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Abstract

Modern particle physics experiments are constantly searching for signs pointing to New
Physics (NP) beyond the Standard Model (SM). One possible source for finding NP effects
is Charge-Parity (CP) violation in particle-anti-particle mixing of neutral Bd(s) mesons.
The strength of this CP violation can be parameterised by a weak mixing phase φd(s).
Accurately measuring the weak mixing phase φd(s) and comparing it to SM predictions
can provide a signal for NP. Because these mixing phases cannot be directly calculated
from Quantum Chromodynamics (QCD), they require experimental input in order to
make predictions. It has been known for some time that the results for the mixing phases
based on experiments are contaminated by contributions from higher order Feynman
diagrams known as penguin diagrams. Controlling these penguin contributions will be
necessary in order to improve the precision of these mixing phases in the future. In
this thesis the formalism for controlling these penguin contributions is explored. Using
the GammaCombo software package a fit is made to the parameters describing these
contributions as well as the weak mixing phase φd(s). Experimental input in the form
of CP asymmetries in B0

s → J/ψK0
S, B0

d → J/ψK0
S, B0

d → J/ψπ0, B0
s → J/ψφ and

B0
d → J/ψρ0 decays is used for making a global fit to all parameters. This global fit

allows for a direct extraction of the mixing phase φd(s) from the experimental input and
does not require input from QCD calculations. The values for the mixing phases found
using this approach agree with currently available measurements. Finally, the signal for
NP is explored, as well as how it might change with more accurate experimental input
in the future.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics [1] has known a great amount of successes
over years, the biggest example of which is probably the discovery of the Higgs boson at
the LHC complex in 2012 [2, 3], answering a question that had stood for many years.
How do particles get their mass? Another question of similar importance, which as of yet
does not have a de�nitive answer, is why we only observe regular matter in our universe?
This question is interesting because when matter is created from pure energy, both matter
and antimatter are believed to be created in equal parts. However, some mechanism has
lead to an imbalance between matter and antimatter, leaving us only with the former.
A possible solution to this problem came to light with the discovery of Charge-Parity
(CP) violation in the kaon system by Cronin and Fitch in 1964 [4], providing one of the
three conditions for matter-antimatter asymmetry as proposed by Sakharov [5]. In this
experiment they observed the decay of a neutral kaon into two charged pions which, at
that time, could not be explained via conventional physics, thereby opening the door for
CP violating e�ects. CP violation, simply put, introduces an asymmetry between the
decay amplitudes of particles and their antiparticle counterparts. Using this and the fact
that matter can oscillate into antimatter and vice versa, it would lead to regular matter
becoming the dominant component in the universe over time1.

In 1974, in order to explain the phenomenon of CP violation, Kobayashi and Maskawa
proposed an extension of Cabbibo quark mixing matrix from 1963 [6, 7]. This new matrix,
which is now known as the Cabbibo-Kobayashi-Maskawa (CKM) matrix included three
generations of quarks and, most importantly, introduced complex coupling constants
between quarks. This complex coupling allows for CP violation to occur and, critically,
cannot exist with only two generations of quarks. Currently we know for a fact that at
least three generations of quarks exist, but at the time that Kobayashi and Maskawa
introduced their mixing matrix, only two had been discovered. The presence of this
third generation of quarks proposed by Kobayashi and Maskawa was slowly con�rmed
over time by the discovery of the bottom (b) quark in 1977 [8] and the top (t) quark in
1995 [9]. Whilst CP violation had already been seen in the second generation of quarks
with the observation by Cronin and Fitch, it had yet to be observed in the third at
the start of this century. In 2002 these observations were �nally made by the Belle and
BaBar collaborations at KEK and SLAC respectively by studying theB 0

d ! J= K 0
S

1The argument can be made that this could in principle happen for either matter or antimatter,
but since the distinction between them depends entirely on convention you can always the de�ne the
remainder of the two to be "matter" and the other "antimatter"
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decay channel [10, 11]. These discoveries con�rmed the theory proposed by Kobayashi
and Maskawa and rewarded them with the Nobel prize in 2008 [12].

This brings us back to current times. Whilst the SM is a well established theory
at this point in time it still faces some problems, the most glaring one possibly being
a lack of quantum gravity, although more minor issue also exist. In order to �x these
problems many new models of New Physics (NP) have been proposed over the years, but
as of yet none of them have been experimentally observed. From this one can draw three
conclusions. First, the NP does not exist, which is very hard to prove although at some
point a theory can be rejected based on extensive lack of evidence. Second, the e�ects
introduced by the NP do not manifest at the level of energy that is currently achievable
with accelerators so in order to con�rm the existence of NP, higher energies are required.
This is also known as the High Energy frontier. Third, the e�ects coming from NP are
very small and as of yet fall within the margin of error of experimental observations, so
in order to observe NP, higher accuracy is required. This is known as the High Precision
frontier.

It is this High Precision frontier that is being explored in Flavour Physics, which
concerns itself with the mechanisms behind quark and lepton avour mixing within the
SM, in which the CKM matrix plays a major role. As it stands now, the CKM matrix
provides a good description of the mechanism for CP violation and avour mixing, it
is however entirely possible for NP e�ects to enter in these processes. If this is the
case, accurate measurements of the CKM matrix parameters should show tensions with
SM predictions and lead to evidence of NP e�ects. One of these searches for NP is the
measurement of the weak mixing phases� s and � d which parameterise the strength of CP
violation in B 0

s(d) � �B 0
s(d) mixing. The SM provides a description for this mixing process

via the CKM quark mixing matrix but it is possible for NP to mediate the process and
introduce a phase shift to the weak mixing phases. Therefore, by accurately measuring
these phases it might be possible to detect these NP e�ects and give an estimation for
the size of their contribution. The weak mixing phases mentioned above can be studied
through neutral B meson decays, which are sensitive to CP violation inB 0

s(d) � �B 0
s(d)

mixing. The mixing phases� s and � d can in general be expressed as:

� q = � SM
q + � NP

q ; (1.1)

with q 2 (d; s). In order to accurately measure the SM phase and the NP contribution it
is important to know what processes contribute to the decay being studied. As with most
phenomena in high energy (particle) physics, these processes can be split into orders, with
each subsequent order contributing less to the overall process. For any sort of particle
interaction or decay, these processes are described by making use of Feynman diagrams,
which provide both a visual interpretation of the interaction, as well as a mathematical
blueprint with which the interaction rate can be calculated. For the neutralB decays
that will be studied in this thesis, the leading order contribution to these decays are
called tree diagrams, with the next-to-leading order being made up of penguin diagrams.
The former being named such because the diagram somewhat resembles a tree, the latter
got its name from John Ellis after losing a bar-room bet in 1977 [13]. Whilst the tree
diagrams entering these decays have long been understood and described, a formalism
for estimating the contributions coming from the penguin diagrams was �rst proposed by
Robert Fleischer in 1999 [14, 15]. In these papers he discussed a method for extracting
CKM angles from B ! J=	 X decays. This formalism was then expanded upon in
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2008 [16] in order to correct for the contribution of penguin diagrams to the B meson
mixing phases. So far the penguin parameters were determined inB 0

d decays, but in
2010 [17] they were also determined from observations of CP violation inB 0

s ! J= K 0
S.

Finally a roadmap for controlling the penguin contributions via several decay channels
was presented in 2015 by Kristof de Bruyn and Robert Fleischer [18]. It is this last paper
which forms the basis for the research done in this thesis.

Since the publication of the 2015 paper new results for CP violation parameters in
neutral B decays have become available and more results coming from the �nished run
2 at LHC are expected soon. The completion of the Belle II detector at the SuperKEK
facility should also provide exciting new results for Flavour Physics. In light of this it is
useful to see what has changed since 2015 and give an update on the penguin parameters
entering the neutral B decays.

The goals for this thesis are to determine the size of the penguin parameters in neutral
B decays; To �nd the size of the penguin corrections to the weak mixing phases� d and
� s; And to obtain clean measurements of� d and � s. To aid further research on this topic
as well as inclusion of the penguin corrections into the global CKM parameter search, a
�tting module is developed within the GammaCombo software package from LHCb [19].

The outline of this thesis is as follows. In Chapter 2, I will explore the theoretical
background to discuss these penguin contributions, starting with a general introduction
of the SM and a more thorough explanation of the Feynman diagrams mentioned above.
This is followed by a discussion of the �eld of Flavour Physics and CP violation from
which we get the basic tools needed to measure the mixing phases. Finally, the formalism
for controlling the penguin contributions as put forward in previous papers is explored
in detail. In Chapter 3, I will discuss the GammaCombo �tting module in more detail,
followed by an overview of the decay channels that are used to measure the penguin
contributions to � d and � s. In Chapter 4, I will show the results of the �t to the penguin
parameters as well as a more detailed look at the interplay between the decay channels
that are used. Finally in Chapter 5, I will discuss these results and the analysis as a
whole and see what conclusions can be drawn from them, as well as an outlook for how
these results might be improved in the future.
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Chapter 2

Theoretical framework

2.1 Background information

Before I outline the formalism that is used for answering the questions asked in the
introduction it is useful to known the surroundings in which this formalism is placed. To
that end I will start with introducing background information which is needed to properly
understand the formalism for describing the penguin contributions.

2.1.1 The Standard Model of particle physics

Almost all research into particle physics that is done currently involves the Standard
Model (SM) in some capacity. In general terms, the Standard Model provides a descrip-
tion of the most fundamental particles in nature and the forces that act on these particles.
More speci�cally, the SM is a quantum �eld theory build up out of gauge symmetries.
These symmetries are

SU(3)colour � SU(2)I 3 � U(1)Y ; (2.1)

wherecolour is colour charge,I 3 is weak isospin andY is hypercharge. This is comple-
mented by spontaneous symmetry breaking of theSU(2)I 3 � U(1)Y symmetries via the
Higgs mechanism [20, 21, 22], allowing the associated gauge bosons to have mass and
introducing an additional massive gauge boson, now known as the Higgs boson, in the
process.

These three symmetries describe all possible interactions that can occur between the
particles that make up the SM. All such interactions are mediated by gauge bosons, which
are generated by the symmetry groups listed above. In general any interaction between
particles can either transfer charge from one particle to the other, these are called charged
current (CC) interactions, or transfer no charge, called neutral current (NC) interactions.
Any charge that is transferred via these interactions has to be carried by the mediating
boson.

SU(3)colour describes the strong interactions between quarks. These interactions are
NC interactions mediated by a set of 8 gluons (g), each carrying a di�erent colour charge.
This colour charge provides the basis for how quarks form bound states. The bound
states are required to have no net colour, or in other words, they must be white. A quark
can carry either a red, blue or green colour charge, which can be interchanged via strong
interactions, where the colour being transferred is carried by the mediating gluon.
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Charge (e) Spin (J) Mass
 0 1 0
g 0 1 0

Z 0 0 1 91:1867� 0:0021 GeV
W � � 1 1 80:379� 0:012 GeV

Table 2.1: Basic properties of gauge bosons.[23]

Name Charge (e) Spin (I 3) Mass (MeV)
up (u) 2/3 +1/2 2:16+0 :49

� 0:26
down (d) -1/3 -1/2 4:67+0 :48

� 0:17
charm (c) 2/3 0 (1:27� 0:02) � 103

strange (s) -1/3 0 92+11
� 5

top (t) 2/3 0 (172:76� 0:3) � 103

bottom (b) -1/3 0 (4:18+0 :03
� 0:02) � 103

Table 2.2: Basic properties of quarks. [23]

SU(2)I 3 � U(1)Y together describe both the electromagnetic and weak interactions
between particles. The electromagnetic interactions are NC interactions between charged
particles and are mediated by the photon ( ). The weak interactions between particles
are either CC interactions mediated by theW + and W � bosons, or NC interactions
mediated by theZ 0 boson. The properties of the gauge bosons are listed in Table 2.1.

Besides the gauge bosons the SM also contains the fundamental particles between
which the interactions can occur. These particles can be divided into two sectors, the
quark sector and the lepton sector. The quark sector contains 6 particles that can be
divided into three generations. An overview of these particles and some of their properties
is given in Table 2.2. Each generation of quarks forms a doublet with one up type and one
down type quark. The �rst generation consists of the up and the down quark, the second
generation consists of the charm and strange quark, and the third generation consists of
the top and bottom quark. They are the only particles that can interact with each other
via the strong force and because of this are always found in bound colour-neutral states
in nature.

Similar to the quark sector, the lepton sector can also be divided into three genera-
tions, each consisting of a doublet made up of a lepton, and the associated lepton-neutrino.
As with the quarks, also here the �rst generation features the lightest particles, and the
third generation the heaviest ones. The leptons carry unit charge and can not interact
via the strong force. Because of this they are found freely in nature. The neutrinos that
accompany the leptons in each generation carry no charge and as such only interact via
the weak force.

Another class of particles that is of importance but not directly a part of the SM
is that of hadrons. Hadrons are bound states of quarks with each hadron consisting
of either two or three quarks. Since hadrons do not carry colour only combinations of
three quarks, called baryons, or of quark anti-quark pairs, called mesons, are possible.
The most common examples of baryons are the proton and the neutron, which make up
all nuclear matter found in nature. The �rst meson that was observed experimentally
is the pion (� ) which is made out of up and down quarks. A list of mesons that will
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Name Content Mass (MeV) J P C

� 0 1p
2
(u�u + d �d) 134:9768� 0:0005 0� +

K 0 u�s 497:611� 0:013 0�

J= c�c 3096:900� 0:006 1��

B 0
d d�b 5279:65� 0:12 0�

B 0
s s�b 5366:88� 0:14 0�

� 0 u�u 775:26� 0:25 1��

� s�s 1019:461� 0:016 1��

Table 2.3: Basic properties of mesons encountered in this thesis. Listed are the quark
content, mass and the J, C and P quantum numbers. The charge has been omitted since
all of these particles are neutral. ForK 0, B 0

d and B 0
s only the P number is known. For

the B mesons this is a predicted value. These three particles do not have a quantum
number C due to them not being C eigenstates. [23]

feature heavily in this thesis is given in Table 2.3. We can make yet another classi�cation
of hadrons based on their angular momentum J. This mostly pertains to the way the
particle acts under the C, P and T transformations in the Hamiltonian. Particles with J
= 0 act like scalars, whilst particles with J = 1 act like vectors. For completeness sake,
if a particle has J = 2, it acts like a tensor, the only particle that is currently thought to
have J = 2 is the graviton, which is the gauge boson associated with quantum gravity.
Under this classi�cation we can make a further division based on the P eigenvalue of the
particles. For the case J = 0, if P = +1, we get a "proper" scalar states, if P = -1 we
get a pseudo-scalar state. For the case J = 1, with P = -1 we get vector states, with
P = +1 we get axial vector states. Looking at Table 2.3,� , K 0 and the B mesons are
pseudo-scalar states andJ= , � and � are vector states. The Particle Data Group [24]
keeps track of all currently known hadrons and SM particles, as well as current searches
for new particles and physics.

2.1.2 Feynman Diagrams

Now that we have seen the particles and forces described by the SM, I can start explaining
the interactions these particles can have and how these are described. In modern physics,
any interaction between particles is typically described by using Feynman diagrams, of
which a simple example can be seen in Fig. 2.1. A Feynman diagram is built up of external
lines, internal lines and vertices where these lines connect. An external line is one that
represents the particles entering or exiting the interaction. The internal lines represent all
particles involved in the interaction which are not observed after the fact. The internal
lines typically include the mediating gauge bosons and possibly quarks and/or leptons
running in loops. Whilst at face value this is a very intuitive system to use it follows
a set of strictly de�ned rules that dictate what each line represents. Using these rules
to read a diagram yields the formula necessary for calculating the transition amplitude
of the interaction shown in the diagram. One of the great strengths of the Feynman
diagrams is that it allows one to come up with new interactions that might not yet have
been observed, and consequently make predictions which can be tested with experiments.

When a particle decays, it can decay in to any state for which a Feynman diagram can
be constructed following the Feynman rules. It is possible for a single decay to be allowed
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Figure 2.1: Simple Feynman diagram ofe � e scattering.

Figure 2.2: Generic penguin diagram featuring ab ! s transition. CNP is a colour
neutral propagator which can be ag,  or Z 0 boson.

via multiple Feynman diagrams, in which case the total transition amplitude is given by
the superposition of all possible Feynman diagrams. In any decay it is always possible
to construct additional Feynman diagrams describing the decay by introducing particle
loops. Adding such a loop to the diagram lowers the transition amplitude compared to
the diagram without a loop. Because of this, all Feynman diagrams transcribing a decay
can be ordered by their transition amplitudes. The leading order diagrams typically do
not feature any loops, with each subsequent order adding one more loop to the diagram.
In order to get a reasonable estimate for the total transition amplitude of any given decay
it is usually su�cient to only study the leading order diagrams. However, when more
accuracy is needed, next-to-leading order diagrams should be taken into account.

For the neutral B decays that are studied in this thesis the leading order diagrams are
called "tree" diagrams and as such the leading order is often times referred to as tree-
level. The next order of diagrams which describe the neutral B decays are the so-called
"penguin" diagrams. The penguin diagrams have distinct shape (which can be drawn to
resemble a penguin) and were named such by John Ellis in 1976 after losing a bet over a
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game of darts [13], the structure of a generic penguin diagram is shown in Fig. 2.2.

2.2 Flavour Physics

Research into the SM can be divided further into �elds. One such �eld is avour physics,
that studies quark avours, which indicates the quark type, and the properties that these
avours have. Interactions between quarks can be mediated by every force in the SM,
but only the weak force couples to the avour of quarks, rather than just electric charge
or colour. A major part of avour physics is the study of CP violation.

2.2.1 CP violation

As mentioned in the introduction the primary motivation for this thesis is research into
the properties of CP violation and the possibility of measuring NP. As we have seen
with the SM above, most of modern physics is based upon symmetries. In the case of
interactions as described by Feynman diagrams there are some further symmetries of
these interactions that are important besides the symmetry groups from which the SM is
constructed. These include symmetry under charge conjugation (C), Parity-inversion (P)
and Time reversal (T). In any interaction the product of C, P and T has to be conserved.
For a while it was thought that each of these symmetries had to be conserved individually,
but this turned out not to be the case.

The reason for this has to do with the chirality of particles. The chirality of a particle
can also be referred to as the handedness of a particle, with them being either left or
right handed. A similar concept to this is that of helicity, which describes the size of
the particles spin along it's direction of movement. For massless particles the chirality
and the helicity of the particle is the same. However, for particles with mass this is no
longer the case, since a frame of reference can be chosen such that its helicity is reversed
compared to the helicity in the lab frame.

In order to describe the C and P symmetry operations, let 	L be a left handed particle
with momentum ~p. If we now apply C we get:

Cj	 L (~p)i = � C
	 j �	 L (~p)i ; (2.2)

here � C
	 is the eigenvalue of the transformation under C and equals� 1. Note that the

chirality of the particle did not change, but C did make a conversion to an antiparticle.
When applying the P transformation we get

Pj	 L (~p)i = � P
	 j	 R(� ~p)i ; (2.3)

where� P
	 once again describes the eigenvalue of the particle under P. Note however that

this time the P transformation changed the handedness of the particle involved. The
reason why C and P (and as it happens, CP) are not conserved in nature is because of
the weak interaction. The weak interaction only acts on left-handed particles, or right-
handed antiparticles. Using this, it is quite easy to see why C and P are not individually
conserved under weak interactions, since e�ectively they both change the handedness of
the particle. For P this is quite obvious and whilst C might not seem to change the
handedness outright, it happens that the chirality of a particle and its antiparticle is also
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reversed. So a right-handed antiparticle interacts under the weak interaction as if it is a
left-handed particle. The solution to this problem seems quite obvious. By applying both
the C and P transformation to a particle, it's handedness should be conserved. Using the
same descriptions as before we get

CPj	 L (~p)i = � CP
	 j �	 R(� ~p)i ; (2.4)

where � CP describes the eigenvalue of the particle under CP and simply equals� C � � P .
As we can see, the left handed particle has now been transformed into a right handed
antiparticle.

It turns out however, that there are decays in which CP is not conserved. The �rst
example, which in turn led to the discovery of this concept, is the decay ofK 0. When
observed in nature this particle turns out to have two di�erent states, one with a short
lifetime, K 0

S, and one with a longer lifetime,K 0
L . At �rst glance, these two states are CP

eigenstates, this means that under CP transformation the state changes up to a di�erence
in sign. The di�erence between the two is thatK 0

S is a CP even state, whereasK 0
L is

CP odd, in other words, the CP-eigenvalue ofK 0
S is � CP = +1 and the eigenvalue ofK 0

L
is � CP = � 1. Assuming that CP is conserved in weak decays, the CP eigenvalue of the
initial state and �nal state particles must be the same. SoK 0

S is only allowed to decay
into CP-even �nal states. As it turns out, this is not the case. in 1964 it was discovered
that the CP-even K 0

S could decay into a CP-odd �nal state! In other words, CP was
violated.

In general there are three types of CP violation that can be observed. The �rst type
is mixing induced CP violation. It occurs when the rateA(	 ! �	) 6= A( �	 ! 	), and
as such is time dependent. The second type is direct CP violation. In this case the rate
A(	 ! f ) 6= A( �	 ! �f ). Finally there is also the possibility for both of these types
of CP violation to manifest in one decay. In these cases, the initial state particle or
antiparticle both decay to a �nal state which is a CP eigenstate, sof = �f . In these
cases CP violation can occur directly, whenA(	 ! f ) 6= A( �	 ! f ), or indirectly when
A(	 ! �	) 6= A( �	 ! 	). A combination of both when A(	  �	 ! f ) 6= A( �	  
	 ! f ). In any of these cases, 	� �	 mixing induces interference e�ects in CP violation,
leading again to a time dependence.

For the neutral kaon system in which CP violation was �rst observed,K 0 � �K 0

mixing had the largest contribution, although some direct CP violation also occurred.
The strength of the mixing induced CP violation in kaons is described by the parameter
� , for direct CP violation the parameter � 0 is used. � itself is relatively small at O(10� 3),
but � 0 is even smaller with� 0=� � 10� 3 [23].

2.2.2 CKM Matrix and Unitarity Triangles

In order to allow for CP violation in the SM, it is necessary to describe how weak decays
occur and in particular, how changing from a particle to an antiparticle results in di�erent
transition rates. As mentioned in the introduction, the concept of quark mixing already
existed before the discovery of CP violation. However, Cabibbo's 2x2 matrix can not
allow for a description of CP violation. In order for it to occur through quark mixing
there needs to be a complex phase that can enter the transition amplitudes. To allow for
this phase, Kobayashi and Maskawa proposed an extension of Cabibbo's quark mixing
matrix to include three generations of quarks. This matrix is now commonly referred to
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(a) (b)

Figure 2.3: Feynman diagrams of (a) ad ! u transition and (b) a �d ! �u transition with
W emission. The corresponding CKM elements are listed as well.

as the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Besides allowing for a description of
CP violation in the SM the CKM matrix also allows for a clean description of the Yukawa
couplings through which the quarks gain their mass. Through this de�nition, the CKM
matrix describes how the interaction eigenstates of quarks mix into the (Yukawa) mass
eigenstates. When de�ning the matrix this way one can choose to let either the up-type
quark or the down-type quark interaction eigenstates be equal to the mass eigenstates.
Convention dictates that the up-type quarks remain unchanged, and as such we have for
the down type interaction eigenstates:

0

@
d
s
b

1

A =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A

0

@
d0

s0

b0

1

A : (2.5)

Here the primed quarks correspond to the mass eigenstates, and the unprimed quarks
to the interaction eigenstates. The matrix elementsVij are known as CKM elements.
Through diagonalising the Yukawa couplings the CKM matrix enters in charged-current
(CC) interactions between quarks. As such, each CKM element describes how strongly
one quark avour couples to another under weak interactions. For example, when ad
quark decays into anu quark whilst emitting a W � boson, the strength of the coupling
is given by Vud. The Feynman diagram of this transition as well as its CP counterpart
is shown in Fig. 2.3. Since charge is carried in these interactions though the mediating
charged W bosons, it is not possible for an up type quark to decay or change avour
directly into another di�erently avoured up type quark, the same holds for down type
quarks. In other words, there are no avour changing neutral current (FCNC) interactions
at tree level within the SM. It is however possible to construct next-to-leading order
diagrams in which a down type quark ends up decaying into a di�erently avoured down
type quark. An example of such a diagram is the penguin diagram shown in Fig. 2.2
where ab quarks decays into ans quark. The diagrams that feature a FCNC always
involve quarks running in a loop together with a W boson, e�ectively combining two CC
interactions to form a FCNC interaction. As such FCNCs will always involve at least 2
CKM elements.

The CKM elements can be parameterised in a few di�erent ways. One standard choice
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is the following:

VCKM =

0

@
c12c13 s12c13 s13e� i�

� s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13

s12s23 � c12c23s13ei� � c12s23 � s12c23s13ei� c23c13

1

A ; (2.6)

wheresij = sin � ij and cij = cos� ij . � is the complex phase that allows for CP-violation.
The angles� ij can be chosen such thatsij and cij become positive. Whilst these pa-
rameters allow for a completely analytical description of the CKM matrix, it is quite
cumbersome to work with. Instead I will be using the Wolfenstein parameterization by
de�ning [25, 26]

s12 = �; s 23 = A� 2; s13ei� = A� 3(� + i� ): (2.7)

Where � � j Vus j � 0:22. Sinces13 and s23 are quite small (O(10� 3) and O(10� 2)) we can
set c13 = c23 = 1 with good accuracy. If we then apply (2.7) the CKM matrix takes the
following form:

VCKM =

0

@
1 � � 2

2 � A� 3(� � i� )
� � 1 � � 2

2 A� 2

A� 3(1 � � � i� ) � A� 2 1

1

A + O(� 4): (2.8)

In order to diagonalise the Yukawa mass matrices the CKM matrix is required to be
unitary. A matrix U is de�ned to be unitary if the following equation holds:

UyU = 1 (2.9)

Applying this to the CKM matrix yields equations with the following form:

Vui V
�

uj + VciV
�

cj + Vti V
�

tj = 0 (2.10)

or, when we takeUUy = 1,

VkdV �
ld + VksV �

ls + VkbV
�

lb = 0: (2.11)

Where i 6= j 2 (d; s; b) and k 6= l 2 (u; c; t). In total there are 12 of these equations, half
of which are simply complex conjugate forms of the other half, e�ectively leaving us with
6 equations. From the diagonal we get

Vid V �
id + Vis V �

is + VibV �
ib = 1; (2.12)

with i 2 (u; c; t).
Looking again at the Wolfenstein parameterisation we can see that there exists a

certain hierarchy to the CKM elements, by order of lambda. The mixing between quarks
is largest within one generation, being about order 1. Second largest is the mixing
between �rst and second generation quarks with order� . The elements that describe
mixing between the second and third generation are about order� 2, and the smallest are
the elements describing mixing between the �rst and third generation, at order� 3. If we
now look back at the equations listed above we can make some interesting observations.
Since all of the quantities involved are complex numbers we can plot them in the complex
plane. When doing so we can see that they form triangles, also known as unitarity

13



Figure 2.4: The unitarity triangle given by (2.14). This triangle also includes NLO terms
by setting �� = � (1 � � 2=2) and �� = � (1 � � 2=2) [27].

triangles (UTs). If one writes out the equations listed above we can see that there are
two equations where each of the three terms are of orderA� 3. One of the triangles is
given by

VudV �
ub + VcdV �

cb + VtdV �
tb = 0: (2.13)

We can normalise the bottom side of the triangle by diving outVcdV �
cb and getting

1 +
VudV �

ub

VcdV
�

cb

+
VtdV �

tb

VcdV
�

cb

= 0: (2.14)

The sides can be parameterised by setting

VudV �
ub

jVcdV
�

cbj
� Rbei and

VtdV �
tb

jVcdV
�

cbj
� Rtei� : (2.15)

Where

Rb =

�
�
�
�
VudV �

ub

VcdV
�

cb

�
�
�
� ; Rt =

�
�
�
�
VtdV �

tb

VcdV
�

cb

�
�
�
� ; (2.16)

and

 = arg
�

�
VudV �

ub

jVcdV
�

cbj

�
; � = arg

�
VtdV �

tb

jVcdV
�

cbj

�
(2.17)

This UT is also shown in Fig. 2.4. Another triangle, which is more relevant to the neutral
B decays, is given by

VusV �
ub + VcsV

�
cb + VtsV �

tb = 0: (2.18)

In this triangle two of the sides are of orderA� 2, with one side being much smaller at order
A� 4. As such the triangle appears to be squashed compared to the one given by (2.14).
These kinds of relations are however quite useful for doing calculations since they provide
relations between the di�erent CKM elements. This is especially true when considering
Feynman diagrams featuring quark loops. The triangle above could be used in decays
featuring a b ! s transition. Since this process is a FCNC it can not occur at tree level
and loops have to be used to construct the diagram. Since any up type quark can enter

14



(a) (b)

Figure 2.5: Current �t of the standard unitarity triangle by the UT�t collaboration (a)
and the CKM�tter collaboration (b) in the �� � �� plane. The region being �tted for in
both is the apex of the triangle given by (��; �� ).

this loop the relation above is very useful for reducing the amount of CKM elements
entering the full transition amplitude. These unitarity triangles are still actively being
researched since they can provide crucial insights into the mechanism of CP violation and
possible NP e�ects. Nowadays there are two groups that are researching the UTs, these
are the CKM�tter collaboration [28] and the UT�t collaboration [29]. Research into the
UTs involve a variety of decay channels including semileptonicB decays,K � �K mixing
and b hadron decays. The �ts that are made by these two collaborations can be seen in
Fig. 2.5.

2.2.3 Operator Product Expansion

Another useful tool in the toolbox for avour physics is Operator Product Expansion
(OPE). Let us begin by considering ac ! su �d transition, mediated by a W exchange.
Ignoring possible contributions from strong (QCD) interactions for the moment, the tran-
sition amplitude for this process is given by [30]

A = �
GFp

2
V �

csVud
M 2

W

k2 � M 2
W

[�us � (1 �  5)uc] [�vu  � (1 �  5)vd] ; (2.19)

whereui and vi are quark spinors and � and  5 are Dirac matrices. We can then rewrite
the amplitude to

A =
GFp

2
V �

csVud [�us � (1 �  5)uc] [�vu  � (1 �  5)vd] + O(
k2

M 2
W

): (2.20)

If we look back at Tables 2.1 and 2.3, we can see that the mass of the W boson is well
over an order of magnitude higher than most hadrons. As such the momentum transfer
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(a) (b)

Figure 2.6: c ! su �d transition. (a) shows the full diagram, (b) shows the same diagram
with the W boson integrated out.

k will be much smaller than the W-boson mass. Therefore we can neglect theO(k2=M 2
W )

term and still get a good approximation for the transition amplitudeA. E�ectively this
comes down to integrating out or "contracting" the W-boson in the Feynman diagram
and approximating the interaction as a 4 point interaction, as shown in Fig 2.6.

Considering that these interactions have a low momentum transfer we also need to take
into account short distance QCD corrections from gluons entering these diagrams. Fig.
2.7 shows possible gluon couplings for thec ! su �d example that we used before. From the
transition amplitude in (2.20) we can write down the e�ective Hamiltonian corresponding
to the contracted diagram, once again not taking into account QCD corrections,

H ef f =
Gfp

2
V �

csVud(�sc)V � A (�ud)V � A ; (2.21)

with the operator
(�qp)V � A � �q � (1 �  5)p; (2.22)

denoting a vector - axial vector current. If we want to be more precise we can include
color indices� and � for the quarks and get

H ef f =
Gfp

2
V �

csVud(�s� c� )V � A (�u� d� )V � A : (2.23)

If we consider short distance QCD corrections the colour structures of the quark currents
can be altered. In order to apply these corrections we can generalize the Hamiltonian to

H ef f =
GFp

2
V �

csVud(C1(� )Q1 + C2(� )Q2); (2.24)

where
Q1 = (�s� c� )V � A (�u� d� )VA ; (2.25)

Q2 = (�s� c� )V � A (�u� d� )V � A : (2.26)
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(a) (b) (c)

Figure 2.7: One-loop diagrams showing possible gluon couplings in thec ! su �d transi-
tion. The resulting colour structure in (a) and (b) can be described with operatorQ1

and the colour structure in (c) can be described with operatorQ2.

We have now expanded the operators to include QCD corrections. The coe�cientsC1

and C2 serve as the e�ective coupling constants for the contracted 4 point interactions
and are dependent on the strong coupling constant� s, MW and the renormalization scale
� . These coe�cients are called Wilson coe�cients. The process of OPE can be applied
to any diagram that features heavy particles running internally in the diagrams. Notably
this includes higher order diagrams such as the box or penguin diagram. Repeating the
process of QCD corrections for these diagrams yields their own set of operators with
associated Wilson coe�cients. In the case of penguin diagrams, applying OPE to them
yields 8 di�erent penguin operators,Q3 through Q10, featuring combinations ofV � A
and V + A currents.

The e�ective Hamiltonian can be used to calculate the transition amplitude of a
given decay channel. This is done by sandwichingH ef f between the initial and �nal
state operators. As an example, let us consider the decay of a neutral B mesonB 0

q into
a �nal state f . The transition amplitude can then be expressed as

A(B 0
q ! f ) = hf jH ef f jB 0

q i : (2.27)

Later on in this chapter we will see an example of this when we apply the formalism in
full.

2.3 CP asymmetries and penguin contributions

Now we have all the tools needed to continue with the formalism with which we describe
the penguin contributions in neutralB decays. What follows below will be in line with the
formalism as introduced in the 2015 paper [18]. This paper discusses both pseudos-scalar-
vector �nal states as well as vector-vector �nal states. Both cases are largely similar, but
the vector-vector case requires one to take polarisation of the transition amplitudes into
account.

Starting o�, the strength of CP violation in any given decay is given by the CP-
violating asymmetry of the decay:

aCP �
jA f (t)j2 � j �A f (t)j2

jA f (t)j2 + j �A f (t)j2
=

A dir
CP cos(� M qt) + A mix

CP sin (� M qt)
cosh (�� qt=2) � A �� sinh (�� qt=2)

; (2.28)
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where

j
(� )
A f (t)j2 = �(

(� )

B 0
q(t) ! f ) (2.29)

is the time dependent decay rate of a given decay channel. The time dependence is
required in order to account forB 0 � �B 0 mixing. In order to show howaCP leads to the
analysis of� q by using the penguin diagrams let's start by deriving the RH side of (2.28).
There are several ways to go about this, depending on the de�nition of �(t). Here the
de�nition as given in [31] is used:

�(
(� )

B 0
q(t) ! f ) =

h
jg(q)

� (t)j2 + j� (q)
f j2jg(q)

� (t)j2 � 2Ref � (q)
f g(q)

� (t)g(q)
� (t)� g

i
~� f ; (2.30)

where~� f is the time independent decay rate, which will end up cancelling in the expression
for aCP , �

�
�g(q)

� (t)
�
�
�
2

=
1
4

h
e� � ( q)

L t + e� � ( q)
H t � 2e� � ( q) t cos (� M qt)

i
; (2.31)

g(q)
� (t)g(q)

+ (t)� =
1
4

h
e� � ( q)

L t � e� � ( q)
H t � 2ie� � ( q) t sin (� M qt)

i
; (2.32)

and

� (q)
f = e� i � ( q)

M 12
A(B 0

q ! f )

A(B 0
q ! f )

: (2.33)

The angle � in � (q)
f is given by

� (q)
M 12

= � + 2 arg(V �
tqVtb) � � CP (Bq): (2.34)

By expressing the time independent transition amplitudesA(B 0
q ! f ) in terms of the

e�ective Hamiltonian it is possible to rewrite (2.33) and get

� (q)
f = � � f e� i� q

A(B 0
q ! f )

A(B 0
q ! f )

: (2.35)

Inserting (2.30) into (2.28) and rewriting (a lot) gives

aCP =

1�j � ( q)
f j2

1+ j� ( q)
f j2

e� � q t cos(� M qt) +
2Im( � ( q)

f )

1+ j� ( q)
f j2

e� � q t sin(� M qt)

1
2

�
e� � ( q)

L t + e� � ( q)
H t �

2Re(� ( q)
f )

1+ j� ( q)
f j2

(e� � ( q)
L t � e� � ( q)

H t )
� : (2.36)

Since �q = � ( q)
L +� ( q)

H
2 it is possible to rewrite this further and get

aCP =

1�j � ( q)
f j2

1+ j� ( q)
f j2

cos(� M qt) �
2Im( � ( q)

f )

1+ j� ( q)
f j2

sin(� M qt)

cosh(�� qt=2) �
2Re(� ( q)

f )

1+ j� ( q)
f j2

sinh(�� qt=2)
(2.37)

Now de�ning

A dir
CP �

1 � j � (q)
f j2

1 + j� (q)
f j2

; A mix
CP �

2Im(� (q)
f )

1 + j� (q)
f j2

and A �� �
2Re(� (q)

f )

1 + j� (q)
f j2

(2.38)
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once again gives (2.28). In order to estimate the contribution of the penguin diagrams
we can rewrite the time-independent transition amplitudes as follows [14]:

A(B 0
q ! f ) � A f = N f [1 � bf ei� f e+ i ]; (2.39)

and
A( �B 0

q ! f ) � �A f = � f N f [1 � bf ei� f e� i ]: (2.40)

Here� f is the CP-eigenvalue of the �nal statef , N f is a CP conserving factor transcribing
the tree diagrams,bf is a parameter for the strength of the penguin diagrams,� f is a
parameter for the CP-conserving strong phase di�erence between the tree and penguin
diagrams and their relative weak phase is given by the UT angle . Apart from  all
of these parameters are dependent on the initial and �nal state particles involved in the
decay. They can be written out for a speci�c decay channel by using OPE, in the process
introducing CKM factors and hadronic matrix elements, which will be shown later on.

By inserting (2.39) and (2.40) into (2.35) and using the de�nitions in (2.38) we can
rewrite the direct and mixing induced CP asymmetries in terms of the penguin parameters
bf and � f and the CKM angle  :

A dir
CP (Bq ! f ) =

2bf sin� f sin
1 � 2bf cos� f cos + b2

f

; (2.41)

A mix
CP (Bq ! f ) = � f

"
sin� q � 2bf cos� f sin(� q +  ) + b2

f sin(� q + 2 )

1 � 2bf cos� f cos + b2
f

#

; (2.42)

and

A �� (Bq ! f ) = � � f

"
cos� q � 2bf cos� f cos(� q +  ) + b2

f cos(� q + 2 )

1 � 2bf cos� f cos + b2
f

#

: (2.43)

In order to get a handle on the e�ect that the penguin topologies have on� q we can use
the following equation:

� f A mix
CP (Bq ! f )

p
1 � (A dir

CP (Bq ! f ))2
= sin( � q + � � f

q) � sin(� e�
q;f ); (2.44)

By reordering this expression and introducing (2.42) the following expressions can be
derived:

sin � � f
q =

� 2bf cos� f sin + b2
f sin 2

(1 � 2bf cos� f cos + b2
f )

p
1 � (A dir

CP (Bq ! f ))2
; (2.45)

cos � � f
q =

1 � 2bf cos� f cos + b2
f cos 2

(1 � 2bf cos� f cos + b2
f )

p
1 � (A dir

CP (Bq ! f ))2
; (2.46)

which can be combined to yield

tan � � f
q = �

"
2bf cos� f sin � b2

f sin 2

1 � 2bf cos� f cos + b2
f cos 2

#

(2.47)

Now it is possible to calculate the size of the phase shift �� q
f for a given decay channel.

First bf and � f can be obtained by �tting them to measured values ofA dir
CP and A mix

CP
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(a) (b)

Figure 2.8: Feynman diagrams of theB 0
d ! J= K 0

S decay channel. (a) shows the tree
diagram of the decay featuring a simple W exchange. (b) shows the penguin diagram(s)
of the decay, where CNP is once again a colour neutral propagator.

using (2.41) and (2.42). Then using (2.47) �� f
q can be calculated. Note however that

this requires� q as an external input in order to make the �t to the penguin parameters.
Whilst this is certainly a viable approach it would require multiple iterations since the
phase shift that is calculated needs to be applied to� q in order to get the correct results.
In the end the values forbf , � f and � � f

q should converge. Later on I will discuss an
alternative method that was proposed in the 2015 paper on this topic, which does not
require � q as an external input.

2.4 Applying the formalism

Now that the general formalism is in place we can apply it to the decay channels that
I will be analysing in this thesis. I will start by looking at B 0

d ! J= K 0
S and deriving

the time independent transition amplitude as given in [18], in the end we will arrive
at an expression along the lines of (2.39). This decay features a�b ! �cc�s quark level
transition that can proceed via a tree topology or via penguin topologies with up-type
quark exchanges, the corresponding Feynman diagrams are shown in Fig. 2.8. Using
OPE we can express the e�ective Hamiltonian for these transitions as

H ef f =
GFp

2

"

V �
cbVcs

2X

k=1

Ck(� )Qk +
X

r = u;c;t

V �
rbVrs

10X

k=3

Ck(� )Qk

#

: (2.48)

Inserting the Hamiltonian as in (2.27) yields the following transition amplitude for the
tree level diagram

A tree(B 0
d ! J= K 0

S) =
GFp

2
V �

cbVcshJ= j
2X

k=1

Ck(� )Qk jB 0
d i ; (2.49)

and for the penguin diagrams

Apenguin (B 0
d ! J= K 0

S) =
X

r = u;c;t

Gfp
2

V �
rbVrs hJ= j

10X

k=3

Ck(� )Qk jB 0
d i : (2.50)
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We can simplify these equations further by de�ning

C0 =
GFp

2
hJ= j

2X

k=1

Ck(� )Qk jB 0
d i ; and P0(r ) =

GFp
2

hJ= j
10X

k=3

Ck(� )Qk jB 0
d i (2.51)

wherer 2 u; c; t denotes the up type quarks running in the penguin diagrams. The primes
are there as a reminder that this is a�b ! �cc�s quark level transition. From here we can
construct the overall transition amplitude which is now given by

A(B 0
d ! J= K 0

S) = V �
cbVcsC

0+
X

r 2 u;c;t

V �
rbVrs P0(r ) : (2.52)

Now de�ne � r � V �
rbVrs to get

A(B 0
d ! J= K 0

S) = � cC0+ � uP0(u) + � cP0(c) + � tP0(t ) : (2.53)

Next recall the UT relation (2.18) to write � t = � � u � � c and get

A(B 0
d ! J= K 0

S) = � c
�
C0+ P0(c) � P0(t )

�
+ � u

�
P0(u) � P0(t )

�
; (2.54)

�nally divide out � c
�
C0+ P0(c) � P0(t )

�
:

A(B 0
d ! J= K 0

S) = � c
�
C0+ P0(c) � P0(t )

�
�

1 +
� u

� c

�
P0(u) � P0(t )

C0+ P0(c) � P0(t )

��
: (2.55)

Using (2.15) we can write

V �
ub = Rbei jVcdV

�
cbj

Vud
; (2.56)

if we now recall that
� u

� c
=

VusV �
ub

VcsV
�

cb

; (2.57)

we can insert (2.56) to get

� u

� c
=

Vus

VcsV
�

cb

jVcdV
�

cbj
Vud

Rbei : (2.58)

Now we can enter the values for the CKM elements by using the Wolfenstein parameter-
isation, neglecting terms ofO(� 4) or higher yields

� u

� c
=

� 2

1 � � 2
Rbei : (2.59)

Combining this with the transition amplitude we can write

A =
�

1 �
� 2

2

�
A� 2

�
C0+ P0(u) � P0(t )

�
�

1 +
� 2

1 � � 2
Rbei

�
P0(u) � P0(t )

C0+ P0(c) � P0(t )

��
: (2.60)

If we now de�ne

A 0 � A� 2
�
C0+ P0(u) � P0(t )

�
; � �

� 2

1 � � 2
; (2.61)
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and

a0ei� 0
� Rb

�
P0(u) � P0(t )

C0+ P0(c) � P0(t )

�
; (2.62)

we can �nally express the transition amplitude forB 0
d ! J= K 0

S as

A(B 0
d ! J= K 0

S) =
�

1 �
� 2

2

�
A 0

h
1 + �a0ei� 0

ei
i

: (2.63)

Looking back at (2.39) we can see thatbf ei� f = � �a0ei� 0
and N f =

�
1 � � 2

2

�
A 0. A

unique feature of all decays featuring the�b ! �cc�s quark level transition, is that the
penguin diagrams are doubly Cabibbo suppressed compared to the tree level diagrams.
This suppression is parametrized by the parameter� in the formula above.

The decay channelsB 0
s ! J= K 0

S and B 0
d ! J= � 0 both proceed via a�b ! �cc�d

transition. The derivation of transition amplitude for these two decays is largely similar
as the derivation I did forB 0

s ! J= K 0
S. As such we can arrive at the transition amplitude

for the �b ! �cc�d by swapping out the CKM elements. We can do so by making the change

Vrs ! Vrd ; (2.64)

so now we have
� d

r = V �
rbVrd : (2.65)

With this change, the overall factor in front becomes

� d
r

�
C + P (c) � P (t )

�
= � � � A� 2

�
C + P (c) � P (t )

�
; (2.66)

The factor � u=� c inside the brackets becomes

� d
u

� d
c

=
Vud

VcdV
�

cb

jVcdV
�

cbj
Vud

Rbei = � 1Rbei : (2.67)

So now the overall transition amplitude for�b ! �cc�d channels becomes

A(�b ! �cc�d) = � � A
�
1 � aei� ei

�
; (2.68)

The de�nitions of the parametersA and aei� are the same as their primed counterparts,
apart from the primes labeling the hadronic matrix elementsC and P (q) . Furthermore,
the Cabbibo suppression of the penguin diagrams compared to the tree diagram is no
longer present in these decays, but the overall amplitude is suppressed by a factor� . So
whilst the overall BR of these decays will be lower, they will be more sensitive to the
penguin contributions.

Now that we have the expressions in place for both decay classes (b ! d or b ! s
transitions), we can enter this information into the expression for tan �� f

q . For b ! d
transitions we have made the replacementbf ei� f ! aei� to get

tan � � f
q =

� 2acos� sin + a2 sin 2
1 � 2acos� cos + a2 cos 2

; (2.69)

using a Taylor expansion ina this can be simpli�ed to

tan � � f
q = � 2acos� sin � a2 cos 2� sin 2 + O(a3): (2.70)
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For b ! s transitions we need to make the replacementbf ei� f = � �a0ei� 0
, which yields

tan � � f
q =

2�a0cos� 0sin + � 2a02 sin 2
1 + 2�a0cos� 0cos + � 2a02 cos 2

= 2�a0cos� 0sin + O(� 2a02); (2.71)

where we can once again use a Taylor expansion to simplify the equation. An important
note here is that the decay channel determines which angle can be measured, regardless
of the quark transition involved in the decay channel in question. Therefore the formulas
given above can apply to both� s and � d, rather than exclusively to one or the other.
To give an example of this consider theB 0

s ! J= K 0
S and B 0

d ! J= � 0 decay channels.
Both channels feature a�b ! �cc�d quark level transition, but B 0

s ! J= K 0
S probes � s

whereasB 0
d ! J= � 0 probes� d, so for both decay channels Eq. (2.70) should be used.

As is pointed out in Ref. [18] the equations both depend on the strong phase di�erence
� (0) in the same way. So in general, the penguin induced phase shifts will be largest with
a strong phase di�erence of 0° or 180° and will be smallest at 90° and 270°.

2.5 Branching Ratio information

Before I move on to explain how we can use the formalism introduced in the sections
above to perform measurements on� s and � d there is one more topic I would like to
bring up which has to do with U-spin symmetry in strong interactions, which is also
referred to asSU(3) symmetry. U-spin symmetry states that strong interactions do not
change when interchangings and d quarks. If we consider that the penguin parametersa
and � depend on QCD operators introduced by OPE it is easy to see that under U-spin
symmetry we have

a0ei� 0
= aei� ; (2.72)

and
A 0 = A: (2.73)

These relations become very useful if we consider that the penguins in�b ! �cc�s transitions
are suppressed compared to tree level by a factor� � 0:05. U-spin symmetry would allow
for using the magni�ed penguins featured in�b ! �cc�d transitions to probe the contribution
coming from suppressed penguins. This would allow for a iterative approach towards
determining � s and � d.

Looking at the equations forAdir and Amix we can see that in order to obtain a
good measurement of the penguin parameters, the weak phase di�erence� q is needed,
simultaneously the penguin parameters are required to obtain the weak phase shifts �� q.
By using U-spin symmetry we can obtain the penguin parameters in aBd decay using
� d as input and then use the penguin parameters to calculate �� s and subsequently� s

in a U-spin symmetricBs decay and vice versa. This approach however, is not entirely
theoretically clean since U-spin is a broken symmetry. So in order to interchange the
penguin parameters between the magni�ed and suppressed penguin diagrams we would
�rst need to make corrections due to U-spin breaking. The size of these corrections can
be determined by calculating them in factorisation. Should the U-spin breaking e�ects
prove to be small enough, it is still possible to use (2.72) without any repercussions.

When using factorisation to calculate the penguin parameters the factorisable e�ects
cancel in the ratio of tree and penguin amplitudes, so any U-spin breaking e�ect will
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enter through non-factorisable parts only. However, sinceA is not built out of a ratio of
amplitudes U-spin breaking e�ects can enter through factorisation as well. Whilst it is
possible to make these calculations in factorisation the accuracy for reproducing the BR
of B ! J= K is not great.

So far I have shown a method for obtaining the size of the penguin contributions by
looking at the CP-violating amplitudesAmix and Adir . It is possible to introduce further
constraints on the values fora and � by utilizing branching ratio information. Taking
B 0

s ! J= K 0
S as an example, the experimental BR is de�ned as

B(B 0
s ! J= K 0

S)exp �
1
2

Z 1

0
h�( B 0

s (t) ! J= K 0
S)i dt (2.74)

where

h�( B 0
s (t) ! J= K 0

S)i = �( B 0
s (t) ! J= K 0

S) + �( �B 0
s (t) ! J= K 0

S): (2.75)

The de�nition of �(
(� )

B 0
q(t) ! f ) is given in (2.30). Since this BR de�nition is time-

integrated it is important to distinguish it from the theoretical BR which is de�ned at
time t = 0. This is especially important if the decay width di�erence �� is quite large,
which is the case for theBs system, but not for the Bd system. The size of the decay
width di�erence in Bs can be described by the parameter [32]

ys =
�� s

2� s
= 0:0675� 0:0041 (2.76)

The two BR concepts can then be transformed by using

B(B 0
s ! J= K 0

S)theo =
�

1 � y2
s

1 + A �� (B 0
s ! J= K 0

S)ys

�
B(B 0

s ! J= K 0
S)exp: (2.77)

We have seen before thatA �� also depends on the penguin parameters, but it can also
be calculated by using the e�ective lifetime

� e�
J= K 0

S
�

R1
0 th�( Bs(t) ! J= K 0

S)i dt
R1

0 h�( Bs(t) ! J= K 0
S)i dt

(2.78)

=
� B s

1 � y2
s

�
1 + 2A �� (B 0

s ! J= K 0
S)ys + y2

s

1 + A �� (B 0
s ! J= K 0

S)ys

�
: (2.79)

Now we can �nally construct the observable in order to use the BR information. The
observable is de�ned as

H �
1
�

�
�
�
�
A 0

A

�
�
�
�

2 PhSp(B 0
d ! J= K 0

S)
PhSp(B 0

s ! J= K 0
S)

� B d

� B s

B(B 0
s ! J= K 0

S)theo

B(B 0
d ! J= K 0

S)theo
: (2.80)

This can be rewritten in terms of penguin parameters to get

H =
1 � 2acos� cos + a2

1 + 2�a0cos� 0cos + � 2a02
= �

1
�

A dir
CP (B 0

d ! J= K 0
S)

A dir
CP (B 0

s ! J= K 0
S)

: (2.81)

1HFLAV reports �� s=� s = 0 :135� 0:008.
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Whilst this observable allows us to put extra constraints on the penguin parameters. It
is not a particularly nice observable to use since the ratiojA 0=Aj is a�ected by the U-spin
corrections mentioned above. In turn, this presents us with the opportunity to use the
observableH to estimate the size of these U-spin corrections if the penguin parameters are
already known. To do this we �rst need to calculate the ratiojA 0=Aj in factorisation and
then compare this value to the ratio obtained fromH using both the penguin parameter
and the BR information as input. From this estimation it would then be possible to
correct (2.72) and use the penguin parameters across decay classes.
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Chapter 3

Methods

In the previous chapter I discussed the formalism behind controlling the penguin uncer-
tainties in measurements for� s and � d. In this chapter I will discuss how we can apply
this formalism to obtain the penguin shifts � � q in a clean way. I already mentioned
some of the di�culties in �nding these phase shifts, but I will be highlighting them here
again. After the method for getting these phase shifts is established I will discuss how
these methods were applied in practice and what tools were used to get the �nal results.

3.1 Obtaining the penguin parameters

Let's begin with once again listing the di�culties with obtaining the penguin parameters
in a clean way before listing the possible solutions to this problem. First and foremost
is that in order to obtain the penguin parameters from a single decay channel, the weak
mixing phase� q is required as an external input. This is a problem because the addition of
the penguin diagrams to the overall analysis introduces a phase shift �� q which modi�es
the weak mixing phases. From a single decay channel the penguin parameters can be
�tted for by using A dir

CP and A mix
CP . The end result is a system with two equations and

three variables, because of this, there is no unique solution to this system. In order to
properly obtain results it is necessary to introduce additional constraints to the system.
Besides getting additional theoretical relations with which to constrain the system there
are two approaches that can be taken.

3.1.1 Iterative approach

The �rst approach to getting a proper �t for the penguin parameters is an iterative
one. With this approach � q is �rst entered as an external input, allowing for a �t to
the penguin parameters. Using these penguin parameters, �� q can be calculated and
corrected for. This process can then be repeated until the �t converges to a single set of
values for� q, a and � . Using this approach it is possible to obtain penguin corrections for
each individual decay channel, but iterating for� q will take some time. The weak phases
that are calculated are associated with�B 0

q � B 0
q mixing and should be independent of

the speci�c decay channel that is studied. A sanity check therefore would be to see if the
weak phases obtained from iterating over each channel separately converge to the same
value. In any case, the weak phases coming from the di�erent decay channels could in
the end be averaged to obtain a �nal result.
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The biggest risk in iterating over a single channel is that it uses� q to obtain � q, which
is highly likely to lead to the wrong results. There are two ways around this problem. If
we are trying to obtain the phase� d from Bd decays, the �rst solution would be to make
use of aBs decay featuring the same quark level transition. Because the transition is the
same, the penguin parameters entering both decay channels are the same. This would
allow for using theBs decay with � s as an external input to obtaina and � , and then use
them to calculate � � d and � e�

d using theBd decay. The second solutions is an extension to
the �rst by making use of SU(3) avour symmetry of the strong interactions. Using this
symmetry one can relate decays featuring Cabbibo suppressed penguins to decay with
unsuppressed penguins and vice versa, allowing for a wider array of decays to be used
to �nd the penguin parameters and subsequently� q. Iterating over the decay channels
back and forth would still be required to see if the values obtained in this way converge.

3.1.2 Combined �t approach

Instead of iterating over decay channels in order to obtain values for� q one can also
make a simultaneous �t to all parameters. Similar to the case with iteration the best case
scenario would be to use decay channels that feature the same the quark level transition,
once again from bothBd and Bs. This creates a set of four equations,A dir

CP (Bs ! f ),
A mix

CP (Bs ! f ), A dir
CP (Bd ! f ) and A mix

CP (Bd ! f ), and four variables,a, � , � s and � d.
Because of this a simultaneous �t to all four variables can be made, without needing
to iterate to obtain the �nal results. Also here SU(3) avour symmetry can be used to
expand the scope of decay channels. The challenge with both approaches is to �nd decay
channels of bothBs and Bd with matching quark level transitions with su�ciently high
accuracy measurements in order to obtain meaningful results. Whilst for theBd system
there are many measurements ofA dir

CP and A mix
CP for a wide variety of decay channels, this

is not the case for theBs system.

3.2 Fitting method

Now that the possible approaches for making the �ts for the penguin parameters have
been discussed, I will move on to discuss the software that was used to make these �ts.
Whilst it is doable to write custom code in order to make the �ts, it would be nice
to write code that is compatible with �tting solutions that are already being employed
by other groups. The idea being that it would facilitate those groups in starting to
use the formalism presented in this thesis to correct for penguin uncertainties in their
analyses. To that end the software package that I used for making the �ts for the penguin
parameters is GammaCombo. The motivation for this choice is that it is already being
used to make �ts to CKM parameters from which the mixing phases can be estimated.
If GammaCombo is already employed by these groups it can straightforwardly be added
to their existing �tting package.

3.2.1 GammaCombo

GammaCombo is a software package that was developed by members of the LHCb collab-
oration for use within the C++ based ROOT library developed at CERN. As the name
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implies, GammaCombo is currently being used by the LHCb collaboration for making �ts
to CKM parameter  [33, 34]. The �ts made by GammaCombo are so-called likelihood
�ts. The �ts are constructed by de�ning probability density functions (PDFs) for the
observables and combining these to form a likelihood function. The likelihoodL is given
by

L (~� ) =
Y

i

L i (~� i ); (3.1)

where � and � are vectors that hold all parameters of the input measurements. The
likelihood for any given observable can be obtained from the PDF by �xing the value of
the observable to its measured value, so given a PDF of observables~A

PDF = f ( ~Aj~� ) (3.2)

the corresponding likelihood is given by

L (~� ) = f ( ~Aj~� )
�
�
�

~A= ~A obs

: (3.3)

As an example, consider the observableA dir
CP (B 0

s ! J= K 0
S). In this case the parameter

vector ~� would be given by

~� �

0

B
B
@

a
�
� s



1

C
C
A : (3.4)

If both A dir
CP and A mix

CP have been measured, a �t fora and � could be made by combining
the likelihood of A dir

CP with that of A mix
CP and giving � s and  as external inputs. The �ts

made in this way by GammaCombo yield central �t values as well as con�dence intervals
corresponding to 1 and 2� deviations from the central value. Using GammaCombo it
is possible to combine any number of PDFs into these likelihood �ts. This allows for
easy addition of new measurements/decay channels in order to improve the �t results. A
more detailed description of the �tting method employed by GammaCombo as well as
instructions for using this package can be found in the GammaCombo manual available
from their website [19].

3.2.2 Fitting Module

The �tting module developed in GammaCombo has seen several iterations before the
�nal version with which the results are obtained. The initial approach was to make two
separate modules for the di�erent quark level transitions and use the iterative method for
obtaining the �t results. This was based mostly on the (incorrect) assumption that each
decay class corresponded to its own weak phase. Since this is not the case, setting up
the modules in this way introduced quite a lot of duplicate code and made combined �ts
across decay classes more di�cult. The current version uses a single module for all decay
classes, eliminating the need for some duplicate code and allowing for easy combined �ts
of di�erent decay classes as well as being able to quickly add new observables to the
global �t.

As mentioned before the module consists of multiple PDFs that are later combined
to make the �ts. The PDFs are constructed by distinguishing between di�erent "classes"
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Figure 3.1: Interplay between all decay channels used for obtaining the penguin param-
eters [35].

of decay channels. The main two classes are those of Pseudo-scalar-Vector (P-V) and
Vector-Vector (V-V) �nal states. In the latter class the polarisation of the �nal state
particles needs to be taken into account. These two classes can then be further divided
by separating them into decays featuring suppressed penguins (�b ! �cc�s transitions) and
unsuppressed penguins (�b ! �cc�d transitions). For each class we then de�ned PDFs for
A dir

CP , A mix
CP as well as the combination of both. This was done so it is possible to see how

A dir
CP and A mix

CP each contribute independently to the overall �t. For the PDFs that include
A mix

CP we also need to distinguish betweenBd and Bs decays because of the dependence of
A mix

CP on the mixing phasesphis and � d. By de�ning the PDFs this way additional decay
channels can be quickly added to the analysis if their decay structure is known.

An important point of consideration is the CP-eigenvalue of the �nal state. Since
these values can be di�erent for channels falling within the same decay mode they need
to be taken into account. The CP eigenvalues enterA mix

CP as can be seen in (2.42). Instead
of having the CP-eigenvalue present in the de�nition of the theoretical relation used in
the �t, it can be multiplied with the observed values forA mix

CP . This way it is not necessary
to de�ne two separate PDFs forA mix

CP in order to account for odd or even CP-eigenstates.
Care needs to be taken however to correctly multiply the observed values reported by
experiments, since some experiments might report a value that is already multiplied with
� CP whilst others do not.

The �tting approach and the decay channels that are used in the GammaCombo
module closely match those from the 2015 paper, Ref. [18], on controlling the penguin
contributions. In that paper B 0

d ! J= K 0
S, B 0

s ! J= K 0
S, B 0

d ! J= � 0 and B 0
s ! J= �

were used to make the global �t. This timeB 0
d ! J= � 0 is also used as an additional

control on B 0
d ! J= K 0

S. The interplay between the resulting �ve decay channels, shown
in Fig. 3.1, now works by using the P-VB 0

d channels to �nd � d. This is then used as
input for B 0

d ! J= � 0 to calculate � � s. � � s then corrects the value of� s �tted from
B 0

s ! J= � . The value for � s then serves as input forB 0
s ! J= K 0

S in order to �nd
� � d needed to correct� d, closing the loop. In the next chapter this interplay between
the decay channels is discussed in more detail, also providing the motivation for using
B 0

d ! J= � 0 as an additional control.
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Chapter 4

Results

4.1 External input parameters

Now that the formalism and the method for obtaining the penguin parameters have been
established it is time to make the �ts to experimental data and look at the results. In
order to make the �ts some external input parameters are required. For all �ts to penguin
parameters the CKM angle is required. Whilst it is possible to use the penguin �ts
to obtain a value for  given enough input measurements as was pointed out in previous
work [14, 17, 31], doing so now will not yield more accurate results than those obtained
by collaborations like CKM�tter and UTFit. The value that will be used here is reported
by HFLAV [32] as:

 = (71:1+4 :6
� 5:3)� : (4.1)

In order to make �ts to the penguin parameters coming from the doubly Cabbibo sup-
pressed�b ! �cc�s channels the suppression parameter� is also needed, using Eq. (2.61)
and � � j Vus j = 0:2231� 0:0007 [35] gives

� �
� 2

1 � � 2
= 0:05328� 0:00035: (4.2)

Finally the current measurements of the mixing phases� d and � s also need to be given as
external input if a �t is being made to a single channel. Afterwards it is then possible to
correct this value with the penguin parameters and iterate to get the �nal result for the
mixing phase. As mentioned in the previous chapter it is possible to make simultaneous
�ts to both the penguin parameters and the mixing phases by utilising multiple decay
channels with the same primary particle, in this case eitherB 0

d or B 0
s . Beside the mixing

phases being required for the iterative �t approach they also provide a benchmark to
compare the results from the penguin parameter formalism against. Starting with the
B 0

d mixing phase� d, the external input comes from the CKM�tter collaboration based
on their measurement of the CKM angle� . Using that � d = 2� and � = (22:14+0 :69

� 0:67)
�

[28],
� d = (44:28� 1:4)� : (4.3)

The B 0
s mixing parameter� s is obtained from the HFLAV collaboration usingB 0

s ! J � ,
J= K + K � and J= � + � � modes. They report (in radians) [32]

� s = � 0:021� 0:031: (4.4)
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