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Preface 
With this preface I would like to welcome you to my thesis on e-bike usage in North Brabant. The 

dataset on e-bike usage was provided by the University Utrecht and was one of the subjects to 

choose from to write your thesis on. The thesis is part of the Master’s program and a requirement to 

fulfil the Master Urban Geography at the University Utrecht (UU). I started this research in February 

and ended in April 2018.  

The main objective to choose this subject was to learn more on Python scripting and to gain more 

information on the differences between rural and urban e-bike riders. As someone who is born and 

raised in Amsterdam, cycling has always been a part of my life since I was a little girl. This didn’t seem 

to be the case for my friends who grew up in more rural areas, as soon as they could get their drivers’ 

license, they would. This difference intrigued me and when I got the opportunity to work with this e-

bike data I knew quickly that I wanted to research if there is an actual difference.  

The audience for this thesis is in general for everyone who is interested in e-bike usage and the 

differences between urban and rural areas, but mainly for policy makers who want to make their 

country, city or village more e-bike proof. The aim is to see if e-bike users cycle differently in urban 

and rural areas and whether this difference lays in the trip length and/or the purpose in trips. The 

thesis also contributes to the debate about a more environmental friendly world and what the role of 

bicycles and e-bike is in this.  

I would like to take this opportunity to firstly thank my supervisor Simon Scheider, not only for his 

honest feedback but also for the practical and emotional support. Secondly, I would like to thank Lian 

and Lisanne, both students of the master, with whom I discussed the different angles and research 

questions I could choose. Thirdly, I would like to thank Jens who helped me answering questions 

about the Python scripts. I also would like to thank the second reader for taking the time to review 

my thesis and Joost Kruijff for getting background information on the dataset. At last I would like to 

thank my family, boyfriend and friends for always supporting me and helping me wherever they 

could. Without all of you this thesis could not been made. I hope you’ll enjoy reading my thesis.  

Didde Keck 

Amsterdam, 27-12-2017  
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1. Introduction 
Nowadays there are more and more policies that encourage cycling and discourage cars. One 

example is the New Urbanism in the USA or the Compact City Policy in Europe. They “aim at reducing 

car use and travel distances because high density and mixed-use neighbourhoods are believed to be 

associated with shorter trips and more non-motorized trips” (van Acker et al., 2010). These policies 

come up because the auto-dependent city harms the environment and decreases natural resources 

rapidly, congestion is even becoming such a huge problem that it costs 12 trillion dollars per year 

globally (Rybarczy & Wu, 2010). Cycling, however, is considered a healthy, environmental friendly 

and cheap mode of transport. There are two options to encourage bicycle use either improve the 

attractiveness of cycling or make the competitive mode – in this case motorized vehicles – less 

attractive (Rietveld & Daniel, 2004). During this research, the focus will be mainly on the first option.   

One way to make cycling more attractive is to encourage the use of e-bikes. The disadvantages of 

cycling – greater physical effort, weather dependent, being more slowly than motorized vehicles 

outside high density areas – are becoming less of a problem with an e-bike (Heinen et al., 2010). To 

see whether this is actually true, it is necessary to have an insight how the e-bike is used in daily life. 

This can be achieved by looking at the Bicycle Stimulation Program Brabant (BSP). The BSP gathered 

data through 581 participants. These participants used the app B-Riders to follow their cycling trips 

and the purpose of these trips. The program followed the participants from September 2013 until 

October 2014. The participants were paid to keep track of their trips and signed in for the program 

themselves.  

The Netherlands is an interesting case study because it is the leading country in the industrialized 

world in terms of bicycle usage. On average 27% of all trips are made by bicycle (Martens, 2004). It is 

unknown whether this is also the case with e-bikes, but together with Germany, the Netherlands is 

the leading market in the EU concerning sales (Fishman & Cherry, 2016). Even though there is lots of 

information on how to improve e-bike (and bicycle) usage, there is not much research done on how 

people cycle if they cycle and if location has an influence on the length, duration or purpose of the 

trips they make.     

1.1 Research questions  
So, to provide insight into the difference of citizens of cities and villages and their ways of travelling I 

came up with the following question: What are the major differences in e-bike usage, regarding 

length and purpose of the trip, between citizens from rural areas compared to urban areas?  

The sub questions to answer the main question are:  

- Are e-bikers living in rural areas willing to cycle longer in time and kilometres than e-bikers living in 

urban areas?  

- For which purposes do e-bikers use their bicycle, and how does this differ between rural and urban 

areas?  

  



1.2 Relevance  
There are a couple of reasons why this research is relevant. The first one is that researchers and 

policies focused mainly on car use or used methods that are fitted for motorized vehicles on bicycling 

and walking. Now this focus is shifting to an interest in more sustainable ways of transportation 

(Broach, Dill & Gliebe, 2012). However, there is still a lack of data on cycling behaviour and especially 

on e-bike behaviour. “When cycling is included [in a travel mode model], a typical practice has been 

to assume that cyclists choose the minimum-distance path between origins and destinations using a 

fixed travel speed (Larsen and El-Geneidy, 2011). This approach ignores network features, such as 

slope, traffic volumes, and the presence of on and off-street bikeways, and does not differentiate 

between bicycle trip purposes (Broach, Dill & Gliebe, 2012). This is where my research can contribute. 

To give more insight in the behaviour of e-bike cyclists and how far they are willing to cycle to get to 

different purposes.  

Another reason is that the outcome can contribute to better fitted policies to make e-bike usage 

more attractive, which is a step forward to a more sustainable world and healthier citizens. In fact, as 

electric bicycles [will] become more prevalent, they might change traffic dynamics as the proportion 

of road users travelling by different modes changes, giving rise to unforeseen traffic situations and 

road user interactions (Dozza et al., 2016). It is not only important to get more insight to avoid 

accidents but also to change infrastructure that is profitable for all cyclists. If there is a difference 

between e-bike cyclists in urban and rural areas, this should be taken into account when new 

infrastructure is build. For example, if the outcome of the research is that rural living cyclists are 

willing to cycle more than urban living cyclists, it can be lucrative to build more cycle highways in 

rural areas to encourage e-bike cycling.  

The last reason is that this research adds a new layer by using GPS tracking instead of surveys or 

interviews. GPS tracking can quantify the actual cycling behaviour instead of the cycling behaviour 

people remember they did. GPS is not yet being used a lot in cycling behaviour research because 

analysing the data is still consuming too much time. The software to process data is nowadays 

insufficient to quickly process the data (Carlson et al., 2014; Spek at al., 2009). The outcome of 

analysed data obtained by GPS tracking (actual behaviour) can be used to explain general patterns 

over larger samples, this is not possible with obtained surveys (stated behaviour).  So, the relevance 

of my research concerning GPS tracking is twofold. One, research analysing GPS tracking is rare so 

this research contributes to a better understanding of analysing GPS tracking. And second, the 

outcome can be generalized to similar kinds of bicycle stimulation programs and thus can be used to 

improve cycle infrastructure and a better understanding of e-bike cycling behaviour.  

  



1.3 Introduction to the region 
In 2009, the region Brabant decided to create a vision and action plan for 2020 to encourage the 

citizens of Brabant to cycle more, called “Fiets in de Versnelling” (Bicycle in Acceleration) (Provincie 

Noord-Brabant, 2009). The municipality believed that cycling can be a part of the solution of the 

problems Brabant faces. These problems are air pollution, insufficient accessibility to and from the 

city centres and the increased change of obesity because people are moving less.  

When Brabant is compared with the rest of the Netherlands, it is shown that citizens of Brabant cycle 

less than citizens in other parts of the Netherlands. As can be seen in both tables, the average share 

of cycling is in the region Brabant 24% and in the Netherlands in general 26%. The car is on the other 

hand 5% more used in Brabant than average if car driving and passengers are combined.  

Figure 1 

 

Source: Provincie Noord-Brabant, 2009 

Some of the reasons for this difference are culture, facilities for bicycles and facilities for cars and the 

difference in urbanism and demographics throughout the country. Especially the facilities for bicycles 

are in Brabant less available than in the rest of the Netherlands on average, whereas there are more 

car facilities in Brabant when it is compared to the average of the rest of the Netherlands.  

The last couple of years, different parties in Brabant have worked separately on an improved bicycle 

vision and in 2008 they decided to combine this vision and have a regional bicycle plan that should be 

implemented in 2020. The vision has three pillars;  

1. Improving comfort and ease of cycling 

The first priority within this pillar is to improve the bicycle network, both commuting as recreative 

connections. Not only with improving the roads but also with creating so-called cycle highways and 

priority traffic lights for cyclists. The second priority is the improvement of bicycle parking. In Brabant 

there is a big shortage on parking both in city centres as next to stations and the parking that is 

available is not safe, according to the locals. This results in using the bicycle less and seeing the car as 

the best alternative. So, the plan is not only to make more parking facilities for bicycles but also to 

make them easy to use, safe and with a good price-quality balance.  
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2. Seducing different groups to use the bicycle 

There are different groups that can play an important role in improving the bicycle mode share. The 

first group are the commuters. Commuters are cycling less in Brabant compared to the Netherlands 

as a whole, but if they use the bicycle to commute the distances are relatively long. Commuters are 

an important group, because they mainly use the car and if they would cycle more air pollution and 

traffic jams will be reduced. Some examples to stimulate this group are more facilities when they 

arrive at work (showers, parking space), and more cycle highways. The second group is the youth. 

Cycling doesn’t have a positive image among the youth and parents set a bad example by dropping 

their kids off at school or friends with the car. Nowadays you can also start driving lessons at 17 so 

there is only a short time period where kids need a bicycle to go from place A to B. If cycling would 

become cool again and get a positive image, the youth would probably use the bicycle more and 

longer, which has a positive affect later in life. The third group are the immigrants. Immigrants are 

inclined to use a car or public transport more often because they are not used to cycle. So, if 

municipalities and schools are pro-active in teaching immigrants to cycle, with (free) lessons and 

education, immigrants might become more quickly part of the community they live in. 

3. Collaborating with each other  

Different parties on different scales are working on plans to improve bicycle usage. Not only the 

municipality but also the government, Europe and companies, all from a different perspective and 

with different goals. A priority is to combine these plans and visions and collaborate with each other 

to share knowledge and innovations to improve the bicycle usage and promote it on different scale 

levels. Although this vision should be implemented in three years, the last report was from 2009 and 

it hasn’t been updated since.  

In the following chapters, I will first look at the different theories provided by previous researches. 

Then I will explain the methodology to conduct this research, analyse the data and answer the 

research question in the conclusion.  

 

 

 

 

  



2. Theoretical framework 
This chapter will explain three concepts, the first one is the difference between urban and rural 

space, the second one is cycling behaviour and the third one is GPS tracking. I’ll end with my 

hypotheses, whom are based on the literature.  

2.1 Rural versus urban space 
To see whether there is a difference in bicycle usage between urban and rural space, it is necessary 

to conceptualize urban and rural space. Urban areas are often described as areas with a high 

population density and rural areas are thus areas with a low population density (Irwin et al., 2009). 

As I will describe in this part, the dichotomy between the two concepts is not as clear as it was or is 

possibly not even present anymore.  

First, the concept of rural space will be explained, then the concept of urban space will be explained 

and at last I will discuss if it is still possible to explain both concepts on their own or if urban and rural 

space are so intertwined in this globalizing world that it is not possible anymore to point out 

completely rural or completely urban spaces.  

2.1.1 The definition of rural space 
There are a lot of different methods to describe rural space. The simplest explanation is that it is a 

rural space if there are agriculture activities, but it includes more than that (Madsen & Adriansen, 

2004). In 1977 Paul Cloke developed an “index of rurality for England and Wales”, the different 

definitions were for a specific use, like employment, housing conditions, population or migration and 

“therefore not a general measure of rurality” (Halfacree, 1993). Another way to describe rural space 

is to focus on the difference between socio-cultural characteristics of people who live in urban or 

rural space (Halfacree, 1993). An example of this is that people perceive “friendliness, 

neighbourliness and a sense of community” as characteristics of a rural space as oppose to 

anonymity in urban space (Mahon, 2007).   

Halfacree (2004) proposed a “network of rurality” by applying the work of Jones (1995) and Lefebvre 

(1991) and made a “four-fold model of rurality:  

- Rural locality, as characterized by distinct spatial practices, articulated in abstraction mainly through 
academic discourses. 
- Formal representations of the rural. 
- Everyday lives of the rural  
- Lay discourses of the rural, i.e. social representations, that comprised all of the means of intentional 
and incidental communication used and encountered by people in their everyday lives” (Halfacree, 
2004 in Mahon, 2007).  
 
This model was tested in Ireland to “establish respondents’ perceptions and understandings of the 

place they resided in” (Mahon, 2007). The most frequent answers were physical aspects such as 

green areas or open fields. Farming was also a largely responded answer, although the perception 

that farmers had to live of the land was not shared. The social aspects of living in rural areas were 

less prominent appointed, but the combination of feeling safe and the acquaintance with neighbours 

was seen as a feature of rural space (Mahon, 2007).  

Rural space was long seen as a servant of the urban space and in modern time as a declining space 

due to the large migration to cities. Although this migration is still happening, rural areas renewed 

themselves and thereby revitalized the rural space. Agriculture is not only used for production but 

also to give an experience of the rural landscape to urban and foreign visitors (Galani-Moutafi, 2013). 



“Under the logic of hypermodern consumption, new forms of symbolic production arise and farmers 

are turned into living embodiments of collective natural and cultural histories” (Heatherington, 2011). 

The rural represents an “idealization of the rural and a nostalgia for a simpler way of life” (Galani-

Moutafi, 2013). 

Thus, “whilst one may wish to be wary of distinguishing between the ‘real’ and the ‘unreal’ rural, 

there is a growing realization in the literature that the quest for any single, all-embracing definition of 

the rural is neither desirable nor feasible” (Halfacree, 1993). 

2.1.2 The definition of urban space 
According to Halfacree (1993) urbanism is “characterized as being dynamic, unstable, mobile in 

stratification and impersonal, with contacts being determined by one’s precise situation at the time 

(work, home, leisure)”. Although this still holds, there are many more versions of urban space, such 

as suburban, exurban and urban-rural space. Suburban is defined as “areas immediately around cities 

that are densely settled; traditionally residential, but many modern suburbs include office, retail and 

commercial clusters”. Exurban is defined as “low-density areas outside urban areas, but with a high 

degree of economic and social dependence on proximate urban and suburban areas”. Urban-rural 

space is defined as “areas whose landscapes appear largely rural, but are substantially economically 

and socially tied to urban areas; includes exurban and amenity based rural areas” (Irwin et al., 2009). 

The same respondents that described the rural characteristics in the previous chapter, identified 

urban space also mainly by the physical features. Over one third of the respondents answered that 

they associated urban space with shops, business, employment and services like entertainment. 

However, “built-up areas, lack of space, traffic/parking, crowds, congestion and the notion of a lack 

of privacy were [also] mentioned by a significant number of respondents” (Mahon, 2007). The social 

components that were named were mostly negative, like concerns about crime, lack of a sense of 

community and unfriendliness, but this can possibly be a result of stereotyping the urban space 

(Mahon, 2007). 

2.1.3 Urban and rural space or urban-rural space?   
As I have shown above, it is not that easy to pinpoint an exact definition of both urban and rural 

space. Urban and rural areas are interdependent and making a division between the two would be 

an oversimplification (Bosworth & Venhorst, 2015). In this globalizing world it is not necessary 

anymore to go to the cities for work, shopping or leisure. Due to the internet and easy commuting, it 

is possible to live in a rural area and work and shop in an urban area or even online (Irwin et al., 

2009; Bosworth & Venhorst, 2015). “Increasingly, we observe places that are “rural” based on their 

location and landscape form, but nonetheless partially “urban” in their higher-order economic 

functioning and composition. We refer to such regions as urban-rural space to emphasize the fact 

that urban and rural are no longer distinct geographic entities, but rather end points of an economic 

and geographic continuum” (Irwin et al., 2009).  

This interdependence of urban and rural space has not only implications for new researches but also 

for development policies. Infrastructure, revenues, costs and public service also need to be more 

intertwined to benefit all the regions that are connected (Irwin et al., 2009). Researchers cannot use 

the simple division between urban and rural, so when a research is focused on the rural, it is 

necessary to include the urban effect as well, and vice versa. This is necessary to create the whole 

picture instead of researching isolated areas (Mahon, 2007). However, there is one way to make a 

distinction between urban and rural and that is by looking at the build environment. Thus, make the 

distinction between villages and cities. This divide was used for this thesis and will be explained 

further in chapter 3.  



2.2 Cycling behaviour 
Travel behaviour is a combination of rational economic benefits and routine according to different 

researches (van Acker et al., 2010). There are a lot of different aspects that influence the use of a 

bicycle and the purpose of the trips people make on their bicycles (Heinen et al., 2010). The purpose 

of trips also varies per country. In Western Europe, cycling is for example part of the daily commute, 

whereas in the United States it is more a form of exercise and for recreational purposes (Pucher & 

Buehler, 2010).  

Van Acker et al. (2010) divides these aspects into three different categories namely, spatial, 

socioeconomic and individual factors. For this thesis only the first category is relevant, because I 

focus on the influence on trip length and purpose. Spatial factors are the size of the city and the 

infrastructure for cyclists. The other two factors will be shortly introduced to give an overview of all 

the factors that influence cycling behaviour in general.  

Cycling behaviour can be about ‘normal’ bicycles and e-bikes, so I’ll differentiate between the two, by 

first explaining how spatial factors influence ‘normal’ bicycles and then I’ll focus on e-bikes.  

2.2.1 The influence of different factors on cycling with a ‘normal’ bicycle 

2.2.1.1 Spatial factor: City size  

“Distance, either commuting distance or the distance between activities, is almost always taken into 

consideration when investigating an individual’s choice to cycle or to use other transport modes” 

(Heinen et al., 2010). This is also in relation with the size of the city. The literature differentiates 

between rural areas (villages), small-/middle-sized cities and large/metropolitan cities. Cycling is 

done the least in rural areas because distances are far and public transport less available compared 

to cities. This makes it easier to use the car. Another reason cars have the biggest mode share is that 

there is more space in rural areas and so there is more space to park cars, which is an extra incentive 

to use it.  

Small- and medium-sized cities are best for cycling and reach a maximum in bicycle use (Rietveld & 

Daniel, 2004). There are different reasons why these cities are perfect for cycling. The first one is the 

geographic size, this “may be naturally more supportive of cycling or at least more easily modified” 

(Pucher & Buehler, 2010). The smaller size means that facilities are likely within bicycle reach. 

Another effect of small- and medium sized cities, is that there is less traffic than in urban centres due 

to lower population and work opportunities, which makes it attractive for cyclists to take part in the 

traffic. Standalone cities have often a target area, like a university, major employer or town centre, 

which makes it interesting for companies to invest in bicycle infrastructure. For small cities 

embedded in metropolitan areas this is less often an advantage (Pucher & Buehler, 2010). The 

second one is the social characteristic of the city. People who are socially connected with each other, 

are (directly and indirectly) influenced by each other. So, the more residents who cycle the more 

they influence others in their surroundings to do the same (Marsden & Friedkin, 1993; Pucher & 

Buehler, 2010). In both Europe and the United States there are examples where small cities are 

bicycle-friendly and exceeded their larger counterparts in terms of bicycle share. One of these cities 

is Houten in the Netherlands. City planners designed the city in a way that cyclists “have direct and 

easy access to the city centre, whereas the cars have to make substantial detours via a ring road” 

(Rietveld & Daniel, 2004). Another example is Davis in the United States. Where trough “a 

comprehensive program of infrastructure investments and promotional programs” a culture of 

cycling is encouraged. Although this helped the growing popularity of cycling increase, it was not the 

only reason why it was successful in Davis. Davis has favourable land-use patterns, a strong 

commercial district so destinations are in cycling distance and it has a strong public transportation 



service which promotes cycling “as a means of travel to and from the train station” (Pucher & 

Buehler, 2010). Even though these strategies are used in most Western cities, the higher level of 

cycling can be mainly seen in Europe due to important other factors, such as: historically compact 

cities with a defined core, national policies who are supportive towards cycling, implementation of 

deterrents to driving, cycling integrated into transportation planning and transportation integrated 

into land-use planning (Pucher & Buehler, 2010).  

Large cities or metropolitan regions have a great share in bicycle use but compared to small- and 

medium-sized cities it falls down a bit. Although it might be expected that due to the high density of 

facilities and destinations, cycling is encouraged in large cities, there are also other factors that 

eliminate this effect (Rietveld & Daniel, 2004; Pucher & Buehler, 2010; Heinen et al., 2010). One of 

these is that the higher density and larger population causes more traffic and limited space on roads, 

which can frighten people to take part in traffic on a bicycle (Pucher & Buehler, 2010). Although this 

can be also an encouragement to use a bicycle. Due to congestion and traffic jams in cities, cars have 

a lower average speed and therefore it can be quicker to get around by bicycle (Rietveld & Daniel, 

2004). Another factor is bicycle theft and damage to parked bicycles, this is higher in large cities and 

thus a discouragement for people to use their bicycle (Rietveld & Daniel, 2004). The last factor is the 

competition with public transport. In large cities public transport is usually well organised and places 

within and outside the city can be easily reached (Heinen et all., 2010; Rietveld & Daniel, 2004). So, 

competition with public transport and the fear of bicycle theft and the dense traffic makes it more 

difficult to cycle.        

2.2.1.2 Spatial factor: Bicycle infrastructure 

The importance of bicycle infrastructure depends on how confident someone is on their bicycle and 

if the purpose of the trip is recreational or not. Inexperienced cyclists might feel safer with separate 

bike lanes and traffic lights than experienced cyclists who feel comfortable on the road regardless, 

and recreational cyclists can choose different routes and are less dependent on the quickest route as 

opposed to cyclists on a commute that need to go from A to B as fast as possible (Heinen et al., 

2010). There are different forms of infrastructure regarding to cycling. The obvious one is bicycle 

paths, but traffic lights and right of way at crossings are also important (Rietveld & Daniel, 2004; 

Heinen et al., 2010). How and where the paths are situated (separate lanes, marked sections on 

roads, adjacent to parking space) is important in different situations. In urban areas cyclists are more 

used to adjacent parking than in rural areas so this is considered to be less of a problem (Stinson & 

Bhat, 2003; Heinen et al., 2010).  In urban areas cyclists also tend to avoid traffic lights and especially 

experienced cyclists find them annoying (Stinson & Bhat, 2003). In general, continuous bicycle 

infrastructure and roads without parking are preferred, although it is not clear if these conditions 

actually increase the cycling frequency (Heinen et al., 2010).  

In the Netherlands, however, the amount of bicycle infrastructure at least helped increasing the 

share of bicycle mode. This is not a surprise when 16% of the total road network are bicycle paths. 

The Netherlands was the first country with a national bicycle policy, this policy gave subsidies to 

municipalities of urban areas up to 80% of the construction costs and in rural areas up to 50% 

(Rietveld & Daniel, 2004). The Netherlands invested in bicycle paths and lanes since the 1970s as a 

good alternative for motorized transport because of the oil crisis and the negative impacts of car use, 

and since then the bicycle network more than doubled in length: from 9282 km in 1978 to 18.948 km 

in 1996 (Martens, 2004; Pucher & Dijkstra, 2000). Although the Netherlands is ahead of most 

countries if you look at bicycle infrastructure, the rest of Europe is not that far behind, especially 

when it is compared to the United States or Australia. In Europe, cyclists can reach virtually any 

destination by bike without riding on roads with heavy car traffic volumes and high travel speeds 



(Pucher & Buehler, 2010). Another regulation which is more common in Europe than overseas is 

traffic calming areas, where cars need to adjust their speed limit to give way for cyclists and 

pedestrians (Pucher & Buehler, 2010). All these rules and regulations increase the safety of cycling, 

which might increase the bicycle mode share. It can be said that the relationship between bicycle 

infrastructure and the number of cyclists goes both ways, when there are enough bicycle paths there 

will be more cyclists who use it but when there are more cyclists it also becomes a higher priority to 

build more bicycle infrastructure (Rietveld & Daniel, 2004). 

2.2.1.3 Other factors 

There are three other classes of factors that influence bicycle behaviour, namely socioeconomic 

factors, individual factor and car use. Socioeconomic factors are income, age and gender and they all 

have both a positive and a negative influence on bicycle usage. A higher income enables a person to 

spend more money on a bicycle which increases the chances that he/she uses it more but also that 

that person can spend money on a car or on public transport which decreases the use of a bicycle 

(Witlox & Tindemans, 2004). Increase in age is related to an increase in active transport (bicycling 

and walking) because from 65 and older, people are more likely to be retired and have more time to 

use slower modes of transport. The negative influence on the other hand is that there is more danger 

in using a bicycle because the chance of injuries is higher (Scheepers et al., 2013). Gender related to 

cycling is country specific, in countries where people are used to cycling -like the Netherlands- 

women use the bicycle as much as men, but in countries where there are low cycling rates men tend 

to cycle more than women (Garrard et al., 2008). 

The individual factor is the risk of injury by using a bicycle. This risk can be a real or perceived risk. 

Real risks are automobile traffic, driver behaviour, weather and personal security. Perceived risks are 

the things that might happen according to the person itself, whether this is based on existing threats 

or not (Rybarczy & Wu, 2010). Attitudes towards cycling and the rate of real and perceived risks are 

important factors to explain bicycle usage. It doesn’t matter how many bicycle lanes you build or 

how safe the roads are, if people don’t want to take the bicycle it is difficult to change that (Heinen 

et al., 2010). 

“Increasing car use in cities led to environmental pollution, roadway congestion, and a sharp rise in 

traffic injuries and fatalities. Those harmful impacts of car use provoked a dramatic reversal of the 

transportation policies of most German, Dutch, and Danish cities” (Pucher & Buehler, 2010). To tackle 

this problem, city governments could either adapt the city to the car or restrict car use and 

promoting other options like cycling, public transportation and walking. Especially the focus on (e-

)bicycle infrastructure helped to boost cycling in these countries (Pucher & Buehler, 2010). The 

restriction in car use is visible in “sales taxes on fuel and new car purchases, import tariffs, 

registration fees, license fees, driver training fees, and parking fees” (Pucher & Buehler, 2010). All 

these taxes and fees are considerably higher in Europe compared to other Western countries like the 

United States, Canada and Australia. The result is that the costs to own and use a car in Europe are 

two to three times higher than in those other countries. Since it is more expensive to own a car, 

people are looking for a cheaper alternative which is cycling. Yet the correlation between car 

ownership and cycling goes both ways; less cars per household encourage more cycling and when 

people cycle more the need to own a car may become less of a priority (Heinen et al., 2010).  

  



2.2.2 The influence of different factors on cycling with an e-bike 
“Giving the sensation of cycling with a tail wind or slightly downhill, the e-bike is quicker, it enables 

longer trips over hilly routes and it is an alternative for people who for various reasons are averse to 

bicycling. Compared to local public transport and rush-hour driving, the e-bike offers competitive 

travel speeds. Clearly, it has the potential to replace many car and public transport trips, all to the 

benefit of the environment, public health and other motorists” (Fyhri & Fearnley, 2015). Although 

there are many advantages for using e-bikes and sales are increasing all over the world, there is not a 

lot of research that shows the effects on e-bike usage and the effect they have on motorized modes 

of travel (Rose, 2011; Fyhri & Fearnley, 2015).  

2.2.2.1 Sales  

The sales on e-bikes has grown rapidly in the past decade, over 150 million have been sold worldwide 

and that is the “most rapid uptake of alternative fuelled vehicles in the history of motorisation” 

(Fishman & Cherry, 2016; Jamerson & Benjamin, 2013). The main consumer group are the elderly 

although other groups, especially in Asia, are discovering the e-bike as their preferred mode of 

transport more and more (Fietsberaad, 2013; Fyhri & Fearnley, 2015).  In the EU the two-leading e-

bike markets are Germany and the Netherlands. They account respectively for 44% and 21% of all 

sales (Fishman & Cherry, 2016). What is remarkable about this is that Denmark does not have a spot 

in the top five of highest e-bike sales in Europe, even though it has the second highest bike share 

(18%) in Europe (Pucher & Buehler, 2010). While it is a fact that e-bike sales are growing, the reason 

why is still unknown. Two possible reasons are the higher fuel prices, which makes owning a car 

more expensive and city regulations that are trying to keep the car more and more out of the city 

centre (Rose, 2011).  

2.2.2.2 Spatial factor: City size  

The general belief of cycling patterns is that people in rural areas rely more on the car and less on the 

bicycle because facilities are further apart. In urban areas this is the other way, due to congestion, 

high parking prices and close by facilities the bicycle becomes a better alternative than the car 

(Harms et al., 2014). However, it seems that if you look at e-bikes this trend is inverted. The 

“increases in travel distances and poor public transportation service are likely to stimulate a mode 

shift from bike or bus to e-bike and thus increase the ownership of e-bikes […]” (Zhang et al., 2013). In 

urban areas the availability of public transportation and the mixed development has a negative 

influence on the ownership of e-bikes (Zhang et al., 2013). The reason why there is a difference in 

bicycle and e-bike usage was not been researched (yet).  

2.2.2.3 Spatial factor: Bicycle infrastructure 

As I explained before, there are some factors that decrease the likelihood that people use a normal 

bicycle for their daily commute. Topography, distance, physique and weather are some of these 

factors (Heinen et al., 2010), and e-bikes can make these factors less of a constraint and even make 

“cycling fun again” (Popovich et al., 2014; Fishman & Cherry, 2016). Although this higher increase in 

e-bikes is a positive outcome for environmental and health issues, it creates new problems as well. E-

bikes come, for example, in different forms and can range in speed. Most infrastructure is built for 

either cars/motors or normal bicycles, so where does the e-bike fit in this? It is important to think 

how infrastructure can be adjusted to more cyclists, whether they are on a normal bicycle or e-bike 

(Rose, 2012; Harms et al., 2014). Perhaps “a more fundamental reconsideration of the allocation of 

street space for the different urban transportation modes (cyclists, pedestrians, cars and public 

transport) might be needed” (Harms et al., 2014).  

 



2.2.2.4 Other factors  

The socioeconomic and individual factors that influence normal bicycle usage have also an effect on 

e-bike usage. One of these factors is age. You could argue that e-bikes are mainly used by the elderly, 

due to declining physical abilities. Although there is a reluctance among the young to buy e-bikes, 

this is not due to the image of an e-bike but more to the costs of it (Rose, 2012; Fyhri & Fearnley, 

2015). Another factor is gender. In countries where cycling is not a big part of the daily commute, 

men tend to cycle more than women. When you look at e-bikes, this effect becomes less. Women 

tend to use an e-bike more often than a normal bicycle, so if the number of men that use an e-bike is 

equal to the number of men that use a normal bicycle, the number of people that use an e-bike is 

higher than the people that use a normal bicycle (Fyhri & Fearnley, 2015). The last factor is income. 

Research shows “that e-bikes are less a transitional mode between a bike and automobile than an 

affordable, higher-quality mobility option to public transport” (Zhang et al., 2013). Thus e-bikes are 

mainly used by low- and middle-income households.  

Using an e-bike can also change the perception of safety and thus increase the likeability people use 

this healthy alternative instead of their car.  “In a North American survey of e-bike owners 60% feel 

safer riding an e-bike and 42% said the e-bike had assisted in avoiding crashes” (MacArthur et al., 

2014). The speed of an e-bike and thus keeping up with traffic was the main reason why they felt 

safer (Fishman & Cherry, 2016). A project in Canada, presented the same conclusions, where 

respondents felt safer on an e-bike than on a normal bicycle due to the fact that they can react 

quicker in traffic. This study “noted that 83% of respondents felt as safe on an e-bike as on a 

conventional bicycle, with 95% feeling that they had complete control when the motor was running” 

(Rose, 2012). This is a positive and somewhat surprising effect of e-bikes on safety. It can be 

expected that people who do not feel safe on a bicycle, find an e-bike even more frightening because 

of the increased speed, but according to the researches the speed is exactly the reason people feel 

safer. 

2.3 GPS measurements on cycling behaviour 
“The availability of so-called geopositioning devices such as GPS (Global Positioning System) devices 

has grown enormously in the last decade and is still increasing. More and more people own a 

navigation system such as a TomTom, a GPS for orientation for outdoor uses, biking and geo-caching 

or a mobile phone or other handheld communication device with built-in GPS. These devices are 

mainly used for orientation (determining where you are), navigation (determining where to go) and 

communication (exchanging information with others or accessing information services). But the 

devices can also be used for tracking, i.e. saving a travelled route into a track log. This ability makes 

the technology useful to collect spatial-temporal data and thus as ‘sensors’ for observing and 

measuring activities of people” (Spek et al., 2009).  

One major implication of cyclist behaviour research is that models are based on cars and the 

assumption that everyone acts on their economic instincts: minimise travel time and the smallest 

costs. However, it is known that cyclists choose their routes for various other reasons, such as safety 

and cycle facilities. Route measurements through GPS tracking would help to solve this problem and 

get more insight in how cycles behave (Ehrgott et al, 2012).   

According to Spek et al., (2009) there are in fact three different perspectives where GPS contributes 

to urban research. The first one is visualisation. In the three stages of processing, analysing and 

communicating it has value. In the first stage it is important because it gives “manual validation of 

[the] data”. In the analysing stage it helps as a tool to analyse and in the communication stage it is 

important for both experts as the public. This is because it makes statements and numbers more 



readable by looking at maps or other visual data. The second one is accuracy. Usually post-hoc 

mapping and dairies made by participants are used for registering routes in research, however these 

methods are biased because there are based on the memories of the participants. GPS can avoid this 

bias and, in the future, maybe even visualise real-time behaviour. The last one is validation, GPS can 

also assist other urban research methods, which improves the research in itself.  

However, GPS is not perfect yet. There are some major implications. The first one, is that the 

reception is not ideal in urban settings, especially when reflections of other buildings can confuse the 

signal. The second one, is the improvement of the software to increase the speed of data processing. 

Nowadays a determination of research is the limitation of the scale, if software to process the data 

would be upgraded this would be less of a concern (Carlson et al., 2014; Spek at al., 2009). The third 

one relates to the second one, GPS data consists usually of large amounts of data and to grasp that 

and deal with it without losing critical information is difficult. In combination with slow software, 

researchers rather not work with this data.  

Despite these limitations, “in this new era of advanced technology, the extensive use of cyberspace 

has enabled the provision of real-time information with sophisticated geographic information 

systems. This can be a means to induce changes in travel behaviour” (Ehrgott et al, 2012).  

2.4 Hypotheses 
Derived from the literature, there are two hypotheses that I want to test. The first hypothesis is that 

people who live in cities make more frequent trips but these trips are shorter than the trips made by 

people who live in villages. According to the literature, cyclists in cities are more inclined to cycle 

because facilities are close by and it is most of the times quicker due to congestion and traffic jams 

(Pucher & Buehler, 2010; Rietveld & Daniel, 2004).  When facilities are close by, it is less of a hassle 

to make a trip per purpose instead of combining varies purposes within one trip, whereas in villages 

it takes longer to do a trip per purpose because facilities are widespread.  

The second hypothesis is that the purpose of people who cycle in villages is mostly work-home related 

and that the purpose of people who cycle in cities varies more. Cities offer more recreational facilities, 

like restaurants, theatre, cinemas, which makes it easier for people in cities to go there regularly. 

Another reason is that city municipalities try to ban cars from the inner cities so when people go out, 

they are more inclined to use their bicycle (Pucher & Buehler, 2010). Thus, people who live in cities 

have a more variety of purposes than people who live in villages.      

 

 

 

  



3. Methodology 
This chapter starts with the background information of the data sample I used. Then it explains the 

steps to prepare the data for analysing and then it explains the different methods I used to analyse 

the data. It concludes with the possible problems and risks for this research.  

3.1 The Bicycle Stimulation Program  
The Bicycle Stimulation Program Brabant (BSP) gathered data about e-bikes and how participants 

cycle over a period of 1,5 years. They followed 581 participants from September 2013 until October 

2014. These participants used the app B-Riders to follow their cycling trips and the purpose of these 

trips. The participants were paid to keep track of their trips and signed in for the program themselves 

(Feng & Timmermans, n.d.).  

There were a couple of boxes you had to tick to be allegeable for this study. The first one was that 

your work should be further away than 3 kilometres of your home. The second one was that, before 

the program, you used your car 50% or more for commuting, the third was that you work in the 

region North Brabant and the last was that you were between the age 18 and 65 (Feng & 

Timmermans, n.d.). 

The data was saved in a personal csv file for each participant. Although they collected the data from 

September 2013 until October 2014, for my thesis I only used the data from January, July and 

September 2014 in order to make the data size not too big and manageable for the time of the 

thesis. The home locations are given in X and Y coordinates in the dataset. It is necessary to prepare 

the data using Python because not all information provided by the dataset is useful for this research. 

In the csv files not only, the X and Y coordinates of the routes are collected but also the person id 

number, the track id number, the date and time, the accuracy in meters, the speed in km/hour, the 

heading in degrees, the modality where 2 means a ‘normal’ bicycle and more than 2 an e-bike, the 

place of origin, the place of destination and the purpose of the trip. The different purposes were 

modelled by researchers Feng and Timmermans of the TU Delft, which I reuse in my thesis.  

They argue in their article that: Comparing with existing works to detect activity type, […] we attempt 

to introduce additional information that is commonly available in large-scale aggregate GPS panel 

data, based on repeated multiple observations. Assuming that people’s daily activities are based on 

scripts, we argue that repetitive patterns in GPS panel data can be successfully detect a certain type 

of activity using frequency and regularity information. To represent such a concept, the heat map of 

activity locations for an individual during one month indicates that the two main activities have a 

higher frequency to happen at the same or similar location than other activities.  

Specifically, the frequency of activity locations can be generated through matching the activity 

locations with the zonal data. Here, the frequency defined also compensates the deficiency of the 

percent of areas. In case that people frequently go to a place for leisure where the area is mostly 

covered by shops, using the spatial variable only may lead to inaccuracy, because there might be a 

higher probability for shopping rather than leisure activity. By having the frequency of activity 

locations within zones, if people often go to the same place for leisure activity, the inherent pattern 

will be captured by the frequency in the sense that frequency in that zone will be higher than those in 

other zones. Of course, one cannot rule out the case that multiple frequent activities happen within 

the same zone, but it can be easily overcome through the use of fine-grained zones or grids (Feng & 

Timmermans, n.d.).  

 



The model they created is the following:  

  

From this model they derived ten different purposes: home, paid work, non-daily groceries, daily 

groceries, social, recreation, spare time, services, study and unknown.  

For the csv file to be included in my research I decided to have three conditions. The first one was 

that the home coordinates were in North-Brabant, the second that (almost) all trips were made by e-

bike and the last one that the person made at least 10 trips in those three months. I did this because 

I believe that people who cycled less than 10 trips in three months is not representative and thus can 

create a bias in the outcome of the analysis. The same goes for people who didn’t have their 

residence in North-Brabant because the outcome is supposed to say something about e-bike cyclists 

in North-Brabant, so people who reside somewhere else creates a bias in the outcome. After 

removing all files that didn’t met these conditions, I had 538 files (and thus participants) that were 

useful for my research.  

3.2 Data preparation  
The dataset was so large that it was necessary to first make a selection of the data I needed and 

prepare it so I could use it in SPSS. The steps that I made are described below.  

3.2.1 Determine whether home is in an urban or rural area  
After I looked at all the csv files, I chose one home route from each file. The X and Y coordinates of 

each file went one by one through a calculator on the website https://www.gps-coordinaten.nl/, this 

gave the precise address of each contestant. Due to possible privacy issues, I only wrote down the 

person ID and the name of the place they lived in an excel sheet. To determine whether it was a city 

or a village, I wrote down all the places with city rights according to the book “Repertorium van de 

stadsrechten in Nederland” by Joost Cox (Cox, n.d.) and matched them with the places I had. The 

places that did not match were double checked to see if they were actually laying in North Brabant 

and if they were, they were placed under village. Even though I explained in the literature chapter 

that it is almost impossible to see urban and rural as two detached areas, it is however possible to 

determine if a place is a city or a village. In the Netherlands a place can only call themselves a city if it 

has city rights. So, for this research to make the division between urban and rural, I looked at the 

division between city and village.  
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https://www.gps-coordinaten.nl/


3.2.2 Determine the length, time and purpose of each trip  
Python scripting was used to determine the different aspects of each trip. First, we converted the 

text files into a string so Python can work with the csv files. Then I decided which information I 

needed for my thesis. I wanted a duration table with the total duration of each trip per person, the 

length in metres of each trip per person, number of trips per person and the number of trips of each 

purpose per person. To get the duration table, we had to make a script that first grouped each trip 

with the same track ID and then subtract the starting time off the finished time.  The length of the 

trips was more difficult to calculate. First, we had to incorporate spatial references because the csv 

files only provided X and Y coordinates but without spatial reference these are useless for calculating 

the length of trips. Then we grouped the trips again and add the coordinates from point zero of each 

trip, which Python converted to metres. The number of trips was a count of all the trips with a 

different track ID. The number of trips per purpose was also a count of the grouped trips and then a 

value count. We did this for both cities and villages separately. This created two long lists with the 

information I needed, but it was not easy readable. So, I wrote another script where I put all the 

information in columns per person and converted it to an excel file. Both these scripts can be found 

in the appendix.  

3.2.3 Determine average length of trip and most important purpose for urban and rural areas 

separately. 
With the excel sheet, I had all the information I needed. For every part of information, I wanted to 

research, I made a graph. To make the graphs more readable I included the median and the 75% 

quartile. In the analysis chapter I will elaborate more on the graphs and the differences between the 

e-bike cycle patterns of people who live in cities and villages.  

3.3 Analysis methods 
For the analysis I used four different methods. To test the first hypothesis, I used two t-tests and 

three ordinal logistic regression models. To test the second hypothesis, I used a crosstabulation table 

and Pearson Chi-Square and a binary logistic regression model. Why and how I used these tests, will 

now be explained.  

3.3.1 T-tests 
The data consists of two samples, the urban sample and the rural sample. To compare these two and 

look for potential differences it is possible to use T-tests. There are six assumptions that need to be 

met before a T-test can be done. The first assumption is that the dependent variable is continuous, 

for the variables trip frequency (number), duration, duration first hour and length this holds. The 

variable purposes however is not a continuous variable so the T-test will not be done for that 

variable. Thus, only the first hypothesis will be tested with the t-tests. The second assumption is that 

the independent variable is categorical, this holds because the variable location has two categories. 

The third assumption is that all the variables need to have cases, which also holds. The last 

assumption is that there is a normal distribution of the dependent variable. However, with large data 

this doesn’t have a large influence on the accuracy of the p value (Bryman, 2008; Field, 2009). 

  



3.3.2 Crosstabulation table and Pearson Chi-Square 
To test whether the distribution over the variable purposes differs between urban and rural, I had to 

choose a different method because it cannot be tested by a t-test due to the fact that it is a 

categorical variable. This is why I chose to make a crosstabulation table and did a Pearson Chi-

Square.  

There are three assumptions to do a Chi-Square. The first is that both variables need to be an ordinal 

or nominal variable, this is met because both purposes and location are categorical variables and 

thus nominal. The second is that both variables should consist of at least two independent 

categories, this is also met because the variable location has two categories, villages and cities and 

the variable purposes has ten categories. The last one is that all “expected frequencies should be 

greater than 5” (Field, 2009). If this last assumption is not met, it is advised to gather more data or 

exclude this data. If it would be included it can “fail to detect a genuine effect” (Field, 2009). The data 

was already gathered, so the first option was not possible, that is why I excluded the purpose 

unknown for this model. After that adjustment, all assumptions were met.  

3.3.3 Ordinal logistic regression 
As an addition to the T-tests and the Chi-Square I wanted to measure the influence of rural and 

urban areas on the behaviour variables. The variables trip frequency (number), duration, duration 

first hour and length are all ordinal variables, so I could do an ordinal logistic regression for these 

variables.  

Before I could conduct an ordinal logistic regression, I had to check if the following three 

assumptions were met. The first assumption is that the dependent variable is ordinal. As I said 

before, this is correct for the four variables above. The second assumption is that the independent 

variable is either continuous, ordinal or categorical. In this case the independent variable is location 

which is a categorical variable, with two categories, villages and cities. The third assumption is that 

there is no multicollinearity. This can occur when two independent variables are highly correlated. 

For this model I only use one independent variable, so this is not possible which means that the 

assumption is met (Field, 2009).  

3.3.4 Binary logistic regression 
To measure the influence of urban and rural areas on the purpose behaviour I chose to do a binary 

logistic regression with SPSS. The purpose variable is a categorical variable so it was not possible to 

do an ordinal logistic regression as with the other variables. I chose to separate all the purposes and 

do a binary regression for each of them. The data became a 2x2 table with the purpose divided in 

either true or false and the independent variable (location) in either village or city.  

Before a binary logistic regression can be done it is necessary to check if the data fulfils a couple of 

assumptions. The first assumption is that the dependent variable is a binary variable. The second 

assumption is that the independent variable(s) are categorical or continuous. In this case are the 

variables length, duration, duration first hour and trip frequency continuous variables and the 

variable purpose is a categorical one. The third assumption is that the categories of the dependent 

variable should be exhaustive and exclusive (Bryman, 2008; Field, 2009). The fourth and last 

assumption is that “there is a linear relationship between any continuous predictors and the logit of 

the outcome variable” (Field, 2009). All these assumptions are fulfilled for this data.  

The results of the regression analyses will be explained in the analysis chapter and the output of SPSS 

can be found in the appendix.  

 



3.3.5 Flow chart 
To make the different steps easier to read and to summarize them, I decided to make two flow 

charts. The first one shows the steps I did to prepare the date and the second one shows the steps I 

did to analyse the data.  
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3.4 Problems and risks 
There are two main limitations within this research. The first one concerns the B-riders’ dataset and 

the second one concerns the binary logistic regression analysis. The limitation of the B-riders’ dataset 

is that the conclusions cannot be generalized for the whole province of North-Brabant or the 

Netherlands. The people who participated, where paid and applied for it themselves. They were not 

randomly chosen by the organization.  The conclusions, if they are statistically significant, are, thus, 

only generalizable for similar kinds of bicycle stimulation programs.  

The limitation of the binary logistic regression analysis is that if the variables are not correct, the 

assumptions of the model can be weakened and even lead to errors. This can easily be resolved by 

knowing which variables have a definite influence on location (concerning e-bikes) but because this is 

a unique research there isn’t previous research to compare the variables with. Thus, when reading 

the results, the possibility of a weakened model should be taking into account.   

  



4. Analysis 
This chapter will show the different outcomes of the purposes, durations and lengths of the trips. It is 

divided between citizens of cities and citizens of villages in North Brabant, explained in the previous 

chapter. The first part will look at the relative differences and make a comparison between the cities 

and the villages. The second part will analyse the outcome of the t-tests and cross tabulation and the 

third part will analyse the outcome of the logistic regressions. 

In total there were 160 citizens spread over 20 cities in North Brabant who volunteered to 

participate. These 160 citizens cycled 11.594 trips in three months which means that they cycled 

72,46 trips on average per person over these three months. The 376 citizens spread over 118 villages 

in North Brabant cycled 26.376 trips in the same time span, which is 70,15 trips on average per 

person. The average length of the trips of people who live in cities is 8,08 km and in villages 9,3 km, 

which is in line with my hypothesis. The most important purpose for both people in cities and villages 

is home. This information is the basis for the analysis that now will be unfolded.  

4.1 Descriptive statistics of trips in cities and in villages  
This part will look at the relative data to make a comparison between the people who live in the 

cities and the people who live in the villages. The first comparison is about the purpose of the trips. 

As can be seen in the graphs on this page and the next page, there are not a lot of differences, 

around 70% of the trips are to go either to a paid job or to go to their home. This is not surprising, 

because the age group was 18-65 and you had to work so people spend most of their trips between 

home and work. There is a difference visible for groceries, daily and non-daily, social, recreation and 

spare time. People in the cities made more trips with this purpose, but whether this holds statistically 

will be checked in the next part.  

Figure 2 
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Figure 3 

  

Figure 3 and 4 show the difference in trip frequency distribution. The two categories with the biggest 

share, both in the cities and in the villages, are the categories 31-60 and 61-90 trips. If the two graphs 

are compared, it shows that the share of the trip frequency is higher in the villages for the categories 

31-60 and 61-90 than in the cities, but for the other categories this is vice versa. Which is interesting 

because the hypothesis is that people in cities make more trips. But if the median is calculated, it can 

be seen that the median in the cities is 65,5 trips and in the villages it is 45 trips. As is the 75% 

quartile, which is 100,25 trips in the cities versus 95 trips in the villages. This can be seen in the 

boxplot in figure 5. This is in line with the hypothesis.  A possible explanation is that facilities in cities 

are close by so people use different trips for different purposes instead of combining the different 

purposes into one trip.   

Figure 4 
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Figure 5 

 

 
Figure 6: The percentiles of trip frequency  

 

 
The other hypothesis was that people in cities cycle shorter trips, due to the proximity of facilities, 

than people in villages. As you can see in the two graphs below, both groups cycle maximum an hour 

per trip. But within that hour there are quite some differences. If you look at the first two graphs, it is 

interesting to see that after the hour, the number of trips diminishes quickly with one person who 

made a trip that lasted between 4,5 and 5 hours. If you look at the graph from the citizens in the 

villages you can see the same pattern but it diminishes less quickly and there is one person who 

made a trip that lasted between 5,5 and 6 hours. The median for the cities is 00:21:41 minutes per 

trip and for the villages it is 00:25:05 minutes per trip. This is also in line with the hypothesis that 

people in cities cycle a shorter duration per trip. The same goes for the 75% quartile, which is 

00:35:41 minutes in the cities and 00:37:02 minutes in the villages. The differences aren’t as big as 

compared to the number of trips but the t-test and regression analysis have to confirm if both 

outcomes are still relevant.  
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Figure 7 

 

Figure 8 

 

Figure 9: The percentiles of the duration of the trips 
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There is a big difference between citizens in the cities and the villages when only the first hour is 

accounted for. In the cities, most trips are made within 6 and 11 minutes and the second one is even 

shorter, namely 0 till 6 minutes. Whereas in the villages, most trips took between 21 and 26 minutes 

and the second highest were 11 till 15 minutes which is also longer than in the cities. You can also 

see a nice declining slope after 11 minutes in figure 9 (with the exception of the trips that took 

between 21 and 26 minutes). Where in figure 10, the declining slope starts only at 21 till 26 minutes. 

Before that the differences per 5 minutes are larger. The reason for this is unknown based on the 

data, but one possibility is that people either live really close by their friends or families or that they 

have to cycle further to other facilities or social activities that are not close by. Another possibility is 

that work in villages is further away or even in the next city or village and that people for that reason 

have to cycle longer. This could be an example of a qualitative follow-up research question. The 

median in the cities is still 00:21:06 minutes per trip and in the villages it is 00:24:08 minutes. This is a 

small difference compared to the duration in total, but that can be explained because almost all trips 

have a duration within an hour. The 75% quartile is 00:33:58 minutes in the cities and 00:35:20 in the 

villages. This again can be an indicator that people in villages make longer trips than people in cities 

but the t-tests and the logistic regression analysis has to reveal if it is statistically significant.  
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Figure 12: The percentiles of the subsample of trips less than an hour 

 
 
At figure 12 and 13 you see the same difference as we saw earlier. In the cities the biggest part of the 

trips is between 1 and 7,5 km long, whereas in the villages it is between 7,5 and 15 km. Two other 

distances where there is a difference are the 0 till 1 and 15 till 30 distances. In the villages the share 

of trips that are between 15 and 30 km is higher compared to the cities. And vice versa in regards to 

the 0 till 1 km trips. This is in line with the literature and hypothesis 1 that people in cities cycle more 

shorter trips than people in villages. The median and 75% quartile also reflect this. The median in 

cities is 6,91 km per trip and in villages it is 8,58 km per trip, whereas the 75% quartile respectfully 

11,68 km (cities) and 13,26 km (villages) are.  

Figure 13 
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Figure 14 

 

Figure 15: The percentiles of the length of the trips 
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4.2 The outcome of the t-tests and cross tabulation 
To research the two hypotheses, I first did two different t-tests, one for the frequency of the trips 

(number of trips) and one for the variables duration, duration first hour and length. To analyse the 

variable purpose, I used a crosstabulation table with the Pearson Chi-Square.  

4.2.1 Do people in cities cycle more frequent, but shorter trips than people in villages? 
The first hypothesis is that people who live in cities make more frequently trips but these trips are 

shorter than the trips made by people who live in villages. This hypothesis consists of two parts. The 

first part regards the trip frequency and the second part the length and duration of the trip. To 

research this I did two different t-tests.  

The first model shows the relationship of the independent variable (location) on the dependent 

variable (trip frequency). This was not statistically significant (p=0,477), so there is no direct relation 

between trip frequency and location. 

Figure 16: T-test  

 

The second model shows the relationship of the independent variable location on the dependent 

variable duration, the subsample of trips of less than an hour and length. All variables are significant 

as can be seen in the table below. So, there is a direct relationship between location and duration, 

location and duration in the first hour and location and length. The t-value for duration is 9,631 

which means that the longer the trips are the more chance there is that the trip was cycled by 

someone who lives in a village. The t-value for duration in the first hour is 8,675 and thus, again, 

means that the if the duration is longer, but stays within the first hour the chances that the trip was 

cycled by someone who lives in a village are higher than if that person lives in a city. The t-value of 

the variable length is also positive (13,143) so the same goes for this variable. 

Figure 17: T-test 
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This means that the first hypothesis is partly true. The first part, people who live in cities make more 

frequently trips, does not hold because the model is not significant. The second part, people who live 

in cities make shorter trips than people who live in villages, however does hold. All three variables 

are significant and they have a positive relationship. This makes sense because facilities, in general, 

are further apart in villages.  

4.2.2 Do people in cities use cycling for different kind of purposes than people in villages?  
The second hypothesis is that the purpose of people who cycle in villages is mostly work-home 
related and that the purpose of people who cycle in cities varies more. For this hypothesis I tested 
the relationship of the dependent variable purpose on the independent variable location with a 
crosstabulation table and the Chi-Square. The crosstabulation table shows that 69,4% of the total 
trips are made in the villages and 30,6% in the cities. The biggest different is at the purpose study, 
where 72% of the trips are made in the villages and 28% in the cities.  
 
Before looking at the statistics it is important to check whether the chi-square assumption is met. 
The assumption is that in a crosstabulation table, all expected frequencies should be greater than 5 
(Field, 2009). One purpose does not meet this assumption, namely the purpose unknown (city) has 
an expected count of 1,2. So I decided to exclude this purpose for this model, because when this 
assumption is not met, it is advised to collect more data. This research, however, uses an already 
existing dataset so this option was not feasible.  If I would include the purpose unknown, the result 
can fail to detect a genuine effect (Field, 2009). Now the lowest expected count is 28,4 (study in city), 
which is higher than 5 and thus the analyse can be continued.  
 
As can be seen in the table below, the Chi-Square is significant thus there is a relation between the 

purposes of the trip and the location of the respondents. The crosstabulation table in figure 18 shows 

the percentages of each purpose per location and within all purposes combined. The second 

hypothesis holds; however, it is not possible to see if there is a difference in the varies purposes and 

if some purposes are perhaps more important than others. This can hopefully be resolved, with the 

binary logistic regression in the next chapter.  

Figure 18: Chi-square test of the variable purpose 
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Figure 19: Cross-tabulation table of the variable purpose 
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4.3 The outcome of the ordinal logistic regressions and the binary logistic regression.  
In this chapter, I used three ordinal logistic regression analyses and a binary logistic regression to try 

to get a deeper analysis of the two hypotheses. The settings for these analyses were equal. The 

method was the enter procedure, so all variables were assessed on the same time. The cut value was 

0,5, the alpha level 0,05 and the level of removal 0,10. The Hosmer and Lemeshow goodness-of-fit 

test and Nagelkerke R-square were used to assess the fit of the model. The outcome of all the 

analyses can be found in the appendix. 

4.3.1 Do people in cities cycle more frequent, but shorter trips than people in villages? 
The first hypothesis is that people who live in cities make more frequently trips but these trips are 

shorter than the trips made by people who live in villages. This hypothesis consists of two parts. The 

first part regards the trip frequency and the second part the length and duration of the trip.  

The first model shows the trip frequency. As in the previous chapter, this model is also not significant 

(p=0,434). So, there is no direct relationship between trip frequency and the location of the cyclists.  

Figure 20: Logistic regression table of the location regressed over trip frequency 

 

  

Lower 

Bound

Upper 

Bound

[Number = 1] -1,777 0,169 110,693 1 0,000 -2,108 -1,446

[Number = 2] -0,288 0,147 3,870 1 0,049 -0,576 -0,001

[Number = 3] 0,807 0,151 28,747 1 0,000 0,512 1,102

[Number = 4] 2,018 0,181 124,806 1 0,000 1,664 2,372

[Number = 5] 3,328 0,272 149,801 1 0,000 2,795 3,861

[Number = 6] 4,235 0,397 113,559 1 0,000 3,456 5,013

[Number = 7] 5,497 0,718 58,670 1 0,000 4,090 6,903

Village -0,132 0,168 0,613 1 0,434 -0,461 0,198

City 0
a 0

Threshold

Location

Link function: Logit.

a. This parameter is set to zero because it is redundant.

Estimate Std. Error Wald df Sig.

95% Confidence 

Interval



The second model consists of the variable duration. This model is significant (p=0,000) so there is a 

direct relationship between duration and the location of the cyclists. The relation is positive 

(estimate is 0,230) which means that the longer the duration of the trips is, the higher the chance is 

that the cycler lives in a village.  

Figure 21: Logistic regression table of the location regressed over duration of the trips 

 

  

Lower 

Bound

Upper 

Bound

[Duration = 1,00] -0,512 0,018 847,808 1 0,000 -0,547 -0,478

[Duration = 2,00] 0,777 0,018 1893,695 1 0,000 0,742 0,812

[Duration = 3,00] 2,082 0,021 9693,930 1 0,000 2,041 2,124

[Duration = 4,00] 3,405 0,031 12328,602 1 0,000 3,345 3,465

[Duration = 5,00] 4,241 0,043 9887,170 1 0,000 4,158 4,325

[Duration = 6,00] 4,989 0,060 7024,993 1 0,000 4,872 5,105

[Duration = 7,00] 5,669 0,082 4771,818 1 0,000 5,508 5,830

[Duration = 8,00] 6,231 0,108 3345,004 1 0,000 6,020 6,442

[Duration = 9,00] 6,903 0,150 2120,911 1 0,000 6,609 7,196

[Duration = 10,00] 7,213 0,175 1703,308 1 0,000 6,870 7,556

[Duration = 11,00] 7,574 0,209 1312,213 1 0,000 7,164 7,984

[Duration = 12,00] 8,002 0,259 957,001 1 0,000 7,495 8,509

[Duration = 13,00] 8,631 0,354 594,769 1 0,000 7,937 9,324

[Duration = 14,00] 9,612 0,578 276,954 1 0,000 8,480 10,744

[Duration = 15,00] 10,017 0,707 200,592 1 0,000 8,631 11,403

Village 0,230 0,020 129,821 1 0,000 0,191 0,270

City 0
a 0

Threshold

Location

Link function: Logit.

a. This parameter is set to zero because it is redundant.

Estimate Std. Error Wald df Sig.

95% Confidence 

Interval



The third model analyses the variable duration in the first hour and this variable is also significant 

(p=0,000). This relationship is also positive, thus the longer the duration of the trips is, within the first 

hour, the higher the chance that the cycler lives in a village. This is consistent with the t-tests in the 

previous chapter.  

Figure 22: Logistic regression table of the location regressed over the subsample of trips in the first hour 

 

The last model consists of the variable length and shows also a significant relationship (p=0,000). This 

is also a positive relationship so the longer the length, the higher the chance that the cycler lives in a 

village.  

Figure 23: Logistic regression table of the location regressed over the length of the trips 

 

Lower 

Bound

Upper 

Bound

[Dur_hour = 1,00] -1,844 0,021 7868,260 1 0,000 -1,884 -1,803

[Dur_hour = 2,00] -0,980 0,018 2942,555 1 0,000 -1,015 -0,945

[Dur_hour = 3,00] -0,470 0,017 730,445 1 0,000 -0,504 -0,436

[Dur_hour = 4,00] -0,036 0,017 4,317 1 0,038 -0,069 -0,002

[Dur_hour = 5,00] 0,398 0,017 528,065 1 0,000 0,364 0,432

[Dur_hour = 6,00] 0,875 0,018 2413,876 1 0,000 0,840 0,910

[Dur_hour = 7,00] 1,339 0,019 5142,747 1 0,000 1,302 1,375

[Dur_hour = 8,00] 1,857 0,020 8438,265 1 0,000 1,818 1,897

[Dur_hour = 9,00] 2,414 0,023 11181,829 1 0,000 2,369 2,459

[Dur_hour = 10,00] 3,121 0,028 12294,008 1 0,000 3,066 3,176

[Dur_hour = 11,00] 4,051 0,040 10171,722 1 0,000 3,972 4,130

Village 0,207 0,020 109,684 1 0,000 0,168 0,246

City 0
a 0

Threshold

Location

Link function: Logit.

a. This parameter is set to zero because it is redundant.

Estimate Std. Error Wald df Sig.

95% Confidence 

Interval

Lower 

Bound

Upper 

Bound

[Length = 1,00] -2,261 0,023 9384,294 1 0,000 -2,307 -2,215

[Length = 2,00] 0,085 0,018 23,483 1 0,000 0,051 0,120

[Length = 3,00] 1,834 0,020 8136,299 1 0,000 1,794 1,874

[Length = 4,00] 4,717 0,052 8381,551 1 0,000 4,616 4,818

[Length = 5,00] 7,625 0,209 1329,370 1 0,000 7,215 8,035

[Length = 6,00] 8,969 0,409 481,929 1 0,000 8,168 9,770

Village 0,298 0,021 209,684 1 0,000 0,258 0,338

City 0
a 0

Threshold

Location

Link function: Logit.

a. This parameter is set to zero because it is redundant.

Estimate Std. Error Wald df Sig.

95% Confidence 

Interval



Thus, the outcomes are the same as in the previous chapter. The first part of the hypothesis does not 

hold, trip frequency is not significant so it is not possible to say that people who live in cities cycle 

more often. However, the second part of the hypothesis does hold. Duration, duration in the first 

hour and length are all significant and show a positive relation so the longer the trip (both in time 

and kilometres) the higher the chances that that person lives in a village. So, if the hypothesis would 

be changed to people who live in villages cycle longer than people who live in cities, the hypothesis 

would hold.  

4.3.2 Do people in cities use cycling for different kind of purposes than people in villages? 
The second hypothesis is that the purpose of people who cycle in villages is mostly work-home 

related and that the purpose of people who cycle in cities varies more. For this hypothesis I tested 

the relationship of the dependent variable purpose on the independent variable location. The 

variable purpose is a categorical variable, with ten different categories. I decided to separate each 

category and made it a dummy variable by either assigning a yes if the trip does have that purpose or 

a no if the trip does not have that purpose. The independent variable is also a categorical variable, so 

for this model it is necessary to do an extra step in SPSS, namely to put the variable in the categorical 

covariates box so SPSS can make it a dummy variable (Field, 2009). Now every purpose will be 

assessed individually.  

The first model shows a predicted value of 63,6% and the overall model was significant (p=0,000). If 

the purpose home is entered in the model, it is still significant (p=0,007) and the odds that a trip to 

home is made by someone who lives in a village is 1,065 times greater than by someone who lives in 

the city as can be seen in the table below. Thus, the purpose home significantly contributes to 

explaining whether someone lives in a village or a city. 

Figure 24: Binary logistic regression table of the location regressed over the purpose home 

 

The second model shows a predicted value of 64,0% and the overall model was significant (p=0,000). 

If the purpose paid work is entered in the model, it is still significant (p=0,011) and the odds that a 

trip to their paid job is made by someone who lives in a village is 1,061 times greater than by 

someone who lives in the city as can be seen in the table below. Thus, the purpose paid work 

significantly contributes to explaining whether someone lives in a village or a city. The outcomes are 

almost the same as the purpose home, which is not strange because most trips where made either to 

their job or back home.  

Figure 25: Binary logistic regression table of the location regressed over the purpose paid work 

 

  

Lower Upper

Location(1) 0,063 0,023 7,254 1 0,007 1,065 1,017 1,114

Constant -0,601 0,019 958,503 1 0,000 0,548
Step 1

a

a. Variable(s) entered on step 1: Location.

B S.E. Wald df Sig. Exp(B)

95% C.I.for EXP(B)

Lower Upper

Location(1) 0,059 0,023 6,414 1 0,011 1,061 1,013 1,110

Constant -0,616 0,019 1005,029 1 0,000 0,540
Step 1

a

a. Variable(s) entered on step 1: Location.

B S.E. Wald df Sig. Exp(B)

95% C.I.for EXP(B)



The third model shows a predicted value of 96,2% and the overall model was significant (p=0,000). If 

the purpose non-daily groceries is entered in the model, it is still significant (p=0,002) but the 

relationship is negative. So, the odds that a trip is used to do non-daily groceries by someone who 

lives in a village is smaller than by someone who lives in the city as can be seen in the table below. 

Thus, the purpose non-daily groceries significantly contributes to explaining whether someone lives 

in a village or a city.  

Figure 26: Binary logistic regression table of the location regressed over the purpose non-daily groceries 

 

The fourth model shows a predicted value of 92,4% and the overall model was significant (p=0,000). 

If the purpose daily groceries is entered in the model, it is still significant (p=0,05) and the 

relationship is also negative. So, the odds that a trip is used to do daily groceries by someone who 

lives in a village is smaller than by someone who lives in the city as can be seen in the table below. 

Thus, the purpose daily groceries significantly contributes to explaining whether someone lives in a 

village or a city. It is interesting to see that doing groceries have a negative relationship to living in a 

village. This can be explained because there are more stores in cities usually so people spend more 

trips for shopping (both daily and non-daily groceries).   

Figure 27: Binary logistic regression table of the location regressed over the purpose daily groceries 

 

The models where the predicted values were between 91,1% and 100% and the overall model was 

significant (p=0,000) but where not significant anymore when the variable were added were, the 

purpose social, recreation, services, study and unknown. Respectively models 5, 6, 8, 9 and 10. So 

there is no relationship between these individual variables and the location of the cyclists. 

The seventh model shows a predicted value of 97,7% and the overall model was significant 

(p=0,000). If the purpose spare time is entered in the model, it is still significant (p=0,000) and this 

relationship is also negative. So, the odds that a trip is made to do something in their spare time by 

someone who lives in a village is smaller than by someone who lives in the city as can be seen in the 

table below. Thus, the purpose spare time significantly contributes to explaining whether someone 

lives in a village or a city. It is not surprising that the relationship between spare time and the 

location (village) is negative because cities have usually more entertainment like, cinemas, 

restaurants, theatres etc than villages so people who live in cities can more easily use them.   

Figure 28: Binary logistic regression table of the location regressed over the purpose spare time 

 

Lower Upper

Location(1) -0,175 0,057 9,545 1 0,002 0,839 0,751 0,938

Constant -3,118 0,046 4581,432 1 0,000 0,044
Step 1

a

a. Variable(s) entered on step 1: Location.

B S.E. Wald df Sig. Exp(B)

95% C.I.for EXP(B)

Lower Upper

Location(1) -0,116 0,041 7,942 1 0,005 0,890 0,821 0,965

Constant -2,417 0,034 5101,243 1 0,000 0,089
Step 1

a

a. Variable(s) entered on step 1: Location.

B S.E. Wald df Sig. Exp(B)

95% C.I.for EXP(B)

Lower Upper

Location(1) -0,266 0,071 13,969 1 0,000 0,767 0,667 0,881

Constant -3,567 0,057 3947,349 1 0,000 0,028
Step 1

a

a. Variable(s) entered on step 1: Location.

B S.E. Wald df Sig. Exp(B)

95% C.I.for EXP(B)



So, of all the purposes only half are significant and have a direct relationship with the location of the 

cyclists, these are home, paid work, non-daily groceries, daily groceries and spare time. The purposes 

home and paid work were the only one with a positive relationship, this means that people who 

cycle to either home or work have a higher chance of living in a village in North-Brabant. Non-daily 

groceries, daily groceries and spare time have a negative relationship, thus there was a higher chance 

that people who cycled a trip with this purpose are living in a city in North-Brabant. One possible 

reason behind this can be that facilities are close-by in cities so people are more inclined to separate 

purposes per trip and that people in villages combine their trips more. Thus, the hypothesis is true. It 

would be interesting to do a follow-up research to find out if people in villages indeed combine their 

trips more than people in cities.   

 

  



5. Conclusion 
This thesis aimed to research the influence of location on the trip length, duration and purpose of e-

bike users in North Brabant. It became apparent that researches on (e-)bicycle usage and the 

location of the user was limited; especially the question whether there is a difference in usage 

between urban and rural cyclists. This chapter will discuss the results of the previous chapter and link 

it to the literature.  

The data was derived from the Bicycle Stimulation Program Brabant (BSP). They followed 581 

participants from September 2013 until October 2014. These participants used the app B-Riders to 

follow their cycling trips and the purpose of these trips. The participants were paid to keep track of 

their trips and signed in for the program themselves (Timmermans & Feng, n.d.). Of these 581 

participants, 538 were allegeable for my research and used in this thesis.  

One of the reasons why some participants didn’t partake in my thesis was that their home location 

was not in Brabant. Due to the fact that location the most important factor was for my research, I 

first had to research what the general difference of rural and urban space was. Rural space was long 

seen as a servant of the urban space and in modern time as a declining space due to the large 

migration to cities. Although this migration is still happening, rural areas renewed themselves and 

thereby revitalized the rural space. Agriculture, for example, is not only used for production but also 

to give an experience of the rural landscape to urban and foreign visitors (Galani-Moutafi, 2013). The 

rural represents an “idealization of the rural and a nostalgia for a simpler way of life” (Galani-

Moutafi, 2013). On the other hand, urbanism is, according to Halfacree (1993), “characterized as 

being dynamic, unstable, mobile in stratification and impersonal, with contacts being determined by 

one’s precise situation at the time (work, home, leisure)”. Although this still holds, there are many 

other versions of urban space. As for versions where rural and urban are so much intertwined that it 

is not clear where urban begins and rural ends. That is why it is in this age almost impossible to make 

a clear distinction between the two. One way to still do that is to look up which cities have city rights 

and consider all the other places as villages. This method was used for this thesis. 

5.1 The different frequencies of the trips 
The first hypothesis people who live in cities make more frequently trips but these trips are shorter 

than the trips made by people who live in villages was based on researches by Heinen et al. (2010), 

Rietveld & Daniel (2004) and Pucher & Buehler (2010). They stated that people in cities cycle more 

for a couple of reasons, firstly because facilities are close by so it is easier to make a couple of 

different trips per day instead of combining it within one trip. Secondly, there is more traffic in cities 

which causes congestion so it can be quicker to use a bicycle. Thirdly, there are more policies in city 

centres that prohibits cars or make it expensive to park so cycling is easier and cheaper. Fourthly, in 

rural areas there is more space for car parking and thus an extra incentive to use the car. Small- and 

medium-sized cities (which most cities in Brabant are) are the best for bicycle use due to their 

geographic size which “may be naturally more supportive of cycling or at least more easily modified” 

(Pucher & Buehler, 2010). Larger cities or metropolitan areas do have the advantages as smaller 

cities with regard to the close by facilities, the car congestion and the policies against cars but 

bicycles also compete with public transport and the fear of bicycle theft which makes not only bicycle 

use less attractive but it also has a negative effect on the ownership of e-bikes (Zhang et al., 2013). 

So, the target areas for planners and city councils for promoting e-bikes are rural areas, because car 

use is still the major transportation use, and small- and medium-sized cities, because inhabitants of 

these cities are already positive towards ‘normal’ cycling.  



This pattern was also seen in the outcome of the t-tests and logistic regression model. Both analyses 

showed that the first hypothesis was partly true. The t-tests showed that the first part, people who 

live in cities make more frequently trips, did not hold because the model was not significant. The 

second part, people who live in cities make shorter trips than people who live in villages, however did 

hold. All three variables were significant and they had a positive relationship. This makes sense 

because facilities, in general, are further apart in villages so they have to cycle longer to get there. 

The logistic regression model showed the same, the first part of the hypothesis did not hold, trip 

frequency was not significant so it is not possible to say that people who live in cities cycle more 

often. However, the second part of the hypothesis did hold. Duration, duration in the first hour and 

length were all significant and showed a positive relation, so the longer the trip (both in time and 

kilometres) the higher the chances that that person lives in a village. So, after analysing the data it 

can be concluded that if the hypothesis would be changed to e-cyclists who live in villages cycle 

longer than e-cyclists who live in cities, the hypothesis would hold in both models and corresponds 

with previous researches.  

5.2 The different purposes of the trips 
The second hypothesis the purpose of people who cycle in villages is mostly work-home related and 

that the purpose of people who cycle in cities varies more was mainly based on the researches of 

Pucher & Buehler (2010) and Rietveld & Daniel (2004). They stated that people in cities have more 

different options for recreational use, like restaurants, theatre, cinemas, which makes it easier for 

people in cities to go there regularly and that these facilities are more within bicycle reach in cities. 

Another reason is that city municipalities try to ban cars from the inner cities so when people go out, 

they are more inclined to use their bicycle. In graphs 1 and 2 this pattern, although not 

overwhelmingly clear, was also shown. There was a difference visible for groceries, daily and non-

daily, social, recreation and spare time. People in the cities made more trips with this purpose. 

For the second hypothesis I used a crosstabulation table and a binary logistic regression per purpose. 

In the first model, the Chi-Square was significant thus there is a relation between the purposes of the 

trip and the location of the respondents. This means that the second hypothesis holds, however it is 

not possible to see if there is a difference in the varies purposes and if some purposes are perhaps 

more important than others. This is why I also did a binary logistic regression. The outcome of that 

model was more in depth than the crosstabulation table. Of all the purposes only, half were 

significant and had a direct relationship with the location of the cyclists, these were home, paid work, 

non-daily groceries, daily groceries and spare time. The purposes home and paid work were the only 

one with a positive relationship, this means that people who cycle to either home or work have a 

higher chance of living in a village in North-Brabant. Non-daily groceries, daily groceries and spare 

time have a negative relationship, thus there was a higher chance that people who cycled a trip with 

this purpose are living in a city in North-Brabant. One possible reason behind this can be that 

facilities are close-by in cities so people are more inclined to separate purposes per trip and that 

people in villages combine their trips more. Thus, the hypothesis is true in both models and 

corresponds with previous researches.  

Thus, the GPS study conducted in Brabant is comparable to other, stated behaviour, researches and 

can be used to support other researches with the same subject.   

  



5.3 Future researches  
Both hypotheses were significant, although the first hypothesis should be slightly adjusted, which 

means that my research can be used to support previous researches. This is an asset because there 

are not (yet) many researches that use GPS data and the previous researches used in the theoretical 

framework were all based on stated behaviour (obtained by surveys).  

There are three angles that makes the outcome of this research interesting for next researches. The 

first one is off course, the roll of e-bikes.  E-bikes are increasing in popularity, especially in countries 

in Asia and this can change traffic dynamics (Dozza et al., 2016). An interesting question would be 

how the infrastructure can be changed that even more people are willing to cycle more or further 

from their homes. Another interesting question would be to compare e-bike usage with normal 

bicycle usage and see if there are any differences. Or to combine GPS data with surveys to discover 

more about the reasoning of why people make the decision they make concerning cycling.  And last 

to do this study with an unbiased GPS track dataset.  

The second angle is to measure urbanity differently. In my thesis I saw urban and rural areas, on 

purpose, as independent spaces that do not overlap, but this is not true in the real world. If my 

research could be expanded to a research where the intertwining between them is also taken into 

account and the different levels of urbanity, then it would give a more in-depth and realistic view of 

how e-bike cycles behave. However, it doesn’t only have implications for new researches but also for 

development policies. Infrastructure, revenues, costs and public service also need to be more 

intertwined to benefit all the regions that are connected (Irwin et al., 2009). 

The third angle is to improve GPS data and to use my thesis as an example of how to analyse GPS 

data.  GPS will never be perfect and there are some major implications. The first one, is that the 

reception is not ideal in urban settings, especially when people walk in-and-out of buildings, 

reception can get lost or reflections of other buildings can confuse the signal. And the second one, is 

the improvement of the software to increase the speed of data processing. Nowadays a 

determination of research is the limitation of the scale, if software to process the data would be 

upgraded this would be less of a concern (Carlson et al., 2014; Spek at al., 2009). However, if 

reception and process software will be improved more, researches can use more real-time data and 

have a more realistic view of processes.  

5.4 Reflection on the research 
This research was a lot harder than I expected beforehand. Specially to learn Python and work with it 

to get the parts of data I needed was much more difficult. I appreciate the help of my supervisor, 

Simon Scheider, for helping me with this, because otherwise this thesis wouldn’t be here.  

Another part where I struggled with was my previous experience with my bachelor thesis. It took me 

4 different theses to finally get one that was sufficient to pass and this was my biggest fear to happen 

this time as well. This held me back to get the help I needed and to just do it and write.  

The subject, however, was super interesting. I did not know a lot about cycling let alone of e-bikes 

and the insights I got from working on this thesis were really interesting and I learned a lot. So, in the 

end I am content with my choice for this thesis subject and to work, for the first time, with such a 

large GPS data sample and to learn (the beginnings) of coding with Python.  
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7. Appendix 

7.1 Python scripts  
These are the python scripts that were used for this thesis:  

 

 

 
 
 



#------------------------------------------------------------------------------- 
# Name:        module1 
# Purpose: 
# 
# Author:      Didde 
# 
# Created:     03-09-2017 
# Copyright:  (c) Didde 2017 
# Licence:     <your licence> 
#------------------------------------------------------------------------------- 
 
import json 
import pandas as pd 
from datetime import datetime, timedelta 
 
with open ("joinedtracks/Villages/stats.json", "rb") as f: 
    stats = json.load(f) 
 
tracks = [ ] 
for person, cycle_stats in stats.items ( ): 
    durations = cycle_stats['durationtable']['difference'] 
    track_lengths = cycle_stats['tracklength'] 
    for track, duration in durations.items(): 
        duration = datetime.strptime(duration, "%w days %H:%M:%S").time() 
        try: 
            track_length = track_lengths[track] 
        except KeyError: 
            continue 
        else: 
            tracks.append((track, person, duration, track_length)) 
 
df = pd.DataFrame(tracks, columns=["track", "person", "duration","track_length"]).set_index("track") 
print df.head() 
df.to_excel("test.xlsx") 
 



7.2 Excel sheet 
PURPOSE       

Cities Amount  Percentage Median 75 quartile  
Home 4108  35,43 4,34 8,96  
Paid work 4066  35,07 4,34 8,96  
Non-daily groceries 491  4,23 4,34 8,96  
Daily groceries 949  8,19 4,34 8,96  
Social 1068  9,21 4,34 8,96  
Recreation 516  4,45 4,34 8,96  
Spare time 318  2,74 4,34 8,96  
Services 51  0,44 4,34 8,96  
Study 26  0,22 4,34 8,96  
Unknown 1  0,01 4,34 8,96  
Total  11594  100    

       

       

       

Villages Amount  Percentage Median 75 quartile  
Home 9723  36,86 3,91 8,37  
Paid work 9604  36,41 3,91 8,37  
Non-daily groceries 944  3,58 3,91 8,37  
Daily groceries 1940  7,36 3,91 8,37  
Social 2298  8,71 3,91 8,37  
Recreation 1121  4,25 3,91 8,37  
Spare time 559  2,12 3,91 8,37  
Services 117  0,44 3,91 8,37  
Study 67  0,25 3,91 8,37  
Unknown 3  0,01 3,91 8,37  
Total  26376  100    

       
 

  



LENGTH IN KM      

Cities Amount  Percentage Median 75 quartile  
0-0,99 1045  9,01 9,01 22,83  
1-7,49 5126  44,21 9,01 22,83  
7,5-14,99 3689  31,82 9,01 22,83  
15-29,99 1604  13,83 9,01 22,83  
30-59,99 124  1,07 9,01 22,83  
60-89,99 6  0,05 9,01 22,83  
90 -> 0  0,00 9,01 22,83  
Total 11594  100    

       

       

       

Villages Amount  Percentage Median 75 quartile  
0-0,99 1945  7,37 7,37 26,47  
1-7,49 9713  36,83 7,37 26,47  
7,5-14,99 10180  38,60 7,37 26,47  
15-29,99 4251  16,12 7,37 26,47  
30-59,99 270  1,02 7,37 26,47  
60-89,99 11  0,04 7,37 26,47  
90 -> 6  0,02 7,37 26,47  
Total 26376  100    

       

NUMBER OF TRIPS      

Cities Amount  Percentage Median 75 quartile  
10-30 26  16,25 12,81 21,09  
31-60 43  26,88 12,81 21,09  
61-90 39  24,38 12,81 21,09  
91-120 32  20,00 12,81 21,09  
121-150 15  9,38 12,81 21,09  
151-180 3  1,88 12,81 21,09  
181-210 1  0,63 12,81 21,09  
211-> 1  0,63 12,81 21,09  
Total 160  100    

       

       

       

Villages Amount  Percentage Median 75 quartile  
10-30 58  15,43 11,17 19,61  
31-60 115  30,59 11,17 19,61  
61-90 100  26,60 11,17 19,61  
91-120 65  17,29 11,17 19,61  
121-150 26  6,91 11,17 19,61  
151-180 7  1,86 11,17 19,61  
181-210 4  1,06 11,17 19,61  
211-> 1  0,27 11,17 19,61  
Total 376  100    

 



DURATION       

Cities Amount  Percentage Median 75 quartile  
00:00:00 - 00:15:59 4431  38,22 0,09 3,40  
00:16:00 - 00:30:59 3494  30,14 0,09 3,40  
00:31:00 - 00:45:59 2215  19,10 0,09 3,40  
00:46:00 - 01:00:59 1110  9,57 0,09 3,40  
01:01:00 - 01:15:59 156  1,35 0,09 3,40  
01:16:00 - 01:30:59 104  0,90 0,09 3,40  
01:31:00 - 01:45:59 48  0,41 0,09 3,40  
01:46:00 - 02:00:59 12  0,10 0,09 3,40  
02:01:00 - 02:30:59 9  0,08 0,09 3,40  
02:31:00 - 03:00:59 5  0,04 0,09 3,40  
03:01:00 - 03:30:59 5  0,04 0,09 3,40  
03:31:00 - 04:00:59 4  0,03 0,09 3,40  
04:01:00 - 04:30:59 0  0,00 0,09 3,40  
04:31:00 - 05:00:59 1  0,01 0,09 3,40  
05:01:00 - 05:30:59 0  0,00 0,09 3,40  
05:31:00 - 06:00:59 0  0,00 0,09 3,40  
Total 11594  100    

       

       

       

Villages Amount  Percentage Median 75 quartile  
00:00:00 - 00:15:59 8392  31,82 0,17 4,04  
00:16:00 - 00:30:59 8311  31,51 0,17 4,04  
00:31:00 - 00:45:59 6250  23,70 0,17 4,04  
00:46:00 - 01:00:59 2337  8,86 0,17 4,04  
01:01:00 - 01:15:59 641  2,43 0,17 4,04  
01:16:00 - 01:30:59 226  0,86 0,17 4,04  
01:31:00 - 01:45:59 101  0,38 0,17 4,04  
01:46:00 - 02:00:59 54  0,20 0,17 4,04  
02:01:00 - 02:30:59 34  0,13 0,17 4,04  
02:31:00 - 03:00:59 7  0,03 0,17 4,04  
03:01:00 - 03:30:59 5  0,02 0,17 4,04  
03:31:00 - 04:00:59 4  0,02 0,17 4,04  
04:01:00 - 04:30:59 7  0,03 0,17 4,04  
04:31:00 - 05:00:59 4  0,02 0,17 4,04  
05:01:00 - 05:30:59 1  0,00 0,17 4,04  
05:31:00 - 06:00:59 2  0,01 0,17 4,04  
Total 26376  100    

       
 

  



DURATION FIRST 
HOUR       

Cities Amount  Percentage Median 75 quartile  
00:00:00 - 00:05:59 1502  13,35 8,44 10,91  
00:06:00 - 00:10:59 1707  15,17 8,44 10,91  
00:11:00 - 00:15:59 1221  10,85 8,44 10,91  
00:16:00 - 00:20:59 1176  10,45 8,44 10,91  
00:21:00 - 00:25:59 1246  11,08 8,44 10,91  
00:26:00 - 00:30:59 1072  9,53 8,44 10,91  
00:31:00 - 00:35:59 827  7,35 8,44 10,91  
00:36:00 - 00:40:59 762  6,77 8,44 10,91  
00:41:00 - 00:45:59 626  5,56 8,44 10,91  
00:46:00 - 00:50:59 467  4,15 8,44 10,91  
00:51:00 - 00:55:59 382  3,40 8,44 10,91  
00:56:00 - 01:00:59 261  2,32 8,44 10,91  
Total 11249  100    

       

       

Villages Amount  Percentage Median 75 quartile  
00:00:00 - 00:05:59 2911  11,51 8,76 11,59  
00:06:00 - 00:10:59 2274  8,99 8,76 11,59  
00:11:00 - 00:15:59 3206  12,68 8,76 11,59  
00:16:00 - 00:20:59 2073  8,20 8,76 11,59  
00:21:00 - 00:25:59 3242  12,82 8,76 11,59  
00:26:00 - 00:30:59 2996  11,85 8,76 11,59  
00:31:00 - 00:35:59 2552  10,09 8,76 11,59  
00:36:00 - 00:40:59 2155  8,52 8,76 11,59  
00:41:00 - 00:45:59 1543  6,10 8,76 11,59  
00:46:00 - 00:50:59 1200  4,75 8,76 11,59  
00:51:00 - 00:55:59 675  2,67 8,76 11,59  
00:56:00 - 01:00:59 462  1,83 8,76 11,59  
Total 25289  100    

       

       
 

  



7.3 Output t-tests and cross tabulation  

 

 

 





 

 

 

  



7.4 Output logistic regression analysis 

7.4.1 Number of tracks 

 

 



 

  



7.4.2 Duration 

 

 



 

 

  



7.4.3 Duration in the first hour 

 



 

 

  



7.4.4 Length 

 



 

 

 

  



7.4.5 Purpose: Home 

 

 



 

 



 

 



 

  



7.4.6 Purpose: Paid work 

 

 



 

 



 

 



 



7.4.7 Purpose: Non-daily groceries 

 

 



 

 



 

 



 

  



7.4.8 Purpose: Daily groceries 

 



 

 



 

 



 

  



7.4.9 Purpose: Social 

 



 

 



 

 



 

  



7.4.10 Purpose: Recreation 

 



 

 



 

 



 

  



7.4.11 Purpose: Spare time 

 



 

 



 

 



 

  



7.4.12 Purpose: Services 

 



 

 



 

 



 

  



7.4.13 Purpose: Study 

 

 



 



 

 



 

  



7.4.14 Purpose: Unknown 

 

 



 



 

 



 

 

 
 

 


