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Summary 

Fire-prone ecosystems are comprised of vegetation with a range of functional traits that confer 

persistence post-disturbance. Resprouting denotes the functional trait in plants that enables 

vegetative regeneration after said disturbance events via bud banks located in a range of parts of the 

plant.  In order to do identify the relationships with resprouters and abiotic variables, vegetation data 

collected from plots located in four areas of Australia was analysed using generalized linear models 

using climate and fire data as predictor variables. Vegetation variables included relative resprouter 

richness and percentage of resprouters based on bud bank location: apical (aerial), epicormic (aerial), 

basal/collar and underground. The results indicated that relative resprouter richness was influenced 

by increasing mean annual rainfall and decreasing average fire interval. Mean annual rainfall and 

rainfall seasonality also played a role in determining the prevalence of the various resprouting 

functional traits. The quantified relationships provide a means of assessing vegetation dynamics and 

fire regimes in future modelling studies.  
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1 Introduction  

Disturbance events describe the temporary loss of life within an ecosystem as a result of large-scale 

perturbations that significantly alter community compositions. Disturbance-prone ecosystems are 

populated by vegetation evolved with functional traits that enable community persistence throughout 

multiple disturbance events as is the case for fire-prone (Clarke et al. 2013) and drought-prone (Bred 

& Badeau, 2008) ecosystems. The distribution and composition of these plant communities are 

governed by a range of feedbacks within and between the environment and vegetation. Changes to 

these ecosystem dynamics therefore results in variation in the scale and frequency of disturbance 

events such as fire (Westerling et al. 2011; Adams, 2013). The resulting feedback effects are able to 

alter the successional trajectory of an ecosystem giving rise to alternative stable states that are self-

reinforcing (Baudena et al. 2020; Adams, 2013; Lasslop et al. 2016).   

Fire regimes are a fundamental physiochemical process that influences spatial distribution 

and composition of vegetated ecosystems (Lasslop et al. 2016; Staver, et al. 2011). The dynamic nature 

of fires results in fluctuations on the carbon cycle (Yue et al. 2016) and surface albedo (Williams et al. 

2012) at a global scale. Fire regimes have fluctuated in a range of natural variability for millennia 

(Marlon et al. 2008) as a consequence of temporal variations in meteorological variables such as wind, 

rainfall, air temperature, relative humidity and solar radiation (Williams et a. 2012). The 

“intermediate-fire productivity hypotheses” (Pausas & Bradstock, 2007; Keeley et al. 2011; Pausas & 

Ribeiro, 2013) is a widely accepted theory (Karavani et al. 2018)  stating that fire activity is highest at 

intermediate levels of productivity and aridity as a result of a trade-off of the two which determine 

fuel availability and drought respectively. In this sense, climate change would have differing effects to 

fire regimes of different ecosystems (Pausas & Ribeiro, 2013).  

Fire-prone ecosystems accommodate vegetation with a range of functional traits adapted to 

facilitate post-fire recovery. Traits include obligate seeders that rely on post-fire recovery by means 

of recolonization through sexual reproduction post-disturbance. Fire-resistance confers the observed 

traits that provide a low flammability effect, allowing survival to the individual via adaptations such as 

thick bark and insulated regenerative material to protect internal systems from fire damage (Williams 

et al. 2012). Resprouting denotes the ability of a plant to develop, sustain and protect a viable bud 

bank that enables vegetative regeneration from previously burned individuals whose autotrophic 

capacity may have been completely destroyed. The resprouting trait is present in a wide range of 

angiosperms, particularly in arboreal Eucalyptus of Australia, the trait is also present, if not less 

common in gymnosperms such as Podocarpus (Keeley et al. 2005). 

The resprouting trait is displayed in a wide variety of species and consequently has a number 

of types based on the production and preservation of meristematic tissue in the form of buds or bud-
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forming tissue (Clarke et al. 2013). Presence of these buds at various parts of the plant gives rise to 

the broad classification of aerial, basal or below-ground resprouters. There is however variation within 

these classes based on how these bud banks are protected, number of buds and the location of non-

structural carbohydrates used as storage reserves. Based on this Clarke et al. 2013 identified four main 

resprouting types: apical (aerial resprouters that protect the apex bud), epicormic (aerial resprouters 

where shoots originate from the bole and branchlets), basal (buds located at ground level) and below-

ground (bud banks are stored underground). Prominence of the various functional traits naturally 

depends on a range of variables (Figure 1) including the frequency and nature of disturbance events 

as well as bioclimatic variables, all of which presents interactions with one another.   

 

Figure 1. Conceptual relationships between resprouter types, rainfall gradients and a) stem 

disturbance frequency an b) relative proportion of functional trait in a community. Adapted from 

Clarke et al. 2013 

 

The vegetation in turn play a role in determining fire characteristics, generating further feedback 

(Archibald et al. 2013). Generally, communities dominated by resprouters have been shown to recover 

from disturbance more quickly than those where resprouters are absent (Zeppel et al. 2014). 

Conversely, obligate seeders are typically favoured in areas where disturbance events are less 

common (Russel-Smith et al. 2012). Given projected climate change and changing fire regimes, there 

is potential for shifts in the distribution of fire adapted vegetation (Enright et al .2014; Baudena et al. 

2020). 

  Australia is known as one of the most fire-prone countries globally, with at least one area part 

of the country experiencing a form of fire season at any one time (Williams et al. 2012). Regarding fire 

season, five broad fire seasons have been classified by Luke & McArthur (1978) based on fuel dryness, 

availability and likelihood of ignition and spread. Fire season in the North begins in winter/spring, 

a. b. 
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moving down throughout the year and afflicting the south by summer/autumn. In the most recent 

2019-2020 wildfires, >12 million hectares area including forest and agricultural lands were burned, 

this has mainly been attributed to a prolonged drought and record-breaking high temperatures (Boer, 

de Dios & Bradstock, 2020). Monetary costs alone in damage caused by the fires is set to exceed the 

A$4.4 billion in costs of the 2009 “Black Saturday” fires, (Ell, 2020) the series of fires which were among 

Australia’s worst and most costly (Ell, 2020). These costs are expected to increase in terms of damage 

to other economic activities such as tourism. Furthermore, damage to ecosystem services such as 

nutrient cycling and carbon storage, loss of biodiversity and shifting community assemblages, are a 

number of ecological consequences of increasing wildfires. Evidence of significant reductions in post-

fire tree regeneration within the 21st century in US Rocky Mountains (Stevens-Rumann et al. 2018) 

and Eucalypt forests in south-western Australia (Etchells et al. 2020), necessitates the fact that fire-

adapted ecosystems have limitations concerning recovery. Regarding the suite of feedbacks that occur 

within fire prone ecosystems, there is potential for this to alter successional trajectory of communities, 

changing the community compositions (Enright et al. 2014; Adams, 2013) In order to predict and 

mitigate emerging fire patterns, better understanding needs to be gained on the relationships that 

vegetation has with fire and climate at a landscape-scale. 

Faced with the uncertainty regarding future climate and its implications to future fire regimes 

(Moritz et al. 2012), there is a growing necessity for models whose statistical relationships reflect 

underlying processes (Bistinas et al. 2014). This can be highlighted by the disagreement at both global 

and regional scales in previous modelling studies (Bistinas et al. 2014; Moritz et al. 2012) even under 

the same emissions scenarios. An understanding of the interactions that underly fire regimes require 

a large degree of testing, data contributions and real-world comparisons in order to develop adaptive 

management policies and measures that promote natural, manageable fire regimes. In order for these 

to be implemented, a better understanding of what drives post-fire responses of vegetation is needed. 

Despite the activity in the study of resprouting and the implications of their presence in a 

community, quantitative data regarding the relationships between environmental variables and the 

distribution and expression of resprouting traits remains poor for many regions. Thus, understanding 

of the feedbacks that govern fire prone ecosystems are somewhat limited. As a consequence of this, 

only a small number of studies have included resprouters in modelling studies (Kelley et al. 2014; 

Baudena et al. 2020) and subsequently climate projections (Kelley & Harrison, 2014). In order to make 

accurate projections for Australian ecosystems that includes post-fire recovery, the relationships 

between environmental variables and distribution of resprouting vegetation needs to be better 

understood. 
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A great deal of data already exists on post fire responses of vegetation in Australia (Russel-Smith et al. 

2012; Enright et al. 2011; Bradstock & Kenny, 2003), as does fire and climate data. What is less known 

is the precise factors that determine post-fire responses over large temporal and spatial scales. 

Retrospective studies provide a means of analysing past data in order to determine the main 

determinants of resprouter distributions. This study aims to develop empirical relationships between 

environmental variables and the distribution of functional traits that confer post-fire recovery within 

a number of fire-prone ecosystems of Australia, answering the following research questions: 

 

Main research question: 

What is the relationship between the distribution of resprouting vegetation with fire regimes and 

climate across different Australian ecosystems? 

  

Sub-questions: 

SQ.1 What are the main determinants of the prevalence of resprouting taxa within plant 

communities? 

SQ.2 What are the main determinants of resprouter type occurrence within plant communities? 

How do the identified relationships for resprouter types differ from each other? 

  

 

Regarding the above research questions, the following hypotheses have been formulated: 

H.1 There will be a strong, negative correlation between average fire interval and percentage of 

resprouters relative to all vegetation. 

H.2 Percentage of resprouter species will peak at intermediate levels of rainfall. 

H.3 Rainfall and fire frequency will be the main determinants of resprouter type. 

H.4 Spatial distribution of resprouters will be heavily associated with bioclimatic variables that are 

linked to fire regimes.  
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1.1 Theoretical Design 

Analysis of the spatial distribution of vegetation relative to environmental gradients underlies 

ecological research. Statistical modelling such as generalized linear models (GLMs), enables the 

quantification of these relationships, providing insight into the effects of environmental variation on 

plant communities. GLMs rely on assumed relationships between independent variables and 

dependant variables of a range of distribution-types, enabling non-linear relationships to be derived 

(Guisan, Edwards & Hastie, 2002). Within ecology this does not provide objectivity, but, as defined by 

Burnham & Anderson (2002), an “approximation of the explainable information in the empirical data, 

in the context of the data being a sample from some well-defined population or process”. Due to the 

complex nature of ecosystems and the array of interacting biotic and abiotic variables, overfitting of 

variables to models is regarded as a common issue that results in issues with inference (Burnham & 

Anderson ,2002). Further issues arise from the relationships between predictor variables, if one 

influences another, then deduction of their relationships with the response variable becomes an issue. 

As a result of the underlying issues, simplicity is a desired characteristic in models with focus given to 

fewer, uncorrelated predictor variables that best explain the response variable. This leads to the 

process of model selection, the identification of the most holistic yet least overfitted model. In the 

present study, Akaike’s Information Criterion (AIC) was used as an evaluative metric that estimates 

the distance or information lost when using any one model compared to that of the true defining 

mechanism, represented by the log-likelihood function at its maximum point. This theoretical distance 

does, however, increase with the addition of parameters as a consequence of the added “noise”. 

Lower AIC values therefore represent the models closeness to “reality”, models are however ranked 

relative to the set rather than the absolute AIC value (Akaike, 1974; Burnham & Anderson, 2002).  
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3 Methodology  

3.1 Study Sites 

The study focuses on four regions of Australia: northern Australia, southwestern Australia, the Sydney 

Basin and southern New South Wales (Figure 2).  The northern Australia sites (Figure 2a) climate is 

characterised as seasonal summer-wet. Plot data was obtained in Eucalyptus savanna woodlands and 

sandstone heaths of three national parks (Kakadu, Litchfield and Nitmiluk) located in the high rainfall 

zone (>1000 mm per year). The southwestern Australia site, (Figure 2b), with a seasonal winter-wet 

climate is dominated by Eucalyptus & Corymbia forest in the southern-most part of studied area with 

Banksia woodland in intermediate sites and shrublands in the northern sites. The Sydney Basin and 

southern New South Wales (Figure 2c) climates are described as non-seasonal and are occupied by 

coastal and hinterland mountain regions respectively. The predominant vegetation in these areas is 

open forest & woodland, often with a shrubby understory and with patches of heaths, shrublands and 

rainforest occurring throughout.  

 

3.2 Data Description 

Due to the nature of the vegetation data collection in that it spanned a number of years, climate and 

fire data was collected for the maximum number of years in which all types of environmental data 

was available in order to form a shared climatology for 1997-1999. The argument for this is that the 

predominantly woody resprouting woody species are reflective of a number of years of environmental 

influence. Furthermore, large regional differences in climates can still be represented. 
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Figure 2. Australia gridded to 0.25o grid cells, coloured cells indicate cells in which sites are located; 

colour scale indicates mean annual rainfall of years 1997-1999 (mm/year-1). Sites of vegetation 

collection are a) northern site b) southwestern site c) Sydney basin & southern New South Wales 
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b. c. 
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Figure 3. Site maps of Australia showing percentage of resprouting plants exhibiting the a) 

underground b) epicormic c) apical and d) basal/collar resprouting traits 

 

3.2.1 Vegetation 

All vegetation data was previously collected in a combination of separate studies. At the northern sites 

(Edwards et al. 2003), vegetation sampling was conducted from 1995 finishing in 2000. The south-

western site data (Enright et al. 2011; Pekin et al. 2011) was collected in spring 2007-2009. The south-

eastern site, including the Sydney Basin and southern New South Wales was collected in a series of 

studies, amassed by Bradstock & Kenny (2003). Data was compiled and kindly provided by Professor 

Sandy Harrison, Reading University). The vegetation data is therefore collected over a number of years 

and with a range of sampling techniques described below. 

In the northern sites, the basal area of live adult trees diameter at breast height (DBH) ³ 5cm 

was assessed in 20 × 40 m plots. The densities of small woody understorey plants (<50 cm height) 
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including juvenile trees and true shrubs were assessed in two 40 × 1 m transects within each tree plot. 

The densities of medium (0.5—2 m height) and large (>2 m height) woody understorey plants were 

assessed in one 40 × 10 m sub-plot within each tree plot. A total of 137 and 20 plots were made for 

the savanna woodland and sandstone heath plots respectively. In the southwestern sites all vascular 

plants were measured within 10 x 10m plots in the northern sites and 30 x 30m plots in the southern 

forest during Spring 2007-2009. In the Sydney Basin and southern New South Wales sites cover 

abundance scores for all vascular plants was collected from 0.1 ha plots. 

Species abundance data was collected for each site with each species being classed as either 

a non-resprouter, seeder (soil or aerial) or resprouter (apical, epicormic, basal/collar & underground) 

according to Clarke et al. 2013. Due to the varying methodology of the vegetation data collection, 

percentage cover for species were estimated and abundance scores calculated to allow comparison. 

This was done by taking the mid-point of Braun-Blanquet percentage ranges that had been used to 

calculate abundance for the southwestern sites.  

For sites where Braun-Blanquet percentage ranges had not been taken, a simple linear 

relationship between basal area of vegetation and cover was used to estimate percentage cover. All 

percentage covers were then converted to Braun-Blanquet scores so abundance could be derived 

(Table 1). For plots where individual size classes were counted, total cover was estimated using 

allometric relationships between individual heights and cover. Percentage cover was then converted 

to Braun-Blanquet values to calculate abundance scores. 

 

Table 1. Braun-Blanquet cover abundance scale conversion to midpoint range cover 

 

3.2.2 Climate Data 

Mean annual temperature (MAT) and mean annual rainfall (MAR) were derived from monthly rainfall 

and temperature, obtained at 0.05o resolution from the TERN AusCover, Australian Gridded Climate 

Dataset (Tern AusCover, 2020) covering the years 1997-1999. Data was upscaled to 0.25o resolution 

in order for comparison with other data sets and to allow for a coarser overview of variables.   

Braun-Blanquet Scale Range of Cover (%) Midpoint of Range Cover (%) 
5 75-100 87.5 
4 50-75 62.5 
3 25-75 37.5 
2 5-25 15 
1 <5 numerous individuals 2.5 
+ <5 few individuals 0.1 
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Monthly rainfall and temperature data was then used to derive precipitation during the month of 

maximum rainfall (Pwet), precipitation during month of minimum rainfall (Pdry), temperature during 

month of maximum rainfall (Twet) and temperature during month of minimum rainfall (Tdry). Dry 

Months (DM) were calculated as months in which rainfall was below 5mm/d-1. All variables were 

calculated individually by year and then averaged (mean) over the 4 years in order to form a 

climatology. 

Average rainfall seasonality index (SI) describes the variability of monthly rainfall throughout 

the year and was derived from monthly rainfall data based on Walsh & Lawler (1981).  The SI ranges 

from 0 (indicating equal distribution of rainfall throughout the year) to 1.83 (indicating total yearly 

rainfall occurs in one year). Monthly rainfall measurement from 1997-1999 were used to produce the 

rainfall seasonality index (SI). In order to quantify the index the sum of the absolute deviations of 

mean monthly rainfall (𝑥n) from the mean annual rainfall per year (𝑅) summarized as: 

𝑆𝐼 = 	
1
𝑅
	 ( )	𝑥* 	−	𝑅/12)
*./0

*./

 

Growing Days (GD), defined as days in which temperatures exceeded 10oC and potential 

evapotranspiration (PET) data was obtained at 0.01o resolution from the eMAST-R-Package collection 

(Xu et al. 2015). Data was then upscaled to 0.25o resolution in order to fit into the aforementioned 

climatology. 

3.2.3 Fire Data 

Monthly burned area data (BA) was obtained at 0.25o resolution from the Global Fire Emissions 

Database (GFED4) (Giglio, Randerson & van de Werf, 2013). Data spanned from 1997-1999, from this 

a monthly mean was formed for each 0.25o cell. Months of burn (MOB) was calculated by summing 

the months in which the burned area fraction was >1%, this was then averaged across the years to 

form a single unit per 0.25o cell. Average fire interval (AFI) was then calculated by means of inverting 

the annual average burned area fraction: 

𝐴𝐹𝐼 =
1
𝐵𝐴 

 

 

Infinity values were avoided by means of converting any infinity AFI values to 9999.9 years which was 

therefore the maximum AFI value. Due to issues regarding the magnitude of AFI, the log10AFI was 

subsequently used in all data analysis (D’onofrio et al. 2018).  

 Fire radiative power (FRP) data was obtained from the moderate resolution imaging 

spectroradiometer (MODIS 6) collection (MODIS 6 Collection, 2020).  
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Fire seasonal concentration (FSC) describes the variability and spread of fire throughout a year 

through means of a vector between 0-1, a value of 1 indicating yearly fire concentrated within a single 

month, 0 being equally distributed throughout the year. FSC was calculated according to Kelley et al. 

(2012), 

For each month (t), a vector was formed, the length of which corresponds to the magnitude 

of BA, with the direction (𝜃6) corresponding to month t. January is thus set to an angle of zero. 

𝜃6 = 2𝜋(𝑡 − 1)/12 

 

Following on from this, a mean vector L was calculated through averaging of the real and imaginary 

parts of the 12 vectors (xt): 

𝐿; = 	∑ 𝑥6cos	(𝜃6)6     &   𝐿@ = 	∑ 𝑥6sin	(𝜃6)6  

 

The FSC is then formulated by dividing the length of the mean vector by the annual value: 

𝐹𝑆𝐶 =	
D𝐿;0	 +	𝐿@0

∑ 𝑥66
 

 

Table 2.  Vegetation, fire and bioclimatic variables, units and definitions 

Variable Abbreviation 

Percentage of Species with Resprouting Trait (%) RSpPer 
Percentage of Resprouters with Apical Trait (%) Apical 
Percentage of Resprouters with Epicormic Trait (%) Epicormic 
Percentage of Resprouters with Basal/Collar Trait (%) Basal/Collar 
Percentage of Resprouters with Underground Trait (%) Underground 
Logarithmic Average Fire Interval Log10AFI 
Months of Burn  MOB 
Fire Radiative Power FRP 
Fire Seasonal Concentration FSC 
Mean annual rainfall (mm/y-1) MAR 
Precipitation during the month of maximum rainfall (mm) Pwet 
Precipitation during the month of minimum rainfall (mm) Pdry 
Temperature during the month of maximum rainfall (oC) Twet 
Temperature during the month of minimum rainfall (oC) Tdry 
Average rainfall seasonality index SI 
Dry Months  DM 
Growing Days (d-1) GD 
Potential Evapotranspiration (mm/month-1) PET 
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3.3 Data Analysis 

Vegetation data was averaged within each cell to produce mean values for resprouter species richness 

relative to total species richness (RSpPer(%)). Vegetation had been classed by resprouter traits:  apical, 

epicormic, basal/collar and underground. It should be noted that in some cases, resprouting 

vegetation was not able to be properly classified to the species level in the field and therefore has no 

functional trait listed other than resprouter or non-resprouter. Conversely, species exhibiting multiple 

resprouting traits are therefore represented in multiple categories of functional trait. Percentage of 

resprouting plants with each subsequent trait was then calculated. Data was then averaged (mean) 

into each 0.25o cell to provide an average. Due to the spatially uneven sampling nature of the data, 

focus was given to the proportions of taxa relative to the total number of taxa (Russel-Smith et al. 

2012). When focusing on specific resprouting traits, these were expressed as proportional values of 

general resprouting taxa.  

In order to assess collinearity between input variables beforehand, r values (Pearson’s 

Correlation Coefficients) were calculated between each variable (Table 2). A threshold value of 

correlation coefficients was set at >0.7, in which variables were either exempted from the GLMs or 

not used together in the same GLM (Booth, 1994; Dormann et al. 2013). Relationships between 

climate, fire and vegetation data was analysed using generalized linear models (GLMs). Independent 

variables were fitted with a binomial distribution using a logit function. All predictor variables were 

standardized through subtraction of the mean and dividing by the standard deviation so as each 

variables coefficient magnitude was representative of its significance in the model by means of being 

on the same scale (D’Onofrio et al. 2019). Variables were included individually up to the third order 

and in various combinations. Model selection was based on the Akaike information criterion (AIC), 

which was used to calculate the DAIC, defined as the difference between the AIC of any one model 

and the value of the model with the lowest AIC score (Akaike, 1972; Burnham & Anderson, 2002; 

D’Onofrio et al. 2019). Goodness of fit was determined by means of the explained deviance (pseudo-

R2, hereby referred to as R2) the equivalent to explained variance in least squared models (Guisan & 

Zimmermann, 2000).  

All data analysis was carried out using Matlab R2017a, models were fit using the Matlab 

function ‘fitglm’ and Pearson’s correlation coefficients generated using ‘corrplot’. 

 

 

 

 



16 

 

4 Results 

As a result of the collinearity assessment, a number of variables were exempted from use in the GLMs, 

due to high degrees of collinearity with other variables (Appendix 1). Variables that were used in the 

GLMs (Table 3) that showed a Pearson’s correlation coefficient of >0.7 e.g. SI & MAR, were not used 

in the same GLM.  

Table 3. Pearson’s r coefficients between independent variables: Mean annual rainfall (MAR), 
precipitation in the driest month (PDry), temperature in the driest month (TDry), dry months (DM), 
seasonality index (SI), potential evapotranspiration (PET), growing days (GD), log10 average fire 
interval, months of burn (MOB), fires seasonal concentration (FSC). Bold numbers indicate r values that 
were >0.7 
 MAR PDry TDry DM SI PET GD Log10 AFI MOB FSC 
MAR 1.00          
PDM -0.39 1.00         
TDM 0.58 -0.88 1.00        
DM 0.73 -0.82 0.85 1.00       
SI 0.71 -0.87 0.89 0.96 1.00      
PET 0.47 -0.78 0.76 0.80 0.79 1.00     
GD 0.69 -0.84 0.89 0.93 0.93 0.93 1.00    
Log10 AFI -0.65 0.59 -0.71 -0.75 -0.74 -0.65 -0.79 1.00   
MOB 0.50 -0.11 0.18 0.40 0.30 0.31 0.41 -0.56 1.00  
FSC 0.16 0.30 -0.28 -0.06 -0.17 -0.07 -0.04 -0.25 0.39 1.00 

4.1 Resprouter Species Percentage 

The main determinant in the acceptable models (Table 4) was MAR, with MAR alone proving to be the 

best model (R2 = 0.34) based on its relative AIC value. Inclusion of other variables resulted in reduced 

R2 values in all but one of the models. Addition of log10AFI improved the explained deviance by 0.059 

at the cost of a higher relative AIC value (Figure 4). A full list of the GLMs can be found in Appendix 2. 

 
Table 4. Best GLMs (DAIC < 2) for resprouter species percentage (RSpPer) and resprouter percentage 
cover (RPer). Predictors are MAR, logarithmic average fire interval (log10(AFI)), rain seasonality 
index (SI), dry months (DM), potential evapotranspiration (PE) and temperature in the driest month 
(TDryMonth) 

Response variable:  Resprouter Species Percentage 
Best model R2 DAIC 
Logit(RSpPer) = 1.403 + 0.437 MAR 0.34 0.00 
Logit(RSpPer) = 1.376 - 0.307 log10AFI 0.18 1.67 
Logit(RSpPer) = 1.378 + 0.320 SI 0.18 1.73 
Logit(RSpPer) = 1.376 + 0.308 DM 0.16 1.93 
Logit(RSpPer) = 1.405 + 0.390 MAR - 0.074 log10 0.40 1.93 
Logit(RSpPer) = 1.443  + 0.442 MAR - 0.042 MAR2 0.34 1.96 
Logit(RSpPer) = 1.403 + 0.442 MAR - 0.014 PE 0.39 2.00 
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4.2 Resprouting Traits 

Due to extremely high explained deviance values, and the fact that all the best GLMs for all traits had 

only log10AFI at an AIC low enough for all other variables to be excluded, log10AFI was excluded from 

the range of accepted GLMs. Best GLMs (Table 5) included either MAR or SI. Explained deviance for 

all GLMs appeared to be particularly high for those in which rainfall seasonality index was used. 

Furthermore, due to collinearity (Table 3), seasonality index and mean annual rainfall were not used 

in the same GLM. 

 

 

 

Figure 4. Resprouter species (%) as a function of mean annual rainfall (mm/year-1). Continuous 

line is the best fit model between resprouter species and MAR. Colors indicate the log10 average 

fire interval, warmer colors indicate longer average fire intervals 
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Table 5. Best models (DAIC = 0) for percentage of resprouting plants with the resprouting traits: apical, 

epicormic, basal/collar and underground 

Resprouting Trait Best Model R2 

Apical Logit(Apical) = -3.87 + 0.76 MAR 0.43 
Epicormic Logit(Epicormic) = -1.84 + 0.76 SI + 0.74 SI 0.91 
Basal/Collar Logit(Basal/Collar) = +1.2 + 0.97 SI 0.76 
Underground Logit(Underground) = -0.7 + 0.46 MAR 0.52 

 

4.2.1 Apical Resprouters 
The best GLM for apical resprouters contained just MAR (Figure 5) showing a positive relationship 

with an explained deviance of (R2 = 0.43). Among the other candidate GLMs (Table 6), all other single 

variables were included, however, none had higher explained deviance. A full list of the GLMs is can 

be found in Appendix 3. 

 

Table 6. Best GLMs (DAIC<2) for percentage of resprouters displaying apical resprouting traits 

Predictor Variables        
x1 x2 x3 x4 Coef 

Intercept 
Coef 
x1 

Coef 
x2 

Coef 
x3 

Coef 
x4 

DAIC R2 
Dev 

MAR / / / -3.87 0.76 / / / 0.00 0.43 
Tdry / / / -3.76 0.63 / / / 0.58 0.30 
SI / / / -3.74 0.56 / / / 0.74 0.27 
GD / / / -3.72 0.53 / / / 0.87 0.24 
Pdry / / / -3.72 -0.57 / / / 0.94 0.23 
PET / / / -3.66 0.43 / / / 1.40 0.13 
MOB / / / -3.61 0.25 / / / 1.82 0.04 
FRP / / / -3.60 -0.26 / / / 1.88 0.03 
MAR MAR / / -3.95 0.66 0.10 / / 1.97 0.43 
FSC / / / -3.58 -0.08 / / / 1.98 0.00 
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4.2.2 Epicormic Resprouters 

Best models (Table 7) regarding the epicormic resprouting trait all included either SI or GD. The best 

model contained SI through a parabolic fit, explaining 91% of deviance. What can be observed from 

Figure 6 is that there appears to be grouping of the variables predominantly in SI ranges 0.5-0.7 and 

0.95-1.1 with little in between which may be explained by large spatial differences.  A complete list of 

GLMs can be found in Appendix 4. 

 

Table 7. Best GLMs (DAIC<2) for percentage of resprouters displaying epicormic resprouting traits 

Predictor Variables        
x1 x2 x3 x4 Coef 

Intercept 
Coef 
x1 

Coef 
x2 

Coef 
x3 

Coef 
x4 

DAIC R2 
Dev 

SI SI / / -1.84 0.76 0.75 / / 0.00 0.91 
SI / / / -1.14 1.44 / / / 0.48 0.86 
GD GD / / -1.80 0.74 0.73 / / 1.28 0.88 

Figure 5. Percentage of resprouters with the apical resprouting trait as a function of 

mean annual rainfall (mm/y-1) , red line indicating best model fit 



20 

 

 

 

 

4.2.3 Basal/Collar Resprouters 

The best GLMs using basal/collar resprouters as a dependent variable was SI which identified a 

positive relationship, explaining 76% of deviance (Figure 7). Other potential GLMs (Table 8) included 

GD, Tdry, SI and potential evapotranspiration (PET) all of which explained similar amounts of deviance. 

 

Table 8. Best GLMs (DAIC<2) for percentage of resprouters displaying basal/collar resprouting traits 

Predictor Variables        
x1 x2 x3 x4 Coef 

Intercept 
Coef 
x1 

Coef 
x2 

Coef 
x3 

Coef 
x4 

DAIC R2 
Dev 

SI / / / 1.20 0.97 / / / 0.00 0.76 
GD / / / 1.18 0.94 / / / 0.50 0.74 
Tdry / / / 1.18 0.89 / / / 0.52 0.74 
Tdry Tdry / / 0.94 0.81 0.28 / / 1.83 0.77 
SI SI / / 1.07 0.89 0.14 / / 1.88 0.77 
PET PET / / 0.90 0.94 0.32 / / 1.92 0.77 

 

Figure 6. Percentage of resprouters displaying the epicormic resprouting trait as a function of 

rainfall seasonality index, red line indicating best model fit 
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4.2.4 Underground Resprouting Trait 

The best GLM for percentage of resprouters with the underground resprouting trait was with solely 

MAR (Figure 8), showing a positive relationship and explaining 52% of deviance.  Other variables in 

the potential GLMs included SI & GD. Inclusion of GD in the GLM with MAR only resulted in a minor 

increase in explained deviance (R2 = 0.56) 

 

 

 

 

 

 

 

 

Figure 7. Percentage of resprouters displaying the basal/collar resprouting trait as a function of 

rainfall seasonality index, red line indicating best model fit  
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Table 9. Best GLMs (DAIC<2) for percentage of resprouters displaying underground resprouting traits 

Predictor Variables        
x1 x2 x3 x4 Coef Intercept Coef 

x1 
Coef 
x2 

Coef 
x3 

Coef 
x4 

DAIC R2 
Dev 

MAR / / / -0.70 0.46 / / / 0.00 0.52 
SI / / / -0.69 0.43 0.00 / / 0.27 0.49 
GD GD / / -1.14 0.02 0.44 / / 0.93 0.61 
GD / / / -0.69 0.40 / / / 1.06 0.42 
GD MAR / / -0.70 0.18 0.33 / / 1.52 0.56 
SI SI / / -1.01 0.16 0.31 / / 1.55 0.55 
MAR MAR / / -0.73 0.44 0.03 / / 1.97 0.52 

 

 

 

 
  

Figure 8. Percentage of resprouters displaying the underground resprouting trait as a function of 

mean annual rainfall (mm/y-1), red line indicating best model fit  
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5 Discussion 

5.1 What are the main determinants of the prevalence of resprouting taxa within 

plant communities? 

Regarding the general percentage of resprouters relative to present species (RSpPer), MAR proved to 

be the best predictor. Log10AFI by itself and Log10AFI alongside MAR were also presented in the suite 

of suitable models to explain relative resprouter richness. The Pearson’s correlation coefficient 

identified a moderate degree of negative correlation between Log10AFI and MAR (r = -0.68) this was 

determined as marginally below the critical value ( >0.7 or < -0.7). The model that used both variables 

did however present the highest explained deviance (R2 = 0.40). With regards to the literature, 

resprouters are commonly shown to be more prevalent in more productive and fire-prone conditions 

(Russel-Smith et al. 2012; Clarke et al. 2013; ) and in modelling studies has been shown to be an 

important factor in maintaining productivity in fire prone areas (Kelley & Harrison, 2014). The results 

of this study are therefore in general agreement with the surrounding literature. The life-history trade-

offs regarding reduced reproductivity and increased allocation to NSCs in resprouters relative to non-

resprouters generally make them better suited to areas of high productivity and fire frequency (Clarke 

et al. 2010; Clarke et al. 2013; Zeppel et al. 2014).  

 

5.2 What are the main determinants of resprouter type occurrence within plant 

communities? 

The decision to exclude log10AFI from acceptable GLMs was made due to the extremely low AIC values 

that it provided (Appendix 3-6). As a result of this and using a criterion of DAIC<2, log10AFI appeared 

as the only acceptable variable in all the GLMs, this resulted in a lack of inference from the GLMs. 

Furthermore, log10AFI had high collinearity with a number of variables including Tdry, Dry Months, 

rainfall seasonality index and growing days so its exclusion allowed for relationships to be analysed 

for these variables as well which are hypothesised to have an effect on resprouter trait distribution.  

 The apical resprouting trait was the least represented in the resprouting trait species 

percentages with a range of 0-20.5%. This is likely due to their relatively small representation amongst 

resprouters (Clarke et al. 2013). The analysis shows that, MAR was the main determinant of the 

distribution of apical resprouters highlighting that increased MAR results in more species with the 

apical trait within plant communities. The results fit in with the surrounding literature in that they are 

represented by a smaller species percentage in areas of higher rainfall (Figure 1), (Clarke et al. 2013).  
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Epicormic resprouters like apical resprouters are aerial but are more widely represented by species, 

explaining the percentage ranges of epicormic resprouter (0-95%). The GLM results indicated that 

rainfall seasonality index (SI) was the best fir for the model along with the basal/collar resprouters. 

Both GLMs showed a large deal of grouping due to the associated SI values likely due to the lack of a 

spatial gradient of seasonality index associated with the disparity in latitudes of the study sites. 

Inferences are therefore difficult to make for both epicormic and basal/collar resprouters. 

 MAR was in the best model for underground resprouters suggesting that in areas of increased 

MAR, underground resprouting is more common. Underground resprouters occur in a wide range of 

MAR (Clarke et al. 2013). 

 

5.3 Limitations 

The vegetation data was collected over a large spatial gradient with stark differences in latitude, the 

most northern site was located at 12.15o S and the southernmost at 37.5o S, resulting in a range of 

25.35o. Due to the nature of data collection a large degree of latitudinal separation exists, particularly 

between the northern sites and those of the Sydney Basin and southwestern Australia. This lack of 

data at intermediate sites results in a stark contrast in variables between the different areas and 

therefore a lack of a gradient from which geospatial differences can be derived. This is particularly 

highlighted in the results for epicormic and basal/collar resprouting traits (Figures 6 & 7). The best 

models for epicormic and basal/resprouter explained 91% and 76% of deviance respectively, yet from 

observation of the plots (Figures 6 & 7) a polarity in the explanatory values is obvious which is likely 

to have influenced the results. This highlights the need for a more holistic gradient of sampling or 

alternatively, separate analysis of individual areas.  

Data collection of vegetation data took place over a number of years from a series of studies, 

due to this the decision was made to investigate spatial changes in resprouting vegetation as opposed 

to temporal. For this a climatology was derived from 1997-1999. Due to this, the climatology of each 

area is not precisely up to date with that of the vegetation, this may have an impact on the results of 

the GLMs as missing climate and particularly fire data in the years before vegetation sampling may 

have had a significant impact on species composition in some areas due to recent disturbance events 

such as drought or fire. Previous studies that involved sampling of vegetation in fire-prone ecosystems 

have used last fire interval as an indicator as opposed to average fire interval in assessing resprouter 

mortality, highlighting significant differences in lignotuber mortality at timescale ranges of 1-40 years 

(Enright et al. 2011). This implies that disturbance events at short timescales can have significant 

effects on community assemblages. 
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It is acknowledged that a number of variables influence community composition at much smaller 

scales than 0.25o, geological, hydrological and topographical heterogeneity results in a mosaic of 

community compositions within each cell (Russel-Smith, Edwards & price, 2012). The study, however, 

aims to assess the interactions of vegetation with climate and fire at a much broader scale, deriving 

patterns across Australia in which effects of climate and fire are more apparent. 
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Appendices 

 
 MAR TMax Pdry Pwet Tdry Twet DM SI RR RCPer RSpPer BA LogAFI AFI MOB FSC 

MAR 1.00 0.73 -0.42 0.97 0.60 0.70 0.76 0.70 -0.38 0.22 0.17 0.11 0.05 -0.01 -0.07 -0.13 

TMax 0.73 1.00 -0.87 0.84 0.93 0.94 0.94 0.96 -0.67 0.36 0.33 0.30 0.26 0.23 0.20 0.16 

Pdry -0.42 -0.87 1.00 -0.59 -0.88 -0.78 -0.82 -0.90 0.72 -0.34 -0.33 -0.32 -0.30 -0.29 -0.28 -0.27 

Pwet 0.97 0.84 -0.59 1.00 0.69 0.81 0.87 0.82 -0.53 0.26 0.21 0.15 0.10 0.04 -0.01 -0.07 

Tdry 0.60 0.93 -0.88 0.69 1.00 0.77 0.85 0.94 -0.60 0.37 0.35 0.33 0.31 0.29 0.27 0.25 

Twet 0.70 0.94 -0.78 0.81 0.77 1.00 0.89 0.83 -0.67 0.31 0.27 0.23 0.20 0.16 0.12 0.08 

DM 0.76 0.94 -0.82 0.87 0.85 0.89 1.00 0.95 -0.76 0.32 0.28 0.24 0.20 0.16 0.12 0.08 

SI 0.70 0.96 -0.90 0.82 0.94 0.83 0.95 1.00 -0.71 0.36 0.33 0.30 0.27 0.24 0.21 0.18 

RR -0.38 -0.67 0.72 -0.53 -0.60 -0.67 -0.76 -0.71 1.00 -0.10 -0.06 -0.02 0.02 0.06 0.10 0.14 

RCPer 0.58 0.35 -0.14 0.55 0.25 0.33 0.40 0.36 -0.05 0.16 0.13 0.11 0.08 0.05 0.03 0.00 

RSpPer 0.60 0.42 -0.16 0.59 0.31 0.42 0.41 0.39 -0.03 0.19 0.17 0.14 0.11 0.08 0.06 0.03 

BA 0.66 0.84 -0.68 0.77 0.71 0.82 0.87 0.82 -0.64 0.29 0.25 0.22 0.18 0.15 0.11 0.08 

LogAFI -0.68 -0.76 0.54 -0.71 -0.67 -0.73 -0.72 -0.71 0.31 -0.33 -0.30 -0.27 -0.25 -0.22 -0.19 -0.17 

AFI -0.28 -0.31 0.20 -0.27 -0.32 -0.30 -0.23 -0.27 0.00 -0.17 -0.16 -0.15 -0.15 -0.14 -0.13 -0.13 

MOB 0.62 0.55 -0.29 0.63 0.38 0.61 0.59 0.46 -0.29 0.18 0.15 0.11 0.07 0.04 0.00 -0.04 

FSC 0.31 0.08 0.16 0.24 -0.09 0.21 0.08 -0.04 0.17 0.03 0.01 -0.01 -0.02 -0.04 -0.06 -0.08 

 

Appendix 1 – Pearson’s correlation coefficient for all variables 
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Predictor Variables        

x1 x2 x3 x4 Coef Intercept Coef x1 Coef x2 Coef x3 Coef x4 DAIC R2 Deviance 

MAR / / / 1.40 0.44 / / / 0.00 0.340 

log10AFI / / / 1.38 -0.31 / / / 1.67 0.183 

log10AFI log10AFI2 / / 1.38 -0.31 / / / 1.67 0.183 

RS / / / 1.38 0.32 / / / 1.73 0.178 

DM / / / 1.38 0.31 / / / 1.93 0.159 

MAR log10AFI / / 1.40 0.39 -0.07 / / 1.93 0.399 

MAR MAR2 / / 1.44 0.44 -0.04 / / 1.96 0.343 

MAR PET / / 1.40 0.44 -0.01 / / 2.00 0.387 

MAR GD / / 1.40 0.43 0.01 / / 2.00 0.386 

MAR TDry / / 1.40 0.44 -0.01 / / 2.00 0.386 

GD / / / 1.37 0.29 / / / 2.03 0.149 

TDry / / / 1.36 0.22 / / / 2.69 0.088 

MOB / / / 1.36 0.19 / / / 2.78 0.079 

PET / / / 1.36 0.16 / / / 3.07 0.052 

PDry / / / 1.35 -0.10 / / / 3.40 0.021 

FSC / / / 1.35 0.05 / / / 3.56 0.006 

log10AFI PET / / 1.38 -0.33 -0.04 / / 3.65 0.214 

log10AFI FSC / / 1.38 -0.31 -0.02 / / 3.66 0.211 

GD GD2 / / 1.19 0.14 0.19 / / 3.70 0.180 

RS RS2 / / 1.38 -0.02 0.34 / / 3.72 0.191 

DM DM2 / / 1.64 0.61 -0.26 / / 3.74 0.177 

MOB GD / / 1.38 0.11 0.25 / / 3.80 0.180 

PET PET2 / / 1.21 0.20 0.17 / / 3.82 0.169 

PDry PDry2 / / 1.05 -0.04 0.33 / / 3.82 0.169 

MAR log10AFI PET / 1.40 0.39 -0.10 -0.06 / 3.89 0.405 

MAR log10AFI TDry / 1.40 0.40 -0.10 -0.05 / 3.90 0.403 

MAR log10AFI RS / 1.41 0.39 -0.08 -0.03 / 3.91 0.402 

MAR MAR2 MAR3 / 1.44 0.44 -0.04 0.00 / 3.96 0.343 

MOB MOB2 / / 1.25 0.32 0.12 / / 4.29 0.125 

PDry PDry2 PDry3 / 0.77 0.73 0.54 -0.42 / 4.42 0.300 

TDry TDry2 / / 1.20 0.13 0.17 / / 4.44 0.111 

MOB PET / / 1.36 0.16 0.12 / / 4.52 0.103 

MOB FS / / 1.36 0.21 -0.03 / / 4.76 0.088 

DM DM2 DM3 / 1.07 0.43 0.81 -0.42 / 5.40 0.208 

TDry TDry2 TDry3 / 1.01 -0.60 0.13 0.47 / 5.49 0.200 

FS FS2 / / 1.32 0.09 0.03 / / 5.53 0.009 

PET PET2 PET3 / 1.11 -0.01 0.28 0.07 / 5.64 0.186 

log10AFI FSC TDry / 1.38 -0.34 -0.04 -0.03 / 5.65 0.213 

log10AFI log10AFI2 log10AFI3 / 1.38 -0.31 0.00 0.00 / 5.67 0.183 

RS RS2 RS3 / 1.41 0.52 0.08 -0.13 / 5.67 0.183 

GD GD2 GD3 / 1.16 0.00 0.15 0.08 / 5.68 0.182 

MAR log10AFI FS TDry 1.40 0.42 -0.18 -0.11 -0.15 5.77 0.422 

MAR log10AFI TDry MOB 1.40 0.43 -0.16 -0.10 -0.08 5.84 0.411 
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MOB MOB2 MOB3 / 1.32 0.47 -0.03 -0.09 / 6.02 0.150 

FSC FSC2 FSC3 / 1.39 0.24 -0.13 -0.08 / 7.25 0.035 

Appendix 2 – GLMs for resprouter species percentage (%) using predictor variables: mean annual rainfall (MAR), 

precipitation in the driest month (PDry), temperature in the driest month (TDry), dry months (DM), seasonality 

index (SI), potential evapotranspiration (PET), growing days (GD), log10 average fire interval, months of burn 

(MOB), fires seasonal concentration (FSC) . DAIC indicates the AIC values relative to the value of the best GLM, 

explained deviance is explained through the R2 Deviance. 
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Appendix 2 – GLMs for percentage of resprouters that are apical, using predictor variables: mean annual rainfall 

(MAR), precipitation in the driest month (PDry), temperature in the driest month (TDry), dry months (DM), 

seasonality index (SI), potential evapotranspiration (PET), growing days (GD), log10 average fire interval, months 

of burn (MOB), fires seasonal concentration (FSC) and fire radiative power (FRP) . DAIC indicates the AIC values 

relative to the value of the best GLM, explained deviance is explained through the R2 Deviance. 

 

 

Predictor 

Variables 

   Apical       

x1 x2 x3 x4 Coef 

Intercept 

Coef x1 Coef x2 Coef x3 Coef x4 AIC Diff R2 Dev 

logAFI    -2.20 -0.58 0.00 0.00 0.00 0.00 0.16 

logAFI TDry   -5.10 0.53 1.06 0.00 0.00 1.16 0.39 

logAFI MAR   -4.08 0.08 0.76 0.00 0.00 1.18 0.38 

logAFI GD   -4.68 0.36 0.79 0.00 0.00 1.51 0.29 

logAFI RS   -4.06 0.14 0.60 0.00 0.00 1.71 0.24 

logAFI logAFI   -2.60 -0.19 -0.08 0.00 0.00 1.99 0.17 

MAR    -3.87 0.76 0.00 0.00 0.00 2.24 0.43 

Tdry    -3.76 0.63 0.00 0.00 0.00 2.83 0.30 

logAFI MAR Tdry  -5.61 0.70 0.52 0.74 0.00 2.87 0.46 

RS    -3.74 0.56 0.00 0.00 0.00 2.99 0.27 

logAFI MAR GD  -5.02 0.45 0.64 0.38 0.00 3.09 0.41 

GD    -3.72 0.53 0.00 0.00 0.00 3.12 0.24 

logAFI MAR RS  -4.63 0.30 0.70 0.23 0.00 3.14 0.39 

Pdry    -3.72 -0.57 0.00 0.00 0.00 3.18 0.23 

logAFI GD RS  -4.56 0.30 1.20 -0.45 0.00 3.48 0.30 

PET    -3.66 0.43 0.00 0.00 0.00 3.64 0.13 

MOB    -3.61 0.25 0.00 0.00 0.00 4.06 0.04 

FRP    -3.60 -0.26 0.00 0.00 0.00 4.12 0.03 

MAR MAR   -3.95 0.66 0.10 0.00 0.00 4.21 0.43 

FSC    -3.58 -0.08 0.00 0.00 0.00 4.23 0.00 

RS MAR   -3.86 0.06 0.71 0.00 0.00 4.24 0.43 

GD MAR   -3.86 0.01 0.75 0.00 0.00 4.24 0.43 

Tdry Tdry   -3.66 0.71 -0.11 0.00 0.00 4.82 0.30 

RS TDry   -3.76 0.11 0.53 0.00 0.00 4.82 0.30 

GD TDry   -3.76 0.01 0.62 0.00 0.00 4.83 0.30 

RS RS   -3.54 0.78 -0.22 0.00 0.00 4.95 0.28 

RS GD   -3.74 0.54 0.02 0.00 0.00 4.99 0.27 

Pdry Pdry   -4.04 -0.44 0.30 0.00 0.00 5.02 0.26 

GD GD   -3.96 0.30 0.24 0.00 0.00 5.06 0.25 

logAFI GD RS Tdry -4.77 0.41 -0.30 -0.21 0.00 5.09 0.40 

PET PET   -3.97 0.39 0.25 0.00 0.00 5.14 0.23 

MOB MOB   -3.92 0.43 0.27 0.00 0.00 5.67 0.12 

FRP FRP   -3.63 -0.34 0.03 0.00 0.00 6.10 0.03 

FSC FSC   -3.55 -0.11 -0.03 0.00 0.00 6.22 0.01 
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Predictor 

Variables 

   Epicormic       

x1 x2 x3 x4 Coef Intercept Coef x1 Coef x2 Coef x3 Coef x4 AIC Diff R2 Dev 

logAFI GD   -0.69 -0.17 1.35 0.00 0.00 0.00 0.93 

logAFI RS   -0.34 -0.27 1.27 0.00 0.00 0.10 0.93 

logAFI GD RS  -0.74 -0.13 0.74 0.65 0.00 1.60 0.94 

logAFI TDry   0.06 -0.42 1.25 0.00 0.00 1.79 0.89 

logAFI MAR GD  -0.71 -0.16 0.04 1.32 0.00 1.99 0.93 

logAFI MAR RS  -0.37 -0.26 0.06 1.24 0.00 2.09 0.93 

logAFI GD RS Tdry -0.75 -0.12 0.60 0.66 0.00 3.58 0.94 

logAFI logAFI   8.68 -6.74 1.05 0.00 0.00 3.65 0.86 

logAFI MAR Tdry  -0.04 -0.39 0.14 1.17 0.00 3.68 0.90 

logAFI MAR   2.26 -1.37 0.55 0.00 0.00 5.99 0.81 

logAFI    3.49 -1.84 0.00 0.00 0.00 6.64 0.75 

RS RS   -1.84 0.76 0.75 0.00 0.00 10.95 0.91 

RS    -1.14 1.44 0.00 0.00 0.00 11.43 0.86 

RS MAR   -1.15 1.16 0.40 0.00 0.00 11.87 0.89 

GD GD   -1.80 0.74 0.73 0.00 0.00 12.23 0.88 

RS GD   -1.13 1.04 0.43 0.00 0.00 12.88 0.87 

RS TDry   -1.14 1.68 -0.26 0.00 0.00 13.19 0.87 

GD MAR   -1.13 1.07 0.50 0.00 0.00 13.30 0.86 

PET PET   -1.65 1.22 0.54 0.00 0.00 13.65 0.86 

GD    -1.12 1.41 0.00 0.00 0.00 13.68 0.82 

GD TDry   -1.12 1.36 0.06 0.00 0.00 15.67 0.82 

Pdry Pdry   -1.83 -1.04 0.72 0.00 0.00 18.90 0.77 

Tdry    -1.11 1.29 0.00 0.00 0.00 21.70 0.68 

Pdry    -1.15 -1.33 0.00 0.00 0.00 22.80 0.66 

PET    -1.15 1.39 0.00 0.00 0.00 23.22 0.65 

Tdry Tdry   -1.34 1.11 0.26 0.00 0.00 23.32 0.69 

MAR    -1.14 1.30 0.00 0.00 0.00 24.45 0.63 

MAR MAR   -1.26 1.18 0.17 0.00 0.00 26.03 0.64 

MOB MOB   -1.41 1.03 0.43 0.00 0.00 44.23 0.32 

MOB    -0.99 0.81 0.00 0.00 0.00 47.95 0.22 

FSC FSC   -0.60 -0.32 -0.29 0.00 0.00 58.85 0.06 

FRP    -0.86 -0.19 0.00 0.00 0.00 59.49 0.01 

FSC    -0.85 0.00 0.00 0.00 0.00 60.21 0.00 

FRP FRP   -0.85 -0.15 -0.01 0.00 0.00 61.46 0.01 

 

Appendix 3 – GLMs for percentage of resprouters that are epicormic, using predictor variables: mean annual 

rainfall (MAR), precipitation in the driest month (PDry), temperature in the driest month (TDry), dry months 

(DM), seasonality index (SI), potential evapotranspiration (PET), growing days (GD), log10 average fire interval, 

months of burn (MOB), fires seasonal concentration (FSC) and fire radiative power (FRP) . DAIC indicates the AIC 

values relative to the value of the best GLM, explained deviance is explained through the R2 Deviance. 
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Predictor 

Variables 

   Basal/Collar       

x1 x2 x3 x4 Coef 

Intercept 

Coef x1 Coef x2 Coef x3 Coef x4 AIC Diff R2 Dev 

logAFI GD   1.31 -0.07 0.88 0.00 0.00 0.00 0.81 

logAFI RS   1.56 -0.15 0.86 0.00 0.00 0.07 0.81 

logAFI logAFI   8.13 -5.00 0.81 0.00 0.00 0.65 0.77 

logAFI TDry   1.76 -0.23 0.73 0.00 0.00 1.38 0.72 

logAFI GD RS  1.31 -0.05 0.50 0.45 0.00 1.67 0.83 

logAFI MAR GD  1.30 -0.07 0.01 0.87 0.00 2.00 0.81 

logAFI MAR RS  1.63 -0.17 -0.09 0.91 0.00 2.01 0.81 

logAFI    3.14 -0.83 0.00 0.00 0.00 2.46 0.53 

logAFI MAR Tdry  1.68 -0.21 0.08 0.70 0.00 3.33 0.73 

logAFI GD RS Tdry 1.31 -0.06 0.51 0.45 0.00 3.67 0.83 

logAFI MAR   2.60 -0.62 0.27 0.00 0.00 3.82 0.57 

RS    1.20 0.97 0.00 0.00 0.00 14.00 0.76 

GD    1.18 0.94 0.00 0.00 0.00 14.49 0.74 

Tdry    1.18 0.89 0.00 0.00 0.00 14.52 0.74 

RS TDry   1.22 0.60 0.42 0.00 0.00 15.20 0.80 

RS GD   1.22 0.58 0.46 0.00 0.00 15.40 0.79 

GD TDry   1.20 0.53 0.45 0.00 0.00 15.59 0.78 

RS MAR   1.20 1.07 -0.13 0.00 0.00 15.82 0.77 

Tdry Tdry   0.94 0.81 0.28 0.00 0.00 15.82 0.77 

RS RS   1.07 0.89 0.14 0.00 0.00 15.88 0.77 

PET PET   0.90 0.94 0.32 0.00 0.00 15.92 0.77 

Pdry Pdry   0.77 -0.79 0.43 0.00 0.00 16.01 0.76 

GD GD   1.08 0.88 0.13 0.00 0.00 16.35 0.75 

GD MAR   1.18 0.94 0.00 0.00 0.00 16.49 0.74 

Pdry    1.11 -0.73 0.00 0.00 0.00 17.32 0.59 

PET    1.07 0.66 0.00 0.00 0.00 19.02 0.50 

MAR MAR   0.76 0.46 0.33 0.00 0.00 23.41 0.38 

MAR    1.03 0.48 0.00 0.00 0.00 23.63 0.27 

MOB MOB   0.64 0.49 0.40 0.00 0.00 25.13 0.29 

FSC    0.99 -0.18 0.00 0.00 0.00 28.06 0.04 

MOB    0.99 0.14 0.00 0.00 0.00 28.29 0.03 

FRP    0.98 -0.07 0.00 0.00 0.00 28.71 0.01 

FSC FSC   0.97 -0.16 0.02 0.00 0.00 30.04 0.04 

FRP FRP   0.99 -0.04 -0.01 0.00 0.00 30.69 0.01 

Appendix 4 – GLMs for percentage of resprouters that are basal/collar, using predictor variables: mean annual 

rainfall (MAR), precipitation in the driest month (PDry), temperature in the driest month (TDry), dry months 

(DM), seasonality index (SI), potential evapotranspiration (PET), growing days (GD), log10 average fire interval, 

months of burn (MOB), fires seasonal concentration (FSC) and fire radiative power (FRP) . DAIC indicates the AIC 

values relative to the value of the best GLM, explained deviance is explained through the R2 Deviance. 
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Predictor Variables        

x1 x2 x3 x4 Coef 

Intercept 

Coef x1 Coef x2 Coef x3 Coef x4 AIC Diff R2 Dev 

logAFI    0.63 -0.52 0.00 0.00 0.00 0.00 0.46 

logAFI RS   -0.58 -0.04 0.43 0.00 0.00 0.49 0.63 

logAFI TDry   -0.47 -0.07 0.44 0.00 0.00 0.69 0.60 

logAFI GD   -0.55 -0.06 0.41 0.00 0.00 0.76 0.60 

logAFI MAR   0.02 -0.29 0.27 0.00 0.00 1.14 0.55 

logAFI logAFI   2.11 -1.90 0.29 0.00 0.00 1.35 0.53 

logAFI MAR RS  -0.67 -0.01 0.13 0.36 0.00 2.34 0.64 

logAFI MAR Tdry  -0.60 -0.03 0.15 0.35 0.00 2.47 0.63 

logAFI GD RS  -0.60 -0.03 0.04 0.40 0.00 2.49 0.63 

logAFI MAR GD  -0.65 -0.02 0.16 0.32 0.00 2.54 0.62 

logAFI GD RS Tdry -0.64 -0.01 -0.21 0.41 0.00 4.35 0.64 

MAR    -0.70 0.46 0.00 0.00 0.00 16.25 0.52 

RS    -0.69 0.43 0.00 0.00 0.00 16.52 0.49 

GD GD   -1.14 0.02 0.44 0.00 0.00 17.19 0.61 

GD    -0.69 0.40 0.00 0.00 0.00 17.31 0.42 

RS MAR   -0.70 0.24 0.28 0.00 0.00 17.47 0.58 

GD MAR   -0.70 0.18 0.33 0.00 0.00 17.77 0.56 

RS RS   -1.01 0.16 0.31 0.00 0.00 17.80 0.55 

MAR MAR   -0.73 0.44 0.03 0.00 0.00 18.22 0.52 

RS TDry   -0.70 0.65 -0.24 0.00 0.00 18.23 0.52 

Tdry    -0.68 0.35 0.00 0.00 0.00 18.47 0.32 

RS GD   -0.69 0.45 -0.02 0.00 0.00 18.52 0.49 

PET PET   -0.87 0.34 0.18 0.00 0.00 18.81 0.47 

Pdry    -0.68 -0.34 0.00 0.00 0.00 18.85 0.29 

PET    -0.68 0.34 0.00 0.00 0.00 18.86 0.29 

GD TDry   -0.69 0.46 -0.07 0.00 0.00 19.29 0.42 

Pdry Pdry   -0.93 -0.28 0.25 0.00 0.00 19.64 0.39 

Tdry Tdry   -0.94 0.21 0.26 0.00 0.00 19.77 0.38 

MOB    -0.68 0.25 0.00 0.00 0.00 20.51 0.14 

FRP    -0.67 -0.06 0.00 0.00 0.00 22.04 0.01 

FSC    -0.67 0.03 0.00 0.00 0.00 22.10 0.00 

MOB MOB   -0.77 0.31 0.09 0.00 0.00 22.18 0.17 

FSC FSC   -0.53 -0.14 -0.14 0.00 0.00 23.10 0.09 

FRP FRP   -0.68 -0.11 0.01 0.00 0.00 23.99 0.01 

Appendix 6 – GLMs for percentage of resprouters that are underground, using predictor variables: mean annual 

rainfall (MAR), precipitation in the driest month (PDry), temperature in the driest month (TDry), dry months 

(DM), seasonality index (SI), potential evapotranspiration (PET), growing days (GD), log10 average fire interval, 

months of burn (MOB), fires seasonal concentration (FSC) and fire radiative power (FRP) . DAIC indicates the AIC 

values relative to the value of the best GLM, explained deviance is explained through the R2 Deviance. 

 

 


