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Background Process discovery aims at learning a process model from event logs.

With the increasing volume of data there is quickly too much data to efficiently analyse

using current process discovery tools. Recently, sampling has been proposed as one of

the ways to combat this challenge of increasing data volume. However, little is known

about sampling techniques in the context of process discovery.

Method This study looks at the effect of sampling on event logs and discovered pro-

cess models. First, literature on process discovery and sampling for process discovery

was studied. Next, new sampling methods were created based on insights from this liter-

ature. Furthermore, new measures which indicate the quality of event log samples were

introduced. Finally, an evaluation using two real-life event logs was conducted to study

the effect of different sampling techniques and sample ratios on event logs and discovered

process models. The samples were studied using the newly introduced quality measures.

Furthermore, the models discovered from the samples using the Inductive Miner were

evaluated using quality dimensions from literature and a qualitative comparison.

Key Findings The measures which indicate the quality of the samples showed an

increase in quality as the sample size increased. Contrary to this, the quality measures

which indicate the quality of models discovered from these samples showed a decrease

in quality as the sample size increased. Furthermore, no large differences were found

between the different sampling techniques, except for one sampling technique which was

able to produce results similar to the original event log using only 1% of the data.

Discussion For process discovery practitioners it could be useful that sampling can

create models of equal or better quality while decreasing the data volume. Future re-

search which studies the effect of sampling on more real-life event logs and with different

process discovery algorithms is needed.
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Chapter 1

Introduction

P
rocess mining is an active field of research which aims at extracting valu-

able business process information from information system event logs [2].

This is a field of study which has become more relevant with the increase

of (event) data [3]. Nowadays, companies generate huge amounts of data,

often called big data, which can be explored and made valuable with the right tools [4,5].

These amounts of data also bring a challenge. There is quickly too much data to effi-

ciently analyse using current process mining tools [3]. This is where sampling, analysing

only a part of the event logs, could be applied. However, little is known about sampling

techniques and the quality of these samples in the context of process mining. Few pub-

lished papers were found on this topic [6–11], some of which call for future research in

event log sampling techniques and quality measures for event log samples.

1.1 Problem Identification

One of the applications of process mining is (process) model discovery [2], where the

goal is to learn a process model from event logs. An event log consists of records

with information about the process execution [12]. Measures have been established

to compare models that are the result of process discovery activities. Buijs et al. [13]

proposed to use the following four quality criteria to evaluate discovered models: fitness,

precision, generalisation, and simplicity. These four quality criteria and the models

discovered using process mining all rely on the same input. As a consequence, if the

event log is not representative of the process (i.e. not of high quality), then the discovered

models and their quality criteria could be unreliable [3].

1
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Figure 1.1: Illustration of the traditional process model discovery approach.

If it were feasible to create an event log containing the entire stream of events generated

by a process under study, then the quality of the event log would not be an issue. It

would contain all behaviour that would ever happen in the execution of the process.

Since, at some point, the event log has to be analysed and the process continues, an

event log can be regarded as a sample of a possibly infinite stream of events [7]. As this

stream is possibly infinite, one cannot even be sure that all behaviour has occurred in the

event log [14]. The model discovery process used in practice is illustrated in figure 1.1.

Samples from the infinite stream of events are analysed using model discovery techniques.

The discovered models are sometimes evaluated using the quality criteria proposed by

Buijs et al. [13] in order to determine their quality.

With the increasing size of information systems and the vast amounts of data generated

by them, it is no longer feasible to analyse an event log containing all events up to that

point [3]. There are two possible ways to overcome this challenge. One option is to

use a big data approach and parallelise or optimise the discovery technique used [15].

The other option is to create a sample of the event log, which is already a sample of

the possibly infinite stream of events. The quality of the event log is important in both

cases. For the latter case, where the event log is sampled, the sampling technique used

could also affect the quality of the sample and therefore the process discovery results [7].
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1.2 Aim

This research has two aims. It combines the first aim of sampling event logs and the

second aim of gaining insight in the quality of these samples. These two aims are related,

because one should not sample event logs without understanding what impact this has

on the quality of the resulting event log sample. Furthermore, both aims draw from the

same backgrounds of statistics and process mining. Therefore, the aims were combined

into one research goal, which has been formulated using the template from Wieringa [16].

The aim of this research is to improve understanding about sampling event

logs, by providing techniques for sampling and a framework for measuring the

quality of these samples, that satisfy the requirements imposed by the applied

process discovery technique and the goal of the process discovery activity,

in order to help improve the efficiency and accuracy of process discovery in

practice.

1.3 Contribution

This research has both scientific and societal applications. The event log sampling tech-

niques proposed in this thesis lay the foundation for new event log sampling techniques.

Furthermore, the framework for measuring the quality of event log samples adds to pre-

viously proposed measures in the field and guides researchers in defining new measures.

The quality measures proposed in this thesis can help practitioners with estimating

the quality of event log samples. This research also improves the understanding about

sampling event logs, which could also be useful for creating event logs in general. Fi-

nally, these insights in sampling techniques for process discovery could be beneficial for

companies generating large volumes of event data.

1.4 Research Questions

One research question, which combines both aims, is formulated for this study.

RQ What is the effect of sampling on event logs and discovered

process models?
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To answer this research question, a framework of sub-questions (SQs) is used. The

first two sub-questions (SQ1 and SQ2) are related to studying the state of the art and

understanding the problem. SQ3 focusses on sampling event logs, while SQ4 focusses on

measuring the quality of these samples. Finally, SQ5 evaluates the effects of sampling

event logs.

SQ1 What is currently known about sampling event logs?

This sub-question helped with gaining a general understanding about applying sam-

pling to event logs. Existing event log sampling approaches were studied in literature.

Furthermore, existing event log sample quality measures were also studied.

SQ2 How is an event log related to discovering process models?

Scientific literature was studied to understand how event logs are created and used for

process model discovery. One goal of this sub-question was to gain a general understand-

ing of the event log quality requirements imposed by the process discovery algorithms

by researching the workings of these process discovery algorithms.

SQ3 How can event logs be sampled in a representative way for

the purpose of process model discovery?

The understanding gained from the previous two sub-questions was used to define the

meaning of the term representative and form a conceptual framework of requirements

for sampling event logs representatively. Based on the understanding and requirements,

different sampling techniques were proposed and illustrated.

SQ4 How can event log sample quality be measured?

To answer this sub-question, the insights gained from SQ1 and SQ2 were used to for-

mulate a conceptual framework of criteria which the sample quality measures should

satisfy. Next, different sample quality measures were proposed and validated against

these criteria. This led to multiple sample quality measures which can be used in spe-

cific situations. Furthermore, event log quality measures which indicate the structure of

the process were also proposed and validated.
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SQ5 What is the effect of different sampling techniques and sam-

ple ratios on event logs and discovered process models?

Figure 1.2 illustrates the approach used to answer this sub-question. The different sam-

pling methods from SQ3 were evaluated by taking samples of real process mining event

logs and calculating sample quality measures. Furthermore, models were discovered by

applying a process discovery algorithm to the complete log and the samples. Model

quality measures were then calculated in order to compare the quality of the models

discovered from the samples with the quality of the model discovered from the original

event log. Finally, a qualitative comparison of the model discovered from the original

event log and the models discovered from the samples was done.

1.5 Research Approach

A combination of research methods and design science approaches was applied because

this research aimed to design artefacts in context [16]. Offermann et al. [1] conducted

a comparison study on design science research processes. They found three broadly

supported phases of the research process and proposed a design science research pro-

cess which combines different design science research methods. The research approach

followed in this thesis follows their three phases (i.e. problem identification, solution

design, and evaluation) with the addition of a communication phase from Peffers et

al. [17]. The steps, which were executed within the different phases, followed the pro-

posed research process from Offermann et al. [1] and Wieringa [16] with modifications.

Figure 1.3 illustrates the research process followed by this thesis. Table 1.1 gives an

overview which relates the research process with the research question, sub-questions,

and research methods.

During the problem identification phase, the problem was first identified and then further

explored to gain more understanding about the problem. This was done using a literature

research. Literature on the topic of process discovery, sampling for process discovery,

and sample quality measures for process discovery was studied in a semi-systematic way.

Relevant searches on popular scientific search engines and snowballing were employed to

find relevant papers, PhD theses, and Master’s theses. The outputs of this phase were

a review of the state of the art and insights.

During the solution design phase, a second literature research was done. The workings

of process discovery algorithms were studied during this second literature research. Fur-

thermore, the state of the art from the first literature research and the literature on
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Figure 1.2: Illustration of the evaluation phase.

process discovery algorithms were used in an integrative manner to find requirements

to construct a conceptual framework of representativeness of event logs, which led to

various criteria for the sampling techniques and quality measures. The related field of

statistics was studied during the second part of this integrative literature review, in

order to find and design new sample quality measures and sampling techniques which
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Figure 1.3: Illustration of the research process. Adapted from Offermann et al. [1]

can be used for model discovery. These sample quality measures and sampling tech-

niques, called artefacts, were validated against the earlier defined criteria using small

artificial experiments in a controlled environment. This was an iterative process, where

the artefacts were adjusted and re-invented based on the results of the experiments.

The sampling techniques were evaluated during the evaluation phase. This evalua-

tion was done with a larger experiment where real event logs were used. The different

sampling techniques were evaluated with sample quality measures and model quality

measures. This experiment gave results which are of practical use, because of the usage

of real event logs, while still maintaining a high degree of control. More information

about the experimental design of the evaluation can be found in section 7.2.
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Table 1.1: Overview of the research process and research methods.

Phase Step Question(s) Research Method

Problem
Identification

Identify Problem RQ Literature
Research IProblem Understanding SQ1

Solution Design Framework Building SQ2 & SQ3 & SQ4 Literature
Research IIDesign Artefacts SQ3 & SQ4

Validate Artefacts SQ3 & SQ4 Experiment I

Evaluation Evaluate Artefacts SQ5 Experiment II

Communication Summarise Results RQ -



Chapter 2

Process Mining

Process mining is a research field which aims at extracting valuable business process

information from information system event logs [2]. Event logs, often also called process

logs, are logs which record information about the execution of a process [12]. Each entry

in an event log should be associated with one activity (e.g. reject order). Furthermore,

this entry should contain at least a case identifier and a timestamp or ordering, in order

to be useful for process mining. Additional information can be present, such as, the

location or employee performing the activity [12].

Van der Aalst [2] positioned three main usage scenarios of process mining: process

discovery, process conformance, and process enhancement. Process discovery is aimed

at creating a process model from an event log when no process model is available.

Process conformance checks if an event log adheres to a given process model. Process

enhancement is aimed at using an available process model and an event log to improve

the process model. This thesis focusses mainly on process discovery.

Many of the existing process discovery techniques use what is called the directly-follows

relation [18]. This relation states that an activity a is directly followed by another

activity b if activity a and b occur consecutively in the event log for the same case. This

relation is often used to infer the behaviour of the process from the event log.

2.1 Creating Event Logs

Most systems automatically create event logs. This event data is often used for transac-

tional bookkeeping, system monitoring, and for analysing and improving systems. Not

much literature about creating event logs for process mining exists. In most literature

9
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an existing event log is studied, without explaining how the event log was created. How-

ever, Bozkaya et al. [19] and van Eck et al. [20] presented a general methodology for

process mining which identifies the importance of the event data extraction phase.

The source of the event log depends on the logging facilities and systems running within

the organisation. For smaller organisations it is possible that one central information

system is used throughout the company. In this case, an event log can be extracted from

this system. In larger companies, different information system often run simultaneously

and interact with each other. The logs of different information systems then have to

be combined to form an event log for process mining. Sometimes, companies already

aggregate event data from different systems for the purpose of system monitoring. In

this case, the central monitoring system can be used to create an event log for process

mining.

2.1.1 Infinite Stream of Events

Data mining uses the term data stream to denote a data set containing objects with

timestamps and ordering [21]. This terminology can directly be mapped to process

mining. The data set is the event log, which contains activities with a timestamp and

ordering. Therefore, information system events and event logs can be seen as a stream

of data.

When an existing system is studied, it has possibly been running for many years already.

This old event data might not be obtainable. It might also be undesirable to include all

past events if this data is obtainable because processes often change over time. This is a

phenomenon called concept drift [22]. Many process model discovery techniques cannot

deal with concept drift as they assume that the underlying process does not change while

being studied [22,23].

It is also unknown how many events will follow in the future. The system may continue

to run endlessly after it is decided to stop logging and analyse the event log. Therefore,

the event log only captures a certain period of system execution. Such an event log is

then a sample of a possibly endless stream of events. Figure 2.1 displays this idea. Knols

et al. [7] also viewed an event log as a sample from an infinite stream of events.

This idea can be illustrated on the data from the BPI Challenge 2015 [24]. This data set

consists of event logs from five different municipalities in the Netherlands, which each

contain data over a period of about four years. The information systems were likely

already in use before these four years and the systems will probably continue to run.

Therefore, this event log can be seen as just a slice of data from a larger stream of events.
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Figure 2.1: Viewing an event log as a sample of an infinite stream of events.

The number of events to come might even be infinite, because it is currently not known

how long the system will stay operational.

2.1.2 Requirements

The time span of the event log should exceed the normal duration of a case. For example,

when an average case of the process takes twenty days to complete, then an event log

spanning only five days is not expected to include a full sequence of events (i.e. from the

beginning to the end of the process). Depending on the process discovery technique and

the goal of the process discovery activity, this can have consequences for the results.

It might be difficult to find the average duration of a case in the process when creating

an event log. However, domain experts could help with this estimation by using their

domain knowledge and by recognising names of activities that occur in the process.

Another requirement of an event log is that cases must be logged continuously. If a

case is not logged continuously but with intervals, it is impossible to know if an event

is missing from the event log. This leads to inferring incorrect behaviour that did not

occur in reality. For example, in figure 2.2 an event log was constructed by logging for

one week, followed by one week of not logging, and then logging for one week again.

Activities a and b were recorded for case one during the first week of logging. During

the second week, activities c and d occurred without being logged because logging was

turned off this week. Finally, in week three, activity e was recorded for case one. The

resulting recorded event log only has activities a, b, and e. When inferring behaviour

from this event log, a process discovery algorithm finds that activity b is directly followed

by activity e, while this behaviour never occurred in reality.
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Event  Log 1

Case I D A ct iv i t y D at e
1 a 01-15
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Event  Log 2
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e

St ar t p1 p2 End
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Figure 2.2: Illustration of constructing a process model that does not represent the
behaviour which occurred in reality, due to logging with intervals.

This problem of having an event log which was not recorded continuously can be over-

come. Partial event logs should then be combined by dropping any cases that occur in

any non-consecutive partial event logs. This ensures that one activity is directly followed

by another in the combined event log only if this occurred in reality. However, it must

then be known that event logs are not recorded continuously, because there is no way

to infer this from the event logs themselves.

2.2 Measuring Quality

Quality can be measured at two stages during the process discovery activity. It is possible

to look at the quality of the input of the process discovery activity (i.e. the event log)

or the output of the process discovery activity (i.e. the resulting process model). The

quality of the event log is sometimes neglected, however, it is important to take the

quality of the input into account, because the resulting process model depends on both

the quality of the event log and the applied process discovery algorithm [25,26].
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2.2.1 Event Log Quality Issues

Different types of quality issues have been proposed to describe the quality of event logs.

There are, however, inconsistencies in the names used in literature. For example, some

literature uses the term noise to indicate invalid behaviour, while other literature uses

the term noise for rare but valid behaviour. The most important event log quality issues

and naming inconsistencies are discussed in this section.

Because of the inconsistencies in terms used in literature, it was decided to use the

following terminology throughout this thesis:

• Hidden: Valid behaviour which is not recorded (i.e. missing) in the event log.

• Incomplete: Sequences of events where events are missing at the beginning,

middle, end, or a combination of these.

• Incorrect: Events or sequences that never occurred in reality, which are thus

invalid and should not have been recorded in the event log.

• Rare: Events or sequences that rarely or infrequently occur in reality. Note that

these events or sequences are valid and thus not incorrect.

Table 2.1 gives an overview of the terminology which is used to indicate event log quality

issues in literature compared to the terminology used throughout this thesis.

The term hidden task is used by van der Aalst et al. [27] to indicate an activity which has

not been recorded in the event log. This is similar to the definition of hidden behaviour

used in this thesis, because any behaviour involving the hidden task will be hidden

behaviour.

Multiple definitions are given to the concept of incompleteness in process mining liter-

ature. When referring to event logs, the definitions of incompleteness boil down to not

having enough information recorded in the event log [2], not having recorded enough

possible behaviour in the event log [28, 29], or the cases in the event log not being rep-

resentative of the process [28, 29]. It was decided to use the term hidden for this type

of quality issue because of the confusion with cases which can also be incomplete. One

weak or local notion of completeness is that if two activities can directly follow each

other, then this should be observed at least once in the event log [2, 28]. This weak or

local notion of completeness also falls under the category of hidden behaviour but is also

referred to as existential completeness throughout this thesis.

Van der Aalst [2] and Bose et al. [3] use the term incorrect to refer to activities which

have been recorded incorrectly. Van der Aalst gives the example of an error occurring



Chapter 2. Process Mining 14

Table 2.1: Definitions of quality issues found in literature compared to the terminology
used throughout this thesis.

Terminology Used In This Thesis

Quality Issue Publication Hidden Incomplete Incorrect Rare

Hidden Task Van der Aalst et al. [27] 3

Incomplete Van der Aalst [2] 3

Incomplete Günther [29] 3

Incomplete Weijters et al. [28] 3

Incorrect Van der Aalst [2] 3

Incorrect Bose et al. [3] 3

Missing Cases1 Bose et al. [3] 3

Missing Events Bose et al. [3] 3

Noise Van der Aalst [2] 3

Noise2 Van der Aalst et al. [27] 3 3 3

Noise Günther [29] 3 3

Noise2 De Medeiros et al. [30] 3 3 3

Noise Weijters et al. [28] 3 3
1Not strictly because other similar cases might be recorded.
2Multiple definitions are given.

during the logging, while Bose et al. give the example of an activity being recorded

which did not occur in reality.

Bose et al. [3] defined missing cases and missing events as two quality issues which

deal with information missing in the event log. Cases are missing from the event log

if they have been executed in real life but have not been recorded in the event log.

Missing events, on the other hand, are events of a recorded case which have not been

recorded. This can be a single event or multiple events, which can be missing at the

beginning, middle, or end of the case. Their definition of missing events corresponds to

the definition of an incomplete sequence of events used in this thesis.

The term noise was found to be used in many process mining publications. Although

some of these publications agreed on the definition of noise, others did not. Van der

Aalst [2] identified the presence of noise as making event logs less representative. Fur-

thermore, he stated that discovery algorithms cannot distinguish incorrect events (i.e.

events that did not occur in reality) from rare but correct events. He uses the term noise

to refer to rare behaviour and not to refer to incorrect behaviour.

Van der Aalst et al. [27, p. 245] define noise as “parts of the event log can be incorrect,

incomplete, or refer to exceptions”. Günther [29], on the other hand, provided a classic

notion of noise and an extended version of noise. The extended version of noise is

outside of the scope of this thesis. The classic notion of noise exists of the head of a

case missing, the tail of a case missing, missing activities in the middle of a case, two
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activities swapping position in a case, cases with additional activities, and cases with

activities which do not exist in real life. The first three types of this classic notion of

noise are grouped under the definition of incomplete sequences of events given in this

thesis, while the last three notions of noise are grouped under the definition of incorrect

events or sequences of events.

De Medeiros et al. [30] give multiple definitions of noise throughout the publication.

The first definition refers to infrequent behaviour that is either incorrect or rare [30, p.

250]. Later in the publication, during the experiment, noise is referred to as behaviour

which is both infrequent and incorrect or infrequent and incomplete [30, p. 283]. This

corresponds to the terms incomplete sequences and incorrect events or sequences. Note

that the second definition given by de Medeiros et al. excludes rare behaviour (i.e.

infrequent correct behaviour), while their first definition included this.

Weijters et al. [28] use the term noise to indicate that no incorrect behaviour should

be logged. During their experiment it becomes clear that this can be either incomplete

sequences or incorrect sequences or behaviour.

It seems that the term incomplete is used in two different contexts. The completeness of

the event log refers to no behaviour being hidden in the event log, while the completeness

of the cases themselves often refers to no activities missing from the beginning, middle,

or end of the sequence. Furthermore, it should be noted that incomplete cases can lead

to incorrect behaviour being inferred (e.g. if activity a is followed directly by activity c

because activity b was not logged, while activity a cannot be directly followed by activity

c). Finally, the usage of the term noise seems overloaded, as quite different definitions

are used. Sometimes even within one publication.

2.2.2 Sample Quality Measures

Knols et al. [7] researched the quality of event log samples and identified measures for the

representativeness of these samples. They determined if behaviour (i.e. directly-follows

relations) occurs at the same ratio in the sample as in the original event log. To do so,

they used the ratio of behaviour in the original event log with a small interval around

this value, which they called the true sample bandwidth. If the ratio of the behaviour

in the sample is above this true sample bandwidth, then the behaviour is oversampled.

On the other hand, if the behaviour has a lower occurrence in the sample than in the

original event log and it is outside of the true sample bandwidth, then the behaviour

is undersampled. When behaviour is present in the original event log but is completely

absent in the sample, then the behaviour is unsampled.
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The terms oversampled, undersampled, and unsampled are related to the representa-

tiveness notions introduced in section 2.3. The notion of existential completeness of

directly-follows relations, which requires every directly-follows relation which is possible

in the process to occur at least once in the event log, is directly related to unsampled

behaviour. An event log containing unsampled behaviour does not meet this existential

completeness criterion because behaviour which was in the original event log is now

missing. The notion of frequency representativeness of directly-follows relations requires

that directly-follows relations occur proportionally as often in the event log as in the

true process. This is related to behaviour not being undersampled or oversampled, be-

cause undersampled behaviour occurs proportionally less often in the sample than in the

original event log and oversampled behaviour occurs proportionally more often in the

sample than in the original event log.

2.2.3 Model Quality Measures

The quality of discovered process models can be evaluated using the four quality dimen-

sions as proposed by Buijs et al. [13]. More information about each of the model quality

measures and alignments method, which are described in this section, can be found in

the work of Adriansyah [31]. The first quality dimension is fitness. Fitness measures

how well a model can replay an event log. It is, therefore, a way of checking if the model

and the sequences in the event log align. Three different kinds of fitness are used in this

thesis.

Move-log fitness is a type of fitness which is concerned with sequences of events which

are present in the event log but cannot be executed in the model [32]. An example of

a move-log action is when the model allows to execute activity a followed by activity

c, while the event log has a sequence 〈a, b, c〉. The model does not allow to execute

activity b, therefore this activity is skipped in the event log. Move-model fitness, on the

other hand, is concerned with an activity which is mandatory in the model, but which is

not present in the event log. For example, when the model consists of a linear sequence

of activity a, followed by activity b, and then activity c, while the event log contains a

case which consists of activity a, followed by activity c. In this case, activity b in the

model is skipped.

The third type of fitness is a more general fitness measure. This fitness measure is called

trace fitness. Trace fitness is concerned with how well the model can replay the sequences

in the event log. Move-log and move-model fitness can be seen as more granular, while

trace fitness gives a general picture of how well the model can replay the cases in the

event log. All three types of fitness measures calculate values between zero and one.
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Zero is the lowest possible fitness, while one is the maximum fitness. For example, a

trace fitness of one indicates that the model can replay all cases in the event log.

One method which can be used to check the fitness of a process model is the alignments

method. This method assesses how well each sequence in the event log aligns with an

execution sequence of a process model [31, 33]. If an activity of a sequence in the event

log aligns with the process model, then the step is called synchronous. However, if the

activity of the sequence in the event log does not align, then a choice has to be made

between creating a log move or a model move. In this case, the move or moves with the

lowest total cost are chosen.

Precision is the second quality dimension. This quality dimension is concerned with

how precise the model is. This is important because, for example, a flower model (i.e.

a model where every activity can always be followed by any other activity and itself)

can replay any event log, but it allows for too much behaviour to be sensible in most

cases. Precision is thus a measure for how much extra behaviour (i.e. behaviour which is

unobserved in the event log) the discovered model allows. Precision also ranges from zero

to one. A value of one indicates that the model does not allow for any extra behaviour.

The third quality dimension is simplicity. Simplicity describes how complex the model is.

The theory behind this quality dimension is that a simpler model is easier to understand

for humans [13]. Finally, the last quality dimension is generalisation. Generalisation can

be seen as the opposite of precision. It is a measure for how well the model generalises

for valid behaviour which is not observed in the event log. This is, however, hard to

measure because this behaviour is missing from the event log.

A trade-off exists between precision and generalisation [2]. This trade-off is similar to

the bias-variance trade-off as seen in data mining. It is a trade-off between overfitting

the event log while discovering a model, and thus creating a model which is very precise

but is not able to generalise well, and underfitting the event log, thus, discovering a

model which is not precise but generalises well.

It is difficult to measure simplicity and generalisation automatically because of the afore-

mentioned reasons. Therefore, it was decided to focus on fitness and precision during the

evaluation phase. Fitness and precision can be combined into one measure, the so-called

F-measure. This is the harmonic mean of the fitness and precision. This measure is

also known as the F1 score, or F-measure in statistics or data mining. De Weerdt et

al. [34] introduced this measure for process mining. The F-measure used is shown in

equation 2.1.

F-measure =
2 · precision · trace fitness

precision + trace fitness
(2.1)
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2.3 Discovery Techniques

Process discovery techniques aim at creating a process model based on events generated

by an information system (i.e. an event log) [35]. Different process discovery techniques

have been proposed over the years. Van Dongen et al. [36] did a comparison of different

process mining techniques aimed at discovering Petri nets. Their work was extended in

this thesis by going into more detail about assumptions that process discovery algorithms

make on the event log and by including newer process discovery algorithms.

Table 2.2 gives an overview of assumptions of the discovery techniques discussed in

this section. The terms hidden, incorrect, and rare correspond to the definitions given

in section 2.2.1. The table shows that most discovery techniques cannot handle hid-

den behaviour. Some algorithms use thresholds when dealing with incorrect and rare

behaviour. They can only deal with incorrect behaviour if it is also infrequent. The

algorithms have no way of distinguishing incorrect from rare behaviour because they

just filter out infrequent behaviour regardless of the behaviour being incorrect or rare.

The column named representativeness corresponds to the completeness assumption that

the algorithm makes on the event log. Algorithms which assume existential completeness

of directly-follows relations (abbreviated as DF existential) expect that every directly-

follows relation that is possible occurs at least once in the event log. The notion of

frequency representativeness of directly-follows relations (abbreviated as DF frequency)

assumes that the frequency of each directly-follows relation is proportionally equal to

its respective frequency in the original process.

Existential completeness of sequences (abbreviated as SEQ existential) is a notion which

assumes that all possible sequences are present in the event log. Finally, the notion of

frequency representativeness of sequences (abbreviated as SEQ frequency) assumes that

the frequencies of sequences of activities in the event log are proportional to their real

frequencies.

2.3.1 Alpha Algorithm

One of the most important algorithms in process mining is the α-algorithm [18]. Over

the years, various improved variants of the α-algorithm have been proposed. These

extensions tackle shortcomings of the original α-algorithm, for example, the ability to

handle short loops [37]. For other variants of the α-algorithm see [38–41].

The α-algorithm and its variants are a direct algorithmic approach, because the directly-

follows relations mined from the event log are used to directly infer the process model [2].
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Table 2.2: Overview of assumptions made on the event log by various discovery
techniques.

Quality Issues Able to Handle

Discovery Technique Hidden Incorrect Rare Representativeness

α-Algorithm No No No DF Existential
HeuristicsMiner No Threshold Threshold DF Frequency1

Fuzzy Miner No Threshold Threshold DF Frequency1

Inductive Miner (IM) No No No DF Existential
IM - Infrequent No Threshold Threshold DF Frequency1

IM - Incompleteness Occasionally No No DF Frequency2

ILP Miner No No No SEQ Existential
Genetic Algorithms No Threshold Threshold SEQ Frequency1

1Also requires DF existential if rare behaviour is desired.
2Occasionally missing DF relations allowed if rare behaviour is desired.

Therefore, process mining algorithms of this type assume that the event log contains all

possible behaviour (i.e. all possible directly-follows relations are present and none are

hidden) [36].

This direct algorithmic approach also implies that no wrong directly-follows relations

should be present, meaning that no incorrect behaviour should be present in the event

log. The α-algorithm does not naturally filter out rare behaviour. Therefore, this

algorithm and its variants are capable of finding models which include rare behaviour.

Whether the inclusion of rare behaviour in de model is desirable depends on the goal of

the process mining activity.

2.3.2 HeuristicsMiner

The HeuristicsMiner algorithm works differently from the direct algorithmic approach.

Instead of looking if a directly-follows relation is present and directly inferring from

this, it uses directly-follows relations to estimate the certainty of dependency relations

between activities [28]. For example, if activity a is often followed by activity b and

activity b is never followed by activity a, then it estimates the certainty of activity b

being dependent on activity a to be high. This estimated certainty is used with various

thresholds to decide if activity b depends on activity a [28].

Next, the HeuristicsMiner finds AND/XOR splits and joins. This is done using a causal

matrix and thresholds. A causal matrix shows the causal relations between activities

together with the AND/XOR operators. For example, it can find a causal relation a

> (b ∧ c), which is included in the model if it is above the set threshold. This causal

relation with AND operator can be inferred from the event log if it contains both a >
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b and a > c in many sequences. The causal matrix is thus dependent on the causal

relations which depend on the directly-follows relations.

The main benefit is that this algorithm is less sensitive to both incorrect behaviour and

rare behaviour being present in event logs [28,36]. For example, if an incorrectly logged

directly-follows relation a > c occurs once in the event log, then this relation would fall

below most (reasonable) threshold values and therefore it would not be considered. One

disadvantage is that there is no way to know if this relation a > c is incorrectly logged

or just rare. Therefore, important rare behaviour could also be filtered out because it

falls below the thresholds.

Weijters et al. [28, p. 7] mention that the HeuristicsMiner is less sensitive to hidden

behaviour. However, in their discussion about completeness they contradict this by

saying “a stronger completeness notation is needed because we use thresholds” [28, p. 18].

Nevertheless, it can be concluded that the most important property of the event log

used as input for the HeuristicsMiner is that the frequencies of directly-follows relations

should be proportional to their real values [28]. This should especially be the case for

frequencies of directly-follows relations which are close to the threshold values because

those impact the result.

2.3.3 Fuzzy Miner

The Fuzzy Miner [42] uses the concepts of aggregation and abstraction to create sim-

plified process models. In order to do this, it uses two metrics called significance and

correlation. Significance is based on the frequency of activities or behaviour while cor-

relation measures how related events that follow each other are. The main idea of the

fuzzy algorithm revolves around keeping significant behaviour, while aggregating or ab-

stracting from less significant behaviour. Even though the fuzzy algorithm is not strictly

dependent on local information and the directly-follows relations, it is still classified as

such, because most of the algorithm’s measures are based on the directly-follows rela-

tions.

Günther et al. [42] proposed to measure significance with both unary and binary signif-

icance metrics. Unary significance measures the relative importance of activities. One

way of measuring this is by looking at the frequency of an activity in the event log.

Another, more complicated way, is to calculate how important an activity is for routing

the process (i.e. activities where the process splits or synchronises).

Binary significance metrics calculate the importance of directly-follows relations. This

can be done by looking at the frequency of directly-follows relations occurring in the
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event log. A different method is to calculate a so-called distance significance by looking

at how much the significance of a relation differs from the significance of its source and

target activities.

All unary and binary significance metrics described before depend on the frequencies

of activities or the frequencies of directly-follows relations. The assumption that the

frequencies of directly-follows relations should be representative contains the assumption

that frequencies of activities should be representative, because directly-follows relations

are found by looking at pairs of directly following activities in the event log. If the pair

of directly following activities is representative, then so should each individual activity

be. Therefore, it suffices to say that the frequencies of directly-follows relations in the

event log should be proportional to the true frequencies.

Binary correlation metrics were prosed by Günther et al. to measure how related two

directly following activities are [29, 42]. They gave several metrics to calculate this.

Such as, how quickly activities followed after each other, if the same (type of) person

executed the directly following activities, the similarity of activity names of directly

following activities, and correlations between additional attributes found in the event

log (e.g. the same data type or attribute value). These metrics depend on the quality and

presence of additional information in the event log. For example, precise timestamps,

accurate activity names, additional attributes, and information about the person who

executed the activity.

Rare and incorrect behaviour will likely be either aggregated or abstracted, because

behaviour with a low frequency will have a low significance. The choice between either

aggregating or abstracting from this infrequent behaviour depends on whether there is

a correlation with other infrequent behaviour. If there is such a correlation, then the

infrequent behaviour will likely be aggregated. There is, however, no way for the fuzzy

mining algorithm to distinguish rare from incorrect behaviour.

2.3.4 Inductive Miner

More recently, the Inductive Miner [43] has been developed. This new process discovery

algorithm has become the de facto process mining technique [44]. Leemans et al. pro-

posed two main variants of the Inductive Miner. The first variant is more theoretical.

It only assumes activity completeness (see Leemans et al. [43] for more information),

which comes at the cost of practical limitations. Therefore, here the focus lies on the

second, more realistic, algorithm. Furthermore, many extensions have been developed

for the Inductive Miner [32,45–47].
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The more realistic Inductive Miner algorithm works by exploiting the directly-follows

relation. It converts directly-follows relations present in the event log into a directly-

follows graph. A directly-follows graph is a directed graph displaying the activities

as nodes and the directly-follows relations between activities as edges. The Inductive

Miner tries to find possible points to cut this directly-follows graph. These cuts should

correspond to the characteristics of operators (i.e. exclusive choice, sequence, parallelism,

or loop). The idea is to find the strongest operator and cut the directly-follows graph

there. This forms two new sub event logs on which the process is repeated.

As this technique uses the directly-follows relation, it assumes existential completeness

of directly-follows relations in the event log. Leemans et al. [43] pointed out that the

event log does not have to be DF complete in order to guarantee soundness and fitness.

This is because an incomplete model can be sound and an incomplete model can be

complete with respect to an incomplete event log.

The Inductive Miner algorithm discussed above does not have any built-in ability to

deal with invalid or rare behaviour. However, an extension called Inductive Miner -

infrequent [45] is able to handle infrequent behaviour by applying local filters during

every step of the original algorithm. This infrequent extension first applies the original

steps of the Inductive Miner. Only when the Inductive Miner fails, the infrequent

extension performs filtering. During this filtering it uses multiple types of local filtering

approaches.

One type of filtering is removing infrequent behaviour from the directly-follows graph

using the frequencies and a threshold value. Another way to filter is by constructing an

eventually-follows graph and filtering behaviour using a threshold. An eventually-follows

graph is constructed by taking pairs of activities which eventually follow each other, in

contrast to the directly-follows graph which only looks at directly following activities.

The infrequent extension also applies filters to base cases (i.e. sub logs which have only

a single activity), based on a threshold. Furthermore, it can also remove behaviour

that violates the operators, in order to prevent the violating behaviour from obscuring

frequent behaviour.

This extension of the Inductive Miner comes at the cost of a stricter completeness

requirement. It does not only assume that the directly-follows relations are complete,

but also requires the frequencies of directly-follows relations to be proportional to their

true values. Although the Inductive Miner - infrequent is able to remove infrequent

behaviour, it can, however, not distinguish between incorrect and rare behaviour.

Another extension of the Inductive Miner is the Inductive Miner - incompleteness [46].

The main idea behind this extension is that it works by using an estimated probability
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of whether a relation holds and by using information that some relations cannot hold

(for more information see Leemans et al. [46]). This extension allows for the discovery of

process models from event logs with occasionally hidden behaviour. However, it assumes

that no incorrect behaviour is present in the event log.

Since this extension estimates the probability of whether a relation holds, it also needs

information about the frequencies of directly-follows relations occurring. Therefore,

this algorithm assumes that the frequencies of directly-follows relations are proportional

to their true values. The benefit is that occasionally a directly-follows relation can be

completely missing from the event log, which can sometimes be inferred by the algorithm.

However, no activities should be missing, as the algorithm has no chance of knowing

which activities are missing and there are no hints about this in the event log.

2.3.5 ILP Miner

The ILP miner [35] is a process discovery technique which uses inductive linear program-

ming. This technique discovers a Petri net by trying to find places that express causal

dependencies. The most restrictive (i.e. expressive) places are found first. When finding

these places, it uses the event log as restriction. The resulting Petri net has to be able

to replay all behaviour in the event log. Therefore, the resulting Petri net is guaranteed

to have perfect fitness [48].

The ILP miner uses all individual sequences in the event log to guarantee that all

behaviour can be replayed. Therefore, it requires that all possible sequences are present

in the event log and that no incorrect sequences are present in the event log. This perfect

fitness requirement also results in the inability to handle incorrect or rare behaviour.

Furthermore, the technique is unable to deal with hidden behaviour.

2.3.6 Genetic Algorithms

The genetic algorithms, which use global search, work differently than the aforemen-

tioned discovery techniques [30, 49]. They create different models using genetic opera-

tors. These individual models are evaluated against the entire event log, hence called

global search. This evaluation is done with a so-called fitness function1.

The three most important properties of genetic algorithms are the internal representa-

tion, the fitness function, and the genetic operators [30]. The internal representation

is based on the causal matrix as described for the HeuristicsMiner. However, both the

1Fitness in the context of genetic algorithms refers to the suitability and quality of individual models.
Not the quality criteria described in section 2.2.3
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internal representation and genetic operators are not of main importance when looking

at the requirements posed by the genetic algorithm on the event log. The event log is

only used to create the initial population and to evaluate the fitness of models.

The evaluation of models with the fitness function is the most important of these, because

the best model and the direction of the search are mainly determined by the fitness

function, because models with a higher fitness have a higher chance of surviving for the

next iteration. Different fitness functions are possible. De Medeiros et al. [30] proposed

to use a balance between the quality criteria of fitness and precision. Thus, finding

a model that can replay the event log without being able to execute too much extra

behaviour.

Since this fitness measure is computed globally on the event log, it is naturally resistant

against both incorrect behaviour and rare behaviour. For example, the α-algorithm,

which has a local direct approach, would add behaviour that occurs one time in ten

thousand sequences. The global search based genetic algorithm would probably not add

this behaviour. There is, however, no way of knowing if this infrequent behaviour is

incorrect or rare. Therefore, important rare behaviour could be lost. To overcome this,

de Medeiros et al. [30] proposed to use post-pruning, which allows infrequent behaviour

to be removed from the model. This can only remove incorrect behaviour without

also removing rare behaviour when done manually, since a threshold based post-pruning

method as proposed by de Medeiros et al. would remove any type of infrequent behaviour

that falls below the threshold.

De Medeiros et al. [49] mentioned that the genetic algorithm should overcome the prob-

lem of incomplete event logs, however, no further explanation was given. In a later paper

they also mentioned this and specified that incompleteness refers to cases which were

not yet completed when the logging was stopped (i.e. incomplete sequences) [30]. It

can also be said that no behaviour should be hidden and that the event log should pro-

portionally have the same frequency of sequences of activities as the real process would

have, because the global fitness measure requires that the event log is representative of

the real process at a global level.

2.4 Sampling Event Logs

Large event logs can be reduced in size by applying a sampling technique. By using

this sampling technique, a sample, or subset, is taken from an original event log. The

original event log can be seen as a sample of an infinite stream of events, as explained
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Figure 2.3: Viewing a sample of an event log as a sample of a sample.

in section 2.1.1. Since the original event log is thus already a sample, taking a sample

from this sample results in a sample of a sample. This idea is illustrated in figure 2.3.

There are multiple purposes for sampling in model discovery. One purpose is the reduc-

tion of computational time for model discovery. For example, Jans et al. [50] applied

random sampling to an event log for computability. Another purpose is to filter out rare

or invalid behaviour that is infrequent in the event log [51].

All types of sampling techniques can be applied in multiple ways. Firstly, the output of

the sampling activity can be of two kinds. One option is to take a sample out of only

unique sequences or unique behaviour. Thus, creating a very small event log. Another

option is to keep the frequencies in the output event log proportionally the same as

the frequencies in the original event log. This results in a larger event log with, for

example, 10% of all sequences. Secondly, event logs can be sampled at different levels

of granularity.

The highest level of granularity is the case level. At this level, cases are either included

or excluded. For example, all rows with case numbers one and three would be included

in a sample taken from table 2.3. At a lower level of granularity are the pairs of activities

which directly follow each other.

At the lowest level of granularity is the activity level, where the different rows of the

table would be either included or excluded. The event log that results from this is

unusable for model discovery because there is no way of knowing which activity occurs

before or after a certain activity. For example, when activity a and c of case one are
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Table 2.3: Example of an event log.

Case ID Activity Timestamp

1 a 2020-01-15 22:56
1 b 2020-01-15 23:44
1 c 2020-01-16 13:12
2 a 2020-01-23 09:33
2 b 2020-01-13 12:36
2 d 2020-01-16 16:46
2 e 2020-01-17 10:54
3 a 2020-02-14 16:14
3 e 2020-02-14 18:23

included, but activity b of case one is excluded, then there is no way of knowing that

activity c did not directly follow activity a. Figure 2.4 illustrates this.

Two different types of sampling techniques can be identified. Probability sampling

approaches, such as simple random sampling, take a subset from the original event log

where every case has an equal probability of being sampled. Other approaches can

be seen as non-probability sampling approaches. Fani Sani et al. [10] made a different

distinction between sampling techniques for process mining. They distinguished between

random sampling, which is a subtype of probability sampling, and biased sampling,

which is the same as non-probability sampling.

2.4.1 Probability Sampling Approaches

Probability sampling takes a subset of the original event log where all cases have an

equal probability of being included in the sample [52, 53]. E.g. when creating a sample

Case I D A ct iv i t y T imest amp

1 a 2020-01-15 22:56

1 b 2020-01-15 23:44

1 c 2020-01-16 13:12

a

st ar t p2p1

b

Case I D A ct iv i t y T imest amp

1 a 2020-01-15 22:56

1 c 2020-01-16 13:12

end

c

a

st ar t endp1

c

Figure 2.4: Illustration of sampling on the activity level of granularity. The sampled
event log and Petri net at the bottom of the figure do not display what truly happened.
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including 10% of the cases from the original event log, every case has a 10% chance of

being included.

Simple Random Sampling

Simple random sampling is a technique where a sample is created by randomly including

cases or behaviour. In this sub-section, simple random sampling is illustrated on cases,

but it can also be applied to behaviour. There are multiple ways to select the included

cases. One way is to first count the number of cases in the original event log and then

randomly draw a sample from these cases. The disadvantage is that the number of cases

in the original event log has to be known. This can require an extra iteration over the

data if this metadata is not yet available.

Another way to select the cases included in the sample is by using a probability of

inclusion for every case in the original event log. When creating a sample that is 5%

of the cases in the original event log, then every case ID has a 0.05 probability to be

included. This is a quick sampling technique because the event log only has to be

traversed once. A disadvantage of this technique is that the resulting size of the sample

might slightly differ from the intended sample size.

Little is known about the representativeness or quality of simple random samples. Knols

et al. [7] did a preliminary study and found that the quality of different random samples

varied. Fani Sani et al. [10] studied the effect of random sampling on the resulting

discovered process models and found that randomly sampled event logs lead to process

models with a lower quality.

Not Completely Random Sampling

Stratified sampling and cluster sampling are two other approaches where every case has

an equal probability of being included. Both these approaches first divide the cases in

unique groups. Depending on the approach, these groups are called strata or clusters.

Both approaches are illustrated in figure 2.5. When sampling on the case level, the groups

can be formed based on unique sequences. When behaviour is sampled, the unique

behaviour can be used to form the groups. No literature was found about stratified

sampling or cluster sampling within the field of process discovery.

Stratified sampling works by randomly sampling from each group. In figure 2.5 a 30%

sample size is used. This means that from every group 30% of the cases are included

using simple random sampling. It is not possible to use the probabilistic simple random

sampling strategy, since this would undo the grouping and would thus result in a simple
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Figure 2.5: Taking a stratified and a clustered sample from an event log.

random sample instead of a stratified sample. The benefit of stratified sampling is that

a sample is more representative. It includes exactly the set percentage of behaviour or

sequences from each group. A disadvantage of stratified sampling is that it is slower

than simple random sampling, because the groups need to be created before applying

simple random sampling to each group.

Cluster sampling includes or excludes only whole groups with a certain probability. In

figure 2.5, only the group consisting of the sequences 〈a, e〉 has been included in the sam-

ple, while the other two groups were excluded from the sample. This sampling method

does not seem appropriate for process mining since many unique sequences or behaviour

are lost when applying this sampling technique. This leads to oversampling and unsam-

pling. Therefore, this sampling strategy creates samples which are not representative of

the original event log.

Information Saturation

Bauer et al. [9] described a statistical approach to reduce the size of the event log by

sampling cases until no new information is found. They do this by sampling from the

original event log until the probability of a new case adding new information is below a

certain probability.
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Their approach uses an abstraction function to determine if a case adds new information.

Since information in the event log can be specific (e.g. attribute values and timestamps),

they proposed to use an abstraction function with relaxation parameter. For more

information see Bauer et al. [9].

In order to determine if the probability of a new case adding new information is below

a predetermined probability, they introduced a statistically founded measure. This

measure calculates how many cases which do not add new information should at least be

observed. This measure takes two parameters. One parameter is the confidence interval.

The other parameter is used to set how low the probability should be of finding new

information in the remaining, unsampled part, of the event log.

The approach from Bauer et al. begins by sampling a new case from the original event

log. If this case adds new information, it is added to the sample log. On the other

hand, if this case does not add new information, a counter is started. Once this counter,

which counts the number of cases that did not contain new information in a row, reaches

the value determined by the statistical measure for log discovery sufficiency, then the

algorithm is stopped and the sample log is returned.

It is not explicitly mentioned by Bauer et al. if sampling a new case from the original

event log is done using random sampling. However, from the explanation given by Bauer

et al. it seems most likely that the new case is randomly sampled. In this case, the

approach is probabilistic because all cases have an equal probability of being sampled.

They evaluated the approach using the Inductive Miner - infrequent on two real-life

event logs. They found that the discovery time reduced in some cases by up to twenty

times, depending on the relaxation parameter used. They reported only a minimal drop

in the fitness of the discovered process model.

Confidence Intervals

Berti [8] proposed a sampling technique specifically for the HeuristicsMiner. Details

about the HeuristicsMiner can be found in section 2.3.2 and [28]. The sampling technique

focusses on calculating confidence intervals for the estimated certainty of dependency

relations. For example, if the dependency relation of activity a being followed by activity

b in a random sample exceeds the set dependency threshold by a lot, then one can be

fairly certain that a > b holds in the entire event log.

The sampling technique iteratively adds N random cases to the sample. Then it calcu-

lates the certainty of dependency relations between activities. Next, the lower value of
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the confidence interval is calculated and it is checked if this value is above the depen-

dency threshold. The algorithm stops if either the lower value of the confidence interval

is above the dependency threshold for all dependency relations which are above the

threshold, or with a random probability 1−q. It is unclear why the algorithm is allowed

to stop with probability 1 − q. The algorithm is never allowed to stop if there are no

dependency relations for which the lower bound of the confidence interval is above the

dependency threshold.

The technique is probabilistic because the cases are sampled randomly in each iteration

of the algorithm. The size of the sample depends on the algorithm and, therefore, it is

not known in advance how large the sample will be.

The approach proposed by Berti has not been properly validated using experiments.

Only a small evaluation was done on two real-life event logs. This evaluation showed

that with a sample the size of less than 3% of the original log it was possible to find more

than 95% of the dependency relations above the threshold. However, many dependency

relations that were below the threshold in the original event log were above the threshold

in the sample. In one case 25% and in the other case 62% of the dependency relations

below threshold in the original log were above the threshold in the sample log.

2.4.2 Non-Probability Sampling Approaches

Non-probability sampling approaches do not use a predetermined probability to include

cases. Instead, the cases are selected using a criterion. Non-probability sampling tech-

niques are usually slower, because they have to traverse the log at least once and have

to calculate metrics on the sample or on the cases. Discovery techniques which assume

the frequencies of directly-follows relations to be representative could have problems

with non-probability sampling approaches, because the frequencies of directly-follows

relations in the sample might not reflect the frequencies in the original event log.

Biased Sampling Techniques

Fani Sani et al. [10] described four different non-probability sampling approaches, which

they called biased sampling techniques. The first technique they described is frequency-

based selection. This technique counts how often each unique sequence occurs in the

event log and extracts the n% most frequently occurring sequences. Where n is the

sample size. A disadvantage of using this technique is that important rare behaviour

could be lost.
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The second technique they described is length-based selection. This is a technique which

includes the top n% of either the longest or the shortest sequences found in the original

event log. Including only the longest sequences might result in keeping sequences with

long loops, while including only the shortest cases could result in many incomplete cases

and less behaviour in general [10].

Similarity-based sampling is the third technique they described. This technique calcu-

lates for every unique sequence how often each directly-follows relation that is present in

this sequence occurs proportionally in the event log. If a directly-follows relation occurs

above a predetermined threshold in the event log (e.g. in at least 10% of sequences),

then a unique sequence containing this directly-follows relation will get a rank score

increase of one. On the other hand, if a directly-follows relation occurs less than the

threshold in the entire event log, then the rank score of unique sequences containing

this directly-follows relation is decreased by one. Finally, n unique sequences with the

highest rank score are included in the sample. Applying this sampling technique leads

to a sample which contains the sequences with the most frequent behaviour from the

event log.

The last technique they proposed is structure-based selection. This technique tries to

detect unstructured sub-sequences in the event log. This is done by looking at all possible

sub-sequences in the event log which have the same leading and trailing activities. For

example, 〈b, c〉 is a sub-sequence of 〈a, b, c, d, e〉 where activity a is the leading activity

and 〈d, e〉 are the trailing activities. The algorithm then calculates how often the sub-

sequence 〈b, c〉 is encapsulated by 〈a〉 and 〈d, e〉 out of all possible sub-sequences. If

this proportion is below a threshold, then all unique sequences which contain this sub-

sequence will receive a penalty of one. Therefore, unique sequences with unstructured

sub-sequences are less likely to be sampled. However, Fani Sani et al. did not describe

how the sample is taken.

Fani Sani et al. evaluated these sampling approaches using six real-life logs and three

discovery techniques. They found that the best sampling approach varies for different

event logs and discovery techniques. However, they reported that structure-based se-

lection and similarity-based sampling generally performed best on the F-measure, while

length-based selection did not perform well.

Prototype Selection

In [11] Fani Sani et al. proposed to cluster the event log based on the similarity of

cases. They used edit distance in order to calculate this similarity. Edit distance is

the minimum number of edits to activities that need to be made to transform one case
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into another. For example, to transform 〈a, b, c, d〉 to 〈a, e, d〉 activities b and c have

to be deleted and activity e has to be inserted. This results in an edit distance of 3.

The approach Fani Sani et al. proposed starts by applying a clustering algorithm (e.g.

k-medoids) to the cases in the event log. This clustering algorithm divides the cases in k

different groups based on their similarity and from every group a best representative is

chosen. It is, however, unclear from Fani Sani et al. their description if the representative

case from each cluster is a medoid or a centroid (i.e. is picked from the original event log

or does not have to be contained in the original event log). Here a centroid is assumed.

These centroids form a representative sample on which a process model discovery tech-

nique is used to find a process model. This discovered model and the original event

log are then used to compute the β F-measure. This metric balances the model quality

dimensions of fitness and precision (see section 2.2.3) using a weight β, which is set by

the user.

Next, the algorithm iteratively tries to improve the process model by including represen-

tatives of deviating cases. Deviating cases are cases which do not have a perfect fitness

(i.e. cases which the model cannot replay). After finding representatives for deviating

cases, the process model is discovered again using the representative centroids from the

previous iteration together with these new representatives of deviating cases. This is

followed by a recalculation of the β F-measure. These steps are repeated until the β

F-measure does not improve any more.

Fani Sani et al. conducted experiments to evaluate their sampling method. They used

eight different real-life event logs and three different process discovery techniques and

evaluated using model quality criteria described in section 2.2.3. They found that their

method increased the F-Measure, which equally weights fitness and precision, and pro-

duced simpler models.

LogRank

Liu et al. [6] proposed to apply the ideas of the Google PageRank algorithm to event

logs in order to create a representative sample of the event log. They first convert the

cases in the event log to features. To do this, they create an n-dimensional vector for

every feature extracted and then denote for every case if this feature is present or not.

Both unique activity names and unique directly-follows relations can be used as features.

This n-dimensional vector representation allows them to calculate the Euclidean distance

between cases.

Next, the similarity between all sequences is computed and then used to calculate the

PageRank score. Finally, the sequences in the original event log are sorted based on
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their PageRank score and the top N sequences, based on the sample ratio, with the

highest PageRank score are included in the sample.

Liu et al. showed with experiments that the execution time of the Inductive Miner

process discovery algorithm reduces more than the fitness of the resulting model. They

were able to reduce the execution time by half with only a slight decrease in fitness or

sometimes without decrease in fitness. A downside of their approach is that a balance

needs to be found between discovery algorithm execution time and the fitness of the

resulting model.

This sampling approach proposed by Liu et al. is not a probability sampling approach,

because the probability of inclusion of a case depends on the similarities that are com-

puted. Furthermore, there is also no stopping criterion. Instead, the size of the resulting

sample is determined by a predetermined sample ratio (e.g. 10%), which is set by the

user.

2.5 Conclusion

A wide range of topics was studied, from creating the event log, to calculating quality

measures on the event log, discovering process models, and finally evaluating the quality

of these discovered models. Furthermore, relevant research on the topic of sampling for

process mining was also studied. The literature studied in this chapter is mainly related

to the first two sub-questions of this research:

SQ1 What is currently known about sampling event logs?

Few sample quality measures were found in literature. Knols et al. [7] proposed to use

the terms oversampled, truly sampled, undersampled, and unsampled behaviour. This

terminology has been incorporated into the representativeness requirements of samples

of event logs in this thesis. Furthermore, different sampling techniques were found in

literature. These techniques were divided into probability and non-probability sampling

approached. Each case has an equal probability of being included in the sample with

probability sampling approaches. Finally, it can be said that sampling within the field

of process discovery is not well understood yet.

SQ2 How is an event log related to discovering process models?

It was found that often very little is explained about the data extraction phase, although,

this phase was found to be important in process mining methodologies. Furthermore,
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conflicting definitions were found when it comes to event log quality. Especially, when it

comes to the usage of the term noise, which is sometimes used to refer to rare behaviour,

but also used to refer to incomplete or incorrect behaviour. Therefore, a different ter-

minology was introduced which is used throughout this thesis.

The most important finding regarding the relation between the event log and discovering

process models is the notion of representativeness assumed by the discovery technique.

These notions were summarised in table 2.2 for different discovery techniques. The

directly-follows relation was found to be most important for the majority of process

model discovery techniques. The two most important categories of representativeness

of the event log assumed by the discovery techniques were existential completeness of

directly-follows relations and frequency representativeness of the number of occurrences

of directly-follows relations. Existential completeness refers to all possible directly-

follows relations occurring at least once in the event log. Frequency representative-

ness, on the other hand, refers to the frequency of each directly-follows relation being

proportionally equal to its respective frequency in the original process.

SQ3 How can event logs be sampled in a representative way for the purpose of

process model discovery?

SQ4 How can event log sample quality be measured?

The two important representativeness notions of existential completeness and frequency

representativeness are the first two important properties that should be satisfied for

answering SQ3 and SQ4. Furthermore, existential completeness and frequency repre-

sentativeness are used as the definitions that the word representative can take in SQ3.
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Sampling Event Logs

The literature reviewed in chapter 2 indicates that most process discovery techniques

use the directly-follows relation to infer process models from event logs. An important

property is that all possible directly-follows relations should be present in the event log.

This property is referred to as existential completeness. Another important property is

that the frequencies of directly-follows relations should be representative of the process.

To achieve this, the directly-follows relations should occur proportionally as frequently

in the event log as in the true process. This property is referred to as frequency represen-

tativeness. Furthermore, the literature also indicated that probability-based sampling

techniques have not been sufficiently explored within process discovery. Therefore, this

chapter proposes the usage of probability-based sampling techniques to sample event logs

while considering these two important properties. The code for the sampling techniques

can be found in appendix A.

Another requirement is that any sampling technique should give an event log as output,

not just directly-follows relations. This requirement was set because current implemen-

tations of discovery techniques usually require an event log as input. Furthermore, it

is not feasible to sample on the activity level, introduced in section 2.4, because of the

problem illustrated in figure 2.4. Therefore, sampling has to take place on the case

level, the highest level of granularity, which either includes or excludes whole cases in

the sampled event log.

3.1 A Minimal Working Example

An example Petri net, shown in figure 3.1, is used to illustrate the sampling techniques

presented in this chapter. This Petri net allows for five distinct sequences. An example

35
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Figure 3.1: An example Petri net.

event log, referred to as L1, was created based on this Petri net. L1 is depicted in

table 3.1 and consists of eight different cases. The sequence 〈a, f, g〉 is possible in the

Petri net but did not occur in L1.

Table 3.2 illustrates the effects of different sampling techniques on a sample taken from

Table 3.1: Event log L1.

Case ID Activity Timestamp

1 a 02/01/2020 18:25
1 d 02/01/2020 22:26
1 g 04/01/2020 09:08
2 a 04/01/2020 18:37
2 d 06/01/2020 11:01
2 g 07/01/2020 04:30
3 a 07/01/2020 04:55
3 b 07/01/2020 18:52
3 g 07/01/2020 19:49
4 a 08/01/2020 04:39
4 c 08/01/2020 07:04
4 g 09/01/2020 18:51
5 a 13/01/2020 08:46
5 d 13/01/2020 19:35
5 g 18/01/2020 03:35
6 a 20/01/2020 01:50
6 e 20/01/2020 10:51
6 g 22/01/2020 08:28
7 a 23/01/2020 23:08
7 d 25/01/2020 18:04
7 g 26/01/2020 06:59
8 a 28/01/2020 10:15
8 c 30/01/2020 01:04
8 g 31/01/2020 21:31
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Table 3.2: Illustration of the different sampling techniques on L1.

Observed Frequencies

Sequence 〈a, d, g〉 〈a, c, g〉 〈a, b, g〉 〈a, e, g〉
Frequency 4 2 1 1

25% Sample Size Frequencies

Sequence 〈a, d, g〉 〈a, c, g〉 〈a, b, g〉 〈a, e, g〉
Expected 1 0.5 0.25 0.25
Random Fixed 1 - 1 -
Random Probability 1 1 1 -
Stratified 1 - - -
Existential Stratified 1 1 1 1
Stratified Plus 1 - - 1
Stratified Squared 1 1 - -

L1 using a 25% sample size. The observed frequencies are the number of occurrences of

every unique sequence from log L1. Sequence 〈a, f, g〉 is missing from this table because

it was never observed in the original log. Therefore, it is impossible to know that this

unique sequence is possible if only event log L1 is available while the Petri net which

generated this event log is not available.

The row named expected shows how often each unique sequence is expected to be in-

cluded in a sample created with a 0.25 sample ratio (i.e. a 25% sample size). This

expected value was calculated by multiplying each frequency with the sample ratio. A

sample containing exactly the expected number of sequences is completely representative

of the original event log. This sample is completely representative of both the sequences

and the directly-follows relations. This representativeness is however only relative to

the original event log. The original event log itself should also be representative of the

process in order for the sample to also be representative of the underlying process that

is being discovered.

There is, however, one problem with the expected sample frequencies in table 3.2. Most

expected frequencies in the table are not integers. Therefore, it is impossible to create

a perfectly representative sample. For example, sequence 〈a, c, g〉 cannot be sampled

completely representatively as it is expected to occur 0.5 times in the sample. It is

impossible to sample half a case.

Different solutions are possible for this problem. The desirability of these solutions

depends on the goal of the process discovery activity. One could, for example, try to

minimise the deviation from the expected frequency. The smallest possible deviation

would be a sample including 〈a, d, g〉 once and 〈a, c, g〉 once. This would result in 〈a,

d, g〉 being perfectly sampled, 〈a, c, g〉 being oversampled, and both 〈a, b, g〉 and 〈a, e,
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g〉 being undersampled. 〈a, b, g〉 and 〈a, e, g〉 would also be unsampled because they

would be completely absent from the sample.

Another possible solution would be to not lose any rare behaviour by creating a sample

which includes every unique sequence at least once. This can, however, lead to the

relative frequencies of unique sequences being distorted. For the example in table 3.2,

every unique sequence would occur once in the sample. This sample would not reflect

that sequence 〈a, d, g〉 occurs four times as often as sequence 〈a, b, g〉.

3.2 Simple Random Sampling

The first sampling technique considered was simple random sampling. Simple random

sampling has been introduced in section 2.4.1. Both the fixed sample size, as well as the

probability-based technique have been implemented on the case level. The fixed sample

size technique includes a predetermined number of cases based on a sample ratio. A

sample ratio of 0.25 includes 25% of the cases from the original log in the sample. When

there are, for example, eight cases in the original log, then the sampled log will always

contain two cases which are randomly selected without replacement.

The second simple random sampling technique that has been implemented is probability-

based random sampling. With this sampling technique, each case is included with a

predetermined probability. A sample ratio of 0.25 would include each individual case

with a 25% chance. This could lead to, for example, only one case being sampled or

more than two cases being sampled.

Table 3.2 shows one possible outcome of applying fixed size simple random sampling to

event log L1. Because this sampling technique is fixed size, it will always return exactly

the expected total number of cases. In this case, with a 0.25 sample ratio, it will always

return 0.25 · 8 = 2 cases when applied to event log L1. It can, however, return any

possible combination of sequences. A fixed size simple random sample of L1 is most

likely to return (〈a, d, g〉, 〈a, c, g〉), but it can also return (〈a, b, g〉, 〈a, e, g〉) which

does not seem representative because these are the rarest sequences.

Probability-based simple random sampling tends to return the same sample as fixed

size simple random sampling. However, there is a chance that more than two or less

than two cases are sampled. It is even possible that no cases are sampled at all. The

frequency of sequences included in the sample changes with each sample that is taken

because both simple random sampling techniques are random.
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3.3 Stratified Sampling

Stratified sampling (see section 2.4.1) has been implemented using unique sequences to

create groups. This sampling technique first divides all cases in the original event log

into groups which have the same unique sequences. Then, a simple random sample with

fixed size is taken from every group using a predetermined sample ratio. Figure 3.2

illustrates stratified sampling applied to event log L1. The first group in the figure

consists of cases 1, 2, 5, and 7 which all have the unique sequence 〈a, d, g〉. Taking a

25% random sample from this group requires selecting 4 · 0.25 = 1 case out of the four

cases.

However, it becomes difficult to sample the second group, which consists of cases 4 and

8 with unique sequence 〈a, c, g〉. Taking a 25% random sample would require selecting

half a case. This is impossible because cases can only be either fully included or fully

excluded. To overcome this problem, it was decided to round numbers to the nearest

integer. However, halves, values with a 5 behind the decimal indicator, are exactly

between two integers, thus causing ties.

It was decided to round these ties using the half to even rule (see the IEEE 754 [54] and

IEC 60559 [55] standards). This rule rounds halves to the nearest even integer, while

still rounding other decimal numbers to the nearest integer. For example, 0.5 is rounded

to 0, 0.6 is rounded to 1, and 1.5 is rounded 2. The benefit of half to even rounding

is that 0.5 is rounded to 0. This is important when there are many sequences which

would be sampled 0.5 times. Rounding these 0.5 values to 1 means sampling one case

for all these sequences, which could lead to a larger sample than expected. As a result

of applying half to even rounding, only sequence 〈a, d, g〉 is included in the resulting

stratified sample.

The idea behind stratified sampling is that it creates a sample which is more represen-

tative because it stratifies on unique sequences. The directly-follows relations are also

representative if all sequences are representative because directly-follows relations are

extracted from sequences. When comparing the column named to sample in figure 3.2

to the expected values from table 3.2, it can be seen that the to sample values are the

same as the expected values. Therefore, stratified sampling would result in a perfectly

representative sample if values did not have to be rounded.

The unique sequences and frequency of the sequences included in a sample created

by applying a simple random sampling technique can differ each time the sampling

technique is applied. The unique sequences and frequency of the sequences included

in a sample taken using stratified sampling is always the same. Only the exact cases

which make up the unique sequences differ. Thus, when applying the described stratified
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Case I D Sequence

1 a, d, g

2 a, d, g

3 a, b, g

4 a, c, g

5 a, d, g

6 a, e, g

7 a, d, g

8 a, c, g

Sequence Fr equency

a, d, g 4

a, c, g 2

a, b, g 1

a, e, g 1

Gr oup by 
Sequence

M ult iply  by t he 
sample r at io (0.25)

Sequence To Sample R ounded

a, d, g 1 1

a, c, g 0.5 0

a, b, g 0.25 0

a, e, g 0.25 0

Case I D Sequence

5 a, d, g

Sample t he 
event  log

Figure 3.2: Illustration of the process of taking a stratified sample from event log L1.

sampling approach to L1, it will always return exactly one time the unique sequence 〈a,

d, g〉. Therefore, the sample created by applying stratified sampling to L1 will always

consist of case 1, 2, 5, or 7.

3.4 Existential Stratified Sampling

The existential stratified sampling method ensures that the sampled event log is exis-

tentially complete. The sample will always contain all unique sequences at least once.

Therefore, all directly-follows relations that are present in the original event log occur at

least once in the sample. While ensuring this type of representativeness of the sample,

the method also tries to keep the frequencies of directly-follows relations proportionally

equal to the frequencies of directly-follows relations present in the original event log,

however, this cannot always be guaranteed.

The existential stratified sampling technique follows nearly the same steps as the strat-

ified sampling technique. Just as with the stratified sampling technique, the half to

even rule is applied to the column named to sample in figure 3.2. However, after this

rounding, every unsampled unique sequence is included once. Thus changing any zero

in the column named rounded in the bottom right corner of figure 3.2 to a one. This
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ensures that every unique sequence is sampled at least once from the event log. The

result of applying existential stratified sampling to event log L1 is shown in table 3.2.

In this case, each unique sequence occurs exactly once.

The advantage is that all unique directly-follows relations occur at least once in the

sample taken from L1. A disadvantage is that the sample is twice the size of the expected

sample. Only two cases were expected to be sampled while the sample contains four

cases. Furthermore, the relative frequencies are also incorrectly represented by this

sample. Sequences 〈a, d, g〉 and 〈a, e, g〉 occur equally often in the sample, but in the

original event log, sequence 〈a, d, g〉 occurs four times as often as sequence 〈a, e, g〉.

Therefore, it can be concluded that existential stratified sampling creates a sample

which is always existentially complete with regard to the directly-follows relations of the

original event log. However, the representativeness of the frequencies of directly-follows

relations in the sample is sometimes sacrificed.

3.5 Stratified Plus Sampling

Existential stratified sampling shows a trade-off between existential completeness of

directly-follows relations and the representativeness of the frequencies of directly-follows

relations. The stratified plus sampling method tries to find a balance between existential

completeness and frequency representativeness.

Stratified plus sampling extends the stratified sampling method from section 3.3 by

randomly sampling additional cases whose sequence has not been included in the sample

yet. Furthermore, it uses the number of cases that were expected to be sampled and

the number of cases sampled by stratified sampling in order to determine how many

additional cases should be sampled.

Figure 3.3 illustrates the process of applying stratified plus sampling to event log L1.

After applying stratified sampling to L1, the expected sample frequency (see table 3.2)

of each unique sequence is added up. The expected sample frequencies are the same as

the values in the column named to sample from figure 3.3. When this value is added up

for L1, it can be seen that a total of two cases are expected. However, when adding up

the values in the column named rounded, it can be seen that only one case is sampled

by stratified sampling. The size of the additional sample is calculated by subtracting

the number of cases already included by stratified sampling from the number of cases

expected to be sampled. In this case 2− 1 = 1 additional case needs to be sampled.
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Case I D Sequence

1 a, d, g

2 a, d, g

3 a, b, g

4 a, c, g

5 a, d, g

6 a, e, g

7 a, d, g

8 a, c, g

Sequence Fr equency

a, d, g 4

a, c, g 2

a, b, g 1

a, e, g 1

Gr oup by 
Sequence

M ult iply  by t he 
sample r at io (0.25)

Sequence To Sample R ounded

a, d, g 1 1

a, c, g 0.5 0

a, b, g 0.25 0

a, e, g 0.25 0

Case I D Sequence

5 a, d, g

Sample t he 
event  log

+
2 1

+

left_ to_ sample: 2 - 1 =  1

Case I D Sequence

5 a, d, g

6 a, e, g

Case I D Sequence

6 a, e, g

A dd bot h 
samples

Sequence R ounded

a, c, g 0

a, b, g 0

a, e, g 1
Fi l t er  out  included 

sequences &  
r andomly r eplace 
left_ to_ sample 

number  of r ows of 
R ounded values wit h 

ones

Sample t he 
event  log

Figure 3.3: Illustration of the process of taking a stratified plus sample from event
log L1.

In order to sample an additional case, the unique sequences which were already sampled

by the stratified sample are removed from the table. This maximises the existential

completeness of the resulting sample. Next, a number of values in the column named

rounded are randomly changed from zero to one. This number is equal to the calculated

additional sample size. Thereafter, the original event log is randomly sampled using the
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column named rounded as sample size for each group. Finally, the resulting samples

from stratified sampling and this extension are added to form the stratified plus sample.

It was decided to include a maximum of one case per unsampled unique sequence in the

additional sample. This is ensured by changing values of the rounded column from zero

to one and never more than one. The reason behind this decision is that if a unique

sequence did not even occur in the stratified sample, because it did not occur frequently

enough in the original log, then it should not be sampled more than once.

A benefit of stratified plus sampling is that the sample contains, in total, exactly as

many cases as one would expect (e.g. a 25% sample of eight cases is expected to consist

of two cases). Furthermore, it always adds sequences which are not yet included in the

sample when additional cases are sampled. Adding these additional sequences can also

be seen as a drawback when rare sequences are undesirable. If there are no additional

cases to sample, then the resulting sample will be the same as a stratified sample.

3.6 Stratified Squared Sampling

Stratified squared sampling is another extension to stratified sampling. It works the same

as stratified plus sampling, however, it selects additional cases by applying a variation of

stratified sampling. The reason for this is that it seems unexpected that stratified plus

sampling can sample sequence 〈a, e, g〉 as additional case, while sequence 〈a, c, g〉 occurs

twice as often in the original event log L1. One would expect the sampling technique

to include an additional case with a sequence which has an expected frequency closer to

one.

Figure 3.4 illustrates the application of stratified squared sampling to event log L1.

Again, a stratified sample is taken first. Then, the number of cases left to sample is

calculated in the same way as for the stratified plus sample. Next, an additional sample is

taken from sequences which are not yet included by the stratified sample. This additional

sample is taken by replacing as many values in the column named rounded with ones

as there are cases left to sample. This replacing happens in descending order, thereby

ensuring that the sequence with the largest expected frequency is included first.

When compared to stratified plus sampling, this technique still ensures that sequences

which are included in the additional sample are not yet included in the sample. Thus,

increasing the existential completeness. However, while doing this, the technique sacri-

fices even less frequency representativeness. One drawback could be that there is less

chance for rare behaviour to be sampled. This can, however, also be an advantage when

rare behaviour is undesirable. If there are no additional cases to be sampled, then the
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Case I D Sequence

1 a, d, g

2 a, d, g

3 a, b, g

4 a, c, g

5 a, d, g

6 a, e, g

7 a, d, g

8 a, c, g

Sequence Fr equency

a, d, g 4

a, c, g 2

a, b, g 1

a, e, g 1

Gr oup by 
Sequence

M ult iply  by t he 
sample r at io (0.25)

Sequence To Sample R ounded

a, d, g 1 1

a, c, g 0.5 0

a, b, g 0.25 0

a, e, g 0.25 0

Case I D Sequence

5 a, d, g

Sample t he 
event  log

+
2 1

+

left_ to_ sample: 2 - 1 =  1

Case I D Sequence

5 a, d, g

8 a, c, g

Case I D Sequence

8 a, c, g

A dd bot h 
samples

Sequence R ounded

a, c, g 1

a, b, g 0

a, e, g 0
Fi l t er  out  included 

sequences &  r eplace 
left_ to_ sample 

number  of r ows of 
R ounded values in 

descending To 
Sample or der  wit h 

ones

Sample t he 
event  log

Figure 3.4: Illustration of the process of taking a stratified squared sample from event
log L1.

stratified squared extension results in no extra cases being sampled. In that case, the

sample returned will be a stratified sample.

Another variation on stratified sampling which does not necessarily sample additional

sequences not yet included by stratified sampling is possible. In contrast, this variation
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would apply a more liberal rounding of the column named to sample in the stratified

sampling method from figure 3.2. This rounding would round up a number of unique

sequences closest to being rounded up so that the sum of the column named rounded

equals the sum of the expected frequencies. A benefit of this variation would be that the

expected frequencies of directly-follows relations could be more representative when there

are many activities which occur in multiple unique sequences. However, with regard to

the existential completeness versus frequency representativeness trade-off, it seems more

logical to include sequences which would be unsampled over sequences which would be

sampled. Thus, favouring the existential completeness improvement of stratified squared

sampling over a possible slight increase in frequency representativeness.

3.7 Conclusion

The purpose of this chapter was to propose different sampling approaches to sample

event logs in a representative way for process discovery (SQ3). The properties of exis-

tential completeness and frequency representativeness were used to create new sampling

techniques for process discovery. Furthermore, the literature review showed that proba-

bility sampling techniques have not been sufficiently explored within process discovery.

Therefore, all sampling techniques proposed in this chapter are probability sampling

techniques (i.e. each case has an equal probability of being sampled).

The existential stratified sampling technique guarantees that a sample is existentially

complete. This can, however, come at the cost of a lower frequency representative-

ness. Stratified sampling is thought to create a more frequency representative sample

because this technique stratifies on unique sequences. This can also lower the existential

completeness of the sample. Stratified plus and stratified squared sampling were intro-

duced in order to find a balance between the existential completeness and frequency

representativeness of a sample.

3.7.1 Choosing a Sampling Technique

The choice of the best sampling technique depends on the goal of the process discovery

activity and the characteristics of the event log. Firstly, if no rare behaviour is present

in the event log, then stratified sampling should be the preferred sampling technique,

because it ensures perfect coverage in this case. All other stratified variants have no

added benefits over stratified sampling since, in this case, these variants return the same

sample as stratified sampling.
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St r at i fied Sampl ing

Exist ent ial  St r at i fied Sampl ing

St r at i fied Squar ed Sampl ing

St r at i fied P lus Sampl ing

Exist ent ial  Complet eness

Exist ent ial  St r at i fied Sampl ing

St r at i fied Squar ed Sampl ing

St r at i fied Sampl ing

St r at i fied P lus Sampl ing
Fr equency R epr esent at iveness

Figure 3.5: The general performance on existential completeness and frequency rep-
resentativeness of the different sampling techniques.

The remainder of this section focusses on determining the appropriate sampling tech-

nique when the event log contains rare behaviour. Figure 3.5 shows how the different

sampling techniques generally perform on existential completeness and frequency repre-

sentativeness.

The existential completeness and frequency representativeness of both simple random

sampling techniques is hard to estimate because the results vary for each sample and

hence these sampling techniques are excluded from figure 3.5. However, both these

simple random sampling techniques generally score somewhat in the middle when it

comes to existential completeness and frequency representativeness. Any of these two

sampling techniques could be used when a quick and easy sample is preferred, without

paying attention to existential completeness or frequency representativeness.

The stratified sampling technique should be used when existential completeness is not

important, because this technique unsamples most of the rare sequences. Existential

stratified sampling, on the other hand, should be preferred when an existentially com-

plete sample is needed. This existential completeness does, however, come at the cost of

a lower frequency representativeness, especially when many infrequent cases are present.
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Stratified plus and stratified squared sampling should be the preferred two sampling tech-

niques when a more balanced trade-off between existential completeness and frequency

representativeness is preferred. Stratified plus sampling tends to increase the existen-

tial completeness slightly, at the cost of frequency representativeness, while stratified

squared sampling tends to increase the frequency representativeness slightly, at the cost

of existential completeness.

3.7.2 Comparison With Existing Sampling Techniques

This section compares the existing sampling techniques for process discovery described in

section 2.4 on the concepts of existential completeness and frequency representativeness

with the newly introduced sampling techniques. This comparison assumes that rare

behaviour is present in the event log.

The sampling technique introduced by Bauer et al. [9] aims to create a complete sam-

ple, because it keeps including new sequences till no new information is added. The

major difference with the new techniques presented in this chapter is that these new

techniques do not only focus on existential completeness, but also focus on frequency

representativeness. The approach described by Berti [8] is indirectly related to fre-

quency representativeness, because the confidence intervals are based on the frequencies

of directly-follows relations. No existential completeness or frequency representativeness

is guaranteed by the approach of Berti, especially, since the algorithm is allowed to stop

randomly with a chance.

Frequency based selection and similarity-based sampling [10] focus on including the most

frequent sequences or behaviour respectively, which decreases the existential complete-

ness of the sample. If these techniques are adapted to select a percentage of sequences

from each included sequence, then these techniques would include the most frequent se-

quences and behaviour respectively, which is what also generally happens with stratified

sampling.

The other non-probability sampling approaches described in section 2.4 focus on differ-

ent characteristics and some of these approaches produce samples which do not have

the same frequency of sequences as the original event log, since only one occurrence

of each sequence is sampled. In general, these approaches compromise the existential

completeness of the samples.
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Sample Quality Measures

Sample quality measures can help to determine the quality of a sample taken from an

original event log. First, the meaning of the word quality in the context of an event log for

the purpose of process discovery has to be established. Two important quality properties

of event logs emerged from the literature studied in section 2. The first property that

emerged is existential completeness (i.e. the extent to which all possible directly-follows

relations are present) and the second property is frequency representativeness (i.e. the

extent to which directly-follows relations occur proportionally to their true frequency).

It was decided to use these two properties as a basis for the sample quality measures

presented in this section.

All quality measures presented in this section are designed to compare the quality of

a sample against the original event log. However, they can also be used to compare

multiple samples drawn from the same original event log by comparing each with the

original event log. Furthermore, they can also be used to directly compare samples from

the same event log by selecting one sample as the reference sample to which all other

samples are compared. The quality measures can even be used to compare original event

logs with each other by selecting one original event log as the reference point. However,

a reference sample or reference event log has to be a superset in terms of directly-follows

relations of the samples or event logs it is compared to.

4.1 Extension to the Minimal Working Example

This section extends the minimal working example introduced in section 3.1. Two

samples have been taken from event log L1, which are displayed in table 4.1. First,

a number of transformations must be applied to the original event log and samples

48
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Table 4.1: Samples taken from event log L1.

Sample Sequences

S1 〈a, c, g〉, 〈a, d, g〉
S2 〈a, b, g〉, 〈a, c, g〉, 〈a, d, g〉, 〈a, e, g〉

in order to use them to calculate sample quality measures. Figure 4.1 illustrates these

transformations. The table in the top left of the figure shows the directly-follows relation

frequency matrix of L1. This is a table which shows the number of occurrences of every

possible directly-follows relation in the event log. The rows represent the activities from

which the relation starts and the columns show to which activity the relation points.

For example, activity a is four times directly followed by activity d.

The table in the top right of figure 4.1 shows the expected frequencies of directly-

follows relations when a perfect 25% sample is taken from L1. See section 3.1 for more

information about expected frequencies. Cells which contain zeros in the directly-follows

matrix of the original event log now contain a hyphen. This is done to illustrate that it is

impossible to sample these relations. However, in the directly-follows relation frequency

matrix of the original event log this is not done, because it is normally unknown which

directly-follows relations are impossible and which simply did not occur in the event log.

For example, the relation a > f (i.e. a is directly followed by f) is possible in the original

model (see figure 3.1) but is never observed in L1.

The directly-follows relation frequency matrix of sample S1 is shown in the bottom left

of figure 4.1. The zero values are unsampled directly-follows relations, while the hyphen

values did not occur in the original event log. Most quality measures introduced in this

section use the directly-follows relation frequency matrices displayed in the top right and

bottom left of the figure. The table in the bottom right shows the difference between

the sampled and the expected frequencies of directly-follows relations. This table is the

motivation behind most quality measures introduced in the remainder of this chapter.

4.1.1 Notation

The directly-follows relation frequency matrix notation from figure 4.1 is reshaped to

a long table format (see table 4.2) in order to easily formulate equations for quality

measures. This reshape conversion converts a directly-follows relation frequency matrix

to a one-dimensional table (i.e. vector) by adding the number of occurrences of each

directly-follows relation which occurs at least once in the original event log to the table

(i.e. every cell which does not contain a hyphen). The result of converting, for example,

the directly-follows relation frequency matrix of sample S1 (the bottom left matrix of
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a b c d e f g

a 0 1 2 4 1 0 0
b 0 0 0 0 0 0 1
c 0 0 0 0 0 0 2
d 0 0 0 0 0 0 4
e 0 0 0 0 0 0 1
f 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0

a b c d e f g

a - 0.25 0.5 1 0.25 - -
b - - - - - - 0.25
c - - - - - - 0.5
d - - - - - - 1
e - - - - - - 0.25
f - - - - - - -
g - - - - - - -

a b c d e f g

a - 0 1 1 0 - -
b - - - - - - 0
c - - - - - - 1
d - - - - - - 1
e - - - - - - 0
f - - - - - - -
g - - - - - - -

a b c d e f g

a - -0.25 0.5 0 -0.25 - -
b - - - - - - -0.25
c - - - - - - 0.5
d - - - - - - 0
e - - - - - - -0.25
f - - - - - - -
g - - - - - - -

Figure 4.1: Directly-follows relation frequency matrices of L1, the expected frequen-
cies, S1, and the difference between the expected and sampled frequencies.

Expected

Sampled

Sampled -
Expected

Sampled -
Expected

figure 4.1) is a one-dimensional vector containing a count of how often each directly-

follows relation which occurs in the original event log L1, occurs in the sample S1.

The following notation will be used throughout this chapter:

• e denotes a one-dimensional vector of the number of occurrences of each directly-

follows relation in the original event log, each multiplied with the sample ratio (i.e.

the column named expected in table 4.2).

• s denotes a one-dimensional vector of the number of occurrences of each directly-

follows relation in the sampled event log. For example, the column named S1 in

table 4.2.

• n is the number of unique directly-follows relations present in the original event

log. This is the number of rows in table 4.2 because only directly-follows relations

which are observed in the original log are added to this table. n has a value of 8

for event log L1.
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Table 4.2: The expected frequencies of directly-follows relations together with the
frequencies of directly-follows relations of sample S1 and sample S2.

Frequency

Expected S1 S2

a > b 0.25 0 1
a > c 0.5 1 1
a > d 1 1 1
a > e 0.25 0 1
b > g 0.25 0 1
c > g 0.5 1 1
d > g 1 1 1
e > g 0.25 0 1

4.2 Existential Completeness Measure

The existential completeness of a sample taken from an event log can be calculated

using equation 4.1. This sample quality measure, named coverage, divides the number

of unique directly-follows relations present in the sample (ns) by the number of unique

directly-follows relation present in the original event log (n). The coverage lies between

zero and one, because this equation gives the fraction of directly-follows relations present

in the sample. It is also possible to convert this value to a percentage by multiplying it

with 100%.

Coverage =
ns
n

(4.1)

The example event log L1 contains eight unique directly-follows relations. This can be

observed by counting the total number of rows in table 4.2. Sample S1 contains four

unique directly-follows relations. This can be observed by counting the number of rows

in table 4.2 where the frequency of S1 is larger than zero. Entering these values in the

equation gives a coverage of 4/8 = 0.5 or 50%. The number of unique directly-follows

relations can also be directly inferred from the directly-follows matrix of S1, because the

column named S1 from table 4.2 is a reshaped version of the directly-follows relation

frequency matrix of S1. Sample S2 has a coverage of 1, because it contains all eight

unique directly relations.

4.3 Frequency Representativeness Measures

This section discusses measures which can be used to determine the frequency represen-

tativeness of a sample by comparing it to an original event log from which the sample

is taken. Based on the literature studied in section 2.3, frequency representativeness is
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defined as the extent to which the number of occurrences of each directly-follows relation

in the sample is proportional to the number of occurrences in the original event log. This

section builds on the notation introduced in section 4.1.

Measuring the frequency representativeness of a sample is more subjective than mea-

suring the existential completeness, because the goal of the process mining activity de-

termines the best way to calculate the representativeness. For example, for one process

discovery project rare behaviour might be desired, while for another project this could

be undesired. Therefore, this section does not point towards a single best measure for

frequency representativeness.

The following list of general requirements for frequency representativeness measures has

been composed. The importance and desirability of these requirements depends on the

goal of the process discovery activity.

• Req 1: The measure should report no error when the frequencies of directly-follows

relations of the sample exactly match the expected frequencies.

• Req 2: Doubling the number of unique directly-follows relations present in the

original event log should not affect the reported error when the new unique directly-

follows relations are equally often expected and sampled as the unique directly-

follows relations before doubling.

• Req 3: Doubling the number of occurrences of every directly-follows relation

present in the original event log should not affect the reported error when the

deviation of each sampled directly-follows relation is proportionally the same (e.g.

the deviation of a directly-follows relation which is expected to occur five times,

but is sampled three times is proportional to the same directly-follows relation

being expected to occur fifty times, but being sampled thirty times).

• Req 4: When the sample size is varied while the absolute deviation is kept the

same (e.g. all directly-follows relations are off by one), then the error reported by

the measure should increase when the sample size decreases.

• Req 5: When one directly-follows relation is oversampled by four (i.e. sampled four

more times than its expected frequency), then the reported error should generally

be larger compared to when four directly-follows relations are oversampled by one.

• Req 6: A sample where only the least often occurring directly-follows relation is

off by one (i.e. sampled once more or once less often than its expected frequency)

should generally report a higher error than the same sample where only the most

often occurring directly-follows relation is off by one.
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Table 4.3: The results of testing each frequency representativeness measure against
the requirements.

Error Measure Req 1 Req 2 Req 3 Req 4 Req 5 Req 6 Req 7 Req 8

MAE 3 3 7 7 7 7 7 7

NMAEM 3 3 3 3 7 7 3 3

NMAER 3 3 3 3 7 7 3 7

MAPE 3 3 3 3 7 3 7 7

sMAPE 3 3 3 3 7 3 7 7

RMSE 3 3 7 7 3 7 7 7

NRMSEM 3 3 3 3 3 7 3 3

NRMSER 3 3 3 3 3 7 3 7

sRMSPE 3 3 3 3 3 3 7 7

• Req 7: Increasing the number of occurrences of one perfectly sampled directly-

follows relation (i.e. a directly-follows relation whose number of occurrences does

not deviate from its expected frequency) while still keeping it perfectly sampled,

should lower the overall error when the sample contains the same deviations as

before.

• Req 8: Increasing the number of occurrences of a second perfectly sampled

directly-follows relation while still keeping it perfectly sampled, should lower the

overall error even more than with requirement 7. Even when this increase does

not change the maximum of the expected frequencies.

The expected frequencies and samples which have been used to test the measures dis-

cussed in this section against the aforementioned requirements can be found in table B.1

of appendix B. Furthermore, the resulting errors reported by each frequency represen-

tativeness measure can be found in table B.2 of appendix B. An overview of the results

of testing each frequency representativeness measure against the requirements is shown

in table 4.3. A tick indicates that the measure satisfies a requirement, whereas a cross

indicates that a measure does not satisfy the requirement.

4.3.1 Mean Absolute Error

The first measure which has been implemented is the mean absolute error (MAE). This

is an error measure which is easy to interpret, because it reports the average absolute

deviation of a sample with respect to the original event log. Equation 4.2 is used to

calculate the mean absolute error of a sample s compared to the expected frequencies
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e, which are calculated from the original event log.

MAE =
1

n

n∑
i=1

|si − ei| (4.2)

This formula calculates the absolute deviation (i.e. error) of the number of occurrences

of each directly-follows relation of the sample from their respective expected frequency.

Negative and positive deviations are both turned into positive numbers because this error

measure calculates the absolute deviation. For example, a > b is expected to occur 0.25

times in a sample taken from L1 using a 25% sample size (see table 4.2). However, this

directly-follows relation does not occur in S1, therefore, the absolute deviation is 0.25.

On the other hand, this directly-follows relation occurs once in S2, which leads to an

absolute deviation of 0.75.

The mean absolute error always lies between zero and infinity. With zero being a perfect

sample, where every directly-follows relation occurs as often as expected and infinity be-

ing the worst possible sample, where at least one directly-follows relation occurs infinitely

more often than expected.

A shortcoming of the mean absolute error is that changes in the expected sample size

are not reflected in the reported error (Req 4). For example, in one sample, a directly-

follows relation is expected to occur ten times and occurs nine times, while in another

sample with a larger sample size, this directly-follows relation is expected to occur one

hundred times and occurs ninety-nine times. The MAE gives these two samples both

an equal error because both are exactly off by one. This is undesired in the context of

comparing samples, because increasing the sample size often leads to a larger absolute

error, but a smaller relative error.

Table 4.3 gives an overview of which error measures presented in this chapter satisfy

which requirements. The MAE fails to satisfy most requirements, as shown in the table.

However, it is a stepping stone for other error measures.

4.3.2 Normalised Mean Absolute Error

Many of the shortcomings of the MAE can be overcome by normalising. The MAE can

be normalised in multiple ways. Common options include dividing by the mean of the

expected frequencies, dividing by the range of the expected frequencies, dividing by the

interquartile range of the expected frequencies, or dividing by the standard deviation of

the expected frequencies. Here, two possibilities are discussed. Equation 4.3 displays

the MAE normalised by dividing by the mean of the expected frequencies. Equation 4.4
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shows the MAE normalised by dividing by the range of the expected frequencies.

NMAEM =
MAE

avg e
=

∑n
i=1 |si − ei|∑n

i=1 ei
(4.3)

NMAER =
MAE

max e−min e
=

1
n

∑n
i=1 |si − ei|

max e−min e
(4.4)

From table 4.3 it can be seen that normalising the MAE does not only result in a satis-

faction of requirement 4, but it also results in satisfying many of the other requirements.

Both types of normalisation seem to perform similar on the requirements, with require-

ment 8 being the exception. The NMAEM is preferred over the NMAER because the

mean of the expected frequencies always changes with an increase or decrease in the

expected frequencies of directly-follows relations, whereas the range only changes if the

minimum or maximum value of the expected frequencies of directly-follows relations

changes.

A disadvantage of normalisation is that the measure loses its unit of measurement.

Therefore, the measure is not as easy to interpret as the MAE. However, the main

advantage is that the normalised MAE can be used to directly compare samples with

different sample sizes. Both normalised MAE equations report errors ranging from zero

to infinity, where zero indicates no deviation and infinity indicates at least one infinite

deviation.

4.3.3 Mean Absolute Percentage Error

Another variation on the MAE is the possibility to express the error as a percentage

error. The mean absolute percentage error (MAPE) measure does this by dividing

the deviation of the number of occurrences of every directly-follows relation by the

expected frequency of that directly-follows relation. Equation 4.5 shows how the MAPE

is calculated.

MAPE =
1

n

n∑
i=1

∣∣∣∣ei − siei

∣∣∣∣ (4.5)

The error reported by the MAPE can easily be interpreted. For example, a directly-

follows relation which is expected to occur ten times, but which does occur nine times

in the sample, has an absolute percentage error of (10− 9)/10 = 0.1 or 10%. Therefore,

when a sample reports a MAPE of 0.05, it can be interpreted as the frequencies of

directly-follows relations being off by 5% on average.

A perfect sample (i.e. a sample which does not deviate from the expected frequencies)

reports a MAPE of zero. There is, however, no maximum to the MAPE measure. If
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a directly-follows relation is expected to occur 0.1 times and it occurs two times in the

sample, then the absolute percentage error is 19 or 1900%. This can make the MAPE

less easy to interpret when there are small expected frequencies (i.e. values below 1)

which cause a high absolute percentage error when these directly-follows relations are

included in the sample. The largest possible error reported by the MAPE is infinity,

which occurs when at least one directly-follows relation occurs infinitely more often than

expected.

From table 4.3 it can be seen that the MAPE measure satisfies most requirements.

Furthermore, it satisfies a requirement which the normalised MAE does not satisfy

and vice versa, the normalised MAE satisfies requirements which the MAPE does not

satisfy. The main difference between the MAPE and NMAEM is that the MAPE does not

decrease the error when increasing the number of occurrences of one or more perfectly

sampled directly-follows relations while still keeping them perfectly sampled. On the

other hand, the NMAEM does not report a lower error when the most occurring directly-

follows relation is off by one compared to the least occurring directly-follows relation

being off by one.

4.3.4 Symmetric Mean Absolute Percentage Error

It seems strange that the MAPE can only report high errors when oversampling. For

example, the MAPE reports an error of 1900% when a directly-follows relation is ex-

pected to occur 0.1 times but it occurs two times in the sample. However, not sampling

this directly-follows relation at all (i.e. letting it occur zero times in the sample) results

in an error of 100%. Therefore, it can be said that the MAPE is non-symmetric, as

the maximum error due to undersampling is 100% while the maximum error due to

oversampling could be infinitely large.

The symmetric mean absolute percentage error (sMAPE) converts the MAPE into a

symmetric measure by adding the sampled value to the denominator of the equation.

The resulting equation for the sMAPE is shown in equation 4.6.

sMAPE =
1

n

n∑
i=1

|ei − si|
ei + si

(4.6)

A property of the symmetric MAPE is that it always reports errors between zero and

one. An error of zero means that there are no deviations from the expected frequencies.

While an error of one is reported when all directly-follows relations are unsampled or

when they are infinitely often oversampled. Figure 4.2 shows the difference between the

MAPE and sMAPE. To create this figure, a single directly-follows relation was sampled
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Figure 4.2: Comparing the characteristics of the MAPE and sMAPE measures on a
single directly-follows relation which is expected to occur one hundred times.

between 0 and 300 times, while this directly-follows relation is always expected to occur

100 times.

The sMAPE measure ticks the same requirements as the MAPE, but the sMAPE does

favour existential completeness compared to the MAPE, because it gives unsampled

behaviour the highest possible penalty. This makes the sMAPE measure more appro-

priate for a process mining goal where rare behaviour is desired. This property can be

illustrated on the same example as before, unsampling a directly-follows relation which

is expected to occur 0.1 times gives a sMAPE of 100% while sampling it twice gives a

sMAPE of only |0.1− 2| /(0.1 + 2) = 90%. A disadvantage of the sMAPE is that the

reported error is less easy to interpret compared to the MAPE.

4.3.5 Root Mean Square Error

The root mean square error (RMSE) is a measure which is similar to the MAE, however,

it uses the root of the squared values instead of the absolute value. This results in a

measure which penalises large deviations more heavily. For example, when sample A

undersamples four directly-follows relations by one and sample B undersamples one

directly-follows relation by four, then the MAE reports the same error for both samples,

while the RMSE reports a lower error for sample A compared to sample B. Equation 4.7

shows how the RMSE of a sample can be calculated.

RMSE =

√√√√ 1

n

n∑
i=1

(si − ei)2 (4.7)
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Penalising larger deviations more heavily can be a desired property if unbalanced samples

(i.e. samples where the number of occurrences of one or a few directly-follows relations

deviate a lot from their expected frequency) are undesired. The larger penalty could

make it more likely to choose a sample with a more evenly distributed deviation of

directly-follows relations. Furthermore, the RMSE has the same shortcomings as the

MAE.

The RMSE also reports errors between zero and infinity. An error of zero indicates no

deviation at all. Thus, a perfect sample. While an infinite error occurs when at least

one directly-follows relation is infinitely often oversampled.

4.3.6 Normalised Root Mean Square Error

The normalised root mean square error (NRMSE) is a normalised version of the RMSE.

This normalisation can be done in the same ways as described earlier for the normalised

MAE. The NRMSE differs from the NMAE on requirement 5. It gives a larger penalty

to directly-follows relations whose number of occurrences in the sample is far from its

respective expected frequency. As a consequence, the NRMSE can lead to a sample

with a more evenly distributed deviation from the expected number of occurrences of

directly-follows relations. Equation 4.8 shows how the NRMSE normalised by dividing

by the mean is calculated. The calculation for the NRMSE normalised by dividing by

the range is shown in equation 4.9.

NRMSEM =
RMSE

avg e
=

√
1
n

∑n
i=1(si − ei)2

1
n

∑n
i=1 ei

(4.8)

NRMSER =
RMSE

max e−min e
=

√
1
n

∑n
i=1(si − ei)2

max e−min e
(4.9)

The minimum possible error is reported when there is no deviation. The maximum

possible error occurs when at least one directly-follows relation is sampled infinitely

more often than expected. Normalising by dividing by the mean is also preferred for the

NRMSE, because this always adjusts the reported error with an increase or decrease in

the expected frequencies of directly-follows relations, while dividing by the range could

fail to adjust for this increase or decrease when the minimum or maximum value of the

expected frequencies is not changed.
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4.3.7 Symmetric Root Mean Square Percentage Error

The symmetric root mean square percentage error (sRMSPE) is a measure which has

been created by combining the RMSE and the sMAPE. The measure uses the root mean

square error in the sMAPE equation instead of the mean absolute error. Equation 4.10

shows how the sRMSPE can be calculated.

sRMSPE =

√√√√ 1

n

n∑
i=1

(
ei − si
ei + si

)2

(4.10)

The sRMSPE only differs from the sMAPE on requirement 5. The sRMSPE gives a

larger penalty to directly-follows relations whose number of occurrences is further off

its expected frequency because the measure uses the root mean square error in the

calculation. If this property is desired, then the sRMSPE should be selected over the

sMAPE.

The other properties of the sRMSPE are the same as those of the sMAPE. The sRM-

SPE is also a symmetric error measure, which means that unsampling a directly-follows

relation results in the maximum error. Furthermore, the error always lies between zero

and one, with zero being a perfect sample and one being a sample where every directly-

follows relation is unsampled or where every directly-follows relation is infinitely often

oversampled.

4.4 Comparison

Table 4.4 shows the errors as reported by the different error measures for samples S1

and S2 compared to the expected frequencies. Sample S2 has a perfect coverage because

every directly-follows relation from L1 occurs at least once in S2. S1, on the other hand,

has a coverage of only 50%. When considering the MAE measure, S1 is on average only

a quarter of a directly-follows relation off, while S2 is on average half a directly-follows

relation off.

On the NMAE measures, both logs report proportionally the same difference as on the

MAE. This is because the expected frequencies are equal for both samples, therefore,

both NMAE calculations divide by a constant value. If a different sample size would

have been used for S2, then the NMAEM measure would have adjusted for this different

sample size best, while the MAE would not have adjusted for it.

The MAPE is also lower for S1. It reports an average percentage error of 75%. The num-

ber of occurrences of each directly-follows relation deviated on average 175% for S2. The
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Table 4.4: The errors reported by the different measures for samples S1 and S2.

Error Measure S1 S2

Coverage 0.50 1.00
MAE 0.25 0.50
NMAEM 0.50 1.00
NMAER 0.33 0.67
MAPE 0.75 1.75
sMAPE 0.58 0.38
RMSE 0.31 0.59
NRMSEM 0.61 1.17
NRMSER 0.41 0.78
sRMSPE 0.73 0.46

sMAPE measure gives another picture. Sample S2 scores better on this measure. This is

because S1 unsamples two directly-follows relations, while S2 only oversamples directly-

follows relations. This illustrates that the sMAPE measure gives a higher penalty for

unsampling.

The same pattern as for the above mentioned measures is visible for all variations of

error measures which use the root mean square error instead of the mean absolute error

(i.e. the RMSE, NRMSEM, NRMSER, and sRMSPE). These error measures behave the

same way as their respective mean absolute error counterpart, with the only difference

being that, in general, all root mean square variants give a higher penalty when directly-

follows relations occur way more often or way less often than their respective expected

frequency. For both samples, there is not a large difference between error measures

which use the root mean square error and error measures which use the mean absolute

error, because the samples do not contain any directly-follows relations which occur way

more often or way less often than their respective expected frequency.

4.4.1 Choosing an Error Measure

No error measure was found which ticks all requirements (see table 4.3). Even if such

a measure exists, it would not be desirable in all situations. The choice of an error

measure depends on the requirements imposed by the situation and context of the process

discovery project. Therefore, this section suggests different error measures which may

be appropriate in certain situations.

When it comes to the existential completeness of a sample, then the only measure

proposed is the coverage. This measure is straightforward to calculate and could always

be calculated to get an indication of the existential completeness of a sample.
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Table 4.5: A decision matrix which can be used to select an appropriate error measure
based on the process discovery project needs.

Existential Completeness
Important?

Yes No
Single Large

Deviations Desired?
Yes sMAPE NMAEM

No sRMSPE NRMSEM

There are multiple suitable measures when the purpose is to determine the frequency rep-

resentativeness of a sample. The MAPE is a suitable measure when the interpretability

of the error is important, because it directly reports the average deviation of the number

of occurrences of directly-follows relations in the sample as a percentage error.

Different error measures can be selected when the interpretability of the error itself is

not important. Based on the list of requirements (see section 4.3), the different process

discovery goals, and measures, a decision matrix has been created. This decision matrix

is shown in table 4.5.

This decision matrix has two dimensions. The first dimension is the importance of

existential completeness. When rare behaviour is desired and, thus, the existential

completeness should be high, then one of the symmetric measures should be used. On the

other hand, the normalised functions should be used when existential completeness is not

a desired property. Another way to look at this dimension is that the symmetric measures

prevent unsampling, while the normalised measures prevent severely oversampling.

The second dimension is the desirability of single large deviations. When single large

deviations are not desired, then the root mean square error based measures should be

used instead of the mean absolute error variants. These root mean square error based

measures penalise large deviations more heavily, which could lead to a more balanced

sample (i.e. a more evenly distributed deviation of the number of occurrences of directly-

follows relations).



Chapter 5

Illustrating Sampling and Sample

Quality Measures

This chapter brings sampling methods introduced in chapter 3 and sample quality mea-

sures from chapter 4 together. The effects of the different sampling methods in combina-

tion with different sample sizes are illustrated on the six sample quality measures which

have been found to be most suitable. This illustration is done using two example event

logs. One event log contains rare sequences and the other event log does not contain

rare sequences.
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Figure 5.1: The Petri net which has been used to generate event logs L2 and L3.
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5.1 The Event Logs

The Petri net which has been used to generate both example event logs is shown in

figure 5.1. This Petri net has one starting activity named a, followed by five activities

which are in parallel. Each possible sequence is ended with closing activity g. The five

parallel activities can be executed in any order. This Petri net was chosen because it

contains many possible directly-follows relations. For this specific Petri net there are

thirty different directly-follows relations.

Two different example event logs have been created using this Petri net. The first

event log is L2, which is displayed in table 5.1. This event log contains a lot of rare

sequences (see section 2.2.1 for more information about rare sequences). The most

frequently occurring sequence occurs 532 times in this event log, while many of the

other sequences only occur once. L2 contains all directly-follows relations which are

Table 5.1: Event log L2 displayed as sequences and their frequencies.

Frequency Sequence

532 〈a, c, b, d, e, f, g〉
145 〈a, c, d, b, e, f, g〉
45 〈a, c, b, d, f, e, g〉
24 〈a, c, d, b, f, e, g〉
10 〈a, b, c, d, e, f, g〉
9 〈a, b, c, d, f, e, g〉
4 〈a, c, e, b, d, f, g〉
4 〈a, b, e, c, d, f, g〉
2 〈a, f, c, b, d, e, g〉
2 〈a, d, c, b, f, e, g〉
2 〈a, b, d, c, f, e, g〉
2 〈a, f, d, c, b, e, g〉
1 〈a, b, f, d, c, e, g〉
1 〈a, f, d, b, c, e, g〉
1 〈a, e, b, f, c, d, g〉
1 〈a, b, f, c, e, d, g〉
1 〈a, b, c, f, e, d, g〉
1 〈a, c, e, b, f, d, g〉
1 〈a, f, e, c, b, d, g〉
1 〈a, f, d, e, b, c, g〉
1 〈a, b, f, d, e, c, g〉
1 〈a, e, d, b, f, c, g〉
1 〈a, e, b, d, f, c, g〉
1 〈a, e, c, d, f, b, g〉
1 〈a, c, e, d, f, b, g〉
1 〈a, e, d, f, c, b, g〉
1 〈a, f, e, c, d, b, g〉
1 〈a, c, f, d, e, b, g〉
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Table 5.2: Event log L3 displayed as sequences and their frequencies.

Frequency Sequence

532 〈a, c, b, d, e, f, g〉
345 〈a, c, d, b, e, f, g〉
245 〈a, c, b, d, f, e, g〉
154 〈a, c, d, b, f, e, g〉
110 〈a, b, c, d, e, f, g〉

present in figure 5.1. The most frequently occurring directly-follows relation occurs 753

times. The least frequently occurring directly-follows relations only occur twice.

The second event log, named L3, is displayed in table 5.2. This event log contains

no rare sequences. The first five sequences of L2 all occur frequently in L3, while the

other sequences do not occur at all. As a consequence, L3 contains only fifteen unique

directly-follows relations out of the thirty which are possible. The most frequently

occurring directly-follows relation occurs 1276 times and the least frequently occurring

directly-follows relation occurs 110 times.

5.2 Method

Each event log has been sampled using each of the sampling techniques, which are ran-

dom sampling with a fixed sample size (random fixed), probability-based random sam-

pling (random probability), stratified sampling, existential stratified sampling, stratified

plus sampling, and stratified squared sampling. The sampling with each of the different

sampling techniques was repeated one hundred times for each of the following five sample

ratios: 0.01, 0.05, 0.1, 0.2, and 0.5. This resulted in one hundred samples for each combi-

nation of sampling technique and sample ratio. For each sample, the coverage, NMAEM,

MAPE, sMAPE, NRMSEM, and sRMSPE have been calculated. Next, for each combi-

nation of sampling technique and sample ratio, the quality measures have been averaged

over the one hundred samples and the standard deviation has been calculated.

5.3 Results and Discussion

In this section the results are presented and discussed. First, the results are discussed for

event log L2. Followed by a discussion of the results for L3. Two more detailed figures

of the results of event log L2 can be found in appendix B. In figure B.1 the existential

stratified sampling technique is left out, which allows to compare the other sampling

techniques in more detail. Figure B.2 allows to compare the commonly used and easy to
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implement fixed sample size random sampling technique with the two newly described

stratified sampling techniques which seem to perform best.

All figures show each quality measure as a separate plot. For each plot the values of

the corresponding quality measure are displayed on the y-axis, while the sample ratio is

shown the x-axis. Different colours are used to indicate the different sampling techniques.

Each point in the plots shows the value of the respective quality measure averaged over

the one hundred samples which were drawn for the corresponding sample ratio. The error

bars show the standard deviation of these values. Some of the values have a standard

deviation of zero because sometimes there is no randomness in the selected sequences.

5.3.1 Event Log With Rare Sequences

The results for event log L2, which contains rare sequences, are shown in figure 5.2. The

first sample quality measure in this figure is the coverage. A higher coverage is better,

because it indicates that more directly-follows relations from the original event log are

present in the sample.

Existential stratified sampling produces, by definition, a sample with the maximum pos-

sible coverage. This is also visible in the figure. Stratified sampling, on the other hand,

seems to perform worst. This is because stratified sampling leaves out all rare sequences

from the original event log. All other sampling techniques seem to perform equally well

on the coverage measure, with stratified plus sampling having a slight advantage. This

is because the stratified plus sampling technique often includes some very rare, other-

wise unsampled, sequences. As the sample ratio increases, the coverage for each of the

sampling techniques increases. This is logical because less sequences become unsampled

as the sample ratio increases.

For the remaining sample quality measures, a lower value indicates that the sample is

more representative of the original event log. The three non-symmetric quality measures

(i.e. NMAEM, MAPE, and NRMSEM), which should be used when rare directly-follows

relations are not important, all show the same trend for the existential stratified sam-

pling technique. This technique performs worst because it includes all rare sequences

and, thus, rare directly-follows relations. Therefore, it oversamples rare directly-follows

relations, which is especially true for the smallest sample ratios.

When comparing the plots of the NMAEM and NRMSEM, they look very similar because

none of the sampling techniques introduce large deviations from the number of expected

directly-follows relations in the sample. Figure B.1 from appendix B allows to see the

differences between all sampling techniques except existential stratified sampling for the
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Figure 5.2: Illustration of the effects of different sample ratios and sampling tech-
niques on the sample quality measures using event log L2 as original event log.

NMAEM and NRMSEM in more detail. Probability-based random sampling performs

poorly on both sample measures, while stratified squared sampling seems to consistently

have the lowest error on these two sample quality measures. The difference between the
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sampling techniques is largest with a sample ratio of 0.01, while for larger sample ratios

the difference between the sampling techniques decreases. Especially stratified sampling,

stratified plus sampling, and stratified squared sampling perform nearly equally well

when the sample ratio is 0.05 or higher.

Surprisingly, the MAPE quality measure shows a slightly different picture. The strati-

fied plus sampling technique seems to perform worse when small sample ratios are used.

This is because the sampling technique randomly adds rare sequences which were not

sampled yet. Thus, also including rare directly-follows relations. For example, including

a directly-follows relation which should only occur 0.01 times in the sample. On the

NMAEM and the NRMSEM the effect of including such a rare directly-follows relation

is small. The error of including this rare directly-follows relation is only 0.99 for the

NMAEM and the NRMSEM. However, for the MAPE the scale represents a percent-

age error. Therefore, this rare directly-follows relation is oversampled by a factor 99

(i.e. 9900%). This explains the differences between the MAPE and the NMAEM and

NRMSEM. The other sampling techniques show nearly the same trend for the MAPE

as for the NMAEM and NRMSEM.

Both symmetric quality measures (i.e. sMAPE and sRMSPE) show a different trend

compared to the non-symmetric quality measures. There is not a large difference be-

tween the sMAPE and sRMSPE, because none of the sampling techniques introduced

large deviations from the number of expected directly-follows relations in the sample.

Therefore, the results for both these symmetric quality measures are discussed together.

The stratified plus sampling technique seems to perform best by a very slight margin,

which is largest around a sample ratio of 0.1. The existential stratified sampling method

does no longer perform worst, because these symmetric measures actually punish un-

dersampling and unsampling directly-follows relations more heavily than oversampling

directly-follows relations. Therefore, this sampling technique, which never unsamples

directly-follows relations, performs well. In contrast, the stratified sampling technique

now performs worst, because this technique unsamples any sequences which are expected

to occur 0.5 times or less in the sample. The other sampling techniques perform nearly

equally well.

For most combinations of sampling techniques and quality measures, the reported errors

seem to gradually decrease with an increase in sample ratio. However, for the NMAEM

and NRMSEM there seems to be a large increase in representativeness when the sample

ratio is increased from 0.01 to 0.05.
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5.3.2 Event Log Without Rare Sequences

The results for the event log which contains no rare sequences are shown in figure 5.3.

The values reported by all four different variations of stratified sampling techniques are

the same. This is because there are no rare sequences in this event log, which causes all

extensions of the standard stratified sampling technique to have no effect.

All variations of stratified sampling techniques always have a perfect coverage when there

are no rare sequences. This is also visible in the coverage plot. The random sampling

techniques, on the other hand, do not have a perfect coverage. They seem to sometimes

unsample some unique sequences, which causes some unique directly-follows relations to

be missing from the sample. This happens especially with small sample ratios.

All five frequency representativeness measures show the same trend because there are no

rare sequences and, thus, never undersampled rare sequences, which are punished more

heavily by the symmetric measures (i.e. sMAPE and sRMSPE). Furthermore, there

are never large deviations from the number of expected directly-follows relations in the

sample. Therefore, the frequency representativeness measures which use the absolute

error show the same trend as the frequency representativeness measures which use the

root mean square error.

The probability-based random sampling technique consistently performs worst on all

measures. The fixed sample size random sampling technique only performs marginally

better. All four stratified sampling based techniques always perform best. They seem

to create a near perfect sample, especially when the sample ratio is 0.05 or larger.

The errors reported by the different frequency representativeness measures seems to

drop more sharply when the sample ratio is increased from 0.01 to 0.05. However, this

increase is very small, as all the reported errors for all sample ratios are small. A further

increase in sample ratio only slightly lowers the errors.
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Figure 5.3: Illustration of the effects of different sample ratios and sampling tech-
niques on the sample quality measures using event log L3 as original event log.



Chapter 6

Entropy-Based Process Structure

Measures

The sample quality measures presented in chapter 4 always need a reference event log

in order to be calculated. The entropy-based process structure measures defined in this

chapter are different because these measures are calculated on a single event log, without

the need for a reference event log. However, the measures presented in this chapter can

also be used to compare the process structure of a sample against the original event log.

This can be done by computing an entropy-based process structure measure for both

logs individually and then comparing the two values.

Within this chapter, the focus is on one type of process structure, which will be called

how narrow or wide a process is. A narrow process contains little or no choice and/or

parallelism. A wide process, on the other hand, contains much choice and/or parallelism.

How often choice and/or parallelism occurs is also important. A process which has a

lot of choice and/or parallelism, but which nearly always follows one linear path, is

still considered narrow. A graphical depiction of this process might seem wide, but

the underlying structure of the process is narrow, because the choice and/or parallelism

rarely occurs.

The process structure measures presented in this chapter are based on entropy. Entropy

is used in many disciplines and has different meanings in the different fields. Within

the field of information theory, entropy is used to describe the amount of information

contained in something. Another way to look at entropy is to see it as the amount of

surprise. When applying these definitions of entropy to process discovery, it can be said

that, for example, a process which is hard to predict (i.e. contains a lot of choice and/or

parallelism) takes up a lot of information to describe, while a process which always

follows the same predefined activities (i.e. a linear process without choice or parallelism)

70
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Figure 6.1: The process which generated event log L4 and L5 visualised as a Petri
net.

is not surprising (it is always known which activity follows next) and therefore it takes

up little or no information to describe.

Shannon [56] introduced entropy in the field of information theory in 1948. His definition

of entropy is given in equation 6.1. In this equation, n denotes the number of possible

discrete values x1, x2, ..., xn of a variable X. pi denotes the probability of the discrete

value occurring.

H = −
n∑

i=1

[pi log2 pi] (6.1)

6.1 Another Minimal Working Example

In table 6.1, two example event logs (L4 and L5) are given, which are used throughout

this chapter to illustrate the different entropy-based process structure measures. Both

these event logs have the same underlying process model, which is displayed in figure 6.1.

The difference between the two logs is that in L4 both unique sequences occur equally

often, while sequence 〈a, b, d〉 does not occur in L5.

Two of the entropy-based process structure measures presented in this chapter use the

number of occurrences of each directly-follows relation in the event log. The left hand

side of figure 6.2 shows the number of occurrences of each directly-follows relation for

Table 6.1: Event logs L4 and L5 displayed as sequences and their frequencies.

Frequency Sequence

L4

10 〈a, b, c〉
10 〈a, b, d〉

L5

10 〈a, b, c〉
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Figure 6.2: Directly-follows relation matrices of event log L4 (left) and L5 (right).

a b c d

a 0 20 0 0
b 0 0 10 10
c 0 0 0 0
d 0 0 0 0

a b c d

a 0 10 0 0
b 0 0 10 0
c 0 0 0 0
d 0 0 0 0

event log L4 and the right hand side of the figure shows the number of occurrences of

each directly-follows relation for event log L5.

6.2 Requirements

A number of requirements have been used to validate the entropy-based process structure

measures proposed in this chapter. These requirements are listed below. The event

logs used to validate these requirements can be found in appendix B in table B.3. The

corresponding process models which generated these event logs are shown in figure B.3 of

appendix B. The resulting scaled entropies reported by each measure on these event logs

can be found in appendix B in table B.4. Finally, an overview of which measure satisfies

which requirements can be found in table 6.2. A tick indicates that the requirement is

satisfied, while a cross indicates that a measure does not satisfy the requirement.

• Req 1: A completely linear process model should have an entropy of zero, because

it is completely predictable.

• Req 2: A completely parallelised model (i.e. a model where every activity can be

followed by any other activity) where every activity and directly-follows relation

occurs equally often in the event log should have the maximum entropy.

• Req 3: A linear process model extended with one choice where both choices

occur equally often should have an entropy larger than zero and smaller than the

maximum entropy.

• Req 4: When one of the choices in the aforementioned linear process model with

one choice occurs less frequently, then the entropy should decrease.

• Req 5: When the linear process model with one choice from requirement 3 is

extended with a linear path after each choice, then the entropy should decrease.

• Req 6: When the linear process model with one choice from requirement 3 is

shortened by removing the overlapping path before the choice (i.e. activities which

occur before the choice), then the entropy should increase.
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Table 6.2: The results of testing each measure against the requirements.

Req Sequence Activity Directly-Follows Conditional DF

Req 1 3 7 7 3

Req 2 3 3 3 3

Req 3 7 3 3 3

Req 4 3 3 3 3

Req 5 7 7 7 3

Req 6 7 7 7 3

Req 7 7 7 3 3

Req 8 3 7 3 3

Req 9 3 3 3 3

• Req 7: A linear process model extended with parallelism where every parallel

sequence occurs equally often should have an entropy larger than zero and smaller

than the maximum entropy.

• Req 8: Reducing the occurrence of all but one sequence of the aforementioned

linear process model with parallelism should decrease the entropy.

• Req 9: A perfect sample (i.e. a sample where every sequence occurs proportionally

equally as often as in the original event log) should report the same entropy as the

original event log from which the sample was taken.

6.3 Sequence Entropy

The simplest way of measuring the entropy of an event log is by directly measuring the

entropy of the sequences that occur in the event log. Equation 6.2 shows the Shannon

entropy equation adapted to measure the entropy of the sequences in the event log. To

illustrate this with an example, event log L4 (see table 6.1) consists of two unique se-

quences 〈a, b, c〉 and 〈a, b, d〉 which both occur ten times. These two unique sequences

are the two possible values of the variable X from the Shannon entropy equation. p(σi)

denotes the probability of σi occurring in the event log. This probability can be cal-

culated from the event log by dividing the number of times σi occurs (n(σi)) by the

total number of sequences that occur in the event log (N). For sequence 〈a, b, c〉, this

probability is 0.5 because it occurs ten times out of the twenty sequences. k denotes the

number of unique sequences in the event log. For L4 this number is two, since only two

unique sequences occur in the event log. The resulting sequence entropy of L4 is 1.

Sequence Entropy = −
k∑

i=1

[p(σi) log2 p(σi)] = −
k∑

i=1

[
n(σi)

N
log2

n(σi)

N

]
(6.2)
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The sequence entropy can range from zero to infinity. Zero means that the sequences

are perfectly predictable and contain no information or surprise at all. This would be

a completely linear process where there is only one possible sequence. Any new case

would not add information and would not be surprising, because it is known beforehand

which sequence this new case will follow. The entropy is equal to infinity when there

are an infinite number of unique sequences which all occur equally often.

The sequence entropy has to be scaled in order to compare two event logs which have

a different number of unique sequences. The maximum possible sequence entropy for

a specific event log can be calculated using log2(k), where k denotes the number of

unique sequences in the event log. The maximum possible sequence entropy of L4 is

log2(2) = 1. Scaling the sequence entropy is done by dividing the calculated sequence

entropy of an event log by the maximum possible entropy of that event log. This is

shown in equation 6.3. The result is a scaled entropy measure which ranges from zero to

one. Zero is defined in the same way as the non-scaled sequence entropy above, while a

scaled entropy of one occurs when the maximum possible entropy for the given number

of unique sequences occurs.

Scaled Sequence Entropy =
Sequence Entropy

log(k)
(6.3)

The sequence entropy does not satisfy most requirements (see table 6.2). Most notably,

it often reports the maximum entropy when this is not desired. The advantage is that it

is efficient to calculate the sequence entropy. The drawback is that it does not say much

about the process structure. In the example, activity a and activity b are shared between

both unique sequences. Yet, this is not reflected by the reported entropy, because it is

the maximum possible entropy.

6.4 Activity Entropy

Another way to calculate the entropy of an event log is by using the occurrences of

activities instead of the occurrences of sequences. The earlier notion of entropy in

equation 6.1 can be adapted to represent the entropy of observed activities in an event

log. This formula is given in equation 6.4, where k is the total number of unique activity

names in the event log and p(ai) denotes the probability of activity ai occurring in the

event log. The number of occurrences of a specific activity is given by n(ai). N is the

total number of observed activities in the event log.

Activity Entropy = −
k∑

i=1

[p(ai) log2 p(ai)] = −
k∑

i=1

[
n(ai)

N
log2

n(ai)

N

]
(6.4)
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The example event log L4 contains four different unique activities. These are activities

a, b, c, and d. Activity a occurs twenty times out of the sixty activities in total.

The probability of activity a occurring in the event log is thus p(a) = 20/60 = 0.333.

Applying the activity entropy equation to L4 results in an entropy of 1.918. This entropy

can be scaled to a value ranging from zero to one by dividing the entropy by the maximum

possible entropy. The maximum possible activity entropy is given by log2(k). The scaled

activity entropy of L4 is equal to 1.918/ log2(4) = 0.959.

This scaled activity entropy is lower than the scaled sequence entropy reported on L4.

However, the entropy is not representative of the process structure. The problem of

activity entropy becomes clear when considering an event log consisting of occurrences

of only a single sequence, for example, L5 which only contains sequence 〈a, b, c〉 ten

times. Since activity a, b, and c all occur equally often in this event log, the scaled

activity entropy of this log is 1. While, intuitively, the entropy should be 0 because the

process always follows the same sequence.

From table 6.2 it can be seen that the activity entropy measure fails to satisfy most

requirements. Just as with the sequence entropy, this measure is over reporting. The

activity entropy of nearly all event logs which were used to test the requirements is the

maximum possible entropy, while these event logs have very different process structures.

6.5 Directly-Follows Entropy

The directly-follows entropy uses the number of occurrences of directly-follows relations

in the event log to calculate the entropy of the event log. Equation 6.5 defines the

directly-follows entropy of an event log. p(ai > aj) denotes the probability of activity

ai being directly followed by activity aj in the event log. n(ai > aj) is the number of

times activity ai is directly followed by activity aj in the event log and N is the total

number of directly-follows relations in the event log. k is the total number of unique

activity names in the event log. For example, event log L4 has four unique activities (a,

b, c, and d).

Directly-Follows Entropy = −
k∑

i=1

k∑
j=1

[p(ai > aj) log2 p(ai > aj)]

= −
k∑

i=1

k∑
j=1

[
n(ai > aj)

N
log2

n(ai > aj)

N

] (6.5)

The matrix on the left hand side of figure 6.2 shows the number of occurrences of each

directly-follows relation in event log L4. The rows of the matrix indicate the activity
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Figure 6.3: Probability of ai being directly followed by aj for event log L4.

from which the relation starts, while the columns indicate the activity to which the

relation points. For example, activity a is twenty times directly followed by activity

b. Figure 6.3 illustrates the idea behind directly-follows entropy. This figure shows the

probability of each directly-follows relation occurring in event log L4. It can be seen

that the directly-follows entropy takes into account all possible directly-follows relations

based on the observed activities. Only three directly-follows relations out of the sixteen

possible directly-follows relations are present in the event log, of which a > b has the

highest probability of occurring.

Calculating the directly-follows entropy of event log L4 gives an entropy of 1.5. This

entropy can also be scaled to a value between zero and one by dividing the entropy by

the maximum possible entropy for an event log containing four unique activities. The

maximum possible directly-follows entropy is given by log2(k2). Applying this to L4

gives a scaled entropy of 1.5/ log2(42) = 0.375. This scaled entropy is lower than the

scaled entropy of the previously introduced entropy measures.

Table 6.2 shows that the directly-follows entropy performs better on the requirements

than the previously introduced entropy measures. The scaled directly-follows entropy

does seem more representative of the process structure. However, there are still three

requirements which the directly-follows entropy does not satisfy. It fails to report an

entropy of zero for the linear process used to test requirement 1. Furthermore, this

measure fails to satisfy requirements 5 and 6.
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Figure 6.4: Conditional probability of ai being directly followed by aj given that the
starting activity of the directly-follows relation is ai, displayed for event log L4.

6.6 Conditional Directly-Follows Entropy

The previously introduced directly-follows entropy uses the probability of ai being di-

rectly followed by aj in the whole event log to calculate the entropy. This entropy

measure can be improved by making it conditional on the starting point of the directly-

follows relation. Thus, calculating the entropy of ai being directly followed by aj con-

sidering all possible activities that could directly follow ai. Equation 6.6 shows how

the conditional directly-follows entropy is calculated. The same notation as for the

directly-follows entropy is used.

Conditional DF Entropy = −
k∑

i=1

k∑
j=1

[p(ai)p(ai > aj | ai) log2 p(ai > aj | ai)]

= −
k∑

i=1

k∑
j=1

[
n(ai > aj)

N
log2

n(ai > aj)

n(ai)

] (6.6)

Another difference with the previously introduced directly-follows entropy is that the

conditional entropy also multiplies the entropy of each directly-follows relation with p(ai)

(i.e. the probability that the starting activity of the directly-follows relation occurs).

This ensures that, for example, an alternative branch of the process model with a high

entropy which rarely occurs, weighs less heavily on the total entropy.

Figure 6.4 illustrates the concept of conditional directly-follows entropy on event log L4.

For every activity in the event log it looks at all possible directly-follows relations which

originate from that activity. For example, when considering activity a, the question
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asked is what is the probability of directly going to each of the activities from activity

a? From the matrix on the left hand side of figure 6.2 it can be seen that activity a

is always followed by activity b. Therefore, the probability of activity a being directly

followed by activity b given starting relation a is p(a > b | a) = 10/10 = 1. Thus, this

part has an entropy of zero according to equation 6.6, because log2(1) = 0.

The conditional directly-follows entropy of event log L4 is 0.5. The maximum possible

entropy is obtained by log2(k). Therefore, the scaled conditional directly-follows entropy

of L4 is 0.5/ log2(4) = 0.25. It is also possible to scale the entropy differently when self-

loops (e.g. activity a being directly followed by activity a) are impossible. This can be

done by calculating the maximum possible entropy as log2(k − 1).

The conditional directly-follows entropy satisfies all requirements (see table 6.2). One

disadvantage of this entropy measure is that adding a new unique sequence with activities

which have not been recorded in the event log yet can lower the entropy of the event

log. For example, adding sequence 〈f, g, h〉 ten times to L4 lowers the conditional

directly-follows entropy of L4 from 0.5 to 0.33, while intuitively, the entropy should

increase because of the added new sequence which occurs equally often as the other two

sequences.

6.7 Comparison

Intuitively, process structure measures should adhere to at least two important require-

ments. Firstly, a process where only a single sequence without parallelism or loops is

logged should have an entropy of zero (i.e. requirement 1). There is no randomness in

such an observed sequence, because only one path is seen and all sequences follow this

path. The second requirement is that for two linear sequences which partially overlap

because of a choice, the entropy should be smaller than the maximum possible entropy

(i.e. requirement 3).

In table 6.3, the scaled entropy measures are displayed for event log L4 and event log L5.

Each measure is scaled between zero and one by dividing the entropy by the maximum

possible entropy for the corresponding measure and event log. Event log L4 corresponds

to requirement 3 and event log L5 corresponds to requirement 1.

The sequence entropy and activity entropy are both giving a too large entropy for L4,

which contains the fairly linear and partially overlapping process. The activity entropy

even reports the maximum possible entropy for L5, while this event log only contains

a linear process. Therefore, these two measures are considered non-desirable since they

do not adhere to the two most important requirements.
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Table 6.3: The values of the different scaled entropy-based process structure measures
calculated for event log L4 and L5.

Process Structure Measure L4 L5

Sequence 1.000 0.000
Activity 0.959 1.000
Directly-Follows 0.375 0.315
Conditional Directly-Follows 0.250 0.000

Both directly-follows relation based measures report a lower entropy for L4. The directly-

follows entropy measure reports a scaled value greater than zero for L5. Therefore, this

measure does not satisfy the first requirement. Only the conditional directly-follows

entropy measure adheres to both these requirements and all other requirements from

table 6.2.

6.7.1 Interpretation

All entropy-based measures introduced in this chapter have interpretability issues. It

is not very straightforward to give a meaning to entropy for the purpose of a process

structure measure. In general, a high entropy can be associated with randomness, which

is manifested as either a choice or parallelism when process structure is examined. A

low entropy, on the other hand, is associated with little randomness. Therefore, a low

entropy is associated with a narrow process structure, while a high entropy is associated

with a wide process structure.

When entropy is used to compare the process structure of samples taken from one

original event log, then the entropy does not have to be scaled because, ideally, scaling

would in this case be done by dividing by the maximum possible entropy of the original

event log. This is a division by a constant number because both samples are taken from

the same original event log. Therefore, the entropy of two samples taken from the same

original event log can directly be compared without scaling the entropy first.

When the entropy of two samples is similar, it indicates that both samples are equally

wide or narrow, but this does not mean that the samples are similar. Different com-

binations of choice and/or parallelism can lead to the same entropy. Furthermore, the

discovered models do not have to look equally as wide or narrow because, for example,

the conditional directly-follows entropy is based on how often behaviour occurs in the

event log. Depending on the discovery algorithm, these frequencies can be visible in the

discovered process model or not.
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Scaling is necessary when comparing samples of different event logs because the num-

ber of unique activities and unique sequences influences the maximum possible entropy.

Therefore, only scaled entropy can be used to compare event logs with a different number

of unique activities or sequences. This scaling is, however, not perfect. A disadvantage

of scaling by dividing by the maximum possible entropy is that introducing more unique

activities to one event log can drastically change the scaled entropy of that event log,

because there are now more possible directly-follows relations which leads to a higher

maximum possible entropy and thus a lower scaled entropy. Therefore, entropy-based

process structure measures are sensitive to hidden and incorrect activities and behaviour

(see section 2.2.1 for more information about the terms hidden and incorrect). Further-

more, different combinations of choice and/or parallelism could lead to the same scaled

entropy.

Therefore, when comparing different event logs, the entropy measures cannot tell if two

logs have a similar process structure. The scaled entropy can be more useful under

the assumption that two event logs contain proportionally the same number of rare

activities. However, even under this assumption, scaled entropy measures are still hard

to compare, because different combinations of choice and/or parallelism can still lead to

the same entropy.



Chapter 7

Evaluation

This chapter evaluates the sampling methods from chapter 3. The evaluation was carried

out using two real-life event logs for process mining. The main focus was to answer sub-

question SQ5, thus answering the following question:

SQ5 What is the effect of different sampling techniques and sample ratios on event

logs and discovered process models?

Figure 1.2 from chapter 1 illustrates the research approach of the evaluation. In short,

the following research approach was followed. First, the two real-life event logs were

preprocessed and descriptive statistics were calculated. Next, the real-life event logs

were sampled using different sampling techniques and sample ratios. Sample quality

measures were calculated for each sample by comparing each sample to the original

preprocessed (i.e. unsampled) event log. Then, process models were discovered from

each sample using the Inductive Miner - infrequent. Next, model quality measures were

calculated for each discovered process model. After this, a quantitative comparison of the

sample quality measures and model quality measures was done. Finally, a qualitative

comparison between process models with the highest F-measure and process models

discovered from the original preprocessed event logs was carried out.

7.1 Real-Life Event Logs

This section describes the two real-life event logs which were used for the evaluation.

First, the type of data in the event logs is explained. Next, descriptive statistics are

given for the original log. Then, the data preparation process is explained. During this

81
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Table 7.1: The number of sequences and activities for each of the real-life event logs.

Road Sepsis

Sequences 150,370 1,050
Activities 561,470 15,214

step, the event logs were cleaned so they could be used for the evaluation. Finally, more

descriptive statistics are given for the preprocessed event logs.

The two real-life event logs used in this evaluation are the road traffic fine management

process event log [57] (called road event log) and the sepsis cases event log [58] (called

sepsis event log). These two event logs were selected based on their dissimilar properties.

Table 7.1 displays the number of sequences (i.e. cases) and the number of activities for

both event logs.

7.1.1 Data Description and Data Preparation

The road event log was analysed in a study by Mannhardt et al. [59]. This event log

contains activities related to road-traffic fines. For more information about this event

log please refer to the work of Mannhardt et al. The second event log used in this

evaluation is the sepsis event log which was studied by Mannhardt and Blinde [60]. This

event log contains activities related to the sepsis care pathways followed by patients in

a hospital. Please refer to the study by Mannhardt and Blinde for more information.

The same preprocessing was applied to both event logs. First, the XES-formatted [61]

event log files were converted to CSV format using the RapidProM [62] extension in

RapidMiner [63]. Next, the CSV-formatted event log files were loaded into R (version

3.6.2) [64]. In R, the activities without case identifier were removed. After this, the event

logs were exported as CSV-formatted files to be used for the evaluation. Furthermore,

descriptive statistics were calculated for both preprocessed event logs. These descriptive

statistics can be found in table 7.2.

From this table it can be seen that the road event log is very different from the sepsis

event log. The road event log contains more sequences than the sepsis event log, while

the sepsis event log contains more unique sequences. This is especially visible when

looking at the ratio of unique sequences (i.e. the number of unique sequences divided

by the number of sequences). This ratio shows that nearly every sequence in the sepsis

event log is a unique sequence. The most frequently occurring sequence in the sepsis

event log only occurs 35 times, while the most frequently occurring sequence in the road

event log occurs 56,482 times. Furthermore, the sepsis log also contains more unique

directly-follows relations than the road event log.
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Table 7.2: Descriptive statistics of both real-life event logs after preprocessing.

Road Sepsis

Sequences 150,370 1,049
Activities 561,470 15,190
Directly-Follows Relations 411,100 14,141
Unique Sequences 231 845
Ratio of Unique Sequences 0.0015 0.8055
Unique Activities 11 16
Unique Directly-Follows Relations 70 115
Entropy 0.774 2.008
Scaled Entropy 0.224 0.502

The best entropy measure from chapter 6, conditional directly-follows entropy, was cal-

culated for both event logs. The scaled conditional directly-follows entropy of the road

event log is lower than the scaled entropy of the sepsis event log. This indicates that

the road event log probably has a more linear process structure, while the sepsis event

log probably has a process structure which is wider, containing more choice and/or

parallelism.

7.2 Experimental Design

First, the preprocessed event logs were sampled in R using the sampling techniques in-

troduced in chapter 3, which are random sampling with a fixed sample size (random

fixed), probability-based random sampling (random probability), stratified sampling,

existential stratified sampling, stratified plus sampling, and stratified squared sampling.

Sampling was done at five different sample ratios: 0.01, 0.05, 0.1, 0.2, and 0.5. For

the road event log, sampling was repeated twenty times for each combination of sam-

pling technique and sample ratio. The sepsis event log was only sampled once for each

combination of sampling technique and sample ratio due to processing limitations.

The samples were exported from R in CSV format and loaded into ProM (version

6.9) [61]. First, the CSV-formatted event logs were converted to XES format using

the Convert CSV to XES plugin by Mannhardt et al. Next, the Inductive Miner -

infrequent [45] as implemented by the Mine Petri net with Inductive Miner plugin by

Leemans was used with a 0.20 threshold to discover a Petri net from each of the samples.

The model quality was analysed by calculating the fitness, precision, generalisation,

and F-measure. First, the Replay a Log on Petri Net for Conformance Analysis plugin

by Adriansyah was used on the unsampled preprocessed event log and each Petri net

discovered from the samples to calculate the alignment between the Petri nets and the
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unsampled event log. This plugin was configured to use the event names as classifier and

the ILP-based replayer for the purpose of measuring precision with penalising improper

completion. All move on model and move on log costs were set to one. Three different

types of fitness were calculated: move-log fitness, move-model fitness, and trace fitness.

Next, the previous alignment between each Petri net and the unsampled event log was

used to calculate precision and generalisation metrics. This was done using the Measure

Precision/Generalization plugin by Adriansyah. The plugin was configured to group

traces with the same sequence. Finally, the F-measure as proposed by De Weerdt et

al. [34] for process mining was calculated for each sample using the trace-fitness as recall

metric. The equation used to calculate the F-measure can be seen in equation 2.1.

7.3 Results

This section presents the results of the evaluation. First, a quantitative analysis based

on sample quality measures and model quality measures is given. Next, a qualitative

analysis is presented. This qualitative analysis compares the Petri net discovered using

the unsampled event log against the Petri net which reported the highest F-measure.

Appendix B contains one table for each event log which displays the number of occur-

rences of each directly-follows relation (table B.5 and B.7). Furthermore, appendix B

also contains two tables with the expected number of occurrences of each directly-follows

relation compared to the sampled number of occurrences of each directly-follows relation

for the sample with the highest F-measure (table B.6 and B.8).

7.3.1 Quantitative Analysis

This section presents the results for the sample quality measures and model quality

measures for both real-life event logs. The six most important sample quality measures

from chapter 4 are shown. These are coverage, NMAEM, MAPE, sMAPE, NRMSEM,

and sRMSPE. To quickly recap, the coverage ranges from zero to one and is a measure

of how many unique directly-follows relations which are present in the original event

log, are present in the sample. A value of one indicates that all unique directly-follows

relations from the original event log are also present in the sample.

The NMAEM, MAPE, and NRMSEM are asymmetric measures. These measures do not

give a large penalty to unsampled directly-follows relations. The sMAPE and sRMSPE,

on the other hand, are symmetric measures. These measures give large penalties when

directly-follows relations are unsampled. The asymmetric measures range from zero
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to infinity, while the symmetric measures range from zero to one. For both types of

measures, zero means that the frequency of each directly-follows relation in the sample

is perfectly proportional to the frequency of that directly-follows relation in the original

event log.

The conditional directly-follows entropy, as presented in chapter 6, is also reported in

this section. It was decided to only report this entropy-based process structure measure,

because it is the only measure found which adheres to all proposed requirements. The

scaled version of this measure ranges from zero to one. A value close to zero indicates

that the process follows a narrow structure (i.e. a process which contains little or no

choice and/or parallelism). A value closer to one indicates a wide process (i.e. a process

which contains much choice and/or parallelism).

Furthermore, six different model quality measures are presented. These measures are

explained in chapter 2. The first three model quality measures indicate the fitness of

the model. These measures are move-log fitness, move-model fitness, and trace fitness.

Their values can range from zero to one. A trace fitness value of zero indicates that

the model cannot replay any of the sequences in the original event log. A value of one

indicates that the model can perfectly replay every sequence in the original event log.

Another model quality measure is precision. Precision also ranges from zero to one and

indicates how much extra behaviour the model allows. A model with a precision close

to zero allows for much more behaviour than present in the original event log. On the

other hand, a model with a precision of one does not allow any behaviour that is not

present in the original event log. The model quality measure generalisation, in contrast

to precision, indicates how well the model would generalise for behaviour which is not

present in the event log. This measure also ranges from zero to one, with zero being

no generalisation. Finally, the F-measure is a quality measure which balances precision

and fitness. It was decided to use the trace fitness for this calculation, as shown in

equation 2.1.

Road Traffic Fine Management Process

Sample Quality Measures The sample quality measures for the road event log are

displayed in figure 7.1. Stratified sampling and existential stratified sampling have been

removed from this figure to increase the readability of the other sampling techniques. See

figure B.4 in appendix B for a figure including all sampling techniques. Both figures show

the value of each measure, averaged over the twenty samples drawn for each combination

of sampling technique and sample ratio. The error bars indicate the standard deviation.
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Figure 7.1: Sample quality measures for samples drawn from the road event log.

The coverage increases as the sample ratio increases towards one. The two sampling

techniques which are notably different from the others are stratified sampling and exis-

tential stratified sampling (see appendix B figure B.4). Existential stratified sampling
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always has a coverage of one, while stratified sampling has the lowest coverage for all

sample ratios.

All three non-symmetric sample quality measures (i.e. NMAEM, MAPE, and NRMSEM)

show an increase in sample quality with an increase in sample ratio. When looking at

the MAPE measure, it can be seen that the existential stratified sampling technique

performed worst. At a sample ratio of 0.01 this technique reported an average deviation

of the number of occurrences of directly-follows relations of 3686%. The reason for this

is that the existential stratified sampling technique oversampled very rare sequences to

ensure a perfect coverage. Furthermore, there are no major differences visible between

the other sampling techniques. However, the samples taken using stratified squared

sampling have the lowest error.

The NMAEM and NRMSEM look very similar, because the differences between the ex-

pected number of occurrences of directly-follows relations and the sampled number of

occurrences of directly-follows relation are quite uniformly distributed. It is interest-

ing to see that even for small sample ratios these two log quality measures report low

errors. Especially stratified sampling, stratified plus sampling, and stratified squared

sampling seem to create samples which closely match the number of expected occur-

rences of directly-follows relations. Existential stratified sampling performed worst on

these quality measures.

Interestingly, stratified plus sampling outperforms the two random sampling techniques

on the NMAEM and NRMSEM, while this is not the case on the MAPE. The reason

for this is that oversampled directly-follows relations are punished more heavily by the

MAPE. For example, the directly-follows relation going from the activity receive result

appeal from prefecture to the activity insert date appeal to prefecture occurs only once

in the unsampled event log. Therefore, the expected frequency of this directly-follows

relation is 0.01 with a 0.01 sample ratio. The MAPE reports an error of 99 (9900%)

when this directly-follows relation is included in a sample.

The sMAPE and sRMSPE favour oversampling over undersampling. Therefore, the

existential stratified sampling technique performs well on this measure, while it per-

forms worse on the non-symmetric measures. The stratified sampling technique performs

slightly worse on the sMAPE and sRMSPE compared to all other sampling techniques,

which show little difference between them. Furthermore, both the sMAPE and the sRM-

SPE show an increase in representativeness of the samples as the sample ratio increases.

Entropy-Based Process Structure Measure Figure 7.2 shows the conditional

directly-follows entropy for each sampling technique and sample ratio. The values are
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Figure 7.2: Conditional directly-follows entropy for samples drawn from the road
event log. The dashed line indicates the entropy of the original event log without

sampling.

averaged over the twenty samples drawn for each combination of sample ratio and sam-

pling technique. Error bars indicate the standard deviation. The dashed line represents

the entropy of the unsampled event log.

The entropy of the samples seems to approach the entropy of the unsampled event

log as the sample ratio increases. Furthermore, the scaled entropy of the samples is

close to the scaled entropy of the original event log. Only the samples taken using

existential stratified sampling show a higher scaled entropy for lower sample ratios.

This is because of the added rare sequences in these samples, which disproportionally

increase the number of occurrences of some directly-follows relations.

Model Quality Measures The six different model quality measures for the models

discovered from the samples of the road event log are displayed in figure 7.3. Each value

is averaged over the twenty samples drawn for each combination of sample ratio and

sampling technique. The error bars indicate the standard deviation. Furthermore, a

dashed line indicates the value of the unsampled event log.

There are two interesting findings regarding figure 7.3. The first interesting finding is

that the models discovered using the smallest sample ratios perform best on all model

quality measures, except for move-model fitness. The second interesting finding is that

existential stratified sampling seems to produce a model which reports nearly the same

values for all six model quality measures as the original unsampled event log reports. It
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Figure 7.3: Model quality measures for samples drawn from the road event log. The
dashed line indicates the model quality measures for a model created based on the

original event log without sampling.

is interesting that this is also true for the smallest sample ratio, which created an event

log of roughly 1% the size of the unsampled event log, containing only 1701 sequences
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and 7290 activities.

The graphs of the move-log fitness and trace fitness look very similar to one another.

This might be because the differences in move-model fitness are very small. The move-

log fitness and trace fitness both decrease with an increase in sample ratio. The stratified

sampling technique performed really well in combination with the smaller sample ratios.

It is interesting that a model discovered from only 1% of the sequences performs better

when replaying the unsampled event log than a model discovered from this unsampled

event log. However, it should be noted that the differences in fitness are very small.

There seem to be a few outliers in the gradually decreasing lines of the move-log fitness

and trace fitness graphs. It is possible that this happened because certain sample ratios

force some sequences to be included or excluded. This is particularly the case with

the stratified sampling technique because the results of this sampling technique heavily

depend on the rounding. The move-model fitness seems to be very close to one, with

differences being smaller than one thousandth.

The precision measure shows the potential benefits of sampling. It shows a strong effect

of increased precision for lower sample sizes. The precision increased from 0.49 using

the unsampled event log to 0.74 using stratified sampling with a 0.01 sample ratio. The

generalisation seems to decrease when the sample size increases, which is odd, because

the precision also decreases as the sample size increases. The reason for this decrease in

generalisation is unknown.

The F-measure combines the trace fitness and precision into a single measure. This

measure shows the same trend as both the trace fitness and precision graphs, because

these already look quite similar. Furthermore, the F-measure is biased towards precision,

because the range of measured precision values is larger than the range of measured trace

fitness values and because the precision values are lower.

Relating All Types of Measures It is interesting to see that using smaller sam-

ple ratios leads to samples which are less representative of the unsampled event log.

However, these samples created at smaller sample ratios lead to models with increased

fitness and precision. This shows that sampling event logs can actually be an advan-

tage in process model discovery. Furthermore, it is also interesting that the conditional

directly-follows entropy mostly remains unchanged when decreasing the sample ratio.

This would indicate that the process structure remains largely the same when sampling

the event log.
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Sepsis Cases

Sample Quality Measures Figure 7.4 shows the sample quality measures for the

sepsis event log. The results of the stratified sampling technique and existential strat-

ified sampling technique are not shown in this figure to increase the readability. See

appendix B figure B.5 for a version of the figure including all sampling techniques. Both

figures do not contain error bars because the sepsis event log was only sampled once for

each combination of sampling technique and sample ratio.

The sample quality measures of the sepsis event log show a similar trend to those of

the road event log. All quality measures show that the representativeness of the sample

generally increases as the sample ratio increases. The sample created by stratified sam-

pling at a 0.01 sample ratio does not contain any sequences. Therefore, this sample has

a coverage of zero. Furthermore, this sample has the maximum possible error on the

sMAPE and sRMSPE.

From the coverage graph, it can be seen that the samples created using stratified existen-

tial sampling always have the maximum possible coverage. The samples created using

stratified sampling, on the other hand, scored the lowest on coverage. The differences

in coverage between the samples taken using the other four sampling techniques were

small.

The NMAEM and NRMSEM are less similar for this event log than for the road event log.

This indicates that some directly-follows relations were undersampled or oversampled

by a larger number compared to the road event log. The samples taken using existential

stratified sampling also performed poorly on the NMAEM, NRMSEM, and MAPE. The

reason for this is that nearly every sequence is sampled because nearly every sequence is

a unique sequence. The sample created by the existential stratified sampling technique

with a 0.01 sample ratio contains a total of 845 sequences, which all occur once. This

causes the true sample ratio to be a lot higher than the intended sample ratio.

According to the NMAEM and NRMSEM, the two random sampling techniques seem

to create samples which are more representative of the unsampled event log than the

stratified plus and stratified squared sampling techniques, especially with smaller sample

ratios. The sample obtained using stratified plus sampling at a 0.01 sample ratio is just

an outlier, because the technique selected ten sequences at random, just like random

fixed sampling. However, the sample obtained using stratified squared sampling at a

0.01 sample ratio tends to always have a bad frequency representativeness for this event

log. This is because this sampling technique selects additional sequences to sample in

descending order based on the frequency of the sequences. In this case, the most frequent

sequences are short sequences with fewer than average activities. The average sequence
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Figure 7.4: Sample quality measures for samples drawn from the sepsis event log.

in the sepsis log contains fourteen activities, while the ten most frequently occurring

sequences contain only six activities on average.

When looking at the MAPE, all sampling techniques except for existential stratified
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Figure 7.5: Conditional directly-follows entropy for samples drawn from the sepsis
event log. The dashed line indicates the entropy of the original event log without

sampling.

sampling created nearly equally representative samples. Samples created using stratified

sampling are not representative of the unsampled event log according to the sMAPE

and sRMSPE. This is because of the many unique sequences in the unsampled event

log, which causes many of the sequences to be unsampled by stratified sampling. The

existential stratified samples also seem not very representative, because these samples

contain too many directly-follows relations. The four remaining sampling techniques all

performed nearly equally well.

Entropy-Based Process Structure Measure Figure 7.5 shows the conditional

directly-follows entropy of the samples taken from the sepsis event log. The dashed

line indicates the entropy of the unsampled event log. The entropy of the samples seems

to approach the entropy of the unsampled event log as the sample ratio increases. The

entropy is generally lower at lower sample ratios, because these samples tend to include

less unique sequences and less unique directly-follows relations. The samples taken using

stratified sampling reported a lower entropy than the other samples because of the few

unique sequences present in these samples. Furthermore, existential stratified sampling

always seems to create samples with an entropy which is very similar to the entropy of

the unsampled event log. This is because these samples contain nearly all sequences.

Model Quality Measures The model quality measures which were calculated for

the models discovered from the different samples are shown in figure 7.6. The dashed
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line indicates the value of the model quality measure for the model discovered from the

unsampled event log. It is hard to draw conclusions from these model measures because

the event log was only sampled once for each combination of sampling technique and

sample ratio.

Nevertheless, a general trend is visible. The models discovered from the samples tend

to have a reduced fitness and an increased precision compared to the model created

from the unsampled event log. Furthermore, the models created from the existential

stratified samples produced very similar results for every sample ratio. This is because

the technique sampled nearly all sequences, as explained earlier.

The model created using the unsampled event log scored relatively high on move-log

fitness. Both random sampling techniques also scored high on move-log fitness. The

models created from the stratified samples scored lowest on move-log fitness. In general,

the models scored higher on move-model fitness than move-log fitness. There does not

seem to be a clear trend in move-model fitness. The trace fitness graph shows an image

which is very similar to the move-log fitness. This is because most misalignments found

were of the move-log type rather than the move-model type.

Models with the lowest fitness seem to have the highest precision. Especially the models

discovered from the stratified samples and stratified squared samples score highest on

precision, while they performed worst on move-log and trace fitness. The differences in

generalisation are very small. There is no clear trend visible in the generalisation values

of the models. The F-measure shows an image which is quite similar to the precision.

This is because the range of the precision measure is larger than the range of the trace

fitness measure and because the precision values are generally lower.

Relating All Types of Measures Smaller sample ratios seem to lead to samples

which are less representative of the original event log. Furthermore, the models discov-

ered from the samples mostly showed an increase in precision compared to the model

discovered from the unsampled event log. This increase does, however, seem to come

at the cost of move-log fitness and trace fitness. Finally, the conditional directly-follows

entropy measure shows that the samples with a small sample size tend to have a more

linear process structure.

7.3.2 Qualitative Analysis

The qualitative analysis focusses on the Petri nets discovered from the unsampled event

log and the samples. An in-depth analysis is presented which compares the Petri net
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Figure 7.6: Model quality measures for samples drawn from the sepsis event log.
The dashed line indicates the model quality measures for a model created based on the

original event log without sampling.

discovered from the unsampled event log to the Petri net with the highest F-measure

discovered from the samples. The discovered Petri nets are also compared to the findings
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presented in the original studies published on the road [59] and sepsis [60] event logs.

Road Traffic Fine Management Process

Figure 7.7 displays the Petri net discovered from the unsampled road event log. The

model with the highest F-measure was discovered from one of the samples created using

the random fixed sampling technique and a sample ratio of 0.01. This model also has

the highest precision and a very good trace fitness. The model is shown in figure 7.8. It

should be noted that, on average, the model created from the stratified sample with a

sample ratio of 0.01 has a higher F-measure and precision than the models created from

the fixed random samples with a sample ratio of 0.01. This model discovered from the

stratified sample differs only marginally from the model shown in figure 7.8. Therefore,

it was decided not to include this model.

When comparing the Petri net discovered from the original log with the Petri net which

has the highest F-measure, it can be seen that both models start with the activity named

create fine. In the sample model, displayed in figure 7.8, this activity is followed by send

fine, while the send fine activity occurs after the appeal activities in the unsampled

model shown in figure 7.7. The insert fine notification activity also occurs later in the

unsampled model. The appeal activities of which four of the five activities are in parallel

in the unsampled model, follow a linear flow in the sample model. Both models end with

the activities payment and send for credit collection, which can each be skipped in both

models.

The model discovered from the unsampled log contains a total of ten silent transitions,

which often can be used to skip one or more activities. The model discovered from the

sample contains only eight silent transitions. This model is also more linear, because

only the activity add penalty is in parallel with the activities appeal to judge, insert

date appeal to prefecture, and send appeal to prefecture. These two factors restrict the

number of directly-follows relations which are possible to execute in the sample model.

The sample model allows for 27 different directly-follows relations, while the unsampled

model allows for 42 different directly-follows relations (see figure B.9 and figure B.10 in

appendix B).

The model discovered from the sample is very similar to the DPN-net from Mannhardt

et al. [59]. Their model starts with the same three activities, create fine, send fine, and

insert fine notification. Their model also includes the possibility to move to the end

place at nearly every point. The only major difference is that the activity payment is

allowed in between nearly every activity in Mannhardt et al. their model, while the Petri
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Figure 7.7: The Petri net discovered from the road event log without sampling using
the Inductive Miner - infrequent algorithm with a 0.20 threshold.
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Figure 7.8: The Petri net with the highest F-measure which was discovered from the
samples of the road event log.



Chapter 7. Evaluation 99

net displayed in figure 7.8 is more restrictive. Being more restrictive does not seem to

greatly decrease the trace fitness.

For example, in the model by Mannhardt et al. it is possible to have the following

sequence occur: 〈create fine, payment, send fine〉. This sequence is impossible in the

Petri net displayed in figure 7.8, because there is no way to go back to the send fine

activity after the payment activity occurs. The exact sequence 〈create fine, payment,

send fine〉 occurs only 362 times out of the 150, 370 sequences in total. If the goal

is to create a model which allows for all behaviour in the event log, then the model

by Mannhardt et al. might be more suitable. However, if the goal is to get a general

understanding of the most common process flows, then the model shown in figure 7.8

might be more informative. It should be noted that Mannhardt et al. state that precision

is not the main focus of their study.

Sepsis Cases

The Petri net discovered from the unsampled sepsis event log is displayed in figure 7.9.

The models discovered from the stratified squared samples using a sample ratio of 0.05

and 0.1 both have a high F-measure. The model discovered from the sample taken

using a 0.05 sample ratio has an F-measure which is one thousandth lower. However,

it was decided to use this model in the analysis, because it is less similar to the model

discovered from the unsampled event log. Figure 7.10 shows the model discovered from

the sample created using stratified squared sampling with a 0.05 sample ratio.

The sepsis event log has proven to be a difficult event log to sample and model because

of the high ratio of unique sequences. These unique sequences also have many conflicting

orders. The model discovered from the unsampled event log has two groups of parallel

activities. These groups are separated by two synchronising silent transitions (one after

p4, p5, and p6 and one before p19). The model discovered from the sample, on the

other hand, starts with two activities which follow a linear flow. After this linear flow

follows a parallel part. This parallel part does, however, contain slightly less parallelism

than the model discovered from the unsampled event log. The activities IV liquid and

IV antibiotics can only be executed after the CRP activity. Furthermore, the activity

named admission NC can only be executed after the activities leucocytes and CRP.

Both models end with the release activities. The model discovered from the sample

contains only the activities release A and release B. Furthermore, it is only possible to

execute return ER after release A. On the other hand, in the model discovered from the

unsampled event log, the activity named release B does not occur. However, this model

does contain three additional release activities. It makes sense that some of the release
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Figure 7.9: The Petri net discovered from the sepsis event log without sampling using
the Inductive Miner - infrequent algorithm with a 0.20 threshold.

options do not occur in the sample Petri net, because, for example, release E only occurs

a total of six times in the original event log. Release A and release B are the two most

frequently occurring release options in the original event log.

The sample model contains eight silent transitions. Some of these transitions are not

only used to skip certain activities, but also to start or end parallelism. The unsampled
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Figure 7.10: The Petri net with the second highest F-measure which was discovered
from the samples of the sepsis event log.

model has ten silent transitions. Two of these silent transitions create a loop, which

enables the activities CRP and leucocytes to be repeated as long as the synchronising

silent transition before p19 is not executed.

The model discovered from the sample is more restrictive, because it contains less options
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to skip activities, no loops, and less parallelism. This model created from the sample

allows for only 56 different directly-follows relations, while the model created from the

unsampled event log allows for 94 different directly-follows relations (see figure B.11 and

figure B.12 in appendix B). These differences cause the precision of the sample model to

be higher, but this comes at the cost of trace fitness. For example, some directly-follows

relations which occur frequently in the unsampled event log are impossible in the sample

model. One example of this is that the activity leucocytes is 454 times directly followed

by the activity leucocytes again. This self-loop can be executed in the unsampled model,

but not in the sample model.

Mannhardt and Blinde [60] also used the Inductive Miner to create an initial model

in their study. The model discovered from the unsampled event log (figure 7.9) is,

however, quite different from their model. It is unclear why there is this difference. The

remainder of this sub-section focusses on a comparison with the second model published

in Mannhardt and Blinde [60] their study. This model was built from domain knowledge.

Both the model created from the unsampled event log and the model created from

the sample show similarities with the model by Mannhardt and Blinde. The sample

model captures that the process starts with the activity named ER registration. Both

the sample model and unsampled model capture the parallel nature of the activities

lactic acid, leucocytes, and CRP. However, only the unsampled model allows to repeat

the activities leucocytes and CRP. Neither of these two models allow for repeating the

activity lactic acid. The sample model captures that the activities IV liquid and IV

antibiotics are in parallel with each other and that they can be skipped together. The

unsampled model does not allow to skip the IV liquid activity. Furthermore, the activity

admission IC is absent from both the sample model and unsampled model.

No Petri nets which are of better quality were found when inspecting Petri nets from

other samples. The Petri net with the highest trace fitness (stratified plus sampling with

0.2 sample ratio) has more in common with the model from Mannhardt and Blinde [60].

It supports repeating the CRP and Leucocytes activities. However, this model has a very

low precision. The models with the highest precision (stratified sampling with a 0.05 and

0.1 sample ratio) score the worst on trace fitness. These models only contain eight out

of the sixteen unique activities. These two models have a very linear process structure,

with only the activities CRP, lactic acid, and leucocytes in parallel. Furthermore, these

models contain few options to skip activities.
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7.4 Varying the Threshold

A small additional experiment was conducted to see if the fitness and precision of the

model discovered from the road event log could also be improved by adjusting the thresh-

old of the Inductive Miner - infrequent. Figure 7.11 shows the model quality measures

for models discovered from the unsampled road event log with the threshold ranging

from 0.20 to 1.00. The black dashed line indicates the value of the quality measure of

the unsampled event log at a threshold of 0.20. This is the same baseline as used during

the main experiment. The red dashed line indicates the value of the quality measure of

the model with the highest F-measure which was discovered from the samples.

The models created from the samples showed a small increase in move-log fitness and

trace fitness, and a large increase in precision. The models discovered by changing

the threshold show a different trend. The move-log fitness increases slightly when the

threshold increases, except for two values which are unexplainable. Furthermore, the

move-model fitness decreases with an increase in threshold. The trace fitness graph shows

a trend which is similar to the move-model fitness. The precision gradually increases

as the threshold is increased. When comparing the trace fitness and precision graphs,

it can be seen that there is a trade-off between fitness and precision. In contrast to

the models discovered from the samples, the models discovered by varying the threshold

never show an increase in trace fitness. The F-measure only increases because of the

precision.

The model with the highest F-measure which was discovered by varying the threshold,

was discovered using a threshold of 0.8. This model, which is displayed in figure 7.12,

does not make much sense. It follows a linear structure with a choice between two main

paths. One path includes two of the appeal activities, while the other path includes the

other three appeal activities. These two paths can never both be executed. Furthermore,

this model contains limited options to skip activities. This linear structure and the few

options to skip activities increased the precision of the model, while simultaneously

decreasing the fitness.

7.5 Threats to Validity

One threat to validity is that the event logs could contain errors. However, both event

logs are used in many process mining studies and therefore, it is assumed that they do

not contain errors which would change the results. Furthermore, no event log in process

discovery is assumed to be perfect.
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Figure 7.11: Model quality measures displayed for models discovered from the un-
sampled road event log for different thresholds of the Inductive Miner - infrequent.

The preprocessing of the event log can have a large impact on the results of the process

discovery activity. Therefore, different preprocessing steps can have consequences for

the results and the validity of the results. The preprocessing steps taken were described

in detail to counteract this threat to validity. Furthermore, future research must be done

to evaluate the interaction between preprocessing and the sampling techniques.
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Figure 7.12: The Petri net discovered from the unsampled road event log using the
Inductive Miner - infrequent with a 0.8 threshold.

The results of this study are limited in their ability to be generalised. Firstly, only two

real-life event logs have been evaluated. A study using more event logs has to be done

in order to understand how sampling exactly impacts the quality of discovered process
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models. Furthermore, the second event log was only sampled once for each combination

of sampling technique and sample ratio. This limits the validity of the results obtained

from this event log.

The study was also limited by only using one discovery technique during the discovery

of models from the samples. Different results may be obtained when different discovery

techniques are used and different noise thresholds are used. The discovery technique

used, the Inductive Miner, only discovers sound Petri nets. Sound Petri nets have the

property that they are proper completing (i.e. only the final place of the Petri net has a

token when the process terminates), weakly terminating (i.e. it is possible to reach the

final place), and that there should not be any dead transitions (i.e. transitions which

can never be executed) [65]. Using different process discovery techniques which discover

models that are not sound could produce different results.

Different ways to measure each quality dimension exist when it comes to evaluating the

quality of the discovered models. There are, for example, different ways to measure

both the precision and generalisation of process models. It was decided to use the

alignments technique because this approach is best documented. Furthermore, in order

to minimise the threat to validity, it was also decided to conduct a qualitative analysis

of the discovered process models.

Furthermore, it was not possible to check the resulting Petri nets with domain experts.

To overcome this threat to validity, it was decided to calculate model quality measures

and to do a qualitative analysis of the Petri nets, including a comparison with the Petri

nets presented in the original studies that were conducted on the real-life event logs.

7.6 Conclusion

The log quality measures seem quite indicative of the quality of a sample of an event log

compared to the unsampled event log. However, because the unsampled event log does

not always perform well on model quality measures this might be counter intuitive.

Furthermore, existential stratified sampling tends to be not representative of the un-

sampled event log at smaller sample ratios, because it includes every unique sequence

at least once. However, the model quality measures for this sampling technique are very

similar to the model quality measures of the original event log.

On the road event log, it was demonstrated that sampling before discovering a model

can increase both the fitness and precision of the discovered model compared to a model

discovered from the unsampled event log. For the sepsis event log, which contains a much
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higher ratio of unique sequences, this was not the case. The models discovered from this

event log clearly showed a trade-off between fitness and precision. Furthermore, a small

experiment on the road event log showed that an increase in both fitness and precision

cannot be achieved by varying the threshold of the Inductive Miner - infrequent.

Finally, the models discovered from the samples had quite a different process structure,

despite the process structure measure showing a similar value for many of the samples.

One must remember that the process structure of the event log can be different from

the process structure displayed by a model discovered from this event log because of the

properties of the process discovery algorithm.
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Conclusion and Future Work

This research studied the effects of event log sampling for the purpose of process discov-

ery. In order to do this, first relevant literature was studied. Furthermore, new sampling

techniques and sample quality measures were proposed. Finally, the effects of different

sampling techniques on the event log and resulting process models were evaluated using

real-life event logs.

This chapter concludes the research by answering the sub-questions and research ques-

tion. Furthermore, limitations are discussed. The limitations section looks at different

approaches tried during the research which did not lead to the final solutions but could

be explored in the future. Finally, future work is presented.

8.1 Conclusion

In order to answer the main research question, first each of the sub-questions is answered.

SQ1 What is currently known about sampling event logs?

This sub-question was answered by studying literature about sampling for process dis-

covery and sample quality measures for process discovery. Existing sampling techniques

were studied and summarised. Furthermore, these existing sampling techniques for pro-

cess discovery were divided into probability and non-probability sampling approaches.

A probability sampling approach ensures that each case within the event log has an

equal probability of being selected. Few sample quality measures for process discovery

were found.

SQ2 How is an event log related to discovering process models?

108
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Literature studied for the previous sub-question (SQ1) and literature on the topic of

process discovery techniques were studied in order to answer this sub-question. It was

found that often little information is provided about the creation or origin of event logs

in process discovery literature. However, the importance of data extraction is recog-

nised by process mining methodologies. Furthermore, inconsistencies were found in the

terminology used to indicate the quality of event logs.

A study of relevant process discovery techniques showed that the directly-follows rela-

tion is exploited by most algorithms. The two most important event log representative-

ness requirements posed by process discovery techniques were found to be existential

completeness and frequency representativeness of directly-follows relations. Existential

completeness refers to all possible directly-follows relations occurring at least once in the

event log. Frequency representativeness refers to the frequency of each directly-follows

relation being proportionally equal to its respective frequency in the original process.

SQ3 How can event logs be sampled in a representative way for the purpose of

process model discovery?

The event log representativeness requirements from SQ2 were used to define the meaning

of representative in this sub-question. Existing and new event log sampling techniques

were considered and validated using small controlled experiments. All considered sam-

pling techniques are probability sampling approaches. Therefore, each case has an equal

probability of being sampled. The new existential stratified sampling technique guar-

antees that a sample contains all directly-follows relations from the original event log

at least once. This can come at the cost of frequency representativeness. Contrary,

stratified sampling creates samples which are more frequency representative, but this

can come at the cost of existential completeness. Therefore, stratified plus and stratified

squared sampling were introduced, which balance between existential completeness and

frequency representativeness.

SQ4 How can event log sample quality be measured?

The event log representativeness requirements from SQ2 and additional requirements

were used to guide the search for event log sample quality measures. A single measure,

called coverage, was introduced to measure existential completeness. Furthermore, mul-

tiple measures for frequency representativeness were introduced. Not a single frequency

representativeness measure was found to be best. Therefore, a decision matrix which

recommends a measure based on the goals and requirements of the process discovery

activity was provided. Entropy-based process structure measures were also introduced.
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These entropy measures indicate how narrow or wide the process structure is. They can

be calculated on event logs and samples of event logs.

SQ5 What is the effect of different sampling techniques and sample ratios on event

logs and discovered process models?

An evaluation using real-life event logs was done to answer this sub-question. The event

logs were first preprocessed and then sampled using the sampling techniques from SQ3

and varying sample ratios. The quality of the samples was analysed using the sample

quality measures from SQ4, model quality measures, and a qualitative comparison of

discovered models.

The differences in sample quality were generally small. Existential stratified sampling

created samples which contain all directly-follows relations from the unsampled event

log. These samples showed a decreased frequency representativeness on some of the

measures, but model quality measures calculated on models discovered from these sam-

ples closely matched the model quality measures of the unsampled event log. Samples

created using the stratified sampling technique, on the other hand, showed a decrease in

existential completeness, and also a decrease on some of the frequency representativeness

measures. The differences between the other four sampling techniques were small. Both

the existential completeness and frequency representativeness increased by increasing

the sample size.

The differences between the model quality measures was small for the evaluated sampling

techniques. Except for existential stratified sampling, which led to the creation of models

which closely resemble the models discovered from the original event log in terms of

model quality. Furthermore, the model quality tends to decrease when the sample size

is increased.

RQ What is the effect of sampling on event logs and discovered process models?

The quality of the event logs (i.e. existential completeness and frequency representative-

ness) increased with larger samples. Contrary to this, quality measures calculated on

models discovered from these samples showed an increase in fitness and precision for

some of the smaller samples. These improvements in fitness and precision could not

be obtained by varying the threshold of the Inductive Miner - infrequent. A qualita-

tive analysis of models discovered from the unsampled event log and sampled event log

showed that models discovered from the samples seem more restrictive (i.e allow for less

directly-follows relations), but this does not seem to hurt the fitness.
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8.2 Limitations

This section presents other approaches which were tried during the research but which

did not end up being selected as the solution. This includes statistical approaches

for measuring sample quality, incorporating ideas from network models, and relative

entropy.

8.2.1 Statistical Sample Quality Measures

Different approaches towards using statistical measures to compare the quality of a

sample of an event log with the original event log were tried. The three main questions

that arise when using a statistical approach are: What am I going to measure? What

does this measure mean? Which statistical assumptions are satisfied?

To answer the first question, one possibility is to measure the number of times a specific

directly-follows relations occurs in the sample and in the original event log. By taking

only one sample there is a problem with sample size. One sample is not enough to make

any statistical claims with certainty. Furthermore, there is the problem of multiple

testing since this test has to be repeated for each directly-follows relation in the event

log.

Another approach is to use the frequency of any directly-follows relation as the measure.

In this case, each unique directly-follows relation is a new observation. Therefore, this

approach does not suffer from the multiple testing problem. However, any statistical

test that is used for such an approach has to be a paired test. The main reason for

this is that one is not interested in comparing the number of occurrences of activity a

being directly followed by activity b with the number of occurrences of activity c being

directly followed by activity d.

The second approach seems most feasible. However, the question that arises when doing

a statistical test is: What does it mean if the p-value of the test is below 0.05? Does this

necessarily mean that it is a bad sample? This is not necessarily the case. Therefore, it

was decided that a statistical measure might not be the best approach towards measuring

the quality of event log samples. Furthermore, statistical tests make assumptions. These

assumptions could be violated by the sampling technique. Future research will have to

show which statistical tests are best suited, if these statistical tests are meaningful, and

if assumptions made by these statistical tests are violated by the nature of sampling. A

paired variant of the Kolmogorov-Smirnov test or the Wilcoxon signed-rank test could

be considered.
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8.2.2 Social Network Graph Approach

Analysing the directly-follows relations in an event log is quite similar to analysing social

networks using graph theory. Social network analysis is often done by using people as

the nodes and links between people as edges which connect the nodes. This concept

is quite similar to a directly-follows graph, which depicts the activities as nodes and

the possible directly-follows relations between activities as edges. The major difference

between these two fields is, however, that in social network analysis the number of times

a link between two people occurs is not of interest. In process discovery this is important.

Because of this discrepancy, it is difficult to apply social network analysis measures to

directly-follows graphs. More research has to be conducted in order to assess the viability

of using techniques from social network analysis for process discovery.

8.2.3 Relative Entropy

Another approach for measuring the quality of a sample of an event log is using rela-

tive entropy. Relative entropy is also referred to as Kullback-Leibler divergence. This

approach uses the concept of entropy to calculate how much information is gained by

using, for example, one sample over another sample, or the original event log over a

sample. It is, however, impossible to calculate the relative entropy for samples of an

event log, because a sample does not have to contain every directly-follows relation from

the original event log. When a particular directly-follows relation is unsampled, this

results in a division by zero. No solution has been found for this problem.

8.3 Future Work

Future work is divided into four sections. The first section addresses future work regard-

ing sampling. The next section discusses future work for sample quality measures. This

is followed by future experiments. Finally, this thesis is related to the bigger picture of

process discovery and infinite streams of events.

8.3.1 Sampling Techniques

All sampling techniques proposed in chapter 3 are based on the sampling of sequences.

It might, however, also be possible to create a stratified sample based on directly-follows

relations in the original log. This could be done for two purposes. One purpose could be

to create a sample which is existentially complete when it comes to the directly-follows
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relations, but is more frequency representative than the current existential sampling

approach. Another purpose could be to create a sample which is more directly-follows

relation frequency representative than the current stratified approaches.

A sampling approach which is based on the directly-follows relations in the original log

should still include whole cases in the sample because it is not possible to simply sample

directly-follows relations, as explained in section 2.1.2. However, it could be possible

to select fewer cases and still have an existentially complete sample. Because, multiple

unique sequences might share the same unique directly-follows relations.

Any sampling approach which would create a sample of cases based on the directly-

follows relations would be quite algorithmic because such a sampling approach would

have to figure out the best combination of sequences to include from the original event

log, in order to create the best possible sample for a given purpose.

Furthermore, the concept of creating groups for stratified sampling based on unique se-

quences or unique directly-follows relations might not result in the best samples possible.

Future work could look at how to determine the best groups for stratified sampling.

Another direction for future work is to research the possibility to select a sampling

method based on some measures. For example, the ratio of unique sequences in the

original event log, or the entropy of the original event log. Such measures could also be

used to determine the best sample ratio.

8.3.2 Sample Quality Measures

The sample quality measures proposed in this thesis all compare a sample against the

unsampled event log from which the sample is taken. These measures focus on the

requirements of existential completeness of directly-follows relations and frequency rep-

resentativeness of directly-follows relations. The experiments showed, however, that

samples which performed worse on sample quality measures actually outperformed the

unsampled event log in terms of fitness and precision. Therefore, this thesis shows the

need for new sample quality measures which better reflect the quality of the process

model that will be discovered from the sample.

In order to do this, the reason why the models discovered from samples outperformed

the models discovered from the unsampled event log needs to be understood better.

Therefore, future research should focus on understanding the effects of sampling and

the relation between an event log and a discovered process model better.
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Furthermore, future work should also address the meaning behind measures better.

Addressing questions such as: What does the value of a measure mean for the result of

the process discovery? In which context is a certain value still acceptable?

8.3.3 Experiments

Only two real-life event logs were used during the experiments in this thesis. Future

research should evaluate if other real-life event logs show the same benefits of sampling

as the two event logs used during the experiment. Furthermore, it should also be studied

under which conditions sampling improves fitness and/or precision of discovered models.

This understanding can help to determine whether or not to sample during a process

discovery project. Finally, attention should also be given to understanding why increas-

ing the threshold of the Inductive Miner - infrequent could not give the same results as

sampling.

8.3.4 The Bigger Picture

The effects of sampling an event log were studied in this thesis. This was done in

a controlled environment where an original event log was used as the source. This

original event log can, however, be seen as a sample of an infinite stream of events (see

section 2.1.1 and figure 2.1).

The sampling techniques and sample quality measures proposed in this thesis can be

adapted to the creation of a sample from the infinite stream of events, thus the creation

of an event log. This could, for instance, lead to a way to determine how representative

an event log is of the infinite stream of events.

Future work should also study the way process models are evaluated in the field of

process discovery. A publication by Rozinat et al. [66] from 2008 already addressed the

need for an evaluation framework for process mining. This publication and more recent

publications nearly all focus on the four quality dimensions from Buijs et al. [13] (see

section 2.2.3). Process mining methodology frameworks such as from Bozkaya et al. [19]

and van Eck et al. [20] fail to describe a method for evaluating the quality of the models.

It might be possible to draw more parallels between machine learning and process dis-

covery. In machine learning, a model (e.g. neural network or decision tree) is learned

from data. Process discovery constructs a process model (e.g. Petri net) from data (i.e.

an event log). Machine learning often divides the data into two or three sets. The two

most important sets are the train and test set. The train set is used to train the model,
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while the test set is used to evaluate the final model. Process discovery, on the other

hand, usually uses only one data set (i.e. an event log).

Machine learning uses two different data sets for training and testing because of the

overfitting problem, which is related to the trade-off between precision and generalisation

(see section 2.2.3). The idea is that a model which perfectly fits the training data might

be overfitted, thus sacrificing the ability to generalise for unseen data.

The experiments showed that it might be useful to also divide the data in a training

and test set when doing process discovery, since the models discovered from the samples

actually outperformed the models discovered from the original event log in terms of

model quality measures. Future research must show whether overfitting can be a serious

problem when discovering a process model. A cross validation approach, which tests

the model based on cases which are not included in the sample from which the model is

discovered, could also be a solution for process discovery.

Another direction for future research would be to gain a better understanding of the de-

sirability of rare behaviour in event logs and models. Many process discovery techniques

have the ability to filter out infrequent behaviour, as shown in section 2.3. However, it is

not well understood when incorporating rare behaviour in the process discovery results

is desired and when it is not desired. For example, when the main stream of a process

is analysed, it can be beneficial to filter out rare behaviour. However, when designing a

new hospital system, it might be vital that the new system can also support some rare

behaviour.
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Sampling Functions

Listing A.1: R code for the fixed size random sampling function.

# Fixed Size Random Sampling

# Input : Event log data frame , sample ratio as numeric

# Output: Data frame containing the sample

randomSampleFixed <- function(original_log , sample_ratio) {

# Sample case IDs to include

included_case_IDs <-

distinct(original_log , case_ID) %>% # Retrieve the unique case IDs

sample_frac(sample_ratio) %>% # Randomly sample case IDs

unlist () # Transform to a vector

# Retrieve the sampled log by filtering on sampled case IDs

sample <- filter(original_log , case_ID %in% included_case_IDs)

return(sample)

}

116
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Listing A.2: R code for the probability-based random sampling function.

# Probability -Based Random Sampling

# Input : Event log data frame , sample ratio as numeric

# Output: Data frame containing the sample

randomSampleProbability <- function(original_log , sample_ratio) {

# Sample case IDs to include

included_case_IDs <-

distinct(original_log , case_ID) %>% # Retrieve the unique case IDs

# Randomly sample by first generating random values for each case and

# then include the case if the random value is below the sample ratio

mutate(random_value = runif(case_ID , 0.00, 1.00)) %>%

filter(random_value < sample_ratio)

# Retrieve the sampled log by filtering on sampled case IDs

sample <- filter(original_log , case_ID %in% included_case_IDs$case_ID)

return(sample)

}
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Listing A.3: R code for the stratified sampling function.

# Stratified Sampling

# Input : Event log data frame , sample ratio as numeric

# Output: Data frame containing the sample

stratifiedSample <- function(original_log , sample_ratio) {

# Sample case IDs to include

included_case_IDs <-

logToSequences(original_log) %>% # Convert the event log to sequences

group_by(sequence) %>% # Group by unique sequence

sample_frac(sample_ratio) # Randomly sample each group

# Retrieve the sampled log by filtering on sampled case IDs

sample <- filter(original_log , case_ID %in% included_case_IDs$case_ID)

return(sample)

}
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Listing A.4: R code for the existential stratified sampling function.

# Stratified sampling extension 1: ensure existential completeness

# Input : Event log data frame , sample ratio as numeric

# Output: Data frame containing the sample

stratifiedSampleExistential = function(original_log , sample_ratio) {

# Sample case IDs to include

included_case_IDs <-

logToSequences(original_log) %>% # Convert the event log to sequences

group_by(sequence) %>% # Group by unique sequence

nest() %>% # Create a list of groups (collapse)

ungroup () %>% # Remove the grouping

# Calculate the expected sample size per unique sequence

mutate(expected = map_dbl(data , nrow) * sample_ratio) %>%

# If it would become unsampled , then sample it but only once.

# Otherwise round the expected sample size

mutate(rounded = if_else(expected < 1, 1, round(expected ))) %>%

mutate(samp = map2(data , rounded , sample_n )) %>% # Sample the data

select(sequence , samp) %>% # Only keep relevant data

unnest(samp) # Convert back to uncollapsed format

# Retrieve the sampled case IDs from the data

sample <- filter(original_log , case_ID %in% included_case_IDs$case_ID)

return(sample)

}
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Listing A.5: R code for the stratified plus sampling function.

# Stratified sampling extension 2: include additional cases randomly

# Input : Event log data frame , sample ratio as numeric

# Output: Data frame containing the sample

stratifiedSamplePlus <- function(original_log , sample_ratio) {

# Calculate how often each unique sequence should be sampled

expected_sample <-

logToSequences(original_log) %>% # Convert the event log to sequences

group_by(sequence) %>% # Group by unique sequence

nest() %>% # Create a list of groups (collapse)

ungroup () %>% # Remove the grouping

# Calculate the expected sample size per unique sequence

mutate(expected = map_dbl(data , nrow) * sample_ratio) %>%

mutate(rounded = round(expected )) # Round the expected sample sizes

# calculate how many cases in total are expected to be sampled

expected_num_of_cases <- round(sum(expected_sample$expected ))

# Sample case IDs for the main sample , consisting of sequences where

# the rounded expected sample size > 1

main_sample <-

expected_sample %>% # Use the expected_sample data frame

mutate(samp = map2(data , rounded , sample_n )) %>% # Sample the data

select(sequence , samp) %>% # Only keep relevant data

unnest(samp) # Convert back to uncollapsed format

# Calculate how many cases are left to sample

left_to_sample <- expected_num_of_cases - sum(expected_sample$rounded)

# If there are cases left to sample , create an additional sample

if (left_to_sample > 0 &

left_to_sample <= sum(expected_sample$rounded < 1)) {

# Sample case IDs for the additional sample (sequences which are not

# in the main sample yet)

additional_sample <-

# Get sequences which are not in the main sample yet

filter(expected_sample , rounded < 1) %>%

# Randomly change as many unique sequences to one as left_to_sample

mutate(rounded = sample(rep(c(1,0),

times = c(left_to_sample , nrow (.) - left_to_sample )))) %>%

mutate(samp = map2(data , rounded , sample_n )) %>% # Sample the data

select(sequence , samp) %>% # Only keep relevant data

unnest(samp) # Convert back to uncollapsed format

# Combine the main sample and additional sample

included_case_IDs <- rbind(main_sample , additional_sample)

} else {
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# Else (when left to sample < 0), use only the main sample

included_case_IDs <- main_sample

}

# Retrieve the sampled case IDs from the data

sample <- filter(original_log , case_ID %in% included_case_IDs$case_ID)

return(sample)

}
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Listing A.6: R code for the stratified squared sampling function.

# Stratified sampling extension 3: include additional cases stratified

# Input : Event log data frame , sample ratio as numeric

# Output: Data frame containing the sample

stratifiedSampleSquared <- function(original_log , sample_ratio) {

# Calculate how often each unique sequence should be sampled

expected_sample <-

logToSequences(original_log) %>% # Convert the event log to sequences

group_by(sequence) %>% # Group by unique sequence

nest() %>% # Create a list of groups (collapse)

ungroup () %>% # Remove the grouping

# Calculate the expected sample size per unique sequence

mutate(expected = map_dbl(data , nrow) * sample_ratio) %>%

mutate(rounded = round(expected )) # Round the expected sample sizes

# calculate how many cases in total are expected to be sampled

expected_num_of_cases <- round(sum(expected_sample$expected ))

# Get case IDs for the main sample , consisting of sequences where

# the rounded expected sample size >= 1

main_sample <-

expected_sample %>% # Use the expected_sample data frame

mutate(samp = map2(data , rounded , sample_n )) %>% # Sample the data

select(sequence , samp) %>% # Only keep relevant data

unnest(samp) # Convert back to uncollapsed format

# Calculate how many cases are left to sample

left_to_sample <- expected_num_of_cases - sum(expected_sample$rounded)

# If there are cases left to sample , create an additional sample

if (left_to_sample > 0 &

left_to_sample <= sum(expected_sample$rounded < 1)) {

# Get case IDs for the additional sample (sequences which are not

# in the main sample yet)

excluded_from_main_sample <-

# Get sequences which are not in the main sample yet

filter(expected_sample , rounded < 1) %>%

# Add column with random numbers to ensure sequences with

# equal expected sample sizes are picked randomly

mutate(random = rnorm(n = nrow (.))) %>%

# Sort by expected sample size and the random number

arrange(desc(expected),random)

# Change as many groups of unique sequences their sample value

# to one as there are cases left to sample

for (i in 1:left_to_sample) {

# Check if there are any unsampled unique sequences left
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if (i <= nrow(excluded_from_main_sample )) {

excluded_from_main_sample[i,4] <- 1

}

}

# Sample case IDs for the additional sample (sequences which are not

# in the main sample yet)

additional_sample <-

excluded_from_main_sample %>% # Use the prepared data frame

mutate(samp = map2(data , rounded , sample_n )) %>% # Sample the data

select(sequence , samp) %>% # Only keep relevant data

unnest(samp) # Convert back to uncollapsed format

# Combine the main sample and additional sample

included_case_IDs <- rbind(main_sample , additional_sample)

} else {

# Else (when left to sample < 0), use only the main sample

included_case_IDs <- main_sample

}

# Retrieve the sampled case IDs from the data

sample <- filter(original_log , case_ID %in% included_case_IDs$case_ID)

return(sample)

}
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Tables and Figures

Table B.1: The expected frequencies and sampled frequencies of directly-follows rela-
tions which have been used to test the different frequency representativeness measures

against the requirements.

Req E/S a > b a > c a > d a > e a > f a > g a > h a > i

Req 1 E1 20 50 60 100
S1 20 50 60 100

Req 2 E1 20 50 60 100
S1 15 50 60 105
E2 20 50 60 100 20 50 60 100
S2 15 50 60 105 15 50 60 105

Req 3 E1 20 50 60 100
S1 15 50 60 105
E2 40 100 120 200
S2 30 100 120 210

Req 4 E1 20 50 60 100
S1 19 51 59 101
E2 2 5 6 10
S2 1 6 5 11

Req 5 E1 50 50 49 51
S1 51 51 50 52
E2 50 50 49 51
S2 54 50 49 51

Req 6 E1 20 50 60 100
S1 19 50 60 100
E2 20 50 60 100
S2 20 50 60 99

Req 7 E1 20 50 60 100
S1 15 50 60 105
E2 20 50 120 100
S2 15 50 120 105

Req 8 E1 20 100 120 100
S1 15 100 120 105

124
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Table B.2: Error measures reported by the different frequency representativeness
measures on the frequencies from table B.1. The first column of each column with the
same name corresponds to the error reported on E1 and S1, while the second column

corresponds to the error reported on E2 and S2.

Error Measure Req 1 Req 2 Req 2 Req 3 Req 3 Req 4 Req 4
Req 5 Req 5 Req 6 Req 6 Req 7 Req 7 Req 8

MAE 0.00000 2.50000 2.50000 2.50000 5.00000 1.00000 1.00000
1.00000 1.00000 0.25000 0.25000 2.50000 2.50000 2.50000

NMAEM 0.00000 0.04348 0.04348 0.04348 0.04348 0.01739 0.17391
0.02000 0.02000 0.00435 0.00435 0.04348 0.03448 0.02941

NMAER 0.00000 0.03125 0.03125 0.03125 0.03125 0.01250 0.12500
0.50000 0.50000 0.00313 0.00313 0.03125 0.02500 0.02500

MAPE 0.00000 0.07500 0.07500 0.07500 0.07500 0.02417 0.24167
0.02000 0.02000 0.01250 0.00250 0.07500 0.07500 0.07500

sMAPE 0.00000 0.04181 0.04181 0.04181 0.04181 0.01223 0.14069
0.00990 0.00962 0.00641 0.00126 0.04181 0.04181 0.04181

RMSE 0.00000 3.53553 3.53553 3.53553 7.07107 1.00000 1.00000
1.00000 2.00000 0.50000 0.50000 3.53553 3.53553 3.53553

NRMSEM 0.00000 0.06149 0.06149 0.06149 0.06149 0.01739 0.17391
0.02000 0.04000 0.00870 0.00870 0.06149 0.04877 0.04159

NRMSER 0.00000 0.04419 0.04419 0.04419 0.04419 0.01250 0.12500
0.50000 1.00000 0.00625 0.00625 0.04419 0.03536 0.03536

sRMSPE 0.00000 0.07246 0.07246 0.07246 0.07246 0.01458 0.18021
0.00990 0.01923 0.01282 0.00251 0.07246 0.07246 0.07246
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Figure B.1: Illustration of the effects of different sample ratios and sampling tech-
niques on the sample quality measures using event log L2 as original event log. Strati-
fied existential sampling has been excluded to compare the other sampling techniques

in greater detail.
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Figure B.2: Illustration of the effects of different sample ratios and sampling tech-
niques on the sample quality measures using event log L2 as original event log. Only
fixed sample size random sampling, stratified plus sampling, and stratified squared
sampling have been included to compare these sampling techniques in greater detail.



Appendix B. Tables and Figures 128

LReq 3

LReq 6

St ar t p1 p2 End

ba

c

d

St ar t p1 End

a

c

d

LReq 4

St ar t p1 p2 End

ba

c

d

LReq 5

St ar t Endp1

p2

c

a

b

d

p3

e

LReq 1

LReq 2

St ar t p1 p2 End

ba c

b

a c

d

Figure B.3: The process models which were used to generate the event logs used to
test the entropy-based process structure measures against the requirements.
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Figure B.3 continued: The process models which were used to generate the event
logs used to test the entropy-based process structure measures against the requirements.
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Table B.3: The sequences and their frequencies which have been used to test the
different entropy-based process structure measures.

Frequency Sequence

Req 1

10 〈a, b, c〉

Req 2

6 〈a, a〉
6 〈a, b〉
6 〈a, c〉
6 〈a, d〉
6 〈b, a〉
6 〈b, b〉
6 〈b, c〉
6 〈b, d〉
6 〈c, a〉
6 〈c, b〉
6 〈c, c〉
6 〈c, d〉
6 〈d, a〉
6 〈d, b〉
6 〈d, c〉
6 〈d, d〉

Req 3

10 〈a, b, c〉
10 〈a, b, d〉

Req 4

10 〈a, b, c〉
1 〈a, b, d〉

Req 5

10 〈a, b, c〉
10 〈a, d, e〉

Continued on next page
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Table B.3 continued

Frequency Sequence

Req 6

10 〈a, c〉
10 〈a, d〉

Req 7

10 〈a, b, c, d, e〉
10 〈a, c, b, d, e〉
10 〈a, d, b, c, e〉
10 〈a, b, d, c, e〉
10 〈a, c, d, b, e〉
10 〈a, d, c, b, e〉

Req 8

10 〈a, b, c, d, e〉
1 〈a, c, b, d, e〉
1 〈a, d, b, c, e〉
1 〈a, b, d, c, e〉
1 〈a, c, d, b, e〉
1 〈a, d, c, b, e〉

Req 9

2 〈a, b, c〉
2 〈a, b, d〉
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Table B.4: The scaled entropies as calculated by the different measures on the event
logs from table B.3.

Scaled Entropy Measure

Sequence Activity Directly-Follows Conditional DF

Req 1 0.000 1.000 0.315 0.000
Req 2 1.000 1.000 1.000 1.000
Req 3 1.000 0.959 0.375 0.250
Req 4 0.439 0.866 0.305 0.110
Req 5 1.000 0.970 0.431 0.215
Req 6 1.000 0.946 0.315 0.631
Req 7 1.000 1.000 0.772 0.683
Req 8 0.655 1.000 0.668 0.475
Req 9 1.000 0.959 0.375 0.250
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Figure B.4: Sample quality measures for samples drawn from the road event log.
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Figure B.5: Sample quality measures for samples drawn from the sepsis event log.
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[23] J. Carmona and R. Gavaldà, “Online techniques for dealing with concept drift in

process mining,” in Advances in Intelligent Data Analysis XI (J. Hollmén, F. Kla-

wonn, and A. Tucker, eds.), (Berlin, Heidelberg), pp. 90–102, Springer, 2012.

[24] B. F. van Dongen, “BPI challenge 2015,” 2015. https://doi.org/10.4121/uuid:

31a308ef-c844-48da-948c-305d167a0ec1.

[25] H. Yang, A. H. M. ter Hofstede, B. F. van Dongen, M. T. Wynn, and J. Wang,

“On global completeness of event logs,” BPM Center Report BPM-10-09, 2010.

[26] W. M. P. van der Aalst et al., “Process mining manifesto,” in Business Process

Management Workshops, (Berlin, Heidelberg), pp. 169–194, Springer, 2012.

[27] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster, G. Schimm,

and A. J. M. M. Weijters, “Workflow mining: A survey of issues and approaches,”

Data & Knowledge Engineering, vol. 47, no. 2, pp. 237–267, 2003.

[28] A. J. M. M. Weijters, W. M. P. van der Aalst, and A. K. A. de Medeiros, Process

mining with the HeuristicsMiner algorithm. BETA publicatie : working papers,

Technische Universiteit Eindhoven, 2006.

[29] C. W. Günther, Process mining in flexible environments. PhD thesis, Eindhoven

University of Technology, 2009.

[30] A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der Aalst, “Ge-

netic process mining: an experimental evaluation,” Data Mining and Knowledge

Discovery, vol. 14, no. 2, pp. 245–304, 2007.

https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1


Bibliography 146

[31] A. Adriansyah, Aligning observed and modeled behavior. PhD thesis, Eindhoven

University of Technology, 2014.

[32] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Process and deviation

exploration with inductive visual miner,” in BPM Demo Sessions 2014 (L. Limonad

and B. Weber, eds.), vol. 1295 of CEUR Workshop Proceedings, pp. 46–50, CEUR-

WS.org, 2014.

[33] S. J. van Zelst, A. Bolt, and B. F. van Dongen, “Computing alignments of event

data and process models,” in Transactions on Petri Nets and Other Models of

Concurrency XIII (M. Koutny, L. M. Kristensen, and W. Penczek, eds.), (Berlin,

Heidelberg), pp. 1–26, Springer, 2018.

[34] J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A robust F-measure

for evaluating discovered process models,” in IEEE Symposium on Computational

Intelligence and Data Mining (CIDM 2011), pp. 148–155, IEEE, 2011.

[35] J. M. E. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, and A. Serebrenik,

“Process discovery using integer linear programming,” Fundamenta Informaticae,

vol. 94, no. 3-4, pp. 387–412, 2009.

[36] B. F. van Dongen, A. K. Alves de Medeiros, and L. Wen, “Process mining: Overview

and outlook of petri net discovery algorithms,” in Transactions on Petri Nets and

Other Models of Concurrency II (K. Jensen and W. M. P. van der Aalst, eds.),

(Berlin, Heidelberg), pp. 225–242, Springer, 2009.

[37] A. K. A. de Medeiros, W. M. P. van der Aalst, and A. J. M. M. Weijters, “Workflow

mining: Current status and future directions,” in On The Move to Meaningful

Internet Systems 2003: CoopIS, DOA, and ODBASE (R. Meersman, Z. Tari, and

D. C. Schmidt, eds.), (Berlin, Heidelberg), pp. 389–406, Springer, 2003.

[38] L. Wen, J. Wang, W. M. P. van der Aalst, B. Huang, and J. Sun, “A novel ap-

proach for process mining based on event types,” Journal of Intelligent Information

Systems, vol. 32, no. 2, pp. 163–190, 2009.

[39] L. Wen, W. M. P. van der Aalst, J. Wang, and J. Sun, “Mining process models with

non-free-choice constructs,” Data Mining and Knowledge Discovery, vol. 15, no. 2,

pp. 145–180, 2007.

[40] L. Wen, J. Wang, and J. Sun, “Mining invisible tasks from event logs,” in Advances

in Data and Web Management (G. Dong, X. Lin, W. Wang, Y. Yang, and J. X.

Yu, eds.), (Berlin, Heidelberg), pp. 358–365, Springer, 2007.



Bibliography 147

[41] J. Li, D. Liu, and B. Yang, “Process mining: Extending α-algorithm to mine du-

plicate tasks in process logs,” in Advances in Web and Network Technologies, and

Information Management (K. C.-C. Chang, W. Wang, L. Chen, C. A. Ellis, C.-H.

Hsu, A. C. Tsoi, and H. Wang, eds.), (Berlin, Heidelberg), pp. 396–407, Springer,

2007.

[42] C. W. Günther and W. M. P. van der Aalst, “Fuzzy mining – adaptive process sim-

plification based on multi-perspective metrics,” in Business Process Management

(G. Alonso, P. Dadam, and M. Rosemann, eds.), (Berlin, Heidelberg), pp. 328–343,

Springer, 2007.

[43] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering block-

structured process models from event logs - a constructive approach,” in Applica-

tion and Theory of Petri Nets and Concurrency (J.-M. Colom and J. Desel, eds.),

(Berlin, Heidelberg), pp. 311–329, Springer, 2013.

[44] H. M. W. Verbeek and R. M. de Carvalho, “Log skeletons: A classification approach

to process discovery,” arXiv preprint arXiv:1806.08247, 2018.

[45] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering block-

structured process models from event logs containing infrequent behaviour,” in

Business Process Management Workshops (N. Lohmann, M. Song, and P. Wohed,

eds.), (Cham), pp. 66–78, Springer International Publishing, 2014.

[46] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Discovering block-

structured process models from incomplete event logs,” in Application and Theory

of Petri Nets and Concurrency (G. Ciardo and E. Kindler, eds.), (Cham), pp. 91–

110, Springer International Publishing, 2014.

[47] S. J. J. Leemans, D. Fahland, and W. M. P. van der Aalst, “Using life cycle infor-

mation in process discovery,” in Business Process Management Workshops (M. Re-

ichert and H. A. Reijers, eds.), (Cham), pp. 204–217, Springer International Pub-

lishing, 2016.

[48] S. J. van Zelst, B. F. van Dongen, and W. M. P. van der Aalst, “Avoiding over-

fitting in ILP-based process discovery,” in Business Process Management (H. R.

Motahari-Nezhad, J. Recker, and M. Weidlich, eds.), (Cham), pp. 163–171, Springer

International Publishing, 2015.

[49] A. K. A. de Medeiros, A. J. M. M. Weijters, and W. M. P. van der Aalst, “Using

genetic algorithms to mine process models: representation, operators and results,”

Beta Working Paper Series, WP 124, 2004.



Bibliography 148

[50] M. Jans, J. M. E. M. van der Werf, N. Lybaert, and K. Vanhoof, “A business process

mining application for internal transaction fraud mitigation,” Expert Systems with

Applications, vol. 38, no. 10, pp. 13351–13359, 2011.

[51] W. M. P. van der Aalst and A. J. M. M. Weijters, “Process mining: a research

agenda,” Computers in Industry, vol. 53, no. 3, pp. 231–244, 2004.

[52] A. S. Acharya, A. Prakash, P. Saxena, and A. Nigam, “Sampling: Why and how of

it,” Indian Journal of Medical Specialties, vol. 4, no. 2, pp. 330–333, 2013.

[53] I. Etikan and K. Bala, “Sampling and sampling methods,” Biometrics & Biostatis-

tics International Journal, vol. 5, no. 6, pp. 215–217, 2017.

[54] IEEE, “754–2008 IEEE standard for floating-point arithmetic,” 2008.

[55] ISO, “ISO/IEC/IEEE 60559:2011 information technology – microprocessor systems

– floating-point arithmetic,” 2011.

[56] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical

Journal, vol. 27, no. 3, pp. 379–423, 1948.

[57] M. de Leoni and F. Mannhardt, “Road traffic fine management process,” 2015.

https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

[58] F. Mannhardt, “Sepsis cases - event log,” 2016. https://doi.org/10.4121/uuid:

915d2bfb-7e84-49ad-a286-dc35f063a460.

[59] F. Mannhardt, M. De Leoni, H. A. Reijers, and W. M. van der Aalst, “Balanced

multi-perspective checking of process conformance,” Computing, vol. 98, no. 4,

pp. 407–437, 2016.

[60] F. Mannhardt and D. Blinde, “Analyzing the trajectories of patients with sepsis

using process mining,” in RADAR+EMISA 2017, vol. 1859 of CEUR Workshop

Proceedings, pp. 72–80, CEUR-WS.org, 2017.

[61] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der

Aalst, “XES, XESame, and ProM 6,” in Information Systems Evolution (P. Soffer

and E. Proper, eds.), (Berlin, Heidelberg), pp. 60–75, Springer, 2011.

[62] W. M. P. van der Aalst, A. Bolt, and S. J. van Zelst, “RapidProM: mine your

processes and not just your data,” CoRR abs/1703.03740, 2017.

[63] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler, “YALE: Rapid pro-

totyping for complex data mining tasks,” in Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining, pp. 935–940,

2006.

https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460


Bibliography 149

[64] R Core Team, R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria, 2019.

[65] W. M. P. van der Aalst, “Verification of workflow nets,” in Application and Theory
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