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Abstract

In Multi-Agent Reinforcement Learning (MARL), social dilemma en-
vironments make cooperation hard to learn. It is even harder in the case
of decentralized models, where agents do not share model components.
Intrinsic rewards have only been partially explored to solve this problem,
and training still requires a large amount of samples and thus time. In an
attempt to speed up this process, we propose a combination of the two
main categories of intrinsic rewards, curiosity and empowerment. We per-
form experiments in the cleanup and harvest social dilemma environments
for several types of models, both with and without intrinsic motivation.
We find no conclusive evidence that intrinsic motivation significantly al-
ters experiment outcomes when using the PPO algorithm. We also find
that PPO is unable to succeed in the harvest environment. However, for
both of these findings we only show this to be the case without hyperpa-
rameter tuning.
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1 Introduction

One of the major challenges in Reinforcement Learning (RL) is that of sparse
rewards: an agent cannot learn complex behavior if the environment provides
too few informative learning cues [1, 5, 17, 40]. However, many environments
where automation through RL is highly desirable have this challenging property.
To name a few: driving a car, warehouse package picking, automated farm and
construction work. All of these environments have fairly well-defined end goals,
but the space of possible intermediate states and steps towards the goals is huge,
making it hard to define appropriate learning cues.

When we want an agent to learn some task, we provide it with an extrinsic
reward. Extrinsic rewards are the goals we generally have in mind when thinking
of completing a task: beating the level in Mario, scoring points in your favorite
ball game. These goals have proven to be useful, but profoundly inadequate
when used alone for learning nontrivial tasks. This is because extrinsic rewards
are usually sparse: the event of success consists of a complex sequence of steps
leading up to that event. Only upon success the agent is rewarded - this rarely
happens. Thus, we want to provide the agent with a reward at every step in time.
Unfortunately, the problem spaces for many interesting tasks are impossibly
large for humans to manually annotate with reward scores.

To alleviate this problem, the concept of intrinsic motivation has been intro-
duced. Intrinsic motivation is supposed to supply the agent with a continuous
stream of rewards. This lets the agent explore both its internal states and
its external environment in a somewhat structured, yet environment-agnostic
way. Moreover, it has been shown to make learning the extrinsic goal easier
[5, 40]. Intrinsic motivation can be subdivided into 2 categories: curiosity and
empowerment [24, 42].

Jaques et al. [23] have employed empowerment in Sequential Social Dilemma
[28] environments, specifically cleanup and harvest. Respectively, these are
multi-agent Commons Dilemma (CD) and Public Goods Dilemma (PGD) sce-
narios where cooperation is needed for individual success. They demonstrated
that their type of empowerment, social influence, can make agents learn coop-
eration, where agents without social influence fail. However, they state that
their intrinsic motivation itself only sparsely doles out rewards. Additionally,
they only tested empowerment as an intrinsic motivation, not curiosity. The
work of de Abril and Kanai [12] used both curiosity and empowerment, but
only sequentially, not simultaneously. Finally, the environment they used was
single-agent, not multi-agent.

This gives rise to the question:

How do agents perform when using a combination of curiosity and em-
powerment in the cleanup and harvest environments?

Performance is measured in terms of how high the total reward is at the end of
training.

This work builds upon the existing tactic of dealing with reward sparsity:
intrinsic motivation. We attempt to improve upon the models of intrinsic mo-



tivation defined by Jaques et al. [23] and Pathak et al. [40]. To do so, we first
reproduce parts of the work of Jaques et al. [23] with the PPO algorithm in-
stead of A3C, which gives surprisingly different results: the choice of model
seems not to matter. Following this, our novel contribution is the application of
curiosity to the empowerment reward, which we dub the Social Curiosity Mod-
ule (SCM). We run experiments on the SCM, on a baseline PPO model, and
on the social influence model of Jaques et al. [23]. We do not find statistically
significant evidence that the mean performance of these models is different after
5e8 environment steps.

The next chapter contains all the background knowledge that we will build
upon. After this we describe our proposed method. Subsequently the experi-
ment setup and results are presented. In the penultimate section we compare
the experiment results with related work, then we finish up with a conclusion
which includes suggestions for future work.

2 Background

Before we dig into our new method, let’s flesh out what the previously mentioned
terms formally mean. We’ll do this step by step with ample examples, where
every subsection of this chapter covers one major topic. After reading this
chapter, you should be able to understand how our proposed method fits within
existing literature and concepts.

2.1 Reinforcement learning

To begin with the general field this topic is situated in: Reinforcement Learning
(RL). To visualize this, imagine a computer simulation with an agent (an in-
dividual character) in an environment. For example, a computer program that
is learning how to play Super Mario Bros. The agent constantly observes its
environment, and upon taking in an observation it decides what to do next.
This mapping from observation to action is called a policy.

How does it decide what to do? We give it a goal. However, we do not
give it explicit step-by-step instructions on how to achieve said goal. Instead,
we make the agent learn: by running the simulation over and over again, and
letting the agent evaluate and update its own behavior over time. The learning
is thus done by repeated trial-and-error: all the while reinforcing desirable, and
punishing undesirable behavior. We call this Reinforcement Learning (RL) [48].

In RL, the goal of an agent is encoded as a human-created reward function.
This function takes in an observation of the agent, and returns a score indicating
how well it is doing. In other words, when the agent makes an observation, it
can thus determine whether it is on the right track by consulting its reward
function. In this way, an agent learns from its past actions and experiences.
For example, if you want to make an agent learn how to play Pong, you could
provide it with a positive reward for scoring a point, and give it a negative
reward for letting the opponent score a point.



2.1.1 Markov Games

RL problems are formalized as Markov Games (MGs) [30], also known as Stochas-
tic Games. Let’s look at the components that make up a MG, then we’ll go
through how they are used. The discrete, finite case of MGs wraps up all the
above ideas in the following formal terms: An n-player Markov Game M has
n players, where n > 0. M has a set of possible environment states S. Each
player i € {1,...,n} has a set of allowed actions A* they can take each turn,
and every player must execute a single action from their own set each turn. All
possible action combinations of all players combined are called the collective
action space, denoted by A = A! x ... x A"

The transition function T tells us how to update the game world each turn.
To do this, it takes in any combination of a state and player actions: T : Sx.A —
A(S). The output, A(S), is a set of discrete probability distributions over S.
In less fancy words: A(S) tells us what the probability of every single possible
state is. Thus, for any given state, A : S — [0,1]. To obtain the next state, we
can then sample A(S). When the state transition contains random elements,
we call it a stochastic state transition function. If it contains no such elements,
it’s called deterministic instead of stochastic.

Upon observing a state, all n players must choose an action a from their re-
spective action sets. Together, they form the joint action @ = (a' € Al,... a" €
A™). These actions are made independently and simultaneously: only after all
players have chosen an action, they observe each other’s actions. By default,
Markov Games are played with full observability: players can always observe
each other’s actions at the end of each turn, and every player can see the entire
state. This means that in normal Markov Games, every player’s observation
is identical: think of a board game like chess or Go. Deviating from this rule
means the game is a Partially Observable Markov Game (POMG).

POMGs need a way to determine what each player sees: this is done through
the observation function in eq. (1). The complete possible observation space for
agent ¢ is then given by eq. (2). All agents’ simultaneous observations form the
joint observation & = (o, ...,0"). Note that regular Markov Games are specific
instances of POMGs, where the observation function always returns the entire
state.

O0:8x{l,...,n} - O (1)
0" ={0'(s)|s € S,0' = O(s,i)} (2)
O:8x{l,...,n} - R? (3)

Since we’re going to be using a computer to simulate these games, we can
make our life easier by redefining the observation function in a slightly stricter
way, as shown in eq. (3). This observation function produces a d-dimensional
view of the game world for the specified player. In other words, the dimension
parameter d determines how many real numbers the agent receives as input data
on each observation. For example, a 4 X 5 pixel observation with a red, green,
and blue value for each pixel will have a d =4 -5 -3 = 60. Although the strict



definition of POMGs does not require a mapping to R, sticking to this makes
computation easier.

Finally, the game needs a goal or win condition, which is provided by a
reward function for every player ¢, namely r* : S x A — R. This concludes
the environment simulation itself. However, the environment is only one of the
components that make up RL! For one, we have yet to discuss how agents choose
actions, which is covered in the next section.

2.1.2 Policies

What determines how agents choose actions in Reinforcement Learning? Poli-
cies! To select an action, a RL agent 4 consults their policy 7*. The policy takes
in the agent’s observation O and produces a discrete probability distribution
over i’s action set: 7' : O — A(AY).

We can write the policy as follows: 7?(a’|o’). What this notation means in
the following: the policy of agent ¢ produces a probability for each of i’s actions
a’, conditional on the observation o made by i. The joint policy is written as
7(.|0) = (zt(.|o!),..., 7N (.]o")), where . stands for the random action variable.

Just like with the previous distribution, A(A?) — [0, 1], so we can sample it
to obtain the next action. Deterministic policies exist, though these are usually
indicated by the character p instead of 7 [29, 32], and they provide a direct
mapping from observation to action, like so: p’: O — At

It is hard to find the correct policy. We can’t simply try to maximize reward
at every single step in time, because any action the agent undertakes changes
what states it can end up in afterwards. Actions have consequences: only consid-
ering the present does not make for good long-term planning. However, looking
too far ahead is not feasible either, as this quickly becomes too computationally
expensive.

Also, recall that the game is stochastic - there’s randomness involved! Any
future reward may thus be uncertain. Moreover, some games have a set amount
of turns after which they end, other games can go on forever, and then there are
the games that may end randomly. How could you possibly choose an optimal
policy if you don’t even know when the game ends?

To figure out how to choose a good policy, we have to consider the uncertainty
of future rewards. We all have the tendency to value immediate rewards higher
than rewards that come later. This is not irrational, because our ability to
predict the future is far from perfect. It can be uncertain whether we will
still need something, whether the reward will still be there, whether others will
uphold their word, even whether we are are still alive after a set amount of time.
For an agent, the simulation it exists in could end at any moment. Because of
this uncertainty, immediate rewards should have a higher priority than delayed
ones, as the delayed rewards may fall through. In humans, this is the reason
that immediate gratification is generally more salient than delayed gratification.

This is called time discounting, or time preference: a high time preference
means liking rewards now much better than rewards later. For instance, when
choosing between getting some amount of money now, or twice that amount



in a year, many people will opt for the quicker cash. Conversely, a low time
preference is still inclined to devalue rewards that are in the future, but to a
lesser degree. Having a lower time preference makes you more willing to plan
ahead for rewards later in time. Humans display a positive time preference in
very simple black and white situations [13]. There is not a single formula to
predict human time discounting for all situations though. For instance, when
choosing between mirrored sequences of increasing or decreasing reward, people
will often choose the former [31]. This contradicts the model of “reward now
good, future reward bad”.

It would be nice to give agents some elementary version of time discounting
as well, as it is evidently a useful skill. Time discounting in RL is commonly
represented as the parameter v € (0,1] [48]. The discounted reward function
then becomes ~*-r. In other words: for any reward r that is ¢ steps in the future,
we don’t value it fully at 1-r , but at 4 - r. This reduces the value of rewards
more, the further away they are in the future, as long as 0 < v < 1. Note that,
paradoxically, higher time discounting means using a lower v. What economists
call negative time discounting (future rewards are better than instant rewards),
implies that v > 1.

Note that neither a high nor low time preference is inherently good or bad:
they are appropriate for different types of situations. For instance, if your
environment is chaotic and violent, it makes sense to have a high time preference.
There is no sense in making long-term plans if you die young, so you'd better live
fast. Conversely, if you live in a very peaceful, predictable world that allows you
to plan for the future with low uncertainty, low time preference allows for more
complex behavior with a potentially larger payoff, despite increased sparsity of
individual reward moments.

With time discounting in hand, we almost have a way to tell our agents how
to learn: by looking for the policy 7 that returns the maximum expected value
for the discounted reward function. Why expected? Because it’s still stochastic,
we can’t be certain that our efforts will be rewarded.

Learning happens based only on the agent’s observations o’ = O(s,i) and
its received reward r%(s,@). The goal that every agent now works towards is
maximizing the expected discounted reward, shown in eq. (4) below. In this
formula, expressions with the form = ~ y mean x sampled from y.

(o)
Vi(so) =B | v (se,@)|d ~ 7o, 5041 ~ T (51, ) (4)

t=0
If we didn’t have v < 1, think of what would happen to our optimization
function above. The estimated reward could sum to positive or negative infinity,
and would therefore be useless for optimization. If time goes on forever, to
maximize reward, you only need the tiniest amount of expected reward per
turn: eventually it will sum to infinity anyway. The agent would not be able to
distinguish between different infinite returns, and might settle on a policy that
only returns the tiniest rewards. Ideally we’d like agents that do better than

the bare minimum!



Note that estimated reward methods other than time discounting exist: if we
know at what timestep the simulation ends it does not make sense to discount
any reward, so we can set v to 1. This is called a finite-horizon method [48].
On the other hand, if we assume our simulation will run for an infinite amount
of time, yet we still want an optimization target, we can consider the average
reward per period. These can be created with Cesaro sums[2]. However, the
discounted reward function is mathematically simpler[48], which in part explains
its relative popularity compared to other optimization methods.

We can now plug our optimization function into an optimization algorithm,
which lets an agent learn. In RL, policy gradient algorithms have proven to
be effective optimizers. These are implemented using neural networks, as such
these are the focus of the next section.

2.1.3 Neural networks

Now that we have a function to optimize for, let’s find out how the actual policy
learning process goes. Recall the expectation function in eq. (4). We want to
maximize the expected discounted reward so that our agent starts performing
some desired behavior.

To do this, we use Neural Networks (NNs). The policy is represented by
this NN, and maps observations to actions. For continuous actions, the neural
network directly outputs the given actions. For discrete actions, it outputs an
action distribution which we can then sample from.

To summarize the learning process: first, we create and initialize an NN
with random variables. We let the agent collect experience: tuples of 2 states
(at t and ¢t + 1), the chosen action and the reward value obtained in that state
transition. In short: (s, S¢+1,a¢, 7). Experience is collected by running the
simulation, while the (randomly initialized) policy chooses an action at every
step.

The experience is concatenated into a list of experience called a trajectory.
From this trajectory, a scalar loss value is calculated. Loss corresponds to
model error: the goal of the optimization process is to minimize the loss. In
RL specifically, we want to minimize the loss over any future states we might
encounter.

With this loss value, Stochastic Gradient Descent (SGD), Adam [25], or
a different optimization function is performed on the NN. Then, the updated
NN is used to collect more experience, and the loop repeats. This goes on
indefinitely until some user-defined stopping criterion is reached. How exactly
the loss is calculated varies per model architecture and choice of reward function.
We'll get to reward functions in section 2.2, and the main categories of learning
algorithms in RL are presented in the next section. Before this however, there’s
one challenge for NNs we have to discuss: time.

Basic NNs are terrible at remembering previous events. Namely: they don’t.
However, many RL problems span more than just a few timesteps! Learning a
good policy can require you to know what specifically happened some amount
of states ago.



To tackle this issue, Recurrent Neural Networks (RNNs) were first used [18].
These networks feed their output back into themselves, allowing them to access
data from past evaluations. You can plug an RNN layer into your model between
other layers, allowing you to add it to existing model architectures. However,
RNNs take extremely large amounts of data to train, and are sensitive to the
delay between information storage and retrieval.

To solve these shortcomings, the Long-Short Term Memory (LSTM) was
conceived by Hochreiter and Schmidhuber [18]. Like the RNN, the LSTM is a
pluggable NN layer. It internally utilizes RNNs, and still requires a high amount
of training data, though far less so than RNNs do. Thankfully, in RL we can
generate as much training data as we want, which makes LSTM use feasible.
Secondly, LSTMs can learn how long they need to store information for - a
feature that RNNs lacked. Just like with RNNs, an LSTM component can be
plugged in between neural network layers.

With that out of the way - onwards to the main categories of policy-finding
algorithms that can be implemented using these NN architectures.

2.1.4 Policy learning algorithms

There are currently two main flavors of learning algorithms (also called learning
methods) within RL: policy gradient, and action-value methods [48].

Action-value methods are commonly known as Q-learning. It learns the
quality or Q-value of state-action pairs. This Q-value represents the expected
discounted reward for all states after s; when action a is taken in state s;. The Q-
value is then used by an algorithm to determine the actual policy. The algorithm
e-greedy is commonly used, which at each environment timestep generates a
random number v between 0 and 1. If v < €, it chooses a random action.
Otherwise, it chooses the action with the highest Q-value for that state.

Policy gradient methods directly represent the policy in a NN. These algo-
rithms have the benefit of more efficiently representing continuous action spaces
(as opposed to discrete ones), as well as the ability to explicitly learn a stochas-
tic policy [48]. However, action-value methods do not require a NN, and are
generally more stable and quick to learn.

Each policy gradient algorithm comes with its own loss function. There exist
numerous policy gradient algorithms [50], varying in computational complexity,
simplicity of implementation, and performance across different tasks. Both Q-
learning an policy gradient methods see use in research, and both are still being
improved upon. However, in this section we will mostly focus on policy gradient
algorithms, because the research by Jaques et al. [23] that we will be building
on later utilizes only those.

To formally define the Q-value, we need the state-value function, denoted
as V(s). For any given state s, the state-value function V'(s) represents the
expected discounted reward of a state (without an action). The Q-value is
then:

Q(st,a) = E[Ttﬂ + VV(StJrl)] (5)
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(Q-)Value functions have an issue - they can have large variance. Imagine
a bonus level of a game where an agent is showered with coins, which provide
high reward. If the rest of the level contains few coins, the bonus level is likely
to greatly distort the learning process, as there is a sudden gigantic influx of
reward. Additionally, imagine a situation where an agent is given 101 reward
if it chooses the correct action. If it chooses the wrong action, it receives 100
reward. There hardly is a difference, yet we would like the agent to be strongly
incentivized to learn the correct action.

To solve this problem, the concept of advantage was coined. The advantage
does not look at the absolute reward value, but instead at the relative quality.
This requires the Q-value, Q(s,a) from eq. (5). The advantage function A is
the following:

A(s,a) = Q(s,a) = V(s) (6)

In the 101 vs 100 reward example above, the 100 reward would be subtracted
out. Therefore, the advantage of choosing the correct action would be 1, and
for other actions 0. This leads to far smoother policy updates, which benefits
learning.

Nearly all policy gradient algorithms use an Actor-Critic approach [48].
Though the Actor-Critic structure predates neural networks, it can be rep-
resented in one. To do this, the NN architecture is structured in such a way
that both the policy (actor) and value function (critic) are learned. The policy
output is then represented as a set of probabilities over a discrete set of actions,
or a value per continuous action. The value function output is a real number.
The rationale between separating learning the policy and value function is that
it becomes easier to explicitly guide the learning process. If only a policy is
learned, the value of states is implicitly embedded in the policy: this way we
cannot reliably judge how good every individual action is, only how good sets
of actions are.

To give an example of how the value can be used: given a trajectory and
a policy, the A2C algorithm by Wu et al. [53] multiplies this number by the
log probability of the action-state pairs in that trajectory when using the given
policy, then flips the sign. The resulting value is the policy loss for that step.
The actor and critic are learned in two different networks, though these networks
may share (many) parameters. Whether parameter sharing is a good idea or not
depends on the learning algorithm used. For instance, when sharing parameters
in Proximal Policy Optimization (PPO), the loss generated by the value function
must be scaled, otherwise performance degrades [47].

You can choose which value function you want your critic to learn: if it learns
the Q-value, it is Q-Actor critic, when choosing the advantage function it’s called
Advantage Actor Critic (A2C) [53]. The latter algorithm was derived from an
asynchronous version called A3C [36], but it was found that the synchronous,
deterministic variant A2C achieved equal performance.

But wait, didn’t the advantage function A require both the value function
V', as well as the Q-value? Learning both V" and @ would be inconvenient, we’d

11



require three networks in total. Fortunately, there is a way around this: recall
that we can write @ in terms of V through eq. (5). This way we don’t need to
learn @ at all, by learning V:

A(s,a) = rep1 + 9V (S141) — V(st) (7)

To reduce variance even further, Generalized Advantage Estimation (GAE)
was devised by Schulman et al. [46], which is usable on top of A2C.

When updating a policy, it is wise to make only small changes to the behavior
generated by that policy. Doing otherwise destabilizes the learning process,
which is a common problem in RL. Schulman et al. [47] created a method that
does exactly that: Proximal Policy Optimization (PPO). It clips neural network
updates when the change in behavior would be too large. PPO does this in a
pessimistic fashion - when the agent experiences states with highly negative
advantage the update goes as it normally would, unclipped. In contrast, when
an agent is confronted with states with a very high advantage, it cautiously
updates the policy, not allowing for any drastic changes.

This pessimism has the following rationale: if you are doing well already,
why change your behavior too much? And when doing poorly, you’d better
start doing something else fast. This mirrors the Win or Lose Fast (WoLF)
algorithm coined by Bowling and Veloso [4], based on the same premise: learn
quickly while losing, slowly while winning. In addition to this, PPO is able to
re-use the same samples multiple times, which is done by splitting batches of
experience into smaller pieces, then repeatedly running the neural net optimizer
on these so-called minibatches. Because the updates are small, this does not
result in destabilized learning.

A final problem we will visit is that of premature convergence. If an agent
ceases to explore too quickly, it gets stuck repeating the same behavior, never
reaching potentially better policies. To remedy this, the concept of entropy is
often used. Entropy in this context relates to how random a policy is: if all
actions an agent can undertake are equally likely for a given state, the entropy
for that state is maximal. Conversely, if the likelihood for one action is extremely
high compared to the others, the entropy approaches zero.

When you reward an agent for having states with high entropy, it is more
likely to randomly explore. Too-high entropy rewards can however destabilize
the learning process. Again, a learning schedule is commonly used, where the
agent will initially be rewarded handsomely for high entropy. As training pro-
gresses, the entropy reward is slowly scaled down to a lower value. Providing an
incentive for entropy can be done in various ways: one method is subtracting
the entropy from the final loss. Another method is to include it in the reward
function, which is part of the Soft Actor-Critic (SAC) algorithm, introduced by
Haarnoja et al. [14].

This wraps up the theory on policy learning algorithms. We still haven’t
explicitly discussed how we can go from an observation to a reward however.
That’s the terrain we’ll be covering in the next section.
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2.2 Rewards and motivation

In this section, we explore the two main categories of reward functions: extrinsic
and intrinsic motivation. Furthermore, we discuss two types of intrinsic moti-
vation: curiosity and empowerment. Finally, we conclude with a look at how
intrinsic rewards resemble auxiliary tasks.

NB: When talking about an RL reward function, it is often shorthanded to
reward. On top of that, the concrete step-by-step reward value provided by a
reward function is also called reward - fortunately this term occurs much less
often, and context should make clear what is meant.

2.2.1 Extrinsic rewards

When a reward function resembles how you and I would describe the goal of a
behavior, we call it an extrinsic (or extrinsically defined) reward. It thus falls
under the category of extrinsic motivation. Note the subtle difference between
goal and reward - extrinsic rewards are a human attempt to capture a human
goal in concrete, actionable terms.

However, what the agent does with it is does not necessarily align with what
the human intends. For an amusing example, think of an agent that is rewarded
for maximizing its score in a videogame, and instead of learning to play well,
it finds an exploit that just racks up the points. This exact behavior has been
observed by Clark and Amodei [9], and in the work of Chrabaszcz et al. [8].
In the latter, it even managed to produce funky buggy visuals. While some
exploits may look like master-level play, others look like a nonsensical pointless
sequences of actions. In those cases, what’s going is that the sequence of actions
exploits bugs that manipulate the game’s memory to increase the player’s score,
therefore giving the agent large amounts of reward. It’s up for debate whether
this is a desirable outcome.

Bostrom [3] gives us a somewhat less innocent example: picture a machine
that is rewarded for maximizing the amount of paperclips in its possession.
The machine figures out that humans turning it off would impede its goal of
maximizing paperclip production, and thus it kills all humans and eventually
turns the world into paperclips, after which it sets its sights on space. It achieves
its goal, but with terrible externalities.

As you can see, giving agents an appropriate goal (reward function) is capital
H Hard. Imagine attempting to make a single agent learn to play Super Mario
Bros. What is the goal? Completing levels? What is a level, and how would the
agent recognize the completion of one? Even if you explicitly tell the agent “you
have completed the level” when it does so, there would be only one indicator of
success in the entire level: the endpoint! How would the agent know that it is
making progress towards the end, at any point in time?

None of these are trivial to define. What about collecting coins, or getting
a higher score? Well, if the final boss gives you neither score nor coins, the
agent will realistically never beat it. Worse, for every game out there, every
simulation and real-world environment, for every goal you can imagine, you

13



would have to painstakingly write down what all possible correct steps towards
that goal could be. This requires manual human annotation of impossibly large
amounts of observations.

These kinds of problems are so common in RL, that there are names for
them. When we talk about the problem of sparse rewards, we mean exactly the
Super Mario Bros. level completion problem we just discussed: level completion
is not a good indicator for learning, because it only happens after a long and
complicated sequence of steps. The rewards are too rare or infrequent to even
begin making progress towards those rewards. In other words, when rewards
are too sparse, the agent doesn’t receive enough feedback to determine whether
it is on the right track towards its goal [1, 5, 17, 40]. Imagine doing mathemat-
ics assignments, and only receiving teacher feedback on one problem for every
million you turn in. Not a great learning environment.

Then there is the problem of exploration: high-reward states may be hidden
behind several low-, zero- or negative-reward states. Agents tend to nudge
themselves out of negative-reward states because they prefer high rewards over
low ones, which means they might never reach the high-reward state. Consider
the Super Mario Bros. final boss example from above: even if beating the last
level gives a huge coin or score reward, the agent is unlikely to ever see it if the
act of fighting the boss dispenses no coins or score.

Reward functions seem to be faced with a minefield of challenges. Is there
no escape from poorly defined reward functions outside trivial environments?
Never mind that we're talking about a videogame that can be completed by a
sufficiently dedicated child, all this without giving them a goal, except maybe
telling them to have fun. And fun, in fact, is the key word here. Both children
and adults seem to be intrinsically motivated to play games for fun, and playful
behavior is not limited to humans: it can also be observed in cats, chimpanzees
and other animals [51, 52]. Nature seems to be on to something useful here -
can we give RL agents the same kind of drive? The answer is: yes!

In RL, the concept of intrinsic motivation has inspired various sub-types of
general (and thus not problem-specific) reward functions. Two distinct cate-
gories that are often named are the following: curiosity [40, 45] and empow-
erment [26, 37]. These sub-types are not set in stone, there are various ways
of categorizing them. For instance, Oudeyer and Kaplan [38] defined various
categories of intrinsic motivation, and make no mention of empowerment at all.
However, for our purposes curiosity and empowerment will suffice. We’ll dive
into them in the next three sections.

2.2.2 Curiosity

To recap, extrinsic motivation creates the following challenges: sparse rewards
make learning hard, manual annotation of environments is expensive or im-
possible, and high-reward states that are hidden behind low-reward states are
frequently left unexplored. Moreover, an extrinsic reward has to be defined
for every single separate environment - ideally, a reward function works inde-
pendently of the specific environment or problem that we are trying to solve

14



through RL.

Curiosity, a type of intrinsic motivation, has exactly the qualities that ad-
dress these issues. It is a general method of rewarding an agent, encouraging it
to explore regardless of the environment and problem it faces. Additionally, a
curiosity reward is available at every single step, so the agent can learn at every
single step.

What is the intuition behind choosing curiosity as a reward function? Chen-
tanez et al. [7] borrow this term from developmental psychology, which concerns
itself with questions such as “what is the purpose of play?”. Curiosity directs
humans and other animals to explore, play, and exhibit other behaviors when
an extrinsic reward is absent. Although curiosity might not always lead to
the development of any particular skill, it provides you with experiences and
general knowledge. These generate general competence: the ability to reason
about, and solve general sub-problems. Acquiring this competence then makes
learning specific skills easier [7]. The reasoning to model curiosity in RL then
is the following: curiosity should generate general competence in agents, which
makes learning to achieve extrinsic goals easier.

In RL, an intrinsic motivation is usually combined with an extrinsic motiva-
tion. The intrinsic motivation helps agents to learn the extrinsically defined task
more quickly: received extrinsic reward increases more rapidly when the agent
also receives a curiosity reward [40]. To facilitate this combination, learning
schedules are used. The reasoning behind this is the following: when starting
to learn, everything will be novel - at this point essentially all behavior is ex-
ploration. Thus, there is no need for an exploration reward - it would likely
drown out any extrinsic reward the agent receives at this point. Secondly, when
nearing the end of our learning process, we want to focus more on the extrinsic
reward. After all, this is usually what we benchmark the performance of our
agents on.

To give an example of a learning schedule: For a learning process where we
train for n environment steps in total, the intrinsic reward could start with a
multiplier u set to 0. Between 0 and 0.1 - n environment steps, we linearly scale
1 to 1 each environment step, which stays at 1 until 0.5 - n environment steps.
From there on out until 0.8 - n environment steps, p is linearly scaled down to
0.5. u then remains at 0.5 until the end of the learning process: upon reaching
n environment steps. The amount of steps and values of mu in this example
are arbitrary, finding appropriate values for the learning schedule is discussed
in section 4.2.

However, curiosity can also be used without any extrinsic reward. This was
done by Burda et al. [5], who tested 54 different standard benchmark envi-
ronments using curiosity alone. This produced surprisingly good results: their
purely curiosity-driven agent managed to complete over 11 Super Mario Bros.
levels. Guess you didn’t need score or coins after alll Now, how would we go
about modelling curiosity? The usual method is that of a state prediction: if the
agent cannot predict the (immediate) future well, it is rewarded. This may seem
counter-intuitive: why reward an agent for bad performance? To understand
this, think of how the agent will change its behavior: it is now incentivized
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to seek out states that it has not seen often enough yet. As the agent visits
the unexplored area and learns to predict it, it obtains less curiosity reward.
This then incentivizes the agent to visit new, unexplored areas to obtain more
reward.

But what if a part of the environment is just incredibly hard or even impos-
sible to predict? This would get the agent stuck in an endless loop of feeling
very good about itself for looking at analog TV static noise. To be precise:
it would endlessly get a high curiosity reward for observing pixels randomly
flipping between black and white. This was named the Noisy-TV Problem by
Burda et al. [5].

So how do we remedy this? You could make agents curious only about the
effect of their actions on the environment - but then any environment containing
a TV and a remote will generate massive amounts of irresistible randomness for
our poor agent, which it induces by its own actions. This is a known issue with
curiosity, Savinov et al. [43] dubbed it the Couch-Potato Problem for reasons
you can imagine. Note how children don’t do this, and are not in the least
interested in looking at TV noise. You may however observe couch-potato-like
behavior in them when they are provided with an age-appropriate TV-show or
movie that does instill curiosity in them. Finally, consider how children will
be highly resistant to the idea of watching shows made for those younger than
themselves. When they have learned what they can, they move on.

Children are somehow able to determine that TV noise is just that: noise.
Therefore, it is uninteresting to them. No matter how long they will stare
at it, they will never be able to properly predict the next pixel state. This
irreducible uncertainty is called aleatoric uncertainty. The other type, epistemic
uncertainty, models what we don’t know yet, but could theoretically learn if we
made sufficient observations [35]. The Noisy-TV Problem thus exists because
naive curiosity cannot distinguish between aleatoric and epistemic uncertainty
[6].

Thus far we’ve only covered curiosity on a conceptual level - in the next
section we’ll discuss some concrete RL implementations.

2.2.3 Implementations of Curiosity

Here we compare two concrete implementations of curiosity: the Intrinsic Cu-
riosity Module by Pathak et al. [40], and the Random Network Distillation model
by Burda et al. [6]. These models are general-purpose, and are not specifically
tailored to multi-agent learning, nor to social RL problems. To see how they
perform in a multi-agent setting, we’ll subsequently look the work of Schafer
[44].

The Intrinsic Curiosity Module (ICM) by [40] rewards the agent by making
a double prediction: first, what is the next state if I choose this action. Second:
to achieve a specific change, what action should I choose? The reward then
correlates with how wrong the agent is in only the first prediction: more wrong
equals more reward. The reason why only the first prediction is used for the
reward will be explained after introducing some terminology. Its neural network
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architecture is given in fig. 1. The conceptual structure of the ICM can be found
in fig. 2.

To give a formal definition, the feature encoding function ¢ has to be in-
troduced. Because high-dimensional observations tend to contain data that is
not relevant to solving a given problem, we compress observations with ¢. This
function maps a high-dimensional observation to a lower-dimensional feature
set. The features that are learned are not defined by humans - in the learning
process, an agent figures out by itself over time what features are relevant, and
which ones are not. A state s encoded by ¢ is denoted as ¢(s).

So, to formally define what the ICM predicts: first, given the current encoded
state ¢(s;) at time ¢, and chosen action a;, what is ¢(s;41)? Second, given ¢(s;)
and ¢(s¢4+1), what is a;? These then lead to the curiosity reward r; at time t.
The predictions themselves also have a notation: to get predicted state (Z/S(St+1),
and predicted action a;, we respectively use the following functions f and g:

ag :g<5t,$t+1;91) (8)

Os+1) = (1), ariOr ) (©)

FEach of these functions contains a set of parameters, 6; and 6 respectively.
These are the neural network parameters which have to be learned to make these
functions perform well. To optimize the parameters #; and 0, we minimize their
respective loss functions L; and Lr. These are respectively found in equations
11 and 12, and are weighted as shown in eq. (15). The learned function in eq. (8)
is called the inverse (dynamics) model, while eq. (9) is also called the forward
model.

To illustrate the reason why the model is structured this way, think of how
there is a tension between the forward and inverse model. The forward model’s
prediction error is lowest when all features go to 0 at all times - when they don’t
encode anything at all. The inverse model cannot afford to let this happen,
because it needs some data to predict what action was undertaken. Thus, the
ICM is incentivized to only learn those features that pertain directly to how the
agent can influence the state, and to ignore everything else.

Ly(at, a;) measures the difference between predictions and actual actions.
When the action space is discrete, g outputs a softmaxed distribution over the
agent’s action space. In this case, L; outputs the cross entropy between the
logits of a4, and the actually performed action Ay.

Cross entropy can be seen as a measure of how different two probability
distributions are. We have true distribution p and predicted distribution gq.
Both are distributions over the same discrete set of events X. The cross entropy
H(p, q) between p and ¢ is then:

H(p,q) = - > p(x)logq() (10)

reX
But we had actions, not distributions, right? Correct, and we can transform
the former into the latter. As for the predicted distribution: this is the direct
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Figure 1: The ICM neural network structure by Pathak et al. [40]. The top, light

blue set of layers constitutes the policy gradient network. The encoder network
is denoted by ¢, and ¢(s;) denotes the encoded state at time t. Encoded states
are supplied to the Forward and Inverse models. The Forward model predicts
the next encoded state, given the current encoded state and the current action.
The Inverse model predicts the current action, given both the current and next
encoded state. After each individual convolution layer, an exponential linear
unit (ELU) activation function is used [10].

Conv:
f:

k:
LSTM:
V:

2 & A

Convolutional layer FC: Fully connected layer
Convolution filters u in FC: Fully connected neurons
Convolution kernel size |A|: Amount of available actions
LSTM layer u in LSTM: LSTM units

Value function s¢: Agent’s observation at time ¢
Policy ay: Agent’s action at time ¢
Encoder network ¢(st): encoded state at time ¢

depends on size of s,
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Figure 2: Intrinsic Curiosity Module, image originally from Pathak et al. [40]

output of the inverse dynamics model, so that’s one half of the puzzle. As for the
other half, to go from a true action to a true distribution, we put the probability
of the true action at 1, and 0 for all other actions.

Now the only thing left to do is iterating over our list of true action distribu-
tion/predicted action distribution pairs, performing eq. (10). This way, we can
determine the cross entropy at each step in time. The inverse dynamics model
loss then becomes:

R plat)
L =H —_— 11
Hana) = 1 (plar), 2400 (1)

Moving on to the next loss function: Ly measures the difference between
predicted and actual encoded states, using the (halved) mean squared error as
a distance measure. It looks like this:

L (9(s02),8(5001)) = 3 || 6(5001) = Bl (12)

From this, the reward follows - all we have to do is multiply Lrp with a
scaling factor pc > 0:

Ty = pc - LF (13)

But wait, isn’t the inverse dynamics loss L; missing from the reward func-
tion? The answer is no, we explicitly don’t want to use this loss - only to reward
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the agent for exploring new states. If we included the inverse dynamics model
in the reward function, the agent might be incentivized to seek out areas where
it is poor at predicting what effect its actions will have: one of the things we
wanted to avoid in the first place!

It should come as no surprise that the agent’s policy 7(s;; €p) is also encoded
in neural network parameters: we call these p. While Pathak et al. [40] use the
A3C policy gradient algorithm in their ICM experiments, other algorithms can
also be used. The way in which the policy gradient algorithm optimizes 6p is
thus abstracted away: the loss notation only tells us that we need to maximize
the expected reward. The following notation is used to represent the expected
sum of rewards:

Eﬂ(suep) [Etrt] (14)

To put them all together in one optimization function, we only need two more
balancing parameters: the first one, 0 < f < 1 determines the relative im-
portance of the forward versus the inverse dynamics model. The second one,
Arem > 0, determines relative importance of making correct policy gradient
predictions versus obtaining the curiosity reward. The full optimization func-
tion is thus:

min | — Arom Er(sp0p) [Eere] + (1 — B) L1 + BLF (15)
0p.,01,0F

While the ICM effectively deals with the Noisy-TV Problem, it seems to fall
prey to the Couch Potato problem [5]. To deal with this issue, Burda et al.
[6] devised Random Network Distillation (RND). The central idea of RND is
that the agent does not learn to predict the future, nor any actions, but instead
has to learn the features of a fixed, randomly initialized network f with fixed
parameters ¢. To do this, the agent has an non-fixed network f with parameters
0 j to learn with. Both f and f map the observation space to a k-dimensional

space:

f:0—=RF (16)
f:O—>RF (17)

To train f, gradient descent is used to minimize the expected mean square error:

1/ (2;0) = () (18)

To make this more intuitive: imagine an alien giving you a camera that
automatically rates any picture it takes, spitting out ratings on a few hundred
different properties. However, the ratings are all in the alien’s language, and
read like “blarp”, “flurp” and so on. To find out what these things mean, you
start taking pictures.

Soon you find out that all the pictures you are taking are very blarp - what
could it possibly mean? Any picture not being blarp would be very surprising
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indeed. Then you stumble upon the following: when there is a red box in the
bottom right corner of the picture, the picture is very much not blarp. This
gives you a lot of information: could high blarpness mean the absence of a red
box in the bottom right corner of the picture? You should explore further here.

The network f works like the alien camera: it takes in observations, and
rates them according to hundreds of different utterly alien concepts. Then,
f represents you, trying to figure out all these concepts. Getting unexpected
results means a high curiosity reward: it’s an opportunity to learn more about
the alien concepts. However, as you get a better feeling for blarpness in a specific
area, the opportunity to learn about it decreases. Hence, over time you get a
lower curiosity reward in the same area.

The reason RND dodges the Noisy-TV problem and the Couch Potato prob-
lem is because it ignores the time dimension. Recall that stochasticity is the
cause of both problems. With RND, all stochasticity of the environment can
be ignored, because you're not trying to learn about the environment or its
transition function, but about the random initialization of f (the hundreds of
blarps and flurps). In doing so, it gives you a good idea about the novelty of any
observation, while ignoring its noisy details. This novelty is used as a curiosity
reward that is insensitive to noise.

The use of curiosity in multi-agent RL is as of yet a relatively unexplored
area. The only publication so far is by Schafer [44], which states that in an
environment with partial observability, curiosity can cause learning instability
without benefiting exploration. However, in an environment with sparse re-
wards and full observability, curiosity greatly improves learning stability and
final performance. In the work by Schafer [44], the multi-agent curiosity reward
is based on the entire environment. Therefore it does not specifically contain a
notion of social curiosity. This in contrast to the second type of intrinsic mo-
tivation, empowerment. While empowerment can also be based on the entire
environment, Jaques et al. [23] developed a type of social empowerment, which
we will explore in the next section.

2.2.4 Empowerment

This section contains a brief introduction to empowerment, then covers the
formalized notion of empowerment in RL by Klyubin et al. [26] and concludes
with the Social Influence model by Jaques et al. [23].

Curiosity is not the only intrinsic motivation we see in nature: humans and
animals vie for resources, social status, food, in a seemingly universal drive to
have more options for the future. The desire for empowerment is what binds
all these together, which was formalized in the context of RL by Klyubin et al.
[26].

Empowerment is the concept of having different options. Not the actual
execution of those options, but merely the potential. Think of a country leader
or megacorporation CEO, whose decisions can set thousands or millions of peo-
ple and machines in motion. They are both highly empowered, and have many
options available to them. That doesn’t mean they should constantly exer-

21



cise every single high-impact option available to them, unless a nuclear winter
sounds cozy to you. More modestly, think of having a full bank account, versus
spending everything in it on something ludicrous (and subsequently having a
very empty bank account). Empowerment can be seen as the simultaneous pres-
ence of two things: the ability to drastically change one’s environment, and the
changes resulting from different actions being maximally different (also called
distinct).

Why include distinctness? Consider the following situation: an agent finds
a part of the environment that dramatically changes every time step. However,
this is just part of the environment, and not induced by the agent’s own ac-
tions. If there is no distinctness criterium, the agent ends up feeling maximally
empowered in this area: every action seems to be followed by some dramatic
change. We don’t want this - we only want the agent to receive empowerment
reward when its actions are the cause of dramatic change. Distinctness helps
with this goal, because when there is a very different outcome for every different
action, the action actually matters - and vice versa.

To elaborate on the formal definition: Klyubin et al. [26] define empower-
ment in terms of mutual information, a concept from information theory. Here
we give a simplified version - the original is slightly more general, as it can give
empowerment over multiple actions over time, but the simplified version main-
tains the core idea. Given 2 random variables, X and Y, and a probabilistic
relationship (also called a channel) between the two, defined by a conditional
distribution p(y|z). We then want to measure how much more certain you can
be about y, given that you know x. This is the mutual information I, measured
in bits, and is defined by the following equation:

(19)

I(X;Y) =) plylz)p(z) log, Zm

The summation over z’ here is really just a summation over z, but denoted
with a different variable to distinguish it from the first summation over x, .
With the definition of mutual information I, we can now define the empower-
ment reward &, for all possible action distributions p(a;) at time ¢, the full set
of actions A, and the state one timestep later Syyq:

E =maxI(A;Si41) (20)
p(at)

The reason that we take all possible action distributions, is so that we can
ignore what the actual policy is. Only the options the agent has at any given
point in time are relevant, not which one it will select!

Control over the environment is not the only valuable type of empowerment:
Young children characteristically have very poor fine motor skills - they still
lack control over their own bodies. In other words they lack self-empowerment,
and through it, they lack environment-targeted empowerment. Unfortunately
for them, having half of your meal end up on the floor or on your cheeks is
not an efficient allocation of resources. Playing with toys and blocks (and food)

22



therefore not only teaches them about the world: it also teaches them to control
their own bodies. However, it is not just physical, but also emotional control
that has to be learned. The ability to push oneself out of harmful or undesirable
emotional states is a critical skill for humans to master. Internal states are
therefore also a potential target for empowerment.

The final type of empowerment we will discuss here is social empowerment:
control over other people (or agents). Jaques et al. [23] made agents learn
to predict the actions of other agents, and found that this leads to improved
coordination compared to a baseline algorithm without these predictions. But
that’s not all: when connecting these predictions to the reward by giving agents
a desire to influence the behavior of others, even better coordination arises!
This is a specific form of empowerment: influence over the behavior of others.
They named their specific method Social Influence (SI). It is not empowerment
in the usual sense: recall that empowerment originally meant having options
rather than exercising them. Social Influence however measures the influence of
the actions that an agent does take. In their work, you can find the profound
insight that through purely self-interested motivation (collect resources, gain
power over others), coordination arises.

How exactly do you measure how your behavior influences others? The
model of Jaques et al. [23] does this through counterfactual reasoning. This
means that the agent asks the question: if I had acted differently, how would
the other agents have responded? To be able to answer this question, the
agent needs to predict the actions of other agents. This is exactly what the
aptly named Model of Other Agents (MOA) does. You can use social influence
without a MOA, but doing so requires actors to cheat by looking up the policies
directly. In a real-world scenario this would be unrealistic, as the policies of
other agents in competitive situations are often hidden.

Using the MOA, an agent k considers all of its own possible actions at time
t. We call these possible actions counterfactual actions. Agent k then predicts
what the other agents will do at time ¢t+ 1. This process happens independently
in each distinct agent: in an environment with IV agents, each agent k considers
all of its possible counterfactual actions aF. For each of these counterfactual
actions, for each other agent j, it predicts which action j will take at ¢ + 1.
With this collection of predictions, agent k can calculate a baseline for the
behavior of the other agents: the effect of k’s actions can be marginalized out.

We want the marginal policy of j, which only reacts to the current observa-
tion of j (that is, s), and does not take into consideration k’s action. However,
the MOA does take into account k’s action! Fortunately, the output of the
MOA can be further processed to cancel out the effect of k’s action. We do
this by multiplying the probability of the counterfactual actions by k’s policy,
given that same action. This process is called marginalization, and through it
we obtain the marginal policy of j with the output of the MOA. Think of it
as calculating a mean policy for j, which gives the mean reaction of j to k’s
actions. You can calculate the marginal policy of j as follows:
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platals)) = plailay, shp(ar|s?) (21)
ok
t

Finally, the marginalized policy is compared to the probability distribution
of actions taken by j, given the true action of k. The difference between the
two measures how much k’s actions influence j’s policy. As shown below, this
influence calculated per agent j, then summed together into the single value .
The social influence reward if for agent k is thus:

N
if= 3 [Dm[p<az+t|ahsi> Zp<ai+1|af,sz>p<af|si>ﬂ
7=0,j#k ak
S [DKL[pmmuf,sz) p(ai+1lsi)H (22)
j=0,j#k

Here, Dy, stands for Kullback—Leibler divergence, a divergence measure
that gives an indication of the distance between probability functions. According
to Jaques et al. [23], other measures can also be used with similar effect.

To balance the extrinsic vs the social influence reward, 2 scaling parameters
are used: pg and pr. Unless otherwise mentioned, the default value for pg is
1. With the extrinsic reward for agent k given as ef, the full reward function is
the following;:

rf = pper + prif (23)

The Social Influence technique was implemented using a neural network, the
architecture can be found in fig. 3. It is divided into three parts: a state encoder,
an actor-critic, and an action predictor. The state encoder maps observations
onto a set of learned features, which then are the input of the other two parts.
The actor-critic output consists of the learned value and policy. Finally, the
action predictor predicts the actions of other agents at time t + 1.

At each step in time, the actor-critic is first evaluated to obtain the current
action distribution, which is then sampled to obtain the current action. Then,
this action is inserted at the bottom of the model along with other agents’
actions, to evaluate the action predictor. This evaluation is repeated for the
desired amount of counterfactual actions: this only requires recomputation of
the LSTM and the action predictor’s output. This gives us the counterfactual
predictions needed to calculate the marginal policy of other agents as defined
in eq. (22), and thus also the social influence reward.

The loss function is somewhat similar to the one used in the ICM: a com-
bination of a policy gradient loss and action prediction loss (from the MOA).
However, it contains no state prediction. While Jaques et al. [23] used the A3C
policy gradient algorithm, it can be substituted for another. The MOA loss
Lyroa is calculated by taking the cross entropy over the true+predicted actions
of other agents. This is done in a similar fashion to what happens in the ICM,
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Figure 3: The Model of Other Agents neural network architecture by Jaques
et al. [23]. The policy gradient is drawn in light blue, and the MOA in light
green. Note how the actions of all agents are fed to the action predictor’s LSTM.
Stride in convolutions is 1.

Conv: Convolutional layer FC: Fully connected layer
f: Convolution filters u in FC: Fully connected neurons
k: Convolution kernel size | Al: Amount of available actions
LSTM: LSTM layer u in LSTM: LSTM units
V' Value function sf: Agent k’s observation at time ¢
m: Policy as: All agent actions at time ¢

n: Number of agents

as defined in eq. (11). In an m-player environment, given true and predicted
actions a’ respectively of agent j, the MOA loss for agent k is then:

1 = .
Liroa = 1 Z Li(a’,a”) (24)
j=L.i#k
Let’s call the policy gradient loss Lpg. Finally, we need a scaling parameter
to balance the two losses, let’s call it Ap;04. The social influence loss Lgr is
then:

Lsr = Lpg + Aymoa - Lyoa (25)

In the next section, we go slightly beyond reward functions, we will cover a
neat quirk of NN architectures. Specifically, you will find out how to incentivize
agents to learn something, without including it in any reward function!

2.2.5 Auxiliary tasks

Environments can be noisy and contain many superfluous details, which makes
tasks harder to learn. To deal with this challenge, agents are usually equipped
with a mechanism to encode the environment into a lower-dimensional repre-
sentation. This encoded representation is then used to calculate the outcomes
of the value function and policy. For an example, look at the model in fig. 3.
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Encoding is usually done in the form of convolutional layers. Let’s look at
an example: the Atari experiments in the work of Burda et al. [5]. Say, an
observation is a 84x84 observation of RGB pixels, the dimensionality of the
observation is thus 84 - 84 - 3 = 21168. This is reduced to a size of 512 by the
use of convolutional layers. This is over 40 times smaller, a huge improvement!

The encoding task itself has to be learned: the agent will have to find a
useful representation of the world through experience. However, this depends
on receiving a reward signal: the agent can only learn about what is and what
isn’t a useful encoding as it receives a reward. Thus, this is a point where sparse
rewards are especially challenging - conversely, it means intrinsic motivation can
shine here! Still, there’s more than one way to skin a cat.

As it turns out, both curiosity and empowerment are something called an
auxiliary task. These are tasks separate from the main (intrinsic or extrinsic)
goal, which still help manage to build a useful representation of the world. This
works even when the task itself does not contribute to the reward! Recall how
this was the case in the MOA described in section 2.2.4: predicting the actions of
other agents led to improved extrinsic reward, even without giving any intrinsic
empowerment reward.

What is key here, is the fact that both the auxiliary and the main task
share a representation. State prediction, as seen in some forms of curiosity, is
another example of such a task. In fact, learning to predict any detail of a future
(internal or external) state is called an auxiliary task. This holds regardless of
whether the task contributes to the reward function.

Jaderberg et al. [21] demonstrated a combination of four auxiliary tasks: to
start, it takes the Q-learning loss over 2 types of empowerment. These types
are pixel control and network feature control, which respectively correspond
to the categories named in section 2.2.4: empowerment over the environment,
and self-empowerment. Both of these contribute to the reward function and
the loss function. The other two auxiliary tasks are reward prediction, and
value function replay. The latter of which recycles experiences several times to
learn how to predict the value function output. These only contribute to the
loss function. Finally, the model is topped off with an extrinsic A3C reward.
That’s a lot of different things for a single model to learn, does it even help? The
answer is a resounding yes: this model performs far better than the baseline A3C
extrinsic model, and each individual component is found to contribute to the
final result. This highlights how important it is to build a good representation.

At this point, we still haven’t introduced any game theory, and we have yet
to cover the concrete games we’ll let our agents play. These things are what the
next section is all about.

2.3 Multi-agent games
2.3.1 Coordination problems

The problems faced by an agent learning to play Super Mario Bros. were illus-
trative, but we ultimately want to analyze how multi-agent systems can more
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effectively achieve coordination - Mario is only a single agent. We’ll need a new
environment, so let’s ditch Mario for now. To begin, we’ll introduce a practical
example of a coordination problem.

Let’s focus on something mildly catastrophic like overfishing. Overfishing
happens when too many fish get caught for a fish population to sustain itself,
and both fishermen and fish agree that this is a Bad Thing. Yet, it still happens
on a global scale. If no one wants it, why does it still happen?

Individually, any fisherman will agree that inability to catch any fish a year
from now is a bad thing. However, if they won’t fish today, other fishermen will
just catch more. Their own income would go down, while no positive effect on
the fish population is achieved. Thus, there is no individual incentive to fish
sustainably.

The only way to keep fish populations at a sustainable level is by coordi-
nating with other fishermen: if they all agree to fish less, their incomes will
all take a small hit, but in return the fish population can remain stable, al-
lowing them to fish for years to come. Then, the fishermen of the neighboring
city/nation/continent notice that there are a lot of fish to be found in the
sustainably-fished regions, restarting the process all over again.

Overfishing is a classical example of the commons dilemma (CD). CD-type
situations occur when there is a pool of shared resources that can sustain in-
definite use up until a certain level. However, when giving everyone unlimited
access, the pool is quickly depleted and is exhausted forever. To enable indefinite
value, we thus have to coordinate access to the resource pool. Commons dilem-
mas (CD) are one of the two categories of social dilemmas defined by Kollock
[27] - the other type being the public goods dilemma. In commons dilemmas,
individuals are tempted by greed, where giving in to greed depletes a shared
resource. Public goods dilemmas (PGD) require individual sacrifices to create
resources that all can benefit from [27].

Coordination is hard. Really really hard. Unsurprisingly, it’s also one of the
challenges we face in multi-agent systems. Even in purely cooperative settings,
where no agent receives a reward unless everyone coordinates, coordination can
be difficult [34]. Never mind the more complex category of CD and PGD prob-
lems, where greedy individual behavior leads to higher individual rewards, but
the group as a whole suffers and receives a lower collective reward.

With the knowledge of time discounting, it becomes apparent why CD-type
situations are so hard: we have to fight the urge to exploit the resources with
certainty now, rather than conserve them for an uncertain later time. And
yet, coordination of this type can be seen everywhere in nature and human
societies. We only really notice it when the coordination breaks down: cancer
(cells defecting, gobbling up resources), government corruption, unsustainable
agricultural practices, just to name a few.

Back to the overfishing scenario: after the fishermen have forged a coop-
erative pact to prevent overfishing, a single fisherman decides to not heed it,
greedily increasing their own income. Other fishermen notice this, then slowly
start to defect, until nobody heeds the pact anymore and the fish population
is on the brink of collapse again. Then, everyone agrees that the current situ-
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ation is bad and a new pact is formed, hopefully with more options to punish
defectors.

This situation is an example of non-stationarity: while an agent learns and
changes its behavior, all other agents also adapt. This can lead to endless cycles
of adaptation, there may exist no stable global optimum when everyone learns!
The challenge of non-stationarity is also called moving target [16] or moving
goalposts [39]. Even if agents do learn to cooperate, they might not arrive
at an equilibrium where agents have learned the optimal behavior. The game
itself may not contain a stable optimal behavior: a type of non-stationarity that
cannot be solved!

To be able to reason about coordination problems in the space of RL, we’ll
need a formal mathematical definition. Luckily, game theory provides us with
exactly that: Matrix Game Social Dilemmas. These are covered in the next
section.

2.3.2 Matrix Game Social Dilemmas

To simulate coordination problems, Matrix Game Social Dilemmas (MGSD)
were conceived [33]. In these 2-player games, the goal for players is to maximize
their own score. The reason they are called matrix games is that the game
rules are structured as a 2x2 matrix: At every turn, players choose to either
cooperate or defect.

When both players cooperate, they both get R (reward), when both defect,
both receive P (punishment). When one player cooperates and the other defects,
they respectively receive S (sucker) and T (temptation). This, along with the
three canonical MGSD payoff matrices, is shown in fig. 4. For a game to qualify
as an MGSD, it has to satisfy the following four criteria formulated by Macy
and Flache [33]:

e R > P Mutual cooperation is better than mutual defection (26)
e R > S Mutual cooperation is better than being exploited by a defector

(27)
¢ 2R > T + S Mutual cooperation is better than a 50/50 chance of
unilateral cooperation and defection (28)
o At least one of the following: (29)

— T > R Greed: Exploiting a cooperator is preferred over mutual cooperation

— P > S Fear: Mutual defection is preferred over being exploited.

We can see all these criteria appear in the overfishing example, even though
MSGDs only describe a 2 player situation. Inequality (26) means that careful
organized conservation of the fishing stock is preferable over everyone fishing as
much as they can. Furthermore, inequality (27) means that it’s preferable to
have organized conservation over a situation in which an individual attempts
conservation, but others do not. Inequality (28) informs us about an undesirable
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situation: having a 50/50 chance of winning or losing in a miscoordinated con-
servation strategy where on a given day, one fisherman gets to overfish, and the
other does not. Again, organized conservation is preferred over this situation.

Finally, with inequality (29) we see that the fisherman can be incentivized
by both Greed: “Everyone else abides by the anti-overfishing pact, so my few
extra black market tunas won’t hurt, also I want a nicer house.” and motivated
by Fear: “Everyone else is overfishing anyway, so I should catch as much as I
can before everything is gone”.

C D

C|RR|ST

bD| TS | PP
Chicken | C D Stag Hunt | C D Prisoners | C D
C 33|14 C 44 10,3 C 33104
D 41100 D 30 | 1,1 D 40 [ 1,1

Figure 4: Matrix Game Social Dilemma payoff matrices. Top: abstract payoff
matrix with outcome variables R, P, S, T mapped to cells of the game matrix.
Bottom: the three canonical MGSDs. A cell of X,Y represents outcome X for
the player in the left column, Y for the player in the top row. Each game has a
unique valid combination of the Greed/Fear properties from eq. (29): Chicken
features Greed, Stag Hunt features fear, and Prisoner’s Dilemma features both
greed and fear. Figure taken from Leibo et al. [28].

Note that MGSDs are Markov Games with |S| = 1, with a specific action
set that is identical for both players, each containing both C' for cooperate and
D for defect: Ay = As = {C,D}.

MGSDs have some limitations however, Leibo et al. [28] list the following:
real world social dilemmas are temporally extended, and cooperate/defect are
not atomic actions like in MGSDs. This leads to the following issues: we have
to apply the labels of cooperate and defect to policies. These are generally not
strictly pure cooperation or pure defection, but a mix of the two. This can be
seen as a graded quantity: cooperativeness. In the real world, a decision to
cooperate or defect is only made quasi-simultaneously, agents may react to each
other’s behavior as they observe the start of a cooperative or uncooperative
action. In MGSDs, decisions are instead made at exactly the same moment.

Additionally, there is the problem of partial observability: in real-world sce-
narios, agents cannot observe the entirety of the environment, nor the activities
of other agents at all times. In MGSDs, both players can always see the entire
environment and activities of the other player. Finally, MGSDs only support 2
players: real-world social dilemmas tend to exceed 2 parties, and we would like
to model this as well.

To address these issues, Leibo et al. [28] created Sequential Social Dilemmas
(SSDs), and Hughes et al. [20] extended them to n-player games. This extension
is the next section’s topic.
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Figure 5: Schelling diagrams derived from Cleanup (A) and Harvest (B). The
dotted line shows the average return for all players, were you to choose defection.
Figure taken from Hughes et al. [20].

2.3.3 N-player Sequential Social Dilemmas

Sequential Social Dilemmas (SSDs) as defined by Leibo et al. [28] extend MGSDs
by introducing properties of Partially Observable Markov Games: that is, the
concept of time, and partial observability. Furthermore, in SSDs cooperativeness
is a graded quantity, instead of having cooperation as a single atomic action.
Intuitively, they resemble the overfishing problem, although variations that only
feature either Greed or Fear are possible.

Still, the SSDs Leibo et al. [28] are only 2-player: generalizing them to N-
Player SSDs (NPSSDs) was done by Hughes et al. [20]. In the rest of this section
we mostly summarize the definitions given by Hughes et al. [20]. We end up
with a definition of NPSSDs that is similar to, but does not precisely mirror the
MGSD inequalities.

With n players in an MGSD, the payoff matrix becomes n-dimensional, which
quickly becomes unwieldy and hard to interpret. Instead of a payoff matrix, we
can use a Schelling diagram to visualize the payoff structure [41]. This diagram
plots the payoffs for an individual cooperator or defector against the number of
other cooperators. Schelling diagrams for cleanup and harvest can be found in
fig. 5.

With these diagrams, we can define the n-player sequential social dilemma:
a tuple (M, II = II.UIl,;) of a Markov Game M and two disjoint sets of policies
IT, U IIg4, respectively implementing cooperation and defection. This tuple is a
n-player sequential social dilemma if equations 30-32 are satisfied.

To define how many cooperators and defectors we have, we create the strat-
egy profile (7}, ..., Wﬁ,ﬂé, S, € ¢ x IT7*, where £ +m = n. The average
payoff of a cooperating policy is denoted R.(¢); for a defecting policy R4(¥).
When ¢ players cooperate and m = 1, the Schelling diagram plots the curves
R.(£+1) and R4(¢). We can now look at these diagrams to see if the inequalities
30-32 hold:
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e Mutual cooperation is preferred to mutual defection: R.(n) > R4(0) (30)
e Mutual cooperation is preferred to being exploited by defectors:
Re(n) > Re(0) (31)
o At least one of the following: (32)
— Greed: Exploiting a cooperator is preferred to mutual cooperation:
R4(i) > R.(1) for sufficiently large i
— Fear: Mutual defection is preferred to being exploited:
Rq(i) > R(i) for sufficiently small 4

Note that these inequalities cannot be used to distinguish between public
goods and commons dilemmas! Still, it’s a start. In the next section we can
discuss two relevant examples of NPSSDs: cleanup and harvest.

2.3.4 Multi-agent games: cleanup and harvest

The concrete testing environments we use are cleanup and harvest. These are
the same as the two used by Jaques et al. [23], and were introduced by Hughes
et al. [20]. The reason these two specific games are used is that they fall under
the two distinct categories defined by Kollock [27]: commons dilemmas, and
public goods dilemmas. Specifically, harvest is a commons dilemma, cleanup is
a public goods dilemma.

Both cleanup and harvest are gridworlds that obey POMG rules. Gridworlds
are discrete rectangle-shaped worlds in which players are placed. Players have
an action set that allows them to move through, and/or interact with the world.
The observation function in the harvest and cleanup gridworlds allows agents
to observe everything happening in a square 15 x 15 grid surrounding them.

In the public goods game cleanup, reward is earned by collecting apples from
a gridworld. Each apple provides 1 reward. However, next to the apple spawn
area, there is a river that slowly accrues pollution. When there is no pollution,
the apple spawn rate is maximal. It linearly decreases as the river gets more
polluted. The game starts with the river being just polluted enough for apples
to stop spawning entirely. Players can clean the river with a cleaning beam, but
this in itself provides no reward.

The goal of the harvest game, a commons dilemma, is also to collect apples
which each provide 1 reward. However, here the apple spawn rate is determined
by the amount of uncollected apples. The more uncollected apples are nearby,
the more quickly new apples spawn. When all apples are collected, none will
ever grow back.

Both games include a punishment beam in each players’ action set: at the
cost of -1 reward, players can fire a beam that makes any agent it hits lose 50 re-
ward. This is included to emulate punishment mechanisms which are necessary
in human sequential social dilemmas [20].
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Figure 6: The two n-player SSD environments cleanup (left) and harvest (right).
Figure taken from Hughes et al. [20].

To deal with these dilemmas, to overcome greed and fear and to achieve
coordination in RL, we are now equipped with curiosity, empowerment, and
auxiliary tasks. In the next chapter, you’ll find out how we build upon existing
intrinsic motivation models which do exactly this.

3 Proposed model

3.1 Motivation

At some point we've all been curious about the inner workings of another’s
mind - and the behavior stemming from it. In fact, in every interaction people
constantly try to predict how others will act: “My partner will appreciate me
buying them flowers”, or “If I poop on the desk of my superiors, they will be
upset”. Using these predictions, you decide what, and what not to do. Making
a correct prediction is the norm, not an exception. Inversely, think of how scary
a wildly unpredictable person can be. If you are acting unpredictably in public,
people tend to call emergency mental health services, who will then assist you
with a healthy dose of sedatives and antipsychotics.

This demonstrates that learning to predict how others act is vital to healthy
functioning in any social relationship. Children are intrinsically motivated to
form social connections and learn social behaviors on their own: making friends,
inviting other children over to play. No external reward is needed. Though
sating curiosity is not the only motivation children have to socialize, learning
from others and discovering new things is an important component. In fact, even
adults often socialize to sate their desire for social novelty. Think of workplace
gossip, where one of the main activities is talking about the actions of other
people, while reasoning about their motivations.

Therefore, in RL the learning of social predictions should be rewarded.
Specifically, we want agents to be rewarded for learning what effect their be-
havior has on others. To this end, we introduce the Social Curiosity Module.

3.2 Social Curiosity Module (SCM)

This chapter details our proposed method. In this section we introduce the
model architecture of our novel contribution: the Social Curiosity Module. The
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next two sections detail its loss and reward functions.

Given the Intrinsic Curiosity Module by Pathak et al. [40] and the social
influence reward by Jaques et al. [23] found in respective sections 2.2.3 and
2.2.4, we set out to combine the two. We name this combination the Social
Curiosity Module (SCM). Note that the model by Jaques et al. [23] already
contains the MOA, which predicts the actions of other agents. However, it does
not predict its own internal encoded features, like the ICM. The idea here is to
extend the model so that it does.

There are, however, some caveats. To recap: the ICM can neatly isolate the
parts of the environment that it can control through its encoding function ¢.
Consider the following two predictions the ICM makes in order to train ¢:

P (9(st,)|o(s5). af) (33)
P (af|6(sb), 6(sF0)) (34)

The former (forward prediction, eq. (33)) produces the curiosity reward.
Consider how when ¢ encodes everything to 0, predictions are trivial: predict 0
and you’re always correct. Therefore, this prediction will incentivize the neural
network optimization process to make ¢ encode as little state information as
possible. This is because the encoding function ¢ is on the left side of the
conditional probability.

The latter (inverse prediction, eq. (33)) dictates what the agent should be
curious about, and forces ¢ to encode some type of information. The ICM makes
agents curious about parts of the environment that it can control, by letting ¢
only encode information about those parts.

As for the SCM, we would like to isolate the behavior of others that we
can control. This might sound manipulative, but control is inherent in social
interaction. For example, dialing a person’s phone number (occasionally) causes
them to pick up the phone. It is not about manipulation per se, but about the
flow of action-reaction in a social interaction. Isolating social control with an
encoding function ¢ is much harder, however. This is because the influence re-
lation is indirect: the action of k influences the next state, which then influences
the action of j at the next timestep.

It does not seem sensible to predict j’s actions directly from k’s actions.
Although this would isolate the influence, making accurate predictions would
be very difficult without the context provided by the state. For instance, an
agent collecting an apple right next to it is easy to predict if you can observe
the state. If you cannot, then it’s very hard.

Why not just combine the action and state, then predict actions from that?
The reason is that it would make it hard to isolate the influence. The state has
a big influence on j’s behavior, and learning moments for these are not sparse
- any time we observe another agent, we can learn about them reacting to the
environment. It is social interaction and influence that is sparse, that is what
we want our agents to be curious about.
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Figure 7: The MOA causality diagram. Gray-shaded nodes are inputs to the
MOA. Nodes boxed in green are implicitly modeled by the MOA to predict a;_ ;.
Image taken from Jaques et al. [23].

If only we could isolate influence of k on j - but wait, that’s what the MOA
does! Jaques et al. [23] state that in order to isolate the causal effect of a} on
a; 41, the MOA of agent k& must implicitly model both the environment transition
function, as well as the hidden LSTM output ui of agent j. This is shown in
fig. 7.

Ideally, we would eliminate having to model the environment transition func-
tion in the curiosity function, as this is not what we’d like to be curious about.
Doing so would make for better isolation of the social influence prediction task.
Luckily, in the SCM we can do this to some extent! This is because the inverse
model doesn’t need to supply real-time reward information, it is only used to
train the encoding function ¢. This means we can supply sF 1 to the inverse
model, and eliminate part of the environment transition function prediction.
Note that the simultaneously deployed MOA cannot do this (theoretically it
could, but then it would be leaking information).

There is a caveat here: we are still working under partial observability. The
state of j (and the overall environment state) thus still has to be inferred to
the degree that it is not visible. According to eq. (22), all information used to
compute i¥ is the set {sF uF, a;}. Here, the hidden LSTM output of agent k
at time ¢ is denoted wy. Implicitly, {s],; € s¢+1,u],,} are modeled, as seen in
fig. 7. We supply s¥ " 1, and this value can overlap with sz 41- This means we
only have to model those parts of si 1 that are not already in sf, ,, expressed
as s;,1 — styq. Therefore, we only have to implicitly model the following:

J k J k _k k
P <5t+1 = St1 U Sta5t+1vutaat) (35)

Why do we condition on uf? According to fig. 7, future actions and states
depend on the agent’s hidden LSTM output u¥, but also on other agents’ hidden
LSTM outputs u]. To ensure that the SCM does not get tripped up by this
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temporal dependency, we supply uf output to the forward model. Even though
we don’t have access to other agents’ internal states, the MOA should model
at least part of them, as that is its function. We need to be careful here: when
neural network gradients are computed for the MOA, the connection between
the hidden LSTM output and the forward/inverse models should be deliberately
ignored. Otherwise, the forward and inverse model would distort the MOA’s
behavior of learning to predict future agent actions, which is not something that
we want to happen. 4

The action predictions af, ; are used by the MOA to calculate the influence
i¥, as demonstrated in eq. (22). Because we want the agent to be curious about
the sparse social influence reward, let’s also make a social influence prediction:

P (it]o(s5), o5t i), ar,uf ) (36)

This is the SCM inverse prediction. Now, ¢ will only encode information
pertaining to k influencing agent j. This is a similar to the ICM only encoding
information that pertains to parts of the state that agent k£ can control. It is not
exactly the same: c¢ is not an action, and thus has no direct causal relationship
between the two states. It is, however, based on the action that has been chosen.

There is another way to reason about this prediction: because the neural
network is supplied with a; and uf, it is implicitly trying to learn the algorithm
of calculating social influence. This entails inferring the action distributions
of other agents, and learning eq. (22). However, the agent’s own distribution
will have to be inferred as well, as we only supply the action, not the action
distribution.

This prediction also resembles the reward prediction by Jaderberg et al. [21],
although we don’t skew the samples to over-represent rewarding events, and we
only predict the intrinsic reward.

Now that we know the predictions on a conceptual level, we can define our
neural network architecture and loss functions. This is the territory of the next
section.

3.3 SCM loss function

The complete SCM loss function includes a policy gradient loss Lpg, and the
MOA loss Lpsoa defined in eq. (24). The curiosity component requires a forward
model loss Lg as defined in eq. (12) and an inverse model loss function L; - we
only have to newly define the last one.

Let’s look at the loss function Lj;. Recall that the social influence reward
ik is the sum of agent k’s influence over all other individual agents, shown in
eq. (22). Therefore, it outputs a single value at every timestep ¢. As this is
a single real value, and not an action distribution, this loss becomes the the
squared error. Given social influence i and predicted social influence ¥ for
agent k at time ¢, we can calculate the loss Lj:

Ly(if,if) = (if — if)” (37)



As for the forward model, it is not that different from the ICM - we only have
to add two variables to the right side of the conditional probability equation:
the hidden LSTM output uf and social influence i¥. With these, agent k can
make the following prediction:

P (a(sk)|o(sh).ar,ul if) (38)

Then, let ¢ be the true encoded state representation, and </3 be the predicted
encoded state representation. We can then use Lp in eq. (12) to calculate the
forward model loss. With the forward loss, the curiosity reward can then be
given in the same way as in the ICM, see eq. (13).

The SCM neural network architecture found in fig. 8 is a combination of the
ICM (fig. 1) and the MOA (fig. 3). In order to make ¢ only encode features
relating to influence, we cannot join all encoding networks. Instead, there are
two: the policy gradient/MOA encoder, and the curiosity encoder ¢.

Just like in the ICM and MOA, the loss functions need to be balanced. To
do this, we use three parameters: Ay;oa > 0 and Agcopr > 0 determine the
relative importance of respectively the MOA and curiosity module loss. Just
like in the ICM, 0 < 8 < 1 determines the relative importance of the forward
versus the inverse dynamics model.

Lscv = Lpe + Avoa - Lyoa + Asem (B L+ (1= B)Ly) (39)

We parameterize these functions in the neural network displayed in fig. 8,
with the goal of minimizing the above function. Now that we have this network
and its associated loss function, all that is left is to flesh out the reward function,
which we will do in the next section.

3.4 SCM reward function

Ultimately we would like to use both empowerment and curiosity at the same
time. After all, these drives are simultaneously present in humans as well. To
do so, we create a reward function r¥ containing the extrinsic reward eF, the
curiosity reward cf found in eq. (13), and the social influence reward if found
in eq. (23). To balance the intrinsic motivations, we use two parameters: v > 0
and p > 0. These respectively scale the curiosity and influence rewards. Correct
values for these parameters will be have to experimentally discovered. The final
reward function is then:
rf=ef +1-cf +p-if (40)
By setting p to 0, we create a version of the SCM that only rewards agents for
curiosity about social influence, while not rewarding them for taking influential
actions. From here on out we will call this version of the model the ”SCM
without influence reward”.
When using social influence, the influence reward is only given when other
agents are in view. This is done because the MOA implicitly models both other
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Figure 8: The Social Curiosity Module (SCM), a combination of the MOA and
ICM. The policy gradient is drawn in light blue, and MOA in green. The encoder
is drawn in teal, the forward model in pink, and the inverse model in yellow. The
total amount of neurons used for the curiosity component are greatly reduced
compared to the ICM, as the ICM worked with a higher-dimensional state than
SSDs. Note that u¥ is the hidden output of the MOA LSTM, which is equivalent
to the hidden MOA LSTM state at t + 1. Stride in convolutions is 1. The
activation function for convolutional layers is relu, for dense layers it is tanh.
The model outputs are exceptions: the activation function for the value function
and policy layers is linear, and the last layers of both the inverse and forward
model use a relu activation function.

Conv: Convolutional layer FC: Fully connected layer
f: Convolution filters u in FC: Fully connected neurons
k: Convolution kernel size |A|: Amount of available actions
LSTM: LSTM layer u in LSTM: LSTM units
V' Value function sf: Agent k’s observation at time ¢
7: Policy a;: All agent actions at time ¢
¢: Encoder network ¢(s¢): encoded state at time ¢
q: depends on size of sF uf: LSTM hidden output at time ¢
n: Number of agents zf SI reward for agent k at time ¢
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agents’ internal states and behavior, in addition to the environment transition
function [23]. An inaccurate model would lead to noisy estimates of the influence
reward. This reduces what we need to implicitly model: accurately predicting
the full state s;y1 is less important if we receive no influence reward from agents
that are far away. This goes for both the MOA and the SCM, which is a good
outcome, as it makes the model easier to learn.

Some caveats: making the influence reward depend on proximity could have
the side effect of encouraging agents to cluster together, which was already noted
by Jaques et al. [23]. They deemed it a reasonable trade-off, because humans
like to spend time with each other as well. Furthermore, the Couch Potato
Problem should prove to be less of a problem: after all, agents do not have a
“remote control” that generates unpredictable behavior, so there should be no
way to get stuck endlessly watching an agent over which you have perceived
influence.

This concludes the proposed model - in the next chapter we lay out the
experiments we will perform using this model, and the reasoning behind them.

4 Method

This chapter contains two sections: in the first section we describe and motivate
the choice of experiments. In the second section we discuss and explain the
choice of hyperparameters.

4.1 Experiments

Every combination of model {baseline, MOA, SCM} and environment
{cleanup, harvest} is tested five times each. We also test the SCM without
influence reward in the cleanup environment five times. This makes for a total
of (3-2+1)-5 = 35 runs, where each run goes on for 5e8 environment steps.
Each individual run has a different random seed, and features 5 distinct agents.

In order to verify the foundation of the SCM, several of the experiments
found in Jaques et al. [23] are reproduced. A substantial amount of work and
effort went into this, spanning over 500 git commits, over 7500 changed lines of
code and extensive testing. To be specific, we reproduce 4 of their experiments:
using two of their models, each on the harvest and cleanup environments. The
first model is the baseline model, a version of fig. 3 where the bottom row has
been removed, and only the convolution on the left, and top policy gradient
layers are kept. This model only takes extrinsic reward into account, as such
the loss of this model is purely its policy gradient loss. The second model is the
MOA with SI, as detailed in section 2.2.4. After these experiments have been
reproduced, the SCM is tested on both the cleanup and harvest environments.
As with the MOA, each individual agent has their own full SCM model, and
therefore their own separate neural network. There are some notable changes:
Instead of A3C we use the PPO algorithm, as it performs better than, and
exhibits more stable learning behavior than A3C [47].
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Our goal is to make agents cooperate, despite the presence of social dilem-
mas. Cooperation leads to a higher collective reward (the sum of individual
agent rewards), as demonstrated with the Schelling diagrams in fig. 5. There-
fore, we will look at the collective reward as a measure of progress. The agents
individually optimize for their own reward, not for a collective reward. They
are hence expected to be less able to effectively learn cooperation when using a
model that cannot deal with social dilemmas. This should be the case with the
baseline model.

Results will be shown as graphs of mean extrinsic collective episode reward
over time, with the mean of all 5 experiments as a darker line, and individual
experiments as lighter lines. Episodes last 1000 steps, the same as the episodes
of Jaques et al. [23]. Each light line is an individual experiment run, showing
the average collective reward. Each data point of the light lines is an average
over 96 episodes, and thus 96000 environment steps. This number stems from
the training batch size described in the following section. This gives us no proof
that the model always performs this way under the same circumstances, but it
is an empirical sample.

To plot the dark-lined mean, the mean of 1 iteration is calculated over 5 ex-
periments. Each of these experiments reports the mean extrinsic reward over 96
episodes. Therefore, each data point represents the mean of 5-96-1000 = 480000
environment steps, distributed over 5 experiments. For these data points, the
unbiased variance estimator of the collective reward is also calculated. Using
this, we calculate a confidence interval and plot it as bands with the same color
as the model. For 4 degrees of freedom, two-sided confidence level 95%, the
critical t-value is 2.776.

Because we will compare the mean performance of different models by using
samples, we need to establish whether these samples are sufficient evidence to
explain any differences we might find. In order to do so, the collective reward
scores of the final iteration are compared using the student’s t-test. Specifically,
we will perform independent two-sample t-tests for each combination of two
models per environment. Note that the degrees of freedom for these tests are 8
instead of 4 in the plots, because we use data from two experiments simultane-
ously. This brings the critical t-value for these tests to 2.306.

To be specific about how the t-values are calculated: for each model, we
collect the mean collective episode extrinsic reward over the last 96 episodes.
We do this for 5 experiments each, giving us 5 mean values per model. Using the
mean values, the unbiased estimation of the variance is also calculated. With
two model means po and pq, and respectively two unbiased variance estimators
50 and s1, we can estimate the pooled standard deviation S,, which is then used

to calculate the t-value t:
S, = /2T ;r it (41)

t = Ho— 1 (42)

Sp*\/%
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According to Colas et al. [11], Welch’s t-test would be a better choice, be-
cause it makes no assumptions about the sample variance, unlike the student’s
t-test, which assumes them to be equal. However, the sample size per experiment
is only 5, whereas Welch’s t-test requires more than 5 samples per population.
The additional recommendation of Colas et al. [11] to use 20 samples or more
was computationally infeasible for us. In retrospect, their final recommendation
of using a confidence interval with higher certainty than 95% is not relevant,
because even at a 95% confidence level we find no rejection of null hypotheses.

4.2 Hyperparameters

Hyperparameters are values that control aspects of the learning algorithm such
as learning rate, episode length, loss coefficients and learning schedules. It is
known that the models are sensitive to hyperparameter selection [23], changing
one hyperparameter can drastically alter an experiment’s outcome. It is hard to
find well-performing hyperparameters. The method employed by Jaques et al.
[23] to deal with this is to perform a grid search over the hyperparameters.
This however, is prohibitively computationally expensive for us. Selecting the
same hyperparameters does not give any guarantees about the outcome. The
hyperparameters provided by Jaques et al. [23] point in a general direction of
acceptable hyperparameters for the MOA, and as such we copied them. In-
stead of grid search, the more efficient Population Based Training as proposed
by Jaderberg et al. [22] was attempted, but this still proved to be too compu-
tationally expensive to find better hyperparameters than the ones copied from
Jaques et al. [23]. Another weakness of this approach is that we employ PPO,
not A3C, a different training algorithm. A different training algorithm is al-
most guaranteed to require different values for the hyperparameters. However,
as PPO has shown to be less sensitive to hyperparameter tuning, we opted for
PPO over A3C.

Training algorithms come with their own sets of hyperparameters that are
recommended by their respective authors [47]. Because the value function and
policy share parameters, PPO requires that we provide a coefficient to scale
the value function, otherwise one can end up heavily dominating the other’s
loss. The default provided value of 1 turned out to cause unstable learning,
making the value function loss far too high. We can assume this is because the
social influence reward is never easy to predict. At a value of le—4 it seemed to
stabilize, hence this is the value we used for all experiments. The social influence
work by Jaques et al. [23] made no mention of LSTM sequence lengths, hence
we used the default value provided by the library used: 20. As seen in the model
diagram in fig. 8, the LSTM cell size is 128, the same as in the work of Jaques
et al. [23].

As for the SCM hyperparameters, the work of Pathak et al. [40] gives us a
clue: they multiply the forward versus inverse loss with respectively 0.8 and 0.2.
They also multiply the policy gradient loss by 0.1 - in other words, the curiosity
reward is weighed 10 times heavier than the policy gradient loss. However,
no reasoning is given for these numbers. A more thorough study of different
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hyperparameters should be conducted to truly evaluate the performance of the
SCM.

At the start of the learning process the behavior of all agents is essentially
random. We cannot predict anything, does the Noisy-TV Problem appear
again? Fortunately no: since we’re only curious about influence this is not
a problem, just like with the ICM. The SCM avoids this by ignoring noise in
other agents’ behavior. Still, at the start of training, both the social influence
calculation and inverse model will essentially emit noise, until they have learned
something after a few training iterations. This is why we use a learning schedule,
where the curiosity reward is multiplied by a scaling factor o,. Until environ-
ment step 10° it is set to 0. From step 10° — 100 it is linearly increased to 1,
where it remains for the rest of the learning process. This schedule is based on
the MOA learning schedule by Jaques et al. [23].

Two final hyperparameters that influence the outcome of the result are the
training batch size and specifically for PPO, the minibatch size. Training batch
size determines how many environment steps are made with the current model
before the loss is calculated and the model is updated. With PPO, the minibatch
size determines the size of smaller experience batches that are repeatedly used
for model optimization. Larger batches tend to converge more slowly, but make
learning more stable. The training batch size was not provided by Jaques et al.
[23], as such we could not copy it. In all our experiments the training batch size
is set to 96000 and the PPO minibatch size is set to 24000. The training batch
size was made as large as possible while still allowing the experiments to fit in
memory.

The other hyperparameters used for our experiments can be found in the
appendix, in figures 10, 11 and 12. A legend for the hyperparameter tables can
subsequently be found in fig. 13.
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Figure 9: Mean collective extrinsic reward. (a) and (b) are our experiments,
showing 5 experiments with 5 random seeds, with unoptimized hyperparameters.
(c) through (f) are taken from Jaques et al. [23] for comparison. (c) and (e)
depict 5 experiment runs with 5 random seeds each with the set of best found
hyperparameters per model, a total of 5 run per model. (e) and (f) depict the
5 experiments with 5 random seeds with the best 5 sets of hyperparameters, a

total of 25 per model.
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This chapter details the experiment results. A comparison is made between our
results, and the results of Jaques et al. [23]. This is followed by the individual
experiments. We conclude with a statistical test of our results, comparing our
different models.

5.1 Reproduction comparison

Striking differences are immediately visible in fig. 9. Cleanup performance is far
better and harvest performance is far worse for all models when compared to
the results of Jaques et al. [23]. Our confidence bands in fig. 9 (a) are far wider
than those of Jaques et al. [23] in fig. 9 (c¢), despite being more lax (ours being
95% instead of 99.5%). However, there are some issues with directly comparing
our results to those of Jaques et al. [23]. First of all, we use PPO instead of A3C,
without tuning our hyperparameters. Secondly, it is not explicitly mentioned
what the confidence intervals in the graphs by Jaques et al. [23] depict. In
private correspondence, Jaques mentioned that it depicts the 99.5% confidence
interval that the rolling mean falls in that range. However, the exact procedure
of calculating these confidence intervals is not known, as some parameters are
missing. In the work by Jaques et al. [23], no statistical testing was mentioned
aside from plotting the confidence intervals, as such we cannot compare our
results with statistical testing.

For each individual experiment, we also rendered videos of the agents’ be-
havior with one of the last models obtained (training iteration 5200 out of 5204).
By inspecting these videos, we found that in cleanup, usually only one agent
would consistently clean the river aside from collecting apples, which is consis-
tent with the distribution of agent rewards found in our experiment data. In
the highest-performing models for cleanup, we saw two agents both cleaning
the river and collecting apples, while the others always only collected apples.
No more than 2 agents cleaning the river in one experiment were seen. As for
harvest, no matter the model, the agents would always collect all apples from
the get-go and leave none to respawn, which also matches with our experiment
data.

The manner in which our confidence bands were calculated can be found in
section 4.1. To expand on why we cannot directly compare them to the work of
Jaques et al. [23]: the sliding window used by Jaques et al. [23] is reported to
be over 200 environment steps versus 96000 in ours, but it is unknown what the
training batch size of Jaques et al. [23] is, nor is it clear whether this actually
concerns 200 training iterations, or steps over 5 or 25 experiments. We inquired
in private correspondence, but the data was no longer accessible. Therefore,
the confidence bands cannot be directly compared. We also attempted a sliding
window approach over our data for a window size of 5, 10, 100, 200 and 1000
iterations, but this did not change the results in a significant way. In fig. 9,
(e) and fig. 9 (f) depict the results of Jaques et al. [23], of 5 distinct sets of
top performing found hyperparameters per experiment, with 5 experiment runs
with different random seeds each. As such, fig. 9 (e) and fig. 9 (f) depict 5
times more runs in total than fig. 9 (c) and fig. 9 (d), explaining the relatively
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narrower confidence bands.

With harvest, our results in fig. 9 (b) show a stark difference compared
to the top hyperparameters found by Jaques et al. [23] in fig. 9 (d), as all
of the tested models perform in the same way, far worse than even the A3C
baseline by Jaques et al. [23]. Here the most likely explanations are either the
use of PPO instead of A3C, or a very bad choice of hyperparameters. The
latter is mentioned as a likely explanation because it is easy to choose bad
hyperparameters, and hard to choose good ones. However, because the results
show such an exceedingly narrow confidence band across models, the former
explanation is preferred. Because performance does not seem to differ between
models, we will not discuss harvest performance individually in later sections.

The only situation in which harvest agents performed better was found dur-
ing an experiment featuring exceedingly high social influence reward and MOA
loss (not depicted). The agent would receive roughly 40x more MOA reward
than extrinsic reward, causing the value function loss to balloon. This happened
because the value function would be mainly trying to predict MOA rewards
which cannot be reliably learned when all agents condition their own behavior
on their social influence. This is an extreme version of the moving goalposts
problem. The total loss would hover around 15 - enough to learn to move ran-
domly and not shoot, but not enough to overfit on a greedy strategy, causing a
high collective reward in harvest. Unlike in the work of Jaques et al. [23], the
situation in which one agent fails to learn, enabling all other agents to harvest
sustainably, did not occur. As such, no pruning of random seeds was necessary.

You could argue why comparing fig. 9 (a) with fig. 9 (e), and fig. 9 (b) with
fig. 9 (f) would make more sense: despite fig. 9 (e) and fig. 9 (f) showing 5 times
more experiments than fig. 9 (a) and fig. 9 (b), they do not work exclusively
with the optimal found hyperparameter set, but instead the top 5 distinct sets.
Because the experiments in fig. 9 (a) and fig. 9 (b) received no hyperparameter
tuning, it is more fair to compare them to a distinct set of hyperparameters,
not just the optimal set. This is still a far cry from a fair comparison, but it is
better than comparing our results with fig. 9 (c¢) and fig. 9 (d).

Now that we have seen the big lines of the results and compared our repro-
duction to the results of Jaques et al. [23], the next sections will dig into the
individual experiments a bit more.
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In the work of Jaques et al. [23], the baseline model did not learn to perform well
in the cleanup environment. In contrast, our experiments show it to work quite
well, though still marginally worse than in the other models. A likely potential
explanation for this is the use of PPO. It is very unlikely, though possible, that
we randomly stumbled on exceedingly good hyperparameters.

5.3 Social influence
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The distribution of extrinsic reward in the cleanup situation are interesting to
mention: when looking at the distribution of scores, a less equitable division
leads to a lower collective score. This clearly displays the properties of a public
goods dilemma: the more cooperators, the higher the collective reward. Addi-
tionally, in none of the experiments all agents receive roughly the same amount
of reward. In 3/5 experiments there is one agent, and in 2/5 experiments there
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are two agents that receive substantially less reward than the other agents. Co-
operation is learned, but the distribution of reward is not necessarily fair. This
problem has been addressed in the work Hughes et al. [20].
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We can see that in cleanup, the SCM initially outperforms the MOA but is
then overtaken. Given the very wide confidence bands, it is not possible to
say whether this is the true mean case. However, it would be in line with
our expectations: curiosity should make learning cooperation faster. However,
later on it hinders the agent from getting a higher score by adding noise to the
reward signal when all it picks up is irreducible uncertainty. To attenuate this,
a learning schedule similar to the MOA could be implemented, where the value
of the intrinsic reward decreases after a certain amount of environment steps.

5.5 SCM without influence reward
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The mean performance on cleanup is similar to that of the SCM with influence
reward, although the higher variance make us more uncertain about the mean
outcome, causing a far wider confidence band. The reason that this model
was not tested on harvest was that previous results were extremely similar,
irrespective of model choice. Therefore, we expected no different results on
harvest with this model, and thus decided to not run this experiment.

5.6 Statistical test

As mentioned in the method chapter, we will now perform the student’s t-test
on the final scores of all models, comparing different models within the same
environment. The final score per model consists of the mean episode reward
over 96 episodes. Our null hypothesis is that the means of the populations from
which we drew our samples are equal. Conversely, the alternative hypothesis
then is that they differ significantly. Since each model-environment combination
has been tested 5 times, which gives us 2% 5 —2 = 8 degrees of freedom. For the
confidence level of 95%, the two-sided region critical value is 2.306. The results
are shown in table 1.

cleanup baseline | MOA | SCM | SCM WIR

baseline - | 0.493 | 0.888 0.451
MOA 0.493 - | 1.461 0.802
SCM 0.888 | 1.461 - 0.111

SCM WIR 0.451 | 0.802 | 0.111 -

harvest | baseline | MOA | SCM
baseline - | 0.396 | 0.808
MOA 0.396 - 10.848
SCM 0.808 | 0.848 -

Table 1: Independent two-sample t-test results, absolute (non-negative) val-
ues. The values represent the t-values for the mean reward scores between two
models. The mean reward score for each model is the mean collective extrinsic
reward over the last 96 episodes of 5 experiments. To see how this is calculated
exactly, see section 4.1. The SCM without influence reward is denoted ”SCM
WIR”.

None of the absolute t-values exceed the critical value of 2.306. Therefore, we
find no evidence to reject the null hypothesis in any case with the given degree
of certainty. Our results thus give insufficient evidence that the means of the
models are significantly different at a confidence level of 95%. This concludes
the results. To see how this work fits into the current state of reinforcement
learning, we will compare it to other works of research in the next chapter.
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6 Related work

In this chapter, we briefly describe the work that has been done in this area,
and how our research differs from it. We have already extensively discussed the
Social Influence technique by Jaques et al. [23] and the ICM by Pathak et al.
[40], so this chapter focuses on more tangentially related work.

Using influence as an intrinsic motivation in a multi-agent setting was also
done by Wang et al. [49], which resembles the work by Jaques et al. [23]. They
present two methods of influence, the first of which uses mutual information in-
stead of counterfactual actions. Analogous to the Social Influence method, their
second method utilizes a counterfactual action-value, which not only marginal-
izes actions but also the state.

Predicting the influence reward resembles the UNRFEAL model by Jaderberg
et al. [21], in which reward prediction is used as an auxiliary task. There are
three main differences: firstly, the SCM only predicts the influence reward,
whereas the UNREAL model predicts the extrinsic reward. Secondly, Jaderberg
et al. [21] use this reward prediction purely as an auxiliary task that helps shape
the agent’s CNN features, it provides no reward to the agent. In contrast, the
SCM provides reward, but does not help shape the CNN features, as the policy
gradient and reward prediction do not share layers. Lastly, the UNREAL model
is trained using biased reward sequences to hide the sparsity of rewards, and
the SCM is not.

The DRPIQN by Hong et al. [19] also models the policies of other agents as
an auxiliary task, but does not provide any reward. In that sense it resembles
the MOA by Jaques et al. [23] without Social Influence reward. The main
differences there are that the DRPIQN model not only shares a convolutional
layer between modeling the other agent and the agent’s own value function -
they are connected with a multiplication layer as well. Additionally, this is an
action-value model, not a policy gradient model like the MOA and SCM. The
way in which DRPIQN resembles the SCM, is that policy features (the output
of the MOA LSTM) are used to do learn about its own reward. In the case of
the work by Hong et al. [19] this concerns the agent’s own Q-function, in the
case of the SCM it’s about intrinsic reward prediction.

This work is not the first to utilize curiosity in a multi-agent setting: Schafer
[44] used the Intrinsic Curiosity Module (ICM) by Pathak et al. [40] to encourage
exploration in a multi-agent setting. However, the observation function in the
work of Schafer [44] provided high-level features, not visual frames. The used
environments were also very simple: the games’ transition function included very
little in the way of complex environment dynamics, so that the only change in
observations came from other agents’ actions. Finally, they did not pertain to
social dilemmas.
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7 Conclusion

Here follow a recap of the research question, method, and results, finally wrap-
ping up with potential directions for future research. The research question was
the following: How do agents perform when using a combination of curiosity
and empowerment in the cleanup and harvest environments? We set out to
answer this question by attempting to reproduce previously found results by
Jaques et al. [23], then devising our own multi-agent curiosity technique. By
combining the Social Influence technique with the Intrinsic Curiosity Module,
we created the Social Curiosity Module (SCM). The SCM was found to perform
roughly equivalently to the other models, which answers our research question.

The reproduction of previous research was done using the PPO algorithm
instead of A3C due to computational constraints, as hyperparameter searches
are computationally expensive, and PPO is less sensitive to hyperparameter
settings. However, compared to previous work by Jaques et al. [23] who used
A3C, PPO turned out to give substantially different results in both the harvest
and cleanup environments. Across the different models utilizing PPO, cleanup
and harvest show very similar results. Specifically in harvest, the results are
almost identical with very narrow confidence bands. With cleanup, the confi-
dence bands are far wider, and the models could very well perform differently,
but this cannot be said with any certainty, confirming this would require more
experiment runs. In the cleanup environment, we also saw relatively good per-
formance of the PPO baseline model compared to the A3C baseline model in
the work of Jaques et al. [23].

7.1 Future work

To expand on this work, a more extensive hyperparameter search could be
performed, as this is not something we have done. It could significantly alter
the outcome of the experiments, given that RL algorithms can be very sensitive
to hyperparameter settings. Performing this hyperparameter search can be done
by using the provided code found in the archived repository[15].

In section 2.2.4 we discussed how the Social Influence technique by Jaques
et al. [23] is not empowerment in the traditional sense: it measures whether in-
fluential actions are exercised, rather than measuring whether influential actions
are possible. Implicit in exercising these options is entering states that allow
you to exercise them - but exerting influence is not always a good thing. In-
stead, you can envision a technique in which the estimated social empowerment
is given as a reward, not the actual influence that was exerted. This technique
could then be a substitute for the social influence technique used in the SCM,
either with or without influence reward.

Other auxiliary tasks can be imagined to try curiosity on: the UNREAL
model by Jaderberg et al. [21] could be a starting point. Conversely, their
use of biased reward sequences could be used to train the SCM or the Social
Influence model more quickly.
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Figure 10: PPO Baseline hyperparameters

cleanup harvest
entropy_coeff 0.00176 0.000687
Ir_schedule_steps [0, 2e+07] [0, 2e+07)
Ir_schedule_weights | [.00126, .000012] | [.00136, .000028]

Figure 11: PPO MOA hyperparameters

cleanup harvest
entropy _coeff 0.00176 0.00223
moa_loss_weight 0.06663557 0.091650628
Ir_schedule_steps [0, 2e+07] [0, 2e+4-07]
Ir_schedule_weights [0.00126, 0.000012] [0.0012, 0.000044]
influence_reward_weight 1.0 2.521
influence_reward_schedule_steps [0, 1e4+07, 1e+08, 3e+08] | [0, 1e+07, 1e+08, 3e+08]
influence_reward_schedule_weights | [0.0, 0.0, 1.0, 0.5] [0.0, 0.0, 1.0, 0.5]

Figure 12: PPO SCM hyperparameters
cleanup harvest
entropy _coeff 0.00176 0.00223
moa_loss_weight 0.06663557 0.091650628
Ir_schedule_steps [0, 2e+07] [0, 2e+07)
Ir_schedule_weights [0.00126, 0.000012] [0.0012, 0.000044]
influence_reward_weight 1.0 2.521
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scm_loss_weight
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0.0, 0.0, 1.0, 0.5]

1.0

0.5

0.001

[0, 1e+07, 1e+08, 3e+08]
0.0, 0.0, 1.0, 0.5]

1.0

0.5

0.001

99




Figure 13: Hyperparameter legend

entropy_coeff

PPO entropy reward coefficient. Pol-
icy entropy is multiplied by this value,
which is subtracted from the PPO loss.

moa_loss_weight

MOA loss scaling parameter Aproa
from section 2.2.4

Ir_schedule_steps

Learning rate schedule environment
steps between which weights are lin-
early interpolated.

Ir_schedule_weights

Learning rate schedule weights ac-
companying Ir_schedule_steps, between
which the Ir coefficient is interpolated.

influence_reward_weight

Influence reward weight p; defined in
eq. (23) and eq. (40).

influence_reward_schedule_steps

Influence reward schedule environ-
ment steps. Functions identically to
Ir_schedule_steps, but is instead ap-
plied to the influence reward.

influence_reward_schedule_weights

Influence reward schedule weights.

scm_loss_weight

SCM loss scaling parameter Agcps de-
fined in eq. (39)

scm_forward_vs_inverse_loss_weight

Scaling parameter /3 defined in eq. (39),
which determines the relative impor-
tance of the SCM forward versus in-
verse loss.

curiosity_reward_weight

SCM reward coefficient v defined in
eq. (40).
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