
 

 
 

Lane change behavior with a dual-task 

paradigm: individual  differences and cognitive 

processes.  

 

 

Abstract 

Driving a car is highly complex and therefore causes driving error to be a high causal factor in 

road accidents. Because it requires constant management of cognitive processes like perception, 

decision-making, and execution of motor responses. It is therefore important to study driving behavior 

to ensure road safety. The  paper of van der Heiden, Janssen, Donker and Merkx (2019) studied lane 

changing while performing a secondary task. However, the effects of primarily cognitively loading 

tasks on driving performance are not well understood yet. Therefore this paper extends their study 

with novel analyses.  Firstly, this paper investigates which subscale of the TLX questionnaire is 

responsible for the decrease in drive performance when there is a higher level of cognitive distraction. 

Secondly, it is investigated if mental workload is a predictor of reaction time and distance. The third 

research question answers the question which underlying cognitive processes account for the different 

aspects of reaction time.  The results showed that no specific subscale of the TLX is responsible for 

decrease in drive performance and there was no relationship found between reaction time, distance and 

mental workload. The third analysis showed drivers tend to shift from focus from the near point to the 

far point when they start driving faster. Furthermore drivers steer less abruptly when they drive faster 

with a focus on the far point. The last finding is about the delay period (the period in which the visual 

events are processed before action is initiated). This seems to be very important for this component 

T1. This information can be used to design safer roadways and enhance safety systems in cars by 

incorporating these cognitive processes. 
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1. Introduction 
Understanding driving behavior is extremely important since driver distraction has become a 

significant source of injuries and accidents on the roadway (Strayer, Turrill, Cooper, Coleman, 

Medeiros-Ward &  Biondi, 2015; Papantoniou, Yannis & Christofa, 2019). Drivers need to obtain a 

large amount of information such as road conditions, control vehicle position and speed. Managing 

these requirements involve information perception, decision-making, and execution of tasks. Due to 

the dynamic interleaving and execution of all these tasks, this is highly complex (Chong, Mirchi, Silva 

& Strybel, 2014; Chen, Xue, & Jiang, 2019). This complexity causes driving error to be a high causal 

factor in road accidents and therefore it is important to study driving behavior to ensure road safety 

(Dingus, Guo, Lee, Antin, Perez, Buchanan-King, & Hankey, 2016; Xing, Lv, Wang, Wang, Ai, Cao 

& Wang, 2019). 

Currently, mostly passive safety systems such as airbags and seat-belts have played a large 

role in the protection of the driver and passengers. Instead of minimizing the injuries after the 

accident, now many efforts have been devoted to de development of safer and more intelligent systems 

to prevent accidents from happening (Jarašūnienė & Jakubauskas, 2007; Xing et al., 2019). But these 

systems usually make decisions without taking driver intended maneuvering into consideration.  

Not only driving itself is a complex task, the driver often performs in-vehicle secondary tasks, 

also called ‘multi-tasking’.  The execution of the primary tasks in combination with the in-vehicle 

secondary task consume extreme visual, cognitive and action resources. This poses a serious threat to 

drive performance and safety (Lansdown, Brook-Carter & Kersloot, 2004; Chen et al., 2019; Mehler, 

Reimer, Coughlin & Dusek, 2009). The dual-task paradigm is often used to study the phenomenon of 

multi-tasking. Multiple studies observe a strong effect of dual-task interference in driving (Cooper, 

Vladisavljevic, Strayer & Martin, 2008; Strayer, Cooper, Turrill, Coleman, & Hopman, 2017: Broeker, 

Haeger, Bock, Kretschmann, Ewolds, Künzell & Raab, 2020; Klauer, Guo, Simons-Morton, Ouimet, 

Lee & Dingus, 2014).  

Although the dual-task paradigm is widely used, the effects of primarily cognitively loading 

tasks on driving performance are not well understood yet (Engström, Markkula, Victor & Merat, 

2017). Before we dive into the effects of cognitive loading tasks, it is necessary to give a definition of 

cognitive load. This can be defined as the ratio between the capacities of the information processing 

system needed to correctly perform the task and the amount of available attentional resources at any 

given time (de Waard, 1996; O’Donnell & Eggemeier, 1986). One theory that explains how the ratio is 

achieved is the cognitive control hypothesis (Engström et al., 2017). This hypothesis states that 

cognitive load selectively impairs driving subtasks that rely on cognitive control but leaves automatic 

performance unaffected. Cognitive control is defined as a broad concept for executive cognitive 

functions such as working memory and attention.  

Besides the different secondary tasks that are widely studied, there is a variety of driving 

forms studied. A specific form of driving is lane changing. A lane change is in this paper defined as a 
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driver maneuver that moves a vehicle from one lane to another where both lanes have the same 

direction of travel (Fitch, Lee, Klauer, Hankey, Sudweeks & Dingus, 2009).  Thus it is a deliberate 

and substantial shift in the lateral position (Tijerina, Garrott, Stoltzfus & Parmer, 2005). This form is 

not yet completely understood and multitasking seems to have a negative impact. The  paper of van 

der Heiden, Janssen, Donker and Merkx (2019) studied the phenomenon of lane changing while 

performing a secondary task. They measured how much time and distance is needed for a full lane 

change in a naturalistic driving simulator when drivers are placed under different levels of cognitive 

distraction. The drivers received a warning sign to initiate the lane change. The results showed that 

some participants took too much time to perform the lane change. In addition, the paper demonstrated 

that the type of distraction affected the initial reaction time. Van der Heiden et al. (2019) found also 

differences in mental workload for the dual-task conditions.  However the paper did not explain what 

the relationship is between the perceived workload, reaction time and distance. Besides this, it would 

be interesting to see if certain aspects of mental workload are more or less responsible for an increased 

cognitive distraction. This would help develop better human information processing models (Rubio, 

Diaz, Martin, & Puente, 2004). Furthermore, the paper did not explain which aspect of the steering can  

account for these effects. The steering process itself is a complex cognitive operation, and it is 

interesting to understand which aspects of steering are compromised by cognitive load, resulting in the 

slower reaction times. 

This paper is build up twofold. On the one hand it builds upon the article of van der Heiden et 

al. (2019) and aims to further investigate which component of mental workload is responsible for the 

decrease in drive performance when there is a higher level of cognitive distraction. In addition, this 

paper explores the relationship between reaction time, mental workload and distance that is needed to 

perform a lane change. On the other hand this paper dives deeper into the steering wheel behavior 

during the lane change. The reaction times that were measured in the paper of van der Heiden et al. 

(2019) are a combination of several aspects. The underlying cognitive processes which can vary for 

each reaction time will be studied in this second part. To study cognitive performance, cognitive 

architectures are widely used to model human behavior (Salvucci, 2001; Salvucci, Boer & Liu, 2001). 

A cognitive architecture is a general framework for specifying computational behavioral models of 

human cognitive performance. To observe and predict specific steering wheel behavior during lane 

change, the two point visual control model of steering of Salvucci & Gray (2004) is used. With this 

model it is possible to measure and quantify these steering wheel behavior effects.  

 Due to the fact that there is not yet an explanation for the effects found in the article of van der 

Heiden et al. (2019), this study has multiple goals by analyzing the existing data in two different ways. 

Firstly, we focus on individual differences and we will perform two analyses. The first analysis will 

answer which component of mental workload can be held responsible for the differences in cognitive 

distraction and therefore driver performance. Secondly, another analysis will be done to find out what 

the relationship is between the variables reaction time, distance and mental workload. Thirdly, we will 
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take a different view and focus on the underlying cognitive processes.  In this second part we will 

perform a third analysis to look at the steering wheel data in more detail to answer the question which 

aspect of steering can account for the effects already found.  

 It is hypothesized that the ratings for workload will differ for the subscales and that mental 

workload is a predictor for reaction time and distance. Furthermore we hypothesize that the condition 

in which people drive affects the abruptness of steering wheel behavior.  

 

2. Method  
This section summarizes the original study, by giving an overview of its settings, methodology, and 

results (van der Heiden et al., 2019). We will focus on those aspects of the study that are of relevance 

for our current purposes. For a full methodological overview we refer to the original study. 

2.1 Participants and context 
The original study involved twenty-four participants (9 women; 15 men) ranging in age from 28 to 70 

years (M = 46.5 years, SD = 12.4 years).  The sample matched the distributions of highway drivers in 

the Netherlands on age, gender and yearly driving distance as found in a population-based study (CBS, 

2013).  

2.2 Material and stimuli 
Participants sat on an adjustable fixed chair in front of a Logitech G27 racing wheel and a 2900 

monitor. There were single and dual-task conditions in which the lane change performance was 

studied.  In the dual-task conditions, participants were asked to steer a simulated car while performing 

an audio task at the same time. We will explain these individual tasks next. 

2.2.1 The driving task  

The driving task was developed in a modified version of OpenDS 2.5. The driving task was to stay in 

the middle lane (3.5 m wide) of a straight three-lane highway. A simulated navigation system was 

shown at the bottom right of the screen. When a lane closure was imminent, the interface showed 

which lanes were closed (red crosses), following symbols that are used on Dutch highways to indicate 

closed lanes. Participants were instructed to change to the open lane once they noticed the alert. The 

open lane was either to the left or the right of the central lane. The visual cue for lane closure was only 

shown on the interface, not on the road. The car drove at a constant speed of either 80 km/h or 130 

km/h. 

Within a block of trials, participants changed lanes 6 times (half left, half right). The upcoming lane 

closure was signaled at one of six locations (225, 275, 325, 375, 425 or 475 m after trial start), which 

were balanced over trials and subjects. At the end of each trial the car was automatically reset to the 

middle lane to begin a new trial, and the navigation screen was cleared (showing only a green 

background). 
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2.2.2 The audio task  

In the dual drive task, an audio task created distraction. There were two audio conditions. In both the 

audio conditions (i.e., repeat and generate), participants heard a stream of words, presented at a steady 

pace of 1 word every 4 s. In the repeat condition, participants simply had to repeat the word they 

heard. In the generate condition, participants had to respond with a new word that started with the last 

letter of the word they heard.  

2.2.3 Subjective mental workload 

The subjective workload that participants experienced during the tasks, was measured with the raw 

TLX (Task Load Index). This questionnaire consists of six dimensions. These are the mental, physical, 

temporal, performance, effort and frustration dimension. Table 1 shows the definitions of TLX 

dimensions (Hart & Staveland, 1988). The scores of these dimensions are combined in one index. 

Directly after each condition, the participants completed the TLX questionnaire to assess the workload 

experienced during the task (Hart & Staveland, 1988; Rubio et al., 2004).   

 

Table 1. Rating scale definitions from the TLX.  

Title Description 

Mental demand How much mental and perceptual activity was required (e.g. 

thinking, deciding, calculating, remembering, looking, 

searching, etc.)? Was the task easy or demanding, simple or 

complex, exacting or forgiving? 

Physical demand How much physical activity was required (e.g. pushing, pulling, 

turning, controlling, activating, etc.)? Was the task easy or 

demanding, slow or brisk, slack or strenuous, restful or 

laborious? 

Temporal demand How much time pressure did you feel due to the rate or pace at 

which the tasks or task elements occurred? Was the pace slow 

and leisurely or rapid and frantic?  

Performance How successful do you think you were in  accomplishing the 

goals of the task set by the experimenter (or yourself)? How 

satisfied were you with your performance in accomplishing 

these goals? 

Effort How hard did you have to work (mentally and physically) to 

accomplish your level of performance? 
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Frustration level How insecure, discouraged, irritated, stressed and annoyed 

versus secure, gratified, content, relaxed, and complacent  did 

you feel during the task?  

 

2.3 Design  
For the first analysis, a 2 (Driving speed: 80 km/h, 130 km/h) x 3 (Audio task: No audio, Repeat, 

Generate) within-subjects repeated measures (ANOVA) design was used to replicate the original study 

and analyze each subscale of the TLX. Conditions were blocked by speed level. Half the participants 

started with 80 km/h, the other with 130 km/h. Within each speed condition, participants completed all 

audio conditions in a specific order. All participants started with the no audio condition (this will be 

referred to as condition ‘D’). This was followed by the repeat and generate condition (this will be 

referred to as ‘DH’ and ‘DG’ respectively), of which the order was counterbalanced. The order of 

audio conditions that was used for the first speed level, was also used for the second speed level. 

Holm-Bonferroni-corrected post hoc tests were applied in the case of pairwise comparisons. 

 

For the second research question we used a linear mixed effects model (Baayen, Davidson & Bates, 

2008). This was done to investigate if the mental workload score could be a predictor for the reaction 

time and the distance. The dependent variable for the first model was reaction time and the 

independent variables were mental workload, speed and condition. The model included mental 

workload, speed (80 and 130 km/h) and condition (D, DH, DG) and a mental workload x speed x 

condition interaction for fixed effects.   

Another linear mixed effects model  was constructed to see if mental workload could predict the 

average distance that was needed for a lane change.  The dependent variable for this model was the 

average distance and the independent variables were mental workload, speed and condition. The 

model included mental workload, speed and condition and a mental workload x speed x condition 

interaction for fixed effects.  

In both models a random intercept for subject was included to account for within-subject correlations.   

Analysis software  

Statistics were done using R 3.6.3 (R Core Team, 2020). We used the aov() function which is built 

into R to analyze the repeated measures ANOVA. We used the lmer program of the lmerTest package 

for estimating fixed effects and variance/covariance component parameters of the LMM.  The full 

reproducible code is available in Supplementary Materials.  
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2.4. Procedure 
The experiment started with an explanation and the informed consent was signed. Before the 

experiment started, the participant was able to practice the trials.  Participants then performed six 

experimental blocks. After each block, participants filled out the TLX questionnaire. 

The total procedure took approximately 70 min.  

 

2.5. Measurements  
To analyze the research question, four facets of behavior were measured: 

 

1. Initial reaction time was defined as the time it took before the first steering movement exceeding 1 

degree was made (T1 in Fig. 1) relative to the onset of the in-car warning (T0). The initial reaction 

time is a proxy of how long it takes drivers to initiate a lane change after first stimulus onset. For each 

condition, we calculated drivers’ mean initial reaction time. As the simulator logged steering reaction 

time since presentation of the visual stimulus, some of these steering movements are not in response to 

the visual presentation (but due to ongoing steering movements). To compensate for this, we removed 

reaction times that were logged as being faster than 500 ms. 

2. Lane change distance was defined as the distance that was traveled between when the in-car 

warning showed (T0) and the moment at which the car was fully in the target lane (T2). This is shown 

in figure 1.The criterion for considering the car to be fully in the target lane was that the full body of 

the car passed the center of the lane markings. Note that the simulator only logged the timestamp of 

the lane change (i.e., T2), not the distance. The distance was calculated based on the known constant 

speed and the measured lane change time. 

3. Subjective workload was measured using the TLX questionnaire, where participants scored their 

workload on a scale from 1 to 20 on various subscales (Hart & Staveland, 1988). We analyzed the 

average score of the sum of the TLX, but also each subscale.  
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Figure 1. Measurements overview showing the critical timestamps in the experiment. At T0 the visual 

warning is first presented. At T1, the participant makes the first (bigger) steering action. At T2 the car 

is fully in the target lane (van der Heiden et al., 2019).  

 

3. Results of novel analysis one and two  
3.1 Initial Reaction Time (T1-T0) 

Fig 2A presents the initial reaction time in all conditions (i.e. time interval T1-T0).  

There was a significant effect of condition on reaction time, F(2,46) = 6.85, p < .01, ηp
2 = .23.  

A post hoc test confirmed that reaction times were longer in the generate condition (M = 1.44 s, SD = 

.51 s), compared to the repeat (M= 1.20 s, SD = 0.32 s, p = .01) and the no-audio condition (M= 1.18, 

SD = 0.34, p = .005). There was no significant effect between the no-audio and repeat  condition (p > 

.1). The initial reaction time at 80 km/h (M = 1.25 s, SD = 0.45 s)  was not significantly different from 

that at 130 km/h (M = 1.29, SD = 0.39), F(1,23) = .41, p >.1. Furthermore, there was no significant 

interaction between speed and audio condition, F(2,46) = .97, p > .1. 

        

 A B 
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C 

Figure 2. (A) Bar graph of the average initial reaction time (T1). The graph shows that participants 

react slower to the visual warning signal in the generate condition compared to the no audio and repeat 

condition. (B) Bar graph of total average lane change distance (at T2) in different conditions. 

Participants made the lane change in shorter distance when they drove 80 km/h compared to the 

130km/h. (C) Bar graph of the average TLX score perceived by the participants. The participants 

experienced more mental load when there was more cognitive distraction.  

3.2. Lane change distance (distance covered during T0 until T2) 

Figure 2B shows the average lane change distance. There was a significant effect of speed on average 

lane change distance F(1,23) = 80.96, p <0.001, ηp
2= .78. Overall, the lane change distance was 

significantly shorter at 80 km/h (M = 101 m,  SD = 17 m) than at 130 km/h (M = 140 m, SD = 31 m). 

There was also a significant effect of audio condition, F(2,46) = 3.43, p = .04, ηp
2= .13. Although the 

mean lane change distance was largest in the generate condition, a post hoc test did not find any 

significant difference between the generate (M = 127 m, SD = 35 m), repeat, (M = 117 m, SD = 29 m) 

and the no audio condition (M = 116 m, SD = 30 m) (all p >.1). Furthermore there was no significant 

interaction between speed and audio condition, F(2,46) = .686, p >.1.  

3.3 Average perceived mental workload  

Figure 2C shows the perceived mental load indicated on the raw TLX questionnaire. There was a 

significant difference between the conditions on perceived mental load, F(2,46) = 41.48, p < 0.001, 

ηp
2= .64. A post hoc test showed that perceived load was significantly higher in the generate (M= 8.7, 

SD = 3.7) compared to the repeat condition (M = 5.7, SD = 3.2, p < 0.001). Perceived mental load was 

also significantly higher in the generate condition compared to the no-audio condition (M = 5.8, SD = 

3.6; p < .001). But there was no significant difference between repeat and no-audio (p >.1).  

There was also a significant effect of driving speed on perceived mental load, F(1,23) = 8.15, p = 

0.008, ηp
2= .26. Mental load while driving at 130 km/h was significantly higher (M = 7.13, SD = 3.96) 

compared to mental load at 80 km/h (M = 6.26, SD = 3.53). There was no significant interaction effect 

between speed and audio condition, F(2,46) = 1.31, p > .1.  
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3.3.1 TLX subscale mental workload  

Figure 3A shows the perceived mental load for the TLX_mental subscore indicated on the raw TLX 

questionnaire. This will be referred to as mental workload. There was a significant difference between 

the three audio conditions on perceived mental score, F(2,46) = 37.71, p < 0.001, ηp
2= .62. A post hoc 

test showed that perceived load was significantly higher in the generate (M= 9.96, SD = 4.49) 

compared to the repeat condition (M = 6.42, SD = 3.93; p < 0.001). The mental workload was also 

significantly higher in the generate condition compared to the no-audio condition (M = 6.4 SD = 4.57; 

p < .001). But there was no significant difference between repeat and no-audio (p >.1).  

There was also a significant effect of driving speed on mental workload, F(1,23) = 5.19, p = 0.03, ηp
2= 

.18. Mental load while driving at 130 km/h was significantly higher (M = 8.08, SD = 4.89) compared 

to mental load at 80 km/h (M =7.1, SD = 4.32). However, there was no significant interaction effect 

between speed and audio condition, F(2,46) = 0.72, p > .1. 

      

A  B 

 C D 

 E F 

Figure 3. A) Bar graph of the subscale mental workload for each condition. Drivers experienced more 

mental workload in the generate condition compared to the repeat and no audio condition. And more 
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in the 130 km/h conditions compared to the 80 km/h conditions.  B) Bar graph of the subscale physical 

workload. The bar graph shows that there was a significant effect of condition on physical workload. 

(C) Bar graph of the subscale temporal workload. The bar graph shows drivers experiences significant 

more temporal workload in the generate condition compared to no audio and repeat and more temporal 

workload in the 130 km/h conditions than 80 km/h. (D) Bar graph of the subscale performance 

workload for each condition. There was an effect of conditions on performance workload. (E) Bar 

graph of the subscale effort workload for each condition. There was a significant effect of condition 

and speed on effort workload. (F) Bar graph of the subscale frustration workload for each condition. 

There was a significant effect of condition on frustration workload and a significant interaction effect 

between condition and speed on frustration workload.  

 

3.3.2 TLX subscale physical workload 

Figure 3B shows the perceived mental load for the TLX_physical score indicated on the raw TLX 

questionnaire. This will be referred to as physical workload. There was a significant effect of condition 

on physical workload, F(2,46) = 10.35, p < 0.001, ηp
2= .31. A post hoc test showed that physical 

workload was significantly higher in the generate (M= 6.96, SD = 4.35) compared to the repeat 

condition (M = 5.13, SD = 3.37; p = 0.06). The physical workload was also significantly higher in the 

generate condition compared to the no-audio condition (M = 4.73 SD = 3.71; p = 0.02). But there was 

no significant difference between repeat and no-audio (p >.1).  

There was no significant effect of driving speed on physical workload (p >.1) There was also no 

significant interaction effect between speed and audio condition, F(2,46) = 2.14, p > .1.  

 

3.3.3 TLX subscale temporal workload 

Figure 3C shows the perceived mental load for the TLX_temporal score indicated on the raw TLX 

questionnaire. This will be referred to as temporal workload. There was a significant difference 

between the three audio conditions on temporal workload, F(2,46) = 27.18, p < 0.001, ηp
2= .54. A post 

hoc test showed that temporal workload was significantly higher in the generate (M= 8.60, SD = 4.) 

compared to the repeat condition (M = 5.56, SD = 3.5; p < .001). The temporal workload was also 

significantly higher in the generate condition compared to the no-audio condition (M = 5.48 SD = 4; p 

< 0.001). But there was no significant difference between repeat and no-audio (p >.1).  

There was a significant effect of driving speed on temporal workload, F(1,23) = 9.31, p < .001, ηp
2 

=.29.  Temporal workload while driving at 130 km/h was significantly higher (M = 87.36, SD = 4.26) 

compared to mental load at 80 km/h (M =5.74, SD = 3.75). There was no significant interaction effect 

between speed and audio condition, F(2,46) = 1.02, p > .1.  
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3.3.4 TLX subscale performance workload 

Figure 3D shows the perceived workload for the TLX_performance score indicated on the raw TLX 

questionnaire. This will be referred to as performance workload. There was a significant difference 

between the three audio conditions on performance workload, F(2,46) = 23.91, p < 0.001, ηp
2= .51. A 

post hoc test showed that performance workload was significantly higher in the generate (M= 8.60, SD 

= 3.9) compared to the repeat condition (M = 6.06, SD = 4.08; p = 0.008). The performance workload  

was also significantly higher in the generate condition compared to the no-audio condition (M = 6.29 

SD = 4.2; p = 0.02). But there was no significant difference between repeat and no-audio (p >.1).  

There was no significant effect of driving speed on performance workload, F(1,23) = 1.66, p > .1. 

There was no significant interaction effect between speed and audio condition, F(2,46) = 0.267, p >.1.  

 

3.3.5 TLX subscale effort workload 

Figure 3E shows the perceived mental load for the TLX_effort score indicated on the raw TLX 

questionnaire. This will be referred to as effort workload. There was a significant difference between 

the three audio conditions on effort workload, F(2,46) = 26.74, p < 0.001, ηp
2= .54. A post hoc test 

showed that effort workload was significantly higher in the generate (M= 10.23, SD = 4.72) compared 

to the repeat condition (M = 6.35, SD = 4.29; p < 0.001). The effort workload was also significantly 

higher in the generate condition compared to the no-audio condition (M = 6.40 SD = 4.61; p < .001). 

But there was no significant difference between repeat and no-audio (p >.1).  

There was also a significant effect of driving speed on effort workload, F(1,23) = 14.64, p < 0.001, 

ηp
2= .39. Mental load while driving at 130 km/h was significantly higher (M = 8.29, SD = 5.07) 

compared to mental load at 80 km/h (M =7.03, SD = 4.60). There was no significant interaction effect 

between speed and audio condition, F(2,46) = .895  p > .1.  

 

3.3.6 TLX subscale frustration workload 

Figure 3F shows the perceived mental load for the TLX_frustration score indicated on the raw TLX 

questionnaire. This will be referred to as frustration workload. There was a significant difference 

between the three audio conditions on perceived frustration workload, F(2,46) = 13.55, p < 0.001, ηp
2= 

.37. A post hoc test showed that frustration workload was significantly higher in the generate (M= 

7.65, SD = 4.87 compared to the repeat condition (M = 4.48, SD = 3.59; p =  0.0014). Frustration 

workload was also significantly higher in the generate condition compared to the no-audio condition 

(M = 5.23 SD = 4.45; p = .022). But there was no significant difference between repeat and no-audio 

(p >.1). There was no significant effect of driving speed on frustration workload, F(1,23) = 0.35, p >.1. 

However, there was a  significant interaction effect between speed and audio condition, F(2,46) = 5.16  

p < .01. ηp
2 = .19. 
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3.4 Interim discussion 

The goal of the first study was to replicate and expand the study of van der Heiden et al. (2019). The 

re-analysis of the data from van der Heiden et al. (2019) confirmed their results. In their study it was 

not clear which component of mental workload was responsible for the increase in subjective 

workload in the dual task conditions.  Therefore we analyzed each subscale of the TLX, to see if a 

specific subscale would show different results. However, the results of each subscale of the TLX 

showed that there was not a specific subscale responsible for this phenomenon. The drivers 

experienced for every subscale more workload when there was more cognitive distraction. Now we 

move on to the second research question.   

 

3.4 Additional second analysis.  

Research question 2: What is the relation between reaction time, average distance and mental 

workload? 

3.4.1 Average mental workload as predictor for reaction time 

Results from the linear mixed effects model (LMM) showed a significant main effect for the dual task-

generate condition (𝛽̂ = .49, p  = 0.0266). All other main effects and interaction effects were not 

statistically significant. Table 2 summarizes the results of the LMM for reaction time.  

 

Table 2. Parameter estimates, standard error and t values from the linear mixed model with mental 

workload, speed and condition as the fixed effects and reaction time as dependent variable.  

 Estimate SE t 

(Intercept) 1.169*** 0.150 7.775 

Mental workload -0.009 0.023 -0.408 

Generate 0.494* 0.220 2.247 

Repeat 0.099 0.201 0.491 

130 -0.085 0.192 -0.444 

Mental workload x  Generate -0.019 0.029 -0.666 

Mental workload x  Repeat -0.002 0.033 -0.057 

Mental workload x  130 0.036 0.029 1.247 

Generate x 130 -0.232 0.321 -0.722 

Repeat x 130 -0.046 0.280 -0.164 

Mental workload x  Generate x 130 0.004 0.040 

 

0.099 

Mental workload x  Repeat x 130 -0.015 0.043 -0.357 

*** p < 0.001; * p < 0.05. 

3.4.2 Average mental workload as predictor for the distance 

For the second model we looked if mental workload is a predictor for the distance that is needed to 

perform a lane change. Results from the linear mixed effects model showed that speed was a 
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significant predictor of distance when the participant drove 130 km/h (see Table 3) (𝛽̂ = 27.11, p < 

.05). All other main and  interaction effects were statistically nonsignificant. Table 3 summarizes the 

results of the LMM for distance. 

Table 3. Parameter estimates, standard error and t values from the linear mixed model with mental 

workload, speed and condition as the fixed effects and the distance as dependent variable. 

 Estimate SE t 

(Intercept) 99.449*** 8.866 11.217 

Mental workload -0.199 1.343 -0.148 

Generate -4.529 12.519 -0.362 

Repeat -5.438 11.417 -0.476 

130 27.114* 10.916 2.484 

Mental workload x Generate 1.513 1.636 0.925 

Mental workload x Repeat 0.942 1.852 0.509 

Mental workload x 130 1.509 1.631 0.926 

Generate x 130 -14.964 18.263 -0.819 

Repeat x 130 1.530 15.907 0.096 

Mental workload x Generate x 130 1.599 2.251 0.710 

Mental workload x Repeat x 130 0.061 2.434 0.025 

     *** p < 0.001; * p < 0.05. 

Since the LMM showed for both models that almost all fixed effects were nonsignificant, a correlation 

analysis was performed to see if it might be more than just the power causing no effects seen.  

A correlation analysis showed (see Figure 4A) that there is a very weak correlation between reaction 

time and workload (r = .12, p > .1). In addition, the correlation between the distance and mental 

workload, was also weak (r = .29) but showed more of a trend (see Figure 4B). This suggests that 

besides the power, there might be no strong relationship in the first place.  

  



Master thesis  Applied Cognitive Psychology 

15 
 

Figure 4. (A) Correlation between the reaction time and mental workload.  (B) Correlation between 

the distance and mental workload.  The red lines indicate regression lines with standard error in grey. 

For both scatterplots only a weak correlation can be seen.  

 

4. Additional analysis to study the cognitive processes 

4.1 Introduction 
The goal of the first study is to extend the findings from the first study and to investigate the steering 

wheel behavior during lane changes in more detail. The variables used in the study of van der Heiden 

et al. (2019) are the outcome of multiple factors. Thus the underlying cognitive processes which 

contribute to a T0, T1 or T2 value can vary and in this additional analysis we try to infer these 

processes. The third research question is therefore: ‘Which aspect of steering accounts for the effects 

found by van der Heiden et al. (2019)?’. 

To observe and predict specific steering wheel behavior during lane change, the two point visual 

control model of steering (TPVCM) of Salvucci & Gray (2004) was used. This model assumes that 

when a person drives a car, this driver uses two points to infer position on the road. For this they use a 

near point and a far point. Information from this far point helps to adjust and compensate for 

upcoming trajectory of the road. Information of the near point helps to maintain the current lane 

position of the car. Thus this near point is in nearby distance in front of the car. When people change 

lanes, the model assumes that both the far and near point change position to the alternate lane. This 

enables the driver to steer to that lane.  

To measure these far and near points, the angle between the direction of the car and the two points is 

measured. These measurements are quantified in two angles: 𝜃𝑓 and 𝜃𝑛 (see figure 5). For every time 

slot that the location of the car is registered, the model minimizes the change in angle with the near 

and far point. To maintain a stable position on the road, the model additionally minimizes the angle of 

the car’s heading with the near point. By showing qualitative comparisons between simulated car 

movements, and measured car movements, Salvucci and Gray (2004) show that their model can 

account for a wide range of driving behaviors.  
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Figure 5. Illustration of a left-ward lane change according to the two-point visual control model of 

steering. 𝜃𝑓 and 𝜃𝑛 indicate the angle between the car and the far and near points, respectively. 

Initially, the car drives straight (1). Once the decision to change lanes has been initiated, the far and 

near points change relative to the car, creating a non-zero angle (2). Consequently, the car steers to the 

left lane (3), minimizing the angle between the heading of the car and the far and near points (4).  

 

4.2 The Model 
Following Salvucci and Gray (2004), we implemented a discrete version of the TPVCM: 

∆𝜑 = 𝑘𝑓∆𝜃𝑓 + 𝑘𝑛∆𝜃𝑛 + 𝑘𝐼𝜃𝑖Δt 

In this equation, 𝜑 indicates the angle that the car makes relative to its original bearing, 𝜃𝑓 and 𝜃𝑛 

indicate the angle between the car and the far and near points, respectively, and Δt represents a time 

constant of the update cycle. 𝑘𝑓, 𝑘𝑛, and 𝑘𝐼 are the contributions of each of these components to the 

angular change. 

In addition to the basic model, we assume a visual processing time that leads to a delayed response to 

visual events that happen while driving. The implementation of the TPVCM in the ACT-R cognitive 

architecture introduced a similar mechanism (Salvucci, 2006), but in that model optimization of the 

delay period to the individual driver is not possible.  

The delay period (𝑡0), together with the parameters governing the steering control (𝑘𝑓, 𝑘𝑛, and 𝑘𝐼) 

determine the steering behavior of a driver. Different examples of driving behavior can be seen in 

figure 2.  
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Figure 6. Individual steering profiles predicted by the model. The goal of the model is to steer four 

meters to the left, beginning at time 0. Black: high 𝑡0; green: high 𝑘𝑓, Red: high 𝑘𝑛, Blue: High 𝑘𝐼.  

4.3 Estimating parameters using the two-point model of steering 
To reveal individual driver’s profiles, we optimize the set of parameters that best describe the steering 

behavior of every individual. To this end, we predict the lateral deviation of a car under a set of 

parameters, and minimize the mean squared distance between the observed lateral deviation and the 

predicted lateral deviation.  

The lateral deviation depends on the change in angle and the speed of the car in the following way: 

Δ𝑥 = 𝑣 tan(𝜑) Δt 

With v the speed of the car (in m/s). 

Because of the complexity of the parameter space, we applied particle swarm optimization (Clerc, 

2010). Preliminary parameter recovery studies with simulated data revealed that the data-generating 

parameters were recovered with high accuracy. 

The parameters were optimized for all time series of all conditions and individuals, excluding trials in 

which participants either did not change lanes, or started from the incorrect lane (3.4%). All time 

series were down sampled to 20 Hz, to obtain Δt=50ms, which has been argued is the update time of 

the human cognitive system (Anderson, 2007; Salvucci & Gray, 2004; Stocco, Lebiere & Anderson, 

2010) 
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4.4 Results 
The model fits the data extremely well. Figure 7 (left) shows two example participant’s lane deviation 

during a leftward lane change, which overlaid the model predictions according to the best fitting 

model parameters. Although the model does not account for brief movements of the car, it captures the 

overall pattern of the movement. The right panels of Figure 7 illustrate that the model does 

underestimate the steering angle that the car makes. Nevertheless, the model predicts important 

features of the steering behavior on which it was not fit. Figure 8 shows that the delay period predicts 

the initial reaction time T1. The initial reaction time was computed as the time at which the driver 

makes the first steering motion that exceeds one degree. The delay period seems to be an important 

component of T1, as it correlates strongly, but is consistently shorter.  

 

Figure 7. Two example participants with different steering profiles are fit by the model. Left: 

Observed (black) and predicted lateral deviation from the initial road location. Dashed lines indicate 

the initial road location and the final road location. Right: Observed (black) and predicted (red) 

steering angle. Dotted line indicates that steering wheel is in the upright position. 
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Figure 8. The TPVCM predicts initial (T1) and final (T2) reaction times. A. Correlation between the 

T1 computed from the data and delay period 𝑡0 from the model. B. Correlation between T2 computed 

from the data and T2 predicted by the model. The blue lines indicate regression lines; The dashed lines 

indicate identity lines. 

 

4.5 Materials and stimuli 
Design 

Now that has been shown that the TPVCM model can be used to estimate and predict the steering 

behavior, the parameters 𝑘𝑓, 𝑘𝑛, 𝑘𝐼 and 𝑡0 will be used for further analysis. For this analysis, a 2 

(Driving speed: 80 km/h, 130 km/h) x 3 (Audio task: No audio, Repeat, Generate) within-subjects 

repeated measures (ANOVA) design was used to analyze all four parameters (𝑘𝑓, 𝑘𝑛, 𝑘𝐼 and 𝑡0) to see 

if there is an effect of speed and condition for each parameter.  A correlation analysis between the 

parameters is done to see how strong the relationship is between the parameters.  

Analysis software  

Statistics were done using R 3.6.3 (R Core Team, 2020). We used the ‘aov()’ function which is built 

into R to analyze the repeated measures ANOVA. We used the ‘ggpairs’ function which is built into R 

to analyze the correlation. The full reproducible code is available in Supplementary Materials.  

Measurements 

The analysis was done with the four parameters 𝑘𝑓, 𝑘𝑛, 𝑘𝐼 and 𝑡0. 

• 𝑘𝑓 is the parameter for the angular change of 𝜃𝑓. It contributes to the angular change between 

the direction of the car and the far point. This indicates that a driver with a relatively high 𝑘𝑓 

focusses mostly on the far point, and therefore steers more smoothly, taking more time to 

finish the lane change. 
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• 𝑘𝑛 is the parameter for the angular change of 𝜃𝑛. It contributes the angular change between the 

direction of the car and the near point.  This parameter adjusts the steering wheel movement 

on the basis of the change in the angle with the near point relative to the previous time point. 

A driver with a relatively high 𝑘𝑛 minimizes the angle between the car and the near point, 

resulting in a relatively abrupt steering motion. 

• 𝑘𝐼 is the parameter for the angular change of 𝜃𝑖. This parameter adjusts the steering wheel 

movement relative to the angle with the near point. Thus it enables the driver to steer to the 

near point.  When the 𝑘𝐼 is relatively high, the driver tries to maintain the bearing to the near 

point, there is less focus on the change in angle. Therefore, the steering motion requires 

overcompensation once the target lane is reached.  

• 𝑡0  is the delay period. With this we assume a visual processing time that leads to a delayed 

response to visual events that happen while driving.  

 

5. Results additional analysis 3  
Figure 9A presents the parameter 𝑘𝑓 in all conditions. There was a significant effect of speed on 𝑘𝑓  

F(1, 19) = 9.98, p < .01.  A post hoc test confirmed that the parameter was smaller in the 80 km/h  

condition (M = 0.69, SD = 0.58) than the 130 km/h (M = 1.01, SD = 0.540, p < .001). There was no  

significant effect of condition on 𝑘𝑓, F(2, 44) = 2.26, p > .1. Furthermore, there was no significant  

interaction between speed and audio condition, F(2, 46) = 1.94, p > .1.  

 Figure 9B shows parameter 𝑘𝑛 in all conditions. There was a significant effect of speed on 

𝑘𝑛 F(1, 19) = 101.69,  p < .001.  A post hoc test confirmed that the parameter was bigger in the 80  

km/h condition (M = 1.05, SD = 0.46) than the 130 km/h (M = 0.38, SD = 0.31, p < .001). However,  

there was no significant  effect of condition on 𝑘𝑛 F(2, 44) = .60,  p> .1 and also no significant interaction effect  

between speed and condition,  F(2, 46) = 1.58, p > .1. 

 Figure 9C presents parameter 𝑘𝐼 in all conditions. There was a significant effect of speed on 

𝑘𝐼 F(1, 19 ) = 101.65,  p < .001. A post hoc test confirmed that the parameter was bigger in the 80  

km/h condition (M = 1.11, SD = 0.44) than the 130 km/h (M = 0.35, SD = 0.32, p < .001). But there  

was no significant  effect of condition on 𝑘𝐼 F(2, 44) = .122 , p > .1 and no significant interaction  

effect between speed and condition F(2,46) =.621,  p > .1.  

 Figure 9D shows the parameter 𝑡0 in all conditions. There was no significant effect of speed 

on 𝑡0, F(1,19) = 0.12, p > .1. In addition, there was no significant effect of condition on 𝑡0  

F(2,44) = 0.92, p >.1. Finally, there was no significant interaction effect between speed and condition  

F(2,46) = 2.49, p > .1.  
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Figure 9. (A) Bar graph of the average 𝑘𝑓 values. The graph shows that participants have a higher 𝑘𝑓 

value in the 130 km/h condition. (B) Bar graph of the average parameter 𝑘𝑛. The graph shows that 

there was a significant difference between the speed conditions. (C) Bar graph of the average 𝑘𝐼 

values. The graph shows that participants have a bigger 𝑘𝐼 value in the 80km/h condition than in the 

130km/h condition. (D) Bar graph of the average 𝑡0 values. There was no significant effect found of 

either speed, condition or the interaction of those.  

 

A correlation analysis showed that there was a significant relationship between 𝑘𝑛 and 𝑘𝐼  (r = .84, p < 

.001). In addition, 𝑘𝑛and 𝑘𝑓 were significantly correlated, but showed only a weak relationship (r =  -

.23, p = .006 ).  𝑡0  and 𝑘𝑛 were not correlated which each other (r = .04, p > .1). The same results 

were fount for the correlation analyses between 𝑘𝑓 and 𝑘𝐼 (r = .-.14, p >.1),  between 𝑡0 and 𝑘𝐼  (r = 

.13, p > .1) and between 𝑘𝑓and 𝑡0 (r = .02, p >.1). The visualization of these correlations can be seen 

in figure 10.  

 

 A B 
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Figure 10. (A) The scatterplot shows a strong correlation between 𝑘𝐼 en 𝑘𝑛 (B) Correlation between 

𝑘𝑛 en 𝑘𝑓 (C) Correlation between 𝑡0  and 𝑘𝑛 (D) Correlation between 𝑘𝑓en 𝑘𝐼 (E) Correlation between 

𝑡0 en 𝑘𝐼 (F) Correlation between 𝑡0 en 𝑘𝑓.  

 

6. General discussion 
The objective of the current study was twofold because we studied the dataset of van der Heiden et al. 

(2019) in two different ways.  The first part of this paper started with analyses about individual 

differences in lane change behavior. We checked if a subscale of the TLX questionnaire could be 

responsible for the increase in cognitive distraction during lane change in different conditions. 

Furthermore, it was investigated if mental workload was a predictor of reaction time and distance. In 

the second part of this paper we analyzed the data with a different perspective. We tried to infer the 

cognitive processes which contribute to the reaction times measured in the first part of the study. This 

was done with the TPVCM of Salvucci & Gray (2004).    

The results of the first part showed that there was not a specific subscale of the TLX 

questionnaire which was responsible for the decrease in drive performance. This raises the question if 

the subscales of the TLX questionnaire are distinct enough from each other. The fact that the subscales 

strongly correlate with each other substantiates this question (Hart & Staveland, 1988).  Although the 

distinction between the subscales remains unclear, the study of Rubio et al. (2004) compared the TLX 

questionnaire to other subjective measurements and showed that the total TLX scores quite well on 

sensitivity and validity. This would implicate that only the TLX total scores can be used to measure 

workload, without specifications of the subscales. Another study of Loeches De La Fuente, Berthelon, 

Fort, Etienne, De Weser, Ambeck, & Jallais (2019) measured mental workload not only with 

subjective and behavioral measures, but also with electrophysiological measures. They suggest that an 
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increase of mental workload can have long term effects on performance but shorter effects on 

electrophysiological measures. To develop better human information processing models and safety 

systems,  both behavioral and physiological parameters should be used.  

Besides the interest in mental workload specifically, we also investigated the relationship 

between reaction time, distance and the mental workload that participants experienced. The linear 

mixed effects model showed that mental workload was not a predictor of reaction time or distance. 

Several reasons can explain these results.  

First of all, there are different ways in which the analyses could have been done. The 

limitations of the current dataset made it challenging to meet the criteria for the repeated measures 

ANOVA, linear regression, correlation or linear mixed effects model. One of the problems was the  

relatively small sample of participants. Due to this small sample, issues with power arose for almost 

every analysis.  

Secondly, although a lack of power might be part of the problem, the correlation analysis 

showed that there is not a strong relation between the reaction time, distance and mental workload. 

Thus, a very real possibility is that in fact there exists no relationship between these factors.  

Thirdly, another possible explanation might be the problem of a very controlled task. The 

driving task, where drivers steered on a lane road without traffic, provided a well-controlled 

environment in which we looked specifically at the effects of a secondary task on lane change 

performance. However, it is clearly important to extend this work to more complex domains that 

would better represent real-world driving situations where more cognitive distraction is available 

(sight, other cars etc.). This could, in combination with more and different forms of secondary tasks, 

lead to different results (Pavlidis, Dcosta, Taamneh, Manser, Ferris, Wunderlich & Tsiamyrtzis, 2016). 

In the final analysis, a different approach was used to study driving behavior. The two point 

visual control model of steering (TPVCM) of Salvucci & Gray (2004) was used to answer the third 

research question and to observe and predict steering wheel behavior. The final analysis showed that 

the data fitted the model well. An important finding of these results is that the delay period which is 

used in the model, predicts the initial reaction time (T1) very well. Thus the delay period seems to be 

very important for T1. Lastly, a novel analysis was done to see if speed and condition had an effect on 

the parameters of the steering model. The results showed that the values of 𝑘𝑓   increased when the 

participant drove faster, which seems logical since the driver needs more time to steer smoothly to the 

other lane at higher speed. In addition, for the 𝑘𝑛 parameter the opposite effect was seen. This seems 

again logical, the driver can steer more abruptly at a lower speed. In addition, the 𝑘𝐼values increased 

when the speed was slower. The correlation analysis showed that only 𝑘𝑛 and 𝑘𝐼  were highly 

correlated. This seems logical since 𝑘𝐼  enables the driver to steer to the near point, and 𝑘𝑛 adjusts the 

steering wheel movement on the basis of the change in the angle with the near point. The results of all 

these parameter analyses mean that drivers tend to shift from focus from the near point to the far point 

when they start driving faster. Furthermore drivers steer less abruptly when they drive faster with a 
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focus on the far point. This effect of the speed on steering wheel amplitudes  is in line with earlier 

findings (van Winsum, de Waard, & Brookhuis, 1999; Käppler, 1986).  This partly confirms our third 

hypothesis, namely that speed affects the abruptness of steering wheel behavior.  

 In conclusion, the goal of current research was to examine lane change behavior in two 

different ways; first with the focus on individual differences and in the second part with a focus on the 

underlying cognitive processes. Although we did not find differences in the TLX subscales and can 

not state that mental workload is a predictor of reaction time or distance, we did find promising results 

in de second part of the study. We  did not only demonstrate that the model from Salvucci & Gray 

(2004) can be used to observe and predict steering wheel data, we also showed that  drivers tend to 

shift from focus from the near point to the far point when they start driving faster. Furthermore drivers 

steer less abruptly when they drive faster. This information can be used to design safer roadways and 

enhance safety systems in cars by incorporating these cognitive processes.  
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9. Supplementary materials 
 

Research question 1: reaction time 

###stap1 : inladen van allData file 

load("~/Thesis/allData file/allData.Rdata") 

View(allData) 

###stap 2: RT_change1 aanpassen 

RTchange1 <- replace(allData$RT_change1, allData$RT_change1<100, NA) #alle waarden onder 100 

eruit halen en NA maken 

#de juiste, staat niet in allData 

RTchange1 <- RTchange1/1000 #de juiste, staat niet in allData 

###stap 3: nieuw dataframe gemaakt met de nieuwe kolom reactietijden 

allDatanew <- cbind(allData, RTchange1) 

###stap 4: verwijder allData 

###stap 5: eerst gemiddelde RTchang1 berekenen 

meanRT <- aggregate(RTchange1 ~ speed + trial + PPN, mean, data=allDatanew) 

###stap 6: repeates measurements anova uitvoeren voor RTchange1 

anova1 <- (aov(RTchange1 ~ speed*trial + Error(PPN/(speed*trial)), data=meanRT)) 

summary(anova1) 

###stap 7: effectsize berekenen 

EtaSq(anova1, type = 1, anova = TRUE) 

#posthoc bonferroni  

pairwise.t.test(meanRT$RTchange1, meanRT$trial, p.adjust.method = "bonferroni") 

#descriptive statistics voor gemiddelde en sd per conditie 

aggregate(RTchange1 ~ trial, meanRT, mean ) 

aggregate(RTchange1 ~ trial, meanRT, sd ) 

#descriptive statistics per speed 

aggregate(RTchange1 ~ speed, meanRT, mean ) 

aggregate(RTchange1 ~ speed, meanRT, sd ) 

Research question 1: distance 

###stap1 : inladen van allData file 

load("~/Thesis/allData file/allData.Rdata") 

View(allData) 

###stap2 : variabelen ordenen 

RTchange4 <- allData$RT_change4/1000 #de juiste, zelfde maar dan in ms 

##berekenen van average lane change distance 

#de km/u omrekenen naar meters per seconde 
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speednew <- allData$speed/3.6  

#afstand in meters per seconde 

averagedist <- RTchange4 * speednew  

#kolom met average distance toevoegen aan allData 

allDatanew <- cbind(allData, averagedist) 

#verwijder allData (de oude) en RTchange4 en speednew 

#gemiddelde afstand berekenen per conditie 

meandist<- aggregate(averagedist ~ trial + speed + PPN, mean, data = allDatanew) 

#repeates measurements anova uitvoeren voor averagedist=gemiddelde afstand nodig voor lane 

change 

anova2 <- (aov(averagedist ~speed*trial + Error(PPN/(speed*trial)), data=meandist)) 

summary(anova2) 

#effect size 

EtaSq(anova2, type = 1, anova = TRUE) 

#posthoc bonferroni trial 

pairwise.t.test(meandist$averagedist, meandist$trial, p.adjust.method = "bonferroni") 

#posthoc bonferroni speed 

pairwise.t.test(meandist$averagedist, meandist$speed, p.adjust.method = "bonferroni") 

#descriptive statistics per conditie 

aggregate(averagedist ~ trial, meandist, mean) 

aggregate(averagedist ~ trial, meandist, sd) 

#descriptive statistics per speed 

aggregate(averagedist ~ speed, meandist, mean) 

aggregate(averagedist ~ speed, meandist, sd) 

 

Research question 1: mental workload 

#inladen excel file 

Results <-read_excel("~/Thesis/resultsv_subjective/Resultsv_subjective_adapt2.xlsx") 

View(Results) 

Results = Results[!is.na(Results$`TLX mental`),] 

View(Results) #nu zijn alle NA's verwijderd 

#gemiddelde maken van de tlx average score 

Results$tlxaverage <- Results$`TLX average` # geen spatie meer, zodat je later geen probleem krijgt 

meanTLXaverage <- aggregate( tlxaverage ~ speed + Task + Participant, mean, data = Results) 

#anova uitvoeren 

anova3 <- (aov(tlxaverage ~ speed * Task + Error(Participant/(speed * Task)), data = 

meanTLXaverage)) 
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summary(anova3) 

#effect size 

EtaSq(anova3, type = 1, anova = TRUE) 

#posthoc bonferroni trial 

pairwise.t.test(meanTLXaverage$tlxaverage, meanTLXaverage$Task, p.adjust.method = 

"bonferroni") 

#descriptive statistics per conditie 

aggregate(tlxaverage ~ Task, meanTLXaverage, mean) 

aggregate(tlxaverage ~ Task, meanTLXaverage, sd) 

#posthoc bonferroni speed 

pairwise.t.test(meanTLXaverage$tlxaverage, meanTLXaverage$speed, p.adjust.method = 

"bonferroni") 

#descriptive statistics per speed 

aggregate(tlxaverage ~ speed, meanTLXaverage, mean) 

aggregate(tlxaverage ~ speed, meanTLXaverage, sd) 

 

Research question 1: TLX mental subscale 

###TLX mental  

#gemiddelde maken van de tlx mental scores 

Results$tlxmental <- Results$`TLX mental` # geen spatie meer, zodat je later geen probleem krijgt 

meanTLXmental <- aggregate( tlxmental ~ speed + Task + Participant, mean, data = Results) 

#anova uitvoeren 

anova4 <- (aov(tlxmental ~ speed * Task + Error(Participant/(speed * Task)), data = 

meanTLXmental)) 

summary(anova4) 

 

Research question 1: TLX physical subscale 

Results$tlxphysical <- Results$`TLX physical` # geen spatie meer, zodat je later geen probleem krijgt 

meanTLXphysical <- aggregate( tlxphysical ~ speed + Task + Participant, mean, data = Results) 

 

#anova uitvoeren 

anova5 <- (aov(tlxphysical ~ speed * Task + Error(Participant/(speed * Task)), data = 

meanTLXphysical)) 

summary(anova5) 

Research question 1: TLX temporal subscale 

Results$tlxtemporal <- Results$`TLX temporal` # geen spatie meer, zodat je later geen probleem 

krijgt 
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meanTLXtemporal <- aggregate( tlxtemporal ~ speed + Task + Participant, mean, data = Results) 

 

#anova uitvoeren 

anova6 <- (aov(tlxtemporal ~ speed * Task + Error(Participant/(speed * Task)), data = 

meanTLXtemporal)) 

summary(anova6) 

 

Research question 1: TLX effort subscale 

###TLX effort 

Results$tlxeffort <- Results$`TLX effort`# geen spatie meer, zodat je later geen probleem krijgt 

meanTLXeffort <- aggregate( tlxeffort ~ speed + Task + Participant, mean, data = Results) 

 

#anova uitvoeren 

anova8 <- (aov(tlxeffort ~ speed * Task + Error(Participant/(speed * Task)), data = meanTLXeffort)) 

summary(anova8) 

 

Research question 1: TLX frustration subscale 

###TLX frustration 

#gemiddelde maken van de tlx frustration scores 

Results$tlxfrustration <- Results$`TLX frustration` # geen spatie meer, zodat je later geen probleem 

krijgt 

meanTLXfrustration <- aggregate( tlxfrustration ~ speed + Task + Participant, mean, data = Results) 

 

#anova uitvoeren 

anova9 <- (aov(tlxfrustration ~ speed * Task + Error(Participant/(speed * Task)), data 

=meanTLXfrustration)) 

summary(anova9) 

 

 

Research question 1: TLX Performance subscale 

#gemiddelde maken van de tlx performance scores 

Results$tlxperformance <- Results$`TLX performance` # geen spatie meer, zodat je later geen 

probleem krijgt 

meanTLXperformance <- aggregate( tlxperformance ~ speed + Task + Participant, mean, data = 

Results) 

 

#anova uitvoeren 
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anova7 <- (aov(tlxperformance ~ speed * Task + Error(Participant/(speed * Task)), data = 

meanTLXperformance)) 

summary(anova7) 

 

 

Research question 2: LMM 

###stap 1: dataset inladen 

load("~/Thesis/allData file/allData.Rdata") 

###stap 2: de juiste variabelen  

#RT_change1 

RTchange1 <- replace(allData$RT_change1, allData$RT_change1<100, NA) #alle waarden onder 100 

eruit halen en NA maken 

RTchange1 <- RTchange1/1000 #nog delen door 1000, de juiste, staat niet in allData 

#RT_change4 

RTchange4 <- allData$RT_change4/1000 #de juiste, zelfde maar dan in ms 

#nieuw dataframe gemaakt met de nieuwe RTchange1 en RTchange4 

allDatanew <- cbind(allData, RTchange1, RTchange4) 

#verwijderen allData dataframe 

###stap 3: eerst gemiddelde RTchang1 berekenen 

meanRT <- aggregate(RTchange1 ~ speed + trial + PPN, mean, data=allDatanew) 

###stap 4: gemiddelde average distance berekenen 

#stap4a: afstand berekenen 

#de km/u omrekenen naar meters per seconde 

speednew <- allDatanew$speed /3.6  

#afstand in meters per seconde 

averagedist <- RTchange4 * speednew  

#verwijderen van speednew en RTchange4 

#kolom met average distance toevoegen aan allDatanew 

allDatanew <- cbind(allDatanew, averagedist) 

 

#stap 4b: gemiddelden berekenen adhv aggregate 

#de gemiddelden afstand berekenen per proefpersoon 

meanaveragedist <- aggregate(averagedist ~ speed + trial + PPN, mean, data=allDatanew) 

###stap 5: dan gemiddelde meanmentalworkload berekenen 

library(readxl) 

#eerst file laden 

Results <-read_excel("~/Thesis/resultsv_subjective/Resultsv_subjective_adapt2.xlsx") 
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Results = Results[!is.na(Results$`TLX mental`),] #alle NA's verwijderen 

#even anders benoemen  

Results$tlxaverage <- Results$`TLX average`  

meanmentalworkload <- aggregate(tlxaverage ~ speed + Task + Participant, mean, data=Results) 

### lmer met mental workload as predictor for RTchange1 

analyse <- lmer(meanRT$RTchange1 ~ meanmentalworkload$tlxaverage * meanRT$trial * 

as.factor(meanRT$speed) + (1|meanRT$PPN)) 

summary(analyse)  

EtaSq(analyse, type = 1, anova = TRUE) 

###lmer met mental workload as predictor for average distance 

analyse2 <- lmer(meanaveragedist$averagedist ~ meanmentalworkload$tlxaverage * 

meanaveragedist$trial * as.factor(meanaveragedist$speed) + (1| meanaveragedist$PPN))  

summary(analyse2) 

 

Research question 3;  

load("~/Thesis/deel 2 stuurmodel/fit3.Rdata") 

####Analyse voor parameters#### 

###---kf----### 

#stap 1: gemiddelde score berekenen voor kf  

meanparameterkf <- aggregate(kf ~ speed + cond + ID, mean, data = fit) 

#stap 2: anova uitvoeren voor kf  

anova1 <- (aov(kf ~ speed*cond + Error(ID/(speed*cond)), data=fit)) 

summary(anova1) 

#posthoc  

pairwise.t.test(meanparameterkf$kf, meanparameterkf$speed, p.adjust.method = "bonferroni") 

aggregate( meanparameterkf$kf ~ speed, meanparameterkf, mean ) 

aggregate( meanparameterkf$kf ~ speed, meanparameterkf, sd )  

 

 

###----kn----### 

#stap 3: gemiddelde score berekenen voor kn 

meanparameterkn <- aggregate(kn ~ speed + cond + ID, mean, data = fit) 

#stap 4: anova uitvoeren voor kn  

anova2 <- (aov(kn ~ speed*cond + Error(ID/(speed*cond)), data=fit)) 

summary(anova2) 

#posthoc 

pairwise.t.test(meanparameterkn$kn, meanparameterkn$speed, p.adjust.method = "bonferroni") 
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aggregate( meanparameterkn$kn ~ speed, meanparameterkn, mean ) 

aggregate( meanparameterkn$kn ~ speed, meanparameterkn, sd ) 

###----ki----### 

#stap 5: gemiddelde score berekenen voor ki 

meanparameterki <- aggregate(kI ~ speed + cond + ID, mean, data = fit) 

#stap 6: anova uitvoeren voor kI 

anova3 <- (aov(kI ~ speed*cond + Error(ID/(speed*cond)), data=fit)) 

summary(anova3) 

#posthoc 

pairwise.t.test(meanparameterki$kI, meanparameterki$speed, p.adjust.method = "bonferroni") 

aggregate( meanparameterki$kI ~ speed, meanparameterki, mean ) 

aggregate( meanparameterki$kI ~ speed, meanparameterki, sd ) 

####----t0----#### 

#stap 7: gemiddelde score berekenen voor T0 

meanparameterT0 <- aggregate(t0 ~ speed + cond + ID, mean, data = fit) 

#stap 8: anova uitvoeren voor T0 

anova4 <- (aov(t0 ~ speed*cond + Error(ID/(speed*cond)), data=fit)) 

summary(anova4) 

 

 

 


