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Abstract 
 

The aim of this study is to investigate whether susceptibility to audio stimuli can be               
predicted during autonomous driving. Previous studies have shown that the          
susceptibility to unexpected audio stimuli is intrinsically related to attentional resources           
being allocated during driving. Namely, the more attentiveness is required during           
driving, the less susceptible a driver is to unexpected audio stimuli. In our study, we               
trained Hidden Markov Models in attempt to find hidden state(s), which could be             
indicative of the susceptibility to potential audio signals played in autonomous cars.            
Retrieved transitional probabilities of hidden states showed that transitions between          
states are very unlikely and the driver tends to remain at the same state for some time.                 
On the other hand, by considering only 100ms before stimulus onset of data, could not               
provide us significant information in regards to attentiveness or expected susceptibility           
to the audio stimuli, as the most frequent state’s mean value was around zero. 
Additionally, by comparing before and after stimulus onset states, no significant results            
could be retrieved. Finally, we discuss multiple reasons which might have contributed to             
inability of identifying the potential information in EEG signal using HMMs. 
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Introduction 
 

Levels of automation in cars 
 
The idea of a vehicle being able to drive without human intervention has been described by                
John McCarthy back in 1970 when he first introduced an “automatic chauffeur”. Since then              
much has been accomplished towards realisation of autonomously driving cars. And, although            
there is still no fully autonomous car in massive production, the society of automobile engineers               
(SAE,2014) proposed to distinguish six levels of automation. These levels differ in how much              
control the human driver has of the dynamic driving tasks, compared to the autonomous              
systems. Specifically, levels 0-2 are the most commonly encountered on the roads in which              
there is either no assistance at all (level 0), either cruise control or lane centering is incorporated                 
(level 1), or both are incorporated (level 2). The levels 3-5 which fall under the name automated                 
driving systems are capable of either conditional autonomous driving such as driving without             
human intervention in specific road context (e.g., within a speed limit or specific road types;               
level 3), driving without human intervention in wider road conditions (level 4), or driving              
autonomously anywhere (level 5).  
 
At the time of this study, the automation level in cars which are massively produced, can vary                 
from level 1 to level 3. It is important to stress at this point that in level 3 automation, the vehicle                     
can keep track of its environment through different types of sensors, but the driver remains               
essential due to the restrictions this level entails. Ergo, the driver is expected to have her                
attention focused on the road to take over the control of the vehicle whenever it is indicated by                  
the autonomous system. Some form of communication from the car to the driver to alert the                
driver of such a transition of control is then needed. 
 
One of the options to accomplish communication with the driver can be an audio signal. Audio                
alerts might be prefered over other types of communication, because of their “omni presence”              
compared to visual signals which can be easily overlooked. Furthermore, as the automation             
level gradually rises, drivers might tend to engage into other activities inside an autonomous car               
(de Winter et al., 2014), rather than constantly keep supervising the road conditions. The              
problem which arises then is, if the driver is not able to hear the audio signal then she will not                    
act on it. This in turn, can cause safety-critical situation which can lead to an accident. It is                  
therefore essential that we understand under what conditions drivers are more or less             
susceptible to audio alerts in (autonomous) driving conditions. Therefore, the question that we             
tried to answer is whether driver’s susceptibility to unexpected stimuli such as vehicle sounds              
can be predicted. 
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Attentional Measurements 
 
Susceptibility to stimuli is intrinsically related to attention and essentially expresses the degree             
of ease for a subject to direct the concentration towards various types of stimuli. In the context                 
of voluntary and involuntary allocation of attention (Theeuwes, 2010), two types of attentions             
have been defined which account to goal-directed attention and stimulus-driven attention           
(Corbetta et al., 2002). For example, during driving, the attention allocated by the driver to keep                
the speed limit can be characterised as goal-directed voluntary attention. The driver intentionally             
directs his attention towards the speed indicator to check the speed. This process is also known                
as top-down stimuli selection. On the other hand, mental response to a sound within the car is                 
stimulus-directed attention and is involuntary. There is a different mechanism responsible for            
reacting to unexpected stimuli and directing the attention towards them. This mechanism is also              
known as bottom-up stimuli selection which can also interrupt the top-down processes.            
According to Corbetta et al.(2002) these two mechanisms can cooperate with each other and              
comprise the attentional system.  
 
In an attempt to measure attention, various methods have been employed which can be divided               
into three categories: behavioral, subjective experience, and physiological metrics. In particular,           
the behavioural measures of attention require speeded response to stimuli without           
accuracy-speed trade-off (Johnson et al., 2004). To behavioral measurements belong such           
metrics as the reaction time to stimuli (e.g., Shulman et al., 1979; Sperling et al., 1980;                
Prinzmetal et al., 2005) and accuracy in a task. The subjective experience metrics such as               
Nasa TLX questionnaire (Hart & Staveland, 1988), assess various aspects of the physical and              
mental demands of a task or workload. Finally, physiological methods measure attention from             
neurophysiological point of view. Such metrics are for example eye tracking (e.g., Theeuwes,             
1991;Poole et al., 2006; Tsai et al.,2012; Blair et al.,2009), pupil size dilation (e.g.,Hess et               
al.,1960; Kahneman, 1966; Hoeks et al.,1993; Partala et al., 2003), heart rate (e.g., Porges et               
al.,1969; Laumann et al., 2003), skin conductance (e.g., Frith et al.,1983),           
electroencephalography (EEG) (e.g., Anllo-Vento et al.,1998; Monastra et al.,1999;         
Lenartowicz, et al., 2014, van der Heiden et al., submitted), functional magnetic resonance             
imaging (fMRI) (e.g., O'Craven et al.,1997; Coull et al.,1998; Vuilleumier et al., 2001) and              
magnetoencephalography (MEG) (e.g., Downing et al., 2001; Shtyrov et al., 2003).  
 
Not all of the previously discussed measurements can be used to measure human behaviour in               
real-time, in a way that can predict poor performance before it occurs. Namely, traditional              
behavioral measures are not suitable, as by the time the poor performance is detected, it might                
be too late. The subjective experience metrics are typically used in hind-sight and therefore,              
cannot be used in online predictions. Then, we are left with physiological measures. Of these,               
some are useful in car setting. For instance, MEG and fMRI require expensive technical setup               
which is not possible to be incorporated into a car system. For instance, MEG requires               
appropriate magnetic shielding which can prevent any other magnetic field (including Earth’s            
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magnetic field) from intervening with brain’s produced magnetic signals. On the other hand, a              
physiological measurement that can be incorporated into a portable device and be used in              
online predictions, is the EEG method. The EEG represents an unobtrusive method that has              
been used to measure susceptibility to sounds (Debener et. al, 2005; Wester et al., 2008;               
Bulthoff et al.,2016; van der Heiden et al., submitted) before and therefore can be regarded as                
an appropriate option.  
 
 

EEG - a brain imaging technique 
 
EEG represents a noninvasive method to measure amplified voltage changes in           
electromagnetic waves produced by the brain, by placing electrodes on the scalp. Some of the               
most prominent features that EEG exposes is its 3N (Klonowski, 2009) - non-stationary,             
nonlinear and noisy attributes. Namely, non-stationarity expresses the fact that EEG-signal           
changes its statistical characteristics over time. Nonlinearity, on the other hand, is intrinsically             
related to that human brain is a complex system comprised of complicated non-linear             
properties. Finally, EEG is often contaminated by noise, unrelated to cerebral activity. This noise              
can be caused by two types of factors, physiologic and extraphysiologic. Physiological artifacts             
are caused by the body and can be related to ocular, cardiac and other muscle activity. The                 
extraphysiologic artifacts on the other hand, can occur due to equipment instability. For             
instance, electrodes when not applied well on the scalp can cause noise.  
 
Even so, this measure has been extensively used in different scientific fields, due to its high                
temporal resolution and low cost. In the field of cognitive science, there are two approaches to                
use EEG data: ERP component and frequency bands. Both of these techniques have been              
invented in order to solve the problem that EEG represents a combination of conglomerative              
neural activities. This, in turn, makes it extremely difficult to attribute raw EEG signal to               
individual cognitive processes (Luck, 2015). And this is the main reason why raw EEG is hardly                
used in cognitive science. 
 
A frequently used approach in EEG related studies involves frequency-based signal           
transformation which describes the brain’s rhythmic activity. In the frequency-based approach,           
the signal is translated into a number of frequencies and a particular space of frequencies, i.e.                
frequency band, is examined separately. For example, the lowest frequency band, delta band             
lies around 0.5-4Hz, while the highest band, gamma ranges around 36-90 Hz, although usually              
due to filtering of EEG signal it might reach not higher than 50 Hz (Michel,1992). This method                 
has been used in for example the diagnosis of abnormal cerebral activity (Tatum, 2014) and               
also in attempt to describe brain functions (Klimesch,1998).  
 
More directly related to our aim, the frequency-based method has been used by Simon et al.                
(2012) to analyse alpha band power and gamma band power in a driving experiment. They               
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showed that alpha spindles as well as alpha band power are positively correlated with a               
secondary auditory task. The increased occurrence of alpha spindles was assumed to be             
positively correlated to attentional shifts which were required during the experiment. In            
particular, these attentional shifts were interpreted as the process of inhibition of visual             
processing mechanism and increased processing of auditory stimuli. This study also           
demonstrated that different conditions generated different levels of alpha spindles with auditory            
stimuli causing higher activity of alpha spindles compared to visuomotor stimuli. Theta (4-8Hz)             
and alpha (8-13 Hz) oscillations have also been recorded by Yu-Kai Wang et al. (2018) in a                 
driving experiment where the participants had to do mathematical computations as an            
intervention task. 
 
The frequency-based methodology although useful, might impose some restrictions during data           
analysis. Namely, when examining only particular bands, the results are restricted only to that              
bands and all the rest frequencies are usually either discarded or examined apart.             
Consequently, if during frequency-based analysis only some of the available frequencies are            
used, there is a probability to miss valuable information. 
 
Another widely used technique is Event-Related Potential procedure, or ERP. As its name             
implies, ERP is coupled to a particular event (or stimulus) presented during an experiment. In               
particular, in ERP procedure, after occurence of an event (e.g. playing of a sound) EEG activity                
which follows this event, is measured. Typically, the event is repeated in multiple trials. ERP is                
then used to attenuate electromagnetic signals which are not related to a target stimulus or a                
psychological event during an experiment. In particular, to find related to a stimulus or an event                
electromagnetic activity, the signal at time of the stimulus (or the event) is averaged over               
multiple trials and subjects. In this way, the irrelevant information in EEG can be cancelled out (                 
Luck, 2015). 
 
In the context of attentional shifts, one way to manipulate participant’s attention in an              
experiment is to use an oddball paradigm. While performing a task, the subjects are being               
exposed to visual or auditory stimuli, which are either irrelevant to the primary task, or               
unexpected. These oddball stimuli can trigger cognitive processes. For instance, one such            
cognitive process could be the shift of goal-driven attention during primary task such as driving               
to stimulus-driven attention caused by unexpected auditory signals.(Wester et al., 2008; Van der             
Heiden et al, submitted). As these cognitive processes represent electromagnetic activity, they            
can be tracked by EEG and consequently be measured in the ERP procedure.  
 
There are many types of ERP components which have been identified over time. (Luck, 2015).               
In the context of oddball paradigm, concrete ERP components have been discovered. These             
ERP components can be divided based on three-stage model which describes the attentional             
changes caused by unexpected stimuli (Correa-Jaraba et al., 2016). Namely, the first stage             
represents pre-attentive change detection, the second level is the involuntary orientation of            
attention. While the third level accounts to voluntary reorientation of attention. Given these             
stages, ERP component which occurs in the first stage (peaks around 150–250 ms) is called               
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MMN and it is a negative wave which is proposed to reflect a detection mechanism for                
unexpected changes. In the second stage we have a positive ERP component which peaks              
around 300 after stimulus onset and is called P3a, fP3 or novelty P3 component. This               
mechanism represents the involuntary attentional shift towards the unexpected stimulus. Finally,           
the ERP component assigned to the third stage is called RON (peaks around 400–600 ms after                
stimulus onset) and this is also a negative wave which accounts to attentional reorientation              
towards primary task (Escera et al., 2001). 
 
Although widely used, this methods imposes a restriction that is, it can only be used in                
relevance to some external stimuli or cognitive event. It therefore cannot evaluate more             
extended or constant cognitive states. Such extended, constant cognitive state assessment is            
valuable however in the context of autonomous driving where we might want to anticipate              
driver’s fluctuations in attention so as to alert them at the right moment. 
 
 

Bottom-up theory establishment  
 
Most of the studies referred so far used top-down approach: based on a theory, a specific                
prediction is made regarding what to measure, and this theory is tested using hypothesis testing               
procedure. This procedure is probably the most optimal when fine-grained theory is developed.             
For example, in the ERP approach, theory predicts the presence or absence of specific signals               
at specific time intervals in response to an event. This can then be tested. In other words, the                  
value of the top-down approach in what concerns ERP related experiments, is that it can often                
result into refined theory. On the other hand, as only the specific part of the continuous signal is                  
used, it might discard information less relative for theory establishment, which can be proved              
insightful, though.  
 
The standard top-down methods are less useful for a dynamic driving scenario, where             
attentional state is not always tied to a specific event but rather to a continuous phenomenon.                
Moreover, the state might fluctuate over time exactly due to various environmental stimuli, such              
as sounds. Therefore, we suspect that in attempt to predict the attentional fluctuations of a               
driver in a real driving context, the estimations should be based on continuous driving rather               
than tied to an event. A general state detection method can be achieved in theory using                
bottom-up, or data-driven methods. These do not start necessarily with theoretical assumptions,            
but instead start with the raw data . 
 
Recently, the bottom-up methodology has been used in attempt to refine theoretical            
frameworks. For example, the full potential of the bottom-up approach was revealed in studies              
by Anderson et al. (2014, 2015) where to analyse EEG recordings during memory retrieval              
experiment, they used the bottom-up approach. To discover different stages that occur during             
memory retrieval process in the brain, they applied multivariate pattern analysis in combination             
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with Hidden Semi Markov Models (HSMM). These cognitive stages were represented by short             
sinusoidal peaks in the continuous EEG signal. In particular, the number as well as the duration                
of those peaks were estimated by using HSMMs. After identifying the peaks which represented              
neural signatures of stages as well as their durations, the authors were able to further refine                
theoretical background of memory retrieval process. In particular, they applied the acquired            
knowledge to enrich modules in the ACT-R (Adaptive Control of Thought-Rational) cognitive            
framework with information concerning not only time and the number of cognitive processes, but              
also the actual function of each cognitive process. 
 
Furthermore, concerning the oddball sound paradigm during driving, a bottom-up approach has            
been used in combination with ERPs in a driving scenario by Bulthoff et al. (2016) where they                 
used mass univariate analysis to reveal changes in ERP components before and after audio              
stimuli onset. Next, the results were found to be in agreement with a three stage destruction                
framework within which those are further discussed. 
 
All the previous studies showcased the power of bottom-up approaches in EEG studies. But,              
they also raise a question whether such methods could be successfully applied on raw EEG               
data in a dynamic experimental setup when no theoretical framework exists to describe             
cognitive processes during autonomous driving. 
 
Next, I would like to introduce the backbone study this work will use to investigate the bottom-up                 
approach on. The understanding of the experimental setup and the main findings will help us in                
understanding the data. Once we know what type of data we possess, it is more easy to decide                  
on the actual algorithm. 
 
 

Study of susceptibility to audio signals during autonomous driving 
 
In this study, I used data which were obtained in the study performed by Van der Heiden et al.                   
(submitted), in which a three-stimulus-oddball paradigm was applied in a driving set up.             
Subjects had to perform two types of driving in a driving simulator, namely manual driving, or                
autonomous driving. This was also compared with a baseline, stationary condition. In parallel,             
the oddball task was conducted. For this task, three types of sounds were played: standard               
sound (a regular tone of 1000Hz), deviant sounds (a slightly higher tone of 1100 Hz) and novel                 
sound (unique environmental sounds). These tones were randomly played with 80% being            
standard tones, while deviant and novel sounds were equally represented 10% of the time. The               
interval between two consecutive sounds was 2.34 seconds.  
 
Two groups of participants were used. One group (half of the participants) was the “active               
group”, that had to press a button when they heard a deviant sounds. The other half was the                  
“passive group” and did not need to press a button. The idea behind this manipulation was that                 
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for the active group the sounds were more relevant, and thus they might pay more attention to                 
them and be more susceptible to novel sounds (Wester et al., 2008; Kenemans, 2015).              
Additionally, the requested response to the deviant sounds has been shown to increase the              
brain response to unexpected novel sounds during the involuntary orientation of attention            
stage.(Wester et al., 2008) 
  
The main findings of the study showed that the susceptibility to different tones depends on the                
task’s attentional requirements. In particular, the amplitudes of ERP response on the difference             
wave between novel and standard tones were estimated by using FCz electrode for time              
interval of 325 - 375 ms after stimulus onset. The estimated ERPs showed significant              
differences across driving conditions. Namely, it has been shown that the amplitude of ERP              
component during manual driving is lower compared to the one acquired during autonomous             
driving and even more reduced compared to stationary condition. Therefore, it has been shown              
that during autonomous driving attentional requirements are less and therefore the ERP            
response is higher to unexpected stimulus, compared to active driving.  
 
The finding of study of susceptibility to audio signals revealed an experimental setup which is               
also suitable for the current study, as within this oddball paradigm fluctuations of susceptibility to               
audio signals can be measured. However, it also raises a question whether such fluctuations              
can be predicted before the stimulus onset using a bottom-up approach. In other words, in this                
study we would like to investigate whether the cognitive load during manual or autonomous              
driving can be identified not only as a comparison of ERP amplitudes but also during continuous                
driving act.  

 
 
 

HMMs in EEG analysis 
 
In order to be able to answer the previous question we need to select an algorithm which is                  
appropriate for the type of data we have, in combination with the question we are trying to                 
answer. In particular, we are interested in exploring feasibility of raw EEG in predicting the               
susceptibility to audio stimuli during driving. An EEG signal represents temporal data and at the               
same time, we do not possess explicit information about the subject’s susceptibility in each data               
point. This observation leads us to favour so called unsupervised machine learning (ML)             
algorithms which can handle temporal data. Unsupervised ML algorithms are algorithms which            
are able to identify common features in order to cluster data into groups (i.e. clustering               
algorithms) without requiring annotated data. The main restriction which is imposed then is that              
such algorithms usually cannot handle the temporal dependencies in the data.  
 
From the bottom-up studies we have seen that HSMMs performed well with unlabeled EEG              
data (Anderson et al., 2016), and this could be a good option in our case. But, as we are not                    
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interested in identifying the duration of different levels of susceptibility but merely in presence of               
such, we have decided to use a simpler version, which is HMMs. What’s more, HMMs have                
been applied in a study by Solhjoo et al. (2005), where they could successfully classify the data                 
from imagery movement task. Next, I would like to introduce the reader to HMMs. 

 
 

 

Discrete Hidden Markov Models 
 
HMMs represent a temporal statistical model of sequential data. Statistical models imply that             
data can be parameterized by some random process, such as a Gaussian processes, which in               
turn can be well approximated by a model (Rabiner,1989). The term temporal, on the other               
hand implies that the data is treated as a sequence where the order of data observations in time                  
is important. 
 
In particular, HMMs try to statistically describe a latent variable which produces outputs that can               
be observed. For example, in speech processing, the sound of speech is considered a              
sequence of observations. If we assume that a language is a stochastic process which can be                
modelled statistically, then hidden states can represent parts of speech such as phonemes,             
syllables or words.In the case of EEG signal modelling, the latent variable could represent a               
cognitive processes which produce the EEG signal.  
 
Additionally, EEG is a signal data which means that the data points are temporal sequences               
and HMM can handle the dependencies that exist in temporal data. Namely, the first order               
HMMs make the assumption that the probability P of a latent state q which produced an                
observation O at time t can be predicted only based on the state at time t-1 (Markov                 
assumption). This dependency of latent states q is captured in equation 1: 

 
P( qt | q 1...q t-1 ) = P(qt | qt-1)   (1) 

 
Further, the assumption that HMMs make is that the current observation ot can be emitted only                
by current state qt and does not depend on any other state or other observations (Output                
independence). This is captured in equation 2: 

 
P (ot | q 1...q t...,qT , o1 … ot …,o T) = P ( ot | qt )              (2) 

 
In our case, there is a discrete latent variable Q which may represent the susceptibility to an                 
audio signal. This variable can take on multiple values, i.e., a number of states. And, in perfect                 
case each state would represent a different level of susceptibility to a sound during driving. A                
simple representation of this process with only two states of high and low susceptibility is               
depicted in Figure 1 below. 
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Figure 1. An ideal case of  a HMM process with two states of susceptibility to audio signal producing 
observations o at different time points.. The model transitions from a “high” (H) susceptibility state to the 
“low” (L) state and stays there  until t+3 time point, where it transitions back to the “high” state. Absence 
of an arrow represents an assumption of conditional independence. 
 
 
From the previous, we see that generally there are two distributions, described by equation 1               
and equation 2 above, which we try to approximate using a HMM. Because we use Gaussian                
distribution the equation 2 is then equal to estimating N(𝛍q,𝛔q), while equation 1 then represents               
a multinomial distribution with parameters Pqq’. In other words, multinomial distribution is used to              
describe the probabilities to transition from one hidden state to another(or stay at the same               
state) while Gaussian distribution is used to describe each state’s observations.  
 
These two distributions are estimated during learning problem (Rabiner, 1989). Namely, given            
just the observed data as in our case, the learning problem is to estimate the model parameters                 
𝜆 =(𝝅,A,B) such that,  

 
                                                      (3)rgmax P (O | λ)a  

 
where 𝝅 is the initial state distribution, A is the state transition probability distribution, and B is                 
the observation symbol probability distribution. 
 
 
Next, given the model parameters and the observed sequences, it is possible to solve decoding               
problem (Rabiner, 1989), during which the sequential data O is translated into the most likely               
sequence of the states, X. 

rgmax P (X  | O, λ)a   (4) 
 

 
In this study, we first used the forward-backward algorithm (Baum et al., 1970; Rabiner,1989) to               
solve the learning problem, and get the states transitional probabilities as well as the              
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estimations such as mean and standard deviation.More information about this process can be             
found in Appendix.  
Finally, we performed the decoding of the sequences by using Viterbi algorithm (Forney, 1973)              
to obtain the sequences of states which correspond to the sequences of observations. Due to               
output independence assumption (equation 2), each time point in our data is assigned a              
corresponding state in the Viterbi’s output. 
 
 

Research Question 
 
The question that is investigated here is whether it is possible to identify latent states of the                 
driver’s attention using Hidden Markov Models, which can help us in predicting driver’s             
susceptibility to unexpected auditory stimuli.  
By identifying differences in hidden states across driving conditions, we would be able to predict               
driver’s susceptibility to potential auditory stimuli.  

 

Methods 
 

Data preprocessing 
 
We used data from the experiment by Van der Heiden et al. (Submitted). This data contained                
EEG recordings of 18 participants. Out of the 64 electrodes that were recorded in the study, the                 
FCz electrode was selected for analysis, as Van der Heiden et al. (submitted) used this               
electrode for computation of the fP3 component. According to Friedman et al. (2001), frontal              
and central scalp area is the area where reaction to novelty sounds is earlier and therefore is                 
usually preferred over other scalp sites. As FCz electrode is located in that area, we preferred to                 
use it out of 64 available electrodes in data. 
 
The data were first offline preprocessed using MNE v0.16.1 python package. To attenuate             
artifacts from EEG signal, the data were subject to filtering, re-reference as well as EOG               
rejection and baseline correction. In particular, a 50 Hz notch filter was applied to remove noise                
from the mains. Next, a 0.16-0.3 Hz band-pass filter was used to remove heart potentials. Data                
were then referenced to the average of two mastoid electrodes. Finally, baseline correction was              
applied for the interval 100 ms before the stimulus onset to remove drifts and shifts in the data                  
that is caused by skin hydration and static charges in electrodes.  
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The experimenters noticed a delay of 50ms when logging the stimulus onset. To overcome this               
problem, when extracting events 50 ms were added to the time which corresponded to the               
stimulus onset. The data were epoched based on events found in recorded EEG signal (i.e.,               
registration of the onset of a sound). Each epoch started at 100 ms before stimulus onset and                 
stopped 2 seconds after it. Epochs contaminated with blinks were automatically removed in             
MNE package by using EOG electrodes to locate and reject this type of artifacts. As a last step,                  
the data were down sampled from 2048 Hz to 200 Hz. The down sampling was performed by                 
attenuating every Nth observation. Consequently, the time step in our data is equal to 5ms. 
 
 

Training and Model selection 
 
In order to identify the sequences of hidden states in the decoding problem, it is necessary to                 
define the model. A HMM is defined by its parameters , i.e., the transitional          A, , )λ = ( B π     
probabilities A, the emission probabilities B and the initial state distribution. Therefore, we             
needed to start from the learning problem, which solution is estimated during the training of               
HMM. As an input, we used our epoched data and a number of states. The training algorithm                 
which is the most frequently used is the forward-backward algorithm or as it is alternatively               
known, Baum-Welch algorithm (Baum, 1972). This algorithm represents a special version of            
Expectation Maximization algorithm (Dempster et al., 1977) which iteratively during training           
improves the estimated probabilities A and B until it reaches a local optimum.  
 
Sometimes, the number of states in HMM can be implied from the theoretical background. In our                
case though the number of states cannot be easily predefined. Therefore, we trained and tested               
the models for maximum 8 states.(Anderson et al., 2015)  
 
To select the best model, LOOCV (leave one out cross validation) was performed during which               
the model was trained leaving one of the sequences out. When training the model, we are                
interested in its performance on unseen data, therefore, by leaving one sequence out and              
training on the rest, we can estimate how well the model generalizes. The measure used to                
compare different models is log-likelihood which is the log probability of test data being              
generated by the model λ (where λ are estimated using training data) .  
 

log (P(Otest| λ)) (5) 
 
Usually in ML the model with the highest log-likelihood is preferred, because then it is expected                
to generalize on unseen data. In case of HMM, it is not that straightforward. As we deal with a                   
generative model, the log-likelihood will tend to increase as we keep increasing the number of               
states. If we take into consideration only the test log-likelihood, we can end up with the number                 
of states equal to the number of different values of EEG signal. As the number of states rises,                  
the model’s log-likelihood rises as well, but if we continue increasing the number of states at                
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one point the model will get extremely tight to the training data and will not generalize on the                  
new data sequences. Consequently, to select the optimal number of states, we take into              
consideration the mean improvement of the log-likelihood as the number of states increases.             
This heuristics was also applied by Anderson et al.(2016) To compute the mean improvement              
over the number of states, we first compute the mean log-likelihood for each model. 

 

Mean log-likelihood  =  log (P (Oi | )) / N                      (6)∑
N

i=1
λ  

Then, the mean improvement is estimated by subtracting the score of model with j+1 states               
from the score of model with j states, i.e.,   
 

          Mean log-likelihood j +1 -  Mean log-likelihoodj                                       (7) 
 

As can be seen at Figure 2, the mean log-likelihood improvement from state 2 to state 3 is the                   
highest, therefore we propose to start from model with 3 state.  

 
 

 
Figure 2: Mean scores improvement over number of states.The highest improvement is observed in 3-state model  
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Results 

3-state model analysis 
 
After training the 3-state HMM, we obtained the transitional probability matrix A as well as the                
parameters 𝜇,𝜎 of each of three states. From the state transition probability matrix (Table 1A)               
we deduced that each state is more likely to prolong, or in other words the probability for a state                   
to transition to the same state is 0.97 (see values on main diagonal on Table 1A).Next, the                 
probability of the model to transition from state 0 to state 1 or to state 2 is the same and equal to                      
0.2. On the other hand, for the model to transition from state 1 to state 0 as well as from state 2                      
to state 0 is equal to 0.3. Finally, we did not observe the transitions from state 1 to state 2 as                     
well as from state 2 to state 1. 
 
Next, given the values in Table 1B we see that state 0 represents values in EEG signal which                  
are around zero(M=-0.27𝜇V and SD=7𝜇V), state 1 represents high negative values (M=-26.7𝜇V            
and SD = 17𝜇V) and state 2 represents high positive values (M=-25.8𝜇V and SD=18𝜇V). 
 
Following that we were interested in predicting the susceptibility to auditory stimuli, we used 100               
ms (which accounted to 20 data points in downsampled data) before stimulus onset to retrieve               
states probabilities. We did that by applying Viterbi algorithm (Forney, 1973) on each data              
sequence containing only 100ms before each stimulus onset. After obtaining the states, we             
were able to estimate the probability of each state to occur in each of three driving conditions.  
 
As we can see,(Table 1C ) state 0 is the most frequent state in each driving condition with                  
probability to occur being around 0.76. On the other hand, states 1 and 2 are significantly less                 
frequent in every driving condition, with probabilities around 0.11 and 0.13 accordingly. 

 
state
s 

0 1 2 

0 0.97 0.02 0.02 

1 0.03 0.97 0.00 

2 0.03 0.00 0.97 

                 A 

 
states Mean SD 

0 -0.3 7 

1 -26.7 17 

2 25.8 18 

                    B 

 
states drivin

g 
auton

omous 
station

ary 

0 0.76 0.76 0.74 

1 0.11 0.11 0.12 

2 0.13 0.13 0.14 

                      C 

Table 1 A. Transitional probabilities from states to states show that there is a strong tendency for each state to                    
prolong. B Mean and SD for each state in 𝞵V. C. Probabilities of each state to occur in each driving condition.  
 
 
In general, we see that the prevailing state for all three conditions to be state 0. This is expected                   
because according to our knowledge about the FCz position, the area is responsive to              
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unexpected stimuli and as we are using data which corresponds to 100 ms before stimuli onset,                
electromagnetic response should be minimized. Additionally, minor differences between the          
states and conditions are observed. These differences, although insignificant, raise the question            
whether by grouping the participants into groups defined by a fP3 component over all trials, can                
provide any significant observations. That is, are there differences in state identification and             
state transition when we separate participants with a relatively large fP3 component from those              
with a lower fP3 component? 
 
 

Results per driving condition and ERP component 
 
We obtained the fP3 components per participant per condition, the values and groups of which               
can be found in Appendix (Table 7). Next, we assigned the participants whose fP3 component               
was higher than the mean fP3 into the high susceptibility group, while the rest were assigned to                 
low susceptibility group. Namely, the mean fP3 value in driving condition was 6𝜇V which divided               
the participants into low driving and high driving groups, with 11 (7 passive, 4 active) and 7 (2                  
passive, 5 active) participants accordingly. In the autonomous condition, the mean fP3 value             
was 8𝜇V which divided 12(7 passive, 3 active) of participants into low autonomous group and 6                
(1 passive, 5 active) into high autonomous group. Finally, in the stationary condition, mean fP3               
value was equal to 10𝜇V which distributed the participants evenly with 9 in the high group (7                 
passive, 2 active) and 9 in the low group (2 passive, 7 active). 
 
Table 2 shows the probabilities of each state based on the high and low susceptibility groups in                 
each driving condition. We do not see significant differences in probabilities inside each of the               
driving conditions. But, if we are to compare the probabilities across conditions, we observe that               
in the driving-high group, the state 0 is approximately 5% more likely to occur than in the                 
stationary high condition, and 2% more likely than in autonomous high condition. At the same               
time, the probability of state 2 (M=25.8𝜇V and SD=18𝜇V ) is higher in the stationary-high group                
compared to driving-high by 2% and as likely as in autonomous high group.  
 

 
 
States 

Driving Autonomous Stationary 

High Low High Low High Low 

0 0.78 0.76 0.73 0.76 0.73 0.74 

1 0.10 0.11 0.12 0.11 0.13 0.12 

2 0.12 0.13 0.14 0.13 0.14 0.14 

Table 2. The probabilities per condition for high and low susceptible groups based on van der Heiden et al. analysis. 
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Discussion fP3 component groups 
 
Although these differences are subtle, we hypothesize that this can be consistent with             
conclusions made by van der Heiden et al., (submitted), namely that the susceptibility to stimuli               
is lower when participants were driving in manual mode compared to autonomous and             
stationary conditions. Specifically, the probability of state 2 is lower in the driving high condition               
compared to autonomous high and even more compared to stationary high condition. On the              
other hand, this is not exactly the case for low susceptibility groups. Namely, we do not observe                 
any difference in likelihood of state 2 between driving low and  autonomous low groups.  
 
 
Further, to investigate whether the slight differences among fP3 component groups persist and             
can be seen in regards to different sounds played afterwards, we computed the probabilities of               
each state to occur in each driving condition per type of sound. In other words, the question is,                  
whether the susceptibility to particular sound types can be predicted before the actual stimulus              
onset. Such that, we hypothesized that attention allocated already to the task actually affects              
the susceptibility to external stimuli.  
 
 
 

Analysis  per sound type and driving condition 
 
Table 3 Left, depicts the probabilities of each of three states to occur before each of the                 
stimulus under different driving conditions. By comparing the probabilities across different           
conditions we can see that the highest difference is observed in novel sounds. In particular,               
state 0 in manual driving is prevailing with 0.80 against 0.73 in stationary in the high group and                  
0.76 in the autonomous group. Overall, the results show that in active driving than in any other,                 
the EEG signal remains  most of the time settled in state 0.  
 
In attempt to estimate the actual susceptibility before the stimulus onset, it is important to               
compute the probabilities of each state in different conditions after the stimulus.  
The time interval between 300 ms and 400 ms was used to estimate the sequences of states                 
per condition, and the exact results can be observed in Table 3, Right. The reason for choosing                 
the particular time interval (300-400 ms) after stimulus onset is because around that time the               
fP3 component increases demonstrating cognitive response to the stimulus (Van der Heiden et             
al., submitted).  
 
On the heatmap (Table 3, Right) we see that the probabilities of states 1 and 2 are now higher.                   
For instance, we see that in the autonomous high group the probability for state 2 to occur after                  
deviant sound is equal to 0.39 while the corresponding probability for before stimulus onset is               
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equal to 0.15. We suspect that this rise of probabilities corresponds to cortical response to the                
unexpected stimuli. In order to investigate further these results, and see whether more concrete              
type of relationship can be identified between the states before and after stimulus, we ran a                
correlation test. 
 
 

  
 

Table 3. Left: The probabilities per condition per stimuli to occur 100 ms before stimulus onset. Right: 
The probabilities per condition per stimuli to occur between 300-400 ms after stimulus onset. 
 

Bivariate correlation test 
 
We ran a Pearson correlation test to see whether there is any relationship between each state’s                
probability before the stimulus and the same state’s probability after the stimulus. For example,              
if we see that the probabilities before the stimulus for state 2 are positively correlated to                
probabilities of the same state after, then this would help us in predicting the susceptibility.               
Consequently, for each variable in the bivariate analysis we would have 18 observations             
(number of sound types x number of driving groups). 
 
Then, given alpha=0.05 and df=16 for a state before stimulus to be correlated with any other                
state after (including itself), the correlation coefficient r should be higher than critical value 0.468               
(Appendix, Table 2). The values of metric r are depicted per test in the table 4, below. 
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states 0 1 2 

r p-value r p-value r p-value 

0 0.486 0.04 -0.36 0.138 -0.23 0.37 

1 -0.36 0.14 0.33 0.18 0.31 0.20 

2 -0.23 0.36 0.31 0.20 0.02 0.93 

 
Table 4. Pearson’s correlation test results. 
 

Bivariate correlation results 
The results from Pearson’s correlation test are presented in the Table 4 below. We see that only                 
the state 0 is significantly correlated with correlation coefficient to be equal to 0.486 and               
p-value=0.04. The rest of the states do not expose significant correlation.  

Discussion 3-state model analysis 
We modelled EEG data using 3-state HMM to investigate whether there was any consistent              
pattern of states’ probabilities for different driving conditions. We used 100 ms before stimulus              
onset to compute the probabilities for each of the three states to occur. The results showed that                 
the most likely state is state 0 before the stimulus onset which fluctuates around -0.38 𝜇V . 
 
The retrieved probabilities were then compared to probabilities of the same states to occur after               
stimulus onset in time interval from 300 ms to 400 ms. We saw a rise in probability for states (1                    
and 2) which represent more higher (negative and positive) values. We assume that the rise of                
likelihood of hidden state 1 (M=-26.7𝜇V and SD = 17𝜇V) can be related to voluntary attentional                
shift back to the primary task and corresponds to negative wave. While the rise of state 2                 
likelihood represents the involuntary orientation of attention which is represented by P3a ERP             
component. And therefore these findings can be regarded consistent with theoretical           
knowledge about the post stimuli responses to unexpected stimuli in the brain (Van der Heiden               
et al., submitted;Wester et al.,2008;Correa-Jaraba et al.,2016).  
 
Finally, we investigated whether there was a correlation between the states before and after              
stimulus onset. We found that state 0 before stimulus onset is positively correlated to itself after                
stimulus onset. While no other state exposed significant correlation and given the fact that              
values of state 0 are around zero, it makes it hard to interpret  the observed correlation.  
 
The previous observation, in combination with that we could not observe any significant             
difference in probabilities across driving conditions and susceptibility groups, could be caused            
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by the model. In particular, we suspect that 3-state model is too general for the fine-grained                
analysis of our data. To overcome possible problem of too general states, we decide to use a                 
model with more states. An arbitrary chosen model for this reason is the model with 5 states. 
 

5-state model analysis 
 
To try to overcome the problem of states representing wide range of values in HMM, we had to                  
use a model with a larger number of states. As there is no particular reason to prefer either of                   
the higher ranked models, I picked randomly a model represented by 5 states.  
 
In Table 5, the results of analysis performed on 5-state model are reported. The main               
observations concerning the 5-state model is that the main state before stimulus onset is the               
state which accounts to values whose mean value is close to zero, and probabilities ranging               
around 45%. Then, we have a pair of states which are almost equally likely to occur, these are                  
states 1 (M=13𝜇V, SD=5𝜇V) and 2 (M= -12𝜇V, SD=5𝜇V) with probabilities ranging around 25%.              
Finally, there are two states which account to outlier values, namely state 3 (M=-38𝜇V,              
SD=18𝜇V) and state 4(M=38𝜇V, SD=21𝜇V), these states are rarely observed in the data and              
range around 0.05% 
 

 

states mean SD 

0 0.1 4 

1 13.1 5 

2 -12.0 5 

3 -37.8 18 

4 38.3 21 

 

 

state driving autonomo
us 

stationary 

0 0.46 0.47 0.45 

1 0.24 0.24 0.25 

2 0.25 0.24 0.25 

3 0.02 0.02 0.03 

4 0.03 0.03 0.03 

 

 

states 0 1 2 3 4 

0 0.90 0.05 0.05 0.00 0.00 

1 0.06 0.92 0.00 0.00 0.02 

2 0.06 0.00 0.92 0.02 0.00 

3 0.00 0.00 0.04 0.96 0.00 

4 0.00 0.04 0.00 0.00 0.96 
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Table 5. Left: mean and standard deviation of each state in 5-state model. Right: The probabilities of each                  
state to occur per driving condition. The state 3 and 4 represent outliers which occur rarely. States 1 and                   
2 are positive and negative clusters of middle values in EEG signal. All the values are in 𝜇V. Down:                   
transitional probabilities matrix shows that although ergodic Hidden Markov model some of the states are               
not connected.  
 
Next, I used susceptibility groups obtained during the 3-model analysis, to investigate the             
probabilities of each state before and after stimuli onset. 

 

Table 6 Left. The states probabilities in 5 states model before the stimulus onset. Right. The states                 
probabilities after stimulus onset. 
 
In Table 6 Left, we see the probabilities of each state to occur before stimulus onset. Here,                 
again we observe the same pattern as before. Most of the signal is settled around zero while the                  
states 1 and 2 are equally distributed across driving groups and sounds. The same applies on                
states with very high and very low values (states 3 and 4).  
 
In Table 6 Right we see the probabilities of each state to occur after stimulus onset from 300 ms                   
to 400 ms. Across all conditions, we see that state 0 (M=0.08𝜇V, SD=4𝜇V) has significantly               
reduced after stimulus onset. This can be again regarded as a result of response to stimulus. At                 
the same time, we see that the rarely occurred states before stimuli, namely state 3 and state 4                  
are now at least doubled across all conditions. We also see that for deviant sound the                
probability of state 4 is the highest. This final observation provides us with the indication that                
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these two states could account to cognitive response to stimuli and more likely state 4 which                
ranges around high positive values. Here, again state 3 probably represents the cognitive             
phenomena which are measured by RON ERP component, while state 4 can represent the              
cortical reaction measured by fP3 component. 
 
As we do not observe any concrete pattern directly in Table 6 Right, next question would be if                  
there is any correlation between the states before and after stimulus onset.  
 
 

Bivariate correlation test 
 
To better investigate whether there is any significant correlation between the probabilities            
before and after stimulus onset, we again ran the bivariate two-tail correlation test.  
 
Given alpha=0.05 and df=16 for a state before stimulus to be correlated with any other state                
after (including itself), the correlation coefficient r should be higher than 0.468. The values of               
metric r are depicted per test in  table 7. 

 
 

states 0 1 2 3 4 

 r p-value r p-value r p-value r p-value r p-value 

0 0.70 0.001 -0.03 0.92 0.27 0.27 -0.83 2.22 -0.28 0.26 

1 -0.03 0.92 0.28 0.25 -0.54 0.021 0.48 0.041 0.39 0.11 

2 0.27 0.27 -0.54 0.02 0.28 0.25 0.43 0.074 -0.11 0.65 

3 -0.83 2.22 0.48 0.04 0.43 0.07 0.40 0.10 0.56 0.02 

4 -0.28 0.26 0.39 0.11 -0.11 0.65 0.56 0.02 -0.31 
  

0.20 

 
Table 7. Pearson correlation for 5-state model. 

 
The results from the correlation test show us that state 0 (r=0.70) is significantly correlated to                
itself, while no other state before stimulus is correlated to itself. But, contrary to the 3-state                
model correlations, here we can observe some more significant correlations. For example, we             
see state 0 being negatively correlated with state 3 (r=-0.827), meaning that when the              
probability of state 0 increases before stimulus, the probability of state 3 linearly decreases and               
the other way around. For this finding to be interesting, this relationship should be present only                
in before-after correlation test. But as further investigations showed, this correlation is present if              
we run the correlation test for these two states in before stimulus(r=-0.48) and after stimulus               
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(r=-0.52). In other words, the state 0 and 3 are correlated before stimulus onset, as well as after                  
stimulus onset. Consequently, this does not represent an interesting finding. 
 
Another correlation (r=0.48) observed, is between the states 1 (M=13𝜇V and SD=5𝜇V) and 3              
(M=-38𝜇V and SD=18𝜇V). In this case the frequencies are positively correlated. What’s more,             
these states are not correlated  before stimulus as well as after stimulus. 
 
Finally, the frequencies of states 3(M=-38𝜇V and SD=18𝜇V) and 4(M=38𝜇V and SD=21𝜇V) are             
positively correlated (r=0.56) while as complementary tests showed no correlation is observed            
between these states in before stimulus (r=-0.42,p-value=-0.07) as well as after stimulus (             
r=0.12,p-value=0.63 ) conditions. 
 
Given these observations, it appears to be not that straightforward to predict the susceptibility to               
stimuli before the actual stimulus onset, although we can pinpoint more fine-grained details of              
our data by using 5-state model. The various reasons for that will be discussed in general                
discussion section.  
 

Fp1 electrode analysis  
 
Driven by the hypothesis that FCz electrode might not be the best candidate for estimation of                
attentional shifts, we performed the same analysis using a different electrode. 
Here, we conducted the same steps as during the training and model analysis but instead of                
using FCz electrode we used Fp1 electrode. This electrode is located in a different area to FCz                 
electrode, namely on left hemisphere, at anteriofrontal area (for concrete position see Appendix,             
Figure 1) and it was randomly preferred over other electrodes from the same area.The              
anteriofrontal area was also preferred randomly over other available brain areas.  
 
The model with 4 states was briefly analyzed using partially the same methodology as the one                
applied for data from FCz electrode. We avoided using the ERP mean values per driving               
condition to divide the participants into high and low susceptibility groups instead we compared              
the driving conditions directly before and after stimulus. The details concerning the analysis             
can be found in Appendix.  
 
The results showed similar pattern of states before and after stimulus onset as those observed               
in FCz electrode. Namely, we did not observe any significant difference across driving             
conditions while the states with low mean values were the prevailing ones both before and after                
stimulus onset. Finally, we also observed the rise of probabilities of states whose mean values               
were high. 
 
The main conclusion that follows this analysis is that the anteriofronta area showed similar              
pattern with the fronto-central area where FCz electrode resides. 
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General Discussion 
 

Summary of results and implications 
 
In this thesis, I investigated whether susceptibility to auditory stimuli can be predicted using a               
HMM. Results showed that by using a 3-state model, states tend to prolong. Consequently,              
probabilities to transition from one state to a different state are low. What’s more, I could not                 
observe significant differences in probabilities of each state across different driving conditions,            
before stimulus onset. As a result, it was not possible to attribute any particular state to a                 
general level of susceptibility or attention.  
 
Next, by using a model with 5 states, we could see that one state could be a possible candidate                   
to represent the cortical reaction to the unexpected stimuli (i.e., state 4 in model 5). But                
predicting it, turned out to be infeasible as we could not find any meaningful correlation of this                 
state before and after stimulus onset.  
 
The theoretical background which accompanied this thesis, was that people are expected to be              
more susceptible to unrelated sounds while performing a type of driving which requested less              
attentional commitment (van der Heiden et al., submitted). In other words, if people drive              
actively then we would expect a higher persistence of a particular state compared to when they                
were driven by a car in autonomous mode. Unfortunately, the performed analysis did not reveal               
such nuances: the probabilities of states are almost the same likely to occur across various               
driving groups and conditions. 
 
The result raises the question whether there is such thing as a cluster of numerical values in                 
EEG signal which can be an indication of high or low attentional commitment. If indeed there is                 
no such group of values, then the processes occurring before the stimulus in the measured               
area, are irrelevant to the processes which occur after the stimulus onset. And, therefore ERP               
component analysis remains the most appropriate method to estimate the responses.           
Consequently, the signal before the stimulus represents pure noise for cognitive science            
research and the bottom-up exploratory methods such as HMM might not be helpful. 
  
On the other hand, this cannot be categorically true. If we consider the experimental setup once                
again, we can imagine that when the tone is played with periodicity around 2 seconds, the                
response to unexpected stimulus might also be reduced as the participant after some time gets               
used to hearing the tones. Furthermore, the participants were divided into passive and active              
groups, with active to actually having the task of pressing a button when hearing deviant sound.                
Given that, we would expect that people in the active group should be more attentive to                
sounds, and anticipating the correct sound. The anticipation for a sound can affect other              

26 
 



cognitive processes which in turn can affect the attentional allocation to the primary task. Then,               
the states and their frequencies before the stimulus could be also influenced. Consequently, the              
inability to identify the hidden states could have been partially caused by the specificity of the                
experimental design.  
 
What’s more, the modelling of such a dynamic process as driving, can be a problem when                
restricting the model to have 3 or 5 states. On the other hand, having a very high number of                   
states might not be robust enough, and lead to overfitting. In our case while performing the                
mean improvement analysis during training, a 3-state model was chosen as the best candidate              
based on the technicalities, as we did not have any theoretical explanation to show preference               
for one or the other model which is an important drawback of the method we preferred to follow.  
 
Contrary, having some sort of expectation in regards to the number of states could prove to be                 
the key in accepting the best model ( Anderson et al., 2016). Of course, we purposely pursued                 
the bottom-up approach, which in our case revealed an insufficiency of the method preferred. In               
particular, our bottom-up approach on the one hand provided us the possibility to analyse EEG               
signal at its raw form at any time point. On the other hand, drawing any strong conclusions                 
about the findings  was not always possible. 
 

Limitations and future work 
 
After using HMMs to model the EEG signal in a driving experiment with different types of driving,                 
we attempted to find the states which can characterize best the data at hand. Apart from the                 
mere estimation of the states, we were interested to see whether the findings could provide a                
valuable information of the attentional state the driver were in. Unfortunately, we could not              
observe any concrete statistically significant results that could adhere to some pattern which in              
turn would give a hint of increased or reduced susceptibility to the sound or more general                
attentional state.  
 
One of many possible reasons could be that the actual attentional state is not in areas that are                  
measured using FCz or Fp1 electrodes, but that this takes place in some other area of the brain.                  
Therefore, using a different brain area could prove a better choice in identification of attentional               
states. What’s more, maybe examining all areas at the same time could provide more significant               
results. Therefore, an improvement could be the estimation of the states given all available              
electrodes which could give a more spherical overview of the mental states(Anderson et             
al.,2016). 
 
Another possible reason could be that the interval before the stimulus onset that was used in                
the current analysis (100 milliseconds) is too short in order to estimate the general attentional               
state. If we consider attention as a more constant state then taking into account a bigger time                 
window before stimulus onset might provide more reliable results. 
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Additionally, during preprocessing step of our data we used downsampling rate of 200Hz which              
essentially means that our data had as a time step 5 ms. Probably, by downsampling even                
more (Anderson et al.,2016) we could have more significant results for the states which              
occurred less frequently.  
 
Finally, what we attempted can be considered a classification problem from ML perspective. But              
then the dataset used during training and testing set, would need to be finely annotated. While                
we also used fP3 component to categorise our data into groups, it is still not enough as the                  
attention can be shifted many times back and forth across tasks and stimuli. Having in place                
such shifts annotated can provide a stronger predictability of a model(Solhjoo et al., 2005).  
 
The further studies should entail taking into consideration these three factors in attempt to              
investigating the predictability of attentional state in drivers. Taken together, future work could             
include looking at the different brain locations, extending the prestimulus time for analysis, as              
well as having explicitly annotated data to provide more insight into attention fluctuations.  
 
 

Conclusion 
 
The attempt to predict susceptibility to unexpected auditory stimuli during active and            
autonomous driving, showed that modeling of such multifaceted task cannot be effectively            
accomplished using strictly data first approach. Therefore, prior theoretical assumptions, finely           
designed experimental set up as well as correctly annotated data can prove of a high               
importance in prediction of attentional allocation. 
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Appendix 
 
 

station
ary 

fP3 participa
nt 

autonom
ous 

fP3 participa
nt 

driving fP3 participa
nt 

Low 3,8 18 Low 2,3 10   Low -1,4 

5,2 3 2,5 4   3,2 

5,2 10 4,4 5   4,2 

6,9 7 4,9 3   4,9 

7,9 14 5,3 13   4,9 

8,1 6 5,6 12   4,9 

9,3 4 7,1 6   5,0 

9,8 5 7,3 19   5,4 

10,4 12 7,6 1   5,4 

High 11,0 16 7,8 18   6,3 

11,4 13 8,3 2   6,4 

12,4 9 8,4 16   High 7,1 

12,7 2 High 8,7 9   7,5 

13,4 17 8,8 14   7,7 

13,4 11 10,8 7   8,5 

14,2 19 12,7 11   8,9 

15,3 1 13,5 17   11,0 

15,7 15 13,8 15   11,4 

Average 10   Average 8     Average 6 

 
Table 1: Groups of participants per mean ERP component which represents the susceptibility to audio stimuli 
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N a=0.1 a=0.05 a=0.01 

1 0.988 0.997 0.999 

2 0.900 0.950 0.990 

3 0.805 0.878 0.959 

4 0.729 0.811 0.917 

5 0.669 0.754 0.875 

6 0.621 0.707 0.834 

7 0.584 0.666 0.798 

8 0.549 0.632 0.765 

9 0.521 0.602 0.735 

10 0.497 0.576 0.708 

11 0.476 0.553 0.684 

12 0.458 0.532 0.661 

13 0.441 0.514 0.641 

14 0.426 0.497 0.623 

15 0.412 0.482 0.606 

16 0.400 0.468 0.590 

17 0.389 0.456 0.575 

18 0.378 0.444 0.561 

19 0.369 0.433 0.549 

20 0.360 0.423 0.537 

21 0.352 0.413 0.526 
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22 0.344 0.404 0.515 

23 0.337 0.396 0.505 

24 0.330 0.388 0.496 

25 0.323 0.381 0.487 

26 0.317 0.374 0.479 

27 0.311 0.367 0.471 

28 0.306 0.361 0.463 

29 0.301 0.355 0.456 

30 0.296 0.349 0.449 

35 0.275 0.325 0.418 

40 0.257 0.304 0.393 

45 0.243 0.288 0.372 

50 0.231 0.273 0.354 

60 0.211 0.250 0.325 

70 0.195 0.232 0.303 

80 0.183 0.217 0.283 

90 0.173 0.205 0.267 

100 0.164 0.195 0.254 

150 0.134 0.159 0.208 

300 0.095 0.113 0.148 

 
Table 2. Table of Critical Values: Pearson Correlation.N here represents degrees of freedom. 
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Figure 1: EEG electrodes positions. Retrieved from 
https://www.researchgate.net/Schematic-display-of-EEG-electrode-positions-For-statistical-analyses-ERS-ERD-was_
fig2_233539681  
 
 
 

Fp1 electrode analysis 
 
Below you can find all the tables with the results we obtained during analysis of Fp1 electrode.  
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Table 3. Mean improvement over state increase during training. The highest improvement can be observed in state                 
4. 
The mean improvement procedure showed that model with 4 states had the highest             
log-likelihood improvement. Therefore, we preferred model with 4 states over other to start the              
analysis. Table 4 shows matrix with transitional probabilities A, as well as each state’s              
statistics. 
 

 
states 0 1 2 3 

0 0.95 0.00 0.01 0.03 

1 0.00 0.98 0.00 0.02 

2 0.02 0.00 0.98 0.00 

3 0.04 0.01 0.00 0.95 

 

 
states Mean SD 

0 6 5 

1 -41 27 

2 39 25 

3 -8 5 

 
Table 4.Left, Transitional probabilities matrix. Right. Mean and SD of each state 

 
Next, we took 100 ms before the stimuli onset in order to estimate the probabilities of each state                  
to occur in that time interval. We also retrieved data from 300-400 ms post stimuli to estimate                 
the probabilities of the states after the auditory stimuli. The results are shown in Table 5. 
 
 
 

 driving autonomous stationary 

states before after before after before after 

0 0.47 0.36 0.47 0.36 0.47 0.35 
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1 0.04 0.14 0.05 0.15 0.05 0.16 

2 0.06 0.13 0.06 0.14 0.07 0.14 

3 0.42 0.37 0.42 0.35 0.41 0.35 

Table 5 The probabilities of each state to occur before and after the stimulus onset for every driving condition. 
 
Given the probabilities before the stimulus onset, we do not observe any significant difference              
across driving conditions. We also do not see any significant difference in probabilities after the               
stimulus onset across driving conditions. But, here as well as in analysis of FCz electrode we                
see substantial increase in probabilities of state 1 and state 2, which is accompanied by the                
decrease of state 0 and state 3.  
 
 

Forward - Backward Algorithm : The learning problem 
 
In our study to identify the hidden brain processes we used Hidden Markov Models. During               
training of HMMs we used the forward-backward algorithm. In this section I would like to give a                 
better understanding of the mechanics of this algorithm. 
 
Our problem was: Given the EEG continuous data and a single value for the number of states,                 
we need to learn the states transitional probabilities matrix A ,the emission probabilities B.  
 
The forward-backward algorithm represents a special case of Expectation Maximization          
algorithm, whose main feature is that it is an iterative procedure. The iterative procedure is used                
to compute initial probabilities (A and B) and then by using the learned probabilities, it iteratively                
improves them. 
 
In particular, to compute the transitional probabilities A, normally we can count the number of               
times that a transition from state i to state j occurs, and then normalize the result by dividing the                   
total number of times that a transition from i occurs. But, as we do not know the states, this                   
procedure is not possible.  
To understand how the algorithm works, we need to introduce two important probabilities that              
contribute to the whole process. 
 
First important probability for the algorithm is the forward probability. The forward probability is a               
probability for an observation o to be emitted by state i. If we have 3 states then we will have 3                     
such probabilities. The forward probability is computed by the forward algorithm, which sums             
over the probabilities of all possible hidden states paths. 

 
Forward probability = P(qt , o1:t)                  (1) 
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Second important probability is the backward probability. The backward probability is the            
probability for an observation o to be observed from time t+1 till the end given that our model is                   
at time t. Or, in other words, how likely is for an observation o to be observed in the future given                     
estimated A and B at time t and state qt.  

 
Backward probability = P(ot+1:T|qt)      (2) 

 
The forward and backward probabilities are computed inductively based on the mechanics of             
the forward algorithm, which represents an example of dynamic programming.  
 
Then, if we know the forward probabilities and the backwards probabilities we can compute the               
probability P(qt|O), where O is our sequence of observations. Namely, 

            P(qt|O) ∝ P(qt,O) = P(ot+1:T|qt,o1:t) P(qt , o1:t)       (3) 

By claiming that ot+1:T is conditionally independent from o1:t , we have 
 

             P(qt|O) ∝ P(qt,O) = P(ot+1:T|qt) P(qt , o1:t)       (4) 

 
We see that equation 4 can be computed by multiplying the backward and forward probabilities. 
Having estimated the equation 4 for all timepoints t∈T, we can easily estimate the parameters               
A and B of HMM. 
 
Finally, if we know  P(qt|O), we can make any type of inference concerning our model.  
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