, most importantly, introduced complex coupling constants
between quarks. This complex coupling allows for CP violation to occur and, critically,
cannot exist with only two generations of quarks. Currently we know for a fact that at
least three generations of quarks exist, but at the time that Kobayashi and Maskawa
introduced their mixing matrix, only two had been discovered. The presence of this
third generation of quarks proposed by Kobayashi and Maskawa was slowly confirmed
over time by the discovery of the bottom (b) quark in 1977 [8] and the top (t) quark in
1995 [9]. Whilst CP violation had already been seen in the second generation of quarks
with the observation by Cronin and Fitch, it had yet to be observed in the third at
the start of this century. In 2002 these observations were finally made by the Belle and
BaBar collaborations at KEK and SLAC respectively by studying the B0

d → J/ψK0
S

1The argument can be made that this could in principle happen for either matter or antimatter,
but since the distinction between them depends entirely on convention you can always the define the
remainder of the two to be ”matter” and the other ”antimatter”
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decay channel [10, 11]. These discoveries confirmed the theory proposed by Kobayashi
and Maskawa and rewarded them with the Nobel prize in 2008 [12].

This brings us back to current times. Whilst the SM is a well established theory
at this point in time it still faces some problems, the most glaring one possibly being
a lack of quantum gravity, although more minor issue also exist. In order to fix these
problems many new models of New Physics (NP) have been proposed over the years, but
as of yet none of them have been experimentally observed. From this one can draw three
conclusions. First, the NP does not exist, which is very hard to prove although at some
point a theory can be rejected based on extensive lack of evidence. Second, the effects
introduced by the NP do not manifest at the level of energy that is currently achievable
with accelerators so in order to confirm the existence of NP, higher energies are required.
This is also known as the High Energy frontier. Third, the effects coming from NP are
very small and as of yet fall within the margin of error of experimental observations, so
in order to observe NP, higher accuracy is required. This is known as the High Precision
frontier.

It is this High Precision frontier that is being explored in Flavour Physics, which
concerns itself with the mechanisms behind quark and lepton flavour mixing within the
SM, in which the CKM matrix plays a major role. As it stands now, the CKM matrix
provides a good description of the mechanism for CP violation and flavour mixing, it
is however entirely possible for NP effects to enter in these processes. If this is the
case, accurate measurements of the CKM matrix parameters should show tensions with
SM predictions and lead to evidence of NP effects. One of these searches for NP is the
measurement of the weak mixing phases φs and φd which parameterise the strength of CP
violation in B0

s(d) − B̄0
s(d) mixing. The SM provides a description for this mixing process

via the CKM quark mixing matrix but it is possible for NP to mediate the process and
introduce a phase shift to the weak mixing phases. Therefore, by accurately measuring
these phases it might be possible to detect these NP effects and give an estimation for
the size of their contribution. The weak mixing phases mentioned above can be studied
through neutral B meson decays, which are sensitive to CP violation in B0

s(d) − B̄0
s(d)

mixing. The mixing phases φs and φd can in general be expressed as:

φq = φSM
q + φNP

q , (1.1)

with q ∈ (d, s). In order to accurately measure the SM phase and the NP contribution it
is important to know what processes contribute to the decay being studied. As with most
phenomena in high energy (particle) physics, these processes can be split into orders, with
each subsequent order contributing less to the overall process. For any sort of particle
interaction or decay, these processes are described by making use of Feynman diagrams,
which provide both a visual interpretation of the interaction, as well as a mathematical
blueprint with which the interaction rate can be calculated. For the neutral B decays
that will be studied in this thesis, the leading order contribution to these decays are
called tree diagrams, with the next-to-leading order being made up of penguin diagrams.
The former being named such because the diagram somewhat resembles a tree, the latter
got its name from John Ellis after losing a bar-room bet in 1977 [13]. Whilst the tree
diagrams entering these decays have long been understood and described, a formalism
for estimating the contributions coming from the penguin diagrams was first proposed by
Robert Fleischer in 1999 [14, 15]. In these papers he discussed a method for extracting
CKM angles from B → J/ΨX decays. This formalism was then expanded upon in
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2008 [16] in order to correct for the contribution of penguin diagrams to the B meson
mixing phases. So far the penguin parameters were determined in B0

d decays, but in
2010 [17] they were also determined from observations of CP violation in B0

s → J/ψK0
S.

Finally a roadmap for controlling the penguin contributions via several decay channels
was presented in 2015 by Kristof de Bruyn and Robert Fleischer [18]. It is this last paper
which forms the basis for the research done in this thesis.

Since the publication of the 2015 paper new results for CP violation parameters in
neutral B decays have become available and more results coming from the finished run
2 at LHC are expected soon. The completion of the Belle II detector at the SuperKEK
facility should also provide exciting new results for Flavour Physics. In light of this it is
useful to see what has changed since 2015 and give an update on the penguin parameters
entering the neutral B decays.

The goals for this thesis are to determine the size of the penguin parameters in neutral
B decays; To find the size of the penguin corrections to the weak mixing phases φd and
φs; And to obtain clean measurements of φd and φs. To aid further research on this topic
as well as inclusion of the penguin corrections into the global CKM parameter search, a
fitting module is developed within the GammaCombo software package from LHCb [19].

The outline of this thesis is as follows. In Chapter 2, I will explore the theoretical
background to discuss these penguin contributions, starting with a general introduction
of the SM and a more thorough explanation of the Feynman diagrams mentioned above.
This is followed by a discussion of the field of Flavour Physics and CP violation from
which we get the basic tools needed to measure the mixing phases. Finally, the formalism
for controlling the penguin contributions as put forward in previous papers is explored
in detail. In Chapter 3, I will discuss the GammaCombo fitting module in more detail,
followed by an overview of the decay channels that are used to measure the penguin
contributions to φd and φs. In Chapter 4, I will show the results of the fit to the penguin
parameters as well as a more detailed look at the interplay between the decay channels
that are used. Finally in Chapter 5, I will discuss these results and the analysis as a
whole and see what conclusions can be drawn from them, as well as an outlook for how
these results might be improved in the future.
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Chapter 2

Theoretical framework

2.1 Background information

Before I outline the formalism that is used for answering the questions asked in the
introduction it is useful to known the surroundings in which this formalism is placed. To
that end I will start with introducing background information which is needed to properly
understand the formalism for describing the penguin contributions.

2.1.1 The Standard Model of particle physics

Almost all research into particle physics that is done currently involves the Standard
Model (SM) in some capacity. In general terms, the Standard Model provides a descrip-
tion of the most fundamental particles in nature and the forces that act on these particles.
More specifically, the SM is a quantum field theory build up out of gauge symmetries.
These symmetries are

SU(3)colour × SU(2)I3 × U(1)Y , (2.1)

where colour is colour charge, I3 is weak isospin and Y is hypercharge. This is comple-
mented by spontaneous symmetry breaking of the SU(2)I3 × U(1)Y symmetries via the
Higgs mechanism [20, 21, 22], allowing the associated gauge bosons to have mass and
introducing an additional massive gauge boson, now known as the Higgs boson, in the
process.

These three symmetries describe all possible interactions that can occur between the
particles that make up the SM. All such interactions are mediated by gauge bosons, which
are generated by the symmetry groups listed above. In general any interaction between
particles can either transfer charge from one particle to the other, these are called charged
current (CC) interactions, or transfer no charge, called neutral current (NC) interactions.
Any charge that is transferred via these interactions has to be carried by the mediating
boson.

SU(3)colour describes the strong interactions between quarks. These interactions are
NC interactions mediated by a set of 8 gluons (g), each carrying a different colour charge.
This colour charge provides the basis for how quarks form bound states. The bound
states are required to have no net colour, or in other words, they must be white. A quark
can carry either a red, blue or green colour charge, which can be interchanged via strong
interactions, where the colour being transferred is carried by the mediating gluon.
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Charge (e) Spin (J) Mass

γ 0 1 0
g 0 1 0
Z0 0 1 91.1867± 0.0021 GeV
W± ±1 1 80.379± 0.012 GeV

Table 2.1: Basic properties of gauge bosons.[23]

Name Charge (e) Spin (I3) Mass (MeV)

up (u) 2/3 +1/2 2.16+0.49
−0.26

down (d) -1/3 -1/2 4.67+0.48
−0.17

charm (c) 2/3 0 (1.27± 0.02)× 103

strange (s) -1/3 0 92+11
−5

top (t) 2/3 0 (172.76± 0.3)× 103

bottom (b) -1/3 0 (4.18+0.03
−0.02)× 103

Table 2.2: Basic properties of quarks. [23]

SU(2)I3 × U(1)Y together describe both the electromagnetic and weak interactions
between particles. The electromagnetic interactions are NC interactions between charged
particles and are mediated by the photon (γ). The weak interactions between particles
are either CC interactions mediated by the W+ and W− bosons, or NC interactions
mediated by the Z0 boson. The properties of the gauge bosons are listed in Table 2.1.

Besides the gauge bosons the SM also contains the fundamental particles between
which the interactions can occur. These particles can be divided into two sectors, the
quark sector and the lepton sector. The quark sector contains 6 particles that can be
divided into three generations. An overview of these particles and some of their properties
is given in Table 2.2. Each generation of quarks forms a doublet with one up type and one
down type quark. The first generation consists of the up and the down quark, the second
generation consists of the charm and strange quark, and the third generation consists of
the top and bottom quark. They are the only particles that can interact with each other
via the strong force and because of this are always found in bound colour-neutral states
in nature.

Similar to the quark sector, the lepton sector can also be divided into three genera-
tions, each consisting of a doublet made up of a lepton, and the associated lepton-neutrino.
As with the quarks, also here the first generation features the lightest particles, and the
third generation the heaviest ones. The leptons carry unit charge and can not interact
via the strong force. Because of this they are found freely in nature. The neutrinos that
accompany the leptons in each generation carry no charge and as such only interact via
the weak force.

Another class of particles that is of importance but not directly a part of the SM
is that of hadrons. Hadrons are bound states of quarks with each hadron consisting
of either two or three quarks. Since hadrons do not carry colour only combinations of
three quarks, called baryons, or of quark anti-quark pairs, called mesons, are possible.
The most common examples of baryons are the proton and the neutron, which make up
all nuclear matter found in nature. The first meson that was observed experimentally
is the pion (π) which is made out of up and down quarks. A list of mesons that will
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Name Content Mass (MeV) JPC

π0 1√
2
(uū+ dd̄) 134.9768± 0.0005 0−+

K0 us̄ 497.611± 0.013 0−

J/ψ cc̄ 3096.900± 0.006 1−−

B0
d db̄ 5279.65± 0.12 0−

B0
s sb̄ 5366.88± 0.14 0−

ρ0 uū 775.26± 0.25 1−−

φ ss̄ 1019.461± 0.016 1−−

Table 2.3: Basic properties of mesons encountered in this thesis. Listed are the quark
content, mass and the J, C and P quantum numbers. The charge has been omitted since
all of these particles are neutral. For K0, B0

d and B0
s only the P number is known. For

the B mesons this is a predicted value. These three particles do not have a quantum
number C due to them not being C eigenstates. [23]

feature heavily in this thesis is given in Table 2.3. We can make yet another classification
of hadrons based on their angular momentum J. This mostly pertains to the way the
particle acts under the C, P and T transformations in the Hamiltonian. Particles with J
= 0 act like scalars, whilst particles with J = 1 act like vectors. For completeness sake,
if a particle has J = 2, it acts like a tensor, the only particle that is currently thought to
have J = 2 is the graviton, which is the gauge boson associated with quantum gravity.
Under this classification we can make a further division based on the P eigenvalue of the
particles. For the case J = 0, if P = +1, we get a ”proper” scalar states, if P = -1 we
get a pseudo-scalar state. For the case J = 1, with P = -1 we get vector states, with
P = +1 we get axial vector states. Looking at Table 2.3, π, K0 and the B mesons are
pseudo-scalar states and J/ψ, ρ and φ are vector states. The Particle Data Group [24]
keeps track of all currently known hadrons and SM particles, as well as current searches
for new particles and physics.

2.1.2 Feynman Diagrams

Now that we have seen the particles and forces described by the SM, I can start explaining
the interactions these particles can have and how these are described. In modern physics,
any interaction between particles is typically described by using Feynman diagrams, of
which a simple example can be seen in Fig. 2.1. A Feynman diagram is built up of external
lines, internal lines and vertices where these lines connect. An external line is one that
represents the particles entering or exiting the interaction. The internal lines represent all
particles involved in the interaction which are not observed after the fact. The internal
lines typically include the mediating gauge bosons and possibly quarks and/or leptons
running in loops. Whilst at face value this is a very intuitive system to use it follows
a set of strictly defined rules that dictate what each line represents. Using these rules
to read a diagram yields the formula necessary for calculating the transition amplitude
of the interaction shown in the diagram. One of the great strengths of the Feynman
diagrams is that it allows one to come up with new interactions that might not yet have
been observed, and consequently make predictions which can be tested with experiments.

When a particle decays, it can decay in to any state for which a Feynman diagram can
be constructed following the Feynman rules. It is possible for a single decay to be allowed
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e− e−

e− e−

γ

Figure 2.1: Simple Feynman diagram of e− e scattering.

q q̄

b s

u, c, t

W

CNP

Figure 2.2: Generic penguin diagram featuring a b → s transition. CNP is a colour
neutral propagator which can be a g, γ or Z0 boson.

via multiple Feynman diagrams, in which case the total transition amplitude is given by
the superposition of all possible Feynman diagrams. In any decay it is always possible
to construct additional Feynman diagrams describing the decay by introducing particle
loops. Adding such a loop to the diagram lowers the transition amplitude compared to
the diagram without a loop. Because of this, all Feynman diagrams transcribing a decay
can be ordered by their transition amplitudes. The leading order diagrams typically do
not feature any loops, with each subsequent order adding one more loop to the diagram.
In order to get a reasonable estimate for the total transition amplitude of any given decay
it is usually sufficient to only study the leading order diagrams. However, when more
accuracy is needed, next-to-leading order diagrams should be taken into account.

For the neutral B decays that are studied in this thesis the leading order diagrams are
called ”tree” diagrams and as such the leading order is often times referred to as tree-
level. The next order of diagrams which describe the neutral B decays are the so-called
”penguin” diagrams. The penguin diagrams have distinct shape (which can be drawn to
resemble a penguin) and were named such by John Ellis in 1976 after losing a bet over a
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game of darts [13], the structure of a generic penguin diagram is shown in Fig. 2.2.

2.2 Flavour Physics

Research into the SM can be divided further into fields. One such field is flavour physics,
that studies quark flavours, which indicates the quark type, and the properties that these
flavours have. Interactions between quarks can be mediated by every force in the SM,
but only the weak force couples to the flavour of quarks, rather than just electric charge
or colour. A major part of flavour physics is the study of CP violation.

2.2.1 CP violation

As mentioned in the introduction the primary motivation for this thesis is research into
the properties of CP violation and the possibility of measuring NP. As we have seen
with the SM above, most of modern physics is based upon symmetries. In the case of
interactions as described by Feynman diagrams there are some further symmetries of
these interactions that are important besides the symmetry groups from which the SM is
constructed. These include symmetry under charge conjugation (C), Parity-inversion (P)
and Time reversal (T). In any interaction the product of C, P and T has to be conserved.
For a while it was thought that each of these symmetries had to be conserved individually,
but this turned out not to be the case.

The reason for this has to do with the chirality of particles. The chirality of a particle
can also be referred to as the handedness of a particle, with them being either left or
right handed. A similar concept to this is that of helicity, which describes the size of
the particles spin along it’s direction of movement. For massless particles the chirality
and the helicity of the particle is the same. However, for particles with mass this is no
longer the case, since a frame of reference can be chosen such that its helicity is reversed
compared to the helicity in the lab frame.

In order to describe the C and P symmetry operations, let ΨL be a left handed particle
with momentum ~p. If we now apply C we get:

C|ΨL(~p)〉 = ηCΨ|Ψ̄L(~p)〉, (2.2)

here ηCΨ is the eigenvalue of the transformation under C and equals ±1. Note that the
chirality of the particle did not change, but C did make a conversion to an antiparticle.
When applying the P transformation we get

P |ΨL(~p)〉 = ηPΨ|ΨR(−~p)〉, (2.3)

where ηPΨ once again describes the eigenvalue of the particle under P. Note however that
this time the P transformation changed the handedness of the particle involved. The
reason why C and P (and as it happens, CP) are not conserved in nature is because of
the weak interaction. The weak interaction only acts on left-handed particles, or right-
handed antiparticles. Using this, it is quite easy to see why C and P are not individually
conserved under weak interactions, since effectively they both change the handedness of
the particle. For P this is quite obvious and whilst C might not seem to change the
handedness outright, it happens that the chirality of a particle and its antiparticle is also
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reversed. So a right-handed antiparticle interacts under the weak interaction as if it is a
left-handed particle. The solution to this problem seems quite obvious. By applying both
the C and P transformation to a particle, it’s handedness should be conserved. Using the
same descriptions as before we get

CP |ΨL(~p)〉 = ηCPΨ |Ψ̄R(−~p)〉, (2.4)

where ηCP describes the eigenvalue of the particle under CP and simply equals ηC · ηP .
As we can see, the left handed particle has now been transformed into a right handed
antiparticle.

It turns out however, that there are decays in which CP is not conserved. The first
example, which in turn led to the discovery of this concept, is the decay of K0. When
observed in nature this particle turns out to have two different states, one with a short
lifetime, K0

S, and one with a longer lifetime, K0
L. At first glance, these two states are CP

eigenstates, this means that under CP transformation the state changes up to a difference
in sign. The difference between the two is that K0

S is a CP even state, whereas K0
L is

CP odd, in other words, the CP-eigenvalue of K0
S is ηCP = +1 and the eigenvalue of K0

L

is ηCP = −1. Assuming that CP is conserved in weak decays, the CP eigenvalue of the
initial state and final state particles must be the same. So K0

S is only allowed to decay
into CP-even final states. As it turns out, this is not the case. in 1964 it was discovered
that the CP-even K0

S could decay into a CP-odd final state! In other words, CP was
violated.

In general there are three types of CP violation that can be observed. The first type
is mixing induced CP violation. It occurs when the rate A(Ψ → Ψ̄) 6= A(Ψ̄ → Ψ), and
as such is time dependent. The second type is direct CP violation. In this case the rate
A(Ψ → f) 6= A(Ψ̄ → f̄). Finally there is also the possibility for both of these types
of CP violation to manifest in one decay. In these cases, the initial state particle or
antiparticle both decay to a final state which is a CP eigenstate, so f = f̄ . In these
cases CP violation can occur directly, when A(Ψ→ f) 6= A(Ψ̄→ f), or indirectly when
A(Ψ → Ψ̄) 6= A(Ψ̄ → Ψ). A combination of both when A(Ψ  Ψ̄ → f) 6= A(Ψ̄  
Ψ→ f). In any of these cases, Ψ− Ψ̄ mixing induces interference effects in CP violation,
leading again to a time dependence.

For the neutral kaon system in which CP violation was first observed, K0 − K̄0

mixing had the largest contribution, although some direct CP violation also occurred.
The strength of the mixing induced CP violation in kaons is described by the parameter
ε, for direct CP violation the parameter ε′ is used. ε itself is relatively small at O(10−3),
but ε′ is even smaller with ε′/ε ≈ 10−3 [23].

2.2.2 CKM Matrix and Unitarity Triangles

In order to allow for CP violation in the SM, it is necessary to describe how weak decays
occur and in particular, how changing from a particle to an antiparticle results in different
transition rates. As mentioned in the introduction, the concept of quark mixing already
existed before the discovery of CP violation. However, Cabibbo’s 2x2 matrix can not
allow for a description of CP violation. In order for it to occur through quark mixing
there needs to be a complex phase that can enter the transition amplitudes. To allow for
this phase, Kobayashi and Maskawa proposed an extension of Cabibbo’s quark mixing
matrix to include three generations of quarks. This matrix is now commonly referred to
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d u

W−

Vud

(a)

d̄ ū

W+

V ∗
ud

(b)

Figure 2.3: Feynman diagrams of (a) a d→ u transition and (b) a d̄→ ū transition with
W emission. The corresponding CKM elements are listed as well.

as the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Besides allowing for a description of
CP violation in the SM the CKM matrix also allows for a clean description of the Yukawa
couplings through which the quarks gain their mass. Through this definition, the CKM
matrix describes how the interaction eigenstates of quarks mix into the (Yukawa) mass
eigenstates. When defining the matrix this way one can choose to let either the up-type
quark or the down-type quark interaction eigenstates be equal to the mass eigenstates.
Convention dictates that the up-type quarks remain unchanged, and as such we have for
the down type interaction eigenstates:ds

b

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

d′s′
b′

 . (2.5)

Here the primed quarks correspond to the mass eigenstates, and the unprimed quarks
to the interaction eigenstates. The matrix elements Vij are known as CKM elements.
Through diagonalising the Yukawa couplings the CKM matrix enters in charged-current
(CC) interactions between quarks. As such, each CKM element describes how strongly
one quark flavour couples to another under weak interactions. For example, when a d
quark decays into an u quark whilst emitting a W− boson, the strength of the coupling
is given by Vud. The Feynman diagram of this transition as well as its CP counterpart
is shown in Fig. 2.3. Since charge is carried in these interactions though the mediating
charged W bosons, it is not possible for an up type quark to decay or change flavour
directly into another differently flavoured up type quark, the same holds for down type
quarks. In other words, there are no flavour changing neutral current (FCNC) interactions
at tree level within the SM. It is however possible to construct next-to-leading order
diagrams in which a down type quark ends up decaying into a differently flavoured down
type quark. An example of such a diagram is the penguin diagram shown in Fig. 2.2
where a b quarks decays into an s quark. The diagrams that feature a FCNC always
involve quarks running in a loop together with a W boson, effectively combining two CC
interactions to form a FCNC interaction. As such FCNCs will always involve at least 2
CKM elements.

The CKM elements can be parameterised in a few different ways. One standard choice

12



is the following:

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.6)

where sij = sin θij and cij = cos θij. δ is the complex phase that allows for CP-violation.
The angles θij can be chosen such that sij and cij become positive. Whilst these pa-
rameters allow for a completely analytical description of the CKM matrix, it is quite
cumbersome to work with. Instead I will be using the Wolfenstein parameterization by
defining [25, 26]

s12 = λ, s23 = Aλ2, s13e
iδ = Aλ3(ρ+ iη). (2.7)

Where λ ≈ |Vus| ≈ 0.22. Since s13 and s23 are quite small (O(10−3) and O(10−2)) we can
set c13 = c23 = 1 with good accuracy. If we then apply (2.7) the CKM matrix takes the
following form:

VCKM =

 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (2.8)

In order to diagonalise the Yukawa mass matrices the CKM matrix is required to be
unitary. A matrix U is defined to be unitary if the following equation holds:

U †U = 1 (2.9)

Applying this to the CKM matrix yields equations with the following form:

VuiV
∗
uj + VciV

∗
cj + VtiV

∗
tj = 0 (2.10)

or, when we take UU † = 1,

VkdV
∗
ld + VksV

∗
ls + VkbV

∗
lb = 0. (2.11)

Where i 6= j ∈ (d, s, b) and k 6= l ∈ (u, c, t). In total there are 12 of these equations, half
of which are simply complex conjugate forms of the other half, effectively leaving us with
6 equations. From the diagonal we get

VidV
∗
id + VisV

∗
is + VibV

∗
ib = 1, (2.12)

with i ∈ (u, c, t).
Looking again at the Wolfenstein parameterisation we can see that there exists a

certain hierarchy to the CKM elements, by order of lambda. The mixing between quarks
is largest within one generation, being about order 1. Second largest is the mixing
between first and second generation quarks with order λ. The elements that describe
mixing between the second and third generation are about order λ2, and the smallest are
the elements describing mixing between the first and third generation, at order λ3. If we
now look back at the equations listed above we can make some interesting observations.
Since all of the quantities involved are complex numbers we can plot them in the complex
plane. When doing so we can see that they form triangles, also known as unitarity
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Figure 2.4: The unitarity triangle given by (2.14). This triangle also includes NLO terms
by setting ρ̄ = ρ(1− λ2/2) and η̄ = η(1− λ2/2) [27].

triangles (UTs). If one writes out the equations listed above we can see that there are
two equations where each of the three terms are of order Aλ3. One of the triangles is
given by

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (2.13)

We can normalise the bottom side of the triangle by diving out VcdV
∗
cb and getting

1 +
VudV

∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

= 0. (2.14)

The sides can be parameterised by setting

VudV
∗
ub

|VcdV ∗cb|
≡ Rbe

iγ and
VtdV

∗
tb

|VcdV ∗cb|
≡ Rte

iβ. (2.15)

Where

Rb =

∣∣∣∣VudV ∗ubVcdV
∗
cb

∣∣∣∣ , Rt =

∣∣∣∣VtdV ∗tbVcdV
∗
cb

∣∣∣∣ , (2.16)

and

γ = arg

(
− VudV

∗
ub

|VcdV ∗cb|

)
, β = arg

(
VtdV

∗
tb

|VcdV ∗cb|

)
(2.17)

This UT is also shown in Fig. 2.4. Another triangle, which is more relevant to the neutral
B decays, is given by

VusV
∗
ub + VcsV

∗
cb + VtsV

∗
tb = 0. (2.18)

In this triangle two of the sides are of order Aλ2, with one side being much smaller at order
Aλ4. As such the triangle appears to be squashed compared to the one given by (2.14).
These kinds of relations are however quite useful for doing calculations since they provide
relations between the different CKM elements. This is especially true when considering
Feynman diagrams featuring quark loops. The triangle above could be used in decays
featuring a b→ s transition. Since this process is a FCNC it can not occur at tree level
and loops have to be used to construct the diagram. Since any up type quark can enter
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(a) (b)

Figure 2.5: Current fit of the standard unitarity triangle by the UTfit collaboration (a)
and the CKMfitter collaboration (b) in the ρ̄ − η̄ plane. The region being fitted for in
both is the apex of the triangle given by (ρ̄, η̄).

this loop the relation above is very useful for reducing the amount of CKM elements
entering the full transition amplitude. These unitarity triangles are still actively being
researched since they can provide crucial insights into the mechanism of CP violation and
possible NP effects. Nowadays there are two groups that are researching the UTs, these
are the CKMfitter collaboration [28] and the UTfit collaboration [29]. Research into the
UTs involve a variety of decay channels including semileptonic B decays, K − K̄ mixing
and b hadron decays. The fits that are made by these two collaborations can be seen in
Fig. 2.5.

2.2.3 Operator Product Expansion

Another useful tool in the toolbox for flavour physics is Operator Product Expansion
(OPE). Let us begin by considering a c → sud̄ transition, mediated by a W exchange.
Ignoring possible contributions from strong (QCD) interactions for the moment, the tran-
sition amplitude for this process is given by [30]

A = −GF√
2
V ∗csVud

M2
W

k2 −M2
W

[ūsγµ(1− γ5)uc] [v̄uγ
µ(1− γ5)vd] , (2.19)

where ui and vi are quark spinors and γµ and γ5 are Dirac matrices. We can then rewrite
the amplitude to

A =
GF√

2
V ∗csVud [ūsγµ(1− γ5)uc] [v̄uγ

µ(1− γ5)vd] +O(
k2

M2
W

). (2.20)

If we look back at Tables 2.1 and 2.3, we can see that the mass of the W boson is well
over an order of magnitude higher than most hadrons. As such the momentum transfer
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Figure 2.6: c→ sud̄ transition. (a) shows the full diagram, (b) shows the same diagram
with the W boson integrated out.

k will be much smaller than the W-boson mass. Therefore we can neglect the O(k2/M2
W )

term and still get a good approximation for the transition amplitude A. Effectively this
comes down to integrating out or ”contracting” the W-boson in the Feynman diagram
and approximating the interaction as a 4 point interaction, as shown in Fig 2.6.

Considering that these interactions have a low momentum transfer we also need to take
into account short distance QCD corrections from gluons entering these diagrams. Fig.
2.7 shows possible gluon couplings for the c→ sud̄ example that we used before. From the
transition amplitude in (2.20) we can write down the effective Hamiltonian corresponding
to the contracted diagram, once again not taking into account QCD corrections,

Heff =
Gf√

2
V ∗csVud(s̄c)V−A(ūd)V−A, (2.21)

with the operator
(q̄p)V−A ≡ q̄γµ(1− γ5)p, (2.22)

denoting a vector - axial vector current. If we want to be more precise we can include
color indices α and β for the quarks and get

Heff =
Gf√

2
V ∗csVud(s̄αcα)V−A(ūβdβ)V−A. (2.23)

If we consider short distance QCD corrections the colour structures of the quark currents
can be altered. In order to apply these corrections we can generalize the Hamiltonian to

Heff =
GF√

2
V ∗csVud(C1(µ)Q1 + C2(µ)Q2), (2.24)

where
Q1 = (s̄αcβ)V−A(ūβdα)VA , (2.25)

Q2 = (s̄αcα)V−A(ūβdβ)V−A. (2.26)
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W g

sc

d u

(b)

W

g sc
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(c)

Figure 2.7: One-loop diagrams showing possible gluon couplings in the c → sud̄ transi-
tion. The resulting colour structure in (a) and (b) can be described with operator Q1

and the colour structure in (c) can be described with operator Q2.

We have now expanded the operators to include QCD corrections. The coefficients C1

and C2 serve as the effective coupling constants for the contracted 4 point interactions
and are dependent on the strong coupling constant αs, MW and the renormalization scale
µ. These coefficients are called Wilson coefficients. The process of OPE can be applied
to any diagram that features heavy particles running internally in the diagrams. Notably
this includes higher order diagrams such as the box or penguin diagram. Repeating the
process of QCD corrections for these diagrams yields their own set of operators with
associated Wilson coefficients. In the case of penguin diagrams, applying OPE to them
yields 8 different penguin operators, Q3 through Q10, featuring combinations of V − A
and V + A currents.

The effective Hamiltonian can be used to calculate the transition amplitude of a
given decay channel. This is done by sandwiching Heff between the initial and final
state operators. As an example, let us consider the decay of a neutral B meson B0

q into
a final state f . The transition amplitude can then be expressed as

A(B0
q → f) = 〈f |Heff |B0

q 〉. (2.27)

Later on in this chapter we will see an example of this when we apply the formalism in
full.

2.3 CP asymmetries and penguin contributions

Now we have all the tools needed to continue with the formalism with which we describe
the penguin contributions in neutral B decays. What follows below will be in line with the
formalism as introduced in the 2015 paper [18]. This paper discusses both pseudos-scalar-
vector final states as well as vector-vector final states. Both cases are largely similar, but
the vector-vector case requires one to take polarisation of the transition amplitudes into
account.

Starting off, the strength of CP violation in any given decay is given by the CP-
violating asymmetry of the decay:

aCP ≡
|Af (t)|2 − |Āf (t)|2
|Af (t)|2 + |Āf (t)|2

=
Adir

CP cos(∆Mqt) +Amix
CP sin (∆Mqt)

cosh (∆Γqt/2)−A∆Γ sinh (∆Γqt/2)
, (2.28)
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where

|
(−)

A f (t)|2 = Γ(
(−)

B0
q (t)→ f) (2.29)

is the time dependent decay rate of a given decay channel. The time dependence is
required in order to account for B0 − B̄0 mixing. In order to show how aCP leads to the
analysis of φq by using the penguin diagrams let’s start by deriving the RH side of (2.28).
There are several ways to go about this, depending on the definition of Γ(t). Here the
definition as given in [31] is used:

Γ(
(−)

B0
q (t)→ f) =

[
|g(q)
∓ (t)|2 + |ξ(q)

f |2|g
(q)
± (t)|2 − 2Re{ξ(q)

f g
(q)
± (t)g

(q)
∓ (t)∗}

]
Γ̃f , (2.30)

where Γ̃f is the time independent decay rate, which will end up cancelling in the expression
for aCP, ∣∣∣g(q)

± (t)
∣∣∣2 =

1

4

[
e−Γ

(q)
L t + e−Γ

(q)
H t ± 2e−Γ(q)t cos (∆Mqt)

]
, (2.31)

g
(q)
− (t)g

(q)
+ (t)∗ =

1

4

[
e−Γ

(q)
L t − e−Γ

(q)
H t ± 2ie−Γ(q)t sin (∆Mqt)

]
, (2.32)

and

ξ
(q)
f = e−iΘ

(q)
M12

A(B0
q → f)

A(B0
q → f)

. (2.33)

The angle Θ in ξ
(q)
f is given by

Θ
(q)
M12

= π + 2 arg(V ∗tqVtb)− φCP(Bq). (2.34)

By expressing the time independent transition amplitudes A(B0
q → f) in terms of the

effective Hamiltonian it is possible to rewrite (2.33) and get

ξ
(q)
f = −ηfe−iφq

A(B0
q → f)

A(B0
q → f)

. (2.35)

Inserting (2.30) into (2.28) and rewriting (a lot) gives

aCP =

1−|ξ(q)f |
2

1+|ξ(q)f |2
e−Γqt cos(∆Mqt) +

2Im(ξ
(q)
f )

1+|ξ(q)f |2
e−Γqt sin(∆Mqt)

1
2

[
e−Γ

(q)
L t + e−Γ

(q)
H t − 2Re(ξ

(q)
f )

1+|ξ(q)f |2
(e−Γ

(q)
L t − e−Γ

(q)
H t)

] . (2.36)

Since Γq =
Γ
(q)
L +Γ

(q)
H

2
it is possible to rewrite this further and get

aCP =

1−|ξ(q)f |
2

1+|ξ(q)f |2
cos(∆Mqt)−

2Im(ξ
(q)
f )

1+|ξ(q)f |2
sin(∆Mqt)

cosh(∆Γqt/2)− 2Re(ξ
(q)
f )

1+|ξ(q)f |2
sinh(∆Γqt/2)

(2.37)

Now defining

Adir
CP ≡

1− |ξ(q)
f |2

1 + |ξ(q)
f |2

, Amix
CP ≡

2Im(ξ
(q)
f )

1 + |ξ(q)
f |2

and A∆Γ ≡
2Re(ξ

(q)
f )

1 + |ξ(q)
f |2

(2.38)
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once again gives (2.28). In order to estimate the contribution of the penguin diagrams
we can rewrite the time-independent transition amplitudes as follows [14]:

A(B0
q → f) ≡ Af = Nf [1− bfeiρf e+iγ], (2.39)

and
A(B̄0

q → f) ≡ Āf = ηfNf [1− bfeiρf e−iγ]. (2.40)

Here ηf is the CP-eigenvalue of the final state f , Nf is a CP conserving factor transcribing
the tree diagrams, bf is a parameter for the strength of the penguin diagrams, ρf is a
parameter for the CP-conserving strong phase difference between the tree and penguin
diagrams and their relative weak phase is given by the UT angle γ. Apart from γ all
of these parameters are dependent on the initial and final state particles involved in the
decay. They can be written out for a specific decay channel by using OPE, in the process
introducing CKM factors and hadronic matrix elements, which will be shown later on.

By inserting (2.39) and (2.40) into (2.35) and using the definitions in (2.38) we can
rewrite the direct and mixing induced CP asymmetries in terms of the penguin parameters
bf and ρf and the CKM angle γ:

Adir
CP(Bq → f) =

2bf sin ρf sin γ

1− 2bf cos ρf cos γ + b2
f

, (2.41)

Amix
CP (Bq → f) = ηf

[
sinφq − 2bf cos ρf sin(φq + γ) + b2

f sin(φq + 2γ)

1− 2bf cos ρf cos γ + b2
f

]
, (2.42)

and

A∆Γ(Bq → f) = −ηf
[

cosφq − 2bf cos ρf cos(φq + γ) + b2
f cos(φq + 2γ)

1− 2bf cos ρf cos γ + b2
f

]
. (2.43)

In order to get a handle on the effect that the penguin topologies have on φq we can use
the following equation:

ηfAmix
CP (Bq → f)√

1− (Adir
CP(Bq → f))2

= sin(φq + ∆φfq ) ≡ sin(φeff
q,f ), (2.44)

By reordering this expression and introducing (2.42) the following expressions can be
derived:

sin ∆φfq =
−2bf cos ρf sin γ + b2

f sin 2γ

(1− 2bf cos ρf cos γ + b2
f )
√

1− (Adir
CP(Bq → f))2

, (2.45)

cos ∆φfq =
1− 2bf cos ρf cos γ + b2

f cos 2γ

(1− 2bf cos ρf cos γ + b2
f )
√

1− (Adir
CP(Bq → f))2

, (2.46)

which can be combined to yield

tan ∆φfq = −
[

2bf cos ρf sin γ − b2
f sin 2γ

1− 2bf cos ρf cos γ + b2
f cos 2γ

]
(2.47)

Now it is possible to calculate the size of the phase shift ∆φqf for a given decay channel.

First bf and ρf can be obtained by fitting them to measured values of Adir
CP and Amix

CP
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Figure 2.8: Feynman diagrams of the B0
d → J/ψK0

S decay channel. (a) shows the tree
diagram of the decay featuring a simple W exchange. (b) shows the penguin diagram(s)
of the decay, where CNP is once again a colour neutral propagator.

using (2.41) and (2.42). Then using (2.47) ∆φfq can be calculated. Note however that
this requires φq as an external input in order to make the fit to the penguin parameters.
Whilst this is certainly a viable approach it would require multiple iterations since the
phase shift that is calculated needs to be applied to φq in order to get the correct results.
In the end the values for bf , ρf and ∆φfq should converge. Later on I will discuss an
alternative method that was proposed in the 2015 paper on this topic, which does not
require φq as an external input.

2.4 Applying the formalism

Now that the general formalism is in place we can apply it to the decay channels that
I will be analysing in this thesis. I will start by looking at B0

d → J/ψK0
S and deriving

the time independent transition amplitude as given in [18], in the end we will arrive
at an expression along the lines of (2.39). This decay features a b̄ → c̄cs̄ quark level
transition that can proceed via a tree topology or via penguin topologies with up-type
quark exchanges, the corresponding Feynman diagrams are shown in Fig. 2.8. Using
OPE we can express the effective Hamiltonian for these transitions as

Heff =
GF√

2

[
V ∗cbVcs

2∑
k=1

Ck(µ)Qk +
∑
r=u,c,t

V ∗rbVrs

10∑
k=3

Ck(µ)Qk

]
. (2.48)

Inserting the Hamiltonian as in (2.27) yields the following transition amplitude for the
tree level diagram

Atree(B
0
d → J/ψK0

S) =
GF√

2
V ∗cbVcs〈J/ψ|

2∑
k=1

Ck(µ)Qk|B0
d〉, (2.49)

and for the penguin diagrams

Apenguin(B0
d → J/ψK0

S) =
∑
r=u,c,t

Gf√
2
V ∗rbVrs〈J/ψ|

10∑
k=3

Ck(µ)Qk|B0
d〉. (2.50)
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We can simplify these equations further by defining

C ′ =
GF√

2
〈J/ψ|

2∑
k=1

Ck(µ)Qk|B0
d〉, and P ′(r) =

GF√
2
〈J/ψ|

10∑
k=3

Ck(µ)Qk|B0
d〉 (2.51)

where r ∈ u, c, t denotes the up type quarks running in the penguin diagrams. The primes
are there as a reminder that this is a b̄ → c̄cs̄ quark level transition. From here we can
construct the overall transition amplitude which is now given by

A(B0
d → J/ψK0

S) = V ∗cbVcsC
′ +

∑
r∈u,c,t

V ∗rbVrsP
′(r). (2.52)

Now define λr ≡ V ∗rbVrs to get

A(B0
d → J/ψK0

S) = λcC
′ + λuP

′(u) + λcP
′(c) + λtP

′(t). (2.53)

Next recall the UT relation (2.18) to write λt = −λu − λc and get

A(B0
d → J/ψK0

S) = λc
(
C ′ + P ′(c) − P ′(t)

)
+ λu

(
P ′(u) − P ′(t)

)
, (2.54)

finally divide out λc
(
C ′ + P ′(c) − P ′(t)

)
:

A(B0
d → J/ψK0

S) = λc
(
C ′ + P ′(c) − P ′(t)

)(
1 +

λu
λc

[
P ′(u) − P ′(t)

C ′ + P ′(c) − P ′(t)
])

. (2.55)

Using (2.15) we can write

V ∗ub = Rbe
iγ |VcdV ∗cb|

Vud
, (2.56)

if we now recall that
λu
λc

=
VusV

∗
ub

VcsV
∗
cb

, (2.57)

we can insert (2.56) to get

λu
λc

=
Vus
VcsV

∗
cb

|VcdV ∗cb|
Vud

Rbe
iγ. (2.58)

Now we can enter the values for the CKM elements by using the Wolfenstein parameter-
isation, neglecting terms of O(λ4) or higher yields

λu
λc

=
λ2

1− λ2
Rbe

iγ. (2.59)

Combining this with the transition amplitude we can write

A =

(
1− λ2

2

)
Aλ2

(
C ′ + P ′(u) − P ′(t)

)(
1 +

λ2

1− λ2
Rbe

iγ

[
P ′(u) − P ′(t)

C ′ + P ′(c) − P ′(t)
])

. (2.60)

If we now define

A′ ≡ Aλ2
(
C ′ + P ′(u) − P ′(t)

)
, ε ≡ λ2

1− λ2
, (2.61)
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and

a′eiθ
′ ≡ Rb

[
P ′(u) − P ′(t)

C ′ + P ′(c) − P ′(t)
]
, (2.62)

we can finally express the transition amplitude for B0
d → J/ψK0

S as

A(B0
d → J/ψK0

S) =

(
1− λ2

2

)
A′
[
1 + εa′eiθ

′
eiγ
]
. (2.63)

Looking back at (2.39) we can see that bfe
iρf = −εa′eiθ′ and Nf =

(
1− λ2

2

)
A′. A

unique feature of all decays featuring the b̄ → c̄cs̄ quark level transition, is that the
penguin diagrams are doubly Cabibbo suppressed compared to the tree level diagrams.
This suppression is parametrized by the parameter ε in the formula above.

The decay channels B0
s → J/ψK0

S and B0
d → J/ψπ0 both proceed via a b̄ → c̄cd̄

transition. The derivation of transition amplitude for these two decays is largely similar
as the derivation I did for B0

s → J/ψK0
S. As such we can arrive at the transition amplitude

for the b̄→ c̄cd̄ by swapping out the CKM elements. We can do so by making the change

Vrs → Vrd, (2.64)

so now we have
λdr = V ∗rbVrd. (2.65)

With this change, the overall factor in front becomes

λdr
(
C + P (c) − P (t)

)
= −λ · Aλ2

(
C + P (c) − P (t)

)
, (2.66)

The factor λu/λc inside the brackets becomes

λdu
λdc

=
Vud
VcdV

∗
cb

|VcdV ∗cb|
Vud

Rbe
iγ = −1Rbe

iγ. (2.67)

So now the overall transition amplitude for b̄→ c̄cd̄ channels becomes

A(b̄→ c̄cd̄) = −λA
[
1− aeiθeiγ

]
, (2.68)

The definitions of the parameters A and aeiθ are the same as their primed counterparts,
apart from the primes labeling the hadronic matrix elements C and P (q). Furthermore,
the Cabbibo suppression of the penguin diagrams compared to the tree diagram is no
longer present in these decays, but the overall amplitude is suppressed by a factor λ. So
whilst the overall BR of these decays will be lower, they will be more sensitive to the
penguin contributions.

Now that we have the expressions in place for both decay classes (b → d or b → s
transitions), we can enter this information into the expression for tan ∆φfq . For b → d
transitions we have made the replacement bfe

iρf → aeiθ to get

tan ∆φfq =
−2a cos θ sin γ + a2 sin 2γ

1− 2a cos θ cos γ + a2 cos 2γ
, (2.69)

using a Taylor expansion in a this can be simplified to

tan ∆φfq = −2a cos θ sin γ − a2 cos 2θ sin 2γ +O(a3). (2.70)

22



For b→ s transitions we need to make the replacement bfe
iρf = −εa′eiθ′ , which yields

tan ∆φfq =
2εa′ cos θ′ sin γ + ε2a′2 sin 2γ

1 + 2εa′ cos θ′ cos γ + ε2a′2 cos 2γ
= 2εa′ cos θ′ sin γ +O(ε2a′2), (2.71)

where we can once again use a Taylor expansion to simplify the equation. An important
note here is that the decay channel determines which angle can be measured, regardless
of the quark transition involved in the decay channel in question. Therefore the formulas
given above can apply to both φs and φd, rather than exclusively to one or the other.
To give an example of this consider the B0

s → J/ψK0
S and B0

d → J/ψπ0 decay channels.
Both channels feature a b̄ → c̄cd̄ quark level transition, but B0

s → J/ψK0
S probes φs

whereas B0
d → J/ψπ0 probes φd, so for both decay channels Eq. (2.70) should be used.

As is pointed out in Ref. [18] the equations both depend on the strong phase difference
θ(′) in the same way. So in general, the penguin induced phase shifts will be largest with
a strong phase difference of 0° or 180° and will be smallest at 90° and 270°.

2.5 Branching Ratio information

Before I move on to explain how we can use the formalism introduced in the sections
above to perform measurements on φs and φd there is one more topic I would like to
bring up which has to do with U-spin symmetry in strong interactions, which is also
referred to as SU(3) symmetry. U-spin symmetry states that strong interactions do not
change when interchanging s and d quarks. If we consider that the penguin parameters a
and θ depend on QCD operators introduced by OPE it is easy to see that under U-spin
symmetry we have

a′eiθ
′
= aeiθ, (2.72)

and
A′ = A. (2.73)

These relations become very useful if we consider that the penguins in b̄→ c̄cs̄ transitions
are suppressed compared to tree level by a factor ε ≈ 0.05. U-spin symmetry would allow
for using the magnified penguins featured in b̄→ c̄cd̄ transitions to probe the contribution
coming from suppressed penguins. This would allow for a iterative approach towards
determining φs and φd.

Looking at the equations for Adir and Amix we can see that in order to obtain a
good measurement of the penguin parameters, the weak phase difference φq is needed,
simultaneously the penguin parameters are required to obtain the weak phase shifts ∆φq.
By using U-spin symmetry we can obtain the penguin parameters in a Bd decay using
φd as input and then use the penguin parameters to calculate ∆φs and subsequently φs
in a U-spin symmetric Bs decay and vice versa. This approach however, is not entirely
theoretically clean since U-spin is a broken symmetry. So in order to interchange the
penguin parameters between the magnified and suppressed penguin diagrams we would
first need to make corrections due to U-spin breaking. The size of these corrections can
be determined by calculating them in factorisation. Should the U-spin breaking effects
prove to be small enough, it is still possible to use (2.72) without any repercussions.

When using factorisation to calculate the penguin parameters the factorisable effects
cancel in the ratio of tree and penguin amplitudes, so any U-spin breaking effect will
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enter through non-factorisable parts only. However, since A is not built out of a ratio of
amplitudes U-spin breaking effects can enter through factorisation as well. Whilst it is
possible to make these calculations in factorisation the accuracy for reproducing the BR
of B → J/ψK is not great.

So far I have shown a method for obtaining the size of the penguin contributions by
looking at the CP-violating amplitudes Amix and Adir. It is possible to introduce further
constraints on the values for a and θ by utilizing branching ratio information. Taking
B0
s → J/ψK0

S as an example, the experimental BR is defined as

B(B0
s → J/ψK0

S)exp ≡
1

2

∫ ∞
0

〈Γ(B0
s (t)→ J/ψK0

S)〉dt (2.74)

where

〈Γ(B0
s (t)→ J/ψK0

S)〉 = Γ(B0
s (t)→ J/ψK0

S) + Γ(B̄0
s (t)→ J/ψK0

S). (2.75)

The definition of Γ(
(−)

B0
q (t) → f) is given in (2.30). Since this BR definition is time-

integrated it is important to distinguish it from the theoretical BR which is defined at
time t = 0. This is especially important if the decay width difference ∆Γ is quite large,
which is the case for the Bs system, but not for the Bd system. The size of the decay
width difference in Bs can be described by the parameter [32]

ys =
∆Γs
2Γs

= 0.0675± 0.0041 (2.76)

The two BR concepts can then be transformed by using

B(B0
s → J/ψK0

S)theo =

[
1− y2

s

1 +A∆Γ(B0
s → J/ψK0

S)ys

]
B(B0

s → J/ψK0
S)exp. (2.77)

We have seen before that A∆Γ also depends on the penguin parameters, but it can also
be calculated by using the effective lifetime

τ eff
J/ψK0

S
≡
∫∞

0
t〈Γ(Bs(t)→ J/ψK0

S)〉dt∫∞
0
〈Γ(Bs(t)→ J/ψK0

S)〉dt (2.78)

=
τBs

1− y2
s

[
1 + 2A∆Γ(B0

s → J/ψK0
S)ys + y2

s

1 +A∆Γ(B0
s → J/ψK0

S)ys

]
. (2.79)

Now we can finally construct the observable in order to use the BR information. The
observable is defined as

H ≡ 1

ε

∣∣∣∣A′A
∣∣∣∣2 PhSp(B0

d → J/ψK0
S)

PhSp(B0
s → J/ψK0

S)

τBd

τBs

B(B0
s → J/ψK0

S)theo

B(B0
d → J/ψK0

S)theo

. (2.80)

This can be rewritten in terms of penguin parameters to get

H =
1− 2a cos θ cos γ + a2

1 + 2εa′ cos θ′ cos γ + ε2a′2
= −1

ε

Adir
CP(B0

d → J/ψK0
S)

Adir
CP(B0

s → J/ψK0
S)
. (2.81)

1HFLAV reports ∆Γs/Γs = 0.135± 0.008.
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Whilst this observable allows us to put extra constraints on the penguin parameters. It
is not a particularly nice observable to use since the ratio |A′/A| is affected by the U-spin
corrections mentioned above. In turn, this presents us with the opportunity to use the
observable H to estimate the size of these U-spin corrections if the penguin parameters are
already known. To do this we first need to calculate the ratio |A′/A| in factorisation and
then compare this value to the ratio obtained from H using both the penguin parameter
and the BR information as input. From this estimation it would then be possible to
correct (2.72) and use the penguin parameters across decay classes.
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Chapter 3

Methods

In the previous chapter I discussed the formalism behind controlling the penguin uncer-
tainties in measurements for φs and φd. In this chapter I will discuss how we can apply
this formalism to obtain the penguin shifts ∆φq in a clean way. I already mentioned
some of the difficulties in finding these phase shifts, but I will be highlighting them here
again. After the method for getting these phase shifts is established I will discuss how
these methods were applied in practice and what tools were used to get the final results.

3.1 Obtaining the penguin parameters

Let’s begin with once again listing the difficulties with obtaining the penguin parameters
in a clean way before listing the possible solutions to this problem. First and foremost
is that in order to obtain the penguin parameters from a single decay channel, the weak
mixing phase φq is required as an external input. This is a problem because the addition of
the penguin diagrams to the overall analysis introduces a phase shift ∆φq which modifies
the weak mixing phases. From a single decay channel the penguin parameters can be
fitted for by using Adir

CP and Amix
CP . The end result is a system with two equations and

three variables, because of this, there is no unique solution to this system. In order to
properly obtain results it is necessary to introduce additional constraints to the system.
Besides getting additional theoretical relations with which to constrain the system there
are two approaches that can be taken.

3.1.1 Iterative approach

The first approach to getting a proper fit for the penguin parameters is an iterative
one. With this approach φq is first entered as an external input, allowing for a fit to
the penguin parameters. Using these penguin parameters, ∆φq can be calculated and
corrected for. This process can then be repeated until the fit converges to a single set of
values for φq, a and θ. Using this approach it is possible to obtain penguin corrections for
each individual decay channel, but iterating for φq will take some time. The weak phases
that are calculated are associated with B̄0

q − B0
q mixing and should be independent of

the specific decay channel that is studied. A sanity check therefore would be to see if the
weak phases obtained from iterating over each channel separately converge to the same
value. In any case, the weak phases coming from the different decay channels could in
the end be averaged to obtain a final result.
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The biggest risk in iterating over a single channel is that it uses φq to obtain φq, which
is highly likely to lead to the wrong results. There are two ways around this problem. If
we are trying to obtain the phase φd from Bd decays, the first solution would be to make
use of a Bs decay featuring the same quark level transition. Because the transition is the
same, the penguin parameters entering both decay channels are the same. This would
allow for using the Bs decay with φs as an external input to obtain a and θ, and then use
them to calculate ∆φd and φeff

d using the Bd decay. The second solutions is an extension to
the first by making use of SU(3) flavour symmetry of the strong interactions. Using this
symmetry one can relate decays featuring Cabbibo suppressed penguins to decay with
unsuppressed penguins and vice versa, allowing for a wider array of decays to be used
to find the penguin parameters and subsequently φq. Iterating over the decay channels
back and forth would still be required to see if the values obtained in this way converge.

3.1.2 Combined fit approach

Instead of iterating over decay channels in order to obtain values for φq one can also
make a simultaneous fit to all parameters. Similar to the case with iteration the best case
scenario would be to use decay channels that feature the same the quark level transition,
once again from both Bd and Bs. This creates a set of four equations, Adir

CP(Bs → f),
Amix

CP (Bs → f), Adir
CP(Bd → f) and Amix

CP (Bd → f), and four variables, a, θ, φs and φd.
Because of this a simultaneous fit to all four variables can be made, without needing
to iterate to obtain the final results. Also here SU(3) flavour symmetry can be used to
expand the scope of decay channels. The challenge with both approaches is to find decay
channels of both Bs and Bd with matching quark level transitions with sufficiently high
accuracy measurements in order to obtain meaningful results. Whilst for the Bd system
there are many measurements of Adir

CP and Amix
CP for a wide variety of decay channels, this

is not the case for the Bs system.

3.2 Fitting method

Now that the possible approaches for making the fits for the penguin parameters have
been discussed, I will move on to discuss the software that was used to make these fits.
Whilst it is doable to write custom code in order to make the fits, it would be nice
to write code that is compatible with fitting solutions that are already being employed
by other groups. The idea being that it would facilitate those groups in starting to
use the formalism presented in this thesis to correct for penguin uncertainties in their
analyses. To that end the software package that I used for making the fits for the penguin
parameters is GammaCombo. The motivation for this choice is that it is already being
used to make fits to CKM parameters from which the mixing phases can be estimated.
If GammaCombo is already employed by these groups it can straightforwardly be added
to their existing fitting package.

3.2.1 GammaCombo

GammaCombo is a software package that was developed by members of the LHCb collab-
oration for use within the C++ based ROOT library developed at CERN. As the name
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implies, GammaCombo is currently being used by the LHCb collaboration for making fits
to CKM parameter γ [33, 34]. The fits made by GammaCombo are so-called likelihood
fits. The fits are constructed by defining probability density functions (PDFs) for the
observables and combining these to form a likelihood function. The likelihood L is given
by

L(~α) =
∏
i

Li(~βi), (3.1)

where α and β are vectors that hold all parameters of the input measurements. The
likelihood for any given observable can be obtained from the PDF by fixing the value of
the observable to its measured value, so given a PDF of observables ~A

PDF = f( ~A|~β) (3.2)

the corresponding likelihood is given by

L(~β) = f( ~A|~β)
∣∣∣
~A= ~Aobs

. (3.3)

As an example, consider the observable Adir
CP(B0

s → J/ψK0
S). In this case the parameter

vector ~β would be given by

~β ≡


a
θ
φs
γ

 . (3.4)

If both Adir
CP and Amix

CP have been measured, a fit for a and θ could be made by combining
the likelihood of Adir

CP with that of Amix
CP and giving φs and γ as external inputs. The fits

made in this way by GammaCombo yield central fit values as well as confidence intervals
corresponding to 1 and 2 σ deviations from the central value. Using GammaCombo it
is possible to combine any number of PDFs into these likelihood fits. This allows for
easy addition of new measurements/decay channels in order to improve the fit results. A
more detailed description of the fitting method employed by GammaCombo as well as
instructions for using this package can be found in the GammaCombo manual available
from their website [19].

3.2.2 Fitting Module

The fitting module developed in GammaCombo has seen several iterations before the
final version with which the results are obtained. The initial approach was to make two
separate modules for the different quark level transitions and use the iterative method for
obtaining the fit results. This was based mostly on the (incorrect) assumption that each
decay class corresponded to its own weak phase. Since this is not the case, setting up
the modules in this way introduced quite a lot of duplicate code and made combined fits
across decay classes more difficult. The current version uses a single module for all decay
classes, eliminating the need for some duplicate code and allowing for easy combined fits
of different decay classes as well as being able to quickly add new observables to the
global fit.

As mentioned before the module consists of multiple PDFs that are later combined
to make the fits. The PDFs are constructed by distinguishing between different ”classes”
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B0
d → J/ψK0

S

B0
d → J/ψρ0B0

d → J/ψπ0B0
s → J/ψK0

S

B0
s → J/ψφ

∆φd φd

∆φsφs

Figure 3.1: Interplay between all decay channels used for obtaining the penguin param-
eters [35].

of decay channels. The main two classes are those of Pseudo-scalar-Vector (P-V) and
Vector-Vector (V-V) final states. In the latter class the polarisation of the final state
particles needs to be taken into account. These two classes can then be further divided
by separating them into decays featuring suppressed penguins (b̄→ c̄cs̄ transitions) and
unsuppressed penguins (b̄ → c̄cd̄ transitions). For each class we then defined PDFs for
Adir

CP, Amix
CP as well as the combination of both. This was done so it is possible to see how

Adir
CP and Amix

CP each contribute independently to the overall fit. For the PDFs that include
Amix

CP we also need to distinguish between Bd and Bs decays because of the dependence of
Amix

CP on the mixing phases phis and φd. By defining the PDFs this way additional decay
channels can be quickly added to the analysis if their decay structure is known.

An important point of consideration is the CP-eigenvalue of the final state. Since
these values can be different for channels falling within the same decay mode they need
to be taken into account. The CP eigenvalues enter Amix

CP as can be seen in (2.42). Instead
of having the CP-eigenvalue present in the definition of the theoretical relation used in
the fit, it can be multiplied with the observed values for Amix

CP . This way it is not necessary
to define two separate PDFs for Amix

CP in order to account for odd or even CP-eigenstates.
Care needs to be taken however to correctly multiply the observed values reported by
experiments, since some experiments might report a value that is already multiplied with
ηCP whilst others do not.

The fitting approach and the decay channels that are used in the GammaCombo
module closely match those from the 2015 paper, Ref. [18], on controlling the penguin
contributions. In that paper B0

d → J/ψK0
S, B0

s → J/ψK0
S, B0

d → J/ψρ0 and B0
s → J/ψφ

were used to make the global fit. This time B0
d → J/ψπ0 is also used as an additional

control on B0
d → J/ψK0

S. The interplay between the resulting five decay channels, shown
in Fig. 3.1, now works by using the P-V B0

d channels to find φd. This is then used as
input for B0

d → J/ψρ0 to calculate ∆φs. ∆φs then corrects the value of φs fitted from
B0
s → J/ψφ. The value for φs then serves as input for B0

s → J/ψK0
S in order to find

∆φd needed to correct φd, closing the loop. In the next chapter this interplay between
the decay channels is discussed in more detail, also providing the motivation for using
B0
d → J/ψπ0 as an additional control.
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Chapter 4

Results

4.1 External input parameters

Now that the formalism and the method for obtaining the penguin parameters have been
established it is time to make the fits to experimental data and look at the results. In
order to make the fits some external input parameters are required. For all fits to penguin
parameters the CKM angle γ is required. Whilst it is possible to use the penguin fits
to obtain a value for γ given enough input measurements as was pointed out in previous
work [14, 17, 31], doing so now will not yield more accurate results than those obtained
by collaborations like CKMfitter and UTFit. The value that will be used here is reported
by HFLAV [32] as:

γ = (71.1+4.6
−5.3)◦. (4.1)

In order to make fits to the penguin parameters coming from the doubly Cabbibo sup-
pressed b̄ → c̄cs̄ channels the suppression parameter ε is also needed, using Eq. (2.61)
and λ ≡ |Vus| = 0.2231± 0.0007 [35] gives

ε ≡ λ2

1− λ2
= 0.05328± 0.00035. (4.2)

Finally the current measurements of the mixing phases φd and φs also need to be given as
external input if a fit is being made to a single channel. Afterwards it is then possible to
correct this value with the penguin parameters and iterate to get the final result for the
mixing phase. As mentioned in the previous chapter it is possible to make simultaneous
fits to both the penguin parameters and the mixing phases by utilising multiple decay
channels with the same primary particle, in this case either B0

d or B0
s . Beside the mixing

phases being required for the iterative fit approach they also provide a benchmark to
compare the results from the penguin parameter formalism against. Starting with the
B0
d mixing phase φd, the external input comes from the CKMfitter collaboration based

on their measurement of the CKM angle β. Using that φd = 2β and β = (22.14+0.69
−0.67)◦

[28],
φd = (44.28± 1.4)◦. (4.3)

The B0
s mixing parameter φs is obtained from the HFLAV collaboration using B0

s → Jψφ,
J/ψK+K− and J/ψπ+π− modes. They report (in radians) [32]

φs = −0.021± 0.031. (4.4)
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Figure 4.1: Two-dimensional confidence regions for the combined fit to B0
d → J/ψK0

S

and B0
s → J/ψK0

S. (a) shows the confidence region for the fit to a and θ together with
Adir

CP from both channels, (b) shows the correlation between a and φd from the combined
fit.

4.2 Pseudo-scalar - Vector results

For obtaining the mixing phase φd, the CP asymmetries from B0
d → J/ψK0

S are used. The
experimental averages for the CP asymmetries are reported by the HFLAV collaboration
as [32]1:

Adir
CP(B0

d → J/ψK0
S) = −0.007± 0.018, ηAmix

CP (B0
d → J/ψK0

S) = 0.690± 0.018. (4.5)

In order to have a clean determination of the penguin parameters additional input is
typically obtained from the SU(3) counterpart B0

s → J/ψK0
S. The latest experimental

averages for this channel come from LHCb [36]:

Adir
CP(B0

s → J/ψK0
S) = −0.28± 0.42, ηAmix

CP (B0
s → J/ψK0

S) = 0.08± 0.41. (4.6)

Since the errors on these values are still quite large they do not provide a good constraint
on the penguin parameters in order to obtain nice results, this can be clearly seen in Fig.
4.1, despite this B0

s → J/ψK0
S will be useful later on.

Because B0
s → J/ψK0

S does not provide meaningful constraints we have to look else-
where. In the past [16] B0

d → J/ψπ0 has been used as an additional control for extracting
penguin parameters from B0

s,d → J/ψK0
S. The same can be done here, which has the

added benefit of not needing to use φs and φd as external inputs, instead φd can be ob-
tained directly from the combined fit to both B0

d → J/ψK0
S and B0

d → J/ψπ0. Once
again using the HFLAV average for the CP asymmetries, they report [32]:

Adir
CP(B0

d → J/ψπ0) = 0.04± 0.12, ηAmix
CP (B0

d → J/ψπ0) = 0.86± 0.14. (4.7)

1The results shown here are for Bd → J/ψK0 and have been taken from their website. Since the
decay to both KS and KL feature the same quark transition, their CP asymmetries can be averaged
without problem. The only relevant difference between the two decay channels is the CP eigenvalue of
the final state which is accounted for in ηAmix

CP . See also [35].
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Figure 4.2: Two-dimensional confidence regions for the combined fit to B0
d → J/ψK0

S

and B0
d → J/ψπ0. (a) shows the CP asymmetries from B0

d → J/ψπ0 together with the
final fit region for a and θ. (b) shows the correlation between a and φd.

When adding either B0
s → J/ψK0

S or B0
d → J/ψπ0 to the fit, we can assume SU(3)

symmetry to get aeiθ = εa′eiθ
′
, allowing for a single solution to the penguin parameters

across decay channels. Making the combined fit to a, θ and φd using (4.5) and (4.7) as
input yields:

a = 0.15+0.31
−0.12, θ = (168+31

−47)°, φd = (44.5+1.8
−1.5)°. (4.8)

The solution for a and θ then yields

∆φd = (−0.8+0.7
−1.8)°. (4.9)

The two-dimensional confidence regions for this fit are shown in Fig. 4.2. These fits show
that using only the B0

d channels provides a good result for θ, but there still exists some
ambiguity for the value of a as can be seen by a second solution with a ≈ 1. Fig 4.2b also
shows a sizeable correlation between a and φd, highlighting the importance of controlling
the penguin contributions in order to make more precise measurements. Looking back at
(2.62), a value for a > Rb ≈ 0.39 would imply that the penguin diagrams would have a
leading contribution to the overall transition amplitude. This high-valued solution for a
would not be a physical one since the penguin diagrams are loop suppressed compared
to the tree diagrams, not to mention that the penguin diagrams in B0

d → J/ψK0
S are

doubly Cabbibo suppressed as well resulting in an even smaller transition amplitude.
Therefore, the transition amplitude of the tree diagram will always be larger than the
penguin diagram amplitude. Based on this, a large value for a as shown by the second
solution in Fig. 4.2 is heavily disfavoured compared to the solution with a < Rb.

Whilst we can solve the ambiguity shown here based on physical reasons it would be
better to try and remove it entirely. This can be done by adding more constraints in
the form of either theoretical relations or by including more decay channel information.
Whilst the B0

s → J/ψK0
S channel by itself can not provide meaningful results due to the

large uncertainty coming from the experiments, it could be used to try and eliminate the
large valued solution for a shown in the fit. Including B0

s → J/ψK0
S can be done based

on SU(3) relations but it does require the use of φs as external input. Even so, it does
provide an unambiguous result for a and θ as will be seen later on in 4.4.
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Figure 4.3: Two-dimensional confidence regions of the angular penguin parameter fit
solutions for each of the polarisation states.

4.3 Vector - Vector results

Whilst the introduction of B0
s → J/ψK0

S to the B0
d → J/ψX fit removes the ambiguity

present in that fit, it does introduce φs as an external input. Since this once again would
introduce iteration to the fitting process it would be useful to try and avoid this and find
a method for fitting for φs together with the other parameters. Once again looking at
the past [15, 18], the decay channel Bs → J/ψφ has been used to measure the penguin
contributions to φs and the same can be done here as well. The penguin parameters
coming from the V-V decay channels are labeled aV and θV . As with the P-V fits, it
is useful to introduce a control channel in order to make a simultaneous fit to both the
penguin parameters and the mixing phase. The P-V modes can not be used for this
because of the different decay dynamics. As mentioned briefly in both the Theory and
the Methods chapters, the V-V final states feature two vector mesons in their final states
which requires the use of polarisation states in order to describe the decay dynamics.
It is possible to make a polarisation independent fit if the required CP asymmetries are
known, but the penguin parameters resulting from this fit can still not be compared to
the ones featured in the P-V fits above. The mixing phase(s) obtained from the V-V fit
are still the same B0

q ↔ B̄0
q mixing phases that are found using the P-V fits. Because

of this polarisation of the penguin parameters, the control channel should also feature a
V-V final state. Once again, we can look at the SU(3) partner of this decay channel for
our control which in this case is B0

d → J/ψρ. Including these two decay channels to the
overall fit now allows for a global fit to all parameters of interest, an the external input
parameters are now reduced to ε and γ. The polarisation dependent CP-asymmetries
of B0

s → J/ψφ are not available from experiments so they were obtained by calculating
their values based on current measurements of φeffs,J/ψφ [35]. They come out to be

Adir
CP(B0

s → J/ψφ) = 0.006± 0.013, ηAmix
CP (B0

s → J/ψφ) = −0.085± 0.025. (4.10)

For B0
d → J/ψρ0 the polarisation dependent CP asymmetries have been measured, al-

lowing for a comparison of the V-V penguin parameters obtained from the polarisation
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states. The results of this comparison are shown in Fig. 4.3 which shows that with cur-
rent precision for the polarisation dependent CP asymmetries all results are in agreement
with one another and no polarisation dependent effects can be measured. For now we
can continue with the global fit by using the polarisation independent CP asymmetries
for B0

d → J/ψρ0 which are given by [37]

Adir
CP(B0

d → J/ψρ0) = −0.064± 0.059, ηAmix
CP (B0

d → J/ψρ0) = 0.66± 0.15. (4.11)

4.4 Global fit results

If we now were to make a fit to the V-V channels by themselves we would once again
require external input for the mixing phase φd. Unlike the situation with φs in the P-V
fits above, we can now make use of the P-V fits to obtain φd as an input for the V-V
fit. As already mentioned in Chapter 3 and shown in Fig. 3.1, the global fit now works
by using B0

d → J/ψK0
S and B0

d → J/ψπ0 to obtain φd, which is than used as input for
B0
d → J/ψρ0. From here ∆φs can be estimated and used to obtain φs from B0

s → J/ψφ.
φs is then used as input to obtain penguin parameters from B0

s → J/ψK0
S in order to find

∆φd for controlling the B0
d P-V channels. This global fit now combines CP asymmetries

from B0
d → J/ψK0

S, B0
d → J/ψπ0, B0

s → J/ψK0
S, B0

d → J/ψρ0 and B0
s → J/ψφ

together with the external input for γ and ε. It is important to note that by using SU(3)
symmetry we can assume that the penguin parameters from B0

s → J/ψK0
S, B0

d → J/ψK0
S

and B0
d → J/ψπ0 are equal to one another as shown in (2.72). The same reasoning is

also used to assume that the penguin parameters from B0
s → J/ψφ and B0

d → J/ψρ0 are
equal. Furthermore, it is also assumed that contributions from exchange and penguin
annihilation topologies can be neglected.

From the global fit, we obtain for the P-V channels

a = 0.13+0.16
−0.10, θ = (173+34

−43)°, φd = (44.4+1.6
−1.5)°, (4.12)

and the values of a and θ result in a phase shift

∆φd = (−0.73+0.60
−0.91)°. (4.13)

For the V-V channels we obtain

aV = 0.043+0.082
−0.037, θV = (306+48

−112)°, φs = (−5.0+1.6
−1.5)° = −0.088+0.028

−0.027, (4.14)

and the values for aV and θV result in a phase shift

∆φs = (0.14+0.54
−0.70)° = 0.003+0.010

−0.012. (4.15)

The two-dimensional confidence regions for the combined fit to φd and φs are shown in
Fig. 4.4 and Fig. 4.5. As mentioned before, including B0

s → J/ψK0
S to the P-V fit

removed the ambiguous result for a that was previously seen. The correlation between
a and φd is still present. For the V-V fits the results for aV and θV are unambiguous,
but the fit does show a small region which would allow for a high value for aV which
is disfavoured for the same reasons mentioned previously for a. Including this region
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Figure 4.4: Two-dimensional confidence regions for the combined fit to B0
d → J/ψK0

S,
B0
d → J/ψπ0 and B0

s → J/ψK0
S. (a) shows the fit to a and θ and (b) shows the correlation
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Figure 4.5: Two-dimensional confidence regions for the combined fit to B0
d → J/ψρ0 and

B0
s → J/ψφ. (a) shows the fit to aV and θV and (b) shows the correlation between aV

and φs

35



Figure 4.6: Comparison between the P-V and V-V mode penguin parameter fit solutions.

does again show a sizeable correlation between aV and φs, once again highlighting the
importance of controlling the penguin effects.

Now that we have the results for both the P-V and the V-V penguin parameters, it is
worthwhile to visually highlight the fact that the P-V penguin parameters cannot be set
to be equal to the V-V ones. Fig. 4.6 shows the combined fit regions for both the P-V
and the V-V modes in one plot. It can be easily seen that the fit solutions do not agree
with each other leading to the conclusion that aeiθ 6= aV e

iθV .
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Chapter 5

Conclusion and outlook

Now that the theory, methods and results have been shown, it is time to draw conclusions
and look at the possibilities this research could provide in the future. Let us begin by
recalling the goals set out in the introduction. The initial goals were to determine the
penguin parameters in neutral B decays; To find the size of the penguin corrections in
the weak mixing phases; And to obtain clean measurements of these mixing phases.

In order to make a fit to the penguin parameters and the mixing phases from exper-
imental data we developed a new module that can be used within the GammaCombo
framework. The end result of this is a global fit to all penguin parameters, and most
importantly, the mixing phases. This effectively allowed us to bypass the second goal of
this thesis. Since the size of the penguin corrections can still be insightful when trying
to establish how the error on the mixing phases can be improved, they were calculated
after the fact from the penguin parameters obtained from the fit. The final results for
the mixing phases are

φd = (44.4+1.6
−1.5)°, φs = (−5.0+1.6

−1.5)° = −0.088+0.028
−0.027, (5.1)

with the corresponding phase shifts

∆φs = (−0.75+0.61
−0.91)°, ∆φs = (0.14+0.55

−0.71)° = 0.003+0.010
−0.012. (5.2)

Looking back at the external inputs for φd and φs we can see that the result for φd
matches the external input quite well1. For φs the difference is somewhat larger at
0.067 ± 0.041. Whilst this difference deviates from zero at 1.6 σ the fitted value of φs
is still in agreement with the external input. It is notable however that the error on φs
coming from the external fit is already slightly larger than the value obtained here.

Whilst the external inputs provide a nice reference to compare the fit values against, it
does not tell us anything about possible NP effects, which is one of the primary motivators
for this research. In order to get a signal for NP we need to compare our fit value against
the SM predictions for the mixing phases. The SM values are [35]

φSMd = (45.7± 2.0)°, φSMs = (−2.15± 0.11)° = −0.0376± 0.0020. (5.3)

Using these values and (1.1), φNP can be extracted, yielding

φNPd = (−1.3+2.6
−2.5)°, φNPs = (−2.85+1.6

−1.5)° = −0.050+0.028
−0.027. (5.4)

1the difference being (−0.12± 2.1)°
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Here we see the same pattern emerge as with the external inputs above, the value for
φNPd does not show a significant deviation from zero at 0.5 σ, whilst the value for φNPs
deviates from zero at 1.8 σ. So at this point in time, we do not find a significant signal
for NP in these mixing phases.

It is however worthwhile to explore how this picture might change in the future,
considering also the expectation of more precise results from the LHC upgrade era and
Belle II.

Assuming that the central values of the experimental input do not change, we can
explore future scenarios by artificially reducing the error on these inputs. Beginning with
a factor 2 improvement, the error on φd would become 0.78° and the error on φs 0.77°.
In turn, this would improve the signal for NP to 0.6 and 3.5 σ respectively. Going one
step further with a factor 5 improvement, the error on φd becomes 0.31° and the error on
φs 0.32°, leading to a NP signal of 0.64 and 8.3 (!) σ. The combined fit regions for these
scenarios are shown in Fig. 5.1.

These future scenarios show that the combined fit approach explored in this thesis
can lead to the discovery of NP in the future. As it stands now the precision on the SM
prediction of φs is already sufficient to allow for NP to be found. More notably however,
the SM prediction on φd already is and can quickly become the dominant contribution
to error of the NP signal, so simply improving the experimental precision is not enough
to discover NP in B0

d mixing.
The attentive reader might have noticed at this point that I have not made use of

the observable H discussed at the end of Chapter 2. Initially the plan was to make
use of this observable to estimate the size of SU(3) breaking in the amplitude ratio
|A′/A|. In the final fit results however, it was clear that no SU(3) breaking effects are
observed at the current level of precision, requiring an order of magnitude improvement
in order to detect any effect. Should this improvement be realized in the future, it will
be important to take these effects into account in order to achieve the highest possible
precision. The observable H may in the future also be used as an additional constraint
on the penguin parameters, since it only depends on Adir

CP. It therefore enables us to add
channels for which only Adir

CP is available. The only issue with this might be that H is
also sensitive to these SU(3) breaking effects, so it should also be used carefully if more
precise experimental input becomes available.

I would also like to highlight again the successful implementation of the GammaCombo
fitting module. It allowed us to easily construct a single module with which the global
fit could be made, as well as fits to individual decay channels. Besides being used for
obtaining the mixing phases, the same module has also been used for obtaining effective
Wilson coefficients for B0

s → J/ψK0
S and B0

d → J/ψK0
S which are reported in [35]. The

motivation for utilizing GammaCombo for making this fit was to enable other groups
to implement it in order to control these penguin effects, as these are currently often
neglected in literature. Since the results obtained here show that controlling the penguin
contributions is vital for finding signals of NP, I hope that this will encourage other groups
to start using the formalism presented here to improve their own results.
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Figure 5.1: Combined fit regions for the global fit to the penguin parameters and mixing
phases. Showing the current fit regions combined with future scenarios with a factor 2
and 5 improvement of the precision of experimental input measurements.
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