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Abstract
Many mapping efforts have been made to decrease the malaria burden on the

world’s population. High resolution spatial knowledge of malaria could increase the
effectivity of malaria control and prevention which is especially useful for resource
limited countries. In this study, 30 meter resolution malaria transmission suitability
maps and exposure changes from 2001 to 2013 in Uganda are computed by using 6
predictor variables representing water proximity, water depth, water extent, tempo-
ral water, population density and air temperature. The latter four predictor variables
show the strongest relations with malaria incidence rates. Furthermore, decreases in
exposure to malaria over time have been noted. The decrease is associated with the
urbanization in Uganda. While many agree that an increase in population causes a
decrease in malaria transmission intensity, questions about the roles of wealth, insti-
tutions and population density remain and have to be addressed in future research.
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Chapter 1

Introduction

Malaria places a high burden on the world’s past and current population. Since 2002
an unprecedented campaign against malaria has tried to control the disease in sub-
Saharan Africa. Insecticides treated bed nets (ITN’s), indoor residual spraying (IRS),
artemisinin-based combination therapy (ACT), habitat removal and other malaria
control practices reduced the incidence of clinical disease with 40% between 2000
and 2015 (Bhatt et al., 2015). While the reduction is considerable, the disease still
remains and continuous efforts must be made to further reduce malaria prevalence.

Mapping malaria contributes to the spatio-temporal distribution knowledge of
malaria and also increases effectivity of malaria control practices. To map malaria,
knowledge is needed about the spatial dependencies of malaria transmission. En-
vironmental factors that are known to influence malaria include temperature, hu-
midity, surface water, vegetation, predators, pathogens and nutrient availability
(Smith, Macklin, and Thomas, 2013). Population density, urbanization and resources
for malaria prevention and control are some socio-economic factors that influence
malaria transmission (Hay et al., 2005). Sometimes proxies for the mentioned fac-
tors are used. For instance, precipitation is often used in models to predict the state
of surface water in time and space (Craig, Snow, and Sueur, 1999). Others try to
map pools of water empirically or try to derive pools from hydrological processes
(Bomblies, Duchemin, and Eltahir, 2008). The factors mentioned above contribute
to the heterogeneous nature of breeding sites of the malaria vectors. As a result,
hotspots of transmission can be spatially diverse throughout a region or country.

The usage of many variables and the complexity of their relations to transmis-
sion increase computation time which contribute to having either medium resolu-
tion global maps (e.g., (Craig, Snow, and Sueur, 1999; Gething et al., 2011; Tomp-
kins and Ermert, 2013) have a 30 km, 5 km and 10 km resolution, respectively) or
high resolution local maps (e.g., (Bomblies, Duchemin, and Eltahir, 2008) has a 10
m resolution). Medium resolution maps are able to show spatio-temporal patterns
while high resolution maps can show hotspots (which are usually smaller than 1 km2

(Bousema et al., 2012)). High resolution global maps, however are not yet present.
These global high resolution maps could provide spatial and temporal knowledge
of transmission hotspots in regions where thorough malaria prevalence studies are
too costly, hence, reducing the costs of malaria control.

The knowledge of spatio-temporal dynamics of hotspots is of importance to
successfully predict future hotspots but also to investigate the effectivity of cur-
rent malaria controls (e.g., if malaria controls are applied to a village will malaria
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hotspots shift to another village?). Especially in developing countries, where eco-
nomic resources are limited, knowledge of the locations of these hotspots are of im-
portance to implement effective and cost efficient control measures (Bousema et al.,
2013; Bousema et al., 2010; Ernst et al., 2006).

Maps of malaria prevalence are in general, mapped as transmission of malaria:
transmission suitability (a value between 0 and 1, 0 has the lowest probability of
transmission and 1 the highest) (Craig, Snow, and Sueur, 1999), Plasmodium falci-
parum endimicity (Gething et al., 2011), malaria transmission (Bomblies, Duchemin,
and Eltahir, 2008) and entomological inoculation rates (Tompkins and Ermert, 2013).
Please note that Plasmodium falciparum is the main parasite which causes malaria in
humans in Africa.

In health geography, exposure can be interpreted as both individual exposure
and population exposure (Watson, Bates, and Kennedy, 1988). In the case of malaria,
individual exposure can be defined as the biting rate of malaria vectors (mosquitoes)
an individual experiences (Govella, Okumu, and Killeen, 2010). The population ex-
posure is the exposure for a group of people which is aggregated (Watson, Bates,
and Kennedy, 1988). Population and individual exposure to transmission is used to
quantify the severity of malaria transmission in relation to population present at that
location. Therefore it is a valuable asset in computing the spatio-temporal patterns
of the impact of malaria.

The remainder of this thesis starts with the objectives and research questions.
This is followed by the literature review, methodology, results and discussion. Fi-
nally, the conclusion is presented and recommendations for future research will be
given.
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Chapter 2

Objectives and research questions

The objective of this study is to investigate the change in exposure to Plasmodium fal-
ciparum (i.e., the malaria parasite) on a 30 m spatial resolution between 2000 to 2013
in Uganda. In this thesis, global datasets will be used to enable mapping at a global
scale in future studies. Uganda will be used as study area to develop and validate
the model due to the availability of survey data, strong spatial differences in malaria
prevalence and the small size of the area, which reduces computation time. From
the objective, the main research question is defined as:

How does the exposure to Plasmodium falciparum in Uganda change over time
(2000 to 2013)?

Sub questions:
• Which environmental and socio-economic factors influence Plasmodium falciparum
transmission? And how are their (spatial and temporal) characteristics related to
Plasmodium falciparum?
• What is the malaria transmission suitability in Uganda and how does it change
between 2000 to 2013?
• Does the Plasmodium falciparum transmission suitability map explain the empirical
data of malaria incidences and how can we explain the differences?
• What is the exposure of the population to malaria in Uganda and how does it
change over 2000 to 2013?
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Chapter 3

Literature review

3.1 The malaria transmission cycle

Malaria is caused by the Plasmodium parasite and mainly uses vectors (mosquitoes)
of the genus Anopheles to transmit the parasite. The malaria transmission cycle has
three stages: development of the vector, the gonotrophic cycle and the sporogonic
cycle. Transmission is part of the gonotrophic cycle of a vector. The gonotrophic cy-
cles consist of feeding on hosts and reproducing (mating and oviposition). A vector
could become infected when it feeds on an infected host. If infected, the sporogonic
cycle starts which is the multiplication of the parasites inside of a vector. Finally the
vector will be able to disperse the parasite to other hosts as part of the feeding sec-
tion of the gonotrophic cycle. The development of vectors occurs after oviposition.
When fully matured, these vectors will start their own gonotrophic cycle.

In general, the development of the vectors, gonotrophic cycle (reproductive and
feeding) and sporogonic cycle (the parasites multiplication in the vector) are depen-
dent on the factors stated in figure 3.1.

FIGURE 3.1: The malaria transmission cycle (Smith, Macklin, and
Thomas, 2013).

3.2 Environmental and social dependencies

The type of Plasmodium parasite and especially the type of vectors determines the
social and environmental dependencies of the transmission. Table 3.1 provides the
three most prominent malaria vectors of malaria in Africa and observations of habi-
tats and oviposition sites. Generalizations in preferences of vectors can be compli-
cated (Muirhead-Thomson, 1951). This is a result of the adaptibility of the Anopheles
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species complex (Fillinger et al., 2004), they are able to reproduce in any available
water. Vectors however, do show slight breeding preferences (Holstein, 1954) as can
be seen in table 3.1.

Table 3.2 presents an overview of the environmental and social dependencies of
oviposition site selection and hence malaria transmission. Which are in fact the un-
derlying factors of the preferences stated in table 3.1 .These factors or dependencies
are further discussed in this literature review. Oviposition site selection and the spa-
tial characteristics of malaria transmission are connected by the dispersion capacity
of vectors. The dispersion is therefore of importance and is further elaborated in this
section.

3.2.1 Air temperature

The survivability of vectors, the speed of the gonotrophic and sporogonic cycle and
development of the vectors are mainly dependent on temperature and humidity
(Bayoh, 2001). Water and air temperature and humidity influence the speed of de-
velopment and the survivability of adult mosquitoes. In ideal circumstances, adult
mosquitoes could survive up to 45 days (Bayoh, 2001). The parasite Plasmodium
falciparum has a different relation on temperature than its vector, therefore a trade-
off has to be made between vector survival and parasite development (sporogonic
cycle) within the vector for adequate transmission (Hay et al., 2000; Gething et al.,
2011).

The development into an adult mosquito takes about 16 days (1 day egg, 10 days
larvae, 1 day pupae, 4 days of drying) with an average temperature of 24 degree Cel-
sius (Niaz Arifin, Davis, and Zhou, 2010). Furthermore, sporogony can take 6 days
at high temperatures (approximately 35 degrees Celsius) up to 28 days at low tem-
peratures (approximately 20 degrees Celsius) with sufficient vector survival (5.9% at
low temperatures and 29% at high temperatures)(Hay et al., 2000). Finally, after be-
ing developed in a full grown adult, the An. gambiae female looks for a mate, seeks
a bloods meal, digests the blood meal and lays her eggs. This gonotrophic cycle
takes typically 2 to 3 days. This period decreases with a temperature increase (Hay
et al., 2000). Leaving humidity aside, this promotes that transmission is plausible if
a temperature of 20 to 30 degrees Celsius is sustained for at least 24 days after egg
placement. The thermal range for the An. gambiae s.l. is 18 to 34 degrees Celsius.
Outside of this range no adult vectors will emerge (Bayoh and Lindsay, 2004).

3.2.2 Water, predators and nutrients

Figure 3.1 indicates that water is needed for oviposition and the development of new
vectors. Observations of oviposition sites state that An. arabiensis and An. gambiae
s.s. both prefer small, temporary habitats which are sunlit (no vegetation) whereas
the An. funestus has a preference for larger, more permanent water with aquatic
vegetation table 3.1. It seems that the main preferences regarding water consist of
temporal continuity of water and size of the pools (i.e., depth and extent). These
preferences are further elaborated in this section.
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Temporal water characteristics

The time span of existence of pools or other forms of water can be of influence on
the productivity of a site. The longer the water is present, the higher the negative in-
fluence of predators, disease and nutrient competition on the productivity (Depinay
et al., 2004). The length of the presence of pools of water is dependent on the season
(either wet or dry, warm or cold) and the sub surface. A high temperature can cause
strong evaporation. Combined with a porous sub surface and little precipitation this
can lead to a shorter time span of water availability. Vice versa, a non-porous sub-
surface, low temperatures and high precipitation can cause a longer time span of
water availability.

Seasonal water characteristics

Water availability and malaria incidence rates change throughout the year. In the
dry season, some rivers obtain a low flow rate. If this flow rate drops below a certain
threshold, it will become a viable breeding habitat. The drying out phase of habitats
just after the wet season also appears to play a critical role. Larvae retreat to places
where an adequate amount of water is present, hence retreating to paleo channels,
ephemeral river channels and spring fed ponds in the dry season (Smith, Macklin,
and Thomas, 2013). Therefore it is expected that malaria incidences near rivers will
come to a rise when transitioning from the wet season to the dry season. In the wet
season itself the malaria incidence will be high due to a high amount of precipitation
events. Therefore in the wet season and the transition of the wet and dry seasons,
transmission is expected to be higher than during the dry season (since then, there
is no water present).

Observations confirm the rationale. In the Sahel, seasonal effects of malaria are
especially present due to the brief but heavy rainfall. In Niger, ephemeral pools,
which are bound to precipitation events, are usually used as breeding sites (Bomblies,
Duchemin, and Eltahir, 2008). It has also been shown that the number of vector lar-
vae in water-retaining alluvial deposits along the Gambia peaks one month after the
peak rains (Bøgh et al., 2003). Others also report that malaria breeding habitats will
peak after a precipitation event (Hardy et al., 2013; Gimnig et al., 2001). Further-
more, Tanzanian lowland transmissions are perennial with a significant peak in the
rainy season after the long rains in May, when vectors densities were high (Bødker
et al., 2003).

Finally, a significant decrease in malaria transmission throughout Uganda at the
end of the dry season was found (Okello et al., 2006). Just after a drought period
however, the An. gambiae population sizes rises to a peak (Service, 1997). The al-
ternation of wet season to dry season and dry season to wet season, as well as light
precipitation events are pronounced causes for increased vector populations.

While most vectors prefer a small time span that water is present, the An. funes-
tus forms an exception and prefers permanent water (Gillies and De Meillon, 1968).
Also, other malaria vectors (An. gambiae s.l.) were found in more permanent waters
(Fillinger et al., 2009; Fillinger et al., 2004). These permanent waters usually consist
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of swamp rice cultivation fields or other man-made habitats as cemented-lined pits.

Concluding, the beginning and end of the wet season and the wet season itself
seems to have the strong vector density rates whereas the end of the dry season has
the lowest vector density rates. Some vectors (An. funestus) will sustain through-
out the year. And other vectors will sustain throughout the year only in man-made
habitats.

Predators, disease and carrying capacity

Predators, nutrients and disease decrease the productivity of an oviposition site.
Predators and pathogens are a major factor of mortality (Service, 1997). It can be seen
in table 3.3, that the highest amount of deaths attributable to predators is present in
the pupae stage.

Service (1997) also found that in pools where predator density was low, 15.9%
of the An. gambiae were infected with pathogens and parasites which eventually
caused mortality. Hence development is limited with an increase of both predator
pathogens and predators. Service (1997) noted that in temporary water, predators
and pathogens will increase pre-adult mortality with a certain time lag and about
37% of the deaths of pupae are related to predators.

The larvae stage of a mosquito is associated with nutrient uptake. If the carry-
ing capacity of a habitat is exceeded, pupae will use cannibalism to increase their
own chances of survival (Hoek, 2015; Depinay et al., 2004). Therefore the carrying
capacity of a certain habitat is also a limiting factor in the development of vectors.
As a result of pathogens, predators and nutrient competition, only 10% of the eggs
develop into adult mosquitoes (Costantini et al., 1996).

Predators, diseases and nutrients limit productivity in oviposition pools, how-
ever they are not present when a pool has just been formed or when it is cleaned
by humans (Fillinger et al., 2004). Furthermore, it is found that younger habitats,
that were cleaned every 10 days had 1.7 times more larvae than habitats that were
cleaned every 30 days (Munga, Vulule, and Kweka, 2013). According to Fillinger et
al. (2004) predators have a 20 day time-lag after the emergence of a new water source
for predators to reach full capacity. Moreover, carrying capacity is not reached in the
early stages of the pools. Hence, the shorter the timespan of the pools, the higher
the productivity.

Water depth and extent

Water depth and extent influence the flow rate (due to wind) and temperature of the
pools. Oviposition sites are preferred to have a relatively high temperature (for an
increased speed of development of vectors (Bayoh and Lindsay, 2004) and a low flow
rate. Therefore, the depth and extent of pools are mostly found to be small (table 3.1).
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Consensus of preference of small pools is not present in observations. The An.
gambiae s.l. breeds in both small waters (like cattle wallows, wheel tracks and domes-
tic container) but also river margins, rice fields and seepage plains (Carter, Mendis,
and Roberts, 2000). In Kenya, 80% of all An. gambiae in swamp marches and roadside
ditches (Minakawa et al., 2004). Human-made larval habitats such as cement-lined
pits were also important in malaria proliferation (Girardin et al., 2004). Furthermore,
in The Gambia, floodplains are used as swamp rice cultivations which produced the
vast majority of breeding sites (Fillinger et al., 2009). Bomblies et al. (2008) presents
that in the Sahel, pools containing vectors are in the order of 10 m in diameter. An
example where An. gambiae still breeds is rice fields, which are usually large water
pools of relatively low depth (Klinkenberg et al., 2003). Rice fields have a large sur-
face area but plants disrupt water velocity contributing to vector growth (Fillinger
et al., 2009). According to Gillies and De meillon (1968) the An. funestus also breeds
on the edges of the Wellcome dam in Kenya (13000 m2).

Observations differ from human-made habitats to natural habitats and from an
extent of the Wellcome Dam to the extent of a cattle’s wallow. The depth, however,
does not vary significantly. The depth of pools is usually less than 1 m (Paaijmans
et al., 2010). Breeding sites in larger pools or lakes can also be located at inlets that
have a low water velocity and shallow water depth (Tompkins and Ermert, 2013).
High soil moisture in these inlets can also boost the breeding capacity of such an
area (Bøgh et al., 2007). Therefore it is likely than An. funestus breeds in shallow
waters on the edges of the Wellcome dam in Kenya. Hence, the influence of water
depth has a higher priority in the vectors’ choice of oviposition sites than the extent
of pools. In general pools with a large extent will decrease the oviposition suitability
of a site. A large water depth will decrease this suitability even more.

3.2.3 Anthropogenic influence

Humans have two ways of influencing malaria transmission. The first is the creation
of strong oviposition sites; second is the necessity of humans for the transmission of
malaria.

Studies present that human-made depression are strong foci for vectors in vil-
lages. This is due to the large period of time that the water is maintained but also
because of the high quality of the water. Nutrients are therefore maintained through-
out time. Human made depressions consist of cattle wallows, wheel tracks and do-
mestic containers (Carter, Mendis, and Roberts, 2000; Girardin et al., 2004; Fillinger
et al., 2004). These human-made depressions are especially important in small hu-
man settlement like villages.

The second way of influencing malaria transmission is the necessity of human
host in the transfer of malaria from one vector to another (figure 3.1) (Beier, 1998).
This is due to the fact that vectors can only obtain the parasite by feeding on a hu-
man host.

The distance of humans towards oviposition sites is therefore of considerable im-
portance in multiple ways for transmission. Many studies find increases of malaria
incidences of villages near lakes or rivers (Bomblies, Duchemin, and Eltahir, 2008).
Usually the smaller the proximity of water to villages the higher the incidence rates
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(Van Der Hoek et al., 2003; Oesterholt et al., 2006; Mutuku et al., 2006; Gu and No-
vak, 2009).

While a small increase in population may increase breeding sites and malaria
transmission possibilities (Minakawa et al., 2004), urbanization will actually de-
crease infection of people due to elimination (concretization) of breeding sites and
increasing pollution of the remaining sites (Hay et al., 2005). The studies presented
above (Van Der Hoek et al., 2003; Oesterholt et al., 2006; Mutuku et al., 2006; Gu and
Novak, 2009) are conducted in villages and not in highly urbanized area. Therefore
the urbanization effect on oviposition sites is not visible. The urbanization effect is
visible in figure 3.2, which states that the annual infected bites per person decreases
with an increase of urbanization.

FIGURE 3.2: A declining APfEIR (Annual infected bites per person)
with increasing urbanization (Hay et al., 2005).

3.3 Vector dispersion capacity

Oviposition locations are not only dictated by site preferences and temporal charac-
teristics of these sites, but distance towards human settlements is also a contributing
factor. Service (1997) reviewed these appetential (active) flights of vectors in liter-
ature. In general, the conclusion is that while some vector species could fly large
distances (25 km (Hocking, 1953)), most of the vectors will not fly these distances
if this is not needed. Malaria incidence rates will be highest near breeding places.
However, flight distances can be over multiple kilometers if oviposition sites and
hosts are widely separated. Wind speed and the kind of species can influence the
flight distance (Service, 1997). Studies confirm that malaria incidences rates increase
with a decreasing proximity towards breeding sites (Van Der Hoek et al., 2003; Gu
and Novak, 2009; Midega et al., 2007; Costantini et al., 1996). For the An. gambiae s.l.
it is often recommended that a 2 km barrier should be considered when practicing
malaria control programs (Service, 1997). There are however cases in which there are
differences in flight distances of vectors (Carter, Mendis, and Roberts, 2000). There-
fore, is could be said that for vector dispersion capacity a 2 to 3 km range would be
appropriate. Food shortage and adequate wind speeds may allow these vector to fly
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out of this range (Carter, Mendis, and Roberts, 2000).
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TABLE 3.1: An overview of observations of habitats and oviposition
sites of different Anopheles species.

References An. gambiae s.s. An. arabiensis An. funestus

(Ayala et al., 2006;
Minakawa et al.,
2002; Girardin et al.,
2004; Holstein, 1954;
Minakawa et al.,
1999; Van Der Hoek
et al., 2003)

Proximity to human
settings

Proximity to human
settings

Proximity to human
settlements

(Bøgh et al., 2003) Alluvial deposits in
flood plains

Rice nurseries

(Bombies,
Duchemin,
and Eltahir,
2009; Bomblies,
Duchemin, and
Eltahir, 2008)

Small ephemeral
pools, temporary
water, near human
habitation

Small ephemeral
pools, temporary
water, near human
habitation

(Muirhead-
Thomson, 1951)

Small, temporary,
clean, sun-exposed
water

Small, temporary,
clean, sun-exposed
water

(Fillinger et al., 2009) High water temper-
ature and turbidity
low conductivity,
presence of algae
and absence of tidal
water

(Gimnig et al., 2001) Small, temporary
habitats with algae
and not vegetation

Small, temporary
habitats with algae
and not vegetation

Large, semi-
permanent bodies
of water containing
aquatic vegetation

(Gillies and De Meil-
lon, 1968)

Sunlit pools Sunlit pools Permanent water
bodies

(Imbahale et al.,
2011)

Both temporary and
permanent human-
made habitats

Both temporary and
permanent human-
made habitats

(Klinkenberg et al.,
2003)

Rice fields in early
growing stages

Rice fields in early
growing stages

(Munga et al., 2006a) Farmland habitats Farmland habitats
(Munga et al., 2006b) Little predators and

competitors
s Little predators
and competitors

(Mutuku et al., 2006) Soil burrow pits,
streambeds

Soil burrow pits,
streambeds

(Emosairue, Ogha-
randuku, and Nmor,
2015)

Open, sunlit and
undisturbed habi-
tats for oviposition

Open, sunlit and
undisturbed habi-
tats for oviposition

(Sattler et al., 2005) Small, highly or-
ganic polluted
breeding sites

Small, highly or-
ganic polluted
breeding sites

Small, highly or-
ganic polluted
breeding sites

(Minakawa et al.,
2012)

Man-made pools
and lagoons

Vegetated habitats
in lagoons
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TABLE 3.2: An overview of the environmental and social dependen-
cies of the transmission of malaria.

Dependency Description References

Air temperature · The speed of development (of vec-
tors) and sporogonic cycle of malaria
of the vectors are dependent on tem-
perature.
· Air temperature partly determines
the speed of which the first transmis-
sion could occur after a new aquatic
oviposition site is created.

(Bayoh, 2001; Hay et
al., 2000; Gething et
al., 2011)

Temporal water · The time that an aquatic habitat
is present has an effect on the pro-
ductivity of vectors (malaria transmis-
sion)(temporal water).
· The vector productivity of a tempo-
ral aquatic site is further dependent on
predators, disease and carrying capac-
ity and seasonal water characteristics

(Depinay et al., 2004;
Smith, Macklin, and
Thomas, 2013; Ser-
vice, 1997)

Water depth and extent · The depth and extent of an aquatic
habitat will influence flow rate (the
smaller the pool, the less wind-related
waves) and also the temperature of
the water (the smaller the pool, the
stronger the increase in temperature
when exposed to the sun).

(Service, 1997; Paai-
jmans et al., 2010;
Klinkenberg et al.,
2003)

Population · People are necessary for malaria
transmission.
· Urbanization however will decrease
malaria transmission due to con-
cretization and pollution.

(Carter, Mendis, and
Roberts, 2000; Hay
et al., 2005; Beier,
1998)

TABLE 3.3: Percentages of deaths attributable to predators (Depinay
et al., 2004).

Stage duration (days) With predators Without predators Attributable to predators

Larvae 9.98 90.9 79.58 11.34
Pupae 1.79 73.49 35.63 37.86
Total 11.77 97.6 86.85 0.11
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Chapter 4

Data and study area

4.1 Data

To maintain the possibility of mapping malaria suitability at a global scale, (most)
datasets used are globally available. Furthermore, high resolution datasets are re-
quired due to the fact the high spatial variety in malaria transmission. The data is
presented in table 4.1. The soil texture information was only provided once in 2012.
The malaria incidence map consists of multiple surveys throughout Uganda from
2000 to 2015. This data set was only provided once.

TABLE 4.1: Datasets used in this study.

Dataset Reference Spatial extent Spatial coverage Temporal resolution

Open surface wa-
ter

(Pekel et al., 2016) Global 30 meter monthly

(Linard et al.,
2012; Worldpop,
2018)

Population Global 100 meter 5 years

Digital elevation
model

(RCMRD, 2018) 80 percent 30 meter once

Precipitation (Funk et al., 2015) 50◦S to 50◦N 5 km Monthly
Temperature (Karger et al.,

2017)
All earth surfaces 1 km Monthly

Evaporation (Martens et al.,
2017)

All earth surfaces 27 km Monthly

Ground Texture (Batjes, 2012) All earth surfaces 10 km Once (2012)
Malaria inci-
dence observa-
tions

(Bhatt et al., 2015) Multiple coun-
tries

point observa-
tions

Once (2000-2015)

4.2 Study area

Since mapping malaria globally is time consuming due to high computational de-
mand, Uganda is used as study area. Global datasets are used to enable mapping
at a global scale in future studies. Uganda is chosen due its differences in malaria
prevalence (figure 4.1). The average annual temperature in Uganda is 26 degrees
Celsius. From March till May and October till November it is the rainy season and
in between the dry seasons, except for some light rains in November and December
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(Okello et al., 2006). The effect of rainfall on malaria will vary with season and ge-
ography (Briët et al., 2008). This effect contributed to the variation in malaria preva-
lence in Uganda. This is confirmed by Okello et al. (2006) who did a prevalence
study of Anopheles species at different locations in Uganda throughout 2002. The
heterogeneity in the effect of rainfall on malaria prevalence is clear. The only spatial
homogeneous trend occurs at the end of the dry season (in January), when transmis-
sion is observed to be lowest at all locations in Uganda. Okello et al. (2006) observed
strong spatial differences in Anopheles biting rates throughout Uganda. Apac, a vil-
lage located in a savannah grassland with extensive swamps near lake Kyoga has
the highest biting rates (190 bites per man per month) whereas in villages located in
hilly grassland, like Mubende only low biting rates (36 bites per night) are observed
(appendix A). The figures below present the observations of Plasmodium falciparum
in Uganda from 1984 to 2016.

FIGURE 4.1: The percentage of Plasmodium falciparum cases out of the
population in Uganda. The data is collected by the Malaria Atlas

Project (Bhatt et al., 2015).

Within Uganda, multiple study areas are taken to increase the understanding of
the reaction of the model on different areas. Areas near cities (Kampala), swamps
(Kyoga), lakes (Victoria and George) are taken as is shown in figure 4.2.

As can be seen in figures 4.1 and 4.2, location, water content, population and
incidences differ in these regions. Hence these regions have been chosen to explore
the malaria transmission suitability in Uganda.
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FIGURE 4.2: Multiple study areas within Uganda. The Kampala re-
gion, Lake George region, Lake Kyoga region and Lake Victoria re-
gion are presented in the left upper corner, left lower corner, right

upper corner and right lower corner, respectively.
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Chapter 5

Methodology

The transmission mechanisms and the weighted overlay to compute the malaria
transmission map are presented first. This is followed by the methodology of the
calibration and validation of the model. The section continues with the method for
computing the exposure to transmission. Since the model tries to decrease the no
data in the open surface water data set, the remainder of this section will described
the methodology of this process.

5.1 The predictor variables for malaria transmission

The objective of this study is to map exposure to Plasmodium falciparum. Therefore
the breeding sites of the most important vectors in Uganda are taken into account:
An. gambiae s.l. and An. funestus (Okello et al., 2006). The location of oviposition sites
and malaria transmission are dependent on the malaria determinants. The trans-
mission mechanisms of malaria sites are derived from empirical data and literature
research. Here, a short summary of these mechanisms are presented:

(i) Transmission risk increases with decreasing distance from open surface water.

(ii) Transmission risk increases with decreasing distance from population.

(iii) Transmission risk increases if temperatures are between 18 to 35 degrees for at
least 24 days.

(iv) Transmission risk increases with more temporal variation in oviposition sites.

(v) Transmission risk increases with decreasing depth of water.

(vi) Transmission risk increases with decreasing extent of water.

In general the model to combine the malaria transmission rules to a malaria
transmission map is static, with only a time component present in the water depth
calculation (section 5.2.5). Variables that will change over space consist of tempera-
ture, population, evaporation and water. The constant components consist of infil-
tration capacity and the local drain direction.

5.2 Methods to represent transmission mechanisms

5.2.1 Predictor variable 1: Population density

The population density predictor connects malaria transmission suitability with pop-
ulation density in an area. Only in the large cities it is expected that malaria trans-
mission is almost eradicated completely, while in villages and semi-urban areas,
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concretization and malaria control is not yet at full capacity. Hence, it is assumed
here that suitability of transmission increases in rural areas and decreases (slowly)
in peri-urban until it reaches 0 in urban areas.

The following formula and figure are used to represent this in the model. For-
mula 5.1 is plotted in figure 5.1.

Ps =

{
1
Pt
Pd for Pd < Pt

1
Pt−UPd for Pd > Pt

(5.1)

Where U is the urbanization limit, Ps is the population density suitability, Pd is
the density of population in square kilometers and Pt is the threshold for population.
The value of Pt is 250 persons per square kilometer. This value indicates the differ-
ence between rural and sub-urbanized areas (Hay et al., 2005). Urbanized areas are
defined by Hay et al. (2005) as more than 1000 people per square kilometer, hence
this is used as the urbanization limit U in this function. Please refer to appendix B
for an overview of the parameters used in this thesis.

FIGURE 5.1: The population density suitability function.

5.2.2 Predictor variable 2: Surface water proximity

Rule 2 associates open surface water with transmission risk. In general, open surface
water is associated with a high water table (or landscape depressions). People will
use high water tables to create wells or use it for agricultural purposes. Therefore the
likelihood of natural small ponding waters and anthropogenic surface water (pools
smaller than 900 m2 which cannot be seen in the open surface water dataset) being
located around open surface water is higher than in other areas.

The surface water proximity transmission suitability is a distance decay function.
Transmission risk is higher when being closer to breeding sites. Studies (Gu and No-
vak, 2009; Van Der Hoek et al., 2003; Midega et al., 2007; Costantini et al., 1996) show
an exponential decrease of vectors the further it gets away from its habitat, here, an
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exponential decrease is chosen as well. After a certain threshold distance, the change
in suitability becomes almost zero due to the fact that little vectors will go further
than that threshold distance. Equation 5.2 presents this in the model:

Ds = eDc(−(
Di
Tw

)) (5.2)

Where Ds is the surface water proximity suitability, Dc is a coefficient that de-
creases the impact of larger distances on the suitability, Di is the distance in meters
to pixel i, and Tw is the surface water threshold in meters. While it is recommended
that a 2 km barrier is used around breeding sites (Service, 1997), a flight distance
threshold of 5 km is chosen here. This is because it is expected that some vectors,
if needed, will pass the 2 km threshold as stated in Service (1997). With a relatively
high value of 4 for the Dc, the emphasis of the suitability is placed on the shorter
flight distances.

Equation 5.2 is plotted in figure 5.2.

FIGURE 5.2: The water distance suitability function.

5.2.3 Predictor variable 3: Temperature

Rule 3 addresses the speed of development of the malaria parasites and their vectors,
which is dependent on temperature. Temperatures in the suitable range will fluctu-
ate; the highest suitability is given at temperatures of 30 degrees Celsius (highest
vector survival (Hay et al., 2000)) and the lowest suitability is given towards the
edges of the function, which are 18 to 35 degrees Celcius. These rules are only ap-
plied when these temperatures do not exceed a temperature range of 18 to 35 de-
grees Celsius for at least 24 days. Adult vectors will not be produced outside of the
given temperature range (Bayoh and Lindsay, 2004). In general, 24 days is the fastest
transmission possible after oviposition (section 3.3.1). Hence transmission is possi-
ble if a viable temperature is maintained for 24 days. Please note that it is known
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that development speed in the aquatic stage is dependent on the water tempera-
ture, not air temperature. It is assumed here that air temperature forms an adequate
representation of water temperature since water temperature is a derivative of air
temperature. The suitability at a certain temperature will be given according to the
following functions.

Ts =

{
(T − Tl)

−1
Tl−Tm

for Tl < T < Tm

(T − Tm) 1
Tm−Tu

for Tm < T < Tu

(5.3)

Where Ts is the air temperature suitability, Tl is the lower suitability limit tem-
perature, Tm is the maximum suitability temperature and Tu is the upper suitability
limit temperature and T is temperature in degrees Celsius.

5.2.4 Predictor variable 4: Temporal water

After the start of the formation of pools, water will reach its highest suitability due
to strong nutrients and a lack of predators. It is assumed here that if all eggs in an
oviposition site become adults, the suitability is 1. As presented in table 3, the total
death of vectors that is attributable to predators is about 11% of the total pupae and
larvae in an oviposition site. Hence it can be concluded that suitability decreases
to 0.89 after 20 days, since then, predators will be on full capacity (Service, 1997).
Then, pathogens and carrying capacity of the breeding spot will limit the suitability,
linearly to 0.5. After four consecutive months the seasonal suitability will drop to 0.3,
due to the fact that rice fields take up to four months from planting till harvesting.
After harvesting, rice fields are not plausible oviposition sites anymore due to an
increase of wind influence. After these four months the rice fields usually dry out as
a result of the end of the wet season (Fillinger et al., 2009). If water is still present,
it is considered to be permanent and hence only proper for the An. funestus species.
The function is presented in figure 5.3. The temporal water suitability is defined as
Ws.

5.2.5 Predictor variables 5 and 6: Water depth and extent

Water depth and water extent could be a potential proxy for water velocity, temper-
ature and quality and subsequently for malaria transmission suitability. Ponding
water and wet alluvial soil near rivers (Thomas and Lindsay, 2000; Bøgh et al., 2007;
Smith, Macklin, and Thomas, 2013) could also be potential oviposition sites and are
associated with local topographic depressions. While the presence and extent of wa-
ter is dictated by the empirical dataset (Pekel et al., 2016), water depth is generated
by a flow accumulation function.

Multiple factors play a role in the estimation of water depth. Precipitation is used
as the starting point for calculating the water depth. Two other important factors,
evaporation and infiltration are included here. Total infiltration capacity is estimated
by the ground texture and the findings of Mangala et al. (2016) which relates texture
to maximum infiltration capacity (Mangala, Toppo, and Ghoshal, 2016). Please note
that these infiltration rates are used in a relative manner (i.e., actual infiltration rates
are not used, only the knowledge that for example infiltration rates are higher in
sand compared to clay). Infiltration is calculated according to the following formula:

I = P (
Ic
Mi

) (5.4)
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FIGURE 5.3: The temporal suitability function.

Where I is the monthly infiltration in milimeter (mm), P is the monthly precip-
itation in milimeter, Ic is the infiltration capacity in milimeter per hour and Mi is
the maximum infiltration capacity in the study area. Infiltration is combined with
evaporation of the GLEAM model (Martens et al., 2017) to form the main outflow.

The following function is used for calculating the water depth:

Wc = P − E − I (5.5)

Where Wc is water depth change in mm per month, P is precipitation in mm per
month, E is evaporation in mm per month and I is the infiltration in mm per month.
Please note that lateral and ground water flow are not accounted for and that only
overland flow is considered by equation 5.4.

A local drain direction map combined with the Wc as stated in equation 5.4 is
be used to compute the water accumulated in the depressions of a digital elevation
model (DEM). Please note that discharge is not included in equation 5.4 due to the
fact that only Wc is calculated for depressions in the DEM. Hence it is assumed that
the outflow of these depressions is mostly attributable to infiltration and evaporation
and there is no or little outflow to rivers or larger water bodies.

The water changes of previous months will also be included to estimate the cur-
rent water depth of the depressions. For that purpose, the following equation is
used:

W (t) = W (t− 1) +Wc(t) (5.6)

Where W(t) is the water depth at a current time step, W(t-1) is the water depth of
the previous time step, and Wc(t) is the change in water in the current time step.
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The water body extents are calculated by equation 5.7:

E =
r∑

i=1

S ∗ Pi (5.7)

Where E is the extent of a water body, Pi is the presence of water in pixel i, S is
the size (or resolution) of a pixel, r is the maximum radius of water bodies in which
transmission is expected. The pixels that contain water are summed in a radius of
4000 m. After the radius of 4000 m it is expected that there is only little of trans-
mission. While this is in contrary to the findings of Gillies and De meillon (1968)
(malaria vectors on the edge of a large lake), it is thought that these findings will
come forward in water depth and not water extent. In other words, water depth will
be of more influence than water extent in regions of large lakes.

The distribution of water, within a pixel, is not heterogeneous. There may be high
and low concentrations of water. As explained earlier, the range in water height
for oviposition is 0 cm in wet soil to about 150 cm in rice fields (Paaijmans et al.,
2010). Since very small pools (hoof prints, wells) cannot be noticed, it is assumed
here that a low pool depth combined with a relatively small extent will have a high
probability of having pools that are suitable for oviposition. The suitability averages
are presented below. In the model, suitability is randomly picked within a normal
distribution with a standard deviation of 0.025 and a mean that is dependent on
the criteria presented in table 5.1. The randomness is incorporated due to the fact
that the water extent ranges and the water depth ranges are of considerable size.
A lower range is not possible due to restrictions of spatial resolution of the open
surface water dataset and the possible errors in the DEM. Hence, it is unknown
how the water extent and depth vary within these ranges as defined in table 5.1.
Therefore randomness within a normal distribution is introduced here.

Water depth suitability is represented as Hs and water extent suitability is repre-
sented as Es.

TABLE 5.1: The scores of the depth and extent transmission suitability
function.

Transmission suitability Suitability mean Hs (m) Es (m2)

Highest suitability 0.9 < 0.5 900
Medium suitability 0.6 0.5 - 1.0 900 - 2000

Low suitability 0.3 3 - 4 2000 - 4000
No suitability 0 > 4 > 4000

5.3 Predictor variable correlations

Different predictor may influence the malaria incidence observations (Bhatt et al.,
2015) in different manners. Hence linear regressions between the malaria transmis-
sion predictors and the malaria incidence observations are made. The knowledge
on the influence of the different predictors on the malaria incidences can be assessed
using the regressions.
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5.4 Missing data

The open surface water dataset of Pekel et al. (2016) has a considerable amount of
missing data. The missing data can consist of snow, ice, cloud or sensor issues. It
is expected that most of the no data in Uganda will come from sensor related issues
and cloud cover. Figure 5.4 presents the number of scenes of Uganda which have
a cloud cover of less than 20%. The figure shows that the number of scenes with
less than 20% cloud cover increases over time. This would mean that the amount
of scenes taken increases over time or that the missing data decreases over time. A
spatial neighbourhood maximum method and a temporal continuity method have
been designed and implemented to increase the usability of the dataset.

FIGURE 5.4: Landsat scences of Uganda with less than 20% cloud
cover (CEOS, 2016).

The spatial neighbourhood maximum method computes the amount of land pix-
els and surface water pixels in the 8 pixels surrounding a missing data pixel. If more
than half of the neighbourhood pixels is assigned water, the probability of having
a lake in this area which also includes the pixel of interest is high. Hence, it is as-
sumed that the pixel of interest is also water. If more than half of the neighbourhood
pixels is land, then it is expected that the pixel of interest is also water. Especially
the predictor variables water extent and water proximity are altered by this method.
Hence this method is kept at a minimum.

The temporal continuity method looks at the time step before the current time
step. If the previous time step shows surface water on a pixel that is no data in the
current time step, the no data will become surface water. The same process is present
for the land class. Due to that fact that this method will alter the temporal variable
method, it is kept at a minimum as well.
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The amount of time steps in the temporal continuity method and the amount
of neighbourhood pixels used (defined as the radius from the pixel of interest) is
dependent on the percentage of missing data in the current time step. The higher
the percentage of missing data in the current time step, the higher the amount of
time steps and neighbourhood pixels. Both methods are combined to derive the
most optimum open surface water map.
Please refer to Busker (2017) for the visualization of the open surface water dataset
by Pekel et al. (2015) .

5.5 Weighted overlay

The predictors are combined using a weighted overlay function. Different weights
will be given to increase the influence of certain predictors on the total malaria trans-
mission suitability. The influence of the weights will be defined with a calibration
(section 5.6). The weighted overlay formula presented below.

S =
PsPw +DsDw +WsWw + TsTw + EsEw +HsHw

6
(5.8)

The letters of formula 5.8 are explained in table 5.2.

TABLE 5.2: The description of the letters used in equation 5.8.

Variable Predictors Weights

Population density Ps Pw
Surface water proximity Ds Dw

Temperature Ts Tw
Temporal water Ws Ww

Water depth Hs Hw
Water extent Es Ew

Total suitability S

5.6 Model calibration and validation

The suitability malaria map will be validated usings the malaria field survey data
from the Malaria Atlas Project (MAP) (Bhatt et al., 2015). The survey data is also
used to calibrate the weights of the predictor variables. For calibration the root mean
square error (R) will be used as a goal function (equation 5.9). Calibration will start
by using all the combinations for all weights in a range of 1 to 5, 5 to 10 and 10
to 15. Based on these results we will zoom in to find a lower rmse and hence a
more accurate prediction capacity of the malaria transmission model. The objective
function is stated in the following equation:

R =

√√√√ r∑
i=1

(Si −Oi)2

n
(5.9)

Where the R is the root mean square error, n is the number of observations Si is
the predicted value for observation i and Oi is the observed value for observation i.
In this case, Si will be the malaria transmission suitability average of 2013 and Oi is
the percentage of malaria incidences in a field survey (Bhatt et al., 2015).
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The quality of the datasets is highest in 2013 due to the fact that there is more
no data present in older datasets. E.g., the open surface water map of January 1990
contain a considerable amount of no data whereas the map of January 2013 contains
only little. Moreover, the temperature data set does not include years later than 2013.
Hence, the data set is of the highest quality in 2013 and therefore used for calibration.

After calibration of the model, the malaria transmission suitability maps will be
computed again. Then, linear regressions will be used to validate the malaria trans-
mission suitability maps and the predictor variables. For the linear regressions, point
observations of the malaria atlas project (Bhatt et al., 2015) will be used. Different
years (not including 2013, since that year has already been used for calibration) and
different areas are used for the validation.

5.7 Population exposure to malaria transmission

Once the malaria transmission suitability map has been made, the exposure is calcu-
lated. There are multiple definitions and multiple types of exposures. In this study,
population exposure is derived from individual exposures. Individual exposure of
malaria is defined as the number of bites by a vector infected with malaria (Govella,
Okumu, and Killeen, 2010). While this study does not present a biting rate but trans-
mission suitability, the transmission suitability is used as a proxy for biting rate. The
higher the transmission suitability, the higher the probability of an increased amount
of infected bites and hence the higher the individual exposure. In this way, only rel-
ative comparison between individual exposures is plausible.

According to the definition of Cardona et al. (2012), exposure refers to the in-
ventory of elements in an area in which a hazard event may occur. I.e., if there are
no people or elements, then there is no exposure. The population exposure distribu-
tion of the population in a certain study area is calculated according the following
formula:

Xp =
Pi

Pt
for Si > Xt (5.10)

In which Xp is the exposure level the amount of people p above the exposure
threshold Xt, Si is the malaria transmission suitability (or exposure) in pixel i and t
is the total amount of population in the study area. Multiple thresholds are made to
derive an exposure distribution of the area.
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Chapter 6

Results

In the following section the results will be described. First of all, the spatial and
temporal variations of the malaria transmission predictor variables are shown. Sec-
ond, the results of the robust calibration are presented. This is followed by the
weighted overlay results of the malaria transmission suitability. Finally the results
of the model validation and the exposure to transmission will be presented.

6.1 Spatial and temporal variation of the malaria transmis-
sion predictor variables

Figure 6.1 presents results of the spatial and temporal variation of malaria trans-
mission. Only study areas are shown in which the predictor variables dictate the
transmission suitability the most.

The changes in transmission suitability are given by the following formula:

C =
(N − Y )

N
(6.1)

In which C is the change between two maps, N is the new map and Y is the old
map. Hence, it is a rate of change based on the old map (e.g., the change from 2001
to 2006 till 2006 to 2013).

As is illustrated in figure 6.1 the change of temporal water transmission suitabil-
ity varies strongly. The change from 2001 to 2006 till 2006 to 2013 shows decreases
in temporal transmission suitability. In other words, it shows that pools do not have
any change in occurrence (they stay present at the same spot for a longer time or are
not present at all). The change in water proximity transmission suitability changes
with the occurrence of water. Figure 6.1 shows some decreases in water proxim-
ity transmission suitability from 2001 to 2006 but especially from 2006 to 2013 near
some large lakes. Further away from lakes, changes, both positive and negative,
seem to be less strong as there is less water present. This also causes the large grad-
ual changes in blue and orange. Finally, both water extent transmission suitability
and water depth transmission decrease. The decrease in transmission suitability in-
dicates either larger lakes which are unsuitable for malaria transmission or lack of
water at a certain location.

Figure 6.2 shows that population increases in both the cities of Kampala and
Njeru. The malaria suitability decreases due to the fact that urbanization increases
in these cities. This occurs usually on the edges of cities or other urbanized places.
Hence, there is a decrease in transmission suitability visible on the edges of the cities.
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FIGURE 6.1: The changes in temporal water transmission suitability,
water proximity suitability and lake extent suitability in Kyoga for
the month December of 2001 to 2006 and 2006 to 2013. The change

between maps is calculated by formula 6.1.

The temporal variation is described by a time series of the averaged yearly suit-
ability of malaria transmission of the predictor variables. For the calculation of the
averaged yearly suitability (table 6.1), the following formula is used:

Aya =
Syi

Vo
(6.2)

Where Aya is the yearly averaged and area averaged transmission suitability of
predictor , Syi is the yearly averaged suitability value of predictor transmission suit-
ability for each pixel (i) and Vo is the total amount of data points per variable. The
data points for temperature, population and water proximity are the total number
of pixels on the map. The observation for temporal water, water depth and water
extent are the amount of pixels where the variable is present (this is also shown in
table 6.1).
Table 6.1 shows that the predictors water proximity, water depth and water extent
change little between 2001 to 2013. The predictor variables temporal water, temper-
ature and population density show larger changes. The temporal water predictor
decreases in all years in all regions. The temperature predictor rises strongly in 2006
after which it decreases again in 2013. Furthermore, the population density shows
a similar trend as the temperature predictor. A strong increase from 2001 to 2006 is
present after which it decreases again from 2006 to 2013. The number of data points
for water extent show a strong increase in 2006 in all regions. The observations of
water depth seem strongly variable over time.
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FIGURE 6.2: The changes in population density suitability in Kam-
pala city for the month December for 2001-2006 and 2006-2013. The

change has been calculated according to function 6.1.

6.2 Calibration results

Table 6.2 shows the root mean square error (rmse) results of different calibration
runs. A general run was done for ranges between 1 and 15. The lowest rmse was
obtained when all weights were ranging from 1 to 5. Particularly population den-
sity, temperature and water extent showed considerable differences in weights and
therefore the following two runs were zoomed in on these variables. The weights
(1.4 (population density), 1 (surface water proximity), 5 (temperature), 5 (temporal
water), 1 (water depth), 5 (water extent)) had the lowest rmse score and was there-
fore used in the malaria transmission suitability model.

6.3 Malaria transmission suitability space-time mapping

In this section multiple study areas are shown to provide an insight of the malaria
transmission model in Lake Kyoga, Lake Victoria, Lake George and Kampala city.
Again changes are shown between 2001 and 2013.

Figure 6.3 indicates that in the Lake Kyoga area malaria transmission suitability
decreases from 2001 to 2006 especially in the larger lakes (e.g., lakes in the north-east
and south-west). From 2006 to 2013 it can be seen that malaria transmission suitabil-
ity increases near the edges of the lakes. The figure also shows spots of suitability
increases in the north-east from 2006 to 2013. These spots are also present in the
change maps of the Kampala city area from 2001 to 2006 and 2006 to 2013 (south-
west and west, respectively). These patterns are the result of either an increase in
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TABLE 6.1: The yearly averaged and area averaged malaria trans-
mission (Aya) suitability for the predictors from 2001 to 2013 in the

different study areas. The values are calculate using formula 6.2.

Area George Kyoga Kampala Victora

Year 2001 2006 2013 2001 2006 2013 2001 2006 2013 2001 2006 2013
Temporal
water

0.38 0.42 0.29 0.41 0.33 0.29 0.36 0.35 0.29 0.39 0.28 0.40

Temperature 0.51 0.59 0.56 0.63 0.64 0.61 0.39 0.45 0.40 0.39 0.47 0.42
Population
density

0.12 0.12 0.10 0.24 0.24 0.23 0.30 0.29 0.26 0.18 0.18 0.17

Water prox-
imity

0.20 0.22 0.19 0.33 0.33 0.31 0.10 0.10 0.11 0.11 0.11 0.10

Water
depth

0.09 0.11 0.13 0.23 0.25 0.15 0.10 0.11 0.07 0.10 0.12 0.10

Water
extent

0.07 0.13 0.07 0.08 0.10 0.08 0.08 0.08 0.07 0.08 0.06 0.06

Observations
Water
depth

328 402 522 602 741 1576 72 52 542 906 274 346

Water
extent

2939 5555 2456 8232 2891 4960 2182 1089 2152 29717 12360 12729

population or an increase of water in these areas. In the Kampala area a decrease in
malaria transmission suitability is seen at the edge of cities with a large population.
Lake George shows increases in transmission suitability due to both an increase in
population (blue spots) and temperature (north-west and south-east) from 2001 to
2006. From 2006 to 2013 a decrease of transmission suitability is seen near the edges
of rivers and lakes.

Finally, the change from 2001 to 2006 at Lake Victoria was primarily positive,
except for some areas around a bay (south) and a settlement (north). From 2006 to
2013 the general pattern is that transmission suitability keeps increasing.

Table 6.3 presents that the general trend from 2001 to 2006 is that malaria trans-
mission suitability increases in all regions except for lake Kyoga. From 2006 to 2013
a sharp decrease is noted in all regions. The area of lake George decline only little
compared to the areas of Lake Victoria, Lake Kyoga and Kampala city.

6.4 Model validation results and predictor correlations

6.4.1 Model validation

The validity of the model is checked by comparing the suitability model with empir-
ical data from the Malaria Atlas Project (Bhatt et al., 2015). The areas around Lake
Victoria and the city of Kampala contain these measurements. There were respec-
tively 222 and 55 malaria incidences around Kampala and Victoria during 2000 to
2015. Hence comparison is only plausible in these areas. Comparison is done for the
months December and November of 2001 and 2006.
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TABLE 6.2: Calibration results of multiple runs. The lowest root mean
square error (rmse) and the corresponding weights are presented in
the table. The weights are shown in the following respective order:
predictor 1 (population density), predictor 2 (surface water proxim-
ity), predictor 3 (temperature), predictor 4 (temporal water), predictor
5 (water depth) and predictor 6 (water extent). E.g., Weight 1: [pre-
dictor 1, predictor 2, predictor 3, predictor 4, predictor 5, predictor

6]

Weight ranges stepsize Lowest rmse Weights

All weights: 10 to 15 1 0.71 (11,10,15,15,10,15)
All weights: 5 to 10 1 0.69 (6,5,10,10,5,10)
All weights: 1 to 5 1 0.65 (1,1,5,5,1,5)
Weight1: [1.1,1.3,1.5,1.7,1.9]
Weight2: [1.0,1.0,1.0,1.0,1.0]
Weight3: [4.1,4.3,4.5,4.7,4.9]
Weight4: [5.0,5.0,5.0,5.0,5.0]
Weight5: [1.0,1.0,1.0,1.0,1.0]
Weight6: [4.1,4.3,4.5,4.7,4.9]

0.2 0.633 (1.1,1,4.5,5,1,4.3)

Weight1: [1.2,1.4,1.6,1.8,2.0]
Weight2: [1.0,1.0,1.0,1.0,1.0]
Weight3: [4.2,4.4,4.6,4.8,5.0]
Weight4: [5.0,5.0,5.0,5.0,5.0]
Weight5: [1.0,1.0,1.0,1.0,1.0]
Weight6: [4.2,4.4,4.6,4.8,5.0]

0.2 0.631 (1.4,1,5,5,1,5)

TABLE 6.3: Total average malaria transmission suitability from 2001
to 2013 in the different regions. Calculations are done according to

equation 6.2.

Year Kyoga George Victoria Kampala

2001 0.092 0.062 0.060 0.089
2006 0.089 0.063 0.067 0.090
2013 0.081 0.056 0.057 0.077

Table 6.4 shows that the transmission suitability model has little explanatory
value (0.07 and 0.09) and negative regression coefficients. These linear regression
are exemplary for the r2 values and the regression coefficients of other regions.

6.4.2 Malaria transmission predictor correlations

The correlation between the malaria transmission predictors have been calculated
and are shown in table 6.4.

The r2 value in table 6.4 shows that temporal water suitability in December 2001
and December 2006 explains a significant part of the variance between the observa-
tions. Hence, indicating that this could be an important predictor variable. Further-
more, in December 2006, lake extent suitability also explains a considerable amount
of variance which are present for both whole Uganda and the Kampala area. Fur-
thermore, temperature and population density also have relatively high explanatory
values. Please note that water depth, the transmission suitability model and distance
to water have low explanatory values and hence are not included here.
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FIGURE 6.3: The changes in the transmission suitability of Lake
Kyoga, Lake Victoria, Lake George and Kampala city for the month
December of 2001 to 2006 and 2006 to 2013. Please note that the
change between years has been calculated according to function 6.1.

6.5 Exposure to malaria transmission

Note that the proportion of the population that has a suitability above 0.15 is low.
Hence, it is not considered here that it influences the main trend of the population of
Uganda. In Kampala and Kyoga, the proportion of population experiencing a trans-
mission suitability above 0.05, 0.1 and 0.15 decreases over time (Figure 6.4). The
population proportion of December 2013 in Kyoga forms an exception as it becomes
higher than the population proportion of 2006 at a threshold of 0.1. In the area of
Lake George and Lake Victoria the population experiencing a low (0.05) threshold
transmission suitability decreases steadily over time. This indicates that the propor-
tion of population increases within the range 0 to 0.05 during 2001 to 2013. When
looking at the population at the 0.1 threshold, however, the population of December
2001 drops below that of December 2006 and December 2013. While figure 6.4 shows
this trend for December 2001, other years do not indicate similar trends. Figure 6.4
shows that in all years, Kyoga has the highest proportion of its population exposed
to malaria transmission (threshold of 0.05). This is followed by Victoria, George and
Kampala.
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TABLE 6.4: Linear regressions of the predictor variables and the
malaria transmission observations by Bhatt et al. (2015). Here, only

the relations with the highest r2 values are shown

Regression coefficient r2 value Year Month Predictor variable Region

1.38 0.82 2001 12 Temporal water suitability Kampala
1.51 0.81 2006 12 Temporal water suitability Kampala
1.44 0.79 2006 11 Temporal water suitability Kampala
31.19 0.79 2006 12 Water extent suitability Uganda
-6.65 0.79 2006 12 Water extent suitability Kampala
1.61 0.78 2001 11 Temporal water suitability Kampala

193.41 0.34 2006 11 Water extent suitability Uganda
15.89 0.33 2001 11 Temperature suitability Victoria
17.00 0.28 2001 12 Temperature suitability Victoria
0.27 0.11 2006 12 Population density suitability Kampala
-3.33 0.09 2001 12 Malaria transmission suitability Victoria
-2.81 0.07 2006 12 Malaria transmission suitability Victoria
-2.9 0.06 2001 11 Malaria transmission suitability Victoria

FIGURE 6.4: Transmission suitability thresholds and the correspond-
ing population in December of 2001, 2006 and 2013 for the different
study areas in Uganda. On the y-axis, the proportion of population
is stated (equation 6.3) and on the x-axis the transmission suitability

threshold is stated.
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Chapter 7

Discussion

Mapping malaria at a high spatial resolution over multiple years could be used to
increase the spatio-temporal knowledge of malaria transmission. In countries where
resources are limited, this knowledge could increase the effectiveness of malaria con-
trolling measures. In this study, multiple global data sets on a high resolution are
used to derive a 30 m resolution malaria transmission suitability map. The malaria
transmission suitability map is the result of a weighted overlay of 6 predictor vari-
ables. In this section, the outcome of the regressions of the predictor variables, cal-
ibration, the spatio-temporal transmission maps and the exposure distribution is
discussed.

7.1 Significance and uncertainties of the predictor variables

The predictor variables have been validated using linear regressions. The results
show that the temperature variable, the water extent variable, the temporal water
variable and the population variable have considerable explanatory value for both
November and December of 2001 and 2006. Similar results are also shown in the
calibration results, where the temperature, temporal water and water extent have the
highest weights (table 6.2). The calibrations also show that water depth and water
proximity have the lowest weights. Moreover, water depth and water proximity
have little to no explanatory value of the observations (Bhatt et al., 2015).

7.1.1 Population density predictor variable

Table 6.2 shows that the population predictor is more relevant for computation of the
malaria transmission suitability map than water depth and water proximity. How-
ever, it has a lower influence than the temperature, water extent and temporal water
variable. The population predictor however, does not provide the true susceptibility
of people to malaria.

The population density predictor is able to distinguish between urbanized and
non-urbanized areas. However, it is not a measure for health care and also not a
measure for the prevention and control measures of a certain population. The gen-
eral assumption is that a high economic status of an individual decreases the burden
of malaria due to the ability to take prevention measures and access to better health
care. A low economic status makes one more susceptible to malaria. While in gen-
eral a higher economic status is associated with an increase in population, this may
be not always the case. Especially in slums and rapidly urbanizing areas low income
populations will be present and therefore they will be more susceptible to malaria.
Hence, an increase in population density is not perfectly associated with an increase
in malaria incidences.
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The general trend of the relation of income and population density is shown
in the result that population influences the malaria incidence suitability only little
(table 6.2). Separation of income and population density could show a more accurate
association of both variables to malaria.

7.1.2 Open surface water proximity variable

In this study, surface water was associated with a high water table of the surround-
ing region and hence a higher probability of malaria habitats. Smith, Macklin and
Thomas (2013) noted that the possibility of breeding sites near rivers and other large
water bodies is high. Hence the proximity to open surface water was used as a pre-
dictor variable. The calibration and validation results show little correlation of this
predictor variable with the observations of malaria incidences. A reason for this
could be that while vectors use open surface water to breed in, only specific pools
are taken as its breeding site. Hence proximity to all open surface waters is not a
strong malaria incidence predictor. It could be possible that the proximity to sur-
face water with specific characteristics (as the other predictor variables) would be a
stronger predictor.

7.1.3 Temperature predictor variable

Since the speed of the development of the vectors in the aquatic stage is dependent
on the water temperature (Bayoh and Lindsay, 2004) and not on air temperature
as is assumed in the model, uncertainties arise here. Larger water bodies require
more energy to increase the temperature of that specific water body. Whereas in
smaller water bodies little energy is required to increase the temperature. Therefore
it is expected that there is an underestimation of water temperatures in larger water
bodies when air temperature increases. An overestimation in smaller water bodies
temperature is also possible when the air temperature increases (Morrill, Bales, and
Conklin, 2005). For the non-aquatic stages of development of a vector, this is not
relevant. For the aquatic stages however, this may form a considerable inadequacy.
Hence the temperature predicator variable may increase in significance regarding
the prediction of malaria incidences when a combination of water temperature and
air temperature is used instead of air temperature only. Water temperature could
be estimated with thermal infra-red imagery (Sentlinger, Hook, Laval, 1993) and air
temperature (Heinz, Preud’homme, 1993).

7.1.4 Temporal water predictor

The temporal resolution of the study forms a limitation of the temporal predictor
variable. According to Depinay et al. (2004) predators reach full capacity after 20
days. Since the current temporal resolution is one month, the transmission suitabil-
ity has already decreased within the first time step. Hence, the variations in breeding
site productivity within the first month are not accounted for. The current temporal
water predictor variable has therefore not the optimal temporal resolution for de-
scribing malaria incidences. Finally, the temporal water predictor variable is altered
by the no data handling of the open surface water dataset. Hence in months with
considerable no data, this predictor variable has to be interpreted with caution.
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7.1.5 Water depth predictor variable

Water depth had a relatively low weight in the calibration results and shows little ex-
planatory value in the linear regressions. Many uncertainties are associated with the
calculation of water depth. For instance, it is assumed that there is no discharge in
the pools of water. Therefore the only outflow of the pool consists of infiltration and
evaporation. This could lead to a discrepancy in the water depth due to a shortage
in the outflow. Furthermore, infiltration is based on a pedotransfer function by Man-
gala et al. (2016). In this case, the soil average of 1 m of soil texture has been used to
estimate the maximum infiltration capacity. Biological crusts, soil-moisture content,
human activities on the soil surface and vegetation all form factors that could change
the maximum infiltration capacity. These factors have not been taken into account
when calculating the infiltration. Hence, water depth may not be accurately repre-
sented in this model. The water depth in this study is therefore not representative of
the actual water depth.

7.1.6 Water extent predictor variable

Water extents show strong relations with the malaria incidence observations whereas
water depth has little relations.

In this study, a water extent smaller than 900 m2 and water depth smaller than
0.5 m promotes the highest suitable habitats for water extent and water depth, re-
spectively. Many authors agree on this (Minakawa et al., 2004; Girardin et al., 2004;
Bomblies, Duchemin, and Eltahir, 2008; Klinkenberg et al., 2003). However, there is
also evidence that habitats smaller than 1 m2 actually decrease the stability of habi-
tats. Minakawa, Sonye and Yan (2005) found that the stability of habitats and pupal
occurrence decrease when habitats were smaller than 1 m3 . Flushing (Gimnig et al.,
2001) and drying (as is the case during low water levels of Lake Victoria in 2006) are
mentioned as possible causes. It is also said that occurrence of small habitats near
large water bodies can increase the stability of small, temporary habitats through
seepage. However, wave action near large lakes is able to reduce stability of habi-
tats. Trees are able to reduce wave action and increase the stability of sites again
(Minakawa et al., 2002).

This suggests that the productivity of very small habitats is dependent on the
environmental factors (near lakes and vegetation) of the location. While drying of
habitats is accounted for by the water depth predictor variable, flushing, wave action
and seepage are not accounted for. Hence, the contribution of very small habitats,
particularly in unstable regions, may be overestimated in this study and in general
(Minakawa, Sonye, and Yan, 2005). Since water extents of 900 m2 and lower includes
many pools that are suitable breeding sites and not only those smaller than 1 m2, the
high transmission suitability that is given for these situations in the water extent
predictor variable is still valid. However, the uncertainty and therefore the overes-
timation of transmission suitability, as stated above should be kept in mind. Please
note that water extent is based on the open surface water dataset and that 2001 and
2006 have a considerable amount of no data. Hence the no data is expected to alter
some of the results even while the spatial neighbourhood maximum method is used
for handling no data (section 5.4).
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7.2 Spatio-temporal variation of malaria transmission in Uganda

The results indicate that the malaria transmission model has little correlation with
the observations of Bhatt et al. (2015). As explained in section 7.1, this could be
due to the incorporation of inaccurate water depth representations and surface wa-
ter proximity in the model but also due to malaria counter measures taken during
these years. The malaria transmission model did not include malaria intervention
and control procedures. The Roll Back Malaria initiative and the Millennium De-
velopment Goals of the United Nations enabled the large scale use of insecticide
treated bed nets, indoor residual spraying and artemisinin-based combination ther-
apy for clinical malaria cases (Bhatt et al., 2015). These malaria control and preven-
tion projects caused a decrease in malaria incidence and thus, a difference between
the malaria transmission model and the observations of incidence rates. While these
differences exist, the outcome of the model still shows a possible path which the
malaria transmission may have taken without the interventions between 2001 and
2013.

7.2.1 Spatial variation

The results show that from 2001 to 2013 high transmission suitability arises primarily
in spots where either small populated areas increase in population (or new small
villages form) or where new pools of water occur.

A spatial trend regarding water from 2001 to 2013 is visible to a small extent.
While some malaria transmission spots sustain throughout the year, most regions
have strong variation in transmission suitability along edges of large lakes and rivers.
The location of the malaria transmission spots, near lakes and rivers, is also noted
by other authors (Bøgh et al., 2003; Smith, Macklin, and Thomas, 2013) and was
therefore expected.

Spatial variation near lakes and water are primarily influenced by water proxim-
ity and the temporal water variable. Since water proximity is given a low weight and
temporal water is given a high weight, it is expected that temporal water has the pri-
mary influence in this area. Water extent of lakes will differ considerably depending
on the amount of rainfall, evaporation and infiltration in the area. Since this varies,
the extent of the lakes varies considerably, increasing the temporal malaria trans-
mission suitability in this area. Since the results also show that water proximity has
little relation with the malaria incidence observations (table 6.4), the emphasis on
the temporal water is most likely rightful.

In general, the variable water extent shows high suitability values near rivers and
in swamps (figure 6.1). Paleo channels and (flood plain) depressions form the main
locations around the rivers and in swamps where water depth and water extent are
suitable (Smith, Macklin, and Thomas, 2013)).

7.2.2 Temporal variation

It is observed that the water levels of lake Victoria have dropped strongly in 2006 and
2007 reaching a water level of 1.1 m below the 10 year average (Kull, 2006; Schwatke
et al., 2015). Hereafter the lake levels increase again reaching stable levels in 2013.
This is primarily attributable to increased evaporation and excessive discharge by
the Owen Falls dams (Swenson and Wahr, 2009). A decrease in lake levels could
infer a decrease of water levels and extents in multiple rivers and lakes in Uganda,
contributing to an overall decrease in suitable habitats for malaria vectors.
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Table 6.1 shows that lake extents and water depth both have a decrease over
time in the amount of observations in water extent and water depth. More evapora-
tion may empty small water bodies quickly, reducing the amount of overall suitable
water bodies. Minakawa et al. (2008) noted that almost half of the breeding habi-
tats sustained after the water level drop of Lake Victoria of the Anopheles gambiae
species. Hence it is expected that the amount of observations or locations of both
suitable water extent and water depth would decrease .

The amount of observations of water extent (table 6.1) (observations with a trans-
mission suitability larger than 0) shows a considerable decrease in 2006. Hence, wa-
ter extent does show a reaction to the increased evaporation. Water depth shows
variable signs to the increase in evaporation. As mentioned before, the water depth
as modelled here does not represent the actual water depth. This may be one of the
factors contributing to the strong variance in water depth.

The results (table 6.1) also show that the transmission suitability of water ex-
tent and water depth do not show a specific trend between 2001-2013. During 2006,
larger water bodies should increase in transmission suitability due to a drop in water
levels, whereas smaller highly suitable water bodies can disappear, thus decreasing
the transmission suitability. Table 6.1 results show that while the water extent aver-
age suitability shows variable signs , the overall transmission suitability in 2006 for
the areas of Kampala, George and Victoria does increase (table 6.2). The temperature
suitability variable shows similar results. Since the temperature suitability predictor
variable has a higher influence on the overall transmission suitability than water ex-
tent, it is expected that this is the main cause for the transmission suitability increase
in 2006.

In all regions the population density predictor variable decreases, which is most
likely due to urbanization. Small villages are abandoned which cause the population
density predictor to decrease. Moreover, people move to urbanized areas in which
the population density also decreases. Other sources also show considerable evi-
dence that transmission suitability is low in large cities (Watts et al., 1990; Gardiner
et al., 1984). Hence an overall decrease of the population density predictor occurs
between 2001 to 2013.

7.3 Spatio-temporal exposure variation

The results show that the exposure in Kampala and Kyoga to malaria transmission
of the population decreases over time. In Lake George and Lake Victoria the pro-
portion of the population that had a transmission suitability of 0.05 and higher de-
creases over time as well. However, in December 2006 and December 2013 a higher
proportion of the population had a transmission suitability higher than 0.1 com-
pared to December 2001. This indicates that transmission above 0.1 had increased
in the area of lake George and (to a lesser extent) in the area of lake Victoria during
this period. The general decrease in exposure over time could be caused by multiple
factors. Temperature changes, temporal water changes and population changes are
most significant; therefore they are expected to have the highest influence from 2001
to 2013.
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7.3.1 Urbanization and exposure to malaria

The decrease of exposure in all areas is most likely attributable to urbanization. In
all areas the population increases while the population transmission suitability de-
creases between 2001 and 2013. The only possibility for this phenomenon to occur is
that the population density rises above the 250 persons per square kilometers thresh-
old. Above this threshold better health care and a decrease in oviposition sites due to
concretization and a lack of open surface water decreases the malaria transmission
suitability (Hay et al., 2005). Moreover an urban setting can increase opportunities
for surveillance, control and prevention of infectious disease in general. Hence, it
is expected that urbanization is the main cause of the decrease in the population
exposure.

In literature the general trend is that urbanization causes a decrease in infectious
diseases (Trape and Zoulani, 1987; Phillips, 1993; Hay et al., 2005). However not all
agree. Gubler (2011) notes that major drivers of increased incidence of dengue in
urban areas include lack of effective mosquito control and unplanned urbanization.
Highly domesticated vectors can lay eggs in plastic containers and automobile tires.
Unplanned urbanization such as slums of large urbanized cities can cause limited
health care and vector control (Gubler, 2011). Moreover, a higher population den-
sity could also increase the probability of an epidemic. Piles of organic refuse and
rainwater in containers also pose to be potential breeding sites for vectors. There-
fore it cannot be assumed that an increase in population density causes a decrease
in transmission suitability.

In a global context the relation between income and malaria is evident. Malaria
causes a decrease in worker productivity, premature mortality and an increase in
medical costs. Therefore malaria causes a lower economic growth of a country
(Sachs and Malaney, 2002). Vice versa, poverty is not the main cause of malaria,
but rather a consequence. High income countries have better health care and there-
fore are able to eradicate malaria. Low income countries do not have this ability and
therefore, they are subjected to the burden of malaria (Gallup and Sachs, 2001). It is
expected that in urbanized areas similar spatial differences will be present. In this
study these spatial differences within urbanized areas have not been accounted for.
For this reason, the decrease in exposure in urbanized areas could be overestimated.
In the future, unorganized urbanization of low income will increase and hence this
error is increased as well.

7.3.2 Temperature and temporal water in lake George

The exposure distribution of Lake George shows that higher exposures were present
in 2006 compared to 2001. This evident in the exposure threshold value of 0.1. Table
7 shows that the temperature predictor rises strongly during 2006. The temperature
transmission suitability combined with an increase in the temporal water suitability
is expected to be the cause of the rise in exposure.

An increase in temperature transmission suitability is a result of an overall tem-
perature increase. A temperature rise increased evaporation during this year. This
is confirmed by Swenson and Whar (2009), whom noted increased evaporation near
lake Victoria. High evaporation can cause small water bodies to disappear, decreas-
ing the overall transmission suitability. However, table 7.1 shows that the amount of
observations in the area of lake George does not decrease, but it increases.

In the open surface water data set of Pekel et al. (2015), clouds and sensor limi-
tations are represented as no data. It is expected that strong evaporation will lead to
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considerable cloud cover and thus a considerable amount of no data. The increase
in cloud cover of whole Uganda is seen in figure 5.4. Busker (2017) shows that the
area of George is also affected.

If the no data is either continuous or not present, no scattering of water occurs.
However, if patches of no data exists, scattering of larger water bodies is more plau-
sible. Usually, patches often occur when clouds are present. Scattering of large lakes
occur more in 2006 than in 2001 or 2013. In both 2001 and 2013 continuous no data or
non-presence of no data in this area is more present than in 2006. Scattering of large
lakes into multiple smaller lakes (making them more suitable) due to patches of no
data in 2006 could be one of the reasons for the increase in water extent observations.
To observe the open surface water dataset, please refer to Busker (2017).

The increases in temporal water (table 6.1) during this 2006 can also be a conse-
quence of a strong variability of the no data patches. Therefore, it can be said that
the higher exposure was mainly caused by an increase in temperature, however,
the exposure was also increased by the no data patches which influenced the water
predictors.

The effect of a temperature increase (compared to 2001) is much more visible in
2013. Since there are less no data patches, the water predictors do not show strong
variances when compared to 2001. Only the temperature transmission suitability
increases (compared to 2001), which leads to an increase of the population that has
an exposure of 0.1 and higher.
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Chapter 8

Conclusion

A high spatial resolution malaria transmission map could increase the effectivity
of malaria control measures, especially in resource limited countries. Multiple pre-
dictor variables were defined and used to compute the suitability and exposure of
transmission to malaria for different study areas from 2001 to 2013 in Uganda.

In this study the predictor variables consisted of air temperature, the duration
of existence of water (temporal water), water depth and extent, population density
and water proximity.

Air temperature influences the speed of development of vectors and the speed
of the sporogonic cycle. Water temperature however, must also be accounted for, to
accurately represent the speed of development of the vectors. The productivity of a
breeding site is dependent on the time that water is present. Predators, disease and
carrying capacity will decrease the productivity with an increase in time period that
a breeding site is present. Furthermore, small and shallow waters are suitable habi-
tats as long as they have a stable environment with little influence of precipitation
flushing, evaporation and wave action (when located near a large lake). Humans are
able to create suitable breeding sites but are also necessary to transfer malaria from
one vector to another. Furthermore, an increasing economic status of humans can
decrease the probability of being a human host for malaria transfer due to increased
malaria prevention and control.

Air temperature, water extent and temporal water are most correlated with the
malaria incidence observations (r2 of 0.331, 0.788 and 0.823, respectively). The water
proximity and water depth predictors are not correlated with the observations. In
general, the model itself does not show strong relations with the incidence observa-
tions as well (r2 of approximately 0.1). This is mainly attributable to the large scale
malaria control and prevention in Africa and Uganda, which are not accounted for
in the model. Please note that each predictor (and the model itself) is separately cor-
related with the observation to show its own variance. Therefore, the r2 of variables
can be higher than the r2 values of the model.

From 2001 to 2013 there is an overall decrease in exposure with a sharp increase
in 2006. The increase in 2006 is thought to be caused by an increase in temperature.
The increased temperature caused an increase in temperature suitability. Water pre-
dictors in some areas are shown to react on the change in evaporation. In other areas
as lake George the water predictors show less response due to an increase of cloud
cover over this area.

The decrease in transmission suitability and exposure over time is caused by ur-
banization. There may be, however, an overestimation of the decrease in transmis-
sion suitability due to the spatial variability of health care and malaria prevention
and control within such urbanized areas. The current trend of exposure decreasing
with urbanization that is seen in this model however, is most likely a valid one.
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Chapter 9

Recommendation for future
research

The following section presents manners to improve the model for higher accuracy
of the malaria transmission model and also ideas for future research.

9.1 The predictor variables

The model consists currently of 6 predictor variables. Details and improvements for
the rules and model in general found in this study can be used for an increase in
accuracy for predicting transmission spots.

First of all, the probability of having malaria habitats near each pool or stream of
water is low according to validation results. Hence, water proximity has to be left
out of the model or has to be combined with other predictor variables. E.g., some
locations are considered suitable for multiple predictors, the distance from that spot
should be taken as a predictor. The population predictor has to be combined with the
economic status of the population to increase the accuracy of predicting the trans-
mission of malaria. Increased economic status of people causes better health care
and a decrease in economic status can cause decreased health care and more pud-
dles for malaria vectors to breed in. Research is needed to increase the knowledge
on the quantitative relation of the economic status and malaria transmission.

Furthermore the temperature predictor should include both air temperature and
water temperature, due to the fact that the differences between the two, which de-
pends on the size of pools, can be substantial. The water depth function was not
adequate in this model as a result of the missing discharge as part of the outflow.
Moreover, biological crusts, soil-moisture content, human activities on the soil sur-
face and vegetation are factors that have not been taken into account calculating the
infiltration. In a future water depth predictor, these limitations should be accounted
for calculating water depth. For an increase in the detail of the water extent and tem-
poral water predictor variables, increases in spatial and temporal resolution would
be adequate. For that purpose either different datasets or interpolation (or predic-
tion) between pixels and time steps have to be calculated.

Finally, to improve the quality of the validation of the model a different study
area should be used. The malaria occurrences should be only dependent on popula-
tion and climate and not include malaria control measures.
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9.2 Urbanization

The findings of this research confirms that urbanization decreases the exposure to
malaria considerably. In a future research, a higher performance malaria transmis-
sion model could be acquired by investigating the quantitative and qualitative im-
pact of urbanization, wealth and institutions. Many questions could be asked when
investigating these factors: How does the speed of urbanization affect the degree of
transmission? To what extent does the wealth of people moving to cities affect the
relative malaria the incidence rates in the city? To what extent does population den-
sity still affect malaria transmission suitability after the malaria transmission suit-
ability has been corrected for wealth? To what degree does an increase in wealth
decrease malaria incidences? Is personal wealth more important than wealth of a
whole population (cities, country, provinces)? Does the amount or quality of insti-
tutions matter in the control and preventions of malaria independent of the wealth
of the country?

Future predictions of population and growth of wealth are, hopefully, able to
show the most suitable areas of transmission in the future. With this spatial knowl-
edge, policy makers are able to take malaria control and preventions methods in
regions where it is needed the most and prevent future problems.
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Appendix A

Malaria transmission intensity in
Uganda

FIGURE A.1: The annual entomological inoculation rate (EIR) for dif-
ferent parts of Uganda (Okello et al., 2006).

For reference, Apac and Kyenjojo is located near lake Kyoga and lake George,
respectively.
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Appendix B

Parameters used in this study

TABLE B.1: The parameters used in the first three predictor variables
of this study.

Equation Parameter Value Description

6.1 Pt 250 Threshold population suitability in persons per square meters
6.1 U 1000 Urbanization limit in persons per square meters
6.2 Dc 4 The impact of large distances on the water distance suitability
6.2 Di 5000 maximum distance of malaria vectors in meters
6.3 Tl 18 Temperature lower limit in degrees Celsius
6.3 Tm 30 Temperature suitability maximum in degrees Celsius
6.3 Tu 35 Temperature upper limit in degrees Celsius
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Appendix C

The global malaria transmission
model

To access the scripts of the model, please click on the following link:

https://drive.google.com/open?id=15NlB6xlcwm4-l3KMw8byG2Ti81O_
es4K

https://drive.google.com/open?id=15NlB6xlcwm4-l3KMw8byG2Ti81O_es4K
https://drive.google.com/open?id=15NlB6xlcwm4-l3KMw8byG2Ti81O_es4K
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