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Introduction

Throughout recent years, higher category theory has become increasingly im-
portant in modern mathematics. Higher category theory is a further abstrac-
tion of category theory, which is well-suited to study mathematical objects up
to homotopy. Hence, the development of higher category theory has blurred
the lines between on one hand, category theory, and on the other hand, homo-
topy theory. For instance, diagrams in (weak) higher categories do not have to
commute strictly like in classical category theory, but merely up to homotopy.
This entails that in order to define a diagram in a higher category, one has to
provide homotopy coherence data. To encode this behavior, higher categories
are equipped with a notion of n-morphisms where n is a natural number that
might be arbitrarily large, or is bounded by some other natural number. In
such a category, (n+ 1)-morphisms provide a way to relate n-morphisms. Weak
higher categories have relaxed notions of composition, where (n+1)-morphisms
witness compositions of n-morphisms and composites are no longer unique but
only up to an invertible higher morphism. Consequently, it makes no sense to
speak of strict associativity laws within a higher category. Instead, associativ-
ity of composition holds up to an invertible higher morphism in such a weak
higher category. We will be studying weak higher categories which have mor-
phisms in arbitrary degree and have the property that all morphisms of degrees
n > 1 are invertible. These are called (∞,1)-categories and we will just refer
to them as ∞-categories. These ∞-categories may be modelled using certain
simplicial categories (i.e. categories enriched over simplicial sets). One can
then take ‘free’ resolutions of ordinary categories (see Appendix A) to obtain
a good notion of (homotopy coherent) diagrams in this model. Unfortunately,
this model has some serious drawbacks and is too rigid to nicely develop the
theory of ∞-categories. However, it is still a useful model as ∞-categories are
often incarnated as simplicial categories in practice.

In this thesis, we will make use of the model for ∞-categories developed
by André Joyal and Jacob Lurie using simplicial sets. The work Higher Topos
Theory [Lur09] by Lurie contains a good introduction to this material. The third
chapter of Lurie’s work is devoted to developing an ∞-categorical version of
the Grothendieck construction from classical category theory (see Chapter 4
for a review of this construction), and showing that this construction gives rise
to a straightening-unstraightening equivalence. This equivalence entails that we
can describe diagrams in Cat∞, the ∞-category of (small) ∞-categories, using
certain fibrations which are easier to understand. The following statement is
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the shadow of a more precise statement that has been shown by Lurie, and we
will give a different account of later:

Theorem 0.0.1. Let C be an ∞-category. Then there exists an adjoint equivalence
of∞-categories

coCart(C) Fun(C,Cat∞).

The left adjoint is called the straightening or rectification functor and the
right adjoint is called the unstraightening functor (in this thesis, we adhere
to the convention that the arrow corresponding to the left adjoint points to
the right). Here coCart(C) denotes the ∞-category of coCartesian fibrations.
These fibrations are higher categorical generalizations of Grothendieck opfi-
brations. The straightening-unstraightening equivalence plays an important
role in Lurie’s approach to the theory∞-categories.

However, its importance is not limited to the foundations of higher category
theory. For instance, a monoidal structure on an ∞-category C may be defined
as being a certain simplicial object C⊗• in Cat∞ (i.e. a functor ∆op → Cat∞)
which satisfies satisfies so-called Segal conditions and comes with a categorical
equivalence C⊗1 ' C. This is a direct generalization of the notion of monoidal
structures in classical category theory (in particular, a monoidal structure on
an∞-category induces a monoidal structure on its homotopy category). In light
of the theorem stated above, we may equivalently define a monoidal structure
on C as being a coCartesian fibration C⊗→ ∆op with the properties that its fiber
C⊗×∆op {[1]} is equivalent to C and its straightening satisfies the Segal conditions.
This is the preferred way to define monoidal∞-categories, as writing down an
explicit simplicial object in Cat∞ is hard in practice (one has to write down
a lot of coherence data!). Note that we did not distinguish here in notation
between the nerve N∆ of ∆ and the category ∆ which is of course justified as
the nerve functor is fully faithful. However, for sake of clarity, we will make
this distinction in notation for the remaining of this thesis.

The main objective of this thesis is to present an alternative proof of the
straightening-unstraightening equivalence. The approach is conceptual, and
has been inspired by the ideas found in the articles of Heuts and Moerdijk
[HM15] and Stevenson [Ste17]. In these articles, a few versions of the straight-
ening-unstraightening equivalence for left fibrations are proved. We will use
similar approaches to prove the general version for coCartesian fibrations. Along
the way, we also develop new tools and produce applications of the developed
theory, which cannot be found in the current literature. Moreover, we will also
provide alternative proofs of a handful of results found in [Lur09].

The aim of this thesis is to be self-contained, however, we will assume that
the reader is familiar with the contents of Chapters 1 and 2 of [Lur09]. The
thesis contains 4 chapters, and 2 appendices:

• Chapter 1 contains material on the coCartesian model structure. In par-
ticular, it contains a short review of the material in Section 3.1 of [Lur09]
relevant to this thesis. More importantly, this chapter contains a section
on minimal coCartesian fibrations. This material is new (in particular,
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it differs from the notion of minimality introduced in [Ngu18]), and will
be used to demonstrate a homotopy descent property for coCartesian fi-
brations. This descent property is used multiple times throughout the
thesis. For instance, it will be used to show that the coCartesian model
structure is homotopy invariant. The chapter ends with a first attempt at
straightening coCartesian fibrations.

• Chapter 2 is devoted to proving the straightening-unstraightening equiv-
alence in case that the base is given by the nerve of a (1-)category. It ends
with a few applications. For instance, a marked version of Quillen’s the-
orem A is proven. We also present a new proof of the fact that every co-
Cartesian fibration is a categorical fibrations, and show that coCartesian
fibrations may be extended along trivial cofibrations in sSetJoyal.

• In Chapter 3, we study coCartesian fibrations and marked simplicial di-
agrams on localizations of respectively ∞-categories and simplicial cate-
gories.

• The objective of Chapter 4 is to prove the straightening-unstraightening
equivalence in full generality. We will use the results of Chapter 3 to
reduce the problem to the case that the base is given by the nerve of a
1-category. We then appeal to the results of Chapter 2.

• Appendices A and B contain material on simplicial computads and model
categories respectively. We will refer to this material when needed.

Throughout this thesis, we will make use of the homotopy coherent nerve
adjunction

C : sSet sCat :N,

which relates the two models of (∞,1)-categories via simplicial sets and simpli-
cial categories. Recall that the left adjoint was defined as a left Kan extension
of the restricted functor

∆→ Cat
FU•(−)
−−−−−−→ sCat

along the Yoneda embedding ∆ → sSet. A quick recollection of the functor
FU•(−), which associates to every 1-category a certain ‘free resolution’, is given
in Appendix A. This resolution is a simplicial computad (i.e. a cofibrant object
in the Bergner model structure on simplicial categories) where all strict com-
posites in the 1-category are now ‘unstrictified’. For our convenience, we have
reindexed the structure maps in our definition of FU•(−). It coincides with an
opped version of the free resolution functor which is dominant in the current
literature. That means that the mapping complexes of CS are opposites of the
mapping complexes of C̃S, where C̃ is the left adjoint of the homotopy coher-
ent nerve functor in [Lur09]. In particular, the mapping complexes of these
two incarnations of S as simplicial category carry (naturally) the same homo-
topy type. The geometric description of C∆n is now given as follows. We may
describe the mapping complexes C∆n(i, j) by the nerve of the partially ordered
set Pij of subsets of {0, . . . ,n} bounded by and containing i and j, with ordering
given by the superset relation (⊃). The composition maps

C∆n(j,k)×C∆n(i, j)→C∆n(i,k)
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may now be identified with the nerve of the map of posets Pjk × Pij → Pik given
by taking unions. Finally, we emphasize that we will not use the fact that the
pair (C,N ) forms a Quillen equivalence when sSet is endowed with the Joyal
model structure. Instead, we will use the fact that CNC and FU•C are naturally
isomorphic for every 1-category C. This is shown in [Rie14, Theorem 16.4.7]
using the theory of necklaces. The counit CNC → C may then be identified
with the map FU•C→ C, which is readily seen to be a DK-equivalence (see also
Appendix A).
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CHAPTER 1

The coCartesian model structure

The purpose of this chapter is to review the coCartesian model structure, and
prove some new results of this model structure which will be of use later in the
thesis. The underlying ∞-category of this model structure is the appropriate
∞-category of coCartesian fibrations. This fact will be of use later, since this
allows us to approach the straightening-unstraightening problem using model
categorical techniques.

1.1 The coCartesian model structure

Recall that the coCartesian model category is defined on over categories of the
category of marked simplicial sets. Marked simplicial sets are simplicial sets
with marked edges. These markings will be used to track coCartesian edges.
More precisely, marked simplicial sets are defined as follows:

Definition 1.1.1. A marked simplicial set is pair (X,Σ) consisting of a simpli-
cial set X and a collection Σ of edges of X, containing the degenerate edges.
These marked simplicial sets fit into a category sSet+, where a map of marked
simplicial sets (X,ΣX)→ (Y ,ΣY ) is given by map of simplicial setsX→ Y which
carries the marked edges ΣX of X into the marked edges ΣY of Y .

This category defined above is sufficiently nice: it admits all small colimits,
limits and is (locally) cartesian closed as well. A convenient way to establish
these facts, is to show that sSet+ is a reflective subcategory of a category of
presheaves. We may adjoin an element e to the simplex category∆ together with
two unique maps [1]→ e and e → [0] which factor the unique map [1]→ [0].
This yields a category ∆+. Then it is readily verified that the obvious inclusion
functor i : sSet+ → Set(∆+)op

given by the formulas i(X,Σ)n = Xn and i(X,Σ)e =
Σ, admits a left adjoint.

There are of course canonical ways of adding markings to a simplicial set
X. Namely, we can only mark the edges of X which are degenerate – we will
denote this marked simplicial set byX[ – or we can mark all edges ofX, yielding
a marked simplicial set X]. These constructions are clearly functorial, and they
fit in adjunctions. Namely, given a marked simplicial set X, we can forget its
markings and obtain its underlying simplicial set X[. Furthermore, we can
consider the marked core of X. This is the simplicial subset X] of X consisting of

1



2 1. THE COCARTESIAN MODEL STRUCTURE

the simplices of X whose edges are marked. It is readily verified that we have
two adjunctions

sSet sSet+.

(−)[

(−)]

(−)[

⊥

(−)]
>

Definition 1.1.2. Let S be a simplicial set. The category (sSet+)/S of marked
simplicial sets over S is defined to be the over category (sSet+)/S] .

We consider the category (sSet+)/S to be enriched over simplicial sets as
follows. For marked simplicial sets X,Y over S, the hom-objects are denoted by

Map]S(X,Y ) and given by

Map]S(X,Y ) := (Y X ×(S])X ∆
0)].

Recall that (sSet+)/S inherits a tensoring over simplicial sets as follows. Given
a marked simplicial set X over S, and a simplicial set A, the underlying marked
simplicial set of A⊗X = A] ×X is the cartesian product A] ×X. The projection
map is the composite A × X → X → S. It is readily verified that this indeed
defines a tensoring over simplicial sets, as there are isomorphisms

sSet(A,Map]S(X,Y )) � (sSet+)/S(A] ×X,Y )

natural in A, X and Y .

Theorem 1.1.3 (Corollary 3.1.4.4 of [Lur09]). There exists a combinatorial sim-
plicial model structure on (sSet+)/S such that:

(i) the cofibrations are the maps whose underlying map of simplicial sets are
monomorphisms,

(ii) the fibrant objects are given by marked simplicial sets X\, where X\ denotes
the marked simplicial set associated to a coCartesian fibration X → S whose
marked edges are its coCartesian edges.

The weak equivalences in this model category are called coCartesian equivalences.

The following should be clear:

Proposition 1.1.4. The coCartesian model structure has a set of generating cofibra-
tions given by the inclusions (∂∆n)[→ (∆n)[, (∆1)[→ (∆1)].

Similarly to the role that left anodynes play in the covariant model struc-
ture, there is an important class of trivial cofibrations in the coCartesian model
structure:

Definition 1.1.5. The class of marked anodyne maps in (sSet+)/S is the smallest
weakly saturated class of maps containing:
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(i) the inner horn inclusions (Λni )[→ (∆n)[, 0 < i < n,
(ii) the inclusion

(Λn0)[
⋃

(∆{0,1})[

(∆{0,1})]→ (∆n)[
⋃

(∆{0,1})[

(∆{0,1})]

for n > 1 and the inclusion (Λ1
0)[→ (∆1)],

(iii) the inclusion

(Λ2
1)]

⋃
(Λ2

1)[

(∆2)[→ (∆2)],

(iv) the map K[→ K] for every Kan complex K .

Proposition 1.1.6 ([Lur09, Section 3.1]). The marked anodynes have the following
properties:

(i) every marked anodyne is a trivial cofibration,
(ii) suppose thatX→ Y is a marked anodyne map, then for any cofibrationA→ B,

the induced map

A×Y
⋃
A×X

B×X→ B×Y

is again marked anodyne.

Proposition 1.1.7. A map p : X→ Y \ of marked simplicial sets over S is a fibration
if and only if p has the right lifting property with respect to the marked anodyne
maps.

Proof. Let us show the non-trivial assertion. Suppose that p has the right lifting
property w.r.t. marked anodyne maps. In view of [Lur09, Proposition 3.1.1.6],
we deduce that X is fibrant. Hence we may replace X by a marked simplicial
set X\ associated to a coCartesian fibration X → S. We must demonstrate that
for a trivial cofibration i : A→ B in (sSet+)/S , the following square

A X\

B Y \

f

i p

g

admits a filler. Since X\ is fibrant, there exists a an extension h : B → X\ of
f . Note that the map Map]S(B,Y \)→Map]S(A,Y \) induced by i, is a trivial Kan
fibration since the coCartesian model structure is simplicial. Consequently, the
fiber

Map]S(B,Y \)×
Map]S (A,Y \)

{pf }

is contractible. Hence, there exists an edge H : ∆1 → Map](B,Y \) connecting
ph and g such that H |(∆1)]×A = pf prA. By assumption, the following diagram
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admits a filler

(∆1)] ×A∪{0}×A {0} ×B X\

(∆1)] ×B Y \.

f prA∪h

p

H

Restricting the filler to B× {1}, we obtain a solution to the original lifting prop-
erty.

Corollary 1.1.8. Every trivial cofibration in (sSet+)/S with fibrant codomain is a
marked anodyne.

Proof. This follows from a standard argument. Suppose that i : X → Y \ trivial
cofibration in (sSet+)/S . Then we may factor i as a marked anodyne X → Z
followed by a map Z → Y \ which has the right lifting property with marked
anodynes. Then Z is again fibrant and the map Z → Y \ is a trivial fibration.
Then a lifting argument shows that the map X → Y \ is a retract of the marked
anodyne X→ Z. Hence i is marked anodyne as well.

Corollary 1.1.9. Let M be a model category, and suppose that F : (sSet+)/S →
M is a left adjoint. Then F is left Quillen precisely when F carries cofibrations to
cofibrations and marked anodyne maps to trivial cofibrations.

Proof. Let us show the non-trivial implication. In view of Lemma B.0.1, it suf-
fices to show that the right adjoint of F preserves fibrations between fibrant ob-
jects. Recall that the fibrant objects of (sSet+)/S are the coCartesian fibrations,
which may be characterized as the objects having the right lifting property with
respect to the marked anodynes. Consequently, an adjointness argument and
an application of Proposition 1.1.7 show that the right adjoint of F preserves fi-
brant objects. Similarly, one shows that the right adjoint of F carries fibrations
between fibrant objects to fibrations in (sSet+)/S .

Observe that Proposition 1.1.7 yields a characterization of fibrations be-
tween fibrant objects in the coCartesian model structure. There is a convenient
characterization of coCartesian equivalences between fibrant objects as well:

Proposition 1.1.10 (Proposition 3.1.3.5 of [Lur09]). Let p : X\→ Y \ be a map of
marked simplicial sets over S. Then p is a coCartesian equivalence if and only if the
map p descends to a coCartesian equivalence X\s → Y

\
s (equivalently, the underlying

map of∞-categories is a categorical equivalence) on fibers, for every vertex s of S.

The generators of the marked anodynes may be replaced by other genera-
tors. Replacements can be found in Section 3.1.1 of HTT. We will highlight a
few replacements, which will be of use later.

Proposition 1.1.11 ([Lur09, Corollary 3.1.1.8]). LetA be the pushout of the cospan

∆1 s1ts0←−−−− ∆2 t∆2 d2td1−−−−−→ ∆3.
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The maps (iv) in Definition 1.1.5 may be replaced by the inclusion (iv’) A[→ (A,Σ)
where Σ is the set of degenerate edges of A alongside with the image of the edge
∆{0,1} ⊂ ∆3 in A.

There are also very useful replacements for the generators (ii) and (iii) of
Definition 1.1.5, which were introduced in the PhD thesis of Nguyen [Ngu18].

Definition 1.1.12. The class of cellular marked anodyne maps is the smallest
weakly saturated class of maps containing the maps

(∆1)] ×A
⋃
{0}×A
{0} ×B→ (∆1)] ×B,

induced by cofibrations A→ B of marked simplicial sets.

Proposition 1.1.13. The following assertions are true:

(i) any cellular marked anodyne map is marked anodyne,
(ii) any ]-marked left anodyne map is cellular marked anodyne,

(iii) one may replace generators (ii) and (iii) of Definition 1.1.5 by (generators of)
cellular marked anodynes.

Proof. The first assertion follows from the fact that the inclusion {0} → (∆1)]

is marked anodyne. The second assertion follows from the fact that the left
anodynes are generated by inclusions of the form∆1×∂∆n∪{0}×∂∆n{0}×∆n→ ∆1×
∆n (see [Lur09, Proposition 2.1.2.6]). The final assertion remains to be shown.
Denote the smallest weakly saturated class of maps containing the maps (i), (iv)
of Definition 1.1.5 by W . In view of assertion (i), W is contained in the marked
anodynes. Conversely, generators of type Definition 1.1.5(ii) are contained in
W on account of [Lur09, Proposition 3.1.1.5]. Hence it remains to show that
the map (Λ2

1)]
⋃

(Λ2
1)[(∆

2)[→ (∆2)] is contained inW . This follows directly from
the observation that Corollary 1.1.8 continues to hold for maps in W instead of
marked anodynes.

Corollary 1.1.14. The adjunction

(−)] : sSet/S (sSet+)/S : (−)],

is a Quillen adjunction when the category on the left is endowed with the covariant
model structure.

Proposition 1.1.15. Let i : X → Y be a marked deformation retract. That is, i
admits a retraction r : Y → X in sSet+ such that that there there there exists a
homotopy H : (∆1)] × Y → Y of marked simplicial sets, relative to X, such that
H |{0}×Y = ir and H{1}×Y = idY . Then i is cellular marked anodyne.

Proof. This follows from a standard argument: the diagram

X (∆1)] ×X ∪{0}×X {0} ×Y X

Y (∆1)] ×Y Y

prX∪r

H
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witnesses X→ Y as a retract of a cellular marked anodyne map.

Proposition 1.1.16 (Theorem 3.2.4 of [Ngu18]). Consider the following pullback
square of marked simplicial sets

X ×BA X

A B.

j

p

i

Suppose that the map pop : Xop→ Bop has the right lifting property with respect to
cellular marked anodynes. Then j is marked anodyne if i is cellular marked anodyne.

Proof. We follow the proof of Nguyen. Let W be the class of monomorphisms
i : A → B such that for any map Xop → Bop which has the right lifting prop-
erty w.r.t. cellular marked anodynes, the statement holds. It is clear that W
is weakly saturated. Furthermore, the class W has the right cancellation prop-
erty. To wit, suppose that i : A→ B and j : B→ C have the property that ji and
i are in W . Let Xop→ Cop be a fibration. We obtain the following commutative
diagram

X ×C A X ×C B X

A B Ci j

On account of the pasting law, the left square is a pullback square. Hence
the top left horizontal arrow is marked anodyne. The composite of the two
arrows in the top row is also marked anodyne by assumption. Consequently,
since the marked anodynes have the right cancellation property1, the top right
horizontal arrow is marked anodyne. Hence j is also in W .

Thus it suffices to check the statement for generators of cellular marked
anodynes. Moreover, since W is right cancellative, we may reduce checking the
statement for the case that A = {0}×C, B = (∆1)]×C and the map i is the obvious
inclusion. Here C is any marked simplicial set. Note that i admits a retraction
r : B→ A which comes with a homotopy H : (∆1)] ×B→ B such that H |{0}×B = ir
and H |{1}×B = idB. By assumption, the following square admits a filler

(∆1)] × (X ×BA)
⋃
{1}×(X×BA){1} ×X X

(∆1)] ×X B

jprX×BA∪idX

p

H(id(∆1)]×p)

1This follows from a standard argument. There is a more general notion of a coCartesian
model structure defined on arbitrary marked simplicial sets (see for instance [Ngu18, Section
3.1] or [Lur17, Appendix B]). Suppose that a composition of maps X → Y → Z is marked an-
odyne, and the map X → Y is marked anodyne. Then the map Y → Z must be a trivial cofi-
bration in (sSet)/Z as well, since trivial cofibrations have the right cancellation property. Since
the codomain Z is fibrant in (sSet)/Z , the desired result follows from a more general form of
Corollary 1.1.8.
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Thus the desired result follows from Proposition 1.1.15.

The dual form of this proposition has a very useful implication:

Corollary 1.1.17. Suppose that X → T is a coCartesian fibration. Consider the
following pullback square

X\ ×T ] S] X\

S] T ]

j

i]

Then j is a trivial cofibration in sSet+ = (sSet+)/∆0 when i is right anodyne.

Proof. Under the assumption that i is right anodyne, the opposite jop of the
map j is marked anodyne on account of Proposition 1.1.16. Thus the result
follows from the fact that the Cartesian model structure and the coCartesian
model structure on sSet+ coincide (see [Lur09, Remark 3.1.4.6]).

1.2 Minimal coCartesian fibrations

In this section we develop an analogue of minimal ∞-categories (see [Lur09,
Section 2.3.3]) for coCartesian fibrations. The work in this section generalizes
the known results for minimal∞-categories proven by Lurie.

Suppose that p : X → S is a coCartesian fibration, and we are given the
following commutative diagram

A X

B S,

h

q

where the left arrow is a cofibration. Then we call two fillers f ,g : B ⇒ X
homotopic relative A over S if there is exists an edge connecting f and g in the
fiber of the map

Map]S(B[,X\)→Map]S(A[,X\)

above h. Notice that this fiber is a Kan complex. By adjunction, this precisely
corresponds to the data of a homotopy H : (∆1)]×B[→ X\ such that H |(∆1)]×A[ =
hprA[ . Equivalently, this is a homotopy

∆1 ×B X

S

H

qprB p

such that H |∆1×A = hprA and H |∆1×{b} is a p-coCartesian edge for all vertices
b of B. Minimal coCartesian fibrations will have the property that any two
maps which are homotopic relative to A, coincide. We start with the following
observation:
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Proposition 1.2.1. Let X → S be a coCartesian fibration. The following assertions
are equivalent:

(i) for any cofibrationA→ B of marked simplicial sets, every fiber F of the induced
Kan fibration Map]S(B,X\)→Map]S(A,X\) has the property (∗) that the map
F0→ π0F is a bijection,

(ii) any two n-simplices which are homotopic relative to ∂∆n agree,
(iii) for any cofibration A→ B of simplicial sets, any two maps f ,g : B⇒ X which

are homotopic relative to A agree.

Proof. We will show the only non-trivial implication (ii) ⇒ (i). Note that the

fibers of the Kan fibration Map]S((∆1)],X\)→Map]S((∆1)[,X\) have property (∗).
Therefore, it suffices to show that the class W of monomorphisms f : A→ B in

sSet+ which have the property that the fibers of Map]S(f ,X\) have property (∗),
are weakly saturated. This fact is readily established.

Definition 1.2.2. A coCartesian fibration X→ S which meets any of the equiv-
alent conditions of Proposition 1.2.1 is called a minimal coCartesian fibration.

Remark 1.2.3. The above definition recovers the notion of minimal∞-categories
in the case that S = ∆0. More precisely, suppose that C is an ∞-category, then
the map C→ ∆0 is a minimal coCartesian fibration if and only if C is a minimal
∞-category.

The known results [Lur09, Section 2.3.3] and [Joy, Chapter 9] for minimal
∞-categories and minimal left fibrations generalize to minimal coCartesian fi-
brations. We have the following result:

Proposition 1.2.4. Let f : X\ → Y \ be a coCartesian equivalence of coCartesian
fibrations over S. Then the following statements are true:

(i) if X\ is minimal then f is a trivial cofibration,
(ii) if Y \ is minimal then f is a trivial fibration,

(iii) if X\ and Y \ are both minimal then f is an isomorphism.

Proof. Observe that (iii) follows from (i) and (ii). Consequently, it suffices to
show (i) and (ii).

Let us commence by proving (i). We have to show that the underlying map
f of simplicial sets is monic. Since f is a homotopy equivalence, there exists a
map g : Y \ → X\ and a homotopy H : (∆1)] ×X\ → X\ such that H |{0}×X\ = gf
and H |{1}×X\ = idX\ . We must show that for any two n-simplices σ,τ : ∆n ⇒
X we have f σ = f τ precisely when σ = τ . We proceed by induction on the
dimension n. There is nothing to be shown for the case n = −1. Let n ≥ 0
and suppose that the claim holds for n−1. Since f σ |∂∆n = f τ |∂∆n , the induction
hypothesis asserts that σ |∂∆n = τ |∂∆n . We may view σ,τ as maps (∆n)[→ X\. The
restrictionsH(id(∆1)]×σ ) andH(id(∆1)]×τ) ofH glue to a map (Λ2

0)]×(∆n)[→ X\

since gf σ = gf τ . Furthermore, we have a map (∆2)] × (∂∆n)[ → X\ given by
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H(s]1 × σ |(∂∆n)[) = H(s]1 × τ |(∂∆n)[). The constructed maps make the following
diagram commute:

(∆2)] × (∂∆n)[
⋃

(Λ2
0)]×(∂∆n)[(Λ

2
0)] × (∆n)[ X\

(∆2)] × (∆n)[ S].

Note that the left vertical map is a trivial cofibration in (sSet+)/S , hence this
diagram admits a fillerH ′ : (∆2)]×(∆n)[→ X\. The restriction (∆{1,2})]×(∆n)[→
X\ shows that σ and τ are homotopic relative to ∂∆n. Thus it follows from
minimality of X\ that σ = τ .

Finally, we prove statement (ii). We need to solve the following lifting prob-
lem:

A X\

B Y \.

h

f

q

In view of Lemma B.0.3, the induced map

Map]S(B,X\)×
Map]S (A,X\)

{h} →Map]S(B,Y \)×
Map]S (A,Y \)

{f h}

is surjective on π0. Thus the path component of q gets hit, and this path com-
ponent only consists of q on account of the minimality of Y \.

So far, we have only seen the fundamental properties of minimal coCarte-
sian fibrations. But like any notion of minimal objects in a model category, we
expect that any coCartesian admits a minimal model. Furthermore, we would
like that these minimal models are unique.

Definition 1.2.5. A minimal model for a coCartesian fibration X\ is a trivial
cofibration M\→ X\ where the domain M\ is a minimal coCartesian fibration.

We conclude this section by presenting two propositions which take care of
the unicity and existence of minimal models.

Proposition 1.2.6. Let i :M\→ X\ be a minimal model for X\. Then the following
statements are true:

(i) the map i admits a retraction r : X\→M\, which is a trivial fibration,
(ii) for any other minimal model j : N \→ X\, there exists an isomorphism N \ �−→

M\.

Proof. Since i is a trivial cofibration, it admits a retraction r, which is a co-
Cartesian equivalence. In view of Proposition 1.2.4, this retraction is a triv-
ial fibration. To prove (ii), we compose j with r to obtain a weak equivalence
f :N \→M\. It follows from Proposition 1.2.4 that f is an isomorphism.
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Proposition 1.2.7. Every coCartesian fibration X\ admits a minimal model.

Proof. We proceed similarly as Lurie’s proof of [Lur09, Proposition 2.3.3.8]. Let
'n be the equivalence relation on n-simplices of X such that σ 'n τ if and only
if σ,τ are homotopic relative to ∂∆n. For any n ∈N, choose a set of represen-
tatives Rn ⊂ Xn of 'n such that the degenerate n-simplices are contained in Rn
(this is possible since every equivalence class of 'n contains at most 1 degen-
erate simplex). Let X ′ be the largest simplicial subset of X such that σ ∈ Mn

precisely when σ (∂∆n) ⊂Mn−1 and σ ∈ Rn. The marked edges Σ of X ′ are such
that e ∈M1 is marked if and only if e ∈ X1 is marked (i.e. coCartesian). To show
that (M,Σ) is a minimal model for X\, it is sufficient to show that (M,Σ) is a
deformation retract of X\. Indeed, then (M,Σ) is fibrant in (sSet+)/S and it is
minimal by construction.

Let Y ⊂ X\ a marked simplicial subset. For the sake of this proof, we call a
homotopyH : (∆1)]×Y → Y relative to (M,Σ)∩Y a Y -homotopy whenH is satis-
fiesH |{0}×Y = idY andH({1}×Y ) ⊂ (M,Σ). We must cook up aX\-homotopy. Pro-
ceeding by skeletal induction, we deduce that it suffices to show the following.
Suppose that Y ⊂ X\ and a Y -homotopyH are given. Then there exists an exten-
sion ofH to an Y ′-homotopy, where Y ′ is either the pushout Y ′ = Y

⋃
(∂∆n)[(∆

n)[

with σ : (∆n)[ → X\ a non-degenerate n-simplex, or Y ′ = Y
⋃

(∂∆1)[(∆
1)] where

σ : (∆1)]→ X\ is a non-degenerate marked edge of X\.
Let us first show that this can be done when Y ′ is a pushout of the first

form. If σ factors through (M,Σ), then the homotopy trivially extends to a
Y ′-homotopy. Suppose that σ does not factor through (M,Σ). Consider the
following commutative diagram

{0} × (∆n)[
⋃
{0}×(∂∆n)[(∆

1)] × (∂∆n)[ X\

(∆1)] × (∆n)[ S].

σ∪H(id(∆1)]×σ |(∂∆n)[ )

This filler admits a filler h providing a homotopy between σ and a n-simplex
τ . Note that τ |(∂∆n)[ factors through (M,Σ) ⊂ X\. Take a homotopy h′ : (∆1)] ×
(∆n)[→ X\ exhibiting τ 'n τ ′ for a representative τ ′ ∈ Rn. Then it follows that
τ ′ ∈Mn. Consider now the diagram

(Λ2
1)] × (∆n)[

⋃
(Λ2

1)]×(∂∆n)[(∆
2)] × (∂∆n)[ X\

(∆2)] × (∆n)[ S].

h∪h′∪H(s]1×σ |(∂∆n)[ )

Take a filler h′′ of this diagram. We extend H to Y ′ by setting H |(∆1)]×(∆n)[ :=
h′′ |(∆{0,2})]×(∆n)]). It is clear that this extension is again a Y ′-homotopy.

Finally, to handle the case that Y ′ = Y
⋃

(∂∆1)[(∆
1)], we can perform the same

construction by taking n = 1 and replacing (∆n)[ by (∆1)] in the above.
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1.3 Change of base

Let f : S→ T be a map of simplicial sets. Then this map induces a base change
adjunction

f! : (sSet+)/S (sSet+)/T : f ∗.

Here the functor f! sends a marked simplicial set X → S] to X → S]→ T ]. The
right adjoint f ∗ of f! is given by pullback along f .

Proposition 1.3.1. The pair (f!, f ∗) is a simplicial and Quillen adjunction.

Proof. It is clear that f! preserves cofibrations and marked anodyne maps. Hence
f! is left Quillen on account of Corollary 1.1.9. It is also clear that for a simpli-
cial set A and a marked simplicial set X over S, we have a f!(A]×X\) = A]×f!X\.
Hence (f!, f ∗) is simplicial.

In favourable circumstances, the adjunction is even a Quillen equivalence.
We will come back to this later. The following observation is useful.

Proposition 1.3.2. The right Quillen functor f ∗ preserves minimal coCartesian fi-
brations. Moreover, if M\ → X\ is a minimal model for a coCartesian fibration X\,
then f ∗M\→ f ∗X\ is a minimal model for f ∗X\.

Proof. Let us start by demonstrating the first assertion. Suppose that M\ is a
minimal coCartesian fibration. For any cofibration A→ B of marked simplicial
sets over S, we have a commutative square

Map]S(f!B,M\) Map]S(B,f ∗M\)

Map]S(f!A,M\) Map]S(A,f ∗M\)

�

�

since the adjunction (f!, f ∗) is simplicial. The fibers of the Kan fibration on the
left have property (∗) of Proposition 1.2.1, hence fibers of the right Kan fibration
have property (∗) as well. Thus f ∗M\ is minimal as well.

Let i : M\ → X\ be a minimal model for X\. Then i admits a retraction
r : X\→M\ which is a trivial fibration on account of Proposition 1.2.6. Then f ∗r
is again a retraction of f ∗i and again a trivial fibration since f ∗ is right Quillen.
Hence f ∗i is a trivial cofibration. Note that f ∗M\ is a minimal coCartesian in
view of the first part of the proposition. Hence f ∗i is a minimal model for f ∗X\

as desired.

Using this proposition, we can readily prove the homotopy descent property
of coCartesian fibrations.

Proposition 1.3.3. Suppose that we are given the following diagram

X1 X0 X2

S1 S0 S2,
f1 f2
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such that the vertical arrows are coCartesian fibrations and at least one of the fi ’s is
monic. Furthermore, assume that the mapsX\0→ f ∗i X

\
i are coCartesian equivalences.

Then there exists a coCartesian fibration

X→ S1

⋃
S0

S2

such that the pullback of this coCartesian fibration to Si is coCartesian equivalent to
X
\
i for i = 1,2.

Proof. Let us commence by picking minimal models ji : M\
i → X

\
i for each X\i

with retracts ri : X\i → M
\
i . These retracts are automatically trivial fibrations.

Observe that the compositions

M
\
0
i0−→ X

\
0→ f ∗i X

\
i

f ∗i ri−−−→ f ∗i M
\
i

are coCartesian equivalences between minimal coCartesian fibrations on ac-
count of Proposition 1.3.2. Consequently, the composite is an isomorphism.
Thus M0 is the strict pullback of Mi ’s along fi . Consider the following commu-
tative cube,

M0 M1

M2 M

S0 S1

S2 S.

g1

g2

Here the top and bottom faces are pushouts. The faces containing the arrow
M0→ S0 are pullbacks by the above. Hence the squares containing the induced
arrowM→ S are pullback squares as well. HenceM→ S pulls back toM1→ S1
and M2→ S2. Since these maps are coCartesian, M→ S is coCartesian as well.
We have coCartesian equivalences

X
\
i

ji−→M
\
i � g

∗
iM

\

hence M\ is the desired coCartesian fibration.

We will use this homotopy descent property to partly prove the aforemen-
tioned homotopy invariance of the coCartesian model structure:

Theorem 1.3.4. Suppose that f is a categorical equivalence, then the base change
adjunction

f! : (sSet+)/S (sSet+)/T : f ∗.

is a Quillen equivalence.

We will see that the proof of this theorem can be reduced to checking that
Theorem 1.3.4 holds for inner horn inclusions. We postpone the proof of the
latter to the next chapter because with the machinery developed there, we will
be able to give an efficient demonstration of this fact.
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Lemma 1.3.5. If Theorem 1.3.4 holds for the inner horn inclusions, then it holds for
all inner anodynes.

Proof. Let W be the class of monomorphisms such that Theorem 1.3.4 holds.
We will demonstrate that this class is weakly saturated. It then follows W con-
tains in the inner anodynes precisely when W contains the inner horn inclu-
sions, thereby proving the statement. Observe that W is certainly closed under
retracts, since Quillen equivalences are closed under retracts. Thus it remains
to show that W is closed under pushouts and transfinite compositions.

Suppose that we have the following pushout square

S0 S2

S1 S

i

f g

j

and suppose that i is contained in W . We need to show that j lies in W as well.
Let X be coCartesian fibration over S1. Then f ∗X\ is a coCartesian fibration
over S0. Since Ri∗ is assumed to be essentially surjective, there exists a coCarte-
sian fibration Y over S2 and a coCartesian equivalence f ∗X\ → i∗Y \. It now
follows from Proposition 1.3.3 that there exists a coCartesian fibration Z on the
pushout S which comes with a coCartesian equivalence X\→ j∗Z\. This entails
that Rj∗ is essentially surjective as well. Next, we demonstrate that Rj∗ is fully
faithful. I.e. for X a coCartesian fibration on S, we should show that the counit
j!j
∗X\→ X\ is a coCartesian equivalence. But this map is a pushout of the map

g!i!i
∗g∗X\→ g!g

∗X\ (this is the strict Mather cube lemma) and the latter is trivial
cofibration since Ri∗ is fully faithful and g! preserves trivial cofibrations. Hence
the map j!j∗X\→ X\ is a trivial cofibration, as desired.

Finally, we prove that the class W is also closed under transfinite composi-
tions. It is clear thatW is closed under finite compositions, since the composite
of two Quillen equivalences is again a Quillen equivalence. Consequently, it
suffices to show the following: let α be a limit ordinal and suppose that we
have compatible maps iβ : S0→ Sβ in W for every β < α. Then the map

i : S0→ lim−−→
β<α

Sβ =: Sα

lies again W . It is clear that the right derived functor Ri∗ is again essentially
surjective. Denote the inclusion Sβ → Sα by jβ . Then we have natural isomor-
phisms

sSet(∆n, lim←−−
β<α

Map]Sβ (j∗βX,j
∗
βY )) = lim←−−

β<α

sSet(∆n,Map]Sβ (j∗βX,j
∗
βY ))

� lim←−−
β<α

(sSet+)/Sβ ((∆n)] × j∗βX,j
∗
βY )

� sSet(∆n,Map]Sα (X,Y )).
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This entails that the function complex Map]Sα (X,Y ) may be computed as the

inverse limit lim←−−β<αMap]Sβ (j∗βX,j
∗
βY ). In view of this, and the fact that trivial

fibrations are stable under taking inverse limits of this form, we deduce that
the counit map i!i

∗X\ → X\ is a trivial cofibration when j∗βi!i
∗X\ → j∗βX

\ is a
trivial cofibration for every β < α. But this latter map is precisely the counit
map (iβ)!i

∗
βj
∗
βX

\→ j∗βX
\, which is a trivial cofibration by assumption.

Lemma 1.3.6. Suppose that Theorem 1.3.4 holds for inner anodynes, then it holds
for categorical equivalences f .

Proof. Suppose that f : S → T is a categorical equivalence. Using the small
objects argument twice, we obtain a commutative square

S T

Sf Tf

f

such that the vertical maps are inner anodynes and Sf and Tf are∞-categories.
By the 2-out-of-3 property, the bottom arrow is also a categorical equivalence.
In view of the assumption and the fact that Quillen equivalences satisfy the 2-
out-of-3 property, the top arrow gives rise to a Quillen equivalence, if and only
if the bottom arrow gives rise to a Quillen equivalence. Brown’s principle now
asserts that it suffices to check the statement in case that f is a trivial fibration.

In this case, the induced map S]→ T ] in (sSet+)/T is a trivial fibration. Con-
sequently, f! sends fibrant objects to fibrant objects. Combining this with the
observation that f is surjective on vertices, we deduce that Lf! is conservative.
It is readily verified that the components of the counit are weak equivalences
in (sSet+)/T . Thus the pair (f!, f ∗) is a Quillen equivalence, as desired.

There is yet another adjunction related to change of basis. Since the cat-
egory of marked simplicial sets is locally cartesian, the pullback functor f ∗ :
(sSet+)/T → (sSet+)/S admits a right adjoint, which we will denote by f∗. How-
ever, the adjunction

f ∗ : (sSet+)/T (sSet+)/S : f∗.

is not a Quillen adjunction in general. As an application of the theory devel-
oped in Chapter 2, we will later show that in a particular situation, this is the
case:

Proposition 1.3.7 (Theorem 3.2.6 of [Ngu18]). The adjunction (f ∗, f∗) is Quillen
for any right fibration f : S→ T .
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1.4 A first step towards straightening

The goal of this thesis is to show how coCartesian fibrations X → S relate to
simplicial functors CS → sSet+. In this section, we would like to give a first
attempt at this: a first approximation. We will show that any coCartesian fibra-
tion X→ C over a∞-category C gives rise to a functor HoC→Ho(sSet+).

Let X→ S be a coCartesian fibration and let f : s→ t be an edge in the base
S. Then we can always lift such an edge to a functor f! : Xs → Xt by taking a
filler H of the following diagram

{0} ×X\s X\

(∆1)] ×X\s S],
f ]pr(∆1)]

and restricting the fillerH to {1}×X\s . Note that this the obtained lift f! : X\s → X
\
t

is unique up to homotopy in the Kan complex Map](X\s ,X
\
t ). Namely, for any

other filler H ′ obtained in this way, there exists a homotopy

(∆1)] × (∆1)] ×X\s → X\

connecting H and H ′, since the map

Map]S((∆1)] ×X\s ,X\)→Map]S({0} ×X\s ,X\)

is a trivial Kan fibration. This homotopy restricts to a homotopy (∆1)] × {1} ×
X
\
s → X

\
t in sSet+ connecting the two lifts.

Proposition 1.4.1. Let C be an ∞-category and X\ a coCartesian fibration on C,
then the above construction gives rise to a well-defined functor

F : HoC→Ho(sSet+)

given on objects by Fc := X\c and on morphisms by F[f ] := [f!].

Proof. It remains to show that F is compatible with compositions. Let f : x→ y
and g : y → z be two maps in C and suppose that σ : ∆2 → C is a 2-simplex

witnessing the composition of f and g. Let H : (∆1)] ×X\x→ X\ and H ′ : (∆1)] ×
X
\
y → X\ be the fillers giving rise to lifts f! and g! respectively. The following

square admits a filler

(Λ2
1)] ×X\x X\

(∆2)] ×X\x S],

H∪H ′(id(∆1)]×f!)

σ ]pr(∆2)]

which we will denote by G. This entails that the restriction of G to {2} × X\x
defines a lift (gf )! of the composite gf . But this is precisely g!f!, as desired.
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We will show that every coCartesian fibration X\ admits a rectification

F :CC→ (sSet+)◦,

which also has the following property:

Proposition 1.4.2. The rectification of a coCartesian fibration is naturally isomor-
phic to the functor of Proposition 1.4.1 after taking the π0 of this map.



CHAPTER 2

An elementary account of rectification

In this chapter, we will prove the straightening-unstraightening equivalence in
the case that the base is a 1-category. In this particular case, the proof turns
out to be elementary and we have a rectification functor that admits an easy
description. A fortiori, this rectification functor produces strict diagrams on
C, whereas the general rectification functor (defined in Chapter 4) produces
homotopy coherent diagrams on C. Concretely, given a marked simplicial set X
over NC, we define its rectification r!X : C→ sSet+ by the formula

(r!X)c := X ×NC] NC
]
/c.

This construction is functorial, and gives rise to the desired rectification functor

r! : (sSet+)/NC→ (sSet+)C.

The goal of this chapter is to show that this functor is part of a Quillen equiv-
alence. Since the model structure on the left and the right have underlying
∞-categories coCart(NC) and Fun(NC,Cat∞) respectively, this Quillen equiva-
lence models the ∞-categorical Grothendieck construction: an adjoint equiva-
lence

coCart(NC) Fun(NC,Cat∞).

The account of this fact we present here, is a generalization of the proof of the
straightening-unstraightening equivalence in the case of left fibrations given
by Heuts and Moerdijk in [HM15].

2.1 The rectification functor

We commence by analyzing the rectification functor r!, and establishing the
fact that this functor a left Quillen functor. Note that the rectification functor
preserves colimits. Thus by general non-sense, it admits a right adjoint. We
will give a computation of this right adjoint shortly.

Remark 2.1.1. Forgetting the markings in the definition of r!, we obtain a func-
tor sSet/C→ (sSet)C, which we will denote by r! again. This is the rectification
functor in [HM15]. This functor is compatible with our rectification functor
in the following way. Note that the left adjoint functors (−)[/] : sSet → sSet+

17
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induce left adjoint functors (−)[/] : sSetC→ (sSet+)C (defined pointwise). Then
for any n-simplex ∆n→ C, we have

r!(∆
n)[/] = (r!∆

n)[/].

This is clear for the ]-marked case. In the [-marked case, we have that the
marked edges of the pullback r!(∆n)[c = (∆n)[ ×(NC)] (NC)] are given by pairs
(e,e′) with e a degenerate edge of ∆n (i.e. an identity map), and e′ any edge
of NC/c such that the projections of e and e′ are equal in NC. But this means
that the projection of e′ to NC is degenerate as well. Since the forgetful functor
C/c → C is faithful, e′ must be an identity map. Thus e′ is a degenerate edge as
well.

Proposition 2.1.2. The rectification functor has the following properties:

(i) the rectification is natural, i.e., for any functor f : C→D, the following square
commutes

(sSet+)/NC (sSet+)C

(sSet+)/ND (sSet+)D

(Nf )! f!

up to natural isomorphism,
(ii) the rectification of a simplex ∆n→NC is described by the coend

r!(∆
n)[/] =

∫ i∈[n]
(∆i)[/] ×C(ci ,−).

Proof. Part (i) can be deduced directly from the definition, or is readily seen us-
ing description (ii). In order to show part (ii), it suffices to prove the statement
in the unmarked case in view of Remark 2.1.1.

Note that the Yoneda lemma asserts that we have isomorphisms

(sSet+)C(A×C(c,−),F) � (sSet+)C(C(c,−),FA)

� SetC(C(c,−),sSet+(∆0,F(−)A)) � sSet+(A,Fc)

natural in A ∈ sSet+, c ∈ C and F ∈ (sSet+)C. Thus we obtain canonical maps
∆i ×C(ci ,−)→ r!∆

n, determined by the i-simplices c0→ ·· · → ci → ci in (r!∆n)ci .
It is readily verified that for i ≤ j, the square

∆i ×C(cj ,−) ∆j ×C(cj ,−)

∆i ×C(ci ,−) r!∆
n

commutes. Let F : C→ sSet be a diagram accompanied by commuting squares

∆i ×C(cj ,−) ∆j ×C(cj ,−)

∆i ×C(ci ,−) F

λj

λi
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for i ≤ j. Then we define map η : r!∆n→ F as follows. Let σ := ck0
→ ·· · → cki

f
−→

c be a i-simplex of ∆n ×NCNC/c. Then k : [i]→ [ki] : j 7→ kj is order preserving.
We set ηc(σ ) := λki (k,f ). It is readily verified that this defines a map ηc of sim-
plicial sets, which assemble together to the desired map η, which is compatible
with the squares above, and uniquely determined by this compatibility.

Corollary 2.1.3. Let c0
f1−→ c1

f2−→ ·· ·
fn−−→ cn be a n-simplex ofNC. Consider a marked

simplicial diagram F on C. Then there is a natural bijection

(sSet+)C(r!(∆
n)[,F)

�−→

(xi)
n
i=0 ∈

n∏
i=0

(Fci)i | Ffi(xi−1) = dixi


given by sending a natural transformation η : r!(∆n)[ → F to the tuple (ηci (c0 →
c1 · · · → ci → ci)). Similarly, there is a natural bijection

(sSet+)C(r!(∆
n)],F)

�−→

(xi)
n
i=0 ∈

n∏
i=0

(Fci)],i | Ffi(xi−1) = dixi

 ,
given by sending a map η : r!(∆n)]→ F to the tuple (ηci (c0→ c1→ ·· · → ci → ci)).

The computations above allow us to write down an explicit formula for the
relative nerve functor r∗. Namely, for a diagram F : C→ sSet+, we define

(r∗F)n := {(c0
f1−→ c1

f2−→ ·· ·
fn−−→ cn, (xi)

n
i=0) | Ffi(xi−1) = dixi}.

The marked edges of r∗F are the pairs (c0 → c1, (x0,x1)) such that x1 is marked
in Fc1. The face and degeneracy maps act on a n-simplex σ = (c0→ c1→ ·· · →
cn, (xi)

n
i=0) as follows:

diσ = (c0→ ·· · → ĉi → ·· · → cn, (x0, . . . ,xi−1, x̂i ,dixi+1, . . . ,dixn)),

siσ = (c0→ ·· · → ci → ci → ·· · → cn, (x0, . . . ,xi , sixi , sixi+1, . . . , sixn)).

The components of the counit assocated to the adjunction (r!, r∗) are now given
as follows. A n-simplex of (r!r∗F)c is a tuple

(((c0→ ·· · → ci → ci , (xi)), c0→ ·· · → cn→ c)

and the counit r!r∗F→ F carries such a n-simplex to the n-simplex F(cn→ c)xn
of Fc. Similarly, the components of the unit of the adjunction (r!, r∗) are given
as follows. For a n-simplex x of X ∈ (sSet+)/NC over c0 → ·· · → cn, the unit
X→ r∗r!X sends x to the n-simplex

(c0→ ·· · → cn, (([i]→ [n])∗x,c0→ ·· · → ci → ci))

of r∗r!X. Here the map [i]→ [n] denotes the inclusion.
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Remark 2.1.4. In the light of the above, we see that the relative nerve func-
tor has the following convenient property. Consider a diagram F : C→ sSet+.
Taking the relative nerve of F and passing to fibers, we obtain an isomorphism

(r∗F)c � F(c)

of marked simplicial sets natural in F.

The remaining of this section is devoted to showing that the pair (r!, r∗) is a
Quillen adjunction. We will make use of Corollary 1.1.9.

Proposition 2.1.5. The functor r! preserves cofibrations.

Proof. In view of Proposition 1.1.4, it suffices to check this for the generating
cofibrations (∂∆n)[→ (∆n)[, (∆1)[→ (∆1)]. The image of the latter cofibration is
readily seen to be a cofibration in (sSet+)C. It remains to show that r!(∂∆n)[→
r!(∆n)[ is a trivial cofibration.

Let p : F→ G be a trivial fibration in (sSet+)C. Then we have to demonstrate
that the following square admits a diagonal lift

r!(∂∆n)[ F

r!(∆n)[ G.

p

By Corollary 2.1.3, the bottom arrow corresponds to simplices z0, . . . , zn with
zi ∈ (Fci)i and Gfi(zi−1) = dizi . Note that r!(∂∆n)[ = coeq(

∐
0≤i<j≤n r!(∆

n−2)[ ⇒∐n
i=0 r!(∆

n−1)[). In view of this and Corollary 2.1.3, the top arrow is given by a

suitable family of simplices (ξ i0, · · · , ξ̂
i
i , · · · ,ξ

i
n), 0 ≤ i ≤ n, such that

pck (ξ
i
k) =

zk if k < i

dizk if k > i.

Furthermore, we have the compatibility relations

ξ ik = ξjk if k < i, ξ ik = diξ
j
k if i < k < j, dj−1ξ

i
k = diξ

j
k if j < k

for i < j and 0 ≤ k ≤ n. It is readily seen that the simplices ξ0
n , . . . ,ξ

n−1
n ,Ffn(ξnn−1)

define a map (∂∆n)[→ Fcn making the following diagram commute

(∂∆n)[ Fcn

(∆n)[ Gcn.

pcn

zn

Since pcn is a trivial fibration in sSet+, this square admits a filler xn ∈ F(cn)n.
The simplices ξn0 , . . . ,ξ

n
n−1,xn define the desired lifting r!(∆n)[→ F.
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Proposition 2.1.6. The functor r! carries marked anodyne maps to trivial (projec-
tive) cofibrations in (sSet+)C.

Proof. This is a straightforward check. It is sufficient to check the statement for
all the generators (i)-(iii) in Definition 1.1.5 and generator (iv’) of Proposition
1.1.11). For generator (i), this is shown similarly to Proposition 2.1.5.

Generator (iii). We have to show that for any fibration F→ G, the following
square admits a filler,

r!(Λ
2
1)]

⋃
r!(Λ

2
1)[(∆

2)[ F

r!(∆2)] G.

This entails that we have simplices x0,x1,x2 with xi ∈ (Fci)i and Ffi(xi−1) = dixi ,
such that x1 and d0x2 are marked. Furthermore, the images pci (xi) have marked
edges. We must show that the edges of x2 are marked. Since Ff1 is a map of
marked simplicial sets, d2x2 is marked as well. All in all, the edges of the 0th

and the 2nd face of x2 are marked and all edges of pc2
(x2) are marked. Since

(Λ2
1)]

⋃
(Λ2

1)[(∆
2)[ → (∆2)] is marked anodyne and pc2

is a fibration, it follows
that all edges of x2 are marked.

Generators (ii). This case is handled similarly to generator (iii).
Generator (iv’). Let A→ NC be a map of simplicial sets. Such a map corre-

sponds to a 3-simplex

c
f
−→ d

f −1

−−−→ c
f
−→ d

of NC, where f : c→ d is an isomorphism in C. We have to show that for any
fibration F→ G, the following square admits a filler:

r!A
[ F

r!(A,E) = r!A[
⋃
r!(∆{0,1})[ r!(∆

{0,1})] G.

The top arrow corresponds to simplices x0,x1,x2,x3 with x0 ∈ (Fc)0, x1 ∈ (Fd)1,
x2 ∈ (Fc)2 and x3 ∈ (Fd)3 such that Ff (x0) = d1x1, Ff −1(x1) = d2x2, Ff (x2) = d3x3
obeying the relations s0x0 = d1x2, s0x1 = d1x3 and s1x1 = d2x3. Furthermore, the
above diagram tells us that pd(x1) is a marked edge of Gd. The map r!(∆{0,1})[→
r!A

[ induced by the projection of the edge ∆{0,1} ⊂ ∆3 in A, correspond to the
simplices x0,x1. Consequently, it suffices to show that x1 is a marked edge of Fd.
Observe that x3|∆{0,1} = x1 and that the 3-simplex x3 descends to a map A→ Fd
of simplicial sets. Similarly, the simplex pd(x3) descends to a map A→ Gd of
simplicial sets. Because pd(x1) is marked, this gives rise to a map (A,E)→ Gd
of marked simplicial sets. Since A[ → (A,E) is marked anodyne and pd is a
fibration, we deduce that x1 is marked.

Corollary 2.1.7. The adjunction (r!, r∗) is a simplicial Quillen adjunction.
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Proof. It is readily verified that we have canonical isomorphisms r!(A × X) �
A × r!X natural in A ∈ sSet+ and X ∈ (sSet+)/NC. Taking ]-marked simplicial
sets for A, we deduce that (r!, r∗) is a simplicial adjunction. The fact that this
adjunction is a Quillen adjunction follows from combining Proposition 2.1.5,
Proposition 2.1.6 and Corollary 1.1.9.

We will show that the adjunction (r!, r∗) is Quillen equivalence in the next
section. This will then give an affirmative answer to Proposition 1.4.2:

Proposition 2.1.8. Let F : C→ sSet+ be a fibrant diagram. The naive rectification
of r∗F is naturally isomorphic to π0F.

Proof. Let f : c→ d be an arrow in C. Then the obvious homotopy

H : (∆1)] × (r∗F)c→ r∗F : (α, (xi)) 7→ (f α, (F(c→ f (αi))xi)).

witnesses Ff as a lift of f under the identifications of Remark 2.1.4.

2.2 Homotopy colimits and rectification

In Section 3.3.4 of [Lur09], Lurie discusses the relation between homotopy col-
imits in sSet+ (i.e. colimits in Cat∞) and the right adjoint r∗: namely, the
underlying marked simplicial set of r∗F is precisely the homotopy colimit of
the diagram F. We will exploit this relationship to give a quick proof of the
straightening-unstraightening equivalence. Simultaneously, we will obtain an
independent demonstration of Corollary 3.3.4.3 of [Lur09] for diagrams with a
1-category as a domain. We postpone the proof of this corollary in full general-
ity to Proposition 4.4.1, where we exploit the results obtained in this section.

Recall that the category sSet+ is a combinatorial, simplicial model category,
hence the bar construction B(∗,C,F) models the homotopy colimit of a diagram
F : C→ sSet+. The bar construction is computed as geometric realization of a
particular simplicial object, and may be computed in this case as

B(∗,C,F) = diag+

 ∐
c0∈C

Fc0

∐
c0→c1∈NC1

Fc0 · · ·

 .
Here diag+(−) denotes the functor that associates to a simplicial object X• in
sSet+, its marked diagonal. The underlying simplicial set of diag+(X•) is the or-
dinary diagonal of the underlying bisimplicial set of X•. The marked edges are
precisely the marked edges of X1. This bar construction gives rise to a functor

h! : (sSet+)C→ (sSet+)/NC : F 7→ (B(∗,C,F)→ B(∗,C,∗) = (NC)]),

which a right adjoint h∗, and fits in a Quillen adjunction:

Proposition 2.2.1. The adjunction (h!,h
∗) is a simplicial Quillen adjunction.
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Proof. It is readily verified that h! commutes with tensoring by marked sim-
plicial sets. In light of the properties of the projective model structure, we
have to show that for any cofibration i : A → B in sSet+, the induced map
h!(A × C(c,−)) → h!(B × C(c,−)) is a cofibration, which is trivial if i is trivial.
Note that this map is isomorphic to the map A × h!C(c,−)→ B × h!C(c,−). Thus
the desired result follows from [Lur09, Corollary 3.1.4.3].

The goal of this section is to show that after deriving the rectification func-
tor r! and the homotopy colimit functor h!, these functors fit in an adjoint equiv-
alence of homotopy categories. More precisely, we will prove the main theorem:

Theorem 2.2.2. The Quillen adjunctions (r!, r∗) and (h!,h
∗) are Quillen equiva-

lences. Moreover, the derived functors Lr! and Lh! are inverse equivalences.

We will pursue the same strategy as Heuts and Moerdijk in [HM15]. The
proof of the main theorem may be split in two parts:

Lemma 2.2.3. There exists a 2-cell r!h! ⇒ id(sSet+)C whose components are weak
equivalences for (projectively) cofibrant diagrams.

Lemma 2.2.4. There exists a zig-zag of 2-cells between h!r! and id(sSet+)/NC
whose

components are coCartesian equivalences.

Let us start by proving Lemma 2.2.3. Let F : C→ sSet+ be a diagram. Note
that the n-simplices of (r!h!F)c are given by pairs (ξ,c0 → c1 → ·· · → cn → c)
with ξ ∈ (Fc0)n. An edge is marked precisely when the component ξ is marked
in Fc0. We now define a map εc : (r!h!F)c→ Fc by setting

εc(ξ,c0→ ·· · → cn→ c) := F(c0→ ·· · → cn→ c)(ξ).

It is clear that this map is compatible with the degeneracy-maps, right and
inner face maps. Furthermore, the following computation for a n-simplex σ =
(ξ,c0→ ·· · → c),

εc(d0σ ) = εc(F(c0→ c1)(d0ξ), c1→ ·· · → c) = F(c1→ ·· · → cn→ c)F(c0→ c1)(d0ξ)

= F(c0→ ·· · → c)(d0ξ) = d0(εcσ )

shows that the map is compatible with all structure maps. Moreover, εc respects
the markings, hence we have defined a map of simplicial sets. It is readily
verified that these maps constitute a natural map εF : r!h!F→ F.

Proof of Lemma 2.2.3. We show that the 2-cell ε has the desired property. The
projective model structure (sSet+)C is left proper and combinatorial as sSet+

already has these properties. A class of generating cofibrations is given by A×
C(x,−)→ B×C(x,−), where A→ B is a cofibration of marked simplicial set, and
c ∈ C. Consequently, Lemma B.0.2 asserts that it suffices to check that εF is a
weak equivalence for F = A×C(x,−), where A is some marked simplicial set. It
is readily verified that the map εF is isomorphic to the map A× εC(x,−), thus we
may further reduce checking the statement to diagrams of the form F = C(x,−).
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In this case, the underlying map of simplicial sets of (εF)c : (r!h!F)c → Fc
may be identified with the nerve of the functor r : (C/c)x/ → C(x,c), sending
a factorization x → ξ → c to its composite x → c (here C(x,c) is viewed as a
discrete category). This functor is a retraction of the inclusion i : C(x,c) →
(C/c)x/ which sends an arrow f : x→ c to

x
idx−−→ x

f
−→ c.

Since all edges of (r!h!F)c and Fc are marked, and the model structure on sSet+

is simplicial, it suffices to show that Ni is a trivial cofibration in the Kan-
Quillen model structure. This is clear, as there exists an obvious natural trans-
formation ir⇒ id(C/c)x/ .

We shift our attention to the proof of Lemma 2.2.3. For any marked sim-
plicial set X over NC, we define the marked simplicial set LX by the pullback
square

LX Fun(∆1,NC)]

X NC],

where the right arrow corresponds to evaluation at the vertex 0. We may con-
sider LX as a marked simplicial set over NC by taking the projection map to be
induced by evaluation at 1. This construction defines a functor

L : (sSet+)/NC→ (sSet+)/NC.

Note that we have a natural inclusion map i : X→ LX induced by the constant
path map NC]→ Fun(∆1,NC)].

Proposition 2.2.5. The inclusion i : X→ LX is a trivial cofibration.

Proof. On account of Proposition 1.1.15, it is sufficient to show that there ex-
ists a homotopy (∆1)] × LX → LX (not necessarily over NC) relative to X, such
that H |{0}×LX = ir and H |{1}×LX = idLX , where r is the projection LX → X. The
unique map of ordered sets [1]× [1]→ [1] which sends (1,0) to 0 and (1,1) to 1,
induces a map ∆1 ×∆1→ ∆1, which in turn gives rise to a map Fun(∆1,NC)→
Fun(∆1×∆1,NC). By adjunction, this corresponds to a map ∆1×Fun(∆1,NC)→
Fun(∆1,NC). Applying the ]-functor to this map, and combining the resulting
map with the projection (∆1)] ×X→ X yields the desired homotopy H .

Finally, we show that there exists a natural trivial cofibration h!r!X→ LX for
every marked simplicial set p : X → NC] over NC. A quick inspection shows
that h!r!X has n-simplices of the form (ξ,p(ξ)n → c0 → c1 → ·· · → cn) with
ξ ∈ Xn. An edge is marked precisely when the component ξ is marked in X.
Sending such a n-simplex to ξ, we obtain a map h!r!X→ X of marked simplicial
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sets. Furthermore, sending a n-simplex (ξ,p(ξ)n → c0 → ·· · → cn) to the n-
simplex

p(ξ)0 p(ξ)1 · · · p(ξ)n

c0 c1 · · · cn

of Fun(∆1,NC)] = (NC[1])], we obtain a map h!r!X → Fun(∆1,NC). The two
maps exhibited above assemble to the desired natural monomorphism jX : h!r!X→
LX over NC.

Remark 2.2.6. Alternatively, the natural transformation j : h!r! ⇒ L may be
defined to be the unique natural transformation such that the map

h!r!(∆
n)[/] = h!

∫ i∈[n]
(∆i)[/] ×C(ci ,−) =

∫ i∈[n]
(∆i)[/] ×NC

]
ci /
→ L(∆n)[/]

is induced by the maps (∆i)[/] × NC
]
ci /
→ L(∆n)[/] whose underlying map of

simplicial sets corresponds to the nerve of the composition functor

[i]×Cci / → [n]×C C[1] : (k,ci → x) 7→ (k,ck→ ci → x).

Lemma 2.2.7. Let X → Y be a coCartesian equivalence. Then jX is a coCartesian
equivalence if and only if jY is a coCartesian equivalence.

Proof. Note that the following diagram commutes

X LX h!r!X

Y LY h!r!Y .

Since h! and r! are left Quillen, the right vertical map is again a coCartesian
equivalence. We already demonstrated that the vertical maps in the left square
are coCartesian equivalences. Applying the 2-out-of-3 property twice, we de-
duce that the the two right horizontal arrows are coCartesian equivalences pre-
cisely when one of them is a coCartesian equivalence.

Proposition 2.2.8. For any marked simplicial set X over NC, the component jX is
a trivial cofibration.

Proof. Recall that the X admits a skeletal filtration. By a similar homotopy
pushout argument as in Lemma B.0.2 we see that it suffices to show the state-
ment for X = (∆n)[ and X = (∆1)]. Note that {0} → (∆1)] is marked anodyne,
hence we may reduce to the case that X = (∆n)[ on account of Lemma 2.2.7.
Furthermore, we recall that the n-spine inclusion

∆{0,1}
⋃
{1}
∆{1,2}

⋃
{2}
· · ·

⋃
{n−1}

∆{n−1,n} ⊂ ∆n
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is inner anodyne (see [Joy, Proposition 2.13]). Consequently, [-marking this
map yields a marked anodyne map. Thus it suffices to show that j is a coCarte-
sian equivalence for [-marked n-spines over NC. Such a spine is an iterated
pushouts of (∆1)[’s, which all are homotopy pushouts. Proceeding inductively,
we deduce that it suffices to handle the cases that n = 0,1.

We will demonstrate that we can reduce the case n = 1 to the case that n = 0.
Let X = (∆1)[ be an unmarked edge over NC corresponding to an arrow f : x→
y in C. There is a zig-zag of marked anodynes

X � (∆{0,2})[ (∆2)[
⋃

(∆{0,1})[(∆
{0,1})] (Λ2

1)[
⋃

(∆{0,1})[(∆
{0,1})] =: Y .∼ ∼

Here the marked simplicial set over NC in the middle witnesses f as the com-
position of f and idy . It is thus sufficient to check that the component jY is a
weak equivalence. Note that Y is the homotopy pushout of the cospan

(∆{0,1})]← {1} → (∆{1,2})[.

The edge (∆{1,2})[ of Y corresponds to idy . Hence, it may be written as the
tensor product of the marked simplicial set (∆1)[ with the point y over NC.
Since the functors L, h! and r!, and the natural transformation j are compatible
with tensoring marked simplicial sets, and the model structure on (sSet+)/NC is
a model category enriched over marked simplicial sets, we deduce that j(∆{1,2})[ is
a trivial cofibration when j∆0 is. We have already seen that showing that j(∆{0,1})]
is a trivial cofibration may be reduced to this case as well. All in all, we deduce
that it is sufficient to check the statement for X = ∆0.

For X = ∆0 corresponding to an object c of C, the inclusion j∆0 may be iden-
tified with the ]-marked nerve of the functor

Cc/ → [0]×C C[1] : (c→ x) 7→ (c→ x)

over C. It is clear that this functor is an isomorphism of categories, thus j∆0 is
an isomorphism as well.

2.3 Application: the homotopy invariance of the coCartesian model
structure

In this section we will tactfully exploit the straightening and unstraightening
equivalence to finish the proof of Theorem 1.3.4, as promised.

Proof of Theorem 1.3.4. In view of Lemma 1.3.5 and Lemma 1.3.6, it suffices to
prove the theorem for an inner horn inclusion i :Λnk → ∆n. Note that i induces a
bijection on vertices, hence a mapX\→ Y \ in (sSet+)/(∆n) is a coCartesian equiv-
alence precisely when i∗X\ → i∗Y \ is a coCartesian equivalence on account of
Proposition 1.1.10. Thus Ri∗ is conservative. Hence it remains to show that for
any marked simplicial set X over Λnk , the unit X → i∗(i!X)f is a weak equiva-
lence. Here (i!X)f denotes a fibrant replacement for i!X. We may assume that
X = X\ is a coCartesian fibration over Λnk .
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Pick a projectively fibrant diagram F : [n]→ sSet+ and a weak equivalence
r!i!X

\ → F. In view of Theorem 2.2.2, the adjoint map i!X\ → r∗F is a coCarte-
sian equivalence. We must demonstrate that the adjoint map X\ → i∗r∗F is a
coCartesian equivalence. Note that this map factors as X\→ i∗r∗r!i!X

\→ i∗r∗F.
Passing to fibers, it suffices to check that the map

X
\
m→ (r∗r!i!X

\)m→ (r∗F)m

is a coCartesian equivalence in sSet+ for any vertex m of Λnk on account of
Proposition 1.1.10. The map on the right is isomorphic to the map (r!i!X\)(m)→
F(m), which is a coCartesian equivalence by assumption. The map on the left is
isomorphic to the inclusion of fiber

(i!X
\)m→ i!X

\ ×(∆n)] (∆{0,...,m})].

This map corresponds to the map X\m→ X\ ×(Λn
k )] (∆{0,...,m})] if m < n, and to the

map X\m→ X\ if m = n. Thus the result follows from applying Corollary 1.1.17
to the right anodyne maps {m} → ∆{0,...,m} and {n} →Λnk .

2.4 Application: categorical fibrations and coCartesian fibrations

Recall that the categorical fibrations are the fibrations in the Joyal model struc-
ture. These fibrations are hard to understand, however whenever the base of
the fibration happens to be an ∞-category, these fibrations are precisely the
isofibrations:

Definition 2.4.1. An isofibration X → S is an inner fibration which has the
right lifting property with respect to the inclusion {0} → J .

It readily follows that any coCartesian fibration is an isofibration. Conse-
quently, we deduce that coCartesian fibrations on ∞-categories are categorical
fibrations. This result can be extended to any base:

Proposition 2.4.2. Every coCartesian fibration is a categorical fibration.

This was already shown by Lurie in [Lur09, Proposition 3.3.1.7]. We will
give a different proof of this fact. The statement will readily follow from the
fact that coCartesian fibrations can be extended along (in particular) inner an-
odynes:

Proposition 2.4.3. Let i : S → T be a trivial cofibration of simplicial sets in the
Joyal model structure on simplicial sets. Then every coCartesian fibration X → S
extends to a coCartesian fibration on T . I.e., there exists a coCartesian fibration
Y → T accompanied by a pullback square

X Y

S T .
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Proof. In view of the theory of minimal coCartesian fibrations, the fact that
Ri∗ is essentially surjective (see Theorem 1.3.4) and the observation that i∗ pre-
serves minimality (this is Proposition 1.3.2), we can find minimal coCartesian
fibrationsM→ S andN → T , an isomorphism i∗N \→M\ and a trivial fibration
X\→M\. We now define Y by the pullback square

Y i∗X
\

N \ i∗M
\

in (sSet+)/T . Note that the left adjoint i∗ of i∗ preserves cofibrations. Hence the
map i∗X

\ → i∗M
\ is again a trivial fibration. It follows that the map Y → N \

is a trivial fibration. Thus in particular, Y is fibrant. Thus we may write Y
as a marked simplicial set Y \ over T corresponding to a coCartesian fibration
Y → T .

Consider now the commutative diagram

i∗Y \ i∗i∗X
\ X\

i∗N \ i∗i∗M
\ M\

obtained by applying i∗ to the first pullback square, and using the naturality
of the counit of (i∗, i∗) on the right. Then the left square is a pullback square
since i∗ is a right adjoint. We claim that the right square is a pullback square as
well. Namely, since i is a cofibration, the functor i! is fully faithful. As the tuple
(i!, i∗, i∗) is an adjoint triple, it follows that i∗ is fully faithful as well. Thus the
counit of (i∗, i∗) is an isomorphism, from which the claim follows. All in all, we
deduce that the outer square is a pullback square. Since the arrow i∗N \ →M\

is an isomorphism, the arrow i∗Y \→ X\ is an isomorphism as well. This entails
that the underlying map Y → T of Y \ is the desired coCartesian fibration.

Proof of Proposition 2.4.2. The proof is now elementary. Let X → S be a co-
Cartesian fibration. Then there exists an inner anodyne map S → C such that
C is an ∞-category. On account of Proposition 2.4.3, there exists a coCartesian
fibration Y → C and a pullback square

X Y

S C.

In particular, the map Y → C is an isofibration and hence a categorical fibration
since C is an∞-category. It follows that the map X→ S is a categorical fibration
as well.
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Corollary 2.4.4. The adjunction

(−)[ : sSet/S (sSet+)/S : (−)[

is a Quillen adjunction, where sSet/S is endowed with the model structure induced
by the Joyal model structure.

Proof. This is shown by Lurie in [Lur09, Proposition 3.1.5.3].

Remark 2.4.5. Passing to underlying ∞-categories, we obtain a free-forgetful
adjunction

L(−)[ : (Cat∞)/C coCart(C) : R(−)[ =:U

for any∞-category C. We may identify the left adjoint L(−)[ with the the functor
F that carries an ∞-category D over C to the free coCartesian fibration F(D)
on C (as introduced in [GHN17]). As a fibrant object of (sSet+)/C, this free
coCartesian fibration F(D)\ is decribed by the pullback square

F(D)\ Fun(∆1,C)]

(D,Σ) C]

ev0

of marked simplicial sets, with the projection map to C] being induced by eval-
uation in 1. Here Σ denotes the collection of equivalences in D. This indeed
defines a fibrant object in view of [Lur09, Corollary 2.4.7.12]. To see that we
can identify these functors, we note that there is a natural transformation

(sSet/C)f (sSet+)/C,

((sSet+)/C)f
F

(−)[

whose components are marked anodynes. Namely, the inclusion D[ → (D,Σ)
is marked anodyne as every map in Σ may be extended to the Kan complex
J , and the natural inclusion (D,Σ)→ F(D)\ is marked anodyne (see the proof
of Proposition 2.2.5). Passing to the nerves and localizing along weak equiva-
lences (we will give a recollection of localizations of ∞-categories in the next
chapter), we obtain an invertible 1-cell

coCart(C)

(Cat∞)/C N ((sSet+)/C)[W −1],

coCart(C)

'
F

L(−)[
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in the appropriate functor ∞-category. Here W denotes the (large) set of weak
equivalences of (sSet+)/C and we realized coCart(C) as the localization of the
full subcategory of (sSet+)/C spanned by its fibrant objects, w.r.t. the weak
equivalences between fibrants. The inclusion coCart(C) → N ((sSet+)/C)[W −1]
admits a retraction, yielding the desired equivalence L(−)[ ' F. In particu-
lar, we deduce that the pair (F,U ) forms an adjunction of ∞-categories. This
is proven in a more intrinsic fashion by Gepner, Haugseng and Nikolaus in
[GHN17, Theorem 4.5].

We will exploit the fact that the pair ((−)[, (−)[) forms a Quillen adjunction
in the proof of Proposition 1.3.7, which we were still indebted to the reader:

Proof of Proposition 1.3.7. We more or less follow the proof of this fact by Nguyen.
It is clear that f ∗ preserves cofibrations. Moreover, it follows from Proposition
1.1.16 that f ∗ carries cellular marked anodynes to marked anodynes. Thus it
remains to check that f ∗ carries maps of the form Definition 1.1.5(i), (iv) to
trivial cofibrations.

Let us commence by checking the assertion for generator (iv). To this end,
we may assume that T is a Kan complex and it suffices to check that T [×T ] S]→
S] is a trivial cofibration in (sSet+)/T . Note that S is again a Kan complex, and
that the underlying simplicial set of T [ ×T ] S] is given by S. Hence, it suffices
to show that i : (S,Σ)→ S] is marked anodyne for any Kan complex S and any
set Σ of markings on S. Note that any edge of S can be extended to J . Hence,
the map i may be written as a pushout along (multiple copies of) J[→ J], from
which it follows that i is marked anodyne.

Finally, we must check that the claim holds for a generator of the form
(Λnk )[ → (∆n)[. We may assume that T = (∆n)] and we should check that the
map (Λnk )[ ×(∆n)] S

] → (∆n)[ ×(∆n)] S
] is a trivial cofibration in (sSet+)/∆n . Note

that this map is precisely the map (Λnk ×∆n S,Σ)→ (S,Σ), where Σ are the equiv-
alences of S. The following square commutes

(Λnk ×∆n S)[ S[

(Λnk ×∆n S,Σ) (S,Σ),

and both vertical arrows are pushouts along possibly multiple copies of the
map J[ → J]. Hence it suffices to show that the top arrow is a coCartesian
equivalence in (sSet+)/∆n . In view of Corollary 2.4.4, it is enough to show that
the underlying map Λnk ×∆n S→ S is a categorical equivalence, and this follows
from [HM15, Lemma 7.3].

2.5 Application: a marked version of Quillen’s theorem A

As a final application of all the machinery developed untill now, we shall prove
the following version of Quillen’s theorem A:
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Theorem 2.5.1. Let f : X → Y be a map of marked simplicial sets over an ∞-
category C. Then f is a coCartesian equivalence if and only if the induced map

X ×C] C
]
/c→ Y ×C] C

]
/c

is a coCartesian equivalence of marked simplicial sets for every object c of C.

Proof. The ‘only if’ statement follows from the fact that we have functors

(sSet+)/C→ (sSet+)/C/c → sSet+.

The functor on the right is induced by the terminal map and left Quillen. The
functor on the left is given by pullback along the right fibration C/c→ C, which
is left Quillen on account of Proposition 1.3.7.

Let us proceed to show the remaining assertion. On account of what we
have shown above, we may replace X and Y by X\ and Y \ where X,Y → C are
coCartesian fibrations. Then it suffices to show that f descends to a coCartesian

equivalence on fibers X\c → Y
\
c for all objects c of C. This follows from the fact

that the fiber Z\c has the same homotopy type of the ‘thickened’ fiber Z\ ×C] C
]
/c

for any coCartesian fibration Z→ C. Namely, we have a pullback square

Z
\
c Z\ ×C] C

]
/c

{c} C
]
/c,

and the (natural) top arrow is a coCartesian equivalence in view of Corollary
1.1.17 and the fact that the map {c} → C/c is final thus right anodyne.

It is readily verified that the above theorem recovers the following versions
of Quillen’s theorem A found in the literature.

Corollary 2.5.2 (Proposition G of [HM15]). Let f : X→ Y be a map of simplicial
sets over an ∞-category C. Then f is a covariant equivalence if and only if the
induced map

X ×C C/c→ Y ×C C/c
is a weak homotopy equivalence for every object c of C.

Corollary 2.5.3 (Theorem 4.1.3.1 of [Lur09]). Let f : X→ C be a map of simplicial
sets, where C is an∞-category. Then f is an initial map if and only if the simplicial
set X ×C C/c is weakly contractible for every object c of C.
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CHAPTER 3

Localizing bases

In this chapter, we will study the relation between coCartesian fibrations on
∞-categories and the coCartesian fibrations on their localizations. We will also
recall the similar results for simplicial functors valued in sSet+ (or in general,
taking values in any simplicial model category). We will see that in both cases,
the corresponding model categories of the objects on localizations can be de-
scribed by a left Bousfield localization of the model categories of the objects on
the original∞-category or simplicial category.

The motivation for this pursuit is a result due to Joyal (see Theorem 4.3.2),
which states that any ∞-category C can be obtained as a localization of a 1-
category D. The rectification functors for 1-categories defined in Chapter 2 can
be extended to arbitrary∞-categories. The following square of∞-functors

coCart(D) Fun(D,Cat∞)

coCart(C) Fun(C,Cat∞)

commutes up to equivalence in Fun(coCart(D),Fun(C,Cat∞)). We will use this
fact to conclude that the bottom functor is also part of an adjoint equivalence.
We will pursue this idea by modelling the above square as left Quillen func-
tors of the appropriate model categories. The idea of this approach is due to
Stevenson, who used this strategy in [Ste17] to prove the straightening and un-
straightening equivalence for left fibrations.

3.1 Localizations of∞-categories

Recall that given a category C and a subcategory W of C, we can consider the
localization C→ C[W −1] of C. This localization C[W −1] might not be a locally
small category in the universe we are working in. However, ifW happens to be a
small subcategory, the localization may be constructed by taking the pushout of
the inclusionW → C along the groupoid completionW →W [W −1] ofW , where
(−)[(−)−1] is the left adjoint to the inclusion Grpd → Cat. Here Cat denotes
the category of small categories and Grpd denotes the full subcategory of Cat
spanned by the small groupoids. It follows directly from this description of

33
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C[W −1] that the functor C→ C[W −1] is (strictly) initial among the functors C→
D which carries the maps in W to isomorphisms in D.

A suitable analog for this universal property in the ∞-categorical setting
will characterize localizations of∞-categories:

Definition 3.1.1. Let (C,W ) be a pair of∞-categories. A localization of C by W
is a functor C → D with the property that for any ∞-category E, the induced
functor Fun(D,E) → Fun(C,E) factors through the subcategory FunW (C,E) ⊂
Fun(C,E),

Fun(D,E)→ FunW (C,E)→ Fun(C,E)

such that the first arrow is a categorical equivalence. Here FunW (C,E) denotes
the full subcategory of Fun(C,E) spanned by the maps C→ E which maps the
maps in W to equivalences in E. Equivalently, FunW (C,E) is the ∞-category
defined by the pullback square

FunW (C,E) Fun(C,E)

Map[(W ],E\) Fun(W,E).

We will establish the existence of localizations shortly. The following propo-
sition asserts that localizations are unique up to categorical equivalence (in fact,
up to unique isomorphism in Ho(sSetJoyal)):

Proposition 3.1.2. Let (C,W ) be a pair of ∞-categories. A localization f : C→ D

witnesses D as the representation of the presheaf

π0(FunW (C,−)\)] : Ho(sSetJoyal)→ Set.

Proof. We have to show that for any∞-category E, the map

Map](D\,E\)→ (FunW (C,E)\)]

induced by f descends to an isomorphism on π0. But this follows directly from
the fact that f gives rise to a weak homotopy equivalence

Map](∆0,Fun(D,E)\)→Map](∆0,FunW (C,E)\)

since f is a localization, and this map is isomorphic to the map above.

Proposition 3.1.3. Let (C,W ) be a pair of ∞-categories. Suppose that Σ is a set
of arrows in W which span the 1-truncation HoW . Then any functor C → D of
∞-categories that fits in a homotopy pushout square

Σ×∆1 C

Σ× J D,

is a localization of C by W .
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Proof. Denote the pushout Σ× J
⋃
Σ×∆1W by W̃ . On account of the pasting law,

the map C→D fits in a homotopy pushout square

W C

W̃ D.

Consequently, for any∞-category E, we obtain a homotopy pullback square

Fun(D,E) Fun(C,E)

Fun(W̃ ,E) Fun(W,E).

Note that Fun(W̃ ,E) = Map[(W̃ ],E\). This follows from the fact that any arrow
f : ∆1 → E that factors over W̃ , is an equivalence in E. Namely, the truncation
functor Ho(−) carries homotopy pushout squares of∞-categories to homotopy
pushouts of categories, hence π0CW̃ is equivalent to the pushout of

Σ× J ← Σ× [1]→HoW.

But this is precisely HoW [Σ−1] = HoW [(HoW )−1]. Consequently, the map
Hof : [1]→HoE factors through a groupoid. Thus f is an equivalence.

Note that the mapW → W̃ is a pushout of a trivial Kan-Quillen cofibration,
hence again a trivial Kan-Quillen cofibration. After taking sharps of this map,
we obtain a trivial cofibration in sSet+. Thus the induced map

Fun(W̃ ,E) = Map[(W̃ ],E\)→Map[(W ],E\)

is a categorical equivalence. This in turn shows that the map Fun(D,E) →
Fun(C,E) factors through the subcategory FunW (C,E) and, moreover, since the
pullback square defining FunW (C,E) is a homotopy pullback square, it follows
that the map Fun(D,E)→ FunW (C,E) is a categorical equivalence.

For once and for all, we will fix a functorial localization

(−)[(−)−1] : Pairs(sSet◦Joyal)→ (sSet◦Joyal)
[1].

It is defined as follows. We define a functor L(−,−) valued in simplicial sets by
the strict pushouts

L(C,W ) := C
⋃
W LW , LW :=W

⋃
sk1W×∆1 sk1W × J.

The small objects argument asserts that there exists a natural transformation
idsSet ⇒ R such that S → RS is inner anodyne and RS is an ∞-category for all
simplicial sets S. We now set

C[W −1] := RL(C,W ).

It follows from Proposition 3.1.3 that this defines a localization of C by W .
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3.2 Localizations of simplicial categories

We will give a quick overview of the theory of localizations of simplicial cat-
egories. This theory is mainly due to Dwyer and Kan; they wrote a series of
papers in the eighties on localization procedures for simplicial categories. We
will conclude this section by discussing how the localization of simplicial cate-
gories relate to the localization of simplicial sets.

Let sCat denote the simplicial category of small simplicial categories. De-
note the subcategory of small simplicial groupoids by sGrpd. By general non-
sense, the inclusion functor sGrpd ⊂ sCat admits a left adjoint, which we will
denote by (−)[(−)−1].

Definition 3.2.1. Let (C,W ) be a pair of simplicial categories. Then the Dwyer-
Kan localization C[W −1] of the pair (C,W ) is defined by the pushout square

W W [W −1]

C C[W −1].

The following assertion asserts that the localization of∞-categories defined
in the previous section, coincides with the localization of simplicial categories.

Proposition 3.2.2. Let (C,W ) be a pair of ∞-categories. Then the simplicial cate-
gories CC[W −1] and CC[(CW )−1] are naturally DK-equivalent over CC.

Proof. Since the map C→ C[W −1] factors as

C→ L(C,W )→ C[W −1],

and the latter arrow is a categorical equivalence, it is sufficient to show that
CL(C,W ) and CC[(CW )−1] are naturally DK-equivalent over CC. In view of
the definition of Dwyer-Kan localizations, and the left properness of sCat, we
deduce that it suffices to exhibit a natural DK-equivalence between CLW and
CW [(CW )−1].

We proceed as follows. Consider the following commutative square

CW CLW

CW [(CW )−1] CLW [(CLW −1].

The category π0CLW is a groupoid (see the proof of Proposition 3.1.3). It
follows from this observation and Proposition 10.4 of [DK80] that the right
functor is a DK-equivalence. It remains to show that the bottom map is a DK-
equivalence. Since C and (−)[(−)−1] are left adjoints, we obtain the following
pushout square

sk1W ×C∆1[(C∆1)−1] CW [(CW )−1]

sk1W ×CJ[(CJ)−1] CLW [(CLW )−1].
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It thus suffices to show that the map C∆1[(C∆1)−1] → CJ[(CJ)−1] is a trivial
cofibration in the model structure on simplicial groupoids (see [DK84]).

This follows from a straightforward argument. Namely, we have the follow-
ing commutative cube

C∆1 CJ

C∆1[(C∆1)−1] CJ[(CJ)−1]

[1] J

J J[J−1],

where the vertical arrows of the back face are the natural DK-equivalences
CN (−)→ (−), and the front face is obtained by applying the (−)[(−)−1] functor
to the back face. Note that the arrow C∆1→ [1] is an isomorphism. Hence the
arrow C∆1[(C∆1)−1]→ J is an isomorphism as well. The map CJ → CJ[(CJ)−1]
is a DK-equivalence because J is a Kan complex. Note that the map J → J[J−1]
is an equivalence of categories, thus in particular a DK-equivalence. Since the
mapCJ → J is a DK-equivalence as well, it follows from applying the 2-out-of-3
property twice that the map C∆1[(C∆1)−1]→CJ[(CJ)−1] is a DK-equivalence.

To check that the map is a cofibration in sGrpd as well, it suffices to prove
the stronger statement that the functor (−)[(−)−1] : sCat → sGrpd preserves
cofibrations. It suffices to check this for generators of relative subcomputads
(see Definition A.0.2), and this readily follows from [DK84, Proposition 2.9].

3.3 coCartesian fibrations on localizations

In this section, we will study coCartesian fibrations on localizations of∞-categories.
More generally, we fix a simplicial set S, a set of edges Σ ⊂ S1, and consider co-
Cartesian fibrations on the (strict) pushout

Σ×∆1 S

Σ× J S[Σ−1].

i

Recall that for any coCartesian fibration X → S, we can construct lifts lying
above edges of S (see Section 1.4). The following observation will turn out to
be crucial:

Proposition 3.3.1. Let f : s → t be an edge of S. The following assertions are
equivalent:

(i) any lift f! : Xs→ Xt is a categorical equivalence,
(ii) there exists a lift f! : Xs→ Xt which is a categorical equivalence,
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(iii) for any set I of generating cofibrations for sSet+, the maps induced by the
cofibrations A→ B in I and the edge f : ∆1→ S

(∆1)] ×A
⋃
{1}×A
{1} ×B→ (∆1)] ×B

give rise to a homotopy equivalences on mapping complexes after applying
Map]S(−,X\).

Proof. That (i) and (ii) are equivalent is clear, since any two lifts of f are homo-

topic in Map](X\s ,X
\
t ).

To see that (iii) is equivalent to (ii), we recall that a lift f! is determined by

a homotopy H : (∆1)] × X\s → X\ which restricts to the inclusion X
\
s → X\ on

{0} ×X\s . The lift f! gives rise to a section of the trivial Kan fibration

Map]S((∆1)] ×A,X\)→Map]S({0} ×A,X\) �Map](A,X\s )

for any marked simplicial set A. Namely, we send a n-simplex A × (∆n)] → X
\
s

to the composite (∆1)] ×A × (∆n)] → (∆1)] ×X\s → X\. It is readily verified that
the composition

Map]S({0} ×A,X\)→Map]S((∆1)] ×A,X\)→Map]({1} ×A,X\)

is isomorphic to the map Map](A,X\s ) → Map](A,X\t ) induced by f!. For any
cofibration i : A→ B in I , the following square commutes

Map]S({0} ×B,X\) Map]({0} ×A,X\)×
Map]S ({1}×A,X\) Map]S({1} ×B,X\)

Map]S((∆1)] ×B,X\) Map]((∆1)] ×A,X\)×
Map]S ({1}×A,X\) Map]S({1} ×B,X\).

Note that the vertical arrows are homotopy equivalences, since the pullbacks
occuring on the right are homotopy pullbacks. The top arrow is isomorphic to
the map

i t f! : Map](B,X\s )→Map](A,X\s )×Map](B,X\s )
Map](B,X\t ).

Hence the result follows from Lemma B.0.4.

Definition 3.3.2. We define the simplicial model category of Σ-local coCarte-
sian fibrations

LΣ(sSet+)/S

to be the left Bousfield localization of (sSet+)/S along the maps in Proposition
3.3.1(ii) with f ranging in Σ. The (fibrant) objects that are local with respect to
these maps, will be called Σ-local. If (C,W ) is a pair of ∞-categories, then we
agree to write

LW (sSet+)/C := Lsk1W (sSet+)/C.
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The coCartesian model structure is compatible with localizations in the fol-
lowing sense:

Theorem 3.3.3. The base change Quillen adjunction (i!, i∗) descends to a Quillen
equivalence

i! : LΣ(sSet+)/S (sSet+)/S[Σ−1] : i∗.

Corollary 3.3.4. Suppose that f : C → D is a functor witnessing D as the local-
ization of a pair of ∞-categories (C,W ). Then the base change Quillen adjunction
(f!, f ∗) descends to a Quillen equivalence

f! : LW (sSet+)/C (sSet+)/D : f ∗.

Proof. In view of Proposition 3.1.2, it suffices to show the statement for the
particular model D = C[W −1] of the localization. In this case, f factors as C→
L(C,W )→ C[W −1], where the latter map is inner anodyne. Thus an application
of Theorem 3.3.3 and Theorem 1.3.4 gives the desired result.

We shift our attention to the proof of Theorem 3.3.3. The localization S[Σ−1]
is constructed as a pushout along the localization

j : ∆1→ J.

Consequently, the adjunction (i!, i∗) can be understood by looking at the base
change (j!, j∗).

Lemma 3.3.5. Let X→ ∆1 be a coCartesian fibration. The following assertions are
equivalent:

(i) X\ is ∆1
1-local,

(ii) X\ is classified by a coCartesian equivalence in sSet+,
(iii) X\ lies in the essential image of the right derived functor

Rr∗Rj∗ : Ho((sSet+)J )→Ho((sSet+)/∆1),

(iv) X\ lies in the essential image of the right derived functor

Rj∗ : Ho((sSet+)/J )→Ho((sSet+)/∆1).

Proof. During this proof, we denote the unique non-trivial arrow in [1] by f . It
is clear that (iii) and (iv) are equivalent because the following diagram of right
Quillen functors commutes up to natural isomorphism

(sSet+)J (sSet+)[1]

(sSet+)/J (sSet+)/∆1 .

r∗

j∗

r∗

j∗

Let us thus commence by showing that (i) and (ii) are equivalent. In view of
Theorem 2.2.2, there exists a fibrant diagram F : [1]→ sSet+ and a coCartesian
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equivalence X\ → r∗F. The functor Ff is a lift of f on account of Proposition
2.1.8. Thus Ff is an equivalence of marked simplicial sets precisely when X\ is
∆1

1-local.
It remains to show that (ii) and (iii) are equivalent. To this end, it suffices

to show that any coCartesian equivalence between fibrants in sSet+ lies in the
essential image of the right derived functor Rj∗. Let F : [1]→ sSet+ be a fibrant
diagram corresponding to a coCartesian equivalence. Without loss of general-
ity, we may assume that Ff is a trivial fibration of marked simplicial sets. Let
M(1) → F(1) be a minimal model for F(1). Then the pullback M(1) ×F(1) F(0)
is again fibrant in sSet+ (i.e. an ∞-category). Hence we can pick a minimal
model M(0)→M(1)×F(1) F(0). Let Mf :M(0)→M(1) be the arrow making the
following diagram commute

M(0) M(1)×F(1) F(0) F(0)

M(1) M(1) F(1).

Mf Ff

idM(1)

Then Mf is a coCartesian equivalence, hence an isomorphism by minimalty.
Thus Mf defines a fibrant diagram M : J → sSet+. The outer square of the
above diagram witnesses an isomorphism j∗M � F in Ho((sSet+)[1]), as desired.

Remark 3.3.6. The fact that (ii) and (iii) are equivalent may also be proven
using Theorem 3.4.3.

Proposition 3.3.7. Let X → S be a coCartesian fibration. The following assertions
are equivalent:

(i) X\ is Σ-local,
(ii) X\ lies in the essential image of the right derived functor

Ri∗ : Ho((sSet+)/S[Σ−1])→Ho((sSet+)/S ).

Proof. Let us start by showing that (i) implies (ii). Denote the map Σ×∆1→ S
by p. Note that the pullback p∗X\ of X\ along p is (Σ×∆1

1)-local. Consequently,
Lemma 3.3.5 asserts that there exists a coCartesian fibration Y → Σ × J with a
coCartesian equivalence p∗X\→ (Σ× j)∗Y \. Using the homotopy descent prop-
erty for coCartesian fibrations (see Proposition 1.3.3), we thus deduce that there
exists a coCartesian equivalence Z → S[Σ−1] with a coCartesian equivalence
X\→ i∗Z\ as desired.

Suppose now that (ii) holds. Then there exists a coCartesian fibration Y →
S[Σ−1] and a coCartesian equivalence X\→ i∗Y \. It suffices to show that f ∗X\ is
∆1

1-local for any edge f of Σ. Note that the map f ∗X\→ f ∗i∗Y \ = (if )∗Y \ is again
a coCartesian equivalence. By definition of S[Σ−1], the map if factors through
the localization j : ∆1 → J . Hence a last application of Lemma 3.3.5 yields the
desired result.
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Proof of Theorem 3.3.3. On account of Proposition 3.3.7, the base change ad-
junction descends to a Quillen adjunction

i! : LΣ(sSet+)/S (sSet+)/S[Σ−1] : i∗.

The same proposition asserts that its right derived functor is essentially sur-
jective. It remains to show that Ri∗ is essentially surjective. Since the class of
cofibrations k for which Rk∗ is fully faithful, is closed under pushouts (see the
proof of Lemma 1.3.5), it suffices to show the claim in the case that i is the
inclusion j : ∆1→ J .

We can appeal to the straightening and unstraightening equivalence to de-
duce that it suffices to show that the right derived functor of j∗ : (sSet+)J →
(sSet+)[1] is fully faithful, which will follow from Theorem 3.4.3. We will not
do this here, instead we give a direct proof. Let X → J be a coCartesian fibra-
tion. Then we must show that the top arrow in the following pullback square

X\ ×J] (∆1)] X\

(∆1)] J]

is a trivial cofibration in (sSet+)/J . Since j is right anodyne, it follows from
Corollary 1.1.17 that the top arrow a trivial cofibration in sSet+. As J is a Kan
complex, the marked edges of X\ are the equivalences in the ∞-category X.
Hence X\ is fibrant in sSet+. Thus the arrow X\ ×J] (∆1)] → X\ is a fortiori
marked anodyne.

Corollary 3.3.8. Let f : C→ D be a localization of a pair of ∞-categories (C,W ).
Then the functor f is initial and final.

Proof. We only show the fact that f is initial, as the other statement is dual. To
show that f is initial, we must demonstrate that f , viewed as a map in sSet/D ,
is a covariant equivalence, or equivalently, that f ] : C] → D] is a coCartesian
equivalence in (sSet+)/D. But this is precisely the map f!C]→D], and since the
adjoint map C] → f ∗D] = C] is the identity, the result follows from Corollary
3.3.4.

3.4 Marked simplicial diagrams over localizations

There are results analogous to Theorem 3.3.3 and its Corollary 3.3.4 for marked
simplicial diagrams over localizations of simplicial categories. These results are
due to Dwyer and Kan. Suppose that we have a simplicial functor f : C→ D

and a simplicial model category M, then f gives rise to a (simplicial) Quillen
adjunction

f! : MD MC : f ∗.
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The simplicial functor categories are endowed with the projective model struc-
ture [Lur09, Section A.3.3]. This section is devoted to the study of this adjunc-
tion whenever f is a localization functor via Bousfield localizations. We will
work under the assumption that M is combinatorial. We commence by observ-
ing the following analog of Proposition 3.3.1:

Proposition 3.4.1. Let F : C→M be a projective diagram. Suppose that f : x→ y
is a map in W (i.e. a 0-arrow). Then the following assertions are equivalent:

(i) the map Fx→ Fy is a weak equivalence,
(ii) for any set I of generating cofibrations for M, the maps induced by the cofibra-

tions A→ B in I and f

C(x,−)⊗A
⋃

C(y,−)⊗A
C(y,−)⊗B→ C(x,−)⊗B

give rise to a homotopy equivalence on mapping complexes after applying
Map(−,F).

Proof. This follows from Lemma B.0.4 and the observation that we have iso-
morphisms

Map(C(z,−)⊗A,F) �Map(C(z,−),Map(A,F)) �Map(A,Fz)

natural in z ∈ C and A ∈M.

Definition 3.4.2. Let (C,W ) be a pair of simplicial categories. Then we define
the simplicial model category of W -local C-diagrams

LWMC

to be the left Bousfield localization of MC along the maps in Proposition 3.4.1(ii).
The objects that are local with respect to these maps, will be called W -local.

In this setting, we can formulate the following results which are analogs of
Theorem 3.3.3 and Corollary 3.3.4:

Theorem 3.4.3. Let (C,W ) be a pair of simplicial categories and consider the local-
ization functor f : C → C[W −1]. Suppose that the inclusion W → C is a cofibra-
tion between simplicial computads (see Appendix A) in sCat. Then the base change
Quillen adjunction (f!, f ∗) descends to a Quillen equivalence

f! : LWMC MC[W −1] : f ∗.

Corollary 3.4.4. Suppose that f : C → D is a functor witnessing D as the local-
ization of a pair of∞-categories (C,W ). Then the Quillen adjunction ((Cf )!, (Cf )∗)
descends to a Quillen equivalence

(Cf )! : LCWMCC MCD : (Cf )∗.



3.4. MARKED SIMPLICIAL DIAGRAMS OVER LOCALIZATIONS 43

Proof. It suffices to prove the statement for the particular model D = C[W −1]. In
this case, the desired result follows from combining Theorem 3.4.3, Proposition
3.2.2 and the homotopy invariance of simplicial functor categories (see [Lur09,
Proposition A.3.3.6]).

Theorem 3.4.3 is a slightly sharpened version of results proven in [DK87].
The main result we will use from this paper, is the following:

Lemma 3.4.5 ([DK87]). Theorem 3.4.3 holds when the inclusion W → C is a mor-
phism of simplicial computads.

This is shown at the end of the proof of Theorem 2.2 in [DK87]. Note that
their setup slightly differs from the above. Namely, they use their Lemma 4.3
and a diagonal argument to prove the assertion for the simplicial computadic
resultions (FU•C,FU•W ) of an arbitrary pair of simplicial categories (C,W ).

Proof of Theorem 3.4.3. On account of the small objects argument, the inclusion
W → C factors asW → C̃→ C such thatW → C̃ is a relative simplicial computad
and C̃→ C a trivial fibration in sCat. Since W → C is a cofibration, there exists
a map C → C̃ witnessing W → C as the retract of the map W → C̃. This also
means that C→ C[W −1] is a retract of C̃→ C̃[W −1]. Consequently, we obtain a
diagram of left Quillen functors

LWMC LWMC̃ LWMC

MC[W −1] MC̃[W −1] MC[W −1],

commuting up to natural isomorphism, such that both rows compose to the
identity functors up to natural isomorphism. Note that the inclusion W → C̃ is
a morphism in sCptd on account of Proposition A.0.3, hence the middle arrow
is part of a Quillen equivalence in view of Lemma 3.4.5. We conclude that the
outer vertical functors are also part of a Quillen equivalence as desired.
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CHAPTER 4

Rectification in the general case

We almost have arrived at the point where we developed sufficient theory to ef-
ficiently prove the straightening and unstraightening equivalence for coCarte-
sian fibrations over arbitrary simplicial sets. We start by constructing the gen-
eral rectification adjunction (r!, r∗).

4.1 From the classical to the∞-categorical Grothendiek
construction

Recall that in classical category theory, the unstraightening
∫
F of a functor

F : C → Cat is defined as follows. The underlying category
∫
F has as objects

pairs (c,x) consisting of an object c ∈ C and an object x ∈ Fc. The data of a
morphism (c,x)→ (c′ ,x′) consists of a map c→ c′ in C accompanied by a a map
η : (Ff )x→ x′ in Fc. The following point of view is very useful, and will guide
us in the generalization. For 0 ≤ k ≤ 2, we define a thickened 2-category T [k]
for the category [k], with same objects but hom-categories given by and hom-
categories given by

T [k](i, j) :=


[0] if i = j,

[1]j−i−1 if i < j,

∅ else.

In the case that k = 2, the composition map T [2](1,2) × T [2](0,1)→ T [2](0,2)
is defined to have image 0 ∈ [1]. The image of the 2-category T [k] under the
change of enriching category functor induced by the nerve functor, coincides
with FU•[k] �C∆k . We may now describe the category

∫
F as follows:

• the objects of
∫
F are pairs (c,x) containing a point c : T [0] → C and a

cone x : T [0]/ = T [1]→ Cat such that x(0) = ∗ and x(1) = Fc, visualized as
follows:

∗

x(1)

c
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• the morphisms of
∫
F are pairs (f ,x) containing a map f : T [1]→ C and

a cone η : T [1]/ = T [2] → Cat such that x(0) = ∗, x|T {1,2} = Ff , visually
represented as:

∗

x(1) x(2)

f (0) f (1).

Thus the classical Grothendieck construction is entirely described by ‘weak’
cones lying over morphisms and points in the category. We would like to
proceed in the same way to define the straightening of a simplicial functor
CS→ sSet+.

Definition 4.1.1. Suppose that G : FU•I → C is a homotopy coherent diagram
valued in a simplicial category C. Then a cone over G with apex c ∈ C is a
homotopy coherent diagram Ḡ : FU•I/ → C such that Ḡ(/) = c and Ḡ|FU•I = G;
where / denotes the adjoined object in I/.

Remark 4.1.2. If I = [n], then a homotopy coherent diagram over I is a simpli-
cial functor G : FU•I � C∆n→ C. A cone over G with apex c ∈ C is a simplicial
functor Ḡ :C∆n+1→ C such that Ḡ(0) = c and Ḡ|C∆{1,...,n} = G.

The above notion of cones coincides with cones weighted by the functor
FU•I

/(/,−) : FU•I → sSet:

Proposition 4.1.3. Let G : FU•I → C be a simplicial functor. Then there is a bi-
jection between homotopy coherent cones over G with apex c ∈ C and (simplicial)
natural transformations FU•I/(/,−)⇒ C(c,G−).

Proof. Given a homotopy coherent cone Ḡ : FU•I/→ C over G with apex c ∈ C,
the maps

FU•I
/(/, i)

Ḡ/,i−−−→ C(c,Gi)

constitute an enriched natural transformation. There is an inverse to this as-
signment given as follows. Given a natural transformation η : FU•I/(/,−) ⇒
C(c,G−), we may define Ḡ on objects by setting Ḡ(/) := c and Ḡi := Gi for i ∈ I .
There is no choice for the maps Ḡ/,/ and Ḡi,/ for i ∈ I . We set Ḡi,j := Gi,j , Ḡ/,i := ηi
for i, j ∈ I . It follows from the enriched naturality of η that Ḡ defines a simpli-
cial functor.

Let F : CS → sSet+ be a simplicial functor. Then we define the unstraight-
ening r∗F ∈ (sSet+)/S as follows. The n-simplices of r∗F are given by the set

{(s,x) | s ∈ Sn,x is a cone over FCs :C∆n→ sSet with apex ∆0 }.

The structure maps are the obvious ones. Namely, for α : [m] → [n], we set
α∗(s,x) := (α∗s,α∗x), where α∗x is defined to be the composite

C∆m+1 C(∆0∗α)
−−−−−−−→C∆n+1 x−−−−→ sSet.
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We still have to designate markings to r∗F: an edge (s,x) ∈ r∗F is marked pre-
cisely when the edge ∆1 � C∆2(0,2) → Map(x(0),x(2)) = Fs1 is marked. This
defines a functor

r∗ : (sSet+)CS → (sSet+)/S .

as follows. Given a map f : F→ G (i.e. a simplicial natural transformation), we
have a map r∗F→ r∗G of marked simplicial sets over S which sends a pair (s,x)
to (s, f∗x). Here f∗x :C∆n+1→ sSet denotes the cone over GCs corresponding to
the natural transformation

C∆n+1(0,−)
x

===⇒ FCs
f ·Cs

=====⇒ GCs.

The unstraightening functor admits a left adjoint r!, which we can readily
compute using the above description. For X ∈ (sSet+)/S , we define the simpli-
cial category CX by the following pushout square

CX CX/

CS CX.

This gives rise to a weight

CX(/,−) :CS→ CX
CX(/,−)
−−−−−−−→ sSet.

We may extend this weight to a functor valued in sSet+ as follows. Let f : ∆1→
X be an edge lying over an edge f ′ : s→ t of S. The edge f gives rise to a map
C(∆0 ∗ f ) : C∆2 → CX/ which in turn gives rise to a homotopy coherent cone
f̃ :C∆2→ CX over Cs with apex ∆0. Let s be an object of S. We now define the
set of marked edges ΣX(s) of CX(/, s) to consists of the edges of the form

∆1 �C∆2(0,2)
f̃0,2−−−→ CX(/, s′)

g∗−→ CX(/, s),

where f is a marked edge in X lying above an edge s′′→ s′ of S, and g an arrow
s′→ s in CS. This yields the extension

r!X :CS→ sSet+ : s 7→ (CX(/, s),ΣX(s))

we were chasing. The above construction fits into a functor

r! : (sSet+)/S → (sSet+)CS

which is the desired left adjoint of r∗:

Proposition 4.1.4. The pair (r!, r∗) is a Quillen adjunction.

Proof. We have to exhibit a natural isomorphism

(sSet+)CS(r!X,F)→ (sSet+)/S(X,r∗F).
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Since both sides are compatible with colimits in X, it suffices to show that there
are natural isomorphisms for X = (∆n)[ and X = (∆1)].

Denote the n-simplex of S that lies under X by s. Forgetting about the mark-
ings, it is readily verified that there is a bijection

sSetCS(r!∆
n,F)→ (r∗F ×S {s})n = sSet/S(∆n, r∗F).

obtained by sending a natural transformation C∆n(/,−)⇒ F to the composite

C∆n+1(0,−)⇒ C∆n(/,Cs(−))⇒ FCs.

Thus it remains to check that this bijection carries a map f : r!(∆1)] → F to a
marked edge of r∗F. To this end we must check that the composite map

∆1 �C∆2(0,2)→ C(∆1)](/, s1)→ Fs1

is marked, and this readily follows from the definition above, and the fact that
the map C(∆1)](/, s1)→ Fs1 preserves markings.

To show that (r!, r∗) is a Quillen adjunction, one proceeds in a similar fashion
as in Chapter 2. We will not show this here, instead, we refer the reader to
Section 3.2.1 of [Lur09] for a demonstration of this fact.

The rectification functor defined above, has very similar properties to the
rectification functor for 1-categories defined in Chapter 2, as the next proposi-
tion asserts. In fact, we will show that for 1-categories, these functors are the
same up to equivalence.

Proposition 4.1.5. The rectification functor has the following properties:

(i) the rectification is natural, i.e., for any map f : S → T of simplicial sets, the
following square commutes

(sSet+)/S (sSet+)CS

(sSet+)/T (sSet+)CT

f! (Cf )!

up to natural isomorphism,
(ii) the rectification of a simplex ∆n→ S is described by the (enriched) coend

r!(∆
n)[/] =

∫ i∈(C∆n)[/]

C∆n+1(0, i + 1)[/] ×CS(si ,−)[/].

Proof. Part (i) follows directly from the coend expression (ii). Let us show part
(ii). We have isomorphisms

sSetCS(r!∆
n,F) � sSet/S(∆n,F) = (

∫
i∈C∆n Map(C∆n+1(0, i + 1),Fsi))0

= (
∫
i∈C∆n Map(C∆n+1(0, i + 1)×CS(si ,−),F))0

= sSetCS(
∫ i∈C∆n

C∆n+1(0, i + 1)×CS(si ,−),F)

natural in F :CS→ sSet. Thus the result now follows from the Yoneda lemma,
and the fact that (r!∆n)[/] = r!(∆n)[/].
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Remark 4.1.6. Unlike the rectification functor for 1-categories, this rectifica-
tion functor is not simplicial. However, there exists a comparison map

r!(A×X)→ A× r!X

natural inA ∈ sSet+ andX ∈ (sSet+)/S , which turns out to be a weak equivalence
(see [Lur09, Corollary 3.2.1.15]).

4.2 Comparing the rectification functors for 1-categories

For 1-categories, the rectification functors defined in Chapter 2 coincide with
the rectification functors define above in the following sense. Let C be a 1-
category. Then there is a natural DK-equivalence ε : CNC � FU•C → C. We
will show that there exists a 2-cell η (which is even natural in C) fitting in the
following diagram

(sSet+)CNC

(sSet+)/NC (sSet+)C,

ε!

η

r!

r!

whose components are weak equivalences.
Using the description of rectification functors by coends, this is a straight-

forward procedure. Let ∆n be a n-simplex over c0 → c1 → ·· · → cn. Note that
ε!r!∆

n is given by the coend

ε!r!∆
n =

∫ i∈C∆n

C∆n+1(0, i + 1)×C(ci ,−).

We have a natural map (∆1)i � ∆n+1(0, i + 1) → ∆i defined as follows. If we
use the geometric description of ∆n+1(0, i + 1), i.e. we realize it as the nerve
NP0,i+1 where P0,i+1 denotes the poset of subsets of [n + 1] containing 0, i + 1
ordered by ⊃, then the natural map is defined to be the nerve of the functor
P0,i+1→ [i] : S 7→min(S \{0})−1. Alongside with the DK-equivalenceC∆n→ [n]
this gives rise to a map between coends

ε!r!∆
n =

∫ i∈C∆n

C∆n+1(0, i + 1)×C(ci ,−)→
∫ i∈[n]

∆i ×C(ci ,−) = r!∆
n.

Definition 4.2.1. The natural transformation η is the unique natural transfor-
mation such that η(∆n)[/] is the [/]-marked map above.

Proposition 4.2.2. The components of η are weak equivalences.

Proof. Since the rectification functors and ε! are left Quillen, we may reduce to
checking the statement for X = (∆1)[ and X = ∆0. In the case that n = 0,1, the
DK-equivalence C∆n → [n] and the natural maps C∆n+1(0, i + 1)→ ∆i are iso-
morphisms. Thus the induced maps η(∆n)[ are isomorphisms, thus in particular
weak equivalences, as desired.
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Remark 4.2.3. Using the (unmarked or alternatively, by attaching ]-markings
to the simplicial sets in the upcoming discussion) version of this comparison,
one recovers the classical fact that for any ∞-category C, there exists a natural
isomorphism

Cx/ ×C {y} �MapC(x,y)

in the homotopy category of spaces. Namely, one can apply the above result to
the left fibration Cx/ → C. This left fibration classifies the functor MapC(x,−) :
C→ S (or equivalently, the fibrant simplicial functor

CC→ F
F(x,−)
−−−−−→ sSet,

where F is a fibrant replacement of CC). This is not too hard to show explictly
using the formula for the rectification (e.g. see the proof of [Lur09, Proposition
2.2.4.1]). Thus pulling back to an object y ∈ C, we obtain a homotopy equiva-
lence

Cx/ ×C {y} → r∗MapC(x,y),

since pullback and unstraightening commute. Thus the adjoint map

r!(Cx/ ×C {y})→MapC(x,y)

is again a weak homotopy equivalence. Since the rectification functor of Chap-
ter 2 is isomorphic to the identity functor, we obtain a natural zig-zag of weak
homotopy equivalences

Cx/ ×C {y} ← r!(Cx/ ×C {y})→MapC(x,y),

in light of the comparison above.

4.3 Proof of the equivalence

We are now at the end of the journey we embarked on in Chapter 3. We will
prove the following theorem:

Theorem 4.3.1. For any simplicial set S, the rectification adjunction

r! : (sSet+)/S (sSet+)CS : r∗

is a Quillen equivalence.

As outlined in the introduction of Chapter 3, in order to prove the straightening-
unstraightening equivalence in the general setting, we will make use of the fact
that any∞-category is the localization of a 1-category. This is known as Joyal’s
delocalization theorem:

Theorem 4.3.2. Let C be an∞-category. Then the final vertex map

N∆/C→ C

is a localization of N∆/C at the nerve of the subcategory spanned by the maps ∆n→
∆m in ∆/C which preserve final vertices.
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Proof. A proof of this theorem may be found in [Ste17, Theorem 1.3].

Lemma 4.3.3. Let (C,W ) be a pair of ∞-categories. Then the Quillen adjunction
(r!, r∗) for C descends to a Quillen adjunction

r! : LW (sSet+)/C LCW (sSet+)CC : r∗.

Moreover, this localized Quillen adjunction is a Quillen equivalence when the unlo-
calized Quillen adjunction is.

Proof. On account of [Hir03, Theorem 3.3.20], it suffices to show the following
claim: for any map f in W , the image under r! of an induced map as Propo-
sition 3.3.1(iii) is weakly equivalent to a map of the form Proposition 3.4.1(ii)
associated to Cf . Using the naturality of the rectification functors with respect
to the map f : ∆1→ C, we deduce that it suffices to show the claim in the case
that C = ∆1 and W = ∆1.

In this case, the rectification functor is equivalent to the rectification functor
of Chapter 2 on account of Proposition 4.2.2. Hence it suffices to show the
claim for the latter rectification functor r!. Since this rectification functor r!
is compatible with tensoring marked simplicial sets, it suffices to show that r!
carries the map

{1} → (∆1)]

in (sSet+)/∆1 to an arrow that is weakly equivalent to the map

[1](1,−)→ [1](0,−),

and this follows from the fact that the following triangle

r!{1} � [1](1,−) [1](0,−) � r!{0}

r!(∆1)]

commutes up to homotopy in (sSet+)[1], and the arrow on the right is a trivial
cofibration.

Proof of Theorem 4.3.1. Suppose first that S is given by the nerve of a 1-category
C. Since the map CNC→ C is a DK-equivalence, we obtain the desired result
from Proposition 4.2.2 and Theorem 2.2.2.

Consider now the general case. On account of the homotopy invariance
of coCartesian model structures and simplicial functor categories, it suffices
to show the statement in case that S is an ∞-category C. Moreover, in view
of Joyal’s delocalization theorem and the preceeding case, we may henceforth
assume that there exists a functor f : D→ C which witnesses C as a localization



52 4. RECTIFICATION IN THE GENERAL CASE

of a pair of∞-categories (D,W ) and that the theorem holds for the base D. We
then obtain the following square of left Quillen functors

LW (sSet+)/D LCW (sSet+)CD

(sSet+)/C (sSet+)CC

r!

f! (Cf )!

r!

which commutes up to natural isomorphism. The vertical arrows are part of
Quillen equivalences in view of Corollary 3.3.4 and Corollary 3.4.4. By the
assumption on D and the fact that the rectification functors are compatible
with localizations (see Lemma 4.3.3), it follows that the top arrow is part of a
Quillen equivalence. Hence the bottom arrow is part of a Quillen equivalence
as well.

Corollary 4.3.4. Suppose that F : CC→ sSet+ is a fibrant diagram classified by a
coCartesian fibration X→ C. Then there exists a natural isomorphism

Ho(C) Ho(sSet+),

π0F

relating the rectification r!X\ ' F of X\ and the naive rectification of X\ defined in
Section 1.4.

Proof. It suffices to show the following claim: for any fibrant diagram F :CC→
sSet+, the naive rectification of r∗F is naturally isomorphic to π0F. Considering
a similar square of functors as in the proof of Theorem 4.3.1, but now taking
the right Quillen functors, one easily deduces the fact that if a functor D→ C

exhibits D as a localization of C, and the statement holds for D then it holds for
C as well. Thus in view of Joyal’s delocalization theorem, it suffices to show the
statement in case that C is given by the nerve of a 1-category. This case may be
handled using Proposition 4.2.2 and Proposition 2.1.8.

Remark 4.3.5. Note that the corollary above can be stated in a more intrinsic
fashion. Namely, if X → C is a coCartesian fibration classifying a functor f :
C → Cat∞, then the above result asserts that the functor Ho(f ) is naturally
isomorphic to the naive straightening of X.

4.4 Application: colimits in the∞-category of∞-categories

We conclude this chapter by proving that colimits in Cat∞ (realized as the ho-
motopy coherent nerve of (sSet+)◦) can be computed using coCartesian fibra-
tions. This was already briefly mentioned at the start of Section 2.2.

Proposition 4.4.1. Let p : I → Cat∞ be a diagram in Cat∞ which classifies a co-
Cartesian fibration X → I . Then the colimit of p and X\ are weakly equivalent in
sSet+.
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Proof. We start by observing the following. Suppose that f : J → I is a final
map of simplicial sets. Then, if the claim holds for J then it holds for I as well.
Namely, we have colim(f ∗p) = colim(p). Thus colim(p) and f ∗X\ are weakly
equivalent in sSet+. Since f is final, it readily follows from Corollary 1.1.17
that the map f ∗X\→ X\ is a coCartesian equivalence of marked simplicial sets.
Using Joyal’s delocalization theorem, and the fact that localization functors are
final, we may assume that I is given by the nerve of a 1-category C.

We may then assume that p is given by the homotopy coherent nerve of a
(fibrant) diagram P : C→ sSet+ using a similar argument as in [Lur09, Corol-
lary 4.2.4.7]. Using the naturality of the counit map of the homotopy coherent
nerve adjunction, one now deduces that X\ is classified by the composite func-
tor CNC→ C→ sSet+. In view of the comparison of rectification functors (see
Proposition 4.2.2), we deduce that the 1-functor P classifies X\. It now follows
from Theorem 2.2.2 that X\ and h!P are weakly equivalent. Thus their un-
derlying marked simplicial sets are weakly equivalent as well. Recall that the
underlying marked simplicial set of h!P is a model for the homotopy colimit of
P by construction, which is precisely the colimit of p, thus we have obtained
the desired result.
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APPENDIX A

Simplicial computads

We will make extensive use of the notion of simplicial computads. These are
called free simplicial categories in the terminology of Dwyer and Kan. Simpli-
cial computads are the simplicial version of computads. Recall that a computad
is a category that lies in the image of the inclusion

F : Graph→ Cat.

Here Graph denotes the category of reflexive directed graphs. The non-identity
edges of the corresponding graph of a computad, are called the atomic arrows.
Every non-identity arrow of a computad can be uniquely decomposed as the
composition of finitely many atomic arrows.

Definition A.0.1. A simplicial category C is called a simplicial computad if:

(i) every category Cn is a computad, whose atomic arrows we refer to as the
atomic n-arrows,

(ii) degeneracies of atomic arrows are again atomic.

A morphism C→ D of simplicial computads is a simplicial functor which car-
ries every atomic arrow of C to an atomic arrow or identity in D. Equivalently,
the full subcategory sCptd of simplicial computads is defined by the following
pullback square

sCptd sCat

Graph∆
op
epi Cat∆

op
epi .

Here the bottom arrow is induced by F.

We will show that simplicial computads are cofibrant simplicial categories.
In fact, more is true: every cofibrant object of sCat is a simplicial computad (see
[Rie14, Section 16.2]).

Definition A.0.2. A relative simplicial computad is a simplicial functor C→D

that can be written as a countable composition of coproducts of:

(i) the functor ∅→ [0],

55
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(ii) the standard simplicial subcomputad inclusions [1](∂∆n)→ [1](∆n).

The class of relative simplicial computads coincides with the cellular cofi-
brations in sCat. The following observation (posed as an exercise in [RV]) is
useful:

Proposition A.0.3. Let i : C→D be an inclusion of simplicial categories, and sup-
pose that C is a simplicial computad. Then the following are equivalent:

(i) the inclusion i is a morphism of simplicial computads,
(ii) the inclusion i is a relative simplicial computad.

Proof. To check that (ii) implies (i), we observe that the injective simplicial com-
putad morphisms are closed under countable composition (since this holds for
Graph). Hence it suffices to check that any standard simplicial subcomputad
inclusion is a morphism of simplicial computads, and this is clear.

It remains to check that (i) implies (ii). We first adjoin all objects of D to C

that are missing in C via map Definition A.0.2(i), yielding a simplicial category
which we denote by sk−1D

⋃
sk−1C

C. The functor skn : sSet → sSet induces a
functor skn : sCat→ sCat. We now claim that we have pushout squares

∐
Σn

[1](∂∆n) skn−1D
⋃

skn−1C
C

∐
Σn

[1](∆n) sknD
⋃

sknCC

for n ≥ 0. Here Σn denotes the set of non-degenerate atomic n-arrows of D

which are missing in C. The bottom arrows are induced by the map f : ∆n →
D(x,y), for f : x→ y in Σn. The restriction of this map to ∂∆n factors through
skn−1D, giving the top arrows. To see that the above square is pushout square,
we observe that level wise, we have squares

∐
Σn

[1](∅)
∐
Σn

[1](∂∆nm) (skn−1C)m
⋃

(skn−1C)m Cm

∐
f ∈Σn[1](Sf ,m)

∐
Σn

[1](∆nm) (sknD)m
⋃

(sknC)m Cm.

Here Sf ,m denotes the set of m-simplices which are either f or degeneracies of
f , for f ∈ Σn. The left square is a pushout, hence we just have to check that the
outer square is a pushout. This follows from the fact that the atomic m-arrows
in sknD

⋃
sknCC missing in skn−1D

⋃
skn−1C

C are precisely given by the Sf ,m’s.
Finally, we note that the map C→ colimsknD

⋃
sknCC is precisely the inclusion

C→D and this concludes the proof.

Corollary A.0.4. A simplicial category C is a simplicial computad precisely when
∅→ C is a relative simplicial computad.
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By general nonsense, the functor F admits a right adjoint U . This right
adjoint fits in a adjunction

F : Graph Cat :U.

This adjunctions comes with a counit ε : FU ⇒ idCat and an unit η : idGraph⇒
UF. Set δ := FηU . The triple (FU,δ,ε) satifies the comonadic equations ε(FUε) =
ε(εFU ), (FUδ)δ = (δFU )δ, (FUε)δ = idCat = (εFU )δ. For a category C, we now
define a simplicial computad FU•C as follows. We set FUnC := (FU )n+1C and
define the face and degeneracy maps by

di := ((FU )n−iη(FU )i)C : FUnC→ FUn−1C,

si := ((FU )n−iδ(FU )i)C : FUnC→ FUn+1C.

It is readily verified that this defines a simplicial computad. Viewing C as a
discrete simplicial category, we note that there is a natural functor FU•C→ C,
which has the following property:

Proposition A.0.5 (Proposition 2.6 of [DK80]). The simplicial functor FU•C→ C

is a DK-equivalence.

The construction above may be extended to simplicial categories. We will
show that there exists a bisimplicial category FU•C associated to a simplicial
category C such thats its diagonal diagFU• is a simplicial computad, which
comes with a natural DK-equivalence diagFU•C→ C.

Recall that the category ssCat of bisimplicial categories is the category of
small categories enriched over the category ssSet of bisimplicial sets. Like sim-
plicial categories, we may view bisimplicial categories as functors ∆op ×∆op→
Cat such that, levelwise, all categories have the same set of objects and such
that all face and degeneracy maps act as the identity on objects. Recall that
we have a diagonal functor diag : ssSet → sSet. This gives rise to a diagonal
functor

diag : ssCat→ sCat.

Alternatively, the action of this functor on a bisimplicial category ∆op ×∆op→
Cat may be described as precomposing with the diagonal ∆op→ ∆op×∆op. The
following result should not come as surprise:

Proposition A.0.6. Suppose that f : C→D is a map of bisimplicial categories such
that Cn,•→Dn,• is a DK-equivalence for every n. Then diagf : diagC→ diagD is
a DK-equivalence.

Proof. For x,y ∈ C, the map Cn,•(x,y)→Dn,•(f x,f y) is a weak homotopy equiv-
alence of simplicial sets. Hence the map diagC(x,y)→ diagD(f x,f y) is weak
homotopy equivalence as well. The map π0 diagf is essentially surjective as
well. Namely, for every object y ∈ D, there exists a x ∈ C such that f x and y
are isomorphic in D1,• by assumption. This entails that there exist 0-arrows
γ : f x → y, δ : y → f x, a 1-arrow H : f x → f x connecting γδ and idy , and a
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1-arrow H ′ : f x→ f x connecting δγ and idf x in D1,•. It is then readily verified
that H,H ′ are 1-arrows in diagD which respectively connect d0γd0δ and idy
and d0δd0γ and idf x. Thus γ,δ are inverse isomorphisms between f x and y in
π0 diagD.

Definition A.0.7. The simplicial computadic resolution FU•C of a simplicial
category C is the bisimplicial category defined by

FUn,mC := FUnCm.

Proposition A.0.8. The simplicial computadic resolution FU•(−) : sCat→ ssCat
has the following properties:

(i) The composite functor diagFU•(−) factors through the inclusion sCptd →
sCat.

(ii) The natural map diagFU•C→ C is a DK-equivalence for any simplicial cate-
gory C.

Proof. Part (i) is readily verified and part (ii) follows from Proposition A.0.5
and Proposition A.0.6.



APPENDIX B

Model categorical tools

This appendix contains a few isolated lemma’s on model categories, which are
referred to in the main content of this thesis as the need arises.

Lemma B.0.1. Let M be a model category. Then a cofibration is a trivial cofibration
if and only if it has the left lifting property with respect to fibrations between fibrant
objects.

Consequently, a left adjoint functor F : M → M′ of model categories, is left
Quillen precisely when F preserves cofibrations and the right adjoint of F preserves
fibrations between fibrant objects.

Proof. The second statement readily follows from the first. Let us show the
first assertion. Clearly, every trivial cofibration has the left lifting property
with respect to fibrations between fibrant objects. Conversely, suppose that
i : x→ y is a cofibration in M which has the left lifting property w.r.t. fibrations
between fibrant objects. Let yf be a fibrant replacement for y. This replacement
comes with a trivial cofibration y→ yf . The composite x→ y→ yf factors as a
trivial cofibration x→ xf followed by a fibration p : xf → yf . The situation is
described by the following commutative diagram

x xf

y yf ∗.

∼

i p

∼

Thus by assumption, this square admits a diagonal filler f : y → xf . Note that
the composites f i and pf are weak equivalences, thus f is invertible in the
homotopy category of M. Consequently, f must be a weak equivalence. By the
2-out-of-3 property, it follows that i is a weak equivalence as well.

Lemma B.0.2. Let M,M′ be two model categories and assume that M′ is left proper
and combinatorial, and that M admits a generating set I of cofibrations. Suppose
that η : F ⇒ G is a natural transformation between two left Quillen functors F,G :
M⇒M′. Then ηx is a weak equivalence for every cofibrant object x if and only if
ηx is a weak equivalence for any object x that is either a domain or codomain of a
morphism in I .
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Proof. We prove the non-trivial implication. Assume that ηx is a weak equiva-
lence for any object x that is a domain or a codomain of a map in I . Let x be a
cofibrant object of M. In light of of the small objects argument, we see that x is a
retract of an I-cell complex. Since weak equivalences are closed under retracts,
we may as well assume that x is an I-cell complex. This entails that x is the col-
imit of a transfinite sequence x• : α→M in I , for some ordinal α with x0 = ∅.
Thus x• is a projectively cofibrant diagram. Since F,G are left Quillen, Fx• and
Gx• are projectively cofibrant and their colimits are given by Fx and Gx respec-
tively. The colimit functor is left Quillen with respect to the projective model
structure on (M′)α, hence it suffices to show that that the 2-cell Fx• ⇒ Gx• is
compromised of weak equivalences.

Using an induction argument, we deduce that it is sufficient to demonstrate
that ηxβ+1

is a weak equivalence whenever ηxβ is a weak equivalence, for every
ordinal β. The object xβ+1 is obtained by attaching a set of I-cells (fi : ai → bi)
to xβ . By assumption, all vertical maps of the following commutative diagram
are weak equivalences:

Fxβ
∐
Fai

∐
Fbi

Gxβ
∐
Gai

∐
Gbi .

The objects Fxβ+1 and Gxβ+1 are pushouts of respectively the top and bottom
row. These are also homotopy pushouts since M′ is left proper and the two
right horizontal arrows are cofibrations. Hence the map ηxβ+1

: Fxβ+1 → Gxβ+1
is a weak equivalence as well.

Lemma B.0.3. Let M be a simplicial model category, and f : x→ y a weak equiv-
alence of fibrant objects. Suppose that a → b is a cofibration. Then for any map
g : a→ x, the induced map

Map(b,x)×Map(a,x) {g} →Map(a,x)×Map(b,x) {f g}

is a homotopy equivalence of simplicial sets.

Proof. We have the following commutative diagram:

Map(b,x) Map(b,y)

Map(a,x) Map(a,y).

The two vertical arrows are fibrations, and the horizontal arrows are homotopy
equivalences between Kan complexes. It follows that fibers of the two vertical
arrows are defined by homotopy pullback squares, hence the two horizontal
arrows induce homotopy equivalences on fibers.

Lemma B.0.4. Let M be a simplicial model category and f : x → y be a map of
fibrant objects in M. Then the following statements are equivalent:
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(i) the map f is a weak equivalence,
(ii) for any cofibration i : a→ b, the induced map

i t f : Map(b,x)→Map(a,x)×Map(a,y) Map(b,y)

is a homotopy equivalence of simplicial sets.

Proof. We may factor the map f as trivial cofibration j : x → z followed by a
fibration g : z → y. Let i : a → b be a cofibration. Then the following square
commutes

Map(b,x) Map(a,x)×Map(a,y) Map(b,y)

Map(b,z) Map(a,z)×Map(a,y) Map(b,y).

itf

j∗ j∗×Map(a,y)Map(b,y)

itg

Note that the left and right arrows are homotopy equivalences. Moreover, the
bottom arrow is a fibration as the model structure on M is simplicial. All in all,
we deduce that it suffices to show that g is a trivial fibration if and only if the
map i t g is a trivial fibration for any cofibration i : a→ b in M. If g is a trivial
fibration, then i t g is a trivial fibration since M is simplicial. Conversely,
suppose that i t g is a trivial fibration for every cofibration i : a → b. Then
in particular, the map i t g is surjective on vertices. Since this holds for any
cofibration i, this entails that g is trivial fibration.
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