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ABSTRACT

Deforestation arises deep concerns about several issues related to the planet’s future like
biodiversity loss, erosion increase, land degradation, carbon emissions, temperature
fluctuations, and changes in hydrological cycle, global warming, climate change, social
impacts, among others. Remote sensing methods and techniques play a key rol on
monitoring activities and assessing decision makers. Several methods have been
developed over the last decades, principally based on vegetation indices analysis, which
only uses a portion of the spectrum, while other methods less used have tried to gain
information by dimension reduction techniques. The access to new Satellite
Constellations like Sentinel-2, with a higher spatial resolution and richer spectral
information than other Satellite programs as Landsat brings important opportunities to
enhance the quality and accuracy to identify forest disturbances around the world. This
study evaluates the performance of Sentinel-2 imagery detecting structural changes in
forests based on a Empirical Fluctuation Process (e.g. OLS-MOSUM) over Normalized
Difference Vegetation Index (NDVI) and Principal Component Analysis, to indicate
which of both data sources is more feasibly. On the other hand, the present research
evaluates if the method can perform with short time-series datasets in cloudy areas.

The results of the study depicts higher figure of merit’s accuracy, user’s accuracy,
producer’s accuracy, and overall accuracy using NDVI time series; however, though
marginally lower accuracy was obtained using the PCA analysis, consider the PCA
scores have 20 meter spatial resolution while the NDVI time series has 10 meters
spatial resolution, the use of PCA still shows its potential.
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INTRODUCTION

1. INTRODUCTION

Forests play a key role in life on Earth. The ecosystem goods and services that are
produced by forests are fundamental for human well-being, ecological processes and
climate regulation (Constanza et al., 1997; Krieger, 2001; Nasi et al., 2002; Chapin IlI,
2013). Forests can be classified by tree cover density in four big classes based on
global climate domains as follows: Tropical (23.5°N — 23.5°S), Subtropical (25°N —
40°N, 25°S — 40°S), Temperate (~40°N-54°N, 40°S-54°S), and Boreal (50°N — 55°N to
65°N — 70°N) (Pan et al., 2013; Hansen et al., 2013). Tropical forests (Figure 1) gather
the most bio-diverse ecosystems in the planet (Pimm & Raven, 2000; Bradshaw et al.,
2009; Laurance et al., 2012), and the broader area of high-biomass (Pan et al., 2013).
Hansen et al. (2013) found the largest forest loss in the Tropical domain with an
estimated loss of 2100 km?/year for the period 2000 to 2012 using Landsat data (30 m
resolution). These forest loss findings were distributed among South America, Africa
and Eurasia, as shown in Figure 2.
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Figure 1: Tropical rainforests of the world (Credit: James M. Eaton) (McFarland, 2018)

Forest loss due to deforestation is mainly driven by economical activities such as
expansion of commercial agriculture (e.g. palm oil, soybeans), logging (e.g. timber
extraction), infrastructure (e.g. roads opening), and mining (e.g. gold, copper, iron ore)
(Geist & Lambin, 2001; McFarland, 2018).
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Figure 2: Global Forest Loss for the period 2000-2012. (Hansen et al., 2013)

For the present research it is important to define deforestation. Angelsen (1995) stated
the following: “There is no clear definition of “deforestation,” neither are there reliable
estimates of its extent nor its primary causes, and - partly as a reflection of these - there
is no consensus on the underlying causes” (p.1713). This statement can be proved when
considering Lund (1999) research, where he surveyed 39 different definitions in which
not all shared the same guidelines and parameters. Lund (1999) gives as example the
three following definitions:

“As a land cover change: to clear an area of forests or trees, usually for commercial
use of the lumber or agricultural use of the land (ITP Nelson, 1998).

As a land use change: the change of land use from forest to other land use (FAO,
1990).

As a land cover and land use change: the removal of a forest stand where the land
is put to a non-forest use (Helms, 1998)” (p.128).

Later, the Food and Agriculture Organization of the United Nations (FAO) defined
deforestation as: “The conversion of forest to another land use or the long-term
reduction of the tree canopy cover below the minimum 10 percent threshold” (Schoene
et al., 2007. p.8). Here it is important to emphasize the explanatory note of the same
document that states the following: “The term specifically excludes areas where the
trees have been removed as a result of harvesting or logging, and where the forest is
expected to regenerate naturally or with the aid of silvicultural measures. Unless
logging is followed by the clearing of the remaining logged-over forest for the
introduction of alternative land uses, or the maintenance of the clearings through
continued disturbance, forests commonly regenerate, although often to a different,
secondary condition” (Schoene et al., 2007. p.8).

Deforestation arises deep concerns about several issues related to the planet’s future
(Verbesselt et al., 2012): biodiversity loss, erosion increase, land degradation, carbon
emissions, temperature fluctuations, changes in hydrological cycle, global warming,
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climate change, social impacts, among others (Buchanan et al., 2008; Bryan et al., 2010;
Schultz et al., 2016b; Vergopolan & Fisher, 2016; Boyle, 2017; Benavent et al., 2018).

In the last years, open access to medium and high-resolution satellite data (e.g Landsat
and Sentinel-2) has become an important contribution to assess deforestation detection
and monitoring (Hamunyela et al., 2016; Lu et al., 2017). In addition, remote sensing
products have improved considerably regarding spatial, temporal and spectral
resolution. Spatio-temporal statistical modeling methods have been playing a
fundamental role in natural resources management, ecosystem conservation research,
and policy construction (Verbesselt et al., 2010; Lu & Hamunyela, 2016; Lu et al.,
2016, 2017).

Remote sensing data have been strongly used in the last decades for deforestation
monitoring (Coppin et al., 2002; Verbesselt et al., 2010b), however, the number of time
series change detection methods developed is limited (Verbesselt et al., 2010b). Singh
(1989) and Mas (1999) numbered a series of techniques and procedures for change
detection (e.g. Univariate image differencing, Image regression, Principal Component
Analysis, Vegetation index differencing, Post-classification comparison , among
others). These reviewed techniques used very short time series datasets at that time, and
the performance was not satisfactory for different reasons.

Furthermore new methods started to be developed, which had demonstrated to be robust
for near real-time forest disturbance detection. The Breaks For Additive Season and
Trend (BFAST) Monitor (Verbesselt et al., 2010) is a framework that detects changes
from satellite image time series based on the Empirical Fluctuation Process (Kleiber et
al., 2002; Zeileis, 2005, 2006; Zeileis & Hornik, 2007). Foregoing studies applying the
BFAST monitor used as principal input indices two or three spectral bands (e.g. NDVI,
NDMI, EVI), ignoring all other spectral information gathered by advanced earth
observation sensors and accounting limitations because of seasonal signals, noise and
other natural dynamics (Lu et al., 2017).

Lu et al. (2017) studied the BFAST monitor by dimension reduction using Principal
Component Analysis (PCA) which is capable of creating a new index with reduced
seasonality noise by using the complete spectral and temporal information of the
satellite sensors. Thus, results have shown higher accuracy on one hand and reduced
temporal detection delay of structural changes in forests on the other hand.

Moreover, several authors have stated the importance and the need for evaluating forest
change detection based on Empirical Fluctuation Process with increased spatial and
spectral resolution (Verbesselt et al., 2010a; Lu & Hamunyela, 2016; Hamunyela et al.,
2016; Lu et al., 2016; Lu et al., 2017).

The present research will assess Forest Change Detection based on empirical
Fluctuation Process using Sentinel-2 images over Normalized Difference Vegetation
Index (NDVI) and dimension reduction by Principal Components Analysis (PCA) and
evaluate the performance of the method using higher spatial resolution and richer
spectral information imagery than previous studies. Also it will be evaluated if the

10



INTRODUCTION

method can achieve reasonable accuracy using a short time-series dataset with high-
cloud presence condition.
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THEORETICAL BACKGROUND

2. THEORETICAL BACKGROUND

2.1.Normalized Difference Vegetation Index

The Normalized Difference Vegetation Index (NDVI) is a well-known, widely studied
and used vegetation index (Gandhi et al., 2015; Mandanici & Bitelli, 2016). NDVI is
the resulting ratio of the difference among NIR (near-infrared band) and RED (red
band) and posterior sum of the same two bands (Rouse Jr et al., 1974; Tucker 1979;
Pettorelli et al., 2005; Yengoh et al., 2015; Lu et al., 2017):

NIR—-RED

NDVI= SiR+ RED

Equation 1

The values of NDVI are between -1 and 1, where higher values indicate healthy
vegetation or a higher photosynthetic activity and low values unhealthy vegetation or
the lack of photosynthetic activity (Pettorelli et al., 2005; Pettorelli et al., 2011, Yengoh
et al., 2015). Therefore, higher disturbance in vegetation means lower productivity,
hence lower NDVI value. Figure 3 depicts the hysteresis curve explained by Kinzig et al
(2006), where resilient systems are able to reach the original state until certain
disturbance threshold. If disturbance reaches critical points, restoration can achieve
irreversible state of degradation (Kinzig et al., 2006; , Yengoh et al., 2015).

Productivity
proxy
A
— A
R \
x 1 C
\

B
>

Disturbance (e.g. drought, grazing, land clearing)

Figure 3: Stress cycle of vegetation related to productivity (principle of hysteresis). Point A, no
stress, higher productivity. Point B, high stress, low productivity. Green curve shows a fully
resilient system, capable of reaching its original state. A less-resilient system only recovers at a
certain lower state (Point C — red curve). Resilience of a system, R, is related to the distance
between A and C; the lower the value, the higher the resilience (taken from Yengoh et al, 2015)

NDVI considers the spectral properties of these bands and the reaction they have with
vegetation. Green vegetation reflects more NIR and less visible light, while less green
vegetation reflects more from the visible portion of the spectrum and less NIR (Yengoh
et al., 2015). Therefore, higher index values represent the presence of vigorous
vegetation and low values can represent degraded vegetation, bare soil and other
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elements as snow and clouds, whereas water has negative values in most of the cases
(e.g. suspended vegetation) (Yengoh et al., 2015), which can be observed in the
reflectance curves on the RED and NIR wavelengths of the spectrum depicted in Figure
4. NDVI does not explain physical quantification of vegetation directly, though the
correlation of physical properties (e.g. biomass, health condition, fractional vegetation
cover, leaf area index), therefore are valuable measurements to study vegetation
dynamics (Carlson & Ripley, 1997).
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Figure 4: Spectral curve for healthy vegetation, unhealthy vegetation and soil (taken from
WWW.gisresources.com)

2.2.Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate dimension reduction data
analysis technique used in a diverse group of scientific areas (Wold et al., 1987; Abdi
& Williams, 2010; Jolliffe, 2011), remote sensing among them (Kwarteng & Chavez,
1989; Loughlin, 1991; Lu et al., 2017).

The aim of PCA is to extract the most important information from a group of
observations depicting several variables, where abundant information results into a set
of new orthogonal variables uncorrelated between them called Principal Components
(PCs) (Kwarteng & Chavez, 1989; Abdi & Williams, 2010; Jolliffe, 2011). Thus, the
largest amount of the total variance will be gathered in the first component, and it will
be decreasingly distributed over the following components. The sum of the variance of
all the components will be equal to the total variance of the original source (Kwarteng
& Chanvez, 1989; Loughlin, 1991; Schowengerdt, 2006; Abdi & Williams, 2010; Van
der Meer & De Jong, 2011; Jolliffe, 2011). The PCs are defined as the linear
combinations of the original variables, the PC loadings or rotation are the coefficient of
the linear combination and the PC scores the result of the linear combination among the
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mean of the PCs and the PC loadings (Kwarteng & Chavez, 1989; Loughlin, 1991; Abdi
& Williams, 2010).

2.3.Empirical Fluctuation Process

Empirical Fluctuation Process (EFP) is a method of structural change detection on
linear regression models (Zeileis, 2005). This method has been used in several
scientific disciplines, from which econometrics and statistics had paid much attention
(Chu et al., 2005; Zeileis, 2005). In the last decade EFP has gained importance on
environmental studies which focus their attention on forest disturbances detection
(Verbesselt et al., 2010; Lu & Hamunyela, 2016; Lu et al., 2016; 2017). Fluctuation
tests based on Ordinary Least Squares (OLS) have been found to be valuable as
explorative tool and it is determined without a distinct pattern of deviation from stability
parameter. It is preferred by their users because the feasibility at the time of computing
and interpreting the results. The most common methods of EFP are OLS-based by
Cumulative Sum (CUSUM) and Moving Sum (MOSUM) (Zeileis, 2005).

Former Structural Change Tests and the BFAST Monitor studies have proved that the
OLS-MOSUM could detect structural change more accurately compared to OLS-
CUSUM (Chu et al., 2005; Zeileis, 2005; Lu & Hamunyela, 2016; Lu et al., 2016;
2017). Foregoing, OLS-MOSUM test is more sensitive to parameters changes when the
magnitude of residuals is larger, as residuals move in a window over the times series
without considering a cumulative sum of previous observations (Chu et al., 2005; Lu et
al., 2017).

OLS-MOSUM process is defined in Zeileis et al (2001) by

MOt = — (WH%M u) 0<t<1—h)
SV e -
Equation 2
g (LNnrJ + th]) o (LNnrJ)
T T
Equation 3

where h is the data window’s bandwidth (default value h=0.15), and N, = (n- [nh])/(1 -
h).

A structural change is identified and detected when the observations are deviated from
the hypothesis of a Brownian Bridge — which is used in OLS-MOSUM processes,
compared with Brownian motion, which is used in Recursive MOSUM- processes
(Zeileis et al., 2001; Lu et al., 2017).

The null hypothesis of the structural change test is false (change detected) when the
critical values of the OLS-MOSUM test intersect one of the two-sided boundary-
crossing probabilities of the Brownian Bridge’s hypothesis. The resulting calculation is
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compared to the significance level (alpha), 0.05 is commonly used (Chu et al., 1995;
Mangiafico, 2016).
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2.4.Research Questions

RQ: Are Sentinel-2 satellite time-series capable of detecting deforestation by
Empirical Fluctuation Process?

SQ1: To what extent does Structural Change Detection on Sentinel-2 imagery
based on NDVI and PCA differ?

SQ?2 : How does short amount of time-series datasets affect Structural Change
Detection based on Empirical Fluctuation Process?

SQ3: It is possible to detect deforestation in areas with high amount of
clouds?
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3. METHODOLOGY

3.1. Study area

West New Britain province in Papua New Guinea was selected as study area.
Historically this territory has been seriously affected by deforestation due to timber
extraction and large scale commercial agriculture - principally coconut and palm oil
plantations - (Buchanan et al., 2008).

The study site is located at the North of West New Britain (centered at: 5° 32° 37 S,
149° 59° 42” E, 625 km?) (Figure 5). The Area of Interest (AOI) was delimited
considering the study area and the ocean shore boundary in order to have only inland
pixels during the analysis (Figure 6). The AOI has an area of 1.000 km?.

Micronesia

Study area:
West New Britain,
Papua Nuew Guinea
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Figure 5: Map of the study area. (A) Location of study site in reference to Papua New Guinea
country and its surroundings; (B) location of study site in reference to West New Britain province;
(C) Study site (yellow square) using Sentinel-2 (MSI) image bands.
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Figure 6: Sentinel-2A True Color Composite Image showing the Area of Interest, West New
Britain, Papua New Guinea

3.2. Deforestation detection process

The deforestation detection process based on EFP in this study was constituted by five
main stages. Firstly, the validation dataset creation from where the per-pixel analysis
was implemented and later the validation was executed. Secondly the pre-processing of
all Sentinel-2 imagery was carried out in order to prepare the data for the
implementation of the method (e.g. cloud masking, cropping, resampling). Thirdly,
data structuralizing and implementation of the method was done using ArcGIS desktop
and R software (e.g. NDVI calculation, PCA calculation, EFP and Structural Change
Detection test). Fourthly, the validation and accuracy assessment was performed, and
finally, the results analysis and interpretation was carried out. The latter process is
depicted in the method flow diagram in Figure 7.
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Figure 7: Deforestation Detection method flow diagram

3.3. Satellite Imagery
In our study, data from four satellites were used: Planet Scope, Rapid Eye, Sentinel-2A
and Sentinel-2B.

For creating the sample and validation dataset, high resolution imagery was used from
Planet Scope and Rapid Eye satellites. These satellites have a spatial resolution of 3m
and 5m respectively.

For the deforestation detection analysis, Sentinel-2A and Sentinel 2-B were used. Ten
of the thirteen spectral bands from Sentinel-2 datasets were used for PCA during this
study. The discarded bands were the three 60m spatial resolution bands that correspond
to coastal aerosols, water vapor and SWIR-Cirrus (See Table 1).

3.3.1. Sentinel - 2 Constellation
The Sentinel-2 mission of the European Space Agency (ESA) has been developed in the
context of the European Union Copernicus programme (ESA, 2015; Wang et al., 2016;
Wang & Atkinson, 2018). It contains two twin satellites (i.e. Sentinel-2 A and Sentinel-
2 B), which are in the same orbit staged at 180° to each other, and the complete
constellation has a temporal resolution of 5 days near the Equator. Sentinel-2 has an
orbital swath width of 290 km and a multi-spectral imaging (MSI) sensor that covers 13

19



METHODOLOGY

spectral bands in the visible (VIS), near infrared (NIR) and short wave infrared (SWIR)
wavelengths. It has four bands at 10 meters (Figure 8), six bands at 20 meters (Figure
9) and three bands at 60 meters spatial resolution (Table 1) (Drusch et al., 2012; ESA,
2015; Wang et al., 2016; Wang & Atkinson, 2018). The Sentinel-2 mission has a global
coverage and its principal objectives are to give continuance to SPOT and LANDSAT
imagery time series and to contribute with observational data for land-cover, land-
change detection and geophysical variables (Malenovsky et al., 2012; Drusch et al.,
2012; Sibanda et al., 2015; ESA, 2015) (See Figure 35A in the appendix, page 60).

0m

!

Band 8 (842 nm)

_B:nd “ (_6!5 nm)

Figure 8: Sentinel-2 10 meters spatial resolution bands, and their location on the spectrum: Blue
(Band 2), Green (Band 3), Red (Band 4) and NIR (Band 8) (taken from ESA, 2015; Mushoni et al.,
2018)

SWIR
1% 1600 1300 2000 200 2000
nm nm m am nm nm
Band 11 (1610 nm) Band 12 (2190 nm)

Figure 9: Sentinel-2 20 meters spatial resolution bands, and their location on the spectrum: Red
Edge (Band 5), Red Edge (Band 6), Red Edge (Band 7), Narrow NIR (Band 8a), SWIR (Band 11)
and SWIR (Band 12) (taken from ESA, 2015; Mushoni et al., 2018)
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Band Central | 5ondwidth | Spatal
Band wavelength resolution
number (nm) (nm) (m)

1 Coastal aerosol 443 20 60
2 Blue 490 65 10
3 Green 560 35 10
4 Red 665 30 10
5 Red Edge 705 15 20
6 Red Edge 740 15 20
7 Red Edge 783 20 20
8 NIR 842 115 10
8? Narrow NIR 865 20 20
9 Water Vapour 945 20 60
10 SWIR - Cirrus 1375 30 60
11 SWIR 1610 90 20
12 SWIR 2190 180 20

Table 1: Sentinel-2 spectral and spatial resolution specifications (ESA, 2015)

For the present research Sentinel-2 mission Level-1C products were used. Level-1C
products are ortho-images geo-referenced in UTM/WGS84 projection, containing Top
of Atmosphere (TOA) reflectances, and radiometric and geometric corrections (ESA,
2015). Each Level-1C dataset constitutes 100 km? tiles (granules) which contain all
available spectral bands. Each dataset is codified by the format Naming Convention for
Sentinel-2 Level-1C products as shown in Figure 10 (ESA, 2015).

S2A_MSIL1C_20180419T002711_N0206_R016_T55MHP_20180419T020033.SAFE

A N N | [

a b c d e f g h

a: mission ID (e.g. Sentinel-2A, Sentinel-2B)

b: denotes the Level-1C product

c: datatake sensing start time (YYYYMMDDHHMMSS)

d: Processing Baseline number

e: Relative Orbit number

f: Tile number field

g: Product Discriminator (discrimination between different end user products from
same datatake.

h: Product Format (Standard Archive Format for Europe)

Figure 10: Format Naming Convention for Sentinel2 Level-1C products (ESA, 2015)

The Tile TS5MHP covers the whole study area as shown in Figure 11. This facilitated
the acquisition of all available 15% or higher cloud-free imagery datasets for the AOl,
which are summarized in Figure 12.
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Figure 11: Tilling grid for the study area in reference with West New Britain Island (Google Earth,

2019; ESA, Sentinel Online)
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Figure 12: Number of Sentinel-2 time-series datasets per satellite.

Considering that the study area is near the Equator, a high cloud presence during the
year means a limitation for remote sensing analysis. This is related to Research
Question 3. A total of 63 datasets were found appropriate to be incorporated into the
database to run the analysis, acquired from Sentinel Open Access Hub
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(https://scihub.copernicus.eu/dhus/#/home). For the year 2016, 10 datasets had the
required amount of cloud-free percentage, resulting in the 59% of all available datasets
for this year. For year 2017, 18 datasets which represent the 60% of available imagery
was used, and for year 2018, 35 datasets (56%) fulfilled the requisites for the analysis.

3.4.Validation dataset: RapidEye and PlanetScope constellations

For creating the validation dataset, high resolution satellite imagery was used. To access
these datasets, a student account was created on the Planet’s Education and Research
Program (Planet Team (2017). Planet Application Program Interface: In Space for Life
on Earth. San Francisco, CA. (https://api.planet.com). This program gives researchers
access to satellite imagery time-series of RapidEye and PlanetScope constellations
datasets.

RapidEye Satellite Constellation is constituted by five satellites with a Multispectral
push broom sensor with revisit time of 5.5 days at nadir at an altitude of 630 km in the
Sun-Synhronous Orbit. Each satellite measures less than a cubic meter and weights 150
kg. The product used was the 5-band multispectral RapidEye Analytic Ortho Tile.
Each tile scene has a size of approximately 25 km by 25 km. These datasets are
orthorectified and geometrically and radiometrically corrected. The positional accuracy
is less than 10m RMSE and the coordinate system is WGS-84. It has a spatial
resolution of 5m, and spectral bands are shown in Table 2 (Planet Labs Inc., 2018).

PlanetScope Satellite Constellation is constituted of close to 120 satellites. Each
satellite is a CubeSat 3U with a daily revisit time at an altitude of 475 km. The sensor
used in these satellites is a four-bands frame Imager with a split-frame NIR filter. The
product used in this case is also the PlanetScope Analytic Ortho Tile. Each tile scene
has a size of approximately 25 km by 8 km. These datasets are orthorectified and
geometrically corrected. The positional accuracy is also less than 10 m RMSE and the
coordinate system is WGS-84. It has a spatial resolution of 3.125 m, and spectral bands
are shown in Table 2. Both satellite products are delivered to users in GeoTIFF format
and a comparison of the spatial resolution between them is showed in Figure 13 (Planet
Labs Inc., 2018).

.Spectral Bands | PlanetScope | RapidEye

Blue 455 - 515 nm | 440 - 510 nm
Green 500 - 590 nm | 520 - 590 nm
Red 590 - 670 nm | 630 - 685 nm
Red Edge X 690 - 730 nm
NIR 780 - 860 nm | 760 - 850 nm

Table 2: Spectral resolution and bandwidth of PlanetScope and RapidEye satellites
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Figure 13: Spatial resolution comparison of PlanetScope and RapidEye. A) PlanetScope image, 3m
resolution, sensed on January 4th, 2018, scaled to 1:50.000 B) Image A zoom to scale 1:500, pixel
size 3m x 3m C) Rapid Eye image, 5m resolution, sensed on May 21, 20

RapidEye and PlanetScope images were used to create the validation dataset by visual
interpretation of the time series available. Here it was necessary to download all cloud-
free images from year 2016 to 2018. In total 93 tiles were used to complete the most of
the AOI in different years as shown in Table 3.
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Satellite Resolution | Sense date | Tiles
PlanetScope 3m 10/18/2016 5
PlanetScope 3m 10/19/2016 3
PlanetScope 3m 1/18/2017 3
PlanetScope 3m 2/17/2017 5
RapidEye 5m 5/5/2017 6
PlanetScope 3m 7/15/2017 10
PlanetScope 3m 9/29/2017 8
PlanetScope 3m 10/3/2017 4
PlanetScope 3m 1/4/2018 11
RapidEye 5m 5/21/2018 6
PlanetScope 3m 8/26/2018 9
PlanetScope 3m 10/1/2018 4
PlanetScope 3m 10/2/2018 4
PlanetScope 3m 10/12/2018 3
PlanetScope 3m 10/30/2018 10
PlanetScope 3m 11/4/2018 2

Table 3: Cloud-free available high resolution imagery datasets

3.5. Creating the validation dataset

For the per-pixel analysis it was necessary to create a validation dataset in which further
change detection process and results validation were performed take action. For this
stage, RapidEye (5m resolution) and PlanetScope (3m resolution) imagery was used
complemented in some cases with Sentinel-2 satellite imagery (10m resolution). The
visual interpretation of high resolution imagery time series was executed with ArcGIS
Desktop 10.5. The time period used here matched with the time series available in
Sentinel-2 times series acquire for the change detection process. Therefore, as shown in
Table 2, 16 high resolution times series were used in the period October 2016 to
November 2018. Here is important to mention that Planet’s program used for this
purpose does not have complete time series data sets, thus all available cloud-free
imagery was downloaded.

For validation dataset, 623 points were digitized and distributed among the whole AOI
(Figure 14). The points were classified as “Forest” and “Deforestation”. Deforestation
class included a date attribute, which was identified by the visual interpretation of time
series (Figure 15). In some cases, Sentinel-2 imagery was used to improve the
deforestation detection date, as it has a more complete time series collection. For the
“Forest” class, 348 points where identified which did not changed during the studied
period, and for “Deforestation” class 275 points were created. Later, coordinates were
assigned to each point.
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Legend
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Figure 14: Sample and Validation points distributed over the Area of Interest. The “Deforestation”
class is symbolized with a blue triangle and the “Forest” class by a light blue square.

After the completion of the sample and validation points in ArcGIS, the database was
converted to *. CVS format and uploaded to R for further analysis.
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Figure 15: Example of “Deforestation” points with respective date when the change was detected. Both images correspond to PlanetScope satellite. Panel A shows
a clean image from May 21st, 2018, Panel B shows an image dated from November 30th, 2018. In the latter, evolution of deforestation can be observed with the

corresponding points showing the date when forest disturbances were detected by visualization procedures. Yellow circle as reference guide of the same location on
image A and B.
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3.6.Sentinel datasets pre-processing for Principal Component Analysis

3.6.1. Cloud, cloud shadow, water masking

In order to run the change detection process with Principal Component Analysis (PCA),
first all Sentinel-2 time series datasets needed to be pre-processed. For all remote
sensing analysis and procedures related to earth surface is fundamental to consider
removing clouds, cloud shadows, snow and water bodies. These elements can
substantially affect results in analysis like atmospheric correction, land cover
classification, calculation of indexes or change detection processes (Zhu et al., 2015;
Frantz et al., 2018). For this purpose Function of mask (Fmask) 4.0 tool with GUI was
used over all Sentinel-2 datasets. The first version of this algorithm (Fmask 1.6) was
created for Landsat images (Zhu & Woodcock, 2012), later version 3.3 of Fmask was
developed to improve results for Landsat 4-7, to handle Landsat 8 datasets which came
with a new cirrus band beneficial for cloud detection and finally, incorporate parameters
to make Fmask work with Sentinel-2 images, which did not have a thermal band used
for Landsat datasets, therefore, the Sentinel-2 cirrus band was used for this purpose and
all steps where the Landsat thermal band worked were removed (Zhu et al., 2015).
Fmask 4.0 follows the improvements achieved on the previous version and adds new
characteristics as integrating auxiliary data (e.g. Global Surface Water Occurrence
(GSWO), Digital Elevation Model (DEM)), new cloud probabilities, and spectral-
contextual features that principally helps identifying better snow and ice from clouds
(Zhu et al., 2018).

The most important parameter Fmask 4.0 uses is the “Cloud Probability Threshold” and
its default value on the Fmask 4.0 tool with GUI is 20% for Sentinel-2 datasets. After a
first tryout with default values, a test with different thresholds values was done using
three Sentinel-2 datasets with varying amount of clouds in order to find the threshold
that better fitted to the Study Area. The test is showed in Figure 16 and a 40% Cloud
Probability Threshold was decided.

Fmask 4.0 tool with GUI automatically identifies all the data from the original Sentinel-
2 Level-1C product, and safes the results on a new folder. The resulting values of the
masking output are showed in Table 4.

Value Class
0 | clear land pixel
1 clear water pixel
cloud shadow
snow
cloud

255 | no observation
Table 4: Resulting classification values of Fmask 4.0 output

AlIWIN
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Sentinel 2 - 11/25/2016

Sentinel 2 - 03/15/2017 Cloud probabily threshold - 60%

Legend

Value
High : 4

- Low : 0

Sentinel 2 - 04/09/2018 Cloud probabily threshold - 20% Cloud probabily threshold - 30% Cloud probabily threshold - 40% Cloud probabily threshold - 50% Cloud probabily threshold - 60%

Figure 16: Fmask 4.0 - Cloud Probability Threshold test of three different images from the study area. Low values (black) corresponds to clear land pixels and high
values (white) depicts cloud pixels
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The resulting outputs corresponded to the entire granule of each image. Therefore all
the outputs were cropped to the AOI using ArcGIS Desktop 10.5 and a calculation of
the real percentages of clear land pixels inside the AOI was done as showed in Figure
17. Afterwards, the mask was applied to all datasets using the Conditional tool from
Spatial Analyst Extension in ArcGIS Desktop 10.5, thus a new raster with only clear
land pixels were created for every dataset.
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Figure 17: Clear land pixels percentage plot of all Sentinel-2 time-series datasets for the Area of
Interest

Considering the low amount of valid datasets for the study area, every dataset with
minimum clear land pixels is useful. However, images with less than 10% of clear land
pixels where removed because the amount of information was too low, and in
percentages between 10% and 30% there were areas that could have valid information.

3.6.2. Spectral bands resampling

Finally, in order to homolog the spatial resolution of all Sentinel-2 time-series datasets
resampling the 10 meter resolution bands to 20 meters was necessary. This process was
done with ArcGIS Desktop 10.5, using the Resample tool from Raster Processing
toolbox. The resampling technique used was Bilinear Interpolation, which calculates a
weighted average based on the four nearest input cell centers (ESRI,2019). An example
is shown in Figure 18. This resampling method was executed to band 2 (blue), band 3
(green), band 4 (red) and band 8 (NIR) for all time-series (252 images in total).
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Figure 18: Example of Bilinear Interpolation Resampling method. The processing cell center is
showed as a red point, cell centers are in gray, output cells are shaded in green, cell being processed
shaded in yellow (ESRI, 2019)

With this last process, the Sentinel-2 dataset for running the Principal Component
Analysis is finished.

3.7. Normalized Difference Vegetation Index calculation

In order to answer Research Question 1, Normalized Difference Vegetation Index
(NDVI) was calculated for all time-series. For this purpose 10 m resolution bands 8
(NIR —842nm) and band 4 (Red — 665nm) time series were used in the calculation done
with ArcGIS Desktop 10.5 using Equation 1 as follows:

NDVI = (float(band8) — float(band4)) / (float(band8) + float(band4))

All NDVI outputs were masked applying the cloud, cloud shadow and water output
done previously with Fmask 4.0.

3.8.Validation and accuracy assessment

Validation and accuracy assessment are the final results which determine how feasible
the method is using Sentinel-2 time-series. To achieve this, a confusion matrix (error
matrix) was elaborated, which is one of the most common methods to measure accuracy
in remote sensing processes (Comber et al., 2012) . The confusion matrix is a cross
tabulation (2x2) that compares the resulting values of certain process - which in this
case will be the structural change detection on forest- with validation data from the
validation dataset explained in Section 3.5 (Story & Congalton, 1986; Lewis & Brown,
2001; Carfagna & Gallego, 2005 Visa et al., 2011; Comber et al., 2012). The confusion
matrix was elaborated for all overall Empirical Fluctuation Process results on NDVI and
PCA datasets arrays for our study area.

Confusion matrix results where after placed in the Figure of Merit accuracy assessment
method suggested by Pontius et al (2008) and taken from Lu et al (2017). The
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confusion matrix results were classified as True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN). TP refers to an agreement between
forest disturbance detected by EFP and validation data. TN refers to unchanged forest
during the whole time series that was not detected as change in EFP and that was
classified as forest in the validation data. FP refers to a mismatch due to a forest
disturbance detected by EFP when validation data pixel had a forest value. FN refers to
a mismatch when EFP process did not detect any disturbance, while validation data
indicated deforestation.

Once Figure of Merit is complete, accuracy assessment was measured using the
suggested method by latter authors mentioned in this section. Here, four types of
accuracy were calculated as shown in Table 5.

Accuracy measure Formulae
Figure of merit TP/ (TP + FN + FP)
User’s accuracy TP/ (TP+FP)
Producer’s accuracy | TP /(TP+FN)
Overall accuracy ((TP+TN)/(TP+FN+FP+TN)

Table 5: Accuracy measurements applied for overall results of Empirical Fluctuation Process.

Pontius et al (2018) defines the latter accuracy measures as follows:

Figure of Merit is a statistical measurement that represents the ratio of intersection
between the observed and predicted change, to the union of the observed and predicted
change. User’s accuracy depicts the proportion of positive predictions of the model as
change, given that the model predicts a change, while Producer’s accuracy represents
the proportion of positive predictions as change, given that the validation dataset
indicates a change.

Overall accuracy will permit to compare the results from present research with other
similar studies (Lu et al., 2017).

32



IMPLEMENTATION

4. IMPLEMENTATION

4.1.Data structuralizing

Once Sentinel-2 time-series spectral bands pre-processing and NDVI calculations were
complete, they were migrated to R in order to accomplish the steps for the change
detection analysis. At this stage, the Sentinel-2 spectral bands dataset and the NDVI
dataset where processed in different R projects, here, we will explain the common steps
done for both datasets.

4.1.1. Raster stack, sample dataset location extraction and array

Firstly, both datasets (Sentinel-2 spectral bands and NDVI calculations) where stacked
(stack function), which results in a collection of RasterLayer objects with the same
spatial extent and resolution. This step is needed to group the whole dataset, see
Figures 19 and 20. Parallel to this, the sample database is uploaded to R, and by the use
of the “extract” function from raster package in R, the locations (coordinates) of the
sample dataset are related to the correspondent pixel of each image and to the specific
reflectance value in the spectral bands and the NDVI pixel value on the NDVI dataset.
This results in a two-dimensional matrix for each dataset. In the spectral bands the
matrix dimension is [1:623, 1:630], which corresponds to the 623 sample points by 63
time-steps of 10 spectral bands each. The NDVI matrix dimension is [1:623, 1:63],
corresponding to the 623 sample points and 63 time-steps.

At this point, all the data from the spectral bands and NDVI calculations are stored in
matrixes. These two-dimensional matrixes are now converted to three-dimensional
arrays. The array in R is a way to storage a vector with several attributes. For the
spectral bands the array has the following dimensions: [1:623, 1:10, 1:63], meaning
sample points (locations), spectral bands and time-steps respectively. For the NDVI
dataset the array dimensions are [1:623, 1:1, 1:63], depicting sample points (locations),
NDVI values and time-steps respectively. An example of the first 25 locations of time-
step 1 of the spectral bands array can be seen in Figure 21.
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coordinates.
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, » T 1

BANDZ BAND3 BAND4 BAND5S BANDG6 BAND7 BANDB BAND11 BANDLZ2 BANDBA
779 628 381 645 1918 2435 2001 1148 376 2868
792 705 383 718 2251 2826 2860 1333 429 3248

NA NA NA NA NA NA NA NA NA NA
858 876 468 992 2987 3756 3308 1802 643 4158
797 722 367 861 2391 3103 2639 1461 507 3385
805 747 395 962 2586 3386 2705 1782 631 3806
772 659 342 749 2387 3192 2427 1558 516 3581
762 625 320 604 1917 2571 2256 1311 428 3002
788 693 362 793 2608 3426 2761 1589 555 3757

10 796 707 344 660 2145 3071 3040 1285 426 3336

11 787 696 337 672 2490 3113 2916 1518 509 3844

12 751 574 303 404 1041 1384 1333 480 169 1469

13 MNA NA NA NA NA NA NA NA NA NA

14 778 638 347 538 1631 2136 1980 982 339 2444

15 734 558 290 461 1251 1724 1381 714 230 1779

16 800 711 366 679 2173 2783 2769 1401 506 3193

17 770 668 340 637 1925 2522 2406 1113 370 2740

18 780 665 340 633 2166 3199 2712 1240 413 3646

19 1039 1027 851 1210 2771 3441 3089 1831 1019 3847

20 826 766 381 817 2825 3661 3302 1794 659 4186

21 822 722 384 729 2170 2831 2720 1277 414 3334

22 823 739 448 8§34 2212 2825 2524 1376 680 3309

23 820 717 396 733 2191 2991 2527 1395 468 3543

24 1043 808 436 774 2238 2906 2741 1345 490 3279

25 817 757 384 781 2507 3200 3123 1357 454 3778

W~ 3w B Wk

Figure 21: Example spectral bands array. Time-step 1, first 25 locations for the 10 spectral bands
used on the research
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4.2. Selection of training sample points

For analysis, 20 training sample points from the complete 623 sample and validation
dataset were selected (deforestation = 10, forest = 10). It is important to mention that
each point (training sample) represents one pixel. These samples were analyzed in
detail following the general method. In Table 6, the training samples can be observed
with their correspondent percentage of valid and omitted pixels due to the cloud
masking process.

Sample tirr:ga-llsl'cips % ti(r)nn;-lgggs Class
1 46 | 73% 17 | Deforestation
33 37 | 59% 26 | Deforestation
54 41 | 65% 22 | Deforestation
101 41 | 65% 22 | Deforestation
110 44 | 70% 19 | Deforestation
119 46 | 73% 17 | Deforestation
135 34 | 54% 29 | Deforestation
177 41 | 65% 22 | Deforestation
196 35 | 56% 28 | Deforestation
239 38 | 60% 25 | Deforestation
400 32 | 51% 31 | Forest
410 23 | 37% 40 | Forest
420 44 | 70% 19 | Forest
430 45 | 71% 18 | Forest
440 31 | 49% 32 | Forest
450 37 | 59% 26 | Forest
580 41 | 65% 22 | Forest
590 37 | 59% 26 | Forest
600 42 | 67% 21 | Forest
620 35 | 56% 28 | Forest

Table 6: Chosen samples (locations) showing the valid and omitted time-steps, and the
correspondent class for each sample.

4.3. NDVI time-series

Time Series were created for the NDVI dataset. This was accomplished with “Zoo”
package in R. In Figure 22 are shown the first half of the training samples time series
where gaps due to the absence of time-series imagery can be clearly observed. These
results are the inputs to run the EFP for NDVI.
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Figure 22: Example of NDVI time-series plots for different sample points (locations). “s” refers to
sample and the consequently number

Table 7 depicts the dates when deforestation was observed in the validation dataset for
each of the sample points in Figure 22.
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Location | Time of real change
1 9/29/2017
33 4/24/2017
54 1/4/2017
101 8/22/2017
110 9/29/2017
119 8/22/2017
135 10/16/2017
177 8/26/2018
196 8/26/2018
239 1/10/2018

Table 7: Dates of observed (validation dataset) change for all samples depicted in Figure 22

4.4. Principal component Analysis

All the rows with missing values due to cloud masking are removed for computing the
PCA. The 2D input matrix has reflectance values for each band as columns (variables)
and the validation points as rows (observations) Once the array had only valid values,
PCA was calculated for the Sentinel-2 spectral bands array (all bands and time-series)
using the “prcomp” function in R.

The number of Principal Components (PC’s) is equal to the number of variables used,
which in this case are 10 spectral bands from Sentinel-2 satellite. Here we used several
tools (data and plots) to determine which principal components should be used.

Is important to mention that on one hand, Principal Components are orthogonal to each
other, thus there is no correlation between them (Kwarteng & Chavez, 1989) (see
figures on Appendix on pages 61 to 64), and on the other hand, is possible to analyze
the correlation between the variables (e.g. spectral bands) and their relation to the
Principal Components, meaning which variables and observations (e.g. spectral data in
a specific pixel along time-series) are better explained in certain PC.

To accomplish this, first PC loadings of all training datasets were observed in order to
have a first income about their structure and the distribution of positive and negative
values along the 10 spectral bands. Secondly the same was done with PC scores, and
the correlation between bands in relation with the first two PC’s was observed. Thirdly,
variances and cumulative variances proportion were analyzed to decide which PC’s to
use for Empirical Fluctuation Process. Lastly, time-series were created for the chosen
PC’s.

The latter explained is represented in the next pages.

PC loadings or rotation values, are coefficients of the linear combination of the
variables, and show the variance’s magnitude between the variables. Here the variables
of each training sample are all the available time-series spectral information for that
specific pixel. The PC loadings values per band (training sample 1) are shown in Table
8 and Figure 23 and 24. More examples of PC loadings graphs can be found in the
Appendix on pages 65 and 66.
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PC1 PC2 PC3 PC4 PC5
BAND2 0.26438 0.28391 | -0.51494 | 0.04707 | -0.21879
BAND3 0.38029 0.18614 | -0.31926 | -0.39470 0.01819
BAND4 0.27125 0.41861 | -0.13381 | 0.19386 | -0.29342
BANDS5 0.42040 0.17659 | -0.00474 | 0.22348 0.61294
BANDG6 0.32019 -0.37256 | -0.06905 | 0.20529 0.41234
BAND7 0.28704 -0.41050 | -0.03948 | 0.22970 | -0.08313
BANDS8 0.33001 -0.31705 0.08445 | -0.74219 | -0.06532
BANDSA 0.28553 -0.40476 | -0.02839 | 0.32866 | -0.52418
BAND11 0.29291 0.15547 0.59143 | 0.02046 | -0.17961
BAND12 0.27207 0.28723 0.50093 | 0.01672 | -0.04225
PC6 PC7 PC8 PC9 PC10
BAND2 0.53859 -0.25487 0.07152 | -0.09726 | -0.40575
BAND3 -0.08311 -0.10985 | -0.03404 | 0.46914 0.56785
BAND4 -0.33166 0.46022 | -0.11731 | -0.48882 0.18734
BAND5 -0.35341 0.01094 0.30166 | 0.14660 | -0.35904
BANDG6 0.22773 -0.24416 | -0.29768 | -0.46657 0.35208
BAND? 0.34533 0.67085 0.03030 | 0.34251 | -0.01838
BANDS -0.12275 0.12175 0.01324 | -0.29853 | -0.33037
BANDSA | -0.42604 -0.40358 0.00723 | 0.13954 | -0.08454
BAND11 0.29509 -0.13537 0.56930 | -0.11743 0.25351
BAND12 0.11550 -0.07332 | -0.68928 | 0.22939 | -0.20987

Table 8: PC loadings (rotation) for training sample 1
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Figure 23: PC loadings (rotation) of all bands for PC’s 1-6 of training sample 1. The sequence of the
bands (1-10) corresponds to the following: Bands 1-3 to visible; Bands 4-6 to Red Edge; Bands 7
and 10 to NIR; and Bands 8 and 9 to SWIR.
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Figure 24: PC loadings (rotation) of all bands for PC’s 7-8 of training sample 1. The sequence of the
bands (1-10) corresponds to the following: Bands 1-3 to visible; Bands 4-6 to Red Edge; Bands 7
and 10 to NIR; and Bands 8 and 9 to SWIR.

PC scores values are the linear combination of standardized variables weighted by PC
loadings. Therefore, data was centered (Table 9) and standardized before applying
PCA. PC scores are useful to analyze which Principal Components represent the higher
variability of the data by dimension reduction, and be able to define which PC are the
most feasible to work with as depicted in Table 10.

BANDZ BAND3 BAND4 BANDS BANDE
930.2286 839.8571 597.4857 851.6571 2283.2000
BANDY BANDE BAND11 BAND12 BANDEA

3042.0000 2637.3714 1408.5714 577.3143 3397.6000

Table 9: Center values for training sample 196
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Table 10: PC scores of training sample 196 for the first 40 time series. The lacking time-series
values are due because they have been omitted as NA values.

Figure 25 and 26 show the correlation between spectral bands and their values in respect
to the Principal Components. Figure 25 depicts the plot for sample 196, where the first
two Principal Components (PC1 and PC2) explains the 95.7% of the variance. Also, on
one hand shows a strong correlation between band 6 and band 8, and band 8a and band
7. The correlation is high between all those bands. Though these bands have higher
values on PC2, also shows positive values on PC1. The other correlated group of bands
is bands 2, 3, 5 and 12, even though the stronger correlation is observed in bands 2 and
3. This group of bands shows their higher values on PC1 and negative values in PC2,
It can be seen that band 11 and band 4 has a low correlation with other bands.

PC2 (42 4% explained var )

T Banos

Sgge 2

> &

B3

PC1 (53.3% explained var.)

Figure 25: Bi-plot of PC scores of sample 196
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PC2 (37.5% explained var.)
°

0
PC1 (57.3% explained var.)

Figure 26: Bi-plot of PC scores of sample 135

Figure 26 shows a different case. Here, sample 135 shows correlation between bands,
though, is interesting to notice that bands 6, 7, 8 and 8a have negative values in both
PC’s. These could tell that for those bands, that pixel is better explained in other PC’s
rather than PC1 or PC2.

After observing the bi-plots for all the samples, which only explain the relation of
values towards the first two PC’s, shoulder-plots can graphically explain the cumulative
variance proportion of PC’s for each sample. Figure 27 shows examples for 4 training
samples. In the shoulder-plots can be observed that the first three PC’s (PC1, PC2 and
PC3) are the ones with largest variance, though, PC4 shows a boundary condition from
where most of PC’s start having negative values and a sort of equilibrium is founded.
The PC’s that explains the most of the data for each sample are PC1, PC2, PC3 and
PC4, which are the PC’s that will be used for the Empirical Fluctuation Process. As
depict on Table 11, the first four PC’s of all training samples explains almost 99 percent
of the data.
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Table 11: Cumulative variance proportion of all PC’s for every sample. Marked red depicts the
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Sample

PC1 PC2 PC3 PC4

PC5 PC6 PC7 PC8 PC9 PC10

1
33
54

101

110

119

135

177

196

239

400

410

420

430

440

450

580

590

600

620

0.484 0.823 0.964 0.985
0.497 0.852 0.978 0.986,
0.5290.912 0.981 0.989
0.544 0.919 0.962 0.978
0.598 0.970 0.988 0.992
0.4800.847 0.981 0.989
0.573 0.947 0.977 0.985
0.6890.878 0.980 0.992
0.5330.957 0.982 0.988
0.559 0.906 0.963 0.978
0.8310.955 0.973 0.986
0.898 0.985 0.990 0.995
0.873 0.964 0.982 0.988
0.827 0.976 0.989 0.994
0.714 0.958 0.985 0.991
0.8310.974 0.991 0.995
0.6810.937 0.984 0.991
0.628 0.931 0.964 0.984
0.811 0.965 0.982 0.989
0.706 0.948 0.973 0.983

0.991 0.994 0.996 0.998 0.999 1.000
0.990 0.994 0.996 0.998 0.999 1.000
0.993 0.995 0.997 0.998 0.999 1.000
0.989 0.993 0.996 0.998 0.999 1.000
0.995 0.997 0.998 0.999 0.999 1.000
0.993 0.995 0.997 0.999 0.999 1.000
0.993 0.995 0.997 0.998 0.999 1.000
0.994 0.996 0.997 0.998 0.999 1.000
0.992 0.995 0.997 0.999 0.999 1.000
0.986 0.991 0.995 0.997 0.999 1.000
0.992 0.995 0.998 0.999 0.999 1.000
0.996 0.998 0.999 0.999 0.999 1.000
0.992 0.995 0.997 0.999 0.999 1.000
0.995 0.997 0.998 0.999 0.999 1.000
0.995 0.997 0.998 0.999 0.999 1.000
0.997 0.998 0.999 0.999 0.999 1.000
0.995 0.997 0.998 0.999 0.999 1.000
0.992 0.995 0.997 0.999 0.999 1.000
0.993 0.996 0.997 0.998 0.999 1.000
0.990 0.996 0.998 0.999 0.999 1.000

four first PC’s which represent the most of the data for all samples

Finally, PC scores time-series were created for top four Principal Components. The PC
scores time-series have been created using “zoo” package in R. The PC scores time-
series are the input for applying the Empirical Fluctuation Process, and thereby, the
Change Detection Test, aim of this research. Figure 28 shows as example the PC scores
time-series for training sample 1.
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Figure 28: PC scores time-series for training sample 1 (five first PC’s). The red line depicts the
time change observed in the validation dataset.
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5. RESULTS

This chapter first shows the results on change detection for the Normalized Difference
Vegetation Index (NDVI) on the 20 training samples (section 4.1), followed by the
results on change detection for the Principal Component Analysis (PCA) of the 20
training samples (section 4.2), succeeded by the overall results of the complete NDVI
and PCA datasets (Section 4.3), and finally validation and accuracy assessment on the
overall results will be provided (section 4.4).

After computing the OLS-MOSUM (Ordinary Least Squares — Moving Sum of
residuals) test on each of the chosen samples, a Structural Change Test (SCT) is ran by
the use of function “sctest” from the strucchange package in R (Zeileis et al., 2001).
The OLS-MOSUM test plots show a change is detected when the plotted line intersects
the margin boundaries lines in both extremes (superior and inferior) of the plot.

5.1. Change detection over NDVI time-series samples

For NDVI training sample pixels, in 60% of the known deforestation points were
detected. As observed in Table 12, six training samples have p-values of less than 0.05.
The MOSUM test plots considered the time-series as an index, and represents when a
change has been detected. Some samples have EFP values that approximates
considerably to the boundary line (e.g. s33), which could indicate a structural change
that was not detected, and that will be evaluated after the validation analysis. On the
other hand, for training samples known as forest (forest have not change during the
time-series) no changes have been detected. Figure 29 and Figure 30 depicts the
MOSUM-OLS test plots for all training samples.

Sample MO p-value | Sample MO p-value

1 0.85762 0.3115 | 400 0.98227 0.2115
33 1.1757 | 0.06783 | 410 0.47089 0.622
54 1.3041 | 0.02182 | 420 1.1419 0.08772
101 1.6677 0.01 | 430 0.9086 0.2706
110 1.4464 0.01 | 440 0.80854 0.3509
119 1.2741 | 0.02831 | 450 0.92545 0.2571
135 1.0616 0.1478 | 580 1.1218 0.09958
177 1.0849 0.1291 | 590 0.91641 0.2643
196 1.714 0.01 | 600 0.80865 0.3508
239 1.601 0.01 | 620 0.60781 0.5121

Table 12: MOSUM and p-values computed for NDVI dataset samples. Numbers in bold depict
values below alpha, therefore, indicates a structural change have been detected.
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Figure 29: OLS-MOSUM test plot for first half of NDVI dataset samples
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5.2. Change detection based on EFP over PCA time-series

The change detection method PCA based has several findings among each PC (Table
13). For training samples, PC1 have detected more structural changes. 50% of the
known deforested pixels have resulting p-values less than 0.05. PC2 and PC4 detected
four changes each on deforested known pixel, and PC2 detected one structural change
on forest known pixel, while PC4 detected two changes. Few matches in structural
change were found. In training sample 101 PC1 and PC4 detected a structural change,
en training sample 110 PC1 and PC2, in training sample 135 PC1 and PC2, and finally
training sample 177 in PC1, PC2 and PC3.

Also, PC2 and PC4 detected structural change on forest known pixels (e.g. training
samples 430, 440 and 580)

Samples | PC1 PC2 PC3 PC4

1 0.142 | 0.08273 1.0144 0.01
33 0.5436 | 0.03221 | 0.08613 0.0799
54 0.08248 0.1664 0.3245 0.2544
101 0.0208 0.1558 0.4219 0.01
110 0.01 | 0.04307 0.5078 0.3575
119 0.2325 0.3779 0.1258 0.01
135 0.02929 0.303 0.3566 0.01
177 0.4923 | 0.02976 | 0.04815 0.1119
196 0.01008 0.01 0.43 0.5649
239 0.01 0.2535 0.3805 0.2396
400 0.5618 0.428 0.305 0.5323
410 0.4766 0.4302 0.3156 0.1951
420 0.4 | 0.08389 0.4782 0.64
430 0.2855 0.01 0.4519 0.1375
440 0.4945 0.3225 0.396 | 0.04156
450 0.4234 0.3395 0.5484 0.367
580 0.4769 0.2012 0.3694 0.0203
590 0.4684 0.2601 0.2646 0.2002
600 0.3435 0.4198 0.548 0.5539
620 0.6201 0.5341 0.2189 0.5772

Table 13: P-values computed for the four first PC’s in all samples. Numbers in bold depict values
below alpha, therefore, indicates a structural change have been detected.

Figures 31 and 32 shows the OLS-MOSUSM test plots for all training samples
computed for PC1. The plots for the resting three chosen PC’s can be found in the
Appendix on pages 67 to 72.
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Figure 31: OLS-MOSUM test plot for known deforested training samples computed with PC1
loadings
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Figure 32: OLS-MOSUM test plots for known forest training samples computed with PC1 loadings
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5.3. General results for complete NDVI and PCA datasets

In this section, general results for NDVI dataset and PCA dataset are explained. Here,
Empirical Fluctuation Test and Structural Change Detection Test were applied to each
dataset arrays. The dimensions of NDVI array are 1:623, 1:63 (two-dimensional),
which represents the sample/validation points and time-series respectively. Dimensions
for the PCA array are 1:623, 1:10, 1:63 (three dimensional), which represents
sample/validation points, spectral bands and time-series respectively.

Figure 33 shows the findings of structural change detection over all datasets. In latter
Figure, is clearly observable that have decided to use the first four PC’s was good
decisions due the majority positive structural change detection are founded there. Here
is important to mention that there were 275 sample/validation points that corresponded
to deforestation and 348 to forest. When a structural change detection test results True
(p-value < 0.05), the supposition is that deforestation happened, though this is only
confirmed after the validation process (section 4.4). A higher amount of findings
happened on the NDVI dataset, 240 true values, while PC2 is the second higher in
amount of findings with 188. PC4 and PC1 have 112 and 111 respectively.

EFALSE
ETRUE
PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

NDVI PC1 PC10

60

1=}

401

<]

Number of findings

201

=]

Sources

Figure 33: Overall Structural Change Detection findings by EFP in NDVI and PCA datasets. True
depicts a structural changed was detected, and False depicts no structural change was detected

Considering only PC’s findings, in Figure 34 can be observed that PC2 is more sensitive
to forest disturbances in Sentinel-2 dataset. PC1, PC3 and PC4 have almost the same
amount of true values, while PC2 is closer to NDVI findings.
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Figure 34: Structural Change Detection findings by EFP on the first four PC’s. True depicts a
structural changed was detected, and False depicts no structural change was detected

5.4.Validation and accuracy assessment

5.4.1. Validation

The validation and accuracy assessment method used here is explained in Section 3.9.
The figure of merit was elaborated using the findings of Section 4.3 and the validation
dataset (section 3.3). Table 12 shows the abbreviation and description for each class.

CLASS ABBR DESCRIPTION

TRUE POSITIVE TP Deforestation matches between EFP and validation dataset

TRUE NEGATIVE TN Forest unchanged matches between EFP and validation dataset

Forest unchanged in EFP results are identified as Deforestation in

FALSE NEGATIVE | FN | _|idation dataset

Deforestation in EFP results are identified as forest unchanged in

FALSE POSITIVE FP
SEPOS validation dataset

Table 14: Figure of merit’s classes and description for validation and accuracy assessment process

Here is important to observe TP values in order to see which source data was able to
find a larger amount of forest disturbances (structural change), even though considering
the TN values is also important because the actual unchanged forest condition was not
confused with other state. The results of the figure of merit showing deforestation and
unchanged forest are reported on Table 15. NDVI was able to detect more TP than all
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the PC’s with 188 matches over the validation dataset. PC2 is the PC to have more
positive matches of the four PC chosen, with 145 TP matches over the validation
dataset. PC1 and PC4 have relatively the same amount of TP’s matches with 78 and 77
respectively. PC1 was able identify a larger amount of True Negative matches with
315, and PC2 and PC4 had 306 and 313 respectively. NDVI’s TN matches are below
the before mentioned PC’s with 296 matches.

NDVI | PC1 | PC2 | PC3 [ PC4
TP [ 188 78 | 146 | 47 | 177

TN | 296 | 315 | 306 | 295 | 313
FN | 87 197 | 129 | 228 | 198

FP 52 33 42 53 35
Table 15: Figure of merit matrix results for NDVI and PC’s. TP(True Positive), TN (True
Negative), FN (False Negative), FP (False Positive)

5.4.2. Accuracy assessment

To assess accuracy, method explained in Section 3.9 was used. Here Figure of Merit
(FOM), User’s Accuracy (UA), Producer’s accuracy (PA) and Overall Accuracy (OA)
was measured. Table 16 shows the results of the latter mentioned measurements for all
NDVI and PC’s outputs. Following with the results in previous section, NDVI achieved
higher accuracy in general; having a 57% in FOM, while PC2 with the second higher
FOM accuracy achieved a 46%. PC1 and PC4 achieved 25% each while PC3 has the
lower FOM with 14%. UA achieved by NDVI and PC2 resulted the same with 78%,
while PC1 and PC2 achieved close percentages with 70% and 69% respectively. PC3
also achieved the lower value here with 47%. Producer accuracy’s higher values were
achieved once again by NDVI and PC2 with 68% and 53% respectively while PC1 and
PC4 achieved significantly lower PA with 28%. PC3 achieved the lowest with 17%.
Respect with OA, NDVI achieved the higher percentage with 78% followed by PC2
with 73%. PC1 and PC4 achieved the same OA with 63%, while PC3 achieved the
lower OA with 55%.

NDVI | PC1 | PC2 | PC3 | PC4
Figure of merit 57% | 25% | 46% | 14% | 25%
User’s accuracy 78% | 70% | 78% | 47% | 69%
Producer’s accuracy 68% | 28% | 53% | 17% | 28%
Overall accuracy 78% | 63% | 73% | 55% | 63%

Table 16: Accuracy assessment on structural change detection results for NDVI and PC. Figure of
Merit (FOM), User’s Accuracy (UA), Producer’s Accuracy (PA) and Overall Accuracy (OA)
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6. DISCUSSION

This chapter will discuss in a first instance the importance of sample and validation
dataset for the method used in the present research (section 5.1). Subsequently, we will
discuss the findings obtained for both datasets (NDVI and PCA) on deforestation
detection through Empirical Fluctuation Process (section 5.2).

6.1. Importance of sample and validation dataset

Sample and validation dataset plays a fundamental role in the method used in the
present research. The method here proposed is a pixel-based (Desclée et al, 2006;
Aguirre-Gutierrez et al., 2012; Chen et al, 2012; Hussain et al, 2013) change detection
method, thus, the data gathered from satellite datasets is based on the accuracy of the
sample and validation points.

Validation data is often a limitation for land-cover and change detection studies due to
the lack of it or because the good quality of the data, the costs that represents to
elaborate new datasets (Cohen et al., 2010; Lu et al, 2015). Previous studies in the same
topic generated the validation dataset based on Landsat images, complementing them
with images from Google Earth or Bing Maps (Hamunyela et al., 2016; Lu et al., 2017).
Obviously this concerns limitations due to spatial resolution of Landsat which can result
in misclassified pixels. The use of web engines as Google Earth and Bing Maps do
help, though a posterior quality revision must be done in order to match the points
generated there with the Landsat image pixels.

In the present research we approach this issue by getting access to high resolution
imagery from PlanetScope (3m resolution) and RapidEye (5m resolution) satellites as
explained in Section 3.3. This free-resource available for researches means a great
opportunity to improve sample and validation datasets. Even though, a quality
assessment needs to be done as well. In the present research, spatial displacements of
15 to 30 meters where found when observing the validation dataset made with high
resolution imagery over the Sentinel-2 (10 m and 20 m resolution) images.
Consequently, manual alignment of the points was done in order to make them match
with the pixels identified as reference pixels.

This findings bring up the that sample and validation datasets are still a critic step in
change detection process, and which needs to be consciously developed and managed in
the oncoming researches, thus the quality of results depends on the quality of sample
and validation data.
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6.2. Seasonality

West New Britain province in Papua New Guinea, where the study area is located, has a
Humid Tropical Climate. Mean annual rainfall in the study area is between 4000 and
6000 mm and there is not a clear seasonality over the year (McAlpine, 1983). Food and
Agriculture Organization (FAO) establishes for the study area vegetation as Lowlands
rainforest. This explains the above where evergreen rainforest is not conditioned by
seasonality. Therefore, having an overall accuracy of 78% on fitting the mean model to
NDVI time-series tells how well can the method perform in areas where seasonality
does not need be addressed directly.

6.3. Deforestation detection results on NDVI and PCA data

In section 4, the findings for forest change detection based on Empirical Fluctuation
Process are explained. Considering the training sample points (40 samples) that were
selected to analyze in detail the method, we can observe that a small portion of the data
can confuse the overall performance of the method. This condition does not apply to
NDVI dataset, as NDVI results showed from the beginning to have a better performance
in what refers to change detections. As seen in Table 12, EFP-based change detection
on NDVI achieved more findings on the “Deforestation” known samples (first ten) than
the four first PC’s. In the training samples, the PC that achieved a better performance
was PC1 with 50% of matches, while PC2 and PC4 achieved 40% matches. PC3
always showed to have a lower performance than the others. This is important to
discuss, because on the overall results with complete datasets, PC2 achieved the best
performance for all PC’s with an overall accuracy of 73%, just 5 percent below NDVI
overall accuracy, and 10% higher than PC1 and PC4. Also, PC2 achieved the same
user’s accuracy than NDVI with 78% which is 8% higher than the achieved by PCl1
(Table 16).

Here is important to mention that NDVI dataset was calculated from Sentinel-2 (10 m
spatial resolution), which means the spectral information of bands 8 and 4 did not
change from its original, while PCA calculations were effectuated over upscale 20
meters resolution images (see Section 3.4.2), which can change spectral information, or
discard valuable spectral information from pixels (Marceau & Hay, 1999; Du et al.,
2016).  Therefore, the results obtained by PC2 shows a great performance of the
method by using PCA, and would be important for future studies to downscale the six
20 meters spatial resolution to 10 meters. Several fusion methods have been developed
in the last decade to downscale remote sensing products (Li, 2000; Ranchin & Wald,
2000; Svab & Ostir, 2006; Thomas et al., 2008; Choi & Kim, 2010; Metwalli et al.,
2010; Wang et al., 2015; Wang et al., 2016a), and specific fusion methods has been
developed in recent years for Sentinel-2 images with very encouraging results in
keeping spectral information (Wang et al., 2016b; Wang & Atkinson, 2018). Thus,
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research on forests change detection based on EFP over Sentinel-2 imagery is
promissory and brings opportunity to improve accuracy.

Considering previous researches that can be somehow comparable to the present
research, it is worth to highlight the study made by Lu et al (2017), which used “Breaks
For Additive Season and Trend” (BFAST) Monitor framework. The BFAST method is
also based on Empirical Fluctuation Process, and in the cited study a comparison
between the performances of the method was done over several vegetation indices
(NDVI between them) and PCA. The BFAST method conducted by Lu et al (2017)
considers other parameters that were not used for the present research as the creation of
a Seasonality Reduced Index (SRI). The latter study was based on Landsat imagery of
30 m spatial resolution and six spectral bands were used for PCA, and a 30 years’ time-
series dataset was used. The study evaluated two study sites: a dry tropical forest in
Bolivia, and a moist tropical forest in Brazil. Because the atmospheric, weather and
vegetation conditions of Brazilian study site are most alike to the study area of the
present research (West New Britain, Papua New Guinea), those findings will be
compared will the results here explained.

Lu et al (2017) accuracy assessment’s findings using Landsat imagery was done
comparing time, and some differences can be found with the present research. Lu et al
(2017) achieved an overall accuracy of 63.2% and 47.4% for NDVI and PCA
respectively, compared with a 78% and 73% for NDVI and PCA respectively in the
present research. In Lu et al (2017), user’s accuracy achieved 23.9% for NDVI and
19.6% for PCA, while the present research achieved 78% for NDVI and PCA. On one
hand producer’s accuracy in Lu et al (2017) for NDVI was of 44.3% and for PCA 64.6,
and on the other hand the present research achieved 68% and 53% for NDVI and PCA
respectively. Lastly, in what refers to Figure of Merit accuracy, Lu et al (2017)
achieved 18.4% and 17.7% for NDVI and PCA respectively, while in the present
research 57% was achieved for NDVI and 46% for PCA. Considering the cited
research used time to measure accuracy, also other causes can be discussed; a larger
spectral resolution of Sentinel-2 and a higher spatial resolution can improve the
performance of EFP, which would need to be studied in order to understand the
behavior of both satellites respecting the method. The validation dataset on the present
research was done with high-resolution imagery, which lowers the risk of having False
Negatives and False Positives in the final results. Here, is necessary to mention once
again that sample and validation dataset is critical; as a good quality validation dataset
gives you a certain staring point, as you know that in that specific pixel deforestation
happened, and the method only tries to prove what you already know if you have a good
quality sample and validation dataset. Another reason for the difference in accuracy
results can be the geographical location, considering that the present research study site
is closer to the equator and Atmospherical dynamics can differ.

Sentinel-2 constellation has been gathering information since 2015 with one satellite
and both satellites working at the same time since 2017. This makes that Sentinel-2
time-series are not extensive as other satellites used for this purpose (e.g. Landat
satellites). Even though, this study shows that inside the time-frame where the study
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was developed, was possible to detect structural changes in the forest of the study area.
One of the challenges here, and considering the high cloud presence in the area, is to
perform the best cloud-masking possible, in order to take advantage of every available
pixel that can match with the analysis. Considering that in the present study only 63
time-series where used, and from those the 51% had above 70% of clear land pixels, the
results for the time-period used in the study are satisfactory. Comparing time-series
availability in other similar studies, Lu et al (2017) used Landsat imagery nad the study
was developed in two study sites, where in one of the — Bolivian site — 444 images
where available, and on the second — Brazilian site — 225 images were used. This
shows the considerably difference in time-series availability between satellites, though
Sentinel-2 have the advantage of having a 5 days temporal resolution with the two
satellites (e.g. Sentinel-2A and Sentinel-2B) and further in time Sentinel-2 time series
will be more abundant, and therefore better contribute to forest dynamics studies. The 5
days temporal resolution of Sentinel-2 constellation also contributes to have a higher
probability of free-cloud images.

58



CONCLUSION

7. CONCLUSION

The present research had two main objectives. The first objective was to assess the
method (Forest Change Detection based on Empirical Fluctuation Process) and evaluate
the performance of it over NDVI and PCA data using Sentinel-2 imagery. The first
objective was characterized on the first research sub-question: 1) To what extent
Structural Change Detection on Sentinel-2 imagery based on NDVI and PCA differs?
The second objective was to evaluate if the method can achieve significant accuracy
results by working on short time-series with high amount of cloud presence. The
second objective was described by the second and third research sub-questions: 2) How
does short amount of time-series datasets affect Structural Change Detection based on
Empirical Fluctuation Process? 3) How does high amount of cloud-pixels in the time-
series dataset affect the results of Structural Change Detection based on Empirical
Fluctuation Process?

Concerning the first objective, was observed that NDVI results achieved higher
accuracy levels in all the realized accuracy measurements, having detected more true
deforestation events in the Area of Interest than the PCA results. Here is important to
consider that NDVI dataset had a higher resolution than the PCA dataset, and could
affect the overall results. In despite of the latter explained, PCA results, specifically
PC2 results, got significantly high accuracy levels than other PC’s and compared to
NDVI. The PCA assessment on the method showed the importance of studying all PC’s
before making a decision on which one should be used to detect forest disturbances. At
the beginning of the study was hypothesized that PCA was going to perform better,
though overall results showed NDVI performed better in this case by a marginal
difference and with better spatial resolution than PCA, as was previously mentioned.

For the second objective regarding to time-series and cloud presence on the study area,
the hypothesis done at the beginning of the research established that the short amount of
time-series and high amount of cloud-pixels was not going to affect the findings for the
time period over study. The final results shows a level of accuracy of 78% on NDVI
and 73% on PCA, which can be considered as a feasible accuracy level, considering that
the study area is highly clouded over the year and that the time period under study was
of 3 years. Therefore, the method of Forest Change Detection based on Empirical
Fluctuation Process has a good performance with short time-series in cloudy areas.

The results of this study add knowledge on forest change detection methods based on
Empirical Fluctuation Process (EFP) over Normalized Difference Vegetation Index and
dimension reduction using Principal Component Analysis.
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