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ABSTRACT 

Large-scale land acquisitions (LSLAs) for agricultural sector have grown significantly in the 

past decade, and are mostly prevalent in developing countries. Because LSLAs are not without 

negative effects on the environment and local communities, and because information about 

them is scarce and difficult to obtain, systems allowing LSLAs detection, characterization and 

monitoring in space and time are needed.  With the increasing availability of global satellite 

data products, technological development in cloud computing, image and data mining 

analysis, remote sensing has evolved to an interesting tool for the detection and 

characterization of changes in land use systems.  

This study presents a novel approach to generically detect and characterize LSLAs at regional 

spatial extents. In order to capture and analyse the full range of land use spectral and spatial 

signatures related to agricultural LSLAs, this study is based on a 2-level data driven approach 

(Self-Organizing Maps followed by a clustering algorithm), consisting of two phases: 1) land 

use/land cover change detection at regional scale within dense temporal stacks of vegetation 

indices (MODIS-NDVI, 250m) and 2), discrimination of different land use/land cover classes 

using a set of spectral vegetation indices, textural features and shape metrics computed from 

landscape-extracted objects (Landsat-8, 30m). Evaluation of the methodology is performed 

against a ground truth database on LSLAs in Senegal. 

Results obtained during this exploratory research, are promising and provide some insights 

in agricultural LSLAs in the northern half of Senegal. With a very limited number of 

discriminative features (consisting of two Vegetation Indices and two textural features), 

detection of agricultural LSLAs is possible. Recommendations are given for enhancement of 

the generalization performance of the unsupervised classifier. 
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1 INTRODUCTION 

1.1 RESEARCH PROBLEM 
Large scale land acquisitions (LSLAs), often referred as “land grabbing”, refers to the 

purchase, lease, concession, or occupation of large pieces of land by individuals, states or 

companies (domestic or foreign) for agricultural purposes (food crop, fodder crop, biofuel), 

logging, tourism, conservation, mining, urban expansion or large infrastructural works (Batterbury 

et al., 2018; Kaag et al., 2014). This study deals with agricultural LSLAs, the most common 

type of LSLAs, principally driven by the food crisis and the demand for biofuels. Given the 

availability of favourable biophysical resources and the lack of strong land tenure regulations, 

those large-scale land investments are mostly prevalent in developing countries, with  almost 

75% of LSLAs located in the sub Saharan Africa (representing around 50 million hectares) 

(Batterbury et al., 2018; Kaag et al., 2014; Messerli et al., 2014; Osabuohien, 2014; Sparks, 2012). 

Because land grabbing is not without negative effects on the environment and local 

communities, and because information about them is scarce and difficult to obtain, 

(Batterbury et al., 2018; Kaag et al., 2014), systems allowing LSLAs detection, characterization 

and monitoring in space and time (installation, abandonment, etc.) are needed.  

With the increasing availability of global satellite data products, technological development 

in cloud computing, image and data mining analysis, remote sensing has evolved to an 

interesting tool for the detection and characterization of changes in land use systems. Its 

repetitive coverage at short intervals and consistent image quality, combined with the free-of-

cost availability of dense temporal series of satellite images (SITS), have explained their wide 

use in land use and land cover (LULC) change detection studies (Arvor et al., 2012; Leroux et 

al., 2017; Wardlow et al., 2007). Land use systems such as LSLAs are however more difficult 

to detect. Because (agricultural) LSLAs are the manifestation of complex human-environment 

dynamics in a given place, they are not directly observable from remote sensing images 

(Kuemmerle et al., 2013). While their detection is often impossible based on land cover 

observations only (there is no one-to-one relation between land cover and functionality), these 

land use systems may however be inferred from observable activities, structural elements in 

the landscape (e.g. presence of pivot irrigation systems) or spatio-temporal characteristics at 

different scales (Hentze et al., 2017; Jain et al., 2013; Steeg et al., 2010; Verburg et al., 2009).  

This research aims to explore the potential of remote sensing data to detect and characterize 

agricultural LSLAs at different scales. The challenge here is to relate the radiometric signal 

(value, spatial pattern and dynamic), which is sensitive to the biophysical properties of the 

surface, to the land use system in place. In this research, remote sensing indicators and 

methods are reviewed and a conceptual approach is proposed and tested on a set of study 

sites in Senegal. 
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1.2 RESEARCH OBJECTIVE 

1.2.1 Scope 

Because most of the studies attempting to map cropland fields have relied on site-specific 

predefined ground truth data, there is a current need of developing generic and unsupervised 

approaches not to only map cropland fields, but also to detect land use system changes (Bey 

et al., 2020; Graesser et al., 2017; Stefanski et al., 2014; Timmermans, 2018; Watkins et al., 2019b; 

Yan et al., 2014).   

This study builds on a previous exploratory study, performed in partnership in ISRA and 

CIRAD, which tested two time series change detection algorithms (namely BFAST01 and 

BFAST) in their ability to automatically detect agricultural LSLAs in Senegal (Ngadi, 2020).  

While both algorithms have proven their ability in detecting abrupt changes related to 

agricultural LSLAs’ installation, they differ in their precision and computational efficiency. 

More specifically, the difference between both algorithms lies in the regression model applied 

and in the number of breakpoints found. While BFAST relies on a season-trend model and 

finds the optimum number of breakpoints that minimizes the residual sum of squares of the 

regression model, BFAST01 does not perform any season-trend decomposition and selects the 

best linear model between a model with 0 and a model assuming a single breakpoint. The 

latter makes BFAST01 almost ten time faster than BFAST, which is hardly applicable at 

regional scales. However, the drawback with BFAST01 is that because it detects only one 

breakpoint (the strongest one), it is not always related to anthropogenic changes but may also 

be related to climatological events, leading to ‘false positives’. That is why much work has 

still to be done in order to implement an effective approach based on change detection 

algorithms, to automatically detect LSLAs.  

This thesis aims to fill the gap by exploiting the best of both algorithms in their ability to detect 

agricultural LSLAs. Both algorithms will be used in combination with an object-based image 

analysis and unsupervised classifier in order to detect and characterize agricultural LSLAs.  

1.2.2 Relevance 

The importance of this topic is twofold:  

1- As the ability of developing countries to reduce poverty and hunger is strongly linked to 

agriculture, the quantification and monitoring of phenomenon such as LSLA is particularly 

important due to the various impacts it has on local communities. 

2- In the context of Global Changes and with the increasing availability of remote sensing data 

at different spatial and temporal resolutions, the development of an automatic approach to 

detect and monitor on a near-real time basis LULC changes is highly needed. 

1.2.3 Research objectives and questions 

This thesis aims to explore the potential of remote sensing data to detect and characterize 

agricultural LSLAs at different scales. This goal is subdivided into the two sub-objectives 

below: 
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Sub-objective 1: Detect potential agricultural LSLAs’ installation automatically at regional 

scale using change detection algorithms and medium resolution satellite (MODIS 250m) 

temporal series  

- RQ 1.1: Which method allows discriminating climate-induced breakpoints in MODIS 

NDVI time series from “anthropogenic” ones?  

Sub-objective 2: Discriminate detected potential agricultural LSLAs from other spatial 

processes (e.g.: agglomerated smallholder farms, LSLAs for conservation purposes…) using 

higher resolution satellite imagery (Landsat 8)   

- RQ 2.1: Which spatio-temporal characteristics of agricultural LSLAs are transferrable 

to indicators and spatial metrics that can be derived from satellite imagery? 

- RQ 2.2: Do the metrics of question 2.1 allow distinction between different type of 

agricultural LSLAs and environments?  

- RQ 2.3: Is the proposed methodology suitable for automatically discriminate 

agricultural LSLAs at regional scale?  

 

2 THEORETICAL BACKGROUND 

2.1 WHAT ARE LARGE-SCALE LAND ACQUISITIONS? 

2.1.1 Definition 

Large scale land acquisitions (LSLAs), often referred as “land grabbing”, refers to the 

purchase, lease, concession, or occupation of large pieces of land by individuals, states or 

companies (domestic or foreign) for agricultural purposes (food crop, fodder crop, biofuel), 

logging, tourism, conservation, mining, urban expansion or large infrastructural works (Batterbury 

et al., 2018; Kaag et al., 2014). If we consider the negative effects that LSLAs often have on the 

environment and local communities (Batterbury et al., 2018; Kaag et al., 2014), a broader 

definition would be the one suggested by Baker-Smith & Attila (2016), who defined land 

grabbing as:  “[…] the control (whether through ownership, lease, concession, contracts, 

quotas, or general power) of larger than locally-typical amounts of land by any person or 

entity (public or private, foreign or domestic) via any means (‘legal’ or ‘illegal’) for purposes 

of speculation, extraction, resource control or commodification at the expense of peasant 

farmers, agroecology, land stewardship, food sovereignty and human rights.”. The reported 

negative effects, added to the often lack of centralized, digital and up-to-date records within 

governments, explain the lack of transparency surrounding most of the deals (even if largely 

legal). This lack of transparency combined to the speed and scale of the expansion seen during 

this last decade, make monitoring and quantification of LSLAs a very difficult task, which is 

illustrated by discrepancies between published numbers  (Baker-Smith et al., 2016; Batterbury 

et al., 2018; Schoneveld, 2011). As an example, while Oxfam (2011) estimated the land under 
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acquisition in Africa to about 34 million hectares, the Oakland Institute in 2009 alone 

estimated it to about 60 million (Batterbury et al., 2018). In any event, even if no one knows 

exactly how much land is involved, it can be taken for granted that the area involved is huge 

and growing (Kaag et al., 2014; Lazarus, 2014). 

This study deals with agricultural LSLAs, the most common type of LSLAs, which are 

principally driven by the food crisis and the demand for biofuels. According to Oxfam (2011), 

37% of total LSLAs would be dedicated to food production, while 35% would be dedicated to 

crop production for biofuel (Kaag et al., 2014). Given the availability of favourable biophysical 

resources and the lack of strong land tenure regulations, those investments are mostly 

prevalent in developed countries (Batterbury et al., 2018; Kaag et al., 2014; Messerli et al., 2014; 

Osabuohien, 2014; Sparks, 2012). More precisely, almost 75% of LSLAs would be located in 

the sub Saharan Africa (representing around 50 million hectares) (Sparks, 2012).  

Agricultural LSLAs have been defined as the “taking possession of and/or controlling a scale 

of land for commercial/industrial agricultural production that is disproportionate in size in 

comparison to the average land holding in a region” (FIAN, 2010). While the FAO suggested 

LSLAs involve more than 1000 ha in a single deal (Batterbury et al., 2018), other authors as 

FIAN (2010) or Baker-Smith & Attila (2016) suggested to take into account the average land 

holding in the region (see Table 1). As an example, in Africa where 69 % of farms are smaller 

than 2 ha, a land deal above 5 hectares may already be considered as an agricultural LSLA 

(Bey et al., 2020). In European countries such as Romania, land investments are considered as 

LSLAs when the area contracted is equal or above 50 ha, as farms exceeding  50 ha represent 

less than 1% of the total national holdings (Baker-Smith et al., 2016). Most single land deals 

however, involve several hundred or a few thousand hectares at a time, with some exceptions 

that encompass areas that are several orders of magnitude larger (Cotula, 2012). It is 

interesting to note that besides single land acquisitions, LSLA may also take form of a 

conglomerate of smaller acquisitions involving various actors (Kaag et al., 2014). 

 

Table 1: Estimate farm sizes of selected regions of the world  (source: Debats et al. 2016) 

 

Agricultural LSLAs are not directly observable from remote sensing images. In order to detect and 

analyse agricultural LSLAs by remote sensing, agricultural LSLAs’ spatio-temporal characteristics need 

to be determined first.  
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2.1.2 Agricultural LSLAs spatio-temporal characteristics 

Agricultural LSLAs, as any agricultural land use systems (ALUS), are spatially and temporally 

described by three components: crop succession (crop rotation and fallowing), cropping 

pattern (single tree crop planting pattern, sequential cropping, and 

intercropping/agroforestry), and cropping techniques (irrigation, soil tillage, harvest and 

post-harvest practices, crop varieties, and agro-ecological infrastructures) (Bégué et al., 2018; 

see figure 1). 

 

Figure 1: Cropping land use system components   (Source: Bégué et al. 2018) 

As one can see in figure 1, ALUS encompass a wide variety of spatial and temporal patterns. 

However, most agricultural LSLAs share some typical characteristics. 

Firstly, agricultural LSLAs are highly dynamic land use systems, characterized by rapid 

transformations at vast spatial scales, with frequent changes occurring in their operational 

status  (planned, started, cancelled, etc.), areal extent (implementations usually begin on a 

smaller scale than the one under contract) and usage (Cotula, 2012; Kaag et al., 2014; Lazarus, 

2014; Messerli et al., 2014).  As a consequence, any technique able to detect land cover abrupt 

changes, occurring fast at vast spatial scales, may work as a first filter to detect agricultural 

LSLAs installations at large spatial scales. 

Small and large-scale agriculture do not only differ in terms of area of land cultivated but also 

in terms of agricultural intensification. While smallholder agriculture often relies on family 

labour, surface water and rainwater, and low levels of inputs (land area, technology, 
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mechanization, agrochemicals…), large-scale agriculture tends to use high levels of the same 

inputs leading to the practice of an intensive agriculture (Debats et al., 2016; Kuemmerle et 

al., 2013; Ozdogan et al., 2010; Stefanski et al., 2014).  Agricultural LSLAs often involve  

investment in irrigation and monoculture crops which dominate most land under acquisition 

(Batterbury et al., 2018). As a result, irrigated fields are not scattered across the landscape but 

they are very often located close to water resources such as rivers, ponds, reservoirs or lakes 

(Vogels et al., 2019a). A recent survey of 220 investors in Mozambique revealed that 83% 

involved some form of mechanization, 90% applied agricultural inputs and 52% were fully 

irrigated (Bey et al., 2020). In comparison, at the African scale where most of the farmers are 

smallholder farmers, only 6.4% of the total cultivated areas are under irrigation (Frenken, 

2005). In addition, agricultural LSLAs generally involve fertile soils, in low-density areas with 

sufficient or good irrigation potential, preferably with good road access. With the saturation 

of fertile soils and the technological advances, more marginal and vulnerable areas are also 

being targeted. Methodologies able to quantify land use intensity may then be helpful in 

detecting agricultural LSLAs at regional/local scales. 

As aforementioned, smallholder and large-scale agriculture differ in the degree of 

mechanization applied, which lead to spatial differences. As a result of the low degree of 

mechanization, smallholder agriculture usually produce multiple crop types (by 

intercropping or by mixed cropping) (Vogels et al., 2019a), leading to complex and fragmented 

landscapes (Debats et al., 2016). Large-scale agriculture at the opposite, produce less 

fragmented landscapes, with more “geometrical” and homogeneous spatial patterns. As a 

consequence, methodologies able to compute landscape metrics at higher spatial resolution 

may then be useful to discriminate agricultural LSLAs from smallholder agriculture. 

In conclusion, detection and characterization of agricultural LSLAs may benefit from 

combinations of one or more methodologies capable of 1) detecting land cover/land use 

changes, 2) quantifying crop field-sizes and qualifying land use patterns, and 3) quantifying 

agriculture intensity.  A review of the most commonly remote-sensing analysis techniques 

applied to land use and land cover (LULC) studies, with key related works aiming to 

characterize and monitor agricultural land use systems, is presented in the next section.   

 

2.2 REMOTE SENSING FOR LAND USE SYSTEM MONITORING 

2.2.1 Introduction 

The increasing scale, pace, and intensity of climatic and anthropogenic environmental 

transformations, enhance the need of land use system mapping at different scales (Bégué et 

al., 2015; Brown et al., 2007; Wardlow et al., 2007). While land cover addresses the description 

of the land surface in terms of soil and vegetation layers, land use system (LUS), such as the 

one represented by LSLA, is defined as a coupled human-environment system in which land 

use and land management are described in time and space (Bégué et al., 2015; Kuemmerle et 

al., 2013). Timely and consistent monitoring of land use systems at different scales is needed 
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to better understand the role and response of regional practices in relation to various 

environmental issues, and for better decisions with respect to food security. 

Even though land cover changes over time such as deforestation due to agricultural expansion 

have been widely studied (Graesser et al., 2018), progress has been less rapid in monitoring 

land use systems such as LSLAs. According to Bégué et al. (2018), less than 10% on the 

publications of remote sensing and agriculture focus on cropping systems. Furthermore, high 

variability in agricultural practices (see figure 1)/environmental conditions (reflected in 

spectral response and spatial patterns), explains why most of the studies are performed at 

local scales. Due to this wide range of heterogeneity, ALUS are usually inferred from 

observable activities, such as structural elements in the landscape (e.g. presence of pivot 

irrigation systems) and spatio-temporal characteristics at different scales. Still, because of their 

complexity, methodological approaches often rely on local knowledge for interpretation, time 

and cost-expensive ground-based data and models (Debats et al., 2016; Hentze et al., 2017; 

Jain et al., 2013; Steeg et al., 2010; Stefanski et al., 2014; Verburg et al., 2009).  

As mentioned above, remote sensing provides crucial spectral and spatio-temporal 

information on LULC in the form of ever-increasing satellite image time series (SITS) and 

images. Different analysis techniques allowing extraction of unique vegetation phenological 

(seasonal vegetation variation) profiles, detection of abrupt/gradual changes and 

characterization of landscape elements arrangement are needed in order to discriminate 

ALUS types. Some of these techniques are presented in the next two sub-sections of section 

2.2.   While sub-section 2.2.2 is dedicated to SITS analysis, sub-section 2.2.3 focuses on image 

analysis. The last sub-section is dedicated to image classification techniques allowing to 

classify pixels or groups of pixels (objects) into different thematic classes. Because this thesis 

aims to rely as less as possible on supervised techniques needing often local-specific ground 

truth data, sub-section 2.2.4 focus on unsupervised classification techniques.  

2.2.2 Satellite Image Time Series (SITS) analysis 

a) Agricultural land use system characterization 

The study of vegetation indices (VIs) temporal dynamics allow monitoring of the seasonal 

vegetation variation (phenology). The latter, combined with expert knowledge of the local to 

regional agricultural practices, has allowed to identify major agricultural land use system 

(ALUS) types and some agricultural land use practices  such as: harvesting, irrigation (rainfed 

vs irrigated crops), multiple cropping, and fallowing frequency (Bégué et al., 2018; Bellón et 

al., 2017; Chen et al., 2018b; Kuemmerle et al., 2013; Wardlow et al., 2007). SITS have recently 

been useful in quantifying land use intensity, which is of particular interest to this study.  

Land use intensity mapping is challenging. As highlighted by Kuemmerle et al. (2013), land 

use intensity is a complex and multidimensional phenomenon, not directly observed through 

remote sensing. Cropping intensity, defined as the number of crops per year in a unit cropland 

area, is one of the major factors of agriculture intensification. While studies on vegetation or 

productivity trend  alone are  not enough to detect land use intensity, methodologies based 

on crop phenologies  extracted from high temporal-resolution datasets like MODIS, give good 
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results on large crop fields, with individual farm plots spanning ten to fifteen MODIS  pixels 

(Jain et al., 2013). Among the different studies attempting to characterize agricultural land use, 

studies aiming to detect irrigated agriculture are gaining popularity (Hentze et al., 2017; 

Ozdogan et al., 2010; Vogels et al., 2019a; b). Irrigated fields are usually more productive and 

active than rainfed agriculture, leading to differences in biomass and greenness remotely-

sensed indices.  In order to identify irrigated agriculture, methods mostly rely on temporal 

profiles and multi-temporal features of spectral indices (range, maximum…) in the visible, 

near-infrared bands and derived spectral features (NDVI being the most common), but also 

on SAR and metrics about the geometry and topology of croplands (Li et al., 2016; Vogels et 

al., 2019; Vogels et al., 2019). This is how, based on MODIS NDVI time series analysis and a 

change detection algorithm (BFAST), Hentze et al. (2017) were able to identify changes in 

cropping patterns (from/to irrigated farming) in Zimbabwe after a land reform. In addition to 

NDVI, different studies recommend the use of irrigation indices such as the NGI (Normalized 

Green Index) and the EGI (Excess Greenness Index), derived from the Greenness Index (GI), 

the Evaporative Fraction (ETRF) and the NDVI, in irrigation assessment (Ozdogan et al., 2010; 

Pun, 2019). Others such as Thenkabail et al. (2007) showed that some MODIS original spectral 

bands, especially band 5 (1240 nm) provided a good degree of discrimination between rainfed 

and irrigated areas (Bégué et al., 2018). Because separation of multiple vegetation types and 

spectral patterns at a regional scale is challenging, most of the studies have been conducted at 

local scale. However, coarse-spatial resolution satellite imagery (i.e. NOAA-AVHRR 1.1 km, 

SPOT-VGT 1.15km) with daily temporal resolutions, and medium-spatial resolution such as 

MODIS 250m are commonly used to characterize cropping systems in agricultural areas with 

relatively large fields (Bégué et al., 2018; Vintrou et al., 2012b; Wardlow et al., 2007). 

Among the analysis techniques commonly applied to SITS, one can find  Fourier harmonic 

analysis useful in identifying frequencies in time series from which multiple (sequential) 

cropping is inferred, fast Fourier transformation (FFT), wavelet techniques (Galford et al., 

2008), principal component analysis (Bellón et al., 2017), change detection analysis and 

decision trees (Thenkabail et al., 2007). Techniques such as Fourier or wavelet analysis provide 

a new representation of image time series but are based on a dimension reduction which 

implies a loss of information (Bégué et al., 2018). To address this issue, new techniques based 

on shape matching (e.g. Dynamic Time Warping approaches with temporal weights) are being 

used. While successful, results are less satisfactory  in highly fragmented and mixed cropping 

systems (Thenkabail et al., 2007).  

b) LULC trends and change detection 

In addition to land surface characterization, SITS have also been used to detect, estimate and 

characterize land surface changes and their drivers, which may be useful in detecting 

agricultural LSLAs installation. Changes in SITS may be gradual or abrupt, and may happen 

in the trend and/or seasonal component of the time series.  

While the trend component represents long-term changes in the time series signal, the 

seasonal factor relates to the periodic fluctuations of constant length (Almeida, 2017). Changes 

observed within a time series may therefore be a combination of seasonal and trend changes, 
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which need to be differentiated from noise that originates from remnant geometric errors, 

atmospheric scatter and cloud effects (Verbesselt et al., 2010a). It is commonly accepted that 

gradual trend changes are related to inter-annual climate variability and other processes such 

as land management or land degradation, while abrupt trend changes indicate ecosystem 

disturbances such as deforestation, urbanization, floods or fires (Verbesselt et al., 2010a). In 

contrast, changes in the seasonal component are driven by annual climatic interactions 

(Verbesselt et al., 2010b). In western Sahel, where precipitation is very often the constraining 

factor on vegetation productivity, seasonal changes are mostly driven by rainfall variability. 

Because seasonal variations may mask underlying trend changes, seasonal variation in 

complete temporal series need to be accounted for.  

During the last decades, studies attempting to detect and estimate VIs trend changes have 

mostly applied linear regression analysis on annual aggregated time series. The temporal 

aggregation has been found to be useful in minimizing lag effects (as the growing season may 

be shifted by 1 or 2 months between different regions, time series temporal aggregations over 

periods longer than the growing season ensure to take into consideration the whole growing 

season), minimizing the seasonal cycle from temporal series, and remediating serial 

autocorrelation (De Jong et al., 2012; Forkel et al., 2013). For that, different techniques have 

been used, such as: the use of specific periods within a year (e.g. growing season), the temporal 

aggregation of time series data, and the normalization of reflectance values per land cover 

type (Verbesselt et al., 2010a). Correlation of VIs with different factors (climate, 

anthropogenic…) is then usually performed to identify major LUCC drivers (Leroux et al., 

2017; Liu et al., 2015). In that respect, a simple and widely used approach is the RESTREND 

(RESidual and TREND) analysis which analyses the residuals obtained from the linear 

regression between the vegetation index and one climatic variable over time (Evans et al., 

2004). While shown to be effective, this technique requires the existence of a stable linear 

regression over the time series being analysed, with no changes in the directionality of the 

trend in the residuals (Angel et al., 2018; De Jong et al., 2012; Jamali et al., 2014; Wessels et al., 

2012). Because such precondition is unlikely to be fulfilled with the ever-increasing length of 

SITS analysed, methodologies that include structural change detection (presence of 

breakpoints, i.e. unusual shifts in time series) are needed in order to prevent unreliable results. 

In addition, because the temporal resolution and time series length are critical in determining 

the significance of the trend in a statistical test, methodologies that make use of the full 

temporal resolution time series are preferred over those one performing temporal aggregation 

(Forkel et al., 2013). This is how different change detection algorithms (e.g. BFAST, BAST01, 

DBEST (Jamali et al., 2015; Verbesselt et al., 2012)) have been developed and successfully 

applied in different research context, allowing to detect: vegetation dynamics in Quebec (Fang 

et al., 2018), clear-cuts and decreases in forest vitality in an area in the south of France 

(Lambert et al., 2015), drivers of environmental changes in drylands of north-western Ethiopia 

(Zewdie et al., 2017) and changes in agricultural practices (changes from irrigated agricultural 

to non-irrigated agricultural land) of different tenure regimes in Zimbabwe (Hentze et al., 

2017). Recently, BFAST01 and BFAST (Verbesselt et al., 2010a, 2012) have been tested in an 

exploratory study attempting to automatically detect LSLAs in Senegal (Ngadi, 2020).  
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While both algorithms proved their ability in detecting abrupt changes related to agricultural 

LSLAs’ installation (but not only), they differ in their precision and computational efficiency. 

More specifically, the difference between both algorithms lies in the regression model applied 

and in the number of breakpoints found. Both algorithms rely on the assessment of deviations 

from the classic linear regression model. More details can be found in subsection 3.2.2.1.  

2.2.3 Image analysis 

Because spectral properties of vegetation are not unique to different agricultural land use 

systems, object-based image analysis has shown to be  complementary to the classical 

temporal pixel-spectra based analysis (Bellón et al., 2017; Bisquert et al., 2015; Lebourgeois et 

al., 2017). Object-based Image Analysis (OBIA) differ from pixel-based approaches in that they 

operate on many pixels grouped together in homogeneous objects by image segmentation, 

allowing to exploit the spatial relationship of data. By accessing objects features, additional 

information such as spectral descriptive statistics (mean, variance, percentiles, etc.) per bands, 

or spatial and morphological metrics may be used. OBIA uses information on colour, tone, 

texture, pattern, shape, shadow, context and size (i.e. structural parameters) to classify the 

images (Blaschke et al., 2014).  

OBIA or GEographic OBIA (GEOBIA, which relies on remote sensing data and generates GIS 

(Geographic Information Systems)) typically includes image segmentation, edge detection, 

feature extraction, classification, and change detection (Blaschke, 2010; Hay et al., 2010; 

Petitjean et al., 2012). The object-based classification approach works well for structured 

landscapes with high geometric and contextual properties and low heterogeneity inside the 

objects, as is the case of agricultural LSLAs. This is how the combination of spectral and 

structural parameters (shape, texture, neighbour) have shown to yield valuable information 

to map irrigated agriculture (Ozdogan et al., 2010). While mostly applied to high-resolution 

satellite imagery, few studies have applied this technique on coarse-resolution satellite images 

(MODIS) in order to map ALUS at regional scale (Bellón et al., 2017; Bisquert et al., 2015).  

a) Image segmentation 

GEOBIA segmentation techniques seem particularly suitable to the extraction of 

homogeneous (in terms of spectral and textural information) ALUS types (Bellón et al., 2017; 

Bisquert et al., 2015). Because object-based methodologies depend strongly on the objects 

(segments) obtained through segmentation, this process of segmenting an image is a crucial 

one. As defined by Chen et al. (2018) “Image segmentation is the process of partitioning a 

digital image into multiple regions (sets of pixels); the pixels in each region have similar 

attributes. It is often used to separate an image into regions in terms of surfaces, objects, and 

scenes, especially for object location and boundary extraction.” (Chen et al., 2018a).  

However, segmentation is an ill-posed problem: there is no unique solution (Hay et al., 2010). 

Typically, object-based classifiers first over-segment a scene by applying a multi-scale or 

hierarchical iterative segmentation algorithm. Using a homogeneity criterion, multiple 

segments are then obtained, in one or more dimensions of the feature space. Compared to 

single pixels, these segments have additional spectral information (descriptive statistics that 
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are computed for each segment), but also additional spatial information (Blaschke, 2010). 

After over-segmentation, the next steps consist in grouping the different segments to a same 

object following a set of rules, and then label the objects using different approaches (Vintrou 

et al., 2012a; Yan et al., 2014).  Segmentation is still challenging as satellite images contain 

regions with different texture, varying background and they are often subject to illumination 

changes or environmental effects (Jabar et al., 2019).  

Segmentation techniques are generally divided into 4 classes: point-detection based, edge-

detection based, region-detection based and combined (Blaschke, 2010). Commonly used 

techniques are edge-based and region-based methods. Edge-based methods rely on filters 

(Sobel and Canny are common examples) to identify discontinuities in images where pixel 

values change rapidly. Frequent issues are their sensitivity to high-frequency noise which 

often creates false edges; and their need of context-specific parametrization which, when not 

optimal, lead to open boundaries. Because of the latter, post-processing and locally-adapted 

thresholds are applied (Waldner et al., 2019). Region-based algorithms (watershed, region 

growing, etc.) group neighbouring pixels into objects based on some homogeneity criterion. 

Compared to edge-based methods, region-based algorithms tend to over-segment fields with 

high internal variability and under-segment small adjacent fields.  In addition, sub-optimal 

(non- context specific) parametrization may yield to boundary errors(Waldner et al., 2019). 

Because of the weaknesses of both algorithms, hybrid methods have been proposed (Watkins 

et al., 2019b).  

When applied to agricultural land use changes detection, segmentation techniques have been 

particularly useful in delineating crop-fields boundaries. Field boundaries extraction is useful 

to discriminate smallholder agriculture from large-scale agriculture, as field size may be used 

as a proxy of the degree of mechanization (Stefanski et al., 2014). While their identification in 

high spatial-resolution images (<10m) can be straightforward when undertaken visually, 

automation over large areas is challenging. Firstly, traditional per-pixel based methods are 

not suitable for understanding land use system/landscape patterns (Graesser et al., 2017).  

Secondly,  because at high resolution land cover classes have lower inter-class and higher 

intra-class spectral variability (Debats et al., 2016), automatic identification of highly variable 

(spatially and spectrally) agriculture land use systems is difficult. Finally, because upscaling 

to large extents is usually impractical due the vast amount of data needed, studies have mostly 

been performed at local to regional scales (Gillanders et al., 2008).  

Studies delineating field boundaries based on remote sensing data  often include 

combinations of semi-automated image-processing techniques (e.g. image morphology, edge 

detection-based segmentation, region detection-based segmentation etc.) and predefined 

vector data or texture measures (Bey et al., 2020; Debats et al., 2016; Graesser et al., 2018, 2017; 

Lesiv et al., 2019; Stefanski et al., 2014; Watkins et al., 2019b; Yan et al., 2014). Accurate 

detection of agricultural boundaries is affected by field size, shape, configuration, and crop 

type (Graesser et al., 2017). When neighbouring crop fields are of the same species, or are less 

visually defined (indistinct boundaries between fields, ambiguity with natural vegetation as 

it often happens with smallholder fields), separation between large-scale agriculture and 
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smallholder agriculture results very difficult (Debats et al., 2016; Graesser et al., 2017). One 

way to overcome this limitation is the inclusion of multi-temporal data, which allows to take 

advantage of the often differentiated phenological profiles between vegetation (Debats et al., 

2016; Lebourgeois et al., 2017; Watkins et al., 2019b). Multi-temporal data may take the form 

of images pairs : one or many in the growing season (Debats et al., 2016; Watkins et al., 2019a), 

or take the form of different multi-spectral temporal composites (Bey et al., 2020; Graesser et 

al., 2017), or be the full temporal series (Hentze et al., 2017).  

b) Landscape and textural metrics 

Landscape metrics refer to indices that quantify the composition and spatial arrangement of 

elements across a landscape. They are used at patch, class/patch type, and landscape levels 

(McGarigal, 2001). While some of those metrics quantify the landscape composition (e.g., the 

relative abundance of classes), others quantify the landscape configuration such as: the 

position, connectivity of patches types (Bégué et al., 2018).  As ALUS heavily impact landscape 

spatial patterns and create a mosaic of patches, methods that consider the spatial context of 

pixels and provides information about the landscape’s structure and morphology are 

interesting. For example, Hietala-Koivu (1999) used landscape percentage, mean patch size, 

patch density, mean shape index and total edge length to differentiate between homogeneous 

and heterogeneous landscapes (Gillanders et al., 2008). Used in combination with vegetation 

indices, landscape metrics have allowed to achieve high classification accuracies (Bey et al., 

2020; Kuemmerle et al., 2009; Lebourgeois et al., 2017; Vintrou et al., 2012b).   

In addition to contextual and spectral features, textural features are also fundamental in image 

interpretation. Textures have been used in different land use/land cover classification studies 

in order to improve the accuracy of classification (Kupidura, 2019). While spectral features 

describe the average tonal variations in various spectral bands, textural features carry 

information about the spatial distribution of tonal variations of a contiguous set of pixels in a 

local neighbourhood of an image (Haralick et al., 1973). These features allow to quantify 

spatial information, and have recently been successfully used in the classification of 

agricultural lands. In a very recent study, Bey et al. (2020) detected changes between 

smallholder farms and large-scale farms in Mozambique relying on Landsat-derived textural 

features.  Similarly, Vogels et al. (2019) found that textural variables were the most important 

ones in discriminating smallholder agriculture from large-scale agriculture in Ethiopia using 

very high resolution satellite imagery (SPOT6).  

More specifically, structural indicators use information on colour, tone, texture, pattern, 

shape, shadow, context and size (Blaschke et al., 2014). Commonly used indicators are derived 

from the co-occurrence matrix, auto-correlograms, Markov random fields or frequential 

analysis (Bégué et al., 2018). While most of the studies used high (<=10m) spatial resolution 

satellite imagery, some have shown that even medium spatial resolution imagery (MODIS) 

contains textural information useful for crop mapping (Bégué et al., 2015).  
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2.2.4 Classification 

The second step of a GEOBIA consists in the classification of the individual objects extracted 

through segmentation into thematic classes. Classification of agricultural land use systems at 

regional to global scales is particularly challenging due to the high intra-class variability 

driven by regional climatic and environmental differences (Bégué et al., 2018). Classification 

(object-based, as well as pixel-based) may be supervised or unsupervised, depending on 

available data and knowledge about the study area. So far, most of the existing classifiers used 

to discriminate LULC types are supervised (Graesser et al., 2018; Ragettli et al., 2018; Vintrou 

et al., 2012a). While successful, those classifiers require expert interaction, detailed reference 

land cover layers, large number of sample training sites, or empirical look-up tables which are 

often expensive to obtain. In addition, because training data is often site-specific, supervised 

classifiers are often hardly transferred to large areas (Debats et al., 2016). Some popular 

supervised parametric algorithms are the Maximum Likelihood Classifier (MLC) and linear 

Support Vector Machine (SVM). Because of their robustness to outliers and noise, as well as 

their ability to handle extremely large feature spaces, non-parametric (no assumption is made 

about the data frequency distribution) classifiers are preferred (Debats et al., 2016). Some 

popular supervised non-parametric algorithms are Radial Basis Function networks (RBF), 

nonlinear Support Vector Machines (SVM) and Random Forest (RF)  

Unsupervised classifiers (also known as clustering algorithms) are on another hand used to 

detect groups of pixels or objects sharing similar features based on their spectral and/or spatial 

information, without the need of any a priori knowledge. Those classifiers are typically used 

for exploratory data analysis over large areas, in order to capture and analyse the full range 

of land use signatures (spectral and spatial) of the data. They however require the selection of 

a number of clusters and a posteriori labelling, which may be hard when used to classify 

heterogeneous landscapes. In addition, the resulting classification rarely shows a one-to-one 

relationship with classes derived from ground-truth data (Lathrop et al. 2006; Brown et al. 

2012). However, with the fast development in data storage, data mining and remote sensing 

technologies, studies are opting for unsupervised machine learning techniques to 

automatically extract field sizes from very high-resolution images. Yan and Roy (2014) 

developed for the United States a fully automatic methodology using image-processing 

techniques such as image morphology and segmentation on Landsat imagery. While good 

results were achieved without the need of third-party data or human intervention, the 

methodology relied on: large field sizes with a relatively precise geometry (square or round, 

with well-defined boundaries), static crop field boundaries within the time series acquisition 

period (5 years), crop fields with a high amplitude NDVI phenology, pixels with consistently 

high seasonal NDVI (in order to detect cropland from other land covers).  

 

2.3 KEY FINDINGS AND OPPORTUNITIES  
Key findings can be drawn from this chapter:  
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- Combined with an Object-Based Image Analysis (OBIA) approach, multi-temporal 

Sentinel-2 and Landsat are suitable for individual crop-field detection and 

delineation; 

- Textural indicators have shown to be with NDVI the most important discriminative 

variables between smallholder and large-scale agriculture. 

- Most of the studies attempting to identify crop-fields are based on supervised 

classifiers that need some in-situ data (e.g. cropland maps) / human intervention 

hardly transferable to other locations. 

- Almost all the studies on land use changes are based on the changes between 

different cropland maps. 

- Detection, characterization (typology) and dynamic (consolidation, expansion) of 

agricultural land use systems are still missing. 

In order to bridge the gap, this thesis aims to explore the power of different spectral, temporal 

and textural indices in discriminating and characterizing large-scale agriculture at regionals 

scale (in this study Senegal). Because reference data are difficult to obtain for agricultural 

LSLAs over wide extents, this thesis relies on unsupervised classification methods. The 

originality lies in the use of change detection algorithms on dense temporal VIs series to first 

detect pixels with potential agricultural LSLAs installation. More details on the 

methodological approach and assumptions made in this study are given in the next section. 

 

3 DATA AND METHODS  

The methodological approach adopted in this study involves broadly the following steps 

(detailed in the flowchart presented in figure 2): 

1. Application of change detection algorithms on medium spatial resolution time series 

(MODIS NDVI dense temporal series, 250m) in order to detect potential pixels related 

to agro-industrial activities; 

2. For the detected potential locations, extraction of textural/spectral/structural 

indicators from high resolution satellite imagery (Landsat 8, 30m) in order to 

discriminate agro-industrial activities from smallholder agriculture/ natural 

vegetation. 

3. Use of the set of extracted features as inputs in an unsupervised clustering algorithm. 

We expect at this stage to obtain well differentiated clusters, representative of different 

land use systems. 

4. Assessment of results using a ground-truth database. 
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Figure 2: Flowchart of the methodology 

Landsat 8 
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3.1 STUDY AREA 
Senegal is located in the westernmost Sudano-Sahelian zone and is characterized by an overall 

low, but highly variable inter- and intra-annual mean annual precipitation that constitutes a 

key constraint to vegetation growth. The precipitation shows an increasing gradient along the 

North-South direction. A distinct seasonality is present, with a long dry season and a short 

rainy/growing season spanning from late June to early October (Abel et al., 2019).  

With around 3% of its total arable land (270 908 hectares) declared under contract by foreign 

investors from 12 countries (~20 concluded deals in 2016) , Senegal is as many African 

countries concerned by large scale land acquisitions as revealed by the Land Matrix database 

(Harding et al., 2016)). Because more than 50% of those deals have an area under contract 

smaller than 5 000 ha, the country is however marginally affected by the so called “mega-

deals” (>50 000 ha, only 2 out of 19 in 2016). According to the Land Matrix database, foreign 

LSLA have accelerated since 2004 (with a peak in 2010-2011), and have experienced a new 

increase since 2014-2015 (Harding et al., 2016). This situation would have been promoted by 

the government and supported by several development projects in order to: 1) develop food 

self-sufficiency, 2) facilitate food exports and income generation for farmers, and 3) improve 

basic infrastructure in remote rural and less productive areas. Most of the concluded projects 

are concluded for biofuel production (44%, representing 77% of the area under contract) and 

food crop (28%, representing 8% of the area under contract). It is important to note that all 

concluded deals for which former land use is known (representing a minority of the LSLA), 

have acquired land that was formerly used for smallholder agriculture.  

The study area of this research represents the northern half of Senegal. The study area 

coordinates are as follows (in degrees):   

[min. latitude: 14.495, min. longitude: -17,473, max. latitude: 16,639, max. longitude: -12,226] 

 

3.2 REGIONAL-SCALE CHANGE DETECTION  

3.2.1 MODIS NDVI 16-day composite collection 6 data 

With its global coverage, moderate spatial resolution (250m) and high temporal resolution (1-

2 days), the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor allows for the 

detection of subtle changes in land cover. Because LSLA usually involve mechanized farming 

with fields’ size often larger than 250 m x 250m (usually above 30Ha/ ≅ 5 MODIS pixels), the 

250 m resolution of MODIS pixels is adequate to detect LSLA processes. The analysis in this 

study relies on the changes detected in the temporal series of Normalized Difference 

Vegetation Index (NDVI), which is a spectral ratio index closely linked to vegetation 

productivity and defined below: 

NDVI = (NIR – RED) / (NIR + RED)   (1) 

Where NIR and RED are the amount of near infrared and red light reflected by the object and 

recorded by the sensor. The NDVI is based on the inverse relationship between the absorption 
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of red energy by chlorophyll and the scattering of the NIR by the mesophyll cells of the leaves. 

Values range from -1 to +1.  The more green and turgescent are the leaves, the closer to 1 is 

the NDVI. A null value (0.1 is usually considered as a threshold) represents more or less the 

threshold between the presence and the absence of vegetation (Brown et al., 2007; Horion et 

al., 2010). 

A set of MODIS NDVI 16-day composites at 250m resolution was downloaded for MODIS tile 

h16v07 (Collection 6) from the NASA Earth Data geoportal (https://earthdata.nasa.gov/) for 

the period 2000-2018. The 16-days composite NDVI product, in which NDVI is combined on 

a per-pixel basis using a maximum value compositing technique, was chosen in order to 

reduce NDVI variability due to meteorological distortions like clouds. NDVI data was 

extracted from each HDF4 file and stacked sequentially to produce the NDVI time series. Low 

quality NDVI observations (pixel quality flags ∉ [0,1]) were removed as they affect the inter-

annual variability of the NDVI time series. Series were then gap-filled with linear 

interpolations and smoothed using a Savitzky-Golay filter in order to reduce the noise 

(polynomial order: 1, window length observations: 3) (Chen et al., 2004). This method 

performs a least squares regression on a small window of the data, then uses the fitted 

polynomial to estimate the point in the centre of the window. The window is then shifted 

forward by one data point and the process repeats. This continues until every point has been 

optimally adjusted relative to its neighbours.  

3.2.2 Change detection algorithms: BFAST01 and BFAST 

a) BFAST01 for MODIS pixels first filtering 

The first change detection algorithm used in this study and applied over the whole national 

territory is BFAST01 (BFAST denotes Breaks For Additive and Seasonal Trend;  Verbesselt et 

al., 2012).  As explained in the package description, BFAST01 selects a suitable linear model 

with 0 or with 1 breakpoint, by minimizing the segmented residual sum of squares. Then a 

selection of different statistical tests (in this study: the Bayesian Information Criterion (BIC), 

one fluctuation test: OLS-MOSUM and one F-statistic based test: supLM)  are performed (p-

value< 0.05) to test the null hypothesis of zero breaks, and decisions are aggregated to a single 

decision (Verbesselt et al., 2012; Zeileis, 2005). In this study, because of time constraints, no 

season-trend decomposition was performed (stl=”none”) (see figure 3). A set of different 

values for the Trim argument (Trim = [1/5, 1/7, 1/9]) was for each pixel tested and the 

value minimizing the residual sum of square chosen. The Trim argument represents the 

minimal segment size (fraction from total sample size (19 years)) for computation of the F 

statistics. 

This algorithm in addition provides a useful function, namely bfast01classify, allowing to 

analyse for each detected breakpoint the type of change experienced. For this, two sub-

functions are used: the flag_type, which indicates the type of shift experienced (such as: 

“monotonic increase with positive break” or “reversal: decrease to increase”) and the 

flag_significance, which indicates the trend significance for each of the two segments 

(Verbesselt et al., 2012).  Because BFAST01 is sensitive to changes and has the advantage of 

being fast but detects many false positive (Ngadi, 2020), this algorithm was used in this study 

https://earthdata.nasa.gov/
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as a first filter to restrict the number of pixels to which the second change detection algorithm 

would be applied. Two important assumptions were made: 1- LSLAs new installations 

induce detectable changes in NDVI time series trend and/or seasonality and 2- LSLAs new 

installations may be related with significant positive NDVI trends.  

As a consequence, only pixels showing a significant positive NDVI trend in their second 

segment (after the breakpoint detected) are used for further analysis. The rationale of using 

trend estimations computed by BFAST01 is that trends computed over time series with 

structural changes have stated to not be reliable. Because of the latter, we considered that a 

trend estimated over one portion of the time series (after the breakpoint in this case) should 

be more reliable that the estimation using the full temporal series.  

b) BFAST for change detection 

The second change detection algorithm applied in order to detect NDVI changes that may be 

linked to agricultural LSLAs installation is BFAST (Verbesselt et al., 2010a). The algorithm was 

run on pixels showing a significant positive NDVI trend in the 2nd segment of their 2000-2018 

NDVI time series after the breakpoint detected by BFAST01. In order to increase the area of 

potential detection of agricultural LSLAs, a circular kernel of 3 pixels radius was applied to 

each one of the previously selected pixel.  Because of time constraints, the study area to which 

BFAST was applied was limited to exactly the northern half of the country.  

 

BFAST uses a generic approach for detecting and characterizing abrupt changes within trend 

and seasonal time series components. Iterative decomposition of time series into trend, 

seasonal and noise components is integrated with methods for detecting changes (Verbesselt 

et al., 2012).  The general mathematical representation of the time series decomposition, 

usually based on the additive decomposition, is given below: 

 

𝑦𝑡 = 𝑇𝑡+ 𝑆𝑡 +  𝜀𝑡 , 𝑡 = 1,2, … , 𝑛                  (2) 

Where 𝑇𝑡   is the trend component, 𝑆𝑡  is the seasonal component, and 𝜀𝑡  is the remainder 

component, all at time t. n represents the number of observations available for the time series. 

Other commonly employed decompositions methods are the multiplicative, logarithmic, and 

pseudo-additive ones. Because the season-trend model can be formulated as an Ordinary 

Least Squares (OLS) regression, breakpoints can be estimated by assessing deviations from 

the classical linear regression model. When B breakpoints are estimated, B+1 segments with 

constant regression coefficients are yielded, allowing the regression model to be rewritten as 

a piecewise linear model. The final number of breakpoints is then achieved during an iterative 

process by minimizing the residual sum of squares of the modified regression model 

(Almeida, 2017). 

An illustrative example of the breakpoints found by BFAST01 and BFAST on one study case 

is given here below in figure 3. 
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Figure 3: BFAST01 and BFAST detected breakpoints in MODIS 2000-2018 NDVI time series, after optimization of 

the trim and h parameters (Source: Ngadi, 2020). Detected breakpoints are represented by vertical red lines with 

red shaded areas indicating the range of the 95% estimated confidence intervals (CI). From up to bottom: 1) 

BFAST01 detection on the non-decomposed NDVI time series, 2) BFAST01 detection on the trend component (de-

seasonalized data - Tt), 3) BFAST01 detection on the seasonal component (detrended data - St) 4) BFAST detection 

on the trend component (in green), 5) BFAST detections on the seasonal component (in blue), 6) time series 

residuals of the BFAST season-trend model.  

 

The maximum number of breaks is determined by the parameter h (similar to the Trim 

parameter in BFAST01) which limits the minimal distance between consecutive breakpoints. 

This parameter, as Trim, represents the minimal segment size (fraction relative to the sample 

size (19 years)) between potentially detected breaks in the trend model. It prevents that 

detected breakpoints are solely affected by year-to-year changes and supports the detection 

of only major breakpoints in the long-term trend (Almeida, 2017; Forkel et al., 2013). Minima 

h values suggested in the litterateur vary between 2-4 years. In this study a set of different 

values (h = [1/5, 1/7, 1/8, 1/9] corresponding to 3.8, 2.7, 2.4 and 2.1 years respectively) 

were tested, following the preliminary results obtained in Ngadi et al. (2020). The value 

minimizing the residual sum of squares was chosen. Given the value for h, the optimal 

number of breakpoints is determined by minimizing the Bayesian Information Criterion 

(BIC), which penalizes more heavily complex models, i.e., models with a larger number of 

breakpoints. The test applied to detect the existence of any abrupt change within temporal 

series is based on the moving sums (MOSUM)  of ordinary least squares (OLS) residuals  

(OLS-MOSUM, p-value <0.05) (Zeileis et al., 2002). 

 

Following the results obtained in a previous study that made use of BFAST to detect changes 

within the seasonal NDVI component over the same study area (Ngadi, 2020), this study focus 

on the detection of changes within the NDVI time series trend component. 
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3.2.3 Selection of a unique breakpoint  

In order to obtain one date of change map, a unique breakpoint needs to be selected for pixels 

where multiple breakpoints are detected by BFAST. To do so, we tested three different metrics 

that may be associated to changes in time series pattern. Each metric was computed for each 

segment of the time series delimited by the breakpoints, and correspond for each segment to:  

the average of the annual number of peaks, the average of the annual maximum NDVI, and 

the median of the annual 16-day mean NDVI. Those metrics are illustrated in figure 4. While 

the top subplot represents the NDVI 2000-2018 temporal series in green, with the detected 

breakpoints indicated by vertical red lines, the bottom subplot indicates the values of the three 

different metric tested for each one of the time series segment. More details can be found in 

the legend. Our objective here was to select the breakpoint that is most probably related to 

agricultural LSLAs installations. By default, BFAST selects the breakpoint associated to the 

highest trend change (highest magnitude value), which corresponds to the first breakpoint 

(see magnitude values) in figure 4. 

The bottom subplot of figure 4 shows however that the biggest change regarding the three 

computed metrics per segment (namely the number of annual NDVI peaks, the average 

annual maximum NDVI and the median of the annual 16-day mean NDVI) occurs in the 

second detected breakpoint (change between the second and third segment). Hence, those 

metrics seem more sensitive to a change in the time series pattern.  

The advantage of using an annual averaged NDVI metric with respect to the annual maximum 

NDVI, is that not only installations showing a very intense productivity may be detected, but 

also those with lower (but constant) NDVI throughout the year that may be indicative of the 

presence of irrigation systems. Therefore, in this study, the median of the annual 16-day mean 

NDVI was used to select the breakpoint in the MODIS NDVI time series that may be related 

to agricultural LSLAs. In order to limit the detection of false positives (particularly related to 

natural vegetation which presents lower NDVI values), a low threshold was applied based on 

the average annual maximum NDVI. 
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Figure 4: BFAST breakpoints detection within MODIS 2000-2018 NDVI time series  (green line on top subplot) on 

a study case (“Van Oers”).Top subplot: detected breakpoints are represented by vertical red lines with red shaded areas 

indicating the range of the 95% estimated confidence intervals (CI). NDVI trends in each segment of the time series are 

represented by dashed red lines. Numbers over the red shaded areas indicate the magnitude of the trend change. Bottom panel: 

3 metrics computed for each segment of the temporal series are shown: the median of the annual 16-day mean NDVI (dashed 

blue horizontal lines), the median number of peaks per year (purple star) and the median of the annual maximum NDVI (red 

dot). 

 

3.2.4 Change map clustering 

a) Clusters edge detection 

Once a unique breakpoint per pixel selected, a date of change map was computed and 

clustered. The change map clustering allowed to find groups of MODIS pixels that underwent 

similar land-use changes. To identify spatial processes that occurred at similar dates, a moving 

window of 5 x 5 pixel size was applied to the change map.  During the process, if the difference 

in date between the windows central’s pixel date P and each one of its 2nd degree neighbours 

VI is less than 4 years, +1 is assigned to the central pixel. At the end of the process, values 

indicating the number of similar neighbours range between 1 and 25, as shown in figure 5. 
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Figure 5:  Delimitation of MODIS date of change map clusters edges. a) Illustration of the processing 5x5 rolling 

window (grey rectangle) over the BFAST date of change map (grid is not at the real scale). The cell in red is the 

central pixel P, Vi [i=1,…,24]  the neighbour pixels are represented in grey. b)  Illustration of outputs for a small 

area in the north. The value ranging from 1 to 25 indicates for each pixel the number of neighbours that experience 

some change in a lapse of time less than 4 years.   

 

b) Map segmentation using the Watershed algorithm 

The watershed segmentation is a region-based method that has been successfully used for 

field boundary delineation (Watkins et al., 2019b; a).  As already introduced in sub-section 

2.2.3, while edge-based methods exploit variations in the image (edges or discontinuities 

between pixel values), region-based methods group pixels into objects based on some 

homogeneity criterion. In the watershed segmentation (Beucher, 1992), the image is 

considered as a topographic surface, where regions of higher altitude (ridges, or pixels with 

high intensity) are found that divide regions of local minima (basins). In order to avoid over 

segmentation, the marker-controlled watershed algorithm makes use of specific seed points 

(manually or automatically defined markers) from which flooding is simulated. The image 

partitioning occurs when the flooding level increases to the point where two or more basins 

merge (creating thus a watershed line). Because each initial marker has a one-to-one 

a 

b 



 

32 

 

relationship to a specific watershed region, the boundaries of the watershed regions are 

arranged on the desired indicated ridges, leading to the final segmentation. 

In the specific case of the change map segmentation, we applied the marker-based watershed 

algorithm to the edge map obtained using the 5x5 rolling window as explained in the previous 

section. Because the values range from 1 to 25, we applied a global threshold to create the 

markers. Pixels with values below 10 (pixels with number of neighbours having similar date 

of change values below 10) were assigned as “background” markers, while pixels with values 

above 17 were assigned as “foreground” markers. Values in between were assigned as 

“unknown” and assigned to background or foreground pixels by the watershed algorithm. 

Once the date of change map segmented, a size filter was applied to remove clusters below 20 

hectares. Then, each cluster was assigned a unique date of change corresponding to the 

median of the within-cluster pixels’ year of change. 
 

3.3 OBJECT-BASED LANDSCAPE ANALYSIS APPROACH 

3.3.1 Landsat-8  

After the detection of MODIS pixels potentially linked to agricultural LSLAs, we performed 

an OBIA on Landsat 8 Operational Land Imager (OLI) imagery.  Landsat is an earth 

observation program conducted in partnership by the U.S Geographical Survey (USGS) and 

NASA that creates high-resolution (30 m for spatial bands in the visible, infrared and near-

infrared regions of the spectrum. The thermal-infrared is collected at 100m but resampled to 

30m). The revisit period is 16 days.  The Landsat program has been running since 1972 and is 

the longest ongoing project to collect such imagery. Its imagery has been widely used in land-

use change studies (Bey et al., 2020; Graesser et al., 2017; Roy et al., 2014).  

In order to determine the nature of the landscape object that underwent some land-use change 

(as detected by the change detection algorithms applied on MODIS time series), we used a 

two-year period of Landsat 8 Level-1 (Tier 1) products (available on AWS 

(https://aws.amazon.com/opendata/public-datasets/ ). Spectral information from two 

consecutive seasons (with multiple images) in a crop-year would be sufficient to identify the 

irrigated crops (Ozdogan et al., 2010). Landsat Tier 1 images have the highest level of pre-

processing, with geo-registration to less than or equal to 12 m root mean square error (RMSE), 

inter-calibration to a level deemed suitable for multi-sensor time series analysis, atmospheric 

correction and cloud and shadow data generated (United States Geological Survey, 2020a). 

Data was further rescaled to top of atmosphere (TOA) reflectance using the Python module 

rio-l8qa, which makes use of the radiometric rescaling coefficients provided in the metadata 

downloaded and formulas provided by USGS (United States Geological Survey, 2020b). An 

image selection was performed based on the cloud coverage. Only one image per month (the 

less cloudy image, below 20%) was kept for further analysis, resulting in temporal stacks of 

~24 images per cluster.   

https://aws.amazon.com/opendata/public-datasets/


 

33 

 

Each image tile was spatially centred at each detected MODIS cluster and had a spatial extent 

of 0.08 x 0.08 degree latitude-longitude. This extent was selected as it is big enough (square 

tile inner circle of approximatively ~ 6km radius) in order to avoid central objects of interest 

to touch the image boundaries. Because this study is based in part on the shape of the retrieved 

objects, it is important that the objects of interest are not situated at the corner areas of the 

image as they would end with simpler geometrical (rectangular) shapes. The two-year period 

starting date was dependent of the median date of change assigned to each cluster. Because 

Landsat 8 imagery is available on AWS as from 2015, 2015 was chosen as the starting year for 

clusters which change year detected is prior to 2015. For detected changes posterior to 2015, 

the detected year of change was used as the starting year.  

3.3.2 Object-based extracted features: vegetation indices, landscape and textural metrics  

Landsat 8 images were used to extract different vegetation indices (VIs) and 

landscape/textural metrics at the landscape object level (the methodology used to extract the 

objects is explained in the next section). The landscape object is here defined as homogeneous 

areas or “patches” detectable from earth observation images (e.g. agricultural fields). VIs were 

selected in order to be spectrally complementary. Four VIs were computed namely NDVI, 

NGI, NDWI and NDBal. For each one the 25th, 50th and 75th quantiles over the 2-year period 

were computed, as well as the coefficient of variation. Details of each (except the NDVI which 

details are given in section 3.2) are given here below. This section also present the landscape 

and textural metrics that were selected and extracted from each landscape object to help in 

the discrimination between natural vegetation, smallholder croplands and large-scale 

croplands.  

a) Vegetation Indices (VIs) 

 The Normalized Green Index: NGI 

The NGI is the product between the Normalized Difference Vegetation Index (NDVI, refer to 

equation 1) and the Greenness Index (GI) as indicated here below: 

NGI = NDVI x GI          (2) 

GI = NIR/GREEN       (3) 

Where NIR and GREEN corresponds to the near-infrared spectral band and the green spectral 

band respectively. NGI is an interesting VI candidate as it has shown to be effective in 

discriminating irrigation from non-irrigation crop fields (Pun, 2019). It is based on the NDVI, 

one of the most used VI for vegetation and irrigation monitoring, and GI (Gitelson et al., 2003), 

a less exploited VI more sensitive to chlorophyll than NDVI (Pun, 2019). Because irrigated 

fields often exhibit greater greenness due to the constant availability of moisture, a more 

sensitive index to vegetation greenness may be useful. This is particularly true in areas with 

multiple irrigation periods and several crop types with different schedules, where the NVI 

signal may not be enough to make the distinction (less spectral contrast) (Ozdogan et al., 2010). 

The NDVI is also very sensitive to background factors (soil brightness and colour, atmosphere 

scattering, cloud shadow) 
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 The Normalized Difference Water Index: the NDWI 

The NDWI is derived from the NIR and shortwave infrared (SWIR) channels (see equation 4) 

and is complementary to NDVI (Gao, 1996).  

NDWI = (NIR – SWIR) / (NIR + SWIR)         (4) 

This VI is a plant moisture based index that responds to changes in both the water content 

(absorption of SWIR radiation) and spongy mesophyll (reflectance of NIR radiation) in 

vegetation canopies. Compared to NDVI it does not have any saturation issue. However, it is 

sensitive to surface wetness. 

 The Normalized Difference Bareness Index: NDBal 

NDBal = (TIR – NIR) / (TIR+NIR)             (5) 

The NDBal (Zhao et al., 2005) is an index developed to detect bare lands, which introduces 

the thermal infrared band (TIR). Following Zhao et al. (2005), NDBal allows the distinction 

between primary bare lands (because of physiographics factors), secondary bare lands 

(anthropogenic factors) and cultivated lands (fallows). Because discrimination between 

natural vegetation and croplands may be more difficult in tropical regions, we found useful 

to include this index to our subset of spectral transformations indices. 

b) Landscape metrics 

As introduced in section 2.2.3 landscape metrics refers to indices that quantify the composition 

and spatial arrangement of elements across a landscape. They exist at the patch, class/patch 

type, and landscape levels (McGarigal, 2001). Because this study relies mostly on the shape of 

the patches extracted from Landsat 8 imagery (more specifically, extracted from the image 

resulting from the product of the computed yearly NDVI 90th percentile with the yearly NDWI 

90th percentile. Refer to section 3.3.3b), we only tested two metrics related to the shape of the 

patches using the PyLandStats module in Python (Bosch, 2019). 

The first metric computed was the “Landscape shape index”, which is a measure of shape 

complexity. In order to take into account the dependence of the patch shape complexity to its 

size (i.e. larger patches have smaller perimeter-area ratio) this metric is adjusted for a standard 

square shape. Its formula is given here below: 

𝑆𝐻𝐴𝑃𝐸 = 0.25 𝑃 /√𝑎           (6) 

With P, the patch perimeter and a, the patch area. SHAPE equals 1 when the patch is 

maximally compact, and increases without limit as patch shape becomes more regular. 

Another similar metric tested was the “Landscape fractal dimension”, which has the following 

formula: 

𝐹𝑅𝐴𝐶 = 2 ln  (0.25   𝑃) / ln (𝑎)         (7) 

With P, the patch perimeter and a, the patch area. FRAC approaches 1 for very simple shapes 

such as squares, and approaches 2 for complex plane-filling shapes. 
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c) Textural features 

Textural features, as introduced in section 2.2.3., describe the spatial arrangement of 

reflectance values of a contiguous set of pixels in a local neighbourhood of an image (Hall-

Beyer, 2017; Haralick et al., 1973; Kupidura, 2019).  In this study, the 13 second-order textural 

metrics as defined by Haralick et al. (1973), were computed on the 2-year period NDVI 75th 

quantile images. For this, the Mahotas library in Python was used (Coelho, 2012). These 

metrics are: 1) the Angular Second Moment (ASM), 2) the Contrast, 3) the Correlation, 4) the 

Variance, 5) the Inverse Difference Moment, 6) the Sum Average, 7) the Sum Variance, 8) the 

Sum Entropy, 9) the Entropy, 10) the Difference Variance, 11) the Difference Entropy 12-13) 

the Information Measures of Correlation 1 and 2, which are two versions of non-parametric 

correlation coefficients (Linfoot, 1957).  

Because many of the textural measures are highly correlated one with another, a first filtering 

was performed based on the Pearson correlation matrix between the thirteen different textural 

metrics. Were only kept metrics with a value <0.7. Then, a second selection was performed in 

order to keep a maximum of 3 textural metrics. This selection was based on the 

complementarity between textural metrics. Following Hall-Beyer (2017), textures may be 

divided into ‘edge’ and ‘interior’ textures.   ‘Edge’ textures yield high values when the 

neighbourhood contain visual edges, such as the Contrast (which measure the amount of local 

variations). It is also the case of the Variance, which however also yield high values in areas 

of incoherent high variability (without edges). The Entropy yield high values in case of 

irregular edges or incoherent contrast, and lower values in presence of straight-line edges.  

‘Interior’ textures refer to textures able to characterize areas “away from coherent edges” such 

as  the ASM, which measures the homogeneity of an image (presence of dominant gray-tone 

transitions) or correlation, which measures gray-tone linear dependency in the image (Hall-

Beyer, 2017; Haralick et al., 1973). In this study, the final set of textures used is formed by: the 

Entropy (Ent), the Sum of Variance (sVar) and the Information Measure of Correlation 2 

(infCorr2).  

Because textures are highly dependent on the window size used to compute them, three 

different sliding windows were tested: 5x5 pixels, 10x10 pixels and 15x15 pixels. The window 

size is important because if too small (e.g. 3x3) it may be less robust to within-class variability, 

and thus less useful for classification purposes. On the other hand, if window sizes are too big 

(e.g. >50 x 50), then the metrics may be affected by the so-called edge-effect problem (texture 

variation caused by the between-class texture and not by the within-class texture) (Ferro et al., 

2002). However, because we are computing textures on segmented objects that present a 

certain level of homogeneity, we should be less concerned by the edge effect problem. This is 

why we tested a range of medium window sizes (5x5, 10x10, 15x15).  

3.3.3 Image segmentation using the Watershed algorithm 

The segmentation algorithm (marker-controlled watershed) introduced in subsection 3.2.4 

was also applied to Landsat 8 images in order to obtain objects with a higher spatial resolution 
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than MODIS. However, the processes to delineate object contours (edge extraction) and to 

create markers for the watershed algorithm were different. Those two automatic processes are 

detailed in the following sub-sections. 

a) Edge detection 

For delineating crop fields’ boundaries, multiple Landsat 8 images (2-year period, 

representing ~5 to 24 images with cloud coverage<20%) were acquired for each cluster of 

MODIS pixels detected (refer to section 3.2.4b).  As we aimed to implement a generic 

methodology, no selection of images within the growing season was done (as the growing 

season varies in function of the ecozone). Instead, we composited the full temporal stack of 

images using the 75th percentile for a subset of three VIs (see section 3.3.3 for more details): 

NGI, NDWI and NDBal. Those VIs were selected because of their spectral complementarity 

(inclusion of the optical bands, near-infrared band, short-wave infrared band and thermal 

infrared band). Prior to edge extraction, each composite image was spatially smoothed using 

a bilateral filtering (d= 20, sigmaColor= 30, sigmaSpace= 50) , which has the property of 

smoothing image noise  while preserving true edges (Tomasi et al., 1998), and facilitate this 

way the image segmentation. The three parameters introduced in the smoothing algorithm 

control the diameter of the pixel neighbourhood (d), the standard deviation of the filter in the 

colour space (sigmaSpace) and the standard deviation in the coordinate space (sigmaSpace). 

This filter is basically a weighted average of local pixels that considers pixel neighbours in the 

spatial domain but also in the colour domain. Larger values of d increase the contribution of 

more distant neighbouring pixels. Larger values of sigmaColor imply that colors which are 

farther apart to each other will start to get mixed. Larger values of sigmaSpace smooths 

neighbourhoods with small variance (uniform areas) but also with large variance. The spatial 

parameter is proportional to the image size, and may be set to 2% of the image diagonal.  The 

values chosen in this study were empirically selected and correspond for sigmaColor to the 

interquartile range of the intensities (rescaled to 0-255), and for sigmaSpace to 7% of the image 

diagonal.  

After the process of image smoothing, a simple standard deviation edge detection algorithm 

was applied to each image (NGI, NDWI, NDBal). The values were then then summed through 

the images to obtain one unique edge image (see figure 7).    

b) Watershed markers creation 

The input images used for segmentation are the images resulting from the product of the 

yearly NDVI 90th percentile image with the yearly NDWI 90th percentile image. While this 

product does not have any physical meaning, it allows obtaining good contrasted image 

useful for further segmentation. In addition, the product of those two normalized index 

(range: [-1 1]) allows to remove the contribution of flooded objects (containing free water) with 

very high NDWI values from the segmentation, as the same objects have very low NDVI 

values. Prior to segmentation, and in order to remove some image noise, input images were 

smoothed (see figure 6) using the bilateral filter as explained in the previous section.   
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Figure 6: Example of input Landsat 8 images used for the segmentation process. Left-subplot: product of the 

average of the Landsat 8 2-year annual NDVI 90th quantile and the average of the 2-year annual NDWI 90th quantile. 

Right-subplot: Same image as the left, but smoothed using the bilateral filter. Both images were rescaled to 0–255 

to store the results in unsigned 8-bit data needed for segmentation. 

 

Binarization of the smoothed images was done by the Otsu global thresholding algorithm.  

Based on the input image histogram, the algorithm returns a single intensity threshold that 

minimizes the weighted-class within variance, and that separate pixels into two classes: 

foreground and background. This technique relies on the assumption that the image 

histogram is bimodal and that a reasonable contrast ratio exists between the background and 

objects of interest. Because this is not always the case, Otsu’s thresholding was mostly used in 

this study to identify ‘sure’ background markers that will be used as input in the marker-

based watershed segmentation.  

Once the background markers found, the identification of foreground markers was achieved 

by extracting the binary image skeleton. This process allows to reduce the foreground regions 

to a skeletal remnant that preserved the extent and connectivity of the original region (Fisher 

et al., 2020). Prior to the skeletonization, image morphological operators were used in order 

to minimize holes between foreground (as opposed to background) objects. The latter allows 

to extract meaningful groups of objects. Indeed, in this study we did not want to extract 

individual objects separated from their context (such as an agricultural parcel). Our aim was 

to extract meaningful groups of objects, with distinctive contours, assuming that a group of 

large-scale agricultural objects would be different that a group of smallholder agricultural 

objects.   

During the skeletonization process, each pixel’s value was replaced by its distance to the 

nearest background pixel. Pixels above a predefined distance threshold were then used as 

foreground markers needed in the marker-based Watershed segmentation. The higher the 

threshold value, the more restrictive is the condition on foreground candidate pixels (pixels 

need to be at a higher distance from the predefined background pixels in order to be 

considered as foreground pixels). At the same time,   fewer number of objects are extracted 

from the images as many pixels do not satisfy the threshold condition.  

The final step of the segmentation consisted in “feeding” the marker-based Watershed 

algorithm with the previously defined markers (background and foreground) and extracted 
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edges. During this last process, the algorithm labelled the unknown pixels as ‘background’ or 

‘foreground’ pixels. 

Because distance thresholds affect the overall shape of the segmented object, two distance 

thresholds were tested in this study (i.e. 0.2 and 0.6, distance normalized).  Refer to next 

section for more details.  

Figure 7 here below illustrates the different outputs (edges, image binarization, image 

skeletonization and watershed segmentation) obtained for one Landsat image. 

 
 

  
Figure 7: Image segmentation process steps applied on Landsat 8 images.The top-left subplot show the edges 

extracted using the methodology detailed in subsection 3.3.2 b. Top-right image: image binarization using the 

Otsu’s automatic thresholding. This step allows to define the background markers (pixel’s value=0, shown in dark 

blue) needed for the segmentation. Foreground markers are shown in yellow (pixel’s value=1). Bottom left image: 

binary image skeletonization, in which the values represent the distance of each pixel to the nearest 0 pixel value. 

Bottom-right image: after having applied a distance thresholding  in order to define the watershed foreground 

markers (i.e.  those with a distance> threshold), the original combined VI image (NDVI x NDWI) is segmented 

using the watershed algorithm, the  edges extracted, and the markers previously defined. 

 

3.4 UNSUPERVISED CLASSIFICATION 
Unsupervised classifiers are often used as an exploratory tool to assess data internal structure.  

In this study our aim was twofold: 1) identify some of the most important remotely sensed 

features that contribute to LSLAs’ discrimination over large spatial extents and 2) obtain an 

accurate classifier able to discriminate agricultural LSLAs. In order to do so, the selection of a 

meaningful and dimensionally reduced dataset is of primordial importance.    
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3.4.1 Input dataset 

The data used to train the unsupervised classifier consisted in the spectral and textural metrics 

computed for each landscape object retrieved from the Landsat 8 images. Three textural 

window sizes (5, 10 and 15), two distance thresholds (0.2 and 0.6) and input datasets with and 

without the shape metrics (in order to test their discriminative power), leading to 12 input 

datasets. Those datasets comprise: the 25th, 50th, 75th quantiles and coefficient of variation 

of four VIs (NDVI, NGI, NDWI, NDBal), the 13 Haralick textures computed on the 2-year 

composite NDVI images and optionally, as aforementioned, the shape metrics. After 

feature selection based on the Pearson correlation matrix (only features with values below 0.7 

were kept), the following 8 features made our core input datasets, allowing to achieve very 

low (below 0.05) Hopkins scores indicating a high clustering tendency within the data: 

- NDWI: the 2-years period 75th quantile and coefficient of variation (NDWI_q75); 

- NGI: the 2-years period 75th quantile (NGI_q75); 

- NDBal: the 2-years period coefficient of variation (NDBal_cv); 

- NDVI: the 2-years period coefficient of variation (NDVI_cv); 

- The Information Measure of Correlation2, averaged over the 2-year period 

(infCorr2); 

- The Sum of Variance 2-year average (sVar); 

- The Entropy 2-year average (Ent). 

- The landscape shape index (optionally) 

The number of objects within the dataset constructed with the distance threshold=0.2 is 1388, 

and 606 in the dataset using the distance threshold=0.6. 

3.4.2 The Self-Organizing Map (SOM) 

A two-level unsupervised clustering approach was chosen in this study. While the first step 

consists in a dimensionality reduction of the input data set, the second step consists in the 

application of a clustering algorithm to the newly obtained and reduced data set. The idea of 

this two-level clustering is to perform data clustering more efficiently and to make data 

exploration and visualization easier  (Cabanes et al., 2007). Indeed, it is better to cluster a 

smaller set of representative data (prototypes) than directly the original data set.  By doing so, 

noise reduction is gained as the prototypes are local averages of the data and, therefore, less 

sensitive to random variations than the original data (Vesanto et al., 2000a). In addition, 

because high-dimensional data may be sparse and difficult for a clustering algorithm to find 

any structure in the data, a dimensionality reduction allows to perform clustering more 

efficiently and to mitigate the so-called curse of dimensionality. 

In the first step of the unsupervised classification, a Self-Organizing Map (SOM) (Kohonen, 

2013) was used in this study. During the analysis, the SOM projects data (vector projection) 

onto a lower dimensional display (i.e. a two-dimensional map formed from a grid of nodes). 

By doing so, it reduces the input data size by performing (input) vector quantization. The data 

is then replaced with a representative set of nodes (each node consist in a vector of same 

feature dimensions than the input data) which form the nodes of the grid. The distance 

between data sample pairs in feature space is preserved as good as possible during projection. 
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Similar multi-dimensional samples are grouped together and are organized with well-defined 

positions on the projection grid map. As a consequence, data cluster structure can be easily 

visualized and some quantitative descriptions of the dataset can be extracted grouping similar 

map units using a clustering algorithm  (Vesanto et al., 1999). 

An illustration of the process is given below, in figure 8. At first, the initial SOM nodes are 

arbitrarily positioned in the data space and low weights are assigned to each node vector. 

Then for each data sample (consisting in a vector of n features, and represented with a red dot 

in figure 8), its closest grid node (also consisting in a vector of n dimensions, and represented 

with a yellow dot) is selected based on its weights (initially very low). This closest node 

represents the BMU (for Best Matching Unit) of the sample. Once the BMU found, the BMU’s 

weights are updated towards the data sample. At the same time, the BMU’s neighbours’ 

weights are also updated (but to a lesser extent, defined by a neighbouring function (usually 

the Gaussian function) towards the data sample. After many iterations the grid tends to 

approximate the data distribution in the feature dimensional space. 

 

  

Figure 8: Self-Organizing Map (SOM) training process. The input data set is represented by a blue blob and the 

SOM map is represented by a black grid. 1) SOM grid initialization (figure at the left): each SOM node is given a 

small random weight. 2) SOM training (figure in the middle): the BMU (represented in yellow) of each input 

sample (represented in red dot) is updated, and while doing so each BMU (and neighbours) moves towards the 

input sample. 3) Trained SOM (right figure)): the SOM grid after training approximates the data distribution  

(Wikipedia, 2020a).Refer to section 3.4.1  for more details. 

 

For the SOM implementation we used the MiniSom library for Python (Vettigli, 2018). 

Amongst the different SOM parameters that had to be defined, the first one concerned the size 

of the map. The number of map nodes  were defined using the following heuristic formula 

(Vesanto et al., 2000b):  

𝑢𝑛𝑖𝑡𝑠 =  5 × √𝑁      (6) 

Where N is the number of observations. 

The map size was then determined the same way as in the SOM toolbox, where the ratio of 

the two largest eigenvalues of the data becomes the ratio of the map length to its width. 

Knowing the length/width ratio, and the number of units in the map, the length and the width 

of the SOM map can easily be obtained (units = length x width).  
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Two metrics were used to assess the quality of the trained maps: the average quantization 

error (Qe) and the topographic error (Te). The quantization error, which measures the map 

resolution, is defined as the average distance between each data sample and its BMU. The 

topographic error, which measures topology preservation, corresponds to the proportion of 

all data vectors for which the first and second BMUs are not adjacent units (Vesanto et al., 

2000b). Because our aim is to further cluster the SOM map, parameter settings that minimize 

the topographic error were selected. Those parameters consisted in the learning rate (i.e. how 

much weight is adjusted during each iteration) and sigma (i.e. the spread of the 

neighbourhood function). To select the best combination, Qe and Te were plotted against 

different values ranging from 0 to 1 (steps of 0.01) and the values that minimize the 

topographic error, while giving reasonable good quantization error, were chosen for the 

learning rate and sigma.  

After training the SOM map, data clustering was performed by applying a clustering 

algorithm to the SOM data-representative nodes as explained the next subsection. 

3.4.3 Hierarchical clustering 

In this study a hierarchical agglomerative clustering algorithm was used to partition the SOM 

map. We used the AgglomerativeClustering algorithm available in the Scikit-learn library 

(Pedregosa et al., 2011). Hierarchical clustering algorithms have some advantages over 

partitioning techniques: 1) no assumption on data distribution is made and 2) the tree-based 

representation of the observations based on the dissimilarity matrix allows assessing the 

internal structure of the data. However, these algorithms usually do not work on data of big 

size.  

The agglomerative clustering contains different steps. The pairwise distances (in this study: 

Euclidean) were first computed for all the input samples. Then a binary hierarchical tree was 

constructed using the ‘Ward’ linkage. The selection of the tree-cut level was based on the 

average of the silhouette coefficient (Rousseeuw, 1987) computed for partitions going from 2 

to 20. The silhouette value is a measure of how similar an object is to its own cluster (cohesion) 

compared to other clusters (separation). The coefficient ranges from −1 to +1, with high values 

indicating high cohesion and separation from other clusters (Wikipedia, 2020b). The partition 

leading to the biggest silhouette value, but with the lowest number of clusters k, was selected. 

The latter avoid the creation of very small clusters. In this study if the difference between the 

maxima silhouette value achieved for a number k, and the silhouette value for k-1 is less than 

0.05, then k-1 was chosen as number of clusters. 

Once the number of clusters predefined, the different trained SOMs (where each map node 

represents a sample) are clustered. The data represented by the SOM nodes have the 

advantages to be representative of the original data, smaller, and easier to explore and analyse. 

After the clustering, and evaluation, because each input data sample possesses a BMU, the 

original data can be labelled and classified as well.  
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3.5 EVALUATION  

3.5.1 Senegal national ground LSLA database  

In order to improve transparency around LSLAs, ISRA conducted an extensive field campaign 

at the beginning of 2019. More than 800 records and corresponding attributes were recorded 

in a database.  Attributes consist in all kind of information related to the identified deals, such 

as: name, coordinates, negotiation status, implementation status, year of transaction, size, 

previous land use, previous land tenure etc. As presented in Table 2, LSLAs are equally 

distributed over the northern part of the national territory (54.5%) and the southern part 

(45.5%). Median area of the reported LSLAs in the northern part of the country is slightly 

higher (36.5 hectares) with respect to the national value (30.8 hectares). 

While very useful, this database is still incomplete. As illustrated in Table 2, less than a half 

of the reported LSLAs (39%) are known to be “active”, while the other half of the LSLAs (52%) 

have an unknown status. 

The latter means that a non-negligible part of the reported LSLAs may not be active, and as a 

consequence, may not be detectable with a change detection algorithm. An evaluation of the 

methodology based on this ground field database has then to be taken carefully. 

 

Table 2: Statistics on LSLAs in ISRA/CIRAD database  within the national territory (1rst column), and within our 

study area (2nd column). Statistics concern the LSLAs’ area and the number of LSLAs in different four different 

status categories: active, abandoned, not yet installed and no information provided. Proportions in red in the table 

second section (related to the ‘Status’) are relative to the total count of LSLAs over the national territory, and over 

the study area respectively.  

 
 LSLA area (ha)  LSLA area (ha)  

 National territory Northern half territory 

Count 897   (100%) 492   (54,5%) 

mean 1395,5 881,4 

std 24974,6 10159,2 

min 0,0 0,0 

25% 6,5 3,4 

50% 30,8 36,5 

75% 108,2 143,1 

max 713063,2 183727,1 

<6 ha 216 (24%) 135 (27.4%) 

Status     

Active 473   (52%) 192   (39%) 

Abandoned/Contract end 20 (2,2%) 8   (1,6%) 

Contract intention/promise 64 (7,1%) 34   (6,9%) 

No information 337   (37.5%) 258   (52,4%) 
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3.5.2 Methods applied for evaluation 

The evaluation of the methodology applied and the classification achieved, mostly relied on 

the ground truth database. Specifically, the evaluation consisted in: 

1- The assessment of the number of potentially detectable LSLAs throughout the 

different processes applied (NDVI trend filtering, application of change detection 

algorithms, segmentation). The ‘potentially detectable LSLAs’  is here defined as the 

number of reported LSLAs within the ISRA/CIRAD field database that overlap at least 

one of the MODIS pixels detected as candidates to LSLAs settlements by BFAST. 

Because this study implements an exploratory approach that aims to detect changes 

related to agricultural LSLAs, one overlapping pixel is enough for location detection. 

At this stage, this study does not aim to infer areas occupied by LSLAs. Because of a 

data loss, comparison of the changes detected by BFAST and BFAST01 will not be 

possible. 

2- The assessment of the dataset clusterability. This was performed using the Hopkins 

score (Hopkins et al., 1954) as implemented in Pyclustertend Python Library (range of 

values 0-1). A score around 0.5 expresses no clusterability, while a score tending to 0 

expresses a high cluster tendency. 

3- The assessment of the different tested parameters (windows size, distance 

threshold…)  by 1) comparing the performance achieved by the trained classifiers and 

2), comparing the values of some internal metrics obtained (Silhouette coefficients), 

allowing to assess the cohesion and separation of the obtained clusters. The main 

objective is to determine how the cluster tendency of the data is real and not-random. 

In addition, the usefulness of landscape shape metrics will be visually assessed by 

inspecting the shape of different landscape objects for varying parameters.  

4- The accuracy of the classifiers. This was only assessed for the cluster most likely linked 

to agricultural LSLAs. The F1 score was computed (using the ground truth database), 

defined as: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥
(𝑅𝑒𝑐𝑎𝑙𝑙 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
              (7) 

With:                     

 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 ÷ (𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)             (8) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 ÷ (𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)       (9) 

The F1 score reaches its best value at 1, indicating a perfect precision and recall. While 

precision attempts to answer the following question: “What proportion of positive 

identifications was actually correct?”, recall attempts to answer: “What proportion of 

actual true positives was identified correctly?” (De Ponteves, 2020) 

The different classes were computed the following way: 

- True positives were considered the Landsat objects classified within the cluster most 

likely related to LSLAs, that overlap with at least one pixel one of the reported 

LSLAs. 
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- False negatives were considered the Landsat objects classified within any other 

cluster than the one most likely related to LSLAs, that overlap with at least one pixel 

one of the reported LSLAs. 

- False positives were considered the Landsat objects classified within the cluster 

most likely related to LSLAs, but which do not overlap any of the reported LSLAs. 

 

5-  As a last step, visual evaluation of the different clusters was performed using Google 

Earth satellite imagery. 

 

4 RESULTS 

This section is divided into three parts.   

The first part of this section focus on the results aiming to solve sub-objective 1. Those are 

linked to the detection of potential MODIS pixels (at regional level) that may be related to 

agricultural LSLAs. Two principal assumptions were made here:  1) LSLAs new installations 

induce detectable changes in NDVI time series trend and/or seasonality and may be related 

with significant positive NDVI trends; 2) clusters of pixels with similar dates of change are 

affected by the same underlying change event.  This is how, in this study, the detection of 

agricultural LSLAs’ relies on the detection of MODIS clusters of pixels with similar dates of 

change.  

In the second part of this section, results aiming to solve sub-objective 2 are presented. Those 

are the results obtained from the Landsat8 image analysis (segmentation) performed over the 

clusters previously found, and allowing to extract additional spatial and spectral information 

at the landscape level. The assumption made here is that 3) LSLA’ installations exhibit 

simpler geometrical shapes and are more homogeneous (less fragmented) than smallholder 

agriculture. In fact, the methodology developed in this study to detect agricultural LSLAs 

heavily relies on this assumption.   

The last subsection presents the results and evaluation of the unsupervised classifier, trained 

with the different metrics computed from the retrieved MODIS and Landsat8 spatial objects.  

4.1 LAND USE/LAND COVER CHANGE DETECTION BASED ON MODIS  
Results presented in this section are directly linked to sub-objective 1: “Detect potential 

agricultural LSLAs’ installation automatically at regional scale using change detection algorithms and 

medium resolution satellite (MODIS 250m) temporal series” 

4.1.1 MODIS NDVI pixels masking using BFAST01 

The first change detection algorithm used in this study in order to restrict the number of pixels 

potentially linked to agricultural LSLAs was BFAST01. This algorithm was applied over the 

whole national territory.  As explained in section 3.2.2 BFAST01 detects the biggest significant 
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breakpoint in temporal series. Figure 9 shows the date of change as detected by BFAST01 

within the MODIS NDVI 2000-2018 temporal series.  

 

Figure 9: Date of change map as detected by BFAST01  within the MODIS 2000-2018 NDVI time series.Polygons in 

red represent the agricultural LSLAs defined in the ISRA/CIRAD ground truth database. a) map of the national 

territory, b) closer view to the north area (Lac de Guiers), c) closer view to the area around Dakar. 

 

Two comment can be made from figure 9:  1) one abrupt change has been detected for all the 

pixels within the national territory, and 2) the year of change for almost all the pixels is the 

same (2004-2005). Based on the assumption that biomass productivity increases (or at least is 

expected to increase) after new agricultural LSLAs installations, BFAST01 was then used to 

detect pixels with a significant positive NDVI trend as explained in section 3.2.2. Those pixels 

are illustrated in black in figure 10.  

Table 3 shows a number of statistics related to the potentially detectable LSLAs left after each 

pre-processing step applied (NDVI trend masking, MODIS pixels clustering and map of 

change segmentation). The second column of Table 3 indicates that 57.1% of the field database 

LSLAs overlap at least one of the masked MODIS pixel (in black, presenting a significant 

positive trend in the 2nd segment of the time series after the breakpoint detected by BFAST01) 

in our study area. A slightly higher proportion is observed over the national territory (63.9%). 

The table also indicates the average area of the potentially detectable LSLAs (i.e. that overlap 

at least one of the masked MODIS pixels). Median areas of the LSLAs showing a significant 

positive NDVI trend are at least ten times higher than those not showing any significant 

positive trend.  

 

a b 

c 
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Table 3: Number of potentially detectable LSLAs  after each one of the processes applied in this section, namely: 

the MODIS pixel filtering based on the NDVI trend (column 1), the application of the change detection algorithm 

BFAST (column 2), and the segmentation of the date of change map (column 3). * ‘Potentially detectable’ LSLAs 

here refers to LSLAs ground-truth polygons overlapping at least one the remaining MODIS pixels after the 

application of each process. Metrics given in the upper section of the table are related to the LSLAs’ area, while the 

bottom section of the table provides information on the LSLAs status distribution. ** The number after the 2nd 

process is higher than after the 1rst one because a circular kernel of radius 3 pixels was applied to each masked 

pixels in order to increase the area of detection. Proportions given in red are relative to the total number of LSLAs 

in the study area (492). The last column refers to the potentially detectable LSLAs, when only deals installed during 

2002-2017 (in order to have any change detectable by the change detection algorithm) are taken into account.  

 

4.1.2 BFAST changes detection 

The second change detection algorithm used in this study was BFAST. This algorithm was 

only run over the previously selected MODIS pixels. As detailed in section 3.2.2, it was used 

in the purpose of detecting NDVI changes that may relate to agricultural LSLAs. In order to 

do so, a methodology was developed to select what could be the most suitable breakpoint 

(refer to section 3.2.3). Figure 10 shows the date of change map obtained over our study area 

using that technique. The breakpoint selected was the one related to the biggest change in the 

median of the annual 16-day mean NDVI (refer to section 3.2.3 for more details).  Figures 11(a-

b) allow to compare the date of change maps obtained when using different breakpoint 

selection methods.  While figure 11a presents the date of change map obtained when selecting 

the breakpoint detected by BFAST associated to the biggest trend change, figure 11b shows 

the date of change map obtained when using the method based on the median of the annual 

16-day mean NDVI. From those maps, one can observe that the map shown in figure 11b is 

more heterogeneous than the one in figure 11a, with a higher number of pixels presenting 

changes after 2005. At the same time, one can see that visually detectable clusters in figure 

11b are also represented in figure 11a.  As a result, a change map based on changes of the 

median of the annual 16-day mean NDVI may be spatially more interesting for a further map 

segmentation based on the dates of change.  

 

Process
 NDVI trend masking 

(national territory n=897)

NDVI trend masking 

(study area, n =492)

BFAST change 

detection *

Change map 

segmentation

Settlements between 

2002-2017

Count 573 (63.9%) 281 (57.1%) 312 279 (56.7 %**) 69 (13.8%)

Average LSLA area (med ha.) -  Potentially det. 57,41 81,94 100,4 122,9 127,3

Average LSLA area (med. ha) - Remaining 5,29 2,7 1,5 2,4 22,4

Status

Active 333 125 158 122,9 54

Abandoned/Contract end 15 6 8 5 3

Contract intention/promise 50 20 29 27 11

No information 172 84 117 103 0

Potentialy detectable *** 505 (88.1%) 209 (42.5%) 275 (55.9%) 247 (50.2%) 54 (11%)
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Figure 10: BFAST date of change  map  for the northern half of Senegal  (coloured pixels). Breakpoints chosen  are 

those related to the biggest change in the median of the 16-day mean NDVI per year. BFAST  was only applied 

over pixels in black, presenting a significant positive NDVI trend in their second segment after the breakpoint 

detected by BFAST01.Polygons in red  represent the LSLAs defined in the ISRA/CIRAD ground truth DB.  

Figure 11: Closer views on the BFAST date of change map (Northern Senegal). a) Date of change map with selection 

of the biggest breakpoint in the NDVI time series trend component.  b) Date of change map with selection of the 

breakpoint related to the biggest change of the median of the annual 16-day mean NDVI. Polygons in red represent 

the agricultural LSLAs defined in the ISRA/CIRAD ground truth DB. Pixels in black represent the pixels showing 

a significant positive NDVI trend in their second segment after the breakpoint detected by BFAST01.  

a 

b 
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While BFAST did not automatically detect a change for each one of the pixels for which 

BFAST01 did (see pixels in black in figure 11), the number of potentially detectable LSLAs 

after the application of BFAST did not decrease (see 3rd column of Table 3). At this stage, and 

following Table 3, 312 of the field database reported LSLAs are potentially detectable. The 

latter corresponds to 63% of the total number of LSLAs (492) comprised in the study area.  

4.1.3 MODIS-based date of change map segmentation 

The date of change map was further segmented following the method described in section 

3.3.2. The latter allows to take into account the spatial context of the pixels for which a change 

was detected, and to extract groups of pixels with similar dates of change. Closer views of the 

results over the north area are shown in figures 12a and 12b. Figure 12a indicates the number 

of neighbors, per pixel and in a window size of 5x5, that have an absolute change date 

difference below 4 years. Larger clusters of similar pixels are easily observable in yellow, 

while cluster edges are represented by pixels in blue/black. Because bigger clusters have 

central pixels with higher values, this segmentation introduce a bias towards bigger clusters. 

The latter is observed in Table 3 with the increase of the median area of the potentially 

detectable LSLAs (4rth column).  

Figure 11b presents the clusters obtained after the change map segmentation, using the 

marker-based watershed algorithm and the MODIS clusters’ inferred edges. At this stage, a 

total of 1190 MODIS clusters were extracted over the study area, that overlap with at least one 

pixel 57% of the reported LSLAs (279) (see Table 3). The proportion is reduced to 50.2% if we 

discard the abandoned/cancelled or not yet active LSLAs. And the proportion is even lower 

(11%) if we just consider the settlements between 2002 and 2017 (period of time in which a 

change may be detected by the change detection algorithms). 
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Figure 12: Delineation of MODIS date of change map clusters and map segmentation  (a) Per pixel, number of 

neighbours in a 5x5 sliding window with a similar date of change (less than 4 years of difference). The sliding 

window applied allows to infer MODIs clusters’ edges, needed for further image segmentation (Refer to section 

3.2.4 for more details). (b) MODIS pixel clusters obtained when applying the Watershed segmentation to the image 

shown in subplot a).  

 

Around 5% of the LSLAs were ‘lost’ during the process of segmentation (i.e. do not overlap 

any pixel of the newly formed clusters). After the whole process of detection and 

segmentation, and as mentioned above, only the largest LSLAs remained for detection with a 

median area of 123 ha (see Table 3). An additional aspect analysed, was the distribution of 

the extracted clusters along the latitude coordinates in order to see if BFAST introduced any 

bias with respect to climatic conditions. From Table 4, one can note that no bias with respect 

to the coordinates was introduced.  

 

Table 4: Spatial statistics on the clusters extracted from the MODIS-based date of change map 

 MODIS extracted clusters (n=1190) Study area  

 mean std min max mean std min max 

Latitude (°) 15.65 0.59 14.50 16.69 15.54 0.65 14.495 16.639 

Longitude (°) -14.98 1.16 -17.36 -12.44 -15.13 1.45 -17.473 -12.226 

Area (ha) 419.04 1006.36 62.5 13856.25         

 

a b 
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4.1.4 Key findings of the processes including MODIS NDVI change detection and image 

segmentation  

So far, we identified a total of 1190 clusters of MODIS pixels that present an abrupt change 

within their NDVI temporal series, and for which the NDVI trend is significantly positive. We 

found that 279 LSLAs out of 492 (56.7 %) overlap at least one of the extracted MODIS cluster. 

In addition, we found that the remaining LSLAs potentially detectable (i.e. that overlap at 

least one of the clusters pixels) have an estimated median area of 123 ha, which is significantly 

larger than those which do not overlap any of the detected clusters (2.4 ha). Amongst the 

different processes (NDVI trend filtering, BFAST change detection and change map 

segmentation) the most decisive one was the MODIS pixels masking based on the NDVI trend, 

as seen in the first column of Table 3. During this first process, 42.9% of the total number of 

deals (492) present in the study were not retained for further analysis.  

4.2 LANDSCAPE FEATURES EXTRACTION BASED ON LANDSAT8 IMAGES 
Results presented in this section are directly related to sub-objective 2: “Discriminate detected 

potential agricultural LSLAs from other spatial processes (e.g.: agglomerated smallholder farms, LSLAs 

for conservation purposes…) using higher resolution satellite imagery (Landsat 8 - 30m)” 

4.2.1 Landsat8 images segmentation  

The next step consisted in performing an object-based image analysis (OBIA) using Landsat 8 

higher spatial resolution imagery (refer to section 3.3.2.). The aim pursued was the extraction 

of meaningful groups of landscape objects (e.g. parcels of fields instead of individual fields) 

from Landsat 8 imagery. The major drawback of this approach is its sensitivity to some of the 

different segmentation’s parameters. 
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Figure 13: Example of extracted landscape objects from Landsat 8 images using two different distance thresholds: 

0.2 (first column), and 0.6 (second column) for three study cases. Here Landsat object’s labelling was visually 

performed using Google Earth imagery, the field database metadata,  and one study related to land cover in 

Senegal  (Tappan et al., 2004). Objects in blue are related to smallholder agriculture. Objects in red are related to 

large-scale agriculture. Objects in green are related to natural vegetation. Objects in purple are related to 

agriculture of undefined type. From this figure, we assessed the impact of distance threshold on the shape and size 

of the extracted objects. 

 

From figure 13 one can see that the distance thresholding (refer to section 3.3.2) chosen for the 

segmentation has a great impact on the size and shape of the objects extracted. As an example, 

the shape complexity of the objects that by visual inspection (refer to the legend of figure 13 

for more details) may be related to smallholder agriculture (in blue) is lower when using a 

higher distance threshold (0.6 instead of 0.2). At the opposite, with a higher distance threshold, 

Distance threshold :0.2 Distance threshold :0.6 
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the shape complexity of agricultural LSLAs (illustrated in red) increases. By contrast, the 

shape of natural vegetation’s object (in green) and individual parcels (in purple) does not seem 

to change much.  

In the next section, the unsupervised classifications of the Landsat object-based extracted 

features (see subsection 3.3.3) are presented. 

4.3 UNSUPERVISED CLASSIFICATION 

4.3.1 SOM training  

A total of 12 SOM maps were trained, resulting from the combination of different distance 

thresholds [0.2, 0.6], different windows sizes for the textures [5x5, 10x10, 15x15] and including 

or not the landscape shape index. The different parameters used (SOM size, learning rate, 

sigma), and the quantification errors (Qe) and topological errors (Te) achieved for the different 

trained maps are presented in Table 5. The Hopkins score for each dataset is given, estimating 

the randomness of the data (the lower, the less random) (refer to section 3.5.2 for more details). 

 

Table 5: SOMs parameter settings  

 
Without landscape shape index With landscape shape index 

Distance threshold 
0.2 (n= 1388) 0.6 (n=606) 0.2 (n= 1388) 0.6 (n=606) 

Window size 
5 10 15 5 10 15 5 10 15 5 10 15 

Hopkins score 0.02 0.020 0.021 0.04 0.04 0.04 0.027 0.027 0.028 0.054 0.053 0.054 

SOM size 14 x 13 15x12 16x11 12x10 11x10 12x10 14x13 14x13 14x12 14x8 11x10 11x10 

learning rate (l) 0.38 0.36 0.46 0.46 0.46 0.36 0.54 0.36 0.44 0.34 0.38 0.36 

Sigma (s) 1.1 1.12 1.16 1.02 1.0 1.06 1.12 1.18 1.16 0.98 1.08 1.14 

Qe 0.24 0.2 0.21 0.15 0.17 0.21 0.21 0.26 0.29 0.17 0.22 0.22 

Te 0.07 0.05 0.07 0.08 0.09 0.06 0.1 0.08 0.09 0.05 0.07 0.06 

 

At a first sight, the parametrization and errors achieved are robust to the different input 

dataset used as no biggest variation may be observed. The differences in the SOM training 

performance between one dataset and the other are very small. The distance threshold seems 

to have a slightly higher impact than the window’s size on the internal data structure (as seen 

by the slightly higher Hopkins scores and lower Qe). The topological errors achieved are small 

enough, indicating data topology preservation (less than 1% of the samples have their 1rst 

and 2nd BMU not adjacent in the map).  

Illustration of the SOM maps are presented in the next section, achieved on the dataset with a 

distance threshold of 0.2, a window size of 15x15 and including the Landscape shape index. 

The SOM maps obtained with the other datasets are presented in Appendices B to M.   
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Figure 14: Illustration of the SOM maps obtained with the following input dataset: {distance=0.2, window 

size=15x15, shape_index included}. a) The component planes illustrate the relative distribution of each scaled 

feature over the map b) The average distance map indicates the average distance between the SOM nodes in the 

feature dimensional space.  

 

Figure 14a shows the component planes, which represent the relative distribution of each 

scaled feature over the SOM grid. They can be thought of as a sliced version of the SOM. Dark 

blue values represent relatively high values of the (scaled) feature while white values 

represent low values. The numbers in the x and y axis represent the SOM nodes indexing. By 

comparing different component planes, correlations can be inferred. In addition, these maps 

allow to assess the variability of each feature, and its contribution to the distance map 

presented in figure 14b and explained below. A complementary map to the component planes 

allowing to visualize the cluster tendency of our data is the average distance map presented 

in figure 14b. It represents the (normalized) average distance of the nodes’ weights in the 

input data dimension space. The whiter the colour is, the farther apart are the grid nodes from 

their neighbours. At the opposite, areas of high density will appear darker in the average 

distance map. Different compacted regions of the map, separated by whiter map units, will 

then likely represent natural clusters of the data. By comparing this map to the component 

planes, it is possible to assess which features contribute the most to the cluster tendency of the 

data.  

a b 
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In this specific case, one can see that the features with the greatest variability across the map 

(and more useful as they convey more information) are the VIs quantiles (particularly the 

NDWI), the entropy and the information measure of correlation 2. The shape index did not 

have a great impact on the average distance map.  The VIs coefficient of variation was mostly 

homogeneous and had only very specific local contribution to the map.  Around four 

homogeneous regions can be discerned in figure 14b. The region in the top left corner, mostly 

shaped by very high VIs values, is possibly linked to agricultural LSLAs, and will be visually 

evaluated in section 4.4.3. Indeed, and as noted in section 2.1.2, agricultural LSLAs often 

practice an intensive agriculture which translates into a higher biomass productivity. We can 

then expect the cluster related to agricultural LSLAs to contain very high VIs values.  

4.3.2 SOM hierarchical clustering 

In this study, the number of clusters was selected based on the Silhouette average value 

computed for different number of cluster k between 2 and 20 (see section 3.4.3).  

Using the same input set as the previous section, the highest Silhouette average value was 

achieved for k=8 (see figure 15). The trained SOM map was then clustered into 8 partitions 

using an agglomerative clustering algorithm. The partition achieved is presented in figure 

16b.  

 

 

Figure 15: Plot of the Silhouette average values for different SOM partitions (k= {2,3,…,20}) . Maximum was 

achieved for k=8. 
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Figure 16: Clustered SOM  a) SOM average distance map (refer to previous section. b): Partitionning of the SOM 

map using an agglomerative clustering algorithm (k=8) 

 

In figure 16b each coloured area of the map represents a cluster of SOM nodes. As expected, 

the different clusters follow the density map presented in figure 16a (same as 14(b)).  

Combined with the information presented in the component planes of figure 14a, one can 

infer the most contributing features to the clustering. Most contributing features are here: the 

NDWI 75th quantile, the entropy and the information measure of correlation 2.  

Cluster 4 is mostly defined by the very high VIs values, which as indicated above may be 

indicative of agricultural LSLAs. Indeed, and making the same assumptions that other 

authors did (Yan et al., 2014), we expected LSLAs intensive agriculture to translate into high 

biomass productivity (i.e. high VIs values). Cluster 0 is mainly defined by medium to high 

VIs quantiles, but also medium entropy values. Very low NDWI values, associated to dry 

environmental conditions, define clusters 1, 3 and 5. The only cluster highly influenced by the 

shape index is cluster 7, which represents objects with the highest shape complexity. Finally, 

cluster 2, represents the only area in the map in which NDWI and NGI are negatively 

correlated.  

4.4 EVALUATION 

4.4.1 Inter and intra-cluster variability 

Besides the Silhouette average, the separation and cohesion of each cluster were individually 

assessed using a silhouette analysis presented in figure 17. The plot displays a measure of 

how close each sample in one cluster is to samples in the neighbouring cluster. Silhouette 

coefficients near +1 indicate that the sample is far away from the neighbouring clusters. A 

a b 
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value of 0 indicates that the sample is on or very close to the decision boundary between two 

neighbouring clusters and negative values indicate that those samples might have been 

assigned to the wrong cluster.  

 

 

Figure 17: Clustered SOM Silhouette analysis  for the partition of figure 16b. Each cluster of the partition is 

represented by a different color. The x-axis indicates the Silhouette coefficient value, allowing to assess the 

cohesion and separation of each cluster.The vertical red dashed line indicates the average achieved for all the 

partition. 

 

In addition, the width of each cluster indicates the number of samples (SOM nodes) in within. 

From figure 17, one can see that the bulk of the SOM nodes belong to clusters 0 and 3. Cluster 

0, which is the biggest is also the less well defined in terms of cohesion and separation 

(silhouette average <0.2). This cluster is mainly defined by medium VIs and entropy values. 

Cluster 3 is on another hand better defined that cluster 0 (coefficient average value >0.4). This 

cluster is representative of medium entropy values and low VIs values. The other clusters, 

with exception of cluster 1, achieve good Silhouette average values (>0.4) and are clusters 3,4-

7. While well defined, those clusters are however very ‘thin’, indicating they are highly 

specific to a certain type of landscape element.   

4.4.2 Accuracy, precision and recall 

In this section, external evaluation metrics (against reference LSLAs) are presented. As a 

reminder, the SOM nodes were clustered within eight clusters. Knowing the BMU of each 

input data sample (Landsat pixel), it was possible to assign one cluster to each input data 

sample. Because the pixels belonging to one object are spectrally similar, the cluster assigned 

to each pixel of one object was almost all the time the same. There was no need to perform 

any majority filter in order to determine the Landsat object cluster.  

The true positives, true negatives and false negatives were computed following the formulas 

given in section 3.5.2 and always relative to cluster 4 (possibly linked to agricultural LSLAs, 
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refer to section 4.3.2). A true positive was considered when one pixel minimum of the Landsat 

object (raster), classified as belonging to cluster 4, overlapped with at least one pixel one 

reference LSLA. A true negative was considered when no pixel overlapped any reference 

LSLA. And false negatives were considered when Landsat objects classified within any other 

cluster than cluster 4, overlapped with at least one pixel a reference LSLA.  

Table 6 presents the accuracy (F1-score, refer to section 3.5.2), precision, recall of achieved by 

the different trained classifiers and relative to cluster 4 only. 

 

Table 6: Unsupervised classifiers overall performance. The F1-score, Precision and Recall are relative to cluster 4 

(the most possibly linked to agricultural LSLAs, see section 4.3.2) 

 Without landscape shape metrics With landscape shape_index 

Distance threshold 0.2 (n= 1388) 0.6 (n=606) 0.2 (n= 1388) 0.6 (n=606) 

Window size 5 10 15 5 10 15 5 10 15 5 10 15 

Best silhouette average (k=[2,..,10]) 0.35 0.32 0.31 0.32 0.33 0.29 0.26 0.3 0.29 0.29 0.31 0.26 

Optimal number of clusters (k) 10 11 7 6 6 5 14 9 8 5 12 6 

F1-score 0.36 0.33 0.42 0.28 0.25 0.28 0.375 0.33 0.43 0.27 0.22 0.22 

Precision 0.95 0.94 0.84 0.18 0.15 0.18 0.95 0.67 0.82 0.93 0.93 0.13 

Recall 0.23 0.2 0.28 0.62 0.7 0.62 0.23 0.22 0.29 0.16 0.12 0.68 

 

Results in Table 6 indicate that the highest overall performance (i.e. the balance between 

precision and recall) is achieved for a window size of 15x15 and a distance threshold of 0.2 for 

both input datasets (F1=0.43, with and without the landscape metric). With this 

parametrization, the precision of the classifier is optimized (0.82) with respect to its robustness 

(recall=0.29). Recall indicates that only 29% of the true positives are actually detected. 

However, its high precision level indicates that 82% of the detections are correct. 

Results presented in Table 6 also indicates that the worst window size was 10x10 with respect 

to sizes of 5x5 and 15x 15. The distance threshold has a great impact on the classifier precision 

and recall: the highest recall (but low precision) are achieved with a distance threshold of 0.6.  

Figure 18 here below indicates for this specific classifier the classes distribution of the Landsat 

objects that overlap with at least one pixel the reported LSLAs (from the ground-truth 

database). 
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Figure 18: Distribution (%) of the classified Landsat object (raster) that overlap, with at least one pixel, one of the 

LSLAs reported in the ISRA/CIRAD database 

 

As one can see in figure 18, around one half of the Landsat objects that overlap with at least 

one pixel one of the reported LSLAs, were classified as belonging to clusters 4 (29%) and 0 

(24%). Those clusters are defined by medium to high VIs quantiles (refer to figure 16b and 

figure 14a).  At the opposite, one third of the objects were classified within clusters 

characterized by very low VIs values but differing in their textural values (clusters 1 (11%), 3 

(11%) and 5 (10%)) (refer to figure 16b and figure 14a).    

4.4.3 Visual evaluation 

In addition to the quantitative assessments previously performed, a qualitative assessment of 

the labelled Landsat objects was also performed. Objects belonging to the most relevant 

classes (clusters 0, 4, 6, 1 2 and 5), were inspected and are presented in figure 19. 
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Figure 19: Closer views to different Landsat 8 classified objects  (raster). a) agr. LSLA (SCL, vegetables), b) agr. 

LSLA (CSS, sugar cane), c) agr.  LSLA (unknown production)   d): smallholder agriculture (visual. determined), e) 

mix of smallholder agriculture (visual. determined) and LSLAs, f) fragmented agricultural landscape, g) wetlands 

(Djoudj Park), h) native vegetation spot and intensive agriculture (visual. determined), i) agr. LSLA (Azyla Gum, 

gum tree), j) Senegal River floodplain, k) fragmented arid landscape, l) agr. LSLA (Azyla Gum, gum tree) 
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As expected from the different quantitative results, some of the most representative of the 

reported LSLAs are classified as belonging to cluster number 4 (figures 19 (a-c)). As a 

reminder, 82% of the objects in cluster 4 (refer to the precision value achieved indicated in 

Table 6) were correctly labelled as LSLA. Notwithstanding false positives exist, as the one 

shown in figure 19f, still related to agricultural activities. As a reminder, only 29% of the true 

LSLA were detected within cluster 4 (figures 19 (g, i, l)). A non-negligible part (24%) was 

classified in cluster 0 (in red-purple, second row of figures), which is the cluster most likely 

related to smallholder agriculture. LSLAs characterized by low VIs values were mostly 

classified within cluster 1 and 5. Cluster 1 (violet) and cluster 5 (yellow) mostly differ in their 

textural correlation values. While objects in cluster 1 are highly correlated (gum tree 

plantation, figure 19i). Objects in cluster 5 are not correlated and are spatially independent, 

as illustrated by the fragmented landscapes shown in figure 19k, and the cluster without 

distinguishable objects of figure 19l. 

 

5 DISCUSSION OF RESULTS  

5.1.1 Land use/land cover change detection based on MODIS  

The first part of this section is related to the change detection results. This study relies on two 

change detection algorithms, namely BFAST01 and BFAST. While being faster than BFAST 

(meaning more easily applicable over large spatial extents that BFAST), BFAST01 presented 

two main drawbacks, i.e.:  over detection (one change detected for each MODIS pixel over the 

national territory, probably linked to the length of the temporal data) and sensitivity to 

climatic induced changes. In this study, the large majority of the dates of change detected by 

BFAST01 were comprised between 2004 and 2005 (see figure 9). The authors of a previous 

study conducted for the same study area and period of time (Ngadi et al., 2020), found a 

higher variability of the TRMM rainfall during the same period of time (2004-2005). As a 

consequence, the vast majority of breakpoints found by BAST01 in this study are not suitable 

for our purpose. However, and as explained in section 3.2.2, the algorithm, which provide 

information on the trends observed before and after the breakpoint, was used to restrict the 

number of pixels for BFAST. The assumption made here is that a majority of new installations 

should translate in an increase of the biomass productivity and thus, should present a 

significant positive NDVI trend. However, while this may be true for new installations over 

non-cultivated/unproductive areas, such as the saline soils in the northern part of the country, 

or for installations in tropical areas involving land clearings, this is not always the case. This 

assumption restricts the number of potentially detectable LSLAs to 63.9% in the national 

territory, and 57.1% in our study case. Less number of LSLAs presents a significant positive 

NDVI trend in the northern part of the country than in the south (71%), where tropical 

conditions prevail. Another factor to take into account that may impact this proportion is the 

size of LSLAs. As retrieved from the database, an important part of the reported LSLAs (~25%) 

are smaller than 6ha, which is roughly the size of a MODIS pixel. As a consequence, their 

NDVI trend may be diluted in the pixel signal and not be detectable. The latter would in 
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addition explain the higher average area observed for the LSLAs with a positive NDVI trend 

(57 ha vs 30.8 ha, as shown in Tables 3 and 2). 

It is also worth reminding that less than a half of the field database LSLAs in our study area 

are “active”, while around 9% are not active anymore or are not yet productive (see Table 2). 

The latter means that with the remaining 50% that have an unknown status, a non-negligible 

part of the reported LSLAs may not may not be detectable with a change detection algorithm.  

The second processing step consisted in applying BFAST on a per-pixel basis, in order to 

detect relevant land use/land cover changes. The breakpoint associated to the biggest change 

in the median of the annual 16-day mean NDVI, as explained in section 3.2.3, was selected. 

This change detection, as opposed to the one detecting the biggest significant abrupt change 

in the time series trend component, does not include statistical significance tests. The obtained 

date of change map is much noisier and presents a higher variability than the one obtained 

using the breakpoint associated to the biggest significant trend change.  The latter, similarly 

to BFAST01, detected a significant amount of change dates within the 2004-2005 period, likely 

related to climatic changes as explained above. This makes the map homogeneous, especially 

in the southern part of our study area, not suitable for a clustering process. At the opposite, 

and because of the higher spatial variability, more visual clusters were detected from the date 

of change map based on changes in the median of the annual 16-day mean NDVI, leading to 

the extraction of 1190 clusters. At this stage we suppose the presence of a high level of false-

positives. But this not constitutes a problem per se as the discrimination between the different 

clusters is meant to be done during the unsupervised classification. However, needs for 

further research should definitely include the development of methods and metrics allowing 

to select the most suitable breakpoint. An important missing part here is the comparison of 

the number of potentially detectable LSLAs by BFAST (breakpoint selected using the different 

methods) and BFAST01. Unfortunately, time constraints imposed by a data loss incident 

impeded a quantitative assessment of this.  

5.1.2 Landscape features extraction based on Landsat8 images 

The most crucial processing step in our methodology concerns the Landsat 8 image 

segmentation (detailed in section 3.3.3). Indeed, the study heavily relies on the assumption 

that agricultural LSLAs present more geometrical shapes and less fragmented landscapes 

than smallholder agriculture and that shape indices could improve discrimination between 

those two land use systems. Two decisions had a big impact on the segmentation. The first 

one concerned the use of morphological operators in order to remove small holes between 

pixels identified as foreground pixels (markers) during the Otsu’s thresholding (example 

shown in figure 7). This was performed to enhance the extraction of groups of similar objects 

(e.g. groups of parcels).  Indeed, without this image pre-processing step, small independent 

objects (such as individual parcels) were extracted, posing a twofold problem: 1) a loss of the 

object spatial context (does the parcel belong to an LSLA installation? Does it belong to a patch 

of smallholder agricultural parcels?), and 2) the impossibility to apply an object size filter in 

order to remove small objects improbably linked to agricultural LSLAs.  
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The second decision that had an impact on the object shape was the distance threshold level 

applied to the image’s skeleton (illustrated in figure 13). The process was used to 

automatically extract foreground markers representative of vegetation needed by the 

segmentation algorithm. While lower distance thresholds allow to extract larger objects, 

higher distances produce smaller fragmented objects, constrained by the image edges. This 

parameter, however, seems to mostly impact the overall shape of complex objects such as the 

ones belonging to smallholder agricultural systems. Indeed, at higher threshold levels 

individual objects with more geometrical shapes are extracted. While this is also true for 

objects belonging to LSLAs, the overall shape of the group of objects stills conserve some 

simpler geometrical. As a consequence, in view of the overall performance of the different 

classifiers in Table 6, and the higher number of objects extracted at a lower distance threshold 

level (n=1308 vs n=606), lower distance thresholds are recommended. In addition, it is 

worthwhile to remember that the segmentation was performed on images resulting from the 

combination of very high VIs quantiles (90th). It is then very likely that with even low distance 

thresholds, identified foreground pixels are related to vegetated objects. 

5.1.3 Unsupervised classification 

The first aspect to consider is the composition of our input data (refer to section 3.4.1.). From 

our initial raw dataset containing different statistical metrics (25th, 50th, 75th quantiles and, 

coefficient of variation) on four VIs (NDVI, NDWI, NGI, NDBal), the thirteen Haralick textural 

features computed on NDVI images and two landscape shape metrics, we ended up with 9 

low inter-correlated features. Indeed, high correlation (above 0.7) was found amongst the VIs 

features, the textural features and the two landscape shape metrics. However, the core input 

dataset shows a very low Hopkins index indicating a real cluster tendency. One important 

aspect to take into account when performing an unsupervised classification is the presence in 

the data of a real cluster tendency, as clustering algorithms are able to found clusters in 

random data as well.  The VIs metrics kept include the 75th quantiles of NDWI and NGI. The 

NDBal, even if using a different spectral band (TIR), showed high correlation with NDWI. The 

latter is understandable as bare soils in the northern part of the country are mostly caused by 

the dry climatic conditions. However, in a tropical environment, this feature should be 

considered as a good candidate as it could add useful information to discriminate agricultural 

LSLAs.   

Contribution of each feature to the clustering may be assessed by diving into the component 

planes and the clustered SOM map of figures 14-15. From figures 14-15, and as noted in 

section 4.3.1, the cluster most likely related to agricultural LSLAs (cluster 4) is almost uniquely 

defined by high VIs values. The latter poses a problem, as the whole agricultural LSLAs 

variability can difficultly be encompassed by a range of very high VIs values. As a 

consequence, the classifier will not have a high generalization performance in detecting 

agricultural LSLAs. In this study, we expected some textural metrics (more precisely “edges” 

textures such as the entropy) and/or the shape metric to contribute more largely to this cluster. 

Many authors have shown the complementarity of using textural features in addition to 

spectral metrics to improve separation  between different image objects (Bey et al., 2020; Ferro 

et al., 2002; Lebourgeois et al., 2017). This is only true if the window size used to compute the 
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textural metrics is appropriate to the size and spacing of the texture elements within the class 

of interest. The window size should encompass the within-class variability, and that is a real 

challenge to achieve with complex land use systems such as agricultural LSLAs. However, 

when considering the overall performance of the different trained classifiers presented in 

Table 6, one can see that the input datasets using windows sizes of 5x5 and 15x15 achieved 

comparable performance, while the worst performance was achieved with a window size of 

10x10. The latter suggests that instead of looking for one window size, further research may 

focus on finding the best combination of different windows sizes. Different window sizes may 

be a good solution to capture the texture variability at different scales (e.g. at the parcel level 

which comprises many fields, or at the LSLA installation level, which comprises many 

parcels). Because large window sizes gives stable measures of within-class textures (Ferro et 

al., 2002), and because we are working on extracted landscape objects, larger windows sizes 

than 15x15 could be tested in further research.  

Having said that, we can see that the entropy in this study still contributes to some extent to 

the formation of cluster 0, the cluster most likely related to smallholder agriculture as 

suggested by figures 19d-e, and by its VIs and entropy values. This texture combined with 

the correlation texture allows on another hand to discriminate some natural vegetation 

elements, such as what seems to be flood plains and wetlands in northern Senegal (figures 

19j-g). Amongst the textures, the variance was the less discriminative feature. It mostly 

determine cluster 6,  which seems to be related to flooded areas, and could even include some 

specific crops such as flooded rice (figure 19g). 

5.1.4 Evaluation of the classifiers discriminatory power and insights in agricultural LSLAs 

The unsupervised classifier highest overall performance (F1-score=0.43) was achieved for the 

input sets using a distance threshold of 0.2, a window size of 15x15 and including the 

Landscape shape metric. More precisely, the precisions achieved for this combination of 

window size and distance threshold were very high (>0.9), while the recalls were very low 

(<0.2). This unsupervised classifier, while not robust, may however detect with high accuracy 

a small number of LSLAs (the ones with the highest VIs, which actually correspond to 1/3 of 

all the ‘detected’ LSLAs (i.e. the LSLAs that overlap at least one pixel of the extracted Landsat 

objects). The opposite is true for input datasets using a distance threshold=0.6. This contrast 

is particularly striking in the input dataset that does not include any shape metric. As 

previously mentioned, the distance threshold modifies the size and the shape of the object 

extracted. Because the contrasting input dataset did not include any landscape shape metric, 

the only parameter that could impact the classifier recall was the object’s size, which in turn 

impacts the robustness of the textural metrics computed.   

Besides the overall performance assessment, the methodology was found to be biased towards 

larger LSLAs. The size bias observed (well before the size filter applied at the end of the 

segmentation, as shown in Table 3) is explained by 2 processes: 1) the use of medium spatial 

resolution imagery (MODIS) to detect potential spatial changes and 2) the reliance of the 

change map segmentation process on the number of neighbouring pixels with similar dates 

of change. The latter favours the detection of bigger clusters of change.  
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Finally, despite the fact of not having enough discriminative features, evaluation of the 

discriminatory power of the different unsupervised classifiers against the ground truth 

database gave some insights in LSLAs. To begin with, the plot of figure 18 indicates that one 

third of the ‘detected’ LSLAs are characterized by very high levels of biomass productivity, 

while 1/4 have an ‘average’ productivity. The latter does not necessarily reflect a difference in 

production intensity, but may just be a consequence of the type of crop cultivated. More 

interestingly is the fact that about one third of the reported LSLAs have very low VIs values. 

This may be a consequence of their inactivity, but also, as suggested by figure 19i, may be 

related to some kind of agroforestry.  

 

5.2 SIGNIFICANCE AND REFLECTION ABOUT THE RESULTS 
This study aimed to develop a generic classifier able to detect agricultural LSLAs at large 

spatial extents. So far, few studies have attempted to do so. Most of the studies aiming to 

characterize agricultural LSLAs have focused on specific agricultural crops (Hurni et al., 2017) 

or have based their research on different study cases (Bey et al., 2020), relying on supervised 

approaches most of the time (Bey et al., 2020; Graesser et al., 2017; Hurni et al., 2017). The latter 

does not come without limitations as the availability of a ground truth dataset for an area of 

interest is not always guaranteed, or is not always up to date, or may be incomplete. All of 

this represents important limitations to the detection of dynamic, fast and non-transparent 

processes such as LSLAs. 

So far, and to our best knowledge, only one study used a change detection algorithm 

combined with a time series analysis (to estimate time series modality) to assess land use 

system conversions (Hentze et al., 2017). However, the study area was restricted to a specific 

agro-ecological zone, and a crop and land tenure masks were applied to focus on particular 

areas of interest. In a recent study, Bey et al. (2020) were able to detect smallholder and large-

scale croplands based on Landsat spectral and textural features. Their methodology is based 

on a 2-level supervised approach in order to first discriminate vegetated classes from 

cropland, and then large-scale croplands from smallholder ones. Both studies, because 

supervised, are somehow restricted to the availability and quality of the ground truth labelled 

data, reducing this way the genericity of the methodology. Unsupervised classifiers, able to 

capture and analyse the full range of land use spectral and spatial signatures of the data have 

not yet been tested in the specific case of agricultural LSLAs’ detection. 

Because of its novel aspect, the data driven approach applied in the present study is worth of 

interest. Results obtained during this exploratory research, even if premature, are promising 

and provide some insights in agricultural LSLAs in the northern half of Senegal. With a very 

limited number of discriminative features, detection of a specific type of agricultural LSLAs 

was achieved with high precision. A major limitation so far is that the LSLA class is mostly 

defined by the high values of two VIs, compromising the robustness of the classifier, as VIs 

may not encompass alone the natural variability of LSLAs, and limiting the classifier 

performance over tropical areas. However, what is more interesting is that a significant 
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proportion of LSLAs were classified in a class related to smallholder agriculture, in which 

textural features appear to have more weight.  A good selection of textural features, and more 

importantly of window sizes, may be very useful in improving discrimination between 

different land use systems. An unexpected result of this study, was the very low 

discriminative power of landscape shape metrics. This is very likely related to the process of 

image segmentation. Different parameters were found to have a great impact on the shape of 

the segmented objects. However, we do still believe that these metrics may greatly contribute 

to the discrimination of agricultural LSLAs. More research focused on the image segmentation 

applied to this kind of landscape elements is needed. Finally, this study shown the usefulness 

of using exploratory tools such as the SOMs in order to gain some insights in agricultural 

LSLAs.  

 

6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 MAIN FINDINGS 
This study presented a two-level unsupervised methodology to detect and characterize LSLAs 

in the northern half of Senegal. Several assumptions were made: 1) agricultural LSLAs may 

induce detectable changes in MODIS temporal series, and often present significant positive 

NDVI trends 2), spatial clusters of pixels with similar dates of change are affected by the same 

underlying change event, and 3) spatio-temporal spectral and textural metrics computed at 

the landscape level, combined with object shape metrics may allow to discriminate between 

natural vegetation, smallholder croplands and large-scale croplands. In order to apply the 

methodology, three core datasets were used: 1) a dense temporal stack (2000-2018) of MODIS 

16-day composite NDVI for the change detection analysis, 2) multiple 2-year period of 

Landsat-8 images for the GEOBIA analysis and 3) a ground truth database on LSLAs in 

Senegal for the evaluation analysis. 

The most important findings of the study are summarized here below:  

- More than a half (63.9%) of the reported LSLAs do present a significant positive 

(MODIS) NDVI trend (in an undetermined fraction of their area).  The proportion in 

the northern half part of the country is 57.1% while it represents 71% of the LSLAs 

reported in the south, where tropical conditions prevail.  

 

- The BFAST algorithm is able to detect changes related to agricultural LSLAs. At the 

end of the process 56.7% of the reference LSLAs reported in the field database were 

potentially detectable. Around a third of those LSLAs are characterized by low VIs 

(NDWI and NGI) values. Nearly one-third are characterized by very high VIs (NDWI 

and NGI) values and were classified as belonging to the cluster identified as being 

most likely related to agricultural LSLAs.   
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- Two Vegetation Indices (2-year period NDWI and NGI 75th quantiles) had the biggest 

contribution to the cluster tendency of the dataset (with 9 features, including the 

landscape shape metric). Those VIs, combined with two textural features (the 2-year 

average Entropy and the Information Measure of Correlation 2, had the biggest 

discriminative power between the following identified classes: natural vegetation, 

smallholder croplands and large-scale croplands. 

 

- The overall performance of the unsupervised classifiers is highly impacted by the 

distance threshold used during the Landsat image segmentation, and the window size 

used to compute textural features. The precision of the classifier towards our cluster 

of interest (the most possibly linked to agricultural LSLAs) was high (>0.8), but with a 

low recall (<0.3).  More discriminative features are needed in order to retrieve more 

meaningful clusters. 

 

- The shape metric did not have a big contribution to the cluster tendency of the data. 

The latter is in big part explained by the segmentation approach applied.  

 

- The detection method is biased towards bigger agricultural LSLAs mostly because of 

the MODIS-based change detection and the change of date map segmentation 

approaches.  

 

- Self-Organizing Maps (SOM) are exploratory tools that may be successfully used to 

gain insights in land use systems such as agricultural LSLAs. 

 

6.2 REFERENCE TO RESEARCH QUESTIONS/OBJECTIVES 
At this stage, we are now able to answer the research questions posed at the beginning of the 

present study, in section 1.2.3. 

Sub-objective 1: Detect potential agricultural LSLAs’ installation automatically at regional 

scale using change detection algorithms and medium resolution satellite (MODIS 250m) 

temporal series  

- RQ 1.1: Which method allows discriminating climate-induced breakpoints in MODIS NDVI 

time series from “anthropogenic” ones?  

While we were not able to specifically separate climate-induced breakpoints from 

“anthropogenic” ones, we were able to ‘skip’ the biggest breakpoints detected and related to 

climatic events. To do so, we implemented breakpoint selection technique allowing to detect 

time series pattern change. Recommendations related to this point are given in the next 

section. 
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Sub-objective 2: Discriminate detected potential agricultural LSLAs from other spatial 

processes (e.g.: agglomerated smallholder farms, LSLAs for conservation purposes…) using 

higher resolution satellite imagery (Landsat 8)   

- RQ 2.1: Which spatio-temporal characteristics of agricultural LSLAs are transferrable 

to indicators and spatial metrics that can be derived from satellite imagery? 

Some of the spatio-temporal characteristics of agricultural LSLAs transferrable to 

remotely-sensed indicators are: 1) the practice of intensive agriculture leading to very high 

VIs 75th quantiles (NDWI and NGI), 2) the specific size and distribution of the elements 

within LSLAs’ installations (fields, parcels) enabling the use of textural features (Entropy 

and the Information Measure of Correlation 2) and 3), the practice of mechanized 

agriculture, allowing the use of landscape shape metrics (Landscape shape index). 

- RQ 2.2: Do the metrics of question 2.1 allow distinction between different type of 

agricultural LSLAs and environments?  

The exploratory approach applied in this study showed the discriminative power of the 

VIs and textural features in differentiating between different landscape elements: natural 

vegetation, smallholder agriculture and large-scale agriculture.  

- RQ 2.3: Is the proposed methodology suitable for automatically discriminate 

agricultural LSLAs at regional scale?  

The methodology, as presented in this study, is still in an exploratory phase and needs 

different processing steps to be ‘fine-tuned’. However, with the right segmentation 

parametrization, and a higher set of discriminative features, the approach may be 

upscaled. Major limitations to the upscaling are two-fold: 1) the performance of the change 

detection algorithm over tropical areas is unknown. Because of the higher and more 

constant VIs values, change detection may be more difficult. However, worth is to note 

that the methodology did not show any bias towards the latitudes coordinates, while 

encompassing different agroecological zones. 2) The second limitation is related to the 

BFAST change detection computational-expensive algorithm. It is because BFAST is 

computational expensive that we first applied a filter based on the MODIS NDVI trend, 

in order to restrict the number of ‘candidate’ pixels. Still, this first filtering process presents 

a non-negligible amount of false positives. Higher computational performances (and 

possibility of upscaling) could then be achieved by replacing the first pre-processing step 

by a more selective filtering approach. 

 

6.3 RECOMMENDATIONS 
Because of the novel aspect of the present study, many gaps need to be filled. Some of the 

most important needs are summarized here below (from most important to less): 

- There is a need of additional discriminatory features.  As shown in section 4.3, the 

cluster possibly related to agricultural LSLAs is mainly determined by only three of 
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the 9 selected features (namely NDWI, NGI and Entropy). With only three features it 

is very difficult to encompass the natural variability existing within agricultural 

LSLAs. Suggestions include: 1) testing different satellite image stack compositing 

methods, 2) testing different textural window size combinations, and 3) selecting new 

features related to environmental/climatic conditions. 

 

- Directly related to the previous point, and in order to be able to successfully make use 

of landscape shape metrics, is the need of more research on image segmentation 

techniques allowing to extract meaningful groups of landscape objects. Special 

attention should be paid to the shape of the extracted objects.   

 

- The accuracy of the detected date of change is crucial in this study. As a consequence, 

more research is needed on metrics allowing to select the breakpoint that best fit our 

purpose.  

 

- As seen in the results of this study, a MODIS pixel filtering based on the productivity 

trend may result in high omission error. Alternatives to reduce the number of 

candidate MODIS pixels are needed, such as the use of stratified MODIS time series in 

order to filter croplands (Vintrou et al., 2012b). 
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8 APPENDICES 

Appendix A Type of NDVI trend shift experienced 
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Appendix B Unsupervised classifiers: {d.= 0.2, wind.= 5x5, no shape metric} 

B. 1 Component planes, distance map  and clustered SOM 
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Appendix C Unsupervised classifiers: {d=0.2, wind.= 10x10, no shape metric} 

C. 1 Component planes, distance map  and clustered SOM 
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Appendix D Unsupervised classifiers: {dist.= 0.2, wind.= 15x15, no shape metric} 

D. 1 Component planes, distance map  and clustered SOM 
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Appendix E        Unsupervised classifiers: {d.=0.6, wind. =5x5, no shape metric} 

E. 1 Component planes, distance map  and clustered SOM 
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Appendix F Unsupervised classifiers: {dist.=0.6, wind. =10x10 , no shape metric} 

F. 1 Component planes, distance map  and clustered SOM 
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Appendix G Unsupervised classifiers: {d.=0.6, wind. =15x15, no shape metric} 

G. 1 Component planes, distance map  and clustered SOM 
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Appendix H Unsupervised classifiers: {d.=0.2, wind. =5x5,  shape metric} 

H. 1 Component planes, distance map  and clustered SOM 
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Appendix I Unsupervised classifiers: {d.=0.2, wind. =10x10, shape metric} 

I. 1 Component planes, distance map  and clustered SOM 
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Appendix J Unsupervised classifiers: {d.=0.2, wind. =15x15,  shape metric} 

J. 1 Component planes, distance map  and clustered SOM 
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Appendix K Unsupervised classifiers: {d.=0.6, wind. =5x5,  shape metric} 

K. 1 Component planes, distance map  and clustered SOM 

 

 

 

 



 

88 

 

Appendix L Unsupervised classifiers: {d.=0.6, wind.=10x10,  shape metric} 

L. 1 Component planes, distance map  and clustered SOM 
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Appendix M Unsupervised classifiers: {d.=0.6, wind. =15x15,  shape metric} 

M. 1 Component planes, distance map  and clustered SOM 

 

 

 

 


