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ABSTRACT  

 

Deforestation arises deep concerns about several issues related to the planet‘s future like 

biodiversity loss, erosion increase, land degradation, carbon emissions, temperature 

fluctuations, and changes in hydrological cycle, global warming, climate change, social 

impacts, among others.   Remote sensing methods and techniques play a key rol on 

monitoring activities and assessing decision makers.  Several methods have been 

developed over the last decades, principally based on vegetation indices analysis, which 

only uses a portion of the spectrum, while other methods less used have tried to gain 

information by dimension reduction techniques.  The access to new Satellite 

Constellations like Sentinel-2, with a higher spatial resolution and richer spectral 

information than other Satellite programs as Landsat brings important opportunities to 

enhance the quality and accuracy to identify forest disturbances around the world. This 

study evaluates the performance of Sentinel-2 imagery detecting structural changes in 

forests based on a Empirical Fluctuation Process (e.g. OLS-MOSUM) over Normalized 

Difference Vegetation Index (NDVI) and Principal Component Analysis, to indicate 

which of both data sources is more feasibly. On the other hand, the present research 

evaluates if the method can perform with short time-series datasets in cloudy areas. 

The results of the study depicts higher figure of merit‘s accuracy, user‘s accuracy, 

producer‘s accuracy, and overall accuracy using NDVI time series; however, though 

marginally lower accuracy was obtained using the PCA analysis, consider the PCA 

scores have 20 meter spatial resolution while the  NDVI time series has 10 meters 

spatial resolution,  the use of PCA still shows its potential.  
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1. INTRODUCTION 

 

Forests play a key role in life on Earth.  The ecosystem goods and services that are 

produced by forests are fundamental for human well-being, ecological processes and 

climate regulation (Constanza et al., 1997; Krieger, 2001; Nasi et al., 2002; Chapin III, 

2013).   Forests can be classified by tree cover density in four big classes based on 

global climate domains as follows: Tropical (23.5°N – 23.5°S), Subtropical (25°N – 

40°N, 25°S – 40°S), Temperate (~40°N-54°N, 40°S-54°S), and Boreal (50°N – 55°N to 

65°N – 70°N) (Pan et al., 2013; Hansen et al., 2013).  Tropical forests (Figure 1) gather 

the most bio-diverse ecosystems in the planet (Pimm & Raven, 2000; Bradshaw et al., 

2009; Laurance et al., 2012), and the broader area of high-biomass (Pan et al., 2013).  

Hansen et al. (2013) found the largest forest loss in the Tropical domain with an 

estimated loss of 2100 km
2
/year for the period 2000 to 2012 using Landsat data (30 m 

resolution).  These forest loss findings were distributed among South America, Africa 

and Eurasia, as shown in Figure 2.  

 

Figure 1: Tropical rainforests of the world (Credit: James M. Eaton) (McFarland, 2018) 

Forest loss due to deforestation is mainly driven by economical activities such as 

expansion of commercial agriculture (e.g. palm oil, soybeans), logging (e.g. timber 

extraction), infrastructure (e.g. roads opening), and mining (e.g. gold, copper, iron ore) 

(Geist & Lambin, 2001; McFarland, 2018). 
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Figure 2: Global Forest Loss for the period 2000-2012. (Hansen et al., 2013) 

For the present research it is important to define deforestation.  Angelsen (1995) stated 

the following: ―There is no clear definition of ―deforestation,‖ neither are there reliable 

estimates of its extent nor its primary causes, and - partly as a reflection of these - there 

is no consensus on the underlying causes‖ (p.1713).  This statement can be proved when 

considering Lund (1999) research, where he surveyed 39 different definitions in which 

not all shared the same guidelines and parameters.  Lund (1999) gives as example the 

three following definitions: 

―As a land cover change: to clear an area of forests or trees, usually for commercial 

use of the lumber or agricultural use of the land (ITP Nelson, 1998). 

As a land use change: the change of land use from forest to other land use (FAO, 

1990). 

As a land cover and land use change: the removal of a forest stand where the land 

is put to a non-forest use (Helms, 1998)‖ (p.128). 

Later, the Food and Agriculture Organization of the United Nations (FAO) defined 

deforestation as: ―The conversion of forest to another land use or the long-term 

reduction of the tree canopy cover below the minimum 10 percent threshold‖ (Schoene 

et al., 2007. p.8).  Here it is important to emphasize the explanatory note of the same 

document that states the following: ―The term specifically excludes areas where the 

trees have been removed as a result of harvesting or logging, and where the forest is 

expected to regenerate naturally or with the aid of silvicultural measures. Unless 

logging is followed by the clearing of the remaining logged-over forest for the 

introduction of alternative land uses, or the maintenance of the clearings through 

continued disturbance, forests commonly regenerate, although often to a different, 

secondary condition‖ (Schoene et al., 2007. p.8). 

Deforestation arises deep concerns about several issues related to the planet‘s future 

(Verbesselt et al., 2012): biodiversity loss, erosion increase, land degradation, carbon 

emissions, temperature fluctuations, changes in hydrological cycle, global warming, 
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climate change, social impacts, among others (Buchanan et al., 2008; Bryan et al., 2010; 

Schultz et al., 2016b; Vergopolan & Fisher, 2016; Boyle, 2017; Benavent et al., 2018).  

In the last years, open access to medium and high-resolution satellite data (e.g Landsat 

and Sentinel-2) has become an important contribution to assess deforestation detection 

and monitoring (Hamunyela et al., 2016; Lu et al., 2017).  In addition, remote sensing 

products have improved considerably regarding spatial, temporal and spectral 

resolution. Spatio-temporal statistical modeling methods have been playing a 

fundamental role in natural resources management, ecosystem conservation research, 

and policy construction (Verbesselt et al., 2010; Lu & Hamunyela, 2016; Lu et al., 

2016, 2017). 

Remote sensing data have been strongly used in the last decades for deforestation 

monitoring (Coppin et al., 2002; Verbesselt et al., 2010b), however, the number of time 

series change detection methods developed is limited (Verbesselt et al., 2010b).  Singh 

(1989) and Mas (1999) numbered a series of techniques and procedures for change 

detection (e.g. Univariate image differencing, Image regression, Principal Component 

Analysis, Vegetation index differencing, Post-classification comparison , among 

others).  These reviewed techniques used very short time series datasets at that time, and 

the performance was not satisfactory for different reasons. 

Furthermore new methods started to be developed, which had demonstrated to be robust 

for near real-time forest disturbance detection. The Breaks For Additive Season and 

Trend (BFAST) Monitor (Verbesselt et al., 2010) is a framework that detects changes 

from satellite image time series based on the Empirical Fluctuation Process (Kleiber et 

al., 2002; Zeileis, 2005, 2006; Zeileis & Hornik, 2007). Foregoing studies applying the 

BFAST monitor used as principal input indices two or three spectral bands (e.g. NDVI, 

NDMI, EVI), ignoring all other spectral information gathered by advanced earth 

observation sensors and accounting limitations because of seasonal signals, noise and 

other natural dynamics (Lu et al., 2017).  

Lu et al. (2017) studied the BFAST monitor by dimension reduction using Principal 

Component Analysis (PCA) which is capable of creating a new index with reduced 

seasonality noise by using the complete spectral and temporal information of the 

satellite sensors.  Thus, results have shown higher accuracy on one hand and reduced 

temporal detection delay of structural changes in forests on the other hand.   

Moreover, several authors have stated the importance and the need for evaluating forest 

change detection based on Empirical Fluctuation Process with increased spatial and 

spectral resolution (Verbesselt et al., 2010a; Lu & Hamunyela, 2016; Hamunyela et al., 

2016; Lu et al., 2016; Lu et al., 2017).   

The present research will assess Forest Change Detection based on empirical 

Fluctuation Process using Sentinel-2 images over Normalized Difference Vegetation 

Index (NDVI) and dimension reduction by Principal Components Analysis (PCA) and 

evaluate the performance of the method using higher spatial resolution and richer 

spectral information imagery than previous studies.  Also it will be evaluated if the 
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method can achieve reasonable accuracy using a short time-series dataset with high-

cloud presence condition. 
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2. THEORETICAL BACKGROUND 

2.1. Normalized Difference Vegetation Index 

The Normalized Difference Vegetation Index (NDVI) is a well-known, widely studied 

and used vegetation index (Gandhi et al., 2015; Mandanici & Bitelli, 2016). NDVI is 

the resulting ratio of the difference among NIR (near-infrared band) and RED (red 

band) and posterior sum of the same two bands (Rouse Jr et al., 1974; Tucker 1979; 

Pettorelli et al., 2005; Yengoh et al., 2015; Lu et al., 2017): 

    Equation 1 

The values of NDVI are between -1 and 1, where higher values indicate healthy 

vegetation or a higher photosynthetic activity and low values unhealthy vegetation or 

the lack of photosynthetic activity (Pettorelli et al., 2005; Pettorelli et al., 2011, Yengoh 

et al., 2015). Therefore, higher disturbance in vegetation means lower productivity, 

hence lower NDVI value. Figure 3 depicts the hysteresis curve explained by Kinzig et al 

(2006), where resilient systems are able to reach the original state until certain 

disturbance threshold.  If disturbance reaches critical points, restoration can achieve 

irreversible state of degradation (Kinzig et al., 2006; , Yengoh et al., 2015). 

 

Figure 3: Stress cycle of vegetation related to productivity (principle of hysteresis).  Point A, no 

stress, higher productivity.  Point B, high stress, low productivity.  Green curve shows a fully 

resilient system, capable of reaching its original state.  A less-resilient system only recovers at a 

certain lower state (Point C – red curve).  Resilience of a system, R, is related to the distance 

between A and C; the lower the value, the higher the resilience (taken from Yengoh et al, 2015) 

NDVI considers the spectral properties of these bands and the reaction they have with 

vegetation.  Green vegetation reflects more NIR and less visible light, while less green 

vegetation reflects more from the visible portion of the spectrum and less NIR (Yengoh 

et al., 2015).  Therefore, higher index values represent the presence of vigorous 

vegetation and low values can represent degraded vegetation, bare soil and other 
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elements as snow and clouds, whereas water has negative values in most of the cases 

(e.g. suspended vegetation) (Yengoh et al., 2015), which can be observed in the 

reflectance curves on the RED and NIR wavelengths of the spectrum depicted in Figure 

4.  NDVI does not explain physical quantification of vegetation directly, though the 

correlation of physical properties (e.g. biomass, health condition, fractional vegetation 

cover, leaf area index), therefore are valuable measurements to study vegetation 

dynamics (Carlson & Ripley, 1997). 

 

Figure 4: Spectral curve for healthy vegetation, unhealthy vegetation and soil (taken from 

www.gisresources.com) 

2.2. Principal Component Analysis 

Principal Component Analysis (PCA) is a multivariate dimension reduction data 

analysis technique used in a diverse group of scientific areas (Wold et al., 1987;  Abdi 

& Williams, 2010; Jolliffe, 2011), remote sensing among them (Kwarteng & Chavez, 

1989;  Loughlin, 1991; Lu et al., 2017). 

The aim of PCA is to extract the most important information from a group of 

observations depicting several variables, where abundant information results into a set 

of new orthogonal variables uncorrelated between them called Principal Components 

(PCs) (Kwarteng & Chavez, 1989; Abdi & Williams, 2010; Jolliffe, 2011). Thus, the 

largest amount of the total variance will be gathered in the first component, and it will 

be decreasingly distributed over the following components. The sum of the variance of 

all the components will be equal to the total variance of the original source (Kwarteng 

& Chanvez, 1989; Loughlin, 1991; Schowengerdt, 2006; Abdi & Williams, 2010; Van 

der Meer & De Jong, 2011; Jolliffe, 2011).   The PCs are defined as the linear 

combinations of the original variables, the PC loadings or rotation are the coefficient of 

the linear combination and the PC scores the result of the linear combination among the 
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mean of the PCs and the PC loadings (Kwarteng & Chavez, 1989; Loughlin, 1991; Abdi 

& Williams, 2010). 

2.3. Empirical Fluctuation Process 

Empirical Fluctuation Process (EFP) is a method of structural change detection on 

linear regression models (Zeileis, 2005).  This method has been used in several 

scientific disciplines, from which econometrics and statistics had paid much attention 

(Chu et al., 2005; Zeileis, 2005).  In the last decade EFP has gained importance on 

environmental studies which focus their attention on forest disturbances detection 

(Verbesselt et al., 2010; Lu & Hamunyela, 2016; Lu et al., 2016; 2017).  Fluctuation 

tests based on Ordinary Least Squares (OLS) have been found to be valuable as 

explorative tool and it is determined without a distinct pattern of deviation from stability 

parameter. It is preferred by their users because the feasibility at the time of computing 

and interpreting the results.  The most common methods of EFP are OLS-based by 

Cumulative Sum (CUSUM) and Moving Sum (MOSUM) (Zeileis, 2005). 

Former Structural Change Tests and the BFAST Monitor studies have proved that the 

OLS-MOSUM could detect structural change more accurately compared to OLS-

CUSUM (Chu et al., 2005; Zeileis, 2005; Lu & Hamunyela, 2016; Lu et al., 2016; 

2017). Foregoing, OLS-MOSUM test is more sensitive to parameters changes when the 

magnitude of residuals is larger, as residuals move in a window over the times series 

without considering a cumulative sum of previous observations (Chu et al., 2005; Lu et 

al., 2017).   

OLS-MOSUM process is defined in Zeileis et al (2001) by 

 

Equation 2 

, 

Equation 3 

where h is the data window‘s bandwidth (default value h=0.15), and Nn = (n- [nh])/(1 – 

h). 

A structural change is identified and detected when the observations are deviated from 

the hypothesis of a Brownian Bridge – which is used in OLS-MOSUM processes, 

compared with Brownian motion, which is used in Recursive MOSUM- processes 

(Zeileis et al., 2001; Lu et al., 2017).  

The null hypothesis of the structural change test is false (change detected) when the 

critical values of the OLS-MOSUM test intersect one of the two-sided boundary-

crossing probabilities of the Brownian Bridge‘s hypothesis. The resulting calculation is 
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compared to the significance level (alpha), 0.05 is commonly used (Chu et al., 1995; 

Mangiafico, 2016).   
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2.4. Research Questions 

 

RQ: Are Sentinel-2 satellite time-series capable of detecting deforestation by 

Empirical Fluctuation Process? 

SQ1: To what extent does Structural Change Detection on Sentinel-2 imagery 

based on NDVI and PCA differ? 

SQ2 : How does short amount of time-series datasets affect Structural Change 

Detection based on Empirical Fluctuation Process? 

SQ3: It is possible to detect deforestation in areas with high amount of             

clouds? 
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3. METHODOLOGY 

3.1.  Study area 

West New Britain province in Papua New Guinea was selected as study area.  

Historically this territory has been seriously affected by deforestation due to timber 

extraction and large scale commercial agriculture - principally coconut and palm oil 

plantations - (Buchanan et al., 2008). 

The study site is located at the North of West New Britain (centered at: 5° 32‘ 37‖ S, 

149° 59‘ 42‖ E, 625 km
2
) (Figure 5).  The Area of Interest (AOI) was delimited 

considering the study area and the ocean shore boundary in order to have only inland 

pixels during the analysis (Figure 6).  The AOI has an area of 1.000 km
2
. 

 

 

Figure 5: Map of the study area. (A) Location of study site in reference to Papua New Guinea 

country and its surroundings; (B) location of study site in reference to West New Britain province; 

(C) Study site (yellow square) using Sentinel-2 (MSI) image bands. 
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Figure 6: Sentinel-2A True Color Composite Image showing the Area of Interest, West New 

Britain, Papua New Guinea 

 

3.2.  Deforestation detection process 

The deforestation detection process based on EFP in this study was constituted by five 

main stages.  Firstly, the validation dataset creation from where the per-pixel analysis 

was implemented and later the validation was executed.  Secondly the pre-processing of 

all Sentinel-2 imagery was carried out in order to prepare the data for the 

implementation of the method (e.g. cloud masking, cropping, resampling).  Thirdly, 

data structuralizing and implementation of the method was done using ArcGIS desktop 

and R software (e.g. NDVI calculation, PCA calculation, EFP and Structural Change 

Detection test).  Fourthly, the validation and accuracy assessment was performed, and 

finally, the results analysis and interpretation was carried out.  The latter process is 

depicted in the method flow diagram in Figure 7. 
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Figure 7: Deforestation Detection method flow diagram 

 

3.3.   Satellite Imagery 

In our study, data from four satellites were used: Planet Scope, Rapid Eye, Sentinel-2A 

and Sentinel-2B. 

For creating the sample and validation dataset, high resolution imagery was used from 

Planet Scope and Rapid Eye satellites.  These satellites have a spatial resolution of 3m 

and 5m respectively. 

For the deforestation detection analysis, Sentinel-2A and Sentinel 2-B were used. Ten 

of the thirteen spectral bands from Sentinel-2 datasets were used for PCA during this 

study.  The discarded bands were the three 60m spatial resolution bands that correspond 

to coastal aerosols, water vapor and SWIR-Cirrus (See Table 1).   

 

3.3.1. Sentinel – 2 Constellation 

The Sentinel-2 mission of the European Space Agency (ESA) has been developed in the 

context of the European Union Copernicus programme (ESA, 2015; Wang et al., 2016; 

Wang & Atkinson, 2018).  It contains two twin satellites (i.e. Sentinel-2 A and Sentinel-

2 B), which are in the same orbit staged at 180° to each other, and the complete 

constellation has a temporal resolution of 5 days near the Equator.  Sentinel-2 has an 

orbital swath width of 290 km and a multi-spectral imaging (MSI) sensor that covers 13 
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spectral bands in the visible (VIS), near infrared (NIR) and short wave infrared (SWIR) 

wavelengths.  It has four bands at 10 meters (Figure 8), six bands at 20 meters (Figure 

9) and three bands at 60 meters spatial resolution (Table 1) (Drusch et al., 2012; ESA, 

2015; Wang et al., 2016; Wang & Atkinson, 2018).  The Sentinel-2 mission has a global 

coverage and its principal objectives are to give continuance to SPOT and LANDSAT 

imagery time series and to contribute with observational data for land-cover, land-

change detection and geophysical variables (Malenovský et al., 2012; Drusch et al., 

2012; Sibanda et al., 2015; ESA, 2015)  (See Figure 35A in the appendix, page 60). 

 

 

Figure 8: Sentinel-2 10 meters spatial resolution bands, and their location on the spectrum: Blue 

(Band 2), Green (Band 3), Red (Band 4) and NIR (Band 8) (taken from ESA, 2015; Mushoni et al., 

2018) 

 

 

Figure 9: Sentinel-2 20 meters spatial resolution bands, and their location on the spectrum: Red 

Edge (Band 5), Red Edge (Band 6), Red Edge (Band 7), Narrow NIR (Band 8a), SWIR (Band 11) 

and SWIR (Band 12) (taken from ESA, 2015; Mushoni et al., 2018) 
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Band  

number 
Band 

Central  

wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial  

resolution  

(m) 

1 Coastal aerosol 443 20 60 

2 Blue 490 65 10 

3 Green 560 35 10 

4 Red 665 30 10 

5 Red Edge 705 15 20 

6 Red Edge 740 15 20 

7 Red Edge 783 20 20 

8 NIR 842 115 10 

8ª Narrow NIR 865 20 20 

9 Water Vapour 945 20 60 

10 SWIR - Cirrus 1375 30 60 

11 SWIR 1610 90 20 

12 SWIR 2190 180 20 

Table 1: Sentinel-2 spectral and spatial resolution specifications (ESA, 2015) 

For the present research Sentinel-2 mission Level-1C products were used.   Level-1C 

products are ortho-images geo-referenced in UTM/WGS84 projection, containing Top 

of Atmosphere (TOA) reflectances, and radiometric and geometric corrections (ESA, 

2015).  Each Level-1C dataset constitutes 100 km
2
 tiles (granules) which contain all 

available spectral bands.  Each dataset is codified by the format Naming Convention for 

Sentinel-2 Level-1C products as shown in Figure 10 (ESA, 2015). 

 

 

Figure 10: Format Naming Convention for Sentinel2 Level-1C products (ESA, 2015) 

The Tile T55MHP covers the whole study area as shown in Figure 11.  This facilitated 

the acquisition of all available 15% or higher cloud-free imagery datasets for the AOI, 

which are summarized in Figure 12. 



METHODOLOGY 

 

22 

 

 

Figure 11: Tilling grid for the study area in reference with West New Britain Island (Google Earth, 

2019; ESA, Sentinel Online) 

 

 

Figure 12: Number of Sentinel-2 time-series datasets per satellite. 

 

Considering that the study area is near the Equator, a high cloud presence during the 

year means a limitation for remote sensing analysis.  This is related to Research 

Question 3.  A total of 63 datasets were found appropriate to be incorporated into the 

database to run the analysis, acquired from Sentinel Open Access Hub 

10 6 

  12 

16 
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(https://scihub.copernicus.eu/dhus/#/home).  For the year 2016, 10 datasets had the 

required amount of cloud-free percentage, resulting in the 59% of all available datasets 

for this year.  For year 2017, 18 datasets which represent the 60% of available imagery 

was used, and for year 2018, 35 datasets (56%) fulfilled the requisites for the analysis. 

3.4. Validation dataset: RapidEye and PlanetScope constellations 

For creating the validation dataset, high resolution satellite imagery was used. To access 

these datasets, a student account was created on the Planet‘s Education and Research 

Program (Planet Team (2017). Planet Application Program Interface: In Space for Life 

on Earth. San Francisco, CA. (https://api.planet.com).  This program gives researchers 

access to satellite imagery time-series of RapidEye and PlanetScope constellations 

datasets.   

RapidEye Satellite Constellation is constituted by five satellites with a Multispectral 

push broom sensor with revisit time of 5.5 days at nadir at an altitude of 630 km in the 

Sun-Synhronous Orbit.  Each satellite measures less than a cubic meter and weights 150 

kg.  The product used was the 5-band multispectral RapidEye Analytic Ortho Tile.  

Each tile scene has a size of approximately 25 km by 25 km.  These datasets are 

orthorectified and geometrically and radiometrically corrected.  The positional accuracy 

is less than 10m RMSE and the coordinate system is WGS-84.  It has a spatial 

resolution of 5m, and spectral bands are shown in Table 2 (Planet Labs Inc., 2018). 

PlanetScope Satellite Constellation is constituted of close to 120 satellites.  Each 

satellite is a CubeSat 3U with a daily revisit time at an altitude of 475 km.  The sensor 

used in these satellites is a four-bands frame Imager with a split-frame NIR filter.  The 

product used in this case is also the PlanetScope Analytic Ortho Tile.  Each tile scene 

has a size of approximately 25 km by 8 km.  These datasets are orthorectified and 

geometrically corrected.  The positional accuracy is also less than 10 m RMSE and the 

coordinate system is WGS-84.  It has a spatial resolution of 3.125 m, and spectral bands 

are shown in Table 2.  Both satellite products are delivered to users in GeoTIFF format 

and a comparison of the spatial resolution between them is showed in Figure 13 (Planet 

Labs Inc., 2018). 

.Spectral Bands PlanetScope RapidEye 

Blue 455 - 515 nm 440 - 510 nm 

Green 500 - 590 nm 520 - 590 nm 

Red 590 - 670 nm 630 - 685 nm 

Red Edge x 690 - 730 nm 

NIR 780 - 860 nm 760 - 850 nm 

Table 2: Spectral resolution and bandwidth of PlanetScope and RapidEye satellites 

https://scihub.copernicus.eu/dhus/#/home
https://api.planet.com/
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Figure 13: Spatial resolution comparison of PlanetScope and RapidEye.  A) PlanetScope image, 3m 

resolution, sensed on January 4th, 2018, scaled to 1:50.000  B) Image A zoom to scale 1:500, pixel 

size 3m x 3m C) Rapid Eye image, 5m resolution, sensed on May 21, 20 

RapidEye and PlanetScope images were used to create the validation dataset by visual 

interpretation of the time series available.  Here it was necessary to download all cloud-

free images from year 2016 to 2018.  In total 93 tiles were used to complete the most of 

the AOI in different years as shown in Table 3. 
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Satellite Resolution Sense date Tiles 

PlanetScope 3m 10/18/2016 5 

PlanetScope 3m 10/19/2016 3 

PlanetScope 3m 1/18/2017 3 

PlanetScope 3m 2/17/2017 5 

RapidEye 5m 5/5/2017 6 

PlanetScope 3m 7/15/2017 10 

PlanetScope 3m 9/29/2017 8 

PlanetScope 3m 10/3/2017 4 

PlanetScope 3m 1/4/2018 11 

RapidEye 5m 5/21/2018 6 

PlanetScope 3m 8/26/2018 9 

PlanetScope 3m 10/1/2018 4 

PlanetScope 3m 10/2/2018 4 

PlanetScope 3m 10/12/2018 3 

PlanetScope 3m 10/30/2018 10 

PlanetScope 3m 11/4/2018 2 

Table 3: Cloud-free available high resolution imagery datasets 

3.5.  Creating the validation dataset 

For the per-pixel analysis it was necessary to create a validation dataset in which further 

change detection process and results validation were performed take action.  For this 

stage, RapidEye (5m resolution) and PlanetScope (3m resolution) imagery was used 

complemented in some cases with Sentinel-2 satellite imagery (10m resolution).  The 

visual interpretation of high resolution imagery time series was executed with ArcGIS 

Desktop 10.5.  The time period used here matched with the time series available in 

Sentinel-2 times series acquire for the change detection process.  Therefore, as shown in 

Table 2, 16 high resolution times series were used in the period October 2016 to 

November 2018.  Here is important to mention that Planet‘s program used for this 

purpose does not have complete time series data sets, thus all available cloud-free 

imagery was downloaded. 

For validation dataset, 623 points were digitized and distributed among the whole AOI 

(Figure 14).  The points were classified as ―Forest‖ and ―Deforestation‖.  Deforestation 

class included a date attribute, which was identified by the visual interpretation of time 

series (Figure 15).  In some cases, Sentinel-2 imagery was used to improve the 

deforestation detection date, as it has a more complete time series collection.  For the 

―Forest‖ class, 348 points where identified which did not changed during the studied 

period, and for ―Deforestation‖ class 275 points were created.  Later, coordinates were 

assigned to each point. 
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Figure 14: Sample and Validation points distributed over the Area of Interest.  The “Deforestation” 

class is symbolized with a blue triangle and the “Forest” class by a light blue square. 

After the completion of the sample and validation points in ArcGIS, the database was 

converted to *. CVS format and uploaded to R for further analysis. 
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Figure 15:  Example of “Deforestation” points with respective date when the change was detected.  Both images correspond to PlanetScope satellite.  Panel A shows 

a clean image from May 21st, 2018, Panel B shows an image dated from November 30th, 2018.  In the latter, evolution of deforestation can be observed with the 

corresponding points showing the date when forest disturbances were detected by visualization procedures.  Yellow circle as reference guide of the same location on 

image A and B. 
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3.6. Sentinel datasets pre-processing for Principal Component Analysis 

3.6.1. Cloud, cloud shadow, water masking 

In order to run the change detection process with Principal Component Analysis (PCA), 

first all Sentinel-2 time series datasets needed to be pre-processed.  For all remote 

sensing analysis and procedures related to earth surface is fundamental to consider 

removing clouds, cloud shadows, snow and water bodies.  These elements can 

substantially affect results in analysis like atmospheric correction, land cover 

classification, calculation of indexes or change detection processes (Zhu et al., 2015; 

Frantz et al., 2018).  For this purpose Function of mask (Fmask) 4.0 tool with GUI was 

used over all Sentinel-2 datasets.  The first version of this algorithm (Fmask 1.6) was 

created for Landsat images (Zhu & Woodcock, 2012), later version 3.3 of Fmask was 

developed to improve results for Landsat 4-7, to handle Landsat 8 datasets which came 

with a new cirrus band beneficial for cloud detection and finally, incorporate parameters 

to make Fmask work with Sentinel-2 images, which did not have a thermal band used 

for Landsat datasets, therefore, the Sentinel-2 cirrus band was used for this purpose and 

all steps where the Landsat thermal band worked were removed (Zhu et al., 2015).  

Fmask 4.0 follows the improvements achieved on the previous version and adds new 

characteristics as integrating auxiliary data (e.g. Global Surface Water Occurrence 

(GSWO), Digital Elevation Model (DEM)), new cloud probabilities, and spectral-

contextual features that principally helps identifying better snow and ice from clouds 

(Zhu et al., 2018). 

The most important parameter Fmask 4.0 uses is the ―Cloud Probability Threshold‖ and 

its default value on the Fmask 4.0 tool with GUI is 20% for Sentinel-2 datasets.  After a 

first tryout with default values, a test with different thresholds values was done using 

three Sentinel-2 datasets with varying amount of clouds in order to find the threshold 

that better fitted to the Study Area.  The test is showed in Figure 16 and a 40% Cloud 

Probability Threshold was decided.   

Fmask 4.0 tool with GUI automatically identifies all the data from the original Sentinel-

2 Level-1C product, and safes the results on a new folder.  The resulting values of the 

masking output are showed in Table 4. 

 

 

Value Class 

0 clear land pixel 

1 clear water pixel 

2 cloud shadow 

3 snow 

4 cloud  

255 no observation 

Table 4: Resulting classification values of Fmask 4.0 output 



METHODOLOGY 

 

29 

 

 

Figure 16: Fmask 4.0 - Cloud Probability Threshold test of three different images from the study area.  Low values (black) corresponds to clear land pixels and high 

values (white) depicts cloud pixels 
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The resulting outputs corresponded to the entire granule of each image.  Therefore all 

the outputs were cropped to the AOI using ArcGIS Desktop 10.5 and a calculation of 

the real percentages of clear land pixels inside the AOI was done as showed in Figure 

17.  Afterwards, the mask was applied to all datasets using the Conditional tool from 

Spatial Analyst Extension in ArcGIS Desktop 10.5, thus a new raster with only clear 

land pixels were created for every dataset. 

 

 

Figure 17: Clear land pixels percentage plot of all Sentinel-2 time-series datasets for the Area of 

Interest 

Considering the low amount of valid datasets for the study area, every dataset with 

minimum clear land pixels is useful.  However, images with less than 10% of clear land 

pixels where removed because the amount of information was too low, and in 

percentages between 10% and 30% there were areas that could have valid information. 

3.6.2. Spectral bands resampling 

Finally, in order to homolog the spatial resolution of all Sentinel-2 time-series datasets 

resampling the 10 meter resolution bands to 20 meters was necessary.  This process was 

done with ArcGIS Desktop 10.5, using the Resample tool from Raster Processing 

toolbox.  The resampling technique used was Bilinear Interpolation, which calculates a 

weighted average based on the four nearest input cell centers (ESRI,2019).  An example 

is shown in Figure 18.  This resampling method was executed to band 2 (blue), band 3 

(green), band 4 (red) and band 8 (NIR) for all time-series (252 images in total). 
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Figure 18: Example of Bilinear Interpolation Resampling method.  The processing cell center is 

showed as a red point, cell centers are in gray, output cells are shaded in green, cell being processed 

shaded in yellow (ESRI, 2019) 

With this last process, the Sentinel-2 dataset for running the Principal Component 

Analysis is finished.  

3.7.  Normalized Difference Vegetation Index calculation  

In order to answer Research Question 1, Normalized Difference Vegetation Index 

(NDVI) was calculated for all time-series.  For this purpose 10 m resolution bands 8 

(NIR – 842nm) and band 4 (Red – 665nm) time series were used in the calculation done 

with ArcGIS Desktop 10.5 using Equation 1 as follows:  

NDVI = (float(band8) – float(band4)) / (float(band8) + float(band4)) 

 

All NDVI outputs were masked applying the cloud, cloud shadow and water output 

done previously with Fmask 4.0.   

3.8. Validation and accuracy assessment 

Validation and accuracy assessment are the final results which determine how feasible 

the method is using Sentinel-2 time-series.   To achieve this, a confusion matrix (error 

matrix) was elaborated, which is one of the most common methods to measure accuracy 

in remote sensing processes (Comber et al., 2012) .  The confusion matrix is a cross 

tabulation (2x2) that compares the resulting values of certain process - which in this 

case will be the structural change detection on forest- with validation data from the 

validation dataset explained in Section 3.5 (Story & Congalton, 1986; Lewis & Brown, 

2001; Carfagna & Gallego, 2005 Visa et al., 2011; Comber et al., 2012). The confusion 

matrix was elaborated for all overall Empirical Fluctuation Process results on NDVI and 

PCA datasets arrays for our study area. 

Confusion matrix results where after placed in the Figure of Merit accuracy assessment 

method suggested by Pontius et al (2008) and taken from Lu et al (2017).  The 
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confusion matrix results were classified as True Positives (TP), True Negatives (TN), 

False Positives (FP), and False Negatives (FN).  TP refers to an agreement between 

forest disturbance detected by EFP and validation data.  TN refers to unchanged forest 

during the whole time series that was not detected as change in EFP and that was 

classified as forest in the validation data.  FP refers to a mismatch due to a forest 

disturbance detected by EFP when validation data pixel had a forest value.  FN refers to 

a mismatch when EFP process did not detect any disturbance, while validation data 

indicated deforestation. 

Once Figure of Merit is complete, accuracy assessment was measured using the 

suggested method by latter authors mentioned in this section.  Here, four types of 

accuracy were calculated as shown in Table 5. 

 

Accuracy measure Formulae 

Figure of merit TP/ (TP + FN + FP) 

User‘s accuracy TP/ (TP+FP) 

Producer‘s accuracy TP /(TP+FN) 

Overall accuracy ((TP+TN)/(TP+FN+FP+TN) 
Table 5: Accuracy measurements applied for overall results of Empirical Fluctuation Process. 

 

Pontius et al (2018) defines the latter accuracy measures as follows: 

Figure of Merit is a statistical measurement that represents the ratio of intersection 

between the observed and predicted change, to the union of the observed and predicted 

change.  User‘s accuracy depicts the proportion of positive predictions of the model as 

change, given that the model predicts a change, while Producer‘s accuracy represents 

the proportion of positive predictions as change, given that the validation dataset 

indicates a change. 

Overall accuracy will permit to compare the results from present research with other 

similar studies (Lu et al., 2017). 
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4. IMPLEMENTATION 

4.1. Data structuralizing   

Once Sentinel-2 time-series spectral bands pre-processing and NDVI calculations were 

complete, they were migrated to R in order to accomplish the steps for the change 

detection analysis.  At this stage, the Sentinel-2 spectral bands dataset and the NDVI 

dataset where processed in different R projects, here, we will explain the common steps 

done for both datasets. 

4.1.1. Raster stack, sample dataset location extraction and array 

Firstly, both datasets (Sentinel-2 spectral bands and NDVI calculations) where stacked 

(stack function), which results in a collection of RasterLayer objects with the same 

spatial extent and resolution.  This step is needed to group the whole dataset, see 

Figures 19 and 20.  Parallel to this, the sample database is uploaded to R, and by the use 

of the ―extract‖ function from raster package in R, the locations (coordinates) of the 

sample dataset are related to the correspondent pixel of each image and to the specific 

reflectance value in the spectral bands and the NDVI pixel value on the NDVI dataset.  

This results in a two-dimensional matrix for each dataset.  In the spectral bands the 

matrix dimension is [1:623, 1:630], which corresponds to the 623 sample points by 63 

time-steps of 10 spectral bands each.  The NDVI matrix dimension is [1:623, 1:63], 

corresponding to the 623 sample points and 63 time-steps. 

At this point, all the data from the spectral bands and NDVI calculations are stored in 

matrixes. These two-dimensional matrixes are now converted to three-dimensional 

arrays.  The array in R is a way to storage a vector with several attributes.  For the 

spectral bands the array has the following dimensions: [1:623, 1:10, 1:63], meaning 

sample points (locations), spectral bands and time-steps respectively.  For the NDVI 

dataset the array dimensions are [1:623, 1:1, 1:63], depicting sample points (locations), 

NDVI values and time-steps respectively.  An example of the first 25 locations of time-

step 1 of the spectral bands array can be seen in Figure 21. 
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Figure 19: Masked NDVI time-series period 01/10/2016 to 06/03/2017. X and Y axis depicts UTM 

coordinates. 
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Figure 20: Masked spectral time-series period 01/10/2016 to 04/09/2016. X and Y axis depicts UTM 

coordinates. 

 

 

 

Figure 21: Example spectral bands array.  Time-step 1, first 25 locations for the 10 spectral bands 

used on the research 
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4.2.  Selection of training sample points 

For analysis, 20 training sample points from the complete 623 sample and validation 

dataset were selected (deforestation = 10, forest = 10).  It is important to mention that 

each point (training sample) represents one pixel.  These samples were analyzed in 

detail following the general method.  In Table 6, the training samples can be observed 

with their correspondent percentage of valid and omitted pixels due to the cloud 

masking process. 

 

Sample 
Valid  

time-steps 
% 

Omitted  

time-steps 
Class 

1 46 73% 17 Deforestation 

33 37 59% 26 Deforestation 

54 41 65% 22 Deforestation 

101 41 65% 22 Deforestation 

110 44 70% 19 Deforestation 

119 46 73% 17 Deforestation 

135 34 54% 29 Deforestation 

177 41 65% 22 Deforestation 

196 35 56% 28 Deforestation 

239 38 60% 25 Deforestation 

400 32 51% 31 Forest 

410 23 37% 40 Forest 

420 44 70% 19 Forest 

430 45 71% 18 Forest 

440 31 49% 32 Forest 

450 37 59% 26 Forest 

580 41 65% 22 Forest 

590 37 59% 26 Forest 

600 42 67% 21 Forest 

620 35 56% 28 Forest 

Table 6: Chosen samples (locations) showing the valid and omitted time-steps, and the 

correspondent class for each sample. 

4.3.  NDVI time-series 

Time Series were created for the NDVI dataset.  This was accomplished with ―Zoo‖ 

package in R.  In Figure 22 are shown the first half of the training samples time series 

where gaps due to the absence of time-series imagery can be clearly observed.  These 

results are the inputs to run the EFP for NDVI. 
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Figure 22: Example of NDVI time-series plots for different sample points (locations).  “s” refers to 

sample and the consequently number 

Table 7 depicts the dates when deforestation was observed in the validation dataset for 

each of the sample points in Figure 22. 
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Location Time of real change 

1 9/29/2017 

33 4/24/2017 

54 1/4/2017 

101 8/22/2017 

110 9/29/2017 

119 8/22/2017 

135 10/16/2017 

177 8/26/2018 

196 8/26/2018 

239 1/10/2018 

Table 7: Dates of observed (validation dataset) change for all samples depicted in Figure 22 

4.4.  Principal component Analysis 

All the rows with missing values due to cloud masking are removed for computing the 

PCA.  The 2D input matrix has reflectance values for each band as columns (variables) 

and the validation points as rows (observations)  Once the array had only valid values, 

PCA was calculated for the Sentinel-2 spectral bands array (all bands and time-series) 

using the ―prcomp‖ function in R.   

The number of Principal Components (PC‘s) is equal to the number of variables used, 

which in this case are 10 spectral bands from Sentinel-2 satellite.  Here we used several 

tools (data and plots) to determine which principal components should be used. 

Is important to mention that on one hand, Principal Components are orthogonal to each 

other, thus there is no correlation between them (Kwarteng & Chavez, 1989) (see 

figures on Appendix on pages 61 to 64), and on the other hand, is possible to analyze 

the correlation between the variables (e.g. spectral bands) and their relation to the 

Principal Components, meaning which variables and observations (e.g. spectral data in 

a specific pixel along time-series) are better explained in certain PC. 

To accomplish this, first PC loadings of all training datasets were observed in order to 

have a first income about their structure and the distribution of positive and negative 

values along the 10 spectral bands.  Secondly the same was done with PC scores, and 

the correlation between bands in relation with the first two PC‘s was observed.  Thirdly, 

variances and cumulative variances proportion were analyzed to decide which PC‘s to 

use for Empirical Fluctuation Process.  Lastly, time-series were created for the chosen 

PC‘s. 

The latter explained is represented in the next pages. 

PC loadings or rotation values, are coefficients of the linear combination of the 

variables, and show the variance‘s magnitude between the variables.  Here the variables 

of each training sample are all the available time-series spectral information for that 

specific pixel.  The PC loadings values per band (training sample 1) are shown in Table 

8 and Figure 23 and 24.  More examples of PC loadings graphs can be found in the 

Appendix on pages 65 and 66. 
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PC1 PC2 PC3 PC4 PC5 

BAND2 0.26438 0.28391 -0.51494 0.04707 -0.21879 

BAND3 0.38029 0.18614 -0.31926 -0.39470 0.01819 

BAND4 0.27125 0.41861 -0.13381 0.19386 -0.29342 

BAND5 0.42040 0.17659 -0.00474 0.22348 0.61294 

BAND6 0.32019 -0.37256 -0.06905 0.20529 0.41234 

BAND7 0.28704 -0.41050 -0.03948 0.22970 -0.08313 

BAND8 0.33001 -0.31705 0.08445 -0.74219 -0.06532 

BAND8A 0.28553 -0.40476 -0.02839 0.32866 -0.52418 

BAND11 0.29291 0.15547 0.59143 0.02046 -0.17961 

BAND12 0.27207 0.28723 0.50093 0.01672 -0.04225 

 
PC6 PC7 PC8 PC9 PC10 

BAND2 0.53859 -0.25487 0.07152 -0.09726 -0.40575 

BAND3 -0.08311 -0.10985 -0.03404 0.46914 0.56785 

BAND4 -0.33166 0.46022 -0.11731 -0.48882 0.18734 

BAND5 -0.35341 0.01094 0.30166 0.14660 -0.35904 

BAND6 0.22773 -0.24416 -0.29768 -0.46657 0.35208 

BAND7 0.34533 0.67085 0.03030 0.34251 -0.01838 

BAND8 -0.12275 0.12175 0.01324 -0.29853 -0.33037 

BAND8A -0.42604 -0.40358 0.00723 0.13954 -0.08454 

BAND11 0.29509 -0.13537 0.56930 -0.11743 0.25351 

BAND12 0.11550 -0.07332 -0.68928 0.22939 -0.20987 

Table 8: PC loadings (rotation) for training sample 1 
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Figure 23: PC loadings (rotation) of all bands for PC’s 1-6 of training sample 1. The sequence of the 

bands (1-10) corresponds to the following: Bands 1-3 to visible; Bands 4-6 to Red Edge; Bands 7 

and 10 to NIR; and Bands 8 and 9 to SWIR. 
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Figure 24: PC loadings (rotation) of all bands for PC’s 7-8 of training sample 1. The sequence of the 

bands (1-10) corresponds to the following: Bands 1-3 to visible; Bands 4-6 to Red Edge; Bands 7 

and 10 to NIR; and Bands 8 and 9 to SWIR. 

 

PC scores values are the linear combination of standardized variables weighted by PC 

loadings.  Therefore, data was centered (Table 9) and standardized before applying 

PCA. PC scores are useful to analyze which Principal Components represent the higher 

variability of the data by dimension reduction, and be able to define which PC are the 

most feasible to work with as depicted in Table 10.   

 

 

Table 9: Center values for training sample 196 
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Table 10:  PC scores of training sample 196 for the first 40 time series.  The lacking time-series 

values are due because they have been omitted as NA values. 

Figure 25 and 26 show the correlation between spectral bands and their values in respect 

to the Principal Components.  Figure 25 depicts the plot for sample 196, where the first 

two Principal Components (PC1 and PC2) explains the 95.7% of the variance. Also, on 

one hand shows a strong correlation between band 6 and band 8, and band 8a and band 

7.  The correlation is high between all those bands.  Though these bands have higher 

values on PC2, also shows positive values on PC1.  The other correlated group of bands 

is bands 2, 3, 5 and 12, even though the stronger correlation is observed in bands 2 and 

3.  This group of bands shows their higher values on PC1 and negative values in PC2.  

It can be seen that band 11 and band 4 has a low correlation with other bands. 

 

 
Figure 25: Bi-plot of PC scores of sample 196 
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Figure 26: Bi-plot of PC scores of sample 135 

 

Figure 26 shows a different case.  Here, sample 135 shows correlation between bands, 

though, is interesting to notice that bands 6, 7, 8 and 8a have negative values in both 

PC‘s.  These could tell that for those bands, that pixel is better explained in other PC‘s 

rather than PC1 or PC2. 

After observing the bi-plots for all the samples, which only explain the relation of 

values towards the first two PC‘s, shoulder-plots can graphically explain the cumulative 

variance proportion of PC‘s for each sample. Figure 27 shows examples for 4 training 

samples.  In the shoulder-plots can be observed that the first three PC‘s (PC1, PC2 and 

PC3) are the ones with largest variance, though, PC4 shows a boundary condition from 

where most of PC‘s start having negative values and a sort of equilibrium is founded.  

The PC‘s that explains the most of the data for each sample are PC1, PC2, PC3 and 

PC4, which are the PC‘s that will be used for the Empirical Fluctuation Process.  As 

depict on Table 11, the first four PC‘s of all training samples explains almost 99 percent 

of the data. 
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Figure 27:  Shoulder plots of a portion of training samples, showing the variance explained from 

each Principal Component 
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Sample   PC1    PC2    PC3     PC4    PC5    PC6     PC7    PC8   PC9    PC10 

1 0.484 0.823 0.964 0.985 0.991 0.994 0.996 0.998 0.999 1.000 

33 0.497 0.852 0.978 0.986 0.990 0.994 0.996 0.998 0.999 1.000 

54 0.529 0.912 0.981 0.989 0.993 0.995 0.997 0.998 0.999 1.000 

101 0.544 0.919 0.962 0.978 0.989 0.993 0.996 0.998 0.999 1.000 

110 0.598 0.970 0.988 0.992 0.995 0.997 0.998 0.999 0.999 1.000 

119 0.480 0.847 0.981 0.989 0.993 0.995 0.997 0.999 0.999 1.000 

135 0.573 0.947 0.977 0.985 0.993 0.995 0.997 0.998 0.999 1.000 

177 0.689 0.878 0.980 0.992 0.994 0.996 0.997 0.998 0.999 1.000 

196 0.533 0.957 0.982 0.988 0.992 0.995 0.997 0.999 0.999 1.000 

239 0.559 0.906 0.963 0.978 0.986 0.991 0.995 0.997 0.999 1.000 

400 0.831 0.955 0.973 0.986 0.992 0.995 0.998 0.999 0.999 1.000 

410 0.898 0.985 0.990 0.995 0.996 0.998 0.999 0.999 0.999 1.000 

420 0.873 0.964 0.982 0.988 0.992 0.995 0.997 0.999 0.999 1.000 

430 0.827 0.976 0.989 0.994 0.995 0.997 0.998 0.999 0.999 1.000 

440 0.714 0.958 0.985 0.991 0.995 0.997 0.998 0.999 0.999 1.000 

450 0.831 0.974 0.991 0.995 0.997 0.998 0.999 0.999 0.999 1.000 

580 0.681 0.937 0.984 0.991 0.995 0.997 0.998 0.999 0.999 1.000 

590 0.628 0.931 0.964 0.984 0.992 0.995 0.997 0.999 0.999 1.000 

600 0.811 0.965 0.982 0.989 0.993 0.996 0.997 0.998 0.999 1.000 

620 0.706 0.948 0.973 0.983 0.990 0.996 0.998 0.999 0.999 1.000 

Table 11: Cumulative variance proportion of all PC’s for every sample.  Marked red depicts the 

four first PC’s which represent the most of the data for all samples 

Finally, PC scores time-series were created for top four Principal Components.  The PC 

scores time-series have been created using ―zoo‖ package in R.  The PC scores time-

series are the input for applying the Empirical Fluctuation Process, and thereby, the 

Change Detection Test, aim of this research.  Figure 28 shows as example the PC scores 

time-series for training sample 1.   

 

Figure 28: PC scores time-series for training sample 1 (five first PC’s).  The red line depicts the 

time change observed in the validation dataset. 
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5. RESULTS 

 

This chapter first shows the results on change detection for the Normalized Difference 

Vegetation Index (NDVI) on the 20 training samples (section 4.1), followed by the 

results on change detection for the Principal Component Analysis (PCA) of the 20 

training samples (section 4.2), succeeded by the overall results of the complete NDVI 

and PCA datasets (Section 4.3), and finally validation and accuracy assessment on the 

overall results will be provided (section 4.4). 

After computing the OLS-MOSUM (Ordinary Least Squares – Moving Sum of 

residuals) test on each of the chosen samples, a Structural Change Test (SCT)  is ran by 

the use of function ―sctest‖ from the strucchange package in R (Zeileis et al., 2001).  

The OLS-MOSUM test plots show a change is detected when the plotted line intersects 

the margin boundaries lines in both extremes (superior and inferior) of the plot. 

5.1.  Change detection over NDVI time-series samples 

 

For NDVI training sample pixels, in 60% of the known deforestation points were 

detected.  As observed in Table 12, six training samples have p-values of less than 0.05.  

The MOSUM test plots considered the time-series as an index, and represents when a 

change has been detected.  Some samples have EFP values that approximates 

considerably to the boundary line (e.g. s33), which could indicate a structural change 

that was not detected, and that will be evaluated after the validation analysis.  On the 

other hand, for training samples known as forest (forest have not change during the 

time-series) no changes have been detected.  Figure 29 and Figure 30 depicts the 

MOSUM-OLS test plots for all training samples. 

 

Sample MO p-value Sample MO p-value 

1 0.85762 0.3115 400 0.98227 0.2115 

33 1.1757 0.06783 410 0.47089 0.622 

54 1.3041 0.02182 420 1.1419 0.08772 

101 1.6677 0.01 430 0.9086 0.2706 

110 1.4464 0.01 440 0.80854 0.3509 

119 1.2741 0.02831 450 0.92545 0.2571 

135 1.0616 0.1478 580 1.1218 0.09958 

177 1.0849 0.1291 590 0.91641 0.2643 

196 1.714 0.01 600 0.80865 0.3508 

239 1.601 0.01 620 0.60781 0.5121 

Table 12: MOSUM and p-values computed for NDVI dataset samples.  Numbers in bold depict 

values below alpha, therefore, indicates a structural change have been detected. 
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Figure 29:  OLS-MOSUM test plot for first half of NDVI dataset samples 
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Figure 30: OLS-MOSUM test plot for second half of NDVI dataset samples 
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5.2.  Change detection based on EFP over PCA time-series 

The change detection method PCA based has several findings among each PC (Table 

13).  For training samples, PC1 have detected more structural changes.  50% of the 

known deforested pixels have resulting p-values less than 0.05.  PC2 and PC4 detected 

four changes each on deforested known pixel, and PC2 detected one structural change 

on forest known pixel, while PC4 detected two changes.  Few matches in structural 

change were found.  In training sample 101 PC1 and PC4 detected a structural change, 

en training sample 110 PC1 and PC2, in training sample 135 PC1 and PC2, and finally 

training sample 177 in PC1, PC2 and PC3.  

Also, PC2 and PC4 detected structural change on forest known pixels (e.g. training 

samples 430, 440 and 580) 

Samples PC 1 PC 2 PC 3 PC 4 

1 0.142 0.08273 1.0144 0.01 

33 0.5436 0.03221 0.08613 0.0799 

54 0.08248 0.1664 0.3245 0.2544 

101 0.0208 0.1558 0.4219 0.01 

110 0.01 0.04307 0.5078 0.3575 

119 0.2325 0.3779 0.1258 0.01 

135 0.02929 0.303 0.3566 0.01 

177 0.4923 0.02976 0.04815 0.1119 

196 0.01008 0.01 0.43 0.5649 

239 0.01 0.2535 0.3805 0.2396 

400 0.5618 0.428 0.305 0.5323 

410 0.4766 0.4302 0.3156 0.1951 

420 0.4 0.08389 0.4782 0.64 

430 0.2855 0.01 0.4519 0.1375 

440 0.4945 0.3225 0.396 0.04156 

450 0.4234 0.3395 0.5484 0.367 

580 0.4769 0.2012 0.3694 0.0203 

590 0.4684 0.2601 0.2646 0.2002 

600 0.3435 0.4198 0.548 0.5539 

620 0.6201 0.5341 0.2189 0.5772 

 

Table 13: P-values computed for the four first PC’s in all samples. Numbers in bold depict values 

below alpha, therefore, indicates a structural change have been detected. 

Figures 31 and 32 shows the OLS-MOSUSM test plots for all training samples 

computed for PC1.  The plots for the resting three chosen PC‘s can be found in the 

Appendix on pages 67 to 72. 
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Figure 31: OLS-MOSUM test plot for known deforested training samples computed with PC1 

loadings 
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Figure 32: OLS-MOSUM test plots for known forest training samples computed with PC1 loadings 
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5.3.   General results for complete NDVI and PCA datasets 

 

In this section, general results for NDVI dataset and PCA dataset are explained.  Here, 

Empirical Fluctuation Test and Structural Change Detection Test were applied to each 

dataset arrays.  The dimensions of NDVI array are 1:623, 1:63 (two-dimensional), 

which represents the sample/validation points and time-series respectively.  Dimensions 

for the PCA array are 1:623, 1:10, 1:63 (three dimensional), which represents 

sample/validation points, spectral bands and time-series respectively. 

Figure 33 shows the findings of structural change detection over all datasets.  In latter 

Figure, is clearly observable that have decided to use the first four PC‘s was good 

decisions due the majority positive structural change detection are founded there.  Here 

is important to mention that there were 275 sample/validation points that corresponded 

to deforestation and 348 to forest.  When a structural change detection test results True 

(p-value < 0.05), the supposition is that deforestation happened, though this is only 

confirmed after the validation process (section 4.4). A higher amount of findings 

happened on the NDVI dataset, 240 true values, while PC2 is the second higher in 

amount of findings with 188. PC4 and PC1 have 112 and 111 respectively. 

 

 

Figure 33: Overall Structural Change Detection findings by EFP in NDVI and PCA datasets.  True 

depicts a structural changed was detected, and False depicts no structural change was detected 

Considering only PC‘s findings, in Figure 34 can be observed that PC2 is more sensitive 

to forest disturbances in Sentinel-2 dataset.  PC1, PC3 and PC4 have almost the same 

amount of true values, while PC2 is closer to NDVI findings. 



RESULTS 

53 

 

 

Figure 34: Structural Change Detection findings by EFP on the first four PC’s.  True depicts a 

structural changed was detected, and False depicts no structural change was detected 

5.4. Validation and accuracy assessment 

5.4.1. Validation 

 

The validation and accuracy assessment method used here is explained in Section 3.9.  

The figure of merit was elaborated using the findings of Section 4.3 and the validation 

dataset (section 3.3).  Table 12 shows the abbreviation and description for each class. 

CLASS ABBR DESCRIPTION 

TRUE POSITIVE TP Deforestation matches between EFP and validation dataset 

TRUE NEGATIVE TN Forest unchanged matches between EFP and validation dataset 

FALSE NEGATIVE FN 
Forest unchanged in EFP results are identified as Deforestation in  
validation dataset 

FALSE POSITIVE FP 
Deforestation in EFP results are identified as forest unchanged in 
validation dataset 

Table 14:  Figure of merit’s classes and description for validation and accuracy assessment process 

Here is important to observe TP values in order to see which source data was able to 

find a larger amount of forest disturbances (structural change), even though considering 

the TN values is also important because the actual unchanged forest condition was not 

confused with other state. The results of the figure of merit showing deforestation and 

unchanged forest are reported on Table 15.  NDVI was able to detect more TP than all 
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the PC‘s with 188 matches over the validation dataset.  PC2 is the PC to have more 

positive matches of the four PC chosen, with 145 TP matches over the validation 

dataset.  PC1 and PC4 have relatively the same amount of TP‘s matches with 78 and 77 

respectively.  PC1 was able identify a larger amount of True Negative matches with 

315, and PC2 and PC4 had 306 and 313 respectively.  NDVI‘s TN matches are below 

the before mentioned PC‘s with 296 matches. 

 

 
NDVI PC1 PC2 PC3 PC4 

TP 188 78 146 47 77 

TN 296 315 306 295 313 

FN 87 197 129 228 198 

FP 52 33 42 53 35 
Table 15: Figure of merit matrix results for NDVI and PC’s. TP(True Positive), TN (True 

Negative), FN (False Negative), FP (False Positive) 

5.4.2.  Accuracy assessment 

 

To assess accuracy, method explained in Section 3.9 was used.  Here Figure of Merit 

(FOM), User‘s Accuracy (UA), Producer‘s accuracy (PA) and Overall Accuracy (OA) 

was measured.  Table 16 shows the results of the latter mentioned measurements for all 

NDVI and PC‘s outputs.  Following with the results in previous section, NDVI achieved 

higher accuracy in general; having a 57% in FOM, while PC2 with the second higher 

FOM accuracy achieved a 46%.  PC1 and PC4 achieved 25% each while PC3 has the 

lower FOM with 14%.  UA achieved by NDVI and PC2 resulted the same with 78%, 

while PC1 and PC2 achieved close percentages with 70% and 69% respectively.  PC3 

also achieved the lower value here with 47%.  Producer accuracy‘s higher values were 

achieved once again by NDVI and PC2 with 68% and 53% respectively while PC1 and 

PC4 achieved significantly lower PA with 28%.  PC3 achieved the lowest with 17%. 

Respect with OA, NDVI achieved the higher percentage with 78% followed by PC2 

with 73%.  PC1 and PC4 achieved the same OA with 63%, while PC3 achieved the 

lower OA with 55%. 

 
NDVI PC1 PC2 PC3 PC4 

Figure of merit 57% 25% 46% 14% 25% 

User’s accuracy 78% 70% 78% 47% 69% 

Producer’s accuracy 68% 28% 53% 17% 28% 

Overall accuracy 78% 63% 73% 55% 63% 
Table 16: Accuracy assessment on structural change detection results for NDVI and PC.  Figure of 

Merit (FOM), User’s Accuracy (UA), Producer’s Accuracy (PA) and Overall Accuracy (OA) 
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6. DISCUSSION 

 

This chapter will discuss in a first instance the importance of sample and validation 

dataset for the method used in the present research (section 5.1).  Subsequently, we will 

discuss the findings obtained for both datasets (NDVI and PCA) on deforestation 

detection through Empirical Fluctuation Process (section 5.2). 

6.1.  Importance of sample and validation dataset 

 

Sample and validation dataset plays a fundamental role in the method used in the 

present research.  The method here proposed is a pixel-based (Desclée et al, 2006; 

Aguirre-Gutierrez et al., 2012; Chen et al, 2012; Hussain et al, 2013) change detection 

method, thus, the data gathered from satellite datasets is based on the accuracy of the 

sample and validation points.   

Validation data is often a limitation for land-cover and change detection studies due to 

the lack of it or because the good quality of the data, the costs that represents to 

elaborate new datasets (Cohen et al., 2010; Lu et al, 2015).  Previous studies in the same 

topic generated the validation dataset based on Landsat images, complementing them 

with images from Google Earth or Bing Maps (Hamunyela et al., 2016; Lu et al., 2017).  

Obviously this concerns limitations due to spatial resolution of Landsat which can result 

in misclassified pixels.  The use of web engines as Google Earth and Bing Maps do 

help, though a posterior quality revision must be done in order to match the points 

generated there with the Landsat image pixels.   

In the present research we approach this issue by getting access to high resolution 

imagery from PlanetScope (3m resolution) and RapidEye (5m resolution) satellites as 

explained in Section 3.3.  This free-resource available for researches means a great 

opportunity to improve sample and validation datasets.  Even though, a quality 

assessment needs to be done as well.  In the present research, spatial displacements of 

15 to 30 meters where found when observing the validation dataset made with high 

resolution imagery over the Sentinel-2 (10 m and 20 m resolution) images.  

Consequently, manual alignment of the points was done in order to make them match 

with the pixels identified as reference pixels. 

This findings bring up the that sample and validation datasets are still a critic step in 

change detection process, and which needs to be consciously developed and managed in 

the oncoming researches, thus the quality of results depends on the quality of sample 

and validation data. 
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6.2.  Seasonality 

 

West New Britain province in Papua New Guinea, where the study area is located, has a 

Humid Tropical Climate.  Mean annual rainfall in the study area is between 4000 and 

6000 mm and there is not a clear seasonality over the year (McAlpine, 1983).  Food and 

Agriculture Organization (FAO) establishes for the study area vegetation as Lowlands 

rainforest.  This explains the above where evergreen rainforest is not conditioned by 

seasonality.  Therefore, having an overall accuracy of 78% on fitting the mean model to 

NDVI time-series tells how well can the method perform in areas where seasonality 

does not need be addressed directly.   

 

6.3.  Deforestation detection results on NDVI and PCA data 

 

In section 4, the findings for forest change detection based on Empirical Fluctuation 

Process are explained.  Considering the training sample points (40 samples) that were 

selected to analyze in detail the method, we can observe that a small portion of the data 

can confuse the overall performance of the method.  This condition does not apply to 

NDVI dataset, as NDVI results showed from the beginning to have a better performance 

in what refers to change detections.  As seen in Table 12, EFP-based change detection 

on NDVI achieved more findings on the ―Deforestation‖ known samples (first ten) than 

the four first PC‘s.  In the training samples, the PC that achieved a better performance 

was PC1 with 50% of matches, while PC2 and PC4 achieved 40% matches.  PC3 

always showed to have a lower performance than the others.  This is important to 

discuss, because on the overall results with complete datasets, PC2 achieved the best 

performance for all PC‘s with an overall accuracy of 73%, just 5 percent below NDVI 

overall accuracy, and 10% higher than PC1 and PC4.  Also, PC2 achieved the same 

user‘s accuracy than NDVI with 78% which is 8% higher than the achieved by PC1 

(Table 16). 

Here is important to mention that NDVI dataset was calculated from Sentinel-2 (10 m 

spatial resolution), which means the spectral information of bands 8 and 4 did not 

change from its original, while PCA calculations were effectuated over upscale 20 

meters resolution images (see Section 3.4.2), which can change spectral information, or 

discard valuable spectral information from pixels (Marceau & Hay, 1999; Du et al., 

2016).   Therefore, the results obtained by PC2 shows a great performance of the 

method by using PCA, and would be important for future studies to downscale the six 

20 meters spatial resolution to 10 meters.  Several fusion methods have been developed 

in the last decade to downscale remote sensing products (Li, 2000; Ranchin & Wald, 

2000; Svab & Ostir, 2006; Thomas et al., 2008; Choi & Kim, 2010; Metwalli et al., 

2010; Wang et al., 2015; Wang et al., 2016a), and specific fusion methods has been 

developed in recent years for Sentinel-2 images with very encouraging results in 

keeping spectral information (Wang et al., 2016b; Wang & Atkinson, 2018).  Thus, 
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research on forests change detection based on EFP over Sentinel-2 imagery is 

promissory and brings opportunity to improve accuracy. 

Considering previous researches that can be somehow comparable to the present 

research, it is worth to highlight the study made by Lu et al (2017), which used ―Breaks 

For Additive Season and Trend‖ (BFAST) Monitor framework.  The BFAST method is 

also based on Empirical Fluctuation Process, and in the cited study a comparison 

between the performances of the method was done over several vegetation indices 

(NDVI between them) and PCA.  The BFAST method conducted by Lu et al (2017) 

considers other parameters that were not used for the present research as the creation of 

a Seasonality Reduced Index (SRI).  The latter study was based on Landsat imagery of 

30 m spatial resolution and six spectral bands were used for PCA, and a 30 years‘ time-

series dataset was used.  The study evaluated two study sites: a dry tropical forest in 

Bolivia, and a moist tropical forest in Brazil.  Because the atmospheric, weather and 

vegetation conditions of Brazilian study site are most alike to the study area of the 

present research (West New Britain, Papua New Guinea), those findings will be 

compared will the results here explained. 

Lu et al (2017) accuracy assessment‘s findings using Landsat imagery was done 

comparing time, and some differences can be found with the present research.  Lu et al 

(2017) achieved an overall accuracy of 63.2% and 47.4% for NDVI and PCA 

respectively, compared with a 78% and 73% for NDVI and PCA respectively in the 

present research.  In Lu et al (2017), user‘s accuracy achieved 23.9% for NDVI and 

19.6% for PCA, while the present research achieved 78% for NDVI and PCA.  On one 

hand producer‘s accuracy in Lu et al (2017) for NDVI was of 44.3% and for PCA 64.6, 

and on the other hand the present research achieved 68% and 53% for NDVI and PCA 

respectively.  Lastly, in what refers to Figure of Merit accuracy, Lu et al (2017) 

achieved 18.4% and 17.7% for NDVI and PCA respectively, while in the present 

research 57% was achieved for NDVI and 46% for PCA.  Considering the cited 

research used time to measure accuracy, also other causes can be discussed; a larger 

spectral resolution of Sentinel-2 and a higher spatial resolution can improve the 

performance of EFP, which would need to be studied in order to understand the 

behavior of both satellites respecting the method. The validation dataset on the present 

research was done with high-resolution imagery, which lowers the risk of having False 

Negatives and False Positives in the final results.  Here, is necessary to mention once 

again that sample and validation dataset is critical; as a good quality validation dataset 

gives you a certain staring point, as you know that in that specific pixel deforestation 

happened, and the method only tries to prove what you already know if you have a good 

quality sample and validation dataset.  Another reason for the difference in accuracy 

results can be the geographical location, considering that the present research study site 

is closer to the equator and Atmospherical dynamics can differ. 

Sentinel-2 constellation has been gathering information since 2015 with one satellite 

and both satellites working at the same time since 2017.  This makes that Sentinel-2 

time-series are not extensive as other satellites used for this purpose (e.g. Landat 

satellites).  Even though, this study shows that inside the time-frame where the study 
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was developed, was possible to detect structural changes in the forest of the study area.  

One of the challenges here, and considering the high cloud presence in the area, is to 

perform the best cloud-masking possible, in order to take advantage of every available 

pixel that can match with the analysis.  Considering that in the present study only 63 

time-series where used, and from those the 51% had above 70% of clear land pixels, the 

results for the time-period used in the study are satisfactory. Comparing time-series 

availability in other similar studies, Lu et al (2017) used Landsat imagery nad the study 

was developed in two study sites, where in one of the – Bolivian site – 444 images 

where available, and on the second – Brazilian site – 225 images were used.  This 

shows the considerably difference in time-series availability between satellites, though 

Sentinel-2 have the advantage of having a 5 days temporal resolution with the two 

satellites (e.g. Sentinel-2A and Sentinel-2B) and further in time Sentinel-2 time series 

will be more abundant, and therefore better contribute to forest dynamics studies.  The 5 

days temporal resolution of Sentinel-2 constellation also contributes to have a higher 

probability of free-cloud images. 
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7. CONCLUSION 

 

The present research had two main objectives.  The first objective was to assess the 

method (Forest Change Detection based on Empirical Fluctuation Process) and evaluate 

the performance of it over NDVI and PCA data using Sentinel-2 imagery.  The first 

objective was characterized on the first research sub-question: 1) To what extent 

Structural Change Detection on Sentinel-2 imagery based on NDVI and PCA differs?  

The second objective was to evaluate if the method can achieve significant accuracy 

results by working on short time-series with high amount of cloud presence.  The 

second objective was described by the second and third research sub-questions: 2) How 

does short amount of time-series datasets affect Structural Change Detection based on 

Empirical Fluctuation Process?  3) How does high amount of cloud-pixels in the time-

series dataset affect the results of Structural Change Detection based on Empirical 

Fluctuation Process? 

Concerning the first objective, was observed that NDVI results achieved higher 

accuracy levels in all the realized accuracy measurements, having detected more true 

deforestation events in the Area of Interest than the PCA results.  Here is important to 

consider that NDVI dataset had a higher resolution than the PCA dataset, and could 

affect the overall results.  In despite of the latter explained, PCA results, specifically 

PC2 results, got significantly high accuracy levels than other PC‘s and compared to 

NDVI.  The PCA assessment on the method showed the importance of studying all PC‘s 

before making a decision on which one should be used to detect forest disturbances.  At 

the beginning of the study was hypothesized that PCA was going to perform better, 

though overall results showed NDVI performed better in this case by a marginal 

difference and with better spatial resolution than PCA, as was previously mentioned. 

For the second objective regarding to time-series and cloud presence on the study area, 

the hypothesis done at the beginning of the research established that the short amount of 

time-series and high amount of cloud-pixels was not going to affect the findings for the 

time period over study.  The final results shows a level of accuracy of 78% on NDVI 

and 73% on PCA, which can be considered as a feasible accuracy level, considering that 

the study area is highly clouded over the year and that the time period under study was 

of 3 years.  Therefore, the method of Forest Change Detection based on Empirical 

Fluctuation Process has a good performance with short time-series in cloudy areas. 

The results of this study add knowledge on forest change detection methods based on 

Empirical Fluctuation Process (EFP) over Normalized Difference Vegetation Index and 

dimension reduction using Principal Component Analysis. 

 

 

 



APPENDIX 

60 

 

8. APPENDIX 

 

 

Figure 35A:  Comparison of Spatial Resolution and Wavelength Characteristics of SENTINEL-2 

Multispectral Instrument (MSI), the Operational Land Imager (OLI) On-Board LANDSAT-8, and 

SPOT 6/7 Instruments (taken from ESA, 2015)
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Figure 36A: All possible scatter plots between the Principal Components for training sample 33 
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Figure 37A: All possible scatter plots between the Principal Components for training sample 54 
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Figure 38A: All possible scatter plots between the Principal Components for training sample 196 
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Figure 39A: All possible scatter plots between the Principal Components for training sample 600 
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Figure 40A: PC loadings (rotation) of all bands of training sample 110. The sequence of the bands (1-10) corresponds to the following: Bands 1-3 to visible; Bands 4-

6 to Red Edge; Bands 7 and 10 to NIR; and Bands 8 and 9 to SWIR. 
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Figure 41A: PC loadings (rotation) of all bands of training sample 119. The sequence of the bands (1-10) corresponds to the following: Bands 1-3 to visible; Bands 4-

6 to Red Edge; Bands 7 and 10 to NIR; and Bands 8 and 9 to SWIR. 
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Figure 42A: OLS-MOSUM test plot for known deforested training samples computed with PC2 

loadings 
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Figure 43A: OLS-MOSUM test plot for known forest training samples computed with PC2 

loadings 
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Figure 44A: OLS-MOSUM test plot for known deforested training samples computed with PC3 

loadings 
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Figure 45A: OLS-MOSUM test plot for known forest training samples computed with PC3 

loadings 
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Figure 46A: OLS-MOSUM test plot for known deforested training samples computed with PC4 

loadings 
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Figure 47A: OLS-MOSUM test plot for known forest training samples computed with PC4 

loadings 
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