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ABSTRACT

APPLYING AI-BASED ANOMALY DETECTION

TECHNIQUES TO IDENTIFY WASTE DISCHARGERS AT

THE NORTH SEA

While there is a considerable number of machine learning and anomaly detection

studies as far as the maritime domain is concerned, the particular topic of ship waste

and residue discharge remains an interesting but understudied problem. In this study,

we explore the potential of machine learning, more specifically anomaly detection, in

order to detect ship waste discharge at the North Sea, where several techniques ranging

from supervised to unsupervised are investigated. One of the main problems we face in

this study is the small amount of labeled data of the anomalous class in our disposition,

leading to an extreme class imbalance in favor of the normal class. In order to tackle

this problem, different class imbalance handling techniques are experimented with, one

of them being the utilization of ensemble learning techniques. Our main contribution

involves the development of a time series supervised learning pipeline that is used

to discriminate between normal and anomalous behavior effectively (with performance

significantly higher than chance level) and efficiently (with minimal cost and preferably

real-time). The final performance results show that our model achieves a Macro Recall

of 80%, and does so at t = 18 hours. Given that in perfect circumstances it would

only be possible to detect our targeted behavior around or after 12 hours, t = 18 hours

is considered relatively quick. Another, albeit smaller, aspect of our research is the

development of an unsupervised learning model that aims to find previously undetected

anomalous instances residing in our AIS dataset. The results of this approach give

positive early indicators that the model is able to detect our targeted behavior, however,

further refinements and a higher amount of anomalous data are necessary to make a

case for the deployment of this model.
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1. INTRODUCTION

1.1. The North Sea

The North Sea is a marginal sea of the Atlantic Ocean located between The

Netherlands, Belgium, Great Britain, Denmark, Norway, Germany and France, and

covers an area of 570.000 square kilometers [7]. The North Sea is known for its im-

portance for marine transport where its shipping lanes are among the busiest in the

world [8]. A number of major ports are located in the coasts of the North Sea, the

largest in The Netherlands being: the port of Rotterdam, which is the busiest port in

Europe and the fourth busiest port in the world by tonnage as of 2013, and the port

of Amsterdam, which is the 4th busiest port in Europe by metric tonnes of cargo [9].

1.2. International Convention for the Prevention of Pollution from Ships

(MARPOL)

The International Convention for the Prevention of Pollution from Ships (MAR-

POL), adopted at the International Maritime Organization (IMO), is the main interna-

tional convention covering prevention of pollution of the marine environment by ships

from operational or accidental causes [10]. This convention includes regulations aimed

at preventing and minimizing pollution from ships, both accidental pollution and those

from routine operations, and currently includes six technical Annexes, from which An-

nex II is the most important one as far as our research is concerned. Annex II contains

regulations for the control of pollution by Noxious Liquid Substances (NLS) in bulk

and sets out a pollution categorization system for the NLS substances that contains

four categories [11]. The four categories are [11]:

(i) Category X: Noxious Liquid Substances which, if discharged into the sea from

tank cleaning or deballasting operations, are deemed to present a major hazard

to either marine resources or human health and, therefore, justify the prohibition
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of the discharge into the marine environment.

(ii) Category Y: Noxious Liquid Substances which, if discharged into the sea from

tank cleaning or deballasting operations, are deemed to present a hazard to either

marine resources or human health or cause harm to amenities or other legitimate

uses of the sea and therefore justify a limitation on the quality and quantity of

the discharge into the marine environment.

(iii) Category Z: Noxious Liquid Substances which, if discharged into the sea from

tank cleaning or deballasting operations, are deemed to present a minor hazard

to either marine resources or human health and therefore justify less stringent

restrictions on the quality and quantity of the discharge into the marine environ-

ment.

(iv) Other substances: substances which have been evaluated and found to fall outside

Category X, Y or Z because they are considered to present no harm to marine

resources, human health, amenities or other legitimate uses of the sea when dis-

charged into the sea from tank cleaning of deballasting operations. The discharge

of bilge or ballast water or other residues or mixtures containing these substances

are not subject to any requirements of MARPOL Annex II.

1.2.1. Zeezwaaien

Zeezwaaien is a Dutch word describing the discharge of washing water with wax,

paraffin or other chemical cargo residues from seagoing ships [12]. It is mainly moti-

vated by financial reasons. This act is permitted, however, it is only permitted when

in compliance with the following requirements:

• The ship is proceeding en route at a speed of at least 7 knots in the case of

self-propelled ships or at least 4 knots in the case of ships which are not self-

propelled [13].

• The discharge is made below the waterline through the underwater discharge

outlet not exceeding the maximum rate for which the underwater discharge outlet

is designed [13].
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• The discharge is made at a distance of no less than 12 nautical miles from the

nearest land in a depth of water of no less than 25 meters [13].

In The Netherlands, the government body that ensures that the conditions for

discharging chemicals outside the 12 nautical mile zone are met by ships calling at

Dutch ports is the Port State Control of the Human Environment and Transport In-

spectorate [12]. Despite the rules, regulations, and the governing body enforcing those

rules, there are still acts of illegal waste discharge, where for example in 2015, 105

illegal discharges were identified by the Dutch Coast Guard [12].

1.3. Automatic Identification System (AIS)

The richest source of information and data on sea movement, making machine

learning applications possible, comes from vessel AIS data. The Automatic Identifica-

tion System (AIS) is an automated, autonomous tracking system which is extensively

used in the maritime world for the exchange of navigational information between AIS-

equipped terminals [14], and since December 2004, the International Maritime Organ-

isation (IMO) has made it mandatory for all passengers’ vessels, as well as commercial

vessels over 299 gross tonnage that travel internationally, to carry AIS Transponders

and be able to transmit and receive AIS messages [14].

Firstly, AIS was developed in the 90s for use as a short range identification and

tracking system used on ships and other marine traffic, but in recent times its usage

and benefits have been multi fold. It has been used as an instrument for collision

avoidance, fishing fleet monitoring, coordination of search and rescue operations, but

also to improve maritime security by identifying and monitoring suspicious activity

patterns [15]. Each AIS system consists of one VHF transmitter, several VHF re-

ceivers, and standard marine electronic communication links to shipboard display and

sensor systems [16]. In addition to that, AIS transponders can acquire position, tim-

ing, speed and course information using a built-in GPS receiver. The AIS systems are

able to transmit three basic types of information: dynamic information, static infor-
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mation and voyage-specific information. Along with the dynamic information specified

previously such as location, speed, course or rate of turn, AIS systems also transmit

static information such as the ship’s unique identity number (IMO number), the type

of ship, the type of cargo that it carries, but also voyage-specific information such as

its specified destination, the estimated time of arrival, the ship’s draught, etc.

Some main factors that affect the frequency of the transmitted AIS messages

are the type of the AIS transponder, which can be Class A or Class B, but also the

moving status of the subject vessel. In terms of transponder classes, we are only

interested in the Class A transponder type because they are designed to be installed

in large ships and vessels with over 300 gross tonnage [16], while Class B transponders

have been developed to provide navigation benefits to very small sea vessels. An AIS

system is able to send updated dynamic messages every 2 to 10 seconds while the

vessel is underway with a certain speed, and send updated messages every 3 minutes

if a vessel is anchored or moored [17]. The remaining data, which are mostly static

and voyage-specific information are sent every 6 minutes and this information is usually

required to be updated manually by the vessel’s operator. The range or coverage of the

AIS systems is similar to the range of the VHF radios, which is between 15-20 nautical

miles around the vessel, however, in specific cases with certain antenna elevation levels,

perfect weather conditions and no other obstacles, the range could be extended up to

40-60 nautical miles [18].

As discussed in the previous paragraphs, AIS provides a lot of benefits in terms

of traffic monitoring and vessel assistance and it has made vessel owners and maritime

authorities reliant on it to ensure maritime traffic safety. However, the AIS system is

not without its limitations. As mentioned previously, the AIS system coverage range

is similar to other VHF applications which depends upon the height of the antenna

and it has a range of 15-20 nautical miles. In some cases this range is enough, but in

some cases it may be not, depending on the location of the vessel at a point in time.

Another limitation is that the accuracy of the data received is only as accurate as what

the owner of the vessel manually inserts into the static and voyage-specific messages
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of AIS system, and it is not always the case that these are correct. To make sure

that correct AIS data is sent to other vessels and shore authorities, vessel operators are

reminded to enter current voyage related data such as draught, type of hazardous cargo,

destination and ETA properly at the beginning of each voyage and whenever changes

occur [18]. Another thing that can occur is that the AIS systems can be faulty, may

be repeatedly switched on and off (maybe even intentionally), leading to inaccurate

location messages and resulting in a ship’s passage that was captured neither entirely

nor correctly. A very important limitation, or let’s say misuse of the system, can be

the so-called AIS spoofing, or the intentional reporting of incorrect information. Given

that parts of the AIS message need to be manually entered by the operators of the

vessel, the trustworthiness of the AIS reports depends on the willingness of the crew of

the ship to report their true data, and this might not be always the case for different

reasons [19].

A typical volume of worldwide maritime data represents an estimated 18 million

AIS positions per day [20], coupled with the great amount of available historical AIS

tracking data, up to billions of records, collected by a multitude of sensors and systems,

make the effective detection of illegal activities in the maritime domain using Machine

Learning applications feasible and promising, but very challenging nevertheless [21].

1.4. The Human Environment and Transport Inspectorate (ILT)

The Human Environment and Transport Inspectorate (ILT) is the supervising

authority of the Ministry of Infrastructure and Water Management of The Netherlands.

One of the matters the ILT is interested in is the so-called “zeezwaaien” behavior,

discussed in Subsection 1.2.1, which is the act of ships discharging their tank washing

waters and residues at sea. This kind of behavior is regulated by The International

Convention for the Prevention of Pollution from Ships (MARPOL) to prevent pollution

by ships discharging harmful liquids in the sea. The ILT is interested in analyzing this

kind of behavior because it could also be performed illegally, while also in the cases

where it is performed legally, it is still damaging to the environment. From a political
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or regulation point of view, it is very informative for the ILT to have quantitative and

qualitative information about the frequency and characteristics of this behavior. The

ILT has a considerable amount of moving vessels’ data (AIS data) in their disposition

gathered by The Netherlands Coastguard which makes a data-driven approach viable.

This leads to seeking answers to questions such as: Can detecting and predicting

waste discharge behavior be automated using AI techniques given the available data?

1.5. Research problem

1.5.1. Scope of the research

The scope of the research is limited to the North Sea, more specifically the ports

of Rotterdam and Amsterdam. The main reason for narrowing down the scope of the

research is because the jurisdiction of the governing body, The Human Environment

and Transport Inspectorate (ILT), is restricted to The Netherlands and the maritime

boundaries of the North Sea governed by The Netherlands.

Different types of vessels are characterized by different types of behavior. After

discussions with domain inspectors we came to the conclusion that we are not inter-

ested in all vessel types because most of them are not associated with the specified

waste discharge behavior. The small number of labeled cases that we have, and discus-

sions with domain inspectors as stated before, instructed us to focus on tankers, more

specifically chemical tankers and NLS (Noxious Liquid Substances) tankers, the vessel

types more likely to be involved in waste discharge behavior.

The Human Environment and Transport Inspectorate (ILT), based on previous

confirmed instances of ship waste and residue discharge at the North Sea, is interested

in performing a data-driven research in order to detect and predict the previously

discussed waste discharge behavior. The data-driven approach is made possible given

the availability of the AIS dataset, collected by The Netherlands Coastguard, consisting
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per-vessel information such as the position of the ship, the actual speed at particular

positions and the orientation it is facing, among other features. This dataset and the

dynamic and static features it contains make it potentially possible for machine learning

techniques to learn vessel behavior, and potentially be able to differentiate between

normal vessel behavior and vessels undertaking waste discharge behavior. Another

useful dataset available for our research is the Portcall dataset, collected and provided

by the European Maritime Safety Agency. The Portcall dataset provides information

that can be used to find the ports visited by specific vessels, or to find all vessels that

have visited specific ports. The availability of the AIS and Portcall datasets gives us

the necessary information to extract all arriving and departing trips involving our ports

of interest.

The IDLab data scientists consulting with domain inspectors have already identi-

fied 20 cases from the AIS dataset where potential waste discharge behavior might have

been undertaken, however, it is important to note that none of the cases were inspected

and confirmed. An indicator of waste discharge behavior is the so-called looping behav-

ior where vessels depart a port, in our case the ports of Rotterdam or Amsterdam, and

return to the same port within 48 hours without visiting another port in the meantime.

These potential waste discharge cases are not the norm. It is usually the case that a

ship simply exhibits normal behavior, and this can be seen from the fact that at the

moment there are only 20 potential cases of waste discharge out of thousands of vessel

trips. This means that this problem can be defined as an anomaly detection problem

where the anomalous instances are the trips exhibiting waste discharge behavior.

1.5.2. Problem description and research questions

There are two important aspects that define our research direction. First, the

AIS data in disposition for our research portray the ship trajectories in a time series

representation. Second, we only have a very small number of labeled anomalous cases

and, in comparison, a large number of normal cases. This means that we are dealing

with an extreme class imbalance problem.
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Taking into account the general description of our problem in the previous para-

graph, it was decided to tackle the problem of identifying ship waste and residue dis-

charge at the North Sea using two different techniques: supervised and unsupervised.

Initially, the plan is to experiment with time series supervised learning techniques,

where the goal is to develop a model that achieves acceptable performance as far as

discriminating between normal and anomalous cases is concerned.

The second phase will consist of experimenting with unsupervised learning tech-

niques. The goal is to find out if the machine learning techniques of our choice are able

to discover new potentially anomalous instances on top of the ones we already have.

This leads us to the main research question:

Given the availability of the AIS dataset and the potential of supervised and

unsupervised techniques to solve complex problems: Is it possible to develop machine

learning models that detect ship waste and residue discharge at the North Sea

effectively (with performance significantly higher than chance level) and efficiently

(with minimal cost and preferably real-time)?

After defining the main research question we can get a bit more into specifics

and define some sub-questions that can potentially help us answer the main research

question. The trajectories are made up of individual AIS data points that collectively

represent each individual trip in a time series data representation. This means that

in order to represent each trip with as much information as possible, and not by a

single feature vector, we need to perform time series feature engineering in order to

summarize the trajectory up to a specific point in time. Time series feature engineering

could be performed by considering different time resolutions, such as: using the records

of the last 10 minutes of the trajectory, using the records of the last 60 minutes of

the trajectory, or by implementing a full trajectory time resolution by expanding the

number of records taken into consideration until the very end of the trajectory. This

leads to the following sub-research questions:
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• What is the effect of summarizing the low-level descriptors that come with the

AIS data (e.g. latitude, longitude, speed, orientation), over past records?

– Based on the performance scores of the individual time resolutions (Macro

Recall and Macro F1), which time resolutions are the most useful for building

accurate models?

– Do the performance scores indicate a marked improvement when using all the

engineered features containing historical trajectory information compared to

only using the already existing low-level descriptors?

As mentioned previously, looping behavior seems to be a good indicator of our

targeted behavior. However, at the point when this knowledge is available, so having

access to the Portcall arrival and departure events, the potential illegal action (waste

discharge) would have already been committed. This leads to the following research

sub-question:

• Utilizing the AIS trajectory data, can we train models using previous sequential

data points up to a specific point to detect our targeted behavior before occurring,

or as early as possible after occurring?

– Looking at the Macro Recall and Macro F1 performance scores of specific

time points, how quickly is our model able to effectively discriminate between

normal and anomalous trajectories?

– Looking at the Macro Recall and Macro F1 performance scores of specific

time points, which time interval of the trajectories is the most informative

in order to discriminate between normal and anomalous trajectories?

We aim to fit tanker-specific normality and abnormality Gaussian Mixture Mod-

els. The purpose of this unsupervised approach is to better capture the nuances of the

normal and anomalous trips instances, each on their own model. Then, using anomaly

detection scores such as the log-likelihood in this case, we aim to find new cases that

deviate from the normal behavior, leading us to potential new waste discharge cases

undetected until now. This leads us to the following research sub-questions:
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• Based on the log-likelihood scores of the individual trips, are the tanker-specific

fitted models able to detect new anomalous cases residing in the dataset?

– Are we able to find credible indicators that the anomalous behavior, was in

fact, waste and residue discharge?

Eventually, as a part of this research or as an extension of it, after visualizing the

Top N ranked anomalous cases according to our models, the domain inspectors will

give their opinion whether the trajectories are indicative of waste discharge behavior.

And finally, a general research question involving the amount and the quality of

the data that we have. The AIS data that was used in this research was gathered by

The Netherlands Coast Guard and consists of AIS messages covering only a two-month

period between April 2017 and May 2017. Along with that, as mentioned previously,

at the beginning of this research project, we only have 20 labeled cases, which may not

be enough for supervised learning. This leads to the following research sub-question:

• Is the amount and the quality of the data available for this study sufficient for

waste discharge anomaly detection?

1.6. Outline of the document

The rest of the document will be organized as follows: In Chapter 2, we perform

an extensive literature review mostly focused on anomaly detection in the maritime

domain. In Chapter 3, we give background info on the algorithms and techniques that

we are going to use for the most technical parts of our research. In Chapter 4, we depict

the initial data exploratory phase, the data preprocessing part, and the maritime traffic

analysis. In Chapter 5, we discuss and explain our most important methodological

choices concerning both the supervised and unsupervised learning approaches under

consideration for our research. In Chapter 6, we describe the experimental setup of

both the supervised and unsupervised approaches, and also present and discuss the final

results of our research. And finally, in Chapter 7, we summarize the conclusions of this
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research, explain what our new findings mean for the ILT and discuss the answers that

we obtained as far as our research questions are concerned.
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2. LITERATURE REVIEW

2.1. Anomaly detection

This section briefly discusses what anomaly detection is in general, and what

kind of anomaly detection approaches are there. The first definition on what anomaly

detection signifies was probably given by Grubbs in 1969 [22] where he said that an

outlying observation, or an outlier, is one that appears to deviate markedly from other

members of the sample in which it occurs. At the onset of development of outlier

detection techniques, pattern recognition algorithms were not as developed as in recent

times, meaning that they were quite sensitive to outliers in the data. This lead to using

anomaly detection techniques to actually clean the data instead of focusing on the

anomalous data points itself [23]. A turning point can be identified at the beginning of

this century when researchers started to get interested in analyzing the anomalies itself

instead of simply categorizing them as noise and removing them altogether. The main

reason for this shift was that it was becoming very noticeable that these anomalous

cases are often associated with particularly interesting events or suspicious activities,

and it was worth investigating further instead of performing the so-called data cleaning

procedure on them.

In contrast to the well-known classification setup, where training data is used to

train a classifier and test data is used to measure performance afterwards, there are

multiple setups possible when talking about anomaly detection. A specific formulation

of the anomaly detection problem is determined by several factors such as: the nature of

the input data, the availability (or unavailability) of labels, as well as the constraints

and requirements induced by the application [24]. This leads to the three following

categorizations of anomaly detection techniques: supervised anomaly detection, semi-

supervised anomaly detection and unsupervised anomaly detection. The properties

and differences between each of these techniques will be discussed in the following

paragraphs.
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(i) Supervised anomaly detection is characterized by the scenario where the training

and testing datasets contain fully labeled data. This also means that the available

data also contain labeled instances for normal as well as anomaly classes. Look-

ing at the explanation given in the previous sentences, the supervised anomaly

detection problem may simply be considered as a more difficult variation of the

usual classification problem. However, the big difference is that in most cases the

classes are extremely imbalanced, which makes sense because outliers (anomaly

class) are defined as rare instances and it is natural that the distribution between

the normal and anomaly class will be very skewed [25]. What we can deduce

from this is that not all classification algorithms are suited for the supervised

anomaly detection task, however, algorithms such as Support Vector Machines

or Artificial Neural Networks are known to achieve good results.

(ii) Semi-supervised anomaly detection is a technique that operates in a semi-supervised

mode, where one may also have access to some labeled normal or anomalous sam-

ples in addition to the unlabeled data [26]. Such samples could be hand labeled

by a domain expert for example. The main idea of semi-supervised anomaly de-

tection is that a model of the normal class is learned first, and afterwards the

detected cases deviating from the model can be labeled as anomalous [23]. Well

known semi-supervised anomaly detection algorithms that are known to achieve

good performance are One-Class SVMs and Autoencoders.

(iii) Unsupervised anomaly detection is the most flexible and widely used anomaly

detection technique because initially it does not require any labels. These tech-

niques detect outliers solely based on intrinsic properties of the data instances [27].

First, the unsupervised anomaly detection algorithm learn what normal is, and

then applies a statistical test to determine if a specific data point is an anomaly.

A system based on this kind of anomaly detection technique is able to detect any

type of anomaly, including ones which have never been seen before. The main

challenge in using unsupervised machine learning methods for detecting anoma-

lies is deciding what is normal for the application being monitored, a challenge

that is indeed not straightforward.



14

2.2. Machine Learning and anomaly detection in the maritime domain

Lately, just like in almost every other domain where Computing Science is appli-

cable, with the emergence of Artificial Intelligence and Machine Learning there also has

been an increased interest in data-driven approaches for anomaly detection in the mar-

itime domain. There has been research carried out in areas such as knowledge discov-

ery, more specifically mapping maritime routes, mapping fishing activities, knowledge

based trajectory prediction or event based knowledge discovery. Furthermore, research

also has been carried out in the anomaly detection area, more specifically model-based

analysis has been performed to detect low-likelihood behavior, detect spoofing, detect

AIS off switching, among other implementations [21]. This section will discuss some

of the most relevant topics and approaches considered in this particular domain, going

from general to more specific, as far as our research thesis is concerned.

2.2.1. General ML implementations in the maritime domain

One of the most successful machine learning implementations in the maritime

domain has been the research performed by the European Union Science Hub, where

they managed to introduce a first map at European scale of EU fishing activities over

one year [28]. AIS offers the ability to track ships with better precision at a much

wider scale, and in Europe, starting from May 2004, all EU fishing vessels the length

of which exceeds 15 meters are required to be fitted with AIS systems [29] leading to a

significant impact in understanding the spatial distribution of fishing activities. In this

particular study only the fishing activities of trawlers are analyzed. Trawlers represent

the majority of the fishing vessels above 15 meters length in Europe. First, position

and speed data cleaning was performed and the data were downsampled to an interval

between 5 minutes between consecutive observations. The downsampling reduced the

number of AIS messages from 150 million to 60 million, a great reduction if it doesn’t

lead to too much loss of information. After the data cleaning, to identify fishing

behavior the authors made an assumption that the speed of vessels when performing

fishing activities is relatively low compared to the steaming speed of vessels, so they
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created speed profiles, excluding zero-speed points indicating that the ship is at a port.

Other features such as vessel size, fishing gear, etc, were also used to classify individual

points as “fishing” or “not fishing”, meaning that the fishing behavior identification had

to be performed for each individual vessel. This was done by using a Gaussian Mixture

Model that isolated the two distributions of the two main activities and obtained the

necessary parameters that were used to built fishing speed confidence intervals for each

individual vessel. The points that were classified as “fishing” then were aggregated into

small spatial cells and density maps were created from them, in which high intensity

fishing areas are clearly distinguishable.

Another exploration of the machine learning potential in the maritime domain

was performed in [30] where a framework was developed to perform automated rescue

detection based on vessel trajectory information in the Mediterranean Sea. Initially

the collection and the combination of data on rescues in the Central Mediterranean

was performed, where sources were categorized as “ready-made” and “custom-made”.

By “ready-made” sources the authors of course mean AIS data, which made it possible

to monitor the behavior of search and rescue vessels at the Mediterranean Sea, but

also identify the involvement of merchant ships in these search and rescue operations.

Other sources of “ready-made” data were broadcast warnings, Twitter, or photos and

videos when available. All these multiple data sources were fused together to define

the so-called quantified rescue framework, and this allowed to build coherent narratives

of specific situations seen from different points of view. One of the difficulties they

encountered was fusing the different sources of data for a specific situation with the

correct AIS trajectory data. They found out that timestamps were the most helpful

feature that would help fuse the data by associating the descriptive sources with the

AIS coordinates that are the closest in time. This is important to mention because

we encountered a similar problem when trying to merge the datasets available for our

research thesis, and the solution was very similar. Finally, they developed a rescue

behavior model based on the dynamic information of the AIS signals such as: latitude,

longitude, speed over ground, course over ground, and also time information such as

day of week, hour of day and month of year. The two final categories for the individual



16

AIS points were “rescue” and “non-rescue” based on the shapes of the trajectories

and corresponding information about the vessels speed over ground. When it comes

to the classification step, standard binary algorithms such as SVM, AdaBoost and

Logistic Regression were used, and an accuracy of 96% was achieved which seems

extremely good at first sight. However, after further analysis it was found out that

the performance of the classifiers was very location dependent, and after removing the

latitude and longitude features, the accuracy dropped to 69%. In order to overcome

this limitation a clustering approach was performed and a density-based clustering

algorithm was used. The density-based algorithm, CB-SMoT [31], was initially created

for stop point detection, however, in this case it was adapted to break trajectories

into segments with different motion profiles. Even though this approach showed good

results, it still contains a few issues: first, clustering points prior to classification reduces

the dataset substantially, and second, even after reincorporating position features, it

still doesn’t perform as good as the initial point-wise approach.

2.2.2. Anomaly detection in the maritime domain

2.2.2.1. Types of anomalies in the maritime domain. The previously reviewed papers

are some more general examples on what machine learning implementations are able

to achieve in the maritime domain. Now we are going to focus on some examples more

closely related to anomaly detection in the maritime domain, analyze their approaches,

and find out the state-of-the-art methods in this area. But first, it is important to

define what types of anomalies there exist in the maritime domain and how can those

types be fundamentally characterized. According to [32], there exist two types of

maritime anomalies: kinematic anomalies and static anomalies. Kinematic anomalies

are defined as anomalies manifested during the motion of the ship, an example being

unusual maneuvering, while static anomalies are anomalies manifested by analyzing

the properties of the ship, such as ships having unusual cargo. In [32], there is also a

mention of some sub-types of anomalies such as: maneuvering, location and interaction

anomalies. Maneuvering anomalies have to do with events such as an unexpected

change of direction, unusual stopping, unusual speeds considering ship type and area,
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or inconsistent changes given that we already have some information on what the

expected movement patterns would be. Location anomalies are mostly related to vessels

not confining their travel route to normal historical travel routes. However, location

anomalies could also include vessels positioned in restricted areas, exclusion zones, or

in zones where the usual maritime activities are inconsistent with the ship type.

In [33] there are also discussions about the types of anomalies in the maritime

domain, albeit they are defined a bit differently. Global anomalies are the types of

anomalies involving vessels that change their specified destination. It is possible to

detect global anomalies because each vessel is required to declare their specified desti-

nation in the AIS system, and if the specified destination does not correspond with the

real destination, a system flag is raised indicating anomalous behavior. Local anoma-

lies on the other hand are detected when a vessel deviates from the traffic routes that

are considered normal or expected. When these deviations are first detected it might

not imply anything yet, because context has to be taken into account, meaning that it

could have been simply a deviation because of bad meteorological conditions. However,

the bigger the deviation distance from the normal traffic pattern routes, the higher the

probability of that particular instance being an anomaly. In order to estimate when

a local anomaly has occurred, first local spatial statistics have to be calculated from

the maritime traffic network. Then, local anomalies can be detected in real-time, by

calculating the distance between the real location of the vessel and the declared mar-

itime route. When the distance is above some threshold value calculated a priori, the

instance is flagged as anomalous. On the other hand, global anomalies can only be

fully verified when a vessel has arrived at a destination, and then it can be checked if

it is actually the specified destination on the AIS system or some other destination.

2.2.2.2. Technical aspects of maritime anomaly detection. After the previous discus-

sions about what kind of anomalies we are expected to encounter, in the next few

paragraphs we will get into a bit more detail when it comes to the technical aspects of

anomaly detection in the maritime domain. First, it is important to mention that the

methods for anomaly detection can be categorized in two classes: point-based anomaly
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detection techniques, and trajectory-based anomaly detection techniques. Point-based

methods are performed in such a way that they highlight individual anomalous AIS

points, while trajectory-based methods receive as an input the whole trip trajectory

instead of individual points and classifies these trajectories as anomalous or not [34].

The decision to solve the anomaly detection problem in a supervised, semi-

supervised or unsupervised manner is based on the characteristics of the specific case

that needs to be solved, the amount of labeled data, both for the normal case and the

anomalous case, and the approach that needs to be taken, point or trajectory-based.

It is mostly the case that there is a lack of labeled data for the anomalous case, so

usually an unsupervised method is considered that extracts a normal representation of

the data first, based on the assumption that most of the data or trajectories are nor-

mal [34]. Statistical models that generate maritime traffic normalcy from historical AIS

data can be categorized in three groups: parametric methods, non-parametric meth-

ods, and clustering methods. A parametric method widely used in maritime anomaly

detection is the so-called GMM (Gaussian Mixture Model). Generally, this approach

clusters the data in a multi-dimensional feature space, the features usually being lati-

tude, longitude, speed and orientation, and the goal is to approximate the multivariate

probability density functions of normal maritime traffic patterns [34]. When it comes

to the non-parametric approach, the usual choice is KDE (Kernel Density Estimation),

used to create a non-parametric model of the normal maritime traffic behavior [34].

The most consistently used method in the maritime domain for anomaly detection is

the clustering-based method. One of the most popular clustering algorithms used in

many researches in this domain is K-Means, a distance-based algorithm, where dis-

tances are calculated in order to assign points to specific clusters. However, lately

in the maritime domain, the popularity of DBSCAN (Density-based spatial clustering

of applications with noise) has increased, mostly because the properties of maritime

data are very convenient for density-based approaches, but also because that these ap-

proaches can create any number of clusters, which is not the case with distance-based

techniques.
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In the next few paragraphs we are going to discuss some of the most cited anomaly

detection papers in the maritime domain and a recently published one where a Deep

Learning approach is considered, without going too deep into the mathematical con-

cepts. One of the most cited papers in this domain is [35] in which motion patterns

were extracted from AIS data and then motion anomaly detectors were built from

them. In this paper, the first step, which was considered as a preprocessing step, was

to extract traffic motion patterns from the historic AIS data that are going to be used

as training data. The motion pattern extraction is done using the usual data min-

ing techniques. To perform anomaly detection, Kernel Density Estimation (KDE) is

used, and it is applied sequentially to the new incoming data [35]. In order to simplify

the problem of motion pattern extraction, the only kinematic information included as

features are the position, latitude and longitude, and speed. When it comes to other

static features, as usual, the vessel types and seasonality information are particularly

useful. Then, after having all motion pattern trajectories available that would serve as

a normalcy behavior training set, there are two possibilities to explore: one, determin-

ing anomalous trajectories sequentially, so checking if the trajectories of the test set lie

within the normalcy boundaries, and two, motion prediction. In [35] it is mentioned

that the classification problem the authors are trying to solve is defined as one-class

classification and it is usually solved using Support Vector Machines (SVM), however,

as mentioned previously, they tackled this problem using an adaptive Kernel Density

Estimator (KDE) method instead. As a quantitative measure of performance, a func-

tion that measures the probability of false alarm was developed in order to evaluate

performance of the detector. Firstly, the anomaly detector was tested using 100 arti-

ficially created vessel trajectories, and then as a final test, two tests were performed

using trajectories constructed from real AIS data. One interesting aspect that caught

the eye of the authors was that velocity turned out to be a very important feature

when defining a motion pattern. At times even when the vessel’s position was actually

inside the boundary of the normal behavior, the anomaly detector raised a flag because

the velocity vector was incompatible with the training data.

A very interesting paper published recently is [36] where the authors analyzed a
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40 GB dataset containing more than 300 million messages collected in a period of one

week on the USA coasts. The most interesting aspect of [36] is that the authors are

trying to make a case for the usage of Deep Learning approaches to tackle anomaly

detection problems in the maritime domain, which, even with the emergence of neural

networks lately, doesn’t seem to be that common in this domain. Before stepping to

the Deep Learning part, some initial exploratory data analysis and classification steps

were performed, using both supervised and unsupervised approaches. An unsupervised

clustering approach was used to define groupings of AIS messages, and standard super-

vised machine learning classification approaches were used to classify ship types based

on AIS features that could be extracted from the AIS messages. The goal was to use

the quantified performance of the standard machine learning algorithms as baseline

and compare them to the potential deep learning techniques. As a clustering model,

WEKA’s K-Means was implemented, the main factor in favor of it being that it is

known to scale well to large datasets. Experiments were performed using two different

distance functions: Euclidean and Manhattan. Different k values were experimented

with, where values ranged from k = 5 up to k = 50 . The results of the clustering step

indicated natural groupings of AIS messages based on a set of basic features extracted

from those AIS messages. These features were used as an input to the standard clas-

sification algorithms to predict per-vessel information, mainly vessel types. In order

to acquire the labels of the vessels types, the Marine Traffic database was queried,

where the associated IMO (International Maritime Organization) of each vessel was

used as a unique identifier to merge the labels to the dataset. This resulted into the

creation of seven vessel type categories: tanker, cargo, passenger, fishing, tug, sail-

ing and the category “others”. The standard classifiers that were used as a baseline

were: Naive Bayes, Random Forests, K-Nearest Neighbors, Support Vector Machines

and a simple version of the multilayer perceptron. The resulting performances of the

classifiers seemed to surprise the authors of [36] because it turned out to be relatively

poor, the best classification accuracy being 63% achieved by Random Forests. The

authors argued that this relatively low accuracy is a result of the small dataset that

they had available, but also the short period of from which the AIS messages were

collected (one week). They argued that the sampling bias problem could be solved if a
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bigger dataset covering longer periods of time was available. In order to develop a deep

learning anomaly detection system, a Convolutional Neural Network (CNN) approach

was considered. The authors set a goal for this system that once properly trained,

it should be able to flag anomalous AIS messages within half an hour of their recep-

tion [36]. The CNN approach they considered was to obtain 2D images from historical

AIS data partitioned into specific time-interval segments. The base stations would be

represented by circular shapes, the vessels by box shapes, while the shape, size and

color the trajectory would provide enough information to encode different features of

the AIS data. However, disappointedly, it seems that the authors did not implement

the deep learning approach yet.

Another interesting paper when it comes to anomaly detection in the maritime

domain is TREAD [37], where an unsupervised and incremental learning approach

for the extraction of maritime patterns is presented that acts as a basis for automatic

anomaly detection. New research in this domain has also been performed in the context

of the European Commission H2020 funded project BigDataOcean [38], where in the

paper [39] an overview of the “Maritime Security and Anomaly Detection” pilot is

discussed. In [39], unsupervised machine learning methods and behavioral analytics

are utilized to automatically model shipping routes, construct vessel specific profiles,

and detect deviations of normalcy patterns in real time.

2.3. Gap in the literature

As we can see from the literature review in this chapter, there have been many

interesting machine learning based researches carried out in the maritime domain such

as mapping maritime routes, mapping fishing activities, event based knowledge discov-

ery, etc. Research has also been carried out as far as anomaly detection is concerned,

such as detecting low-likelihood behavior, detecting spoofing or detecting AIS on/off

switching. However, the detection of ship waste discharge, a topic that can be defined

as an anomaly detection problem, seems to be an interesting but understudied prob-

lem, at least as far as machine learning methods are concerned. The gaps in literature
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that we are trying to fill or extend by performing this research can be defined in two

points:

• Research the machine learning potential for detecting ship waste and residue

discharge.

• Extend the maritime anomaly detection literature, methods and approaches as

far as the North Sea is concerned.
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3. BACKGROUND ON METHODS

3.1. Supervised classification methods

3.1.1. Decision Trees

Decision trees are a non-parametric supervised learning method used for classifi-

cation and regression [40]. The goal is to create a model that predicts the value of a

target variable by learning simple decision rules inferred from the data features. The

decision tree consists of nodes that form a rooted tree, meaning it is a directed tree

with a node called “root” that has no incoming edges. All other nodes have exactly

one incoming edge. A node with outgoing edges is called an internal or test node. All

other nodes are called leaves (also known as terminal or decision nodes). In a decision

tree, each internal node splits the instance space into two or more sub-spaces according

to a certain discrete function of the input attributes values [41]. In the simplest and

most frequent case, each test considers a single attribute, such that the instance space

is partitioned according to the attribute’s value [41]. Each decision tree leaf is assigned

to the class representing the most appropriate target value.

3.1.1.1. Random Forests. Just like Gradient Boosting Machines, Random Forests are

an ensemble learning method consisting of many decisions trees used for a multitude

of tasks such as classification, regression or other tasks [42]. Significant improvements

in classification accuracy have resulted from growing an ensemble of trees and then

letting them vote for the most popular class [42]. In order to grow these ensembles,

often random vectors are generated that govern the growth of each tree in the ensemble,

and this is usually done using the so-called “bagging” method. Bootstrap Aggregation,

or bagging, is a general procedure that can be used to reduce the variance for those

algorithms that have high variance. The general idea of the bagging method is that a

combination of learning models increases the overall performance.
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Figure 3.1: Random Forest diagram (Adapted from [1])

3.1.2. Gradient Boosting Machines

Boosting is one of the techniques that uses the concept of ensemble learning where

a boosting algorithm combines multiple simple models, or weak learners, to generate

the final output. In gradient boosting machines, or simply, GBMs, the learning proce-

dure consecutively fits new models, usually decision trees, to provide a more accurate

estimate of the response variable [43]. So, rather than training all the models in isola-

tion of one another, Gradient Boosting Machines train models in succession, with each

new model being trained to correct the errors made by the previous ones. Models are

added sequentially until no further improvements can be made. In more simple terms,

what happens is we look at all the observations that the machine learning algorithm

is trained on, and we leave behind only the observations that the machine learning

method classified correctly, stripping out the other observations. Then, a new weak

learner is added and tested on the set of data that was poorly classified, where, again,

just the examples that were successfully classified are kept. The final objective of the

Gradient Boosting Machines is to minimize the loss of the model using a gradient de-
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scent like procedure. Gradient boosting machines internally solve a regression problem,

however, their power comes from the fact that they are not only used on regression

problems, but also on binary classification and multi-class classification problems, and

at the same time they exhibit computationally fast boosting procedures [43].

Figure 3.2: Gradient Boosting Machine simple example (Adapted from [2])

3.1.2.1. XGBoost. XGBoost is a refined and customized version of a gradient boosting

decision tree system, created with performance and speed in mind. XGBoost actually

stands for Extreme Gradient Boosting, and it refers to the fact that the algorithm has

been customized to push the limit of what is possible for gradient boosting algorithms.

The popularity of XGBoost is a result of it winning a considerable amount of Kaggle

competitions where implementations of multiple algorithms and techniques are com-

peting with each other to solve specific tasks. The most important factor behind the

success of XGBoost is its scalability in all scenarios. The system runs more than ten

times faster than existing popular solutions on a single machine and scales to billions

of examples in distributed or memory-limited settings [44].
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3.1.3. Support Vector Machines

A Support Vector Machine (SVM) is a linear discriminative classifier that con-

structs a hyperplane or set of hyperplanes in a high or infinite-dimensional space, which

can be used for classification, regression, or other tasks like outlier detection [45]. The

simplest formulation of Support Vector Machines is the linear one, where the hyper-

plane lies on the space of the input data x [46]. In this case the hypothesis space is a

subset of all hyperplanes of the form:

f(x) = w · x + b (3.1)

Given a training set of instance-label pairs (xi, yi), i = 1, ..., l where xi ∈ Rn and y ∈

{1,−1}l, the support vector machines require the solution of the following optimization

problem [47]:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (3.2)

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi, ξi ≥ 0

Here training vectors xi are mapped into a higher (maybe infinite) dimensional

space by the function φ. Support vector machines find a linear separating hyperplane

with the maximal in this higher dimensional space. C > 0 is the penalty parameter

of the error term. Furthermore, K(xi,xj) ≡ φ(xi)
Tφ(xj)

T is called the kernel func-

tion [47]. A kernel function scales the input vectors from dimension M into a higher

dimensional space N . The idea of the mapping is to be able to create the hyperplane,

which is linear in dimension N , and is non-linear if the hyperplane is transformed back

to dimension M . There are four basic kernels: linear, polynomial, radial basis function

(RBF) and sigmoid.
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3.2. Dimensionality reduction

3.2.1. Principal Component Analysis (PCA)

Large datasets are increasingly widespread in many disciplines. In order to in-

terpret such datasets, methods are required to drastically reduce their dimensionality,

such that most of the information in the data is preserved [48]. Many techniques have

been developed for this purpose, Principal Component Analysis (PCA) being one of

them. Principal Component Analysis is a dimensionality reduction method that is of-

ten used to reduce the dimensionality of large data sets. This is done by transforming

a large set of variables into a smaller one that still contains most of the information

that the large set consists [49], so it preserves as much variability as possible. Reducing

the number of features of a dataset might come at the expense of accuracy, or not, but

the trick in dimensionality reduction is to trade a little accuracy for simplicity.

Usually the dataset is standardized before performing PCA. The reason why it

is important to standardize the data prior to applying PCA, is that PCA is sensitive

regarding the variances of the initial variables. This means that if there are large

differences between the ranges of initial variables, those variables with larger ranges

will dominate over those with small ranges and it leads to biased results. The next

step is computing the covariance matrix of all variables. The covariance matrix is

computed to understand how the variables of the dataset are varying from the mean

with respect to each other, or in other words, to see if there is any relationship between

them. Sometimes, variables are highly correlated with each other in such a way that

they contain redundant information, and this means that the dataset can be reduced

to smaller dimensions without losing too much information. The final step consists

of computing the eigenvectors and eigenvalues of the covariance matrix to identify the

principal components. The principal components are new variables that are constructed

as linear combinations or mixtures of the initial variables [48]. These combinations are

done in such a way that the new principal components are uncorrelated and most of the

information within the initial variables is compressed into the first components [49].
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3.3. Unsupervised learning methods

3.3.1. Cluster analysis (Clustering)

Clustering, considered as the most important question of unsupervised learning,

deals with the data structure partition in unknown area and is the basis for further

learning [50]. A classic definition for clustering is described as follows [51]:

• A cluster is a set of entities which are alike, and entities from different clusters

are not alike.

• A cluster is an aggregation of points in the test space such that the distance

between any two points in the cluster is less than the distance between any point

in the cluster and any point not in it.

• Clusters may be described as connected regions of multi-dimensional space con-

taining a relatively high density of points, separated from other such regions by

a region containing a relatively low density of points.

Cluster analysis itself is not one specific algorithm, but the general task to be solved. It

can be achieved by various algorithms that differ significantly in their understanding of

what constitutes a cluster and how to efficiently find them. Popular notions of clusters

include groups with small distances between cluster members, dense areas of the data

space, intervals or particular statistical distributions [50].

Figure 3.3: Simple clustering visualization (Adapted from [3])
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3.3.1.1. Gaussian Mixture Models. Gaussian Mixture Models are a probabilistic model

for representing normally distributed subpopulations within an overall population [52].

Mixture models in general don’t require knowing which subpopulation a data point

belongs to, allowing the model to identify the subpopulations autonomously. Since

subpopulation assignment is not known, this constitutes a form of unsupervised learn-

ing.

The most commonly used distribution in modeling real-world unimodal data is

the Gaussian distribution. Thus, modeling multimodal data as a mixture of many

unimodal Gaussian distributions makes intuitive sense. Furthermore, GMMs maintain

many of the theoretical and computational benefits of Gaussian models, making them

practical for efficiently modeling very large datasets [53].

A Gaussian mixture model is parameterized by two types of values, the mixture

component weights and the component means and variances/covariances. For a Gaus-

sian mixture model with K components (clusters), the kth component has a mean of

µk and a variance of σk for the univariate case and a mean of ~µk and covariance matrix

of
∑

k for the multivariate case. The mixture component weights are defined as φk

for component Ck, with the constraint that
∑K

i=1 φi = 1 so that the total probability

distribution normalizes to 1.

Models are typically learned by using maximum likelihood estimation techniques,

which seek to maximize the probability, or likelihood, of the observed data given the

model parameters. Expectation maximization (EM) is an iterative algorithm and has

the convenient property that the maximum likelihood of the data strictly increases with

each subsequent iteration, meaning it is guaranteed to approach a local maximum or

saddle point. Expectation maximization for mixture models consists of two steps [53]:

The first step, known as the expectation step, consists of calculating the expectation

of the component assignments Ck for each data point xi ∈ X given the model pa-

rameters φk, µk, and σk. The second step, known as the maximization step, consists

of maximizing the expectations calculated in the expectation step with respect to the
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model parameters. This step consists of updating the values φk, µk, and σk. The entire

iterative process repeats until the algorithm converges, giving a maximum likelihood

estimate. Once the EM algorithm has run to completion, the fitted model can be used

to perform various forms of inference. The two most common forms of inference done

on GMMs are density estimation and clustering.

3.4. Cross-validation

Cross-validation is a statistical method of evaluating and comparing learning

algorithms by dividing data into two segments: one used to learn or train a model and

the other used to validate the model [54]. In typical cross-validation, the training and

validation sets must cross-over in successive rounds such that each data point has a

chance of being validated against. The basic form of cross-validation is called k-fold

cross-validation, where k refers to the number of groups that a given dataset is to be

split into.

Figure 3.4: Diagram of k-fold cross-validation (Adapted from [4])

3.5. Majority voting ensemble

Majority voting learning is primarily used to improve the (classification, predic-

tion, function approximation, etc.) performance of a model, or reduce the likelihood

of a single unfortunate wrong prediction of an instance [55]. There are three versions

of majority voting: (i) where the ensemble predicts the class which all classifiers agree
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with (unanimous voting); (ii) the ensemble predicts the class predicted by at least one

more than half the number of classifiers (simple majority); or (iii), the ensemble pre-

dicts the class that receives the highest number of votes, whether or not the sum of

those votes exceeds 50% (majority voting).

Figure 3.5: Majority voting depiction (Adapted from [5])
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4. DATA UNDERSTANDING AND PREPARATION

4.1. General description

In this chapter, we are going to discuss the data available to us for this research,

their source, their limitations, the labeled cases that we have, the exploratory data

analysis part and some aspects of data preprocessing. There are two datasets available

for us: the AIS dataset and the Portcall dataset. The merging of these two datasets is

proposed so that we can use both dynamic information about a trajectory from the AIS

dataset and static information from the Portcall datasets to learn when a particular

trip begins and from which of the ports that we are interested in.

4.2. Automatic Identification System (AIS) dataset

The main source of the data is the AIS dataset. As we have mentioned pre-

viously in the AIS section of Chapter 1, the Automatic Identification System (AIS)

is a mandatory location signal transmitted by all ships at sea with a high frequency

(seconds to minutes). Our dataset is composed of AIS data collected by The Nether-

lands Coastguard, consisting per-vessel information such as latitude, longitude, speed,

orientation, and so on. The AIS signals collectively represent the trajectories of the

ships in a time series data representation. The two months of AIS data available to

us have a time range starting from 04-01-2017 up to 05-31-2017 and contain over 64

million AIS messages. The range of the coordinates it contains after preprocessing is

constrained to the North Sea, with the minimum latitude being 59.8 degrees, the max-

imum latitude being 62.0 degrees, the minimum longitude being -5.3 degrees, and the

maximum longitude being 12.9 degrees. The correct bounding coordinates are taken

from Marine Regions [56], which is a website that helps create a standard, relational

list of geographic names containing information and maps of the geographic location

of these features.



33

The AIS dataset originally contains 64 million records (AIS messages) and 34

features. Each of the AIS messages contain updates categorized as dynamic and static.

The dynamic features of the AIS dataset contain kinematic and timing information

of the vessel trips. Some of the most important dynamic features are: update time,

latitude, longitude, orientation, rate of turn, length, breadth, navigational status, speed

and heading. Update time contains the timestamp when the AIS message was updated

and sent, and this is done with a high frequency usually in seconds or minutes. Latitude

is a geographic coordinate that specifies the South-North position of a point on the

Earth’s surface. It is an angle which ranges from 0 at the Equator to 90 at the poles.

Longitude is a geographic coordinate that specifies the East–West position of a point

on the Earth’s surface. The range of longitude is 360 degrees (180 degrees East and 180

degrees West), measured from the Greenwich meridian at which longitude is defined to

be 0 degrees. Latitude and longitude together represent the exact position of the vessel

at a particular point in time. Orientation (bearing) is the angle in degrees (clockwise)

between North and the direction to the destination and it ranges from 0 to 360 degrees.

The speed feature, or speed over ground, represents the speed of the vessel and it has

a 0.1 knot (0.19 km/h) resolution ranging from 0 to 102 knots (189 km/h).

The static features of the AIS messages on the other hand contain data that are

fixed, or need manual changes from the ship’s operator. Some of the most important

static features of the AIS dataset are the IMO (International Maritime Organization)

number, the ship type and the cargo type. The IMO (International Maritime Organi-

zation) number is a seven-digit code which shows the ships unique identity. The ship

type feature, obviously, tells what kind of vessels we are dealing with. It can be a

cargo ship, a fishing ship, a military ship, a passenger ship, a pleasure/sailing ship, a

tug tow, a tanker, or other. An important aspect that we have to reiterate about the

static information of the AIS messages is that they are manually inserted by the vessel’s

operator and are prone to human error. This human error can simply be a mistake, or

at times it can be deliberate disinformation. This means that this information might

not be totally reliable, and if possible to do so, should be taken into consideration.
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4.3. Portcall dataset

A port call is registered whenever a vessel enters/leaves the port area. The

portcall data provide information that can be used to find the ports visited by specific

vessels or to find all vessels that have visited specific ports. The portcall data of 2017

are available to us for this research and are provided by the European Maritime Safety

Agency. We are only interested in the data belonging in the date range between 04-

01-2017 and 05-31-2017 because the intention is to merge it with the AIS dataset. The

portcall data contain important information such as the IMO numbers of the ships,

when the port call was sent, actual times of arrival, actual times of departure, port

names, previous ports, etc. It also contains a different ship type description feature

than the AIS dataset, one that could turn out to be very useful when filtering ships

based on what we need. The AIS and Portcall datasets can be linked through unique

IMO numbers.

4.4. Limitations of the datasets

One of the limitations that might arise is the fact that we only have two months of

available AIS data. At this point, we don’t know if this amount of data will turn out to

be enough for what we are trying to achieve. Another limitation is the small number

of labeled cases, 20, which makes supervised learning very difficult. Another, not

exactly a limitation, but it would have been potentially helpful, is that supplementary

information such as meteorological and bathymetry data are not available. This could

have helped to add more depth in order to understand the particular cases we are

interested in by proving more contextual information.

4.5. Data exploration

The AIS dataset initially consists of 64 million rows and 34 features, however,

not all of them are necessary or useful for our research project. When it comes to the

number of records that we are going to use it will dramatically decrease when we focus
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on the types of ships that we are interested in and the ports that we are interested

in. When it comes to the features of the AIS dataset, a number of them are empty of

unrelated to this study.

Initially 13 features were dropped from the AIS dataset, namely: t sensors,

t atonoffpos, t no orientation, t status lost, t status not stable, t status label lost,

t vesseltype, p sourcename, p antposfront, p antposleft, p atontype, p remark,

p vesseltype. Most of these features were empty, while some of them contained unnec-

essary information such as the position of the antennas on the ship, or the number of

sensors a ship contains.

After the initial feature selection step, we were left with 21 features that were

potentially useful to us. It has to be mentioned that because of the very large size of

the AIS dataset, it was not possible to load it completely in memory at the same time.

So the initial analysis were performed by dividing the dataset into April and May 2017.

However, the analysis results for both months were extremely similar. In Figure 4.1

we show a missing values bar chart of the AIS data of April 2017.

Figure 4.1: Amount of non-missing values for each AIS feature
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The first thing that can be noticed is that most of the features, especially the

most important ones such as t latitude, t longitude, t speed and t orientation have no

missing values. The second thing that can be noticed is that the feature t rateofturn,

which indicates the instantaneous rate at which the ship is turning, contains around

90% of missing values and needs to be dropped. The third thing that can be noticed

is that the feature p cargotype, which contains information about what kind of cargo

the ship contains, has around 30% of its values missing, and this could be a small

disadvantage during the part where it would be useful to know what ships are actually

carrying and if they contain chemicals that could be discharged at sea. Finally, just

to make it clear, the zeezwaaien column contains the labels of the trips indicating

whether they potentially performed waste discharge behavior. We are going to get into

more details about the labeled cases in the next few sections.

In Figure 4.2 we can see the top 10 destinations specified on the AIS messages

by the ship operators during April 2017.

Figure 4.2: Top 10 Destinations - April 2017

The majority of the AIS messages have Rotterdam specified as the destination

of the ship. This is good news because we are primarily interested in the port of

Rotterdam and this signifies that we should have a lot of data to work with. Amsterdam

is another port of interest for us, however, as we can see, it contains a much smaller

amount of AIS messages related to it. Looking at the bar chart, we see that the port

of Antwerp occurs twice, having values written both in Dutch and English. This was

fixed, and they were mapped into one single value.
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The Figure 4.3 shows the types of cargo indicated on the AIS messages and their

frequency during April 2017.

Figure 4.3: Cargo types and the number of occurrences - April 2017

The mapping of the cargo types to numerical values is done as following:

• 0 = Unspecified

• 1 = Major hazard

• 2 = Hazard

• 3 = Minor hazard

• 4 = Recognizable hazard

An observation that can be made from the Figure 4.3 is that along with a rela-

tively high percentage of the cargo type values missing in the dataset, as seen previously,

most of the ship operators don’t manually input the real cargo type that the ship is

carrying and simply leave it as unspecified. This is a big disadvantage considering that

it is very important to know what a ship is actually carrying in order to determine if

it could potentially be involved in waste discharge behavior. Also, in the case that we

do find anomalous behavior, it would help give us extra contextual information. This
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disadvantage could be softened when merging the AIS dataset with the Porcall dataset.

The Portcall dataset also contains a feature describing the ship type and indicating

what that particular ship is carrying.

In Figure 4.4 we can see the number of tankers that have sent a port call in

Europe during April-May 2017 and their ship type descriptions, a feature from the

Portcall dataset.

Figure 4.4: Portcall tanker ship type descriptions and the number of port calls during

April-May 2017

Looking at Figure 4.4 we can see that there exist multiple sub-types of tankers,

but, as mentioned previously we are not interested in all ship types because most

of them are not associated with waste discharge behavior. The small number of la-

beled cases that we have and discussions with domain inspectors instructed us to focus

on tankers, more specifically chemical tankers and NLS (Noxious Liquid Substances)

tankers.

And finally, in the Figure 4.5 we can see the distributions of some features of

the AIS dataset. From here we see a clearer picture on the ranges of these particular

features, and we have our first insights at where we should look for some erroneous

points that need to be removed. For example, we can see some small bumps at the

tails of the t latitude, t longitude and t speed features. That is a first indicator that

there are some erroneous points with impossible values that should be looked into more
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carefully and maybe removed or simply be considered as anomalies.

Figure 4.5: AIS feature distributions (Density plot) - April 2017

4.6. Labeled cases

In this section we are going to discuss the small number of labeled cases that

we have and the process that was performed to acquire them. First, it is important

to mention that the portcall data contain information about both the origin and the

destination of ships, meaning that to extract the initial potentially anomalous cases it

was not necessary to rely only on the self-reported destinations from the AIS dataset.

This leads us to the labeled cases acquiring process: IDLab data scientists using the

AIS and Portcall datasets filtered and merged ships that left the ports of Rotterdam

or Amsterdam and returned to the same port within 48 hours without visiting another

port. This so-called “looping” behavior is a good indicator that waste discharge be-

havior was performed. Then, with the help of domain inspectors, 20 cases were labeled

into two categories. 11 of the cases were labeled as “1”, where the ships left the port
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of Rotterdam/Amsterdam and returned within 48 hours without visiting another port,

but they were classified as trips not expected to have exhibited waste discharge be-

havior. Likewise, 9 of the cases were labeled as “2”, where the ships left the port of

Rotterdam/Amsterdam and returned within 48 hours without visiting another port,

and the behavior was classified as being typical for waste discharge behavior. However,

it is important to note that in none of these cases inspection was performed or ship

waste discharge was confirmed.

One of the cases labeled “1”, characterized as not expected to have exhibited

waste discharge behavior, can be seen in Figure 4.6.

Figure 4.6: “Looping” trip labeled as “1” - not expected to have exhibited waste

discharge behavior

Here, also paying attention to the speed color bar, we can see that a ship departs

from the port of Rotterdam, goes some way into the North Sea, stays at an anchoring

location for a while, and then without visiting another port goes back to the port of

Rotterdam. This particular ship does perform the “looping” trajectory, but in this

case it was labeled as not expected to have performed waste discharge because it is

very common for ships to go to these anchoring locations, stay stationary for a while,

not perform waste discharge, and then return to the port. One of the main reasons
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this happens is because sometimes it is cheaper to just stay at an anchoring location

than to go to the port and pay for the port parking fee.

Figure 4.7: “Looping” trip labeled as “2” - typical for waste discharge behavior

Now, in Figure 4.7 we can see one of the cases labeled “2”, so characterized as

performing typical waste discharge behavior. We reiterate once again that none of

the cases were inspected and verified. In this case we can see that the ship departed

the port of Rotterdam, went some way into the North Sea, likely performed waste

discharge, then went back without visiting another port, stayed stationary for a while

at an anchoring location and then went back to the port of Rotterdam. This case and

the other 8 cases similar to it are examples of what our targeted anomalous behavior

actually is and what we are trying to detect using machine learning methods.

4.7. Preprocessing

4.7.1. Initial feature selection

Initially, 13 features were dropped from the AIS dataset, as described in Section

4.5. Most of these features were empty, while some of them contained unnecessary

information such as the position of the antennas on the ship, or the number of sen-

sors a ship contains. After the data exploration phase, t duration was also dropped

because of its irrelevance to our project, and t rateofturn was dropped because of the

high percentage of missing values. As far as the AIS dataset is concerned we are left

with the following 20 features, the column containing the labels included: t starttime,
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t updatetime, t latitutde, t longitude, t orientation, t length, t breadth, t navstatus,

t speed, t heading, p eta, p destination, p length, p breadth, p draught, p shiptype,

p cargotype, zeezwaaien, t updatetime, and Ship code.

When it comes to the Portcall dataset, the features we were mostly interested in

were: the actual times of arrival, the actual times of departure, the port names and

the ship descriptions. The times of arrival/departure will help us pinpoint the starting

time of each individual trajectory, the port names will give us information from which

ports do the individual ships depart from, and the ship descriptions will give us another

layer of information about what kind of tanker sub-types we are dealing with.

4.7.2. Merging the AIS and Portcall datasets

The first step of the preprocessing phase concerns merging the AIS and Portcall

datasets, where the focus will be on tanker ships that have port calls registered in

Rotterdam, Amsterdam or Antwerp during the period 04-01-2017 to 05-31-2017. The

merging of these two datasets is possible because they both contain the IMO (Inter-

national Maritime Organization) numbers of the ships, in hashed form to maintain

anonymity, to act as a common key for correct merging.

Initially, the AIS dataset was filtered in such a way that we obtained a subset of

the AIS data corresponding to tankers. Also, after discussions with domain inspectors,

another tanker subset selection was necessary, where we filtered AIS messages that

had values ship type description = {Chemical tanker,NLS tanker}, so the subtypes

of tankers that could potentially be involved in waste discharge behavior. A large

majority of the tankers that we are going to be further inspecting are chemical tankers

while a very small number of those are NLS tankers.

When it comes to filtering the Portcall dataset, first we took a list of all the unique

Ship codes belonging to tankers in the AIS dataset, and we cross-referenced that list

with the Ship codes having made a port call in Rotterdam, Amsterdam or Antwerp



43

during our time of interest. We ended up with 1147 port calls related to Rotterdam,

294 port calls related to Amsterdam, and 862 port calls related to Antwerp.

In order to perform the merge, Pandas merge asof() [57] function was used, a

function that does the merging similarly to a left join, however, in this case we match

on nearest key rather than equal keys. The key of the AIS dataset is the feature

t updatetime, that is a datetime feature indicating the time of each AIS message

update, while the key of the Portcall dataset is ATD LT , the specified actual time

of departure from the ports of interest. Both the datasets have to match on Ship code,

the unique ship identifier, before performing the merge operation. The tolerance was set

to 48 hours, indicating that all AIS data points in the range starting from the actual

time of departure from the ports of interest and up to 48 hours later, or 48 hours

before up to the actual time of arrival at the ports of interest, would be merged to that

particular trip, depending on which direction we are interested in. We performed two

merges as seen in the last sentence: one merge consists of trips arriving at our ports

of interest where all AIS points 48 hours prior to the arrival are included, and another

merge consisting of trips departing from our ports of interest containing all AIS points

up to 48 hours after departure. These values could easily be changed if different time

ranges are necessary during experimentation.

Merging different datasets based on time stamps and time tolerances is not a

trivial task in general, and this was the case for us too. Both datasets contain a lot of

errors, inconsistencies, human errors, gaps and mismatches. They are also both individ-

ual datasets created for their own particular purpose and the necessity to merge them

only arises because of what we are trying to detect, and therefore needing features and

time information from both datasets combined. This leads to some trajectories con-

taining missing points, or in some cases trajectories having some erroneous points that

shouldn’t be there. This happens because of the aforementioned timing mismatches

while at the same time Ship codes and the join keys both matching.
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4.7.3. Data cleaning

The next step in preprocessing is data cleaning where erroneous data points such

as data points not belonging to the North Sea, or data points containing impossible

speed values, are removed.

Figure 4.8: The North Sea bounding area - Red area

First, we create a bounding area containing The North Sea by defining the max-

imum and minimum longitude and latitude values. The visual form of this approach

can be seen in Figure 4.8. The correct bounding coordinates are taken from Marine

Regions [56] which is a website that helps create a standard, relational list of geographic

names containing information and maps of the geographic location of these features.

The North Sea is constrained in this way: the minimum latitude being 59.8 degrees,

the maximum latitude being 62.0 degrees, the minimum longitude being -5.3 degrees,

and the maximum longitude being 12.9 degrees. All data points not belonging inside

this bounded area were removed.

The second part of data cleaning had to do with removing erroneous speed data

points containing impossible values, such as speeds of 30-200 knots that were encoun-

tered. Each data point with t speed > 30 knots was removed, 30 knots being the

maximum speed a tanker ship can achieve.
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4.8. Maritime traffic

4.8.1. Maritime traffic visualizaton

First, our initial experiments are going to focus on ships departing from our points

of interest, with a bigger focus on Rotterdam, because this is the scenario where most

of our anomalous labeled data belong in. The number of trips departing from each

port, before removing trips containing big trajectory gaps, can be seen in Table 4.1.

Port Number of departing trips

Rotterdam 746

Amsterdam 203

Antwerp 522

Table 4.1: Number of departing ships from our ports of interest

All AIS data points of the departing tankers are plotted on a map in order to

visualize the maritime traffic at the North Sea and have a clearer look on where the

usual maritime traffic routes lie. The visualized maritime traffic of the ships departing

Rotterdam can be seen in Figure 4.9. Important to note that in Figure 4.9, AIS points

are plotted as individual points and are not connected to form trajectories at this point.
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Figure 4.9: Maritime traffic - Departing ships from Rotterdam - 48 hour trajectories

4.8.2. Trajectory removal

As discussed before in Subsection 4.7.2, both AIS and Portcall datasets contain

a lot of inaccuracies, trajectory gaps, human errors, mismatches, and so on. Before

starting with machine learning experiments for anomaly detection one more trajectory

removal step is necessary. This step is carried out in order to remove trajectories with

very big gaps between AIS data points or to remove trajectories containing a very small

number of AIS data points making them needless or even contaminating.

We are going to start with the port of Rotterdam and the 746 trips departing

from it. To carry out the trajectory removal step several approaches were experimented

with, ranging from manual to automated. The manual approach consisted of analyzing

the trajectory plots of each individual trajectory. Based on the number of points an

individual trajectory had and looking at the spatial gaps of a particular trajectory,

it was decided if a trip should be left in the dataset or removed. Examples of trips

that were removed from the dataset can be seen in Figure 4.10, removed because of
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very large gaps in the trajectory, and Figure 4.11, removed because it contains a very

small number of AIS data points. Likewise, an example of a trip that was considered

adequate can be seen in Figure 4.12.

Figure 4.10: Removed trip because of very big gaps in the trajectory

Figure 4.11: Removed trip because of very small number of AIS data points
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Figure 4.12: An example of a trip trajectory considered as adequate

The automated approach consisted of removing trips that fall below a certain

threshold of AIS data points count, or removing trips that fall above a certain thresh-

old of maximum time distance between consecutive points. These, let’s say more

automated approaches, ended up removing a very large chunk of the trips, even some

trajectories that seemed useful at first look. Given that we already are low on data, we

decided that for the time being we should stick to the manual approach. The trajectory

removal step might need reconsideration as we further progress with our research.

Initially, we had 742 trips departing the port of Rotterdam. After the manual

trajectory removal approach 72 trips were removed, meaning that we are left with 670

trips to work with.

4.8.3. Removal of points on land

After the removal of the 72 trajectories, we plotted the connected sequential AIS

data points making up the 670 trajectories remaining. Looking at Figure 4.13, we

see that a final preprocessing step is needed: removal of erroneous points on land.

Erroneous points on land are also a product of the errors and imperfect quality of the

AIS data.
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Figure 4.13: Maritime traffic - 670 trajectories departing Rotterdam - with erroneous

points on land

This part turned out to be relatively straightforward, helped by the geographical

position of The Netherlands. One way to avoid these points on land would have been

to narrow the bounding area of the North Sea so that it doesn’t come too close to

land, however, that would have probably also removed some points at sea, which is

undesirable. The approach that we took after analyzing the trajectories was to remove

AIS data points for each trajectory where t latitude surpassed the 97.5% quantile

threshold value, which for almost all the cases turned out to be the points on land.

Different quantile threshold values were tested and a balance was found in order to

remove as many data points on land as possible but at the same time to not remove

useful data points at sea. The final results can be seen in Figure 4.14 where it is clear

that most of the points on land were removed, except for one apparently (AIS data

point located in the Wadden Sea north of The Netherlands, an area too shallow to

operate large ships).
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Figure 4.14: Maritime traffic - 670 trajectories departing Rotterdam - without erro-

neous points on land

4.9. Assumption about trips under 12 hours

After analyzing the anomalous trip trajectories and the information that comes

with them, it was noticeable that all of them, except one, had a trip length of over

12 hours. Domain inspectors also confirmed that it is very unlikely for a ship to be

involved in waste discharge behavior in such a short amount of time after leaving

the port. They suggested that a more likely time interval for this specific behavior

after departing from Rotterdam or Amsterdam is between 12 and 48 hours. Based on

statistical analysis and expert opinion, it was decided that the AIS data belonging to

trajectories with trip length of 12 hours or less will not be used to train our machine

learning models.
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5. METHODOLOGY

In this chapter we are going to discuss the methodological choices and pipelines

that we have considered in order to answer our research questions. First, a quick

reminder on what our main research question is:

Given the availability of the AIS dataset and the potential of supervised and

unsupervised techniques to solve complex problems: Is it possible to develop machine

learning models that detect ship waste and residue discharge at the North Sea

effectively (with performance significantly higher than chance level) and efficiently

(with minimal cost and preferably real-time)?

5.1. Time series supervised learning

In Chapter 4, we’ve established that the trajectories of the ships are represented

as time series data. Initially, we are going to transform the time series problem into

a general supervised learning structure. In order to do so, time series feature engi-

neering is going to be a key part of the process pipeline, where sliding and expanding

window transformations will be applied to a number of statistical functionals. The

sliding and expanding window approaches take the data of previous time steps as in-

put observations and use them to predict the next observation [58]. This type of data

summarizing results in each time series sample being independent of other samples, but

at the same time containing information about the preceding historical data, leading

to a supervised learning structure representation of the time series problem [58].

5.2. Time ensemble classification pipeline

In Figure 5.1 we can see the complete time series supervised classification process

pipeline, the implementation of which will be used to answer the following research

questions (and the sub-research questions that they contain):
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• What is the effect of summarizing the low-level descriptors that come with the

AIS data (e.g. latitude, longitude, speed, orientation), over past records?

• Utilizing the AIS trajectory data, can we train models using previous sequential

data points up to a specific point to detect our targeted behavior before occurring,

or as early as possible after occurring?

Figure 5.1: Time series supervised learning process pipeline

The initial stages of the pipeline seen in Figure 5.1, domain and context un-

derstanding, data collection and data preprocessing are discussed in Chapter 1 and

Chapter 4. The forthcoming stages of the time series supervised learning pipeline

described in Figure 5.1 will be discussed in more details in the subsections below.

5.2.1. Time series feature engineering

We mentioned that the trajectories in the AIS dataset are represented as time

series, where the data is captured at specific intervals and each successive data point in

the series depends on its past values. Most advanced machine learning algorithms that

solve these challenges today are not time-aware. They typically carry out a row-based

learning approach, where each row (data point) is an individual entity that doesn’t

contain any information about other data points. In order to use these methods for

forecasting or classification, we need to derive informative features, based on past and
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present data in time. One of the main techniques utilized to engineer time series

features is the sliding window transform approach, in statistics also known as the lag

method [59]. This sliding window is the basis of how we turn any time series dataset

into a general supervised learning problem [59].

The number of previous time steps that are taken into consideration is called the

window size. The size of the sliding window is a very important parameter because

when the window size is small it only contains a limited number of observations which

might not be enough for a model to properly learn. On the other hand, if the window

size is large it increases the risk for the model to learn from observations that may

not have an impact on the target variable [58]. A final thing to be careful with is

that increasing the sliding window size decreases the training data length, which in

turn impacts model learnability. We are going to experiment with three different time

resolutions and quantitatively evaluate which window size is the most useful for building

accurate models.

5.2.1.1. Sliding window and expanding window. The concept of a sliding window cal-

culation is most primarily used in signal processing and time series data. In very simple

words, we take a window of size κ at a time and perform some desired mathematical

operation on it. A window of size κ means κ consecutive values at a time. In a very

simple case all the values belonging to that particular κ window are equally weighted.

The sliding window is utilized to perform the statistical functionals mentioned in Sub-

section 5.2.1.2 in order to engineer time series features based on the last 10 and 60

minutes of the trajectory.

The expanding window is simply an advanced version of the sliding window tech-

nique. In the case of a sliding window, the size of the window is constant while the

window slides as we move forward in time. Hence, we consider only the most recent

values and ignore the past values. When it comes to the expanding window, with every

step the size of the window increases by one as it takes into account every new suc-

ceeding value in the series. The expanding window is used to perform the statistical



54

functionals mentioned in Subsection 5.2.1.2 in order to engineer time series features

based on full trajectory time resolution, so taking the whole trip into account from

start to finish.

5.2.1.2. Statistical functionals. For each of the four low-level descriptors, t latitude,

t longitude, t speed, t orientation, 10 different statistical functionals are going to be

performed for three different time resolutions (sliding/expanding window sizes): the

full trajectory using an expanding window, the last 10 minutes of the trajectory using

a sliding window, and the last 60 minutes of the trajectory using a sliding window.

The 10 statistical functionals to be performed on the low-level descriptors for the three

time resolutions are:

• Mean - the average of the κ-sized window.

mean(x) = x =

∑κ
i=1 xi
κ

(5.1)

• Max - the maximum of the κ-sized window.

max(x) = max
i

xi ; where i ≤ κ (5.2)

• Min - the minimum of the κ-sized window.

min(x) = min
i

xi ; where i ≤ κ (5.3)

• Median - the median of the κ-sized window.

median(x) =
obκ2c + odκ+1

2 e
2

; o ordered list of κ numbers (5.4)

• Std - the standard deviation of the κ sized window.

std(x) =

√√√√ 1

κ− 1

κ∑
i=1

(xi − x)2 (5.5)

• Range - the maximum of the κ-sized window - the minimum of the κ-sized window.

range(x) = max
i

x−min
i

x ; where i ≤ κ (5.6)

• Slope - the slope of a linear polynomial of the κ-sized window.

x = a · time index+ b ; where a is the slope of the line. (5.7)
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• Curvature - the curvature of a quadratic polynomial of the κ-sized window.

x = d · time index2 + b · time index+ c ; where d is the degree of curvature.

(5.8)

• Relative location of the maximum - the relative location of the maximum value

of the κ-sized window divided by the length of the κ-sized window.

relative location max(x) =
argmax(xi)

κ
; where i ≤ κ (5.9)

• Relative location of the minimum - the relative location of the minimum value of

the κ-sized window divided by the length of the κ-sized window.

relative location min(x) =
argmin(xi)

κ
; where i ≤ κ (5.10)

Performing the statistical functionals on the four low-level descriptors for the three

different time resolutions will lead to 121 new features, time elapsed included. This

leads to engineering new features that contain historical information about the past

data up to that particular point in time, on top of the information already available

for each original data point.

5.2.2. Overcoming the class imbalance problem

In order to successfully implement our transformed time series supervised learning

approach, we need to take care of the class imbalance problem. Class imbalance is a

problem that does exist as far as our dataset is concerned, in which more than 98%

of the data points are associated with the class describing the trajectories exhibiting

normal behavior, while less than 2% of the data are associated with the class describing

the trajectories exhibiting anomalous behavior.

In order to tackle the class imbalance problem several techniques are proposed:

(i) Undersampling the majority class data

• Undersampling balances the dataset by reducing the size of the majority

class. This method is used when the quantity of the data is sufficient, where
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in our case, it is, at least for now. By keeping all samples from the minority

class and randomly selecting an equal number of samples from the majority

class, a balanced new dataset can be retrieved for further modelling [60].

(ii) Using ensemble methods

• The easiest way to successfully generalize a model is by using more data.

Ensemble methods combine predictions of different classifiers where each in-

dividual classifier is trained with a different subset of the data. Ensemble

methods are designed to reduce the bias towards the majority class by fo-

cusing on misclassified training patterns [60]. The resampling methods used

are principally two, bagging and boosting, however, it is also possible to

perform semi-manual resampling where we have more control on what goes

in the training/testing sets.

(iii) Resampling with different ratios

• The ensemble method can be fine-tuned by changing the ratio between the

majority and the minority class. Instead of training all the ensemble models

using the same ratio, it is possible to experiment with different ratios and

analyze the effect it has on performance [61]. So if, for example, 10 models

are trained, it is worth experimenting with models that have a ratio of 2:1

(majority:minority), another one with 3:1, up to a ratio of 10:1.

(iv) Selecting appropriate evaluation measures

• The conventional model evaluation measures (mainly accuracy) do not ac-

curately measure model performance when faced with imbalanced datasets.

Standard classifier algorithms have a bias towards classes which have the

highest number of instances. They tend to only predict the majority class

data while the feature vectors of the minority classes are treated as noise

and are often ignored. This means that there is a high probability of mis-

classification of the minority classes compared to the majority class. This

leads to the selection of other alternative evaluation measures that can be

applied such as Precision, Recall or F1 score [61].
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5.2.3. Time resolution performance evaluation & feature set selection

Feature selection is one of the core concepts in machine learning which dramati-

cally impacts the performance of the models [62]. In our time series supervised learning

pipeline, the time resolution testing and feature selection stage is concerned with the

following points:

• Testing the engineered time resolution feature sets individually and analyzing the

effect they have on the performance on their own.

• Comparing the performance of the initial models when using only the low-level

descriptors as input features versus the performance of the models when using all

the engineered features as input. The difference in performance to be quantita-

tively evaluated.

• Selecting the optimal feature set to maximize model performance.

• Utilizing feature selection and dimensionality reduction techniques to train mod-

els efficiently.

The supervised learning algorithms that will be used to train the initial mod-

els will be the ensemble learning techniques discussed in Section 3.1, XGBoost and

Random Forests.

5.2.4. Time Ensemble Classifier

In this subsection, we discuss one of the main methodological contributions in

order to solve the problem of identifying waste dischargers at the North Sea. The

first phase consists of performing k-fold cross-validation on our dataset in order to

compare the initial performance of different classifiers, to test the generalizability of

the models, and to select the optimal majority:minority training instance ratio that

is going to be used to train the final models. The second phase consists of predicting

each individual time instance of each trajectory using the best classifier and optimal

ratio hyperparameter based on the results of the previous step. At this point, we have
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a prediction for each individual time instance of each trajectory without taking into

consideration previous predictions up to that point. The third phase is concerned with

experimenting by also taking into account different ranges of previous predictions and

taking the majority vote in order to predict the next time instance. Finally, the last

step is to measure the performance of the model at different time steps, the main goal

being to reach acceptable performance as early as possible into the trajectories, which

in itself, is an attempt to approach real time detection.

5.2.4.1. Cross-validation phase. Given that our dataset contains a very small amount

of anomalous instances we are going to perform a manually configured stratified k-fold

validation with a relatively small k value in order to keep the normal:anomalous test

trajectory instances as close to the real dataset proportion as possible. The performance

scores of a k-fold cross-validation on their own won’t be too telling because we are

restricted to using a small number of folds if we desire to approximate the real dataset

proportion in our tests. That is why we are going to use this step to compare the initial

performance of different classifiers, to test the generalizability of the models, and to

select the optimal majority:minority training instance ratio that is going to be used to

train the final models.

The classifiers that will be tested in this k-fold cross-validation phase will be the

ensemble learning techniques discussed in Section 3.1, XGBoost and Random Forests.

Support Vector Machines will also be tested in order to evaluate the performance of a

linear separator and also compare its performance with the ensemble methods.

Lastly, an important hyperparameter that needs to be optimized in this phase

is the majority:minority training instance ratio, a consequence of the extreme class

imbalance. Training sets with different ratios will be tested (e.g. 2:1, 3:1, ..., 10:1) in

order to find the optimal ratio that gives the highest performance.
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5.2.4.2. Individual instance predictions. As discussed above, the previous step of the

time ensemble classification involves selecting the classifier to be used for our main

model and the optimal majority:minority training instance ratio for best performance.

The selected classifier and the selected ratio will be used in order to train the supervised

learning model and to predict every individual instance of every trajectory at each time

point that they contain.

In order to further improve the performance, a majority voting learning approach

will be implemented. Our version of the majority voting will include running N iter-

ations of our selected classifier resulting in N predictions for each individual instance.

The final predicted class will be selected using the simple majority voting approach.

5.2.4.3. Time series prediction smoothing and optimization. The next phase of the

Time Ensemble Classifier pipeline involves an attempt to smooth the trajectory pre-

dictions (and potentially improve prediction accuracy) by optimizing the size of the

previous predictions window that we take into account to predict the next time instance

in the sequence. This approach is motivated from the field of time series forecasting,

defined in [63] as the act of predicting the future by understanding the past. Forecast-

ing systems usually are fed by some time series data points of the last several instances

whereas the next time instance prediction is obtained at the system output, as shown

in Equation 5.11:

Instance[t− n], Instance[t− n+ 1], ..., Instance[t− 1], Instance[t]→ Instance[t+ 1]

(5.11)

This approach is usually used to forecast the value of the next time step based on the

previous values, and not the prediction itself. However, in our modified approach, at

this point we already have the individual instances assigned to the normal or anomalous

class. Now, by taking into account different N -sized windows of previous predictions

we perform another simple majority voting instance in order to potentially smooth and

improve the initial predictions that we got from the previous pipeline steps. We aim to

perform experiments with different N -sized windows, ranging from small N values to

N containing all the previous prediction instances available for a particular trajectory.
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5.2.4.4. Time Ensemble Classifier at different time points t. The final phase of the

Time Ensemble Classifier pipeline is intended to give the final quantitative information

of the performance of our models at different points in time. A quick reminder on what

our main goal is in this supervised learning approach:

• Utilizing the AIS trajectory data, can we train models using previous sequential

data points up to a specific point to detect our targeted behavior as early as

possible after occurring?

At this point, we have predictions for each time instance of each trajectory, let

those be the initial individual predictions or the predictions from the smoothing ap-

proach of the last step. In order to calculate the overall performance at a particular

time point t (e.g. at 15 hours), from each trajectory we extract the prediction instance

closest in time to that t and compute the performance based on the evaluation measures

defined in Subsection 5.2.5, Macro Recall and Macro F1.

An important assumption that we made, discussed in Section 4.9, is that trips

under 12 hours are very unlikely to be involved in waste discharge behavior. Based

on that, it was decided that our baseline performance (naive classification) will be

measured at a very early time t that is also under 12 hours. From that point on, the

goal is to achieve an acceptable classification performance as early as possible meaning

that the focus will be on the classification performance near the 12-hour mark.

Finally, it is also interesting to find out how good the performance of our model

is after the trajectories have been completed, so computing the overall performance by

extracting the final prediction of each trajectory. On top of that, it is interesting to

see if we can find particular time intervals that are the most discriminatory when it

comes to differentiating between normal and anomalous cases.
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5.2.5. Evaluation measures

Different machine learning implementations require different evaluation measures

based on what the specific task is and which area of correctness is more important.

If we choose the wrong metric to evaluate our models, we are likely to choose a poor

model, or in the worst case, be misled about the expected performance of our model.

In our case, we are dealing with an extremely imbalanced dataset and applying an

inappropriate evaluation metric for our model, such as accuracy, will lead to a very

high accuracy score [61]. At first sight this seems to be a good result, but in reality

that score is misleading because the high accuracy is only reflecting the underlying

class distribution, which is imbalanced, and in turn this model doesn’t provide any

valuable information for us.

Some of the more suitable evaluation measures that can give more insight into

our models as far as our case is concerned are: the confusion matrix, the precision, the

recall and the F1 score.

5.2.5.1. Confusion matrix. A confusion matrix is a table that is often used to describe

the performance of a classification model on a set of test data for which the true values

are known. For a binary classification problem it is a table with 4 different combinations

of predicted and actual values and an example can be seen in Figure 5.2. It can be just

as easily implemented in a multi-class classification problem and it is extremely useful

for computing the other important performance measures such as recall, precision, F1

score and accuracy.
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Figure 5.2: Confusion matrix (Adapted from [6])

• True positive (TN) — The sample’s label is positive and it is classified as one.

• True negative (TN) — The sample’s label is negative and it is classified as one.

• False positive (FP) — The sample’s label is negative but it is classified as positive.

• False negative (FN) — The sample’s label is positive but it is classified as negative.

5.2.5.2. Precision and Recall. Precision (Equation 5.12 for the binary case) summa-

rizes the fraction of the examples assigned to the positive class that belong to the

positive class. Recall (Equation 5.13 for the binary case) quantifies the number of pos-

itive class predictions made out of all positive examples in the dataset. Just like other

evaluation measures, precision and recall are also not limited to binary classification

problems.

Precision =
TP

TP + FP
(5.12)

Recall =
TP

TP + FN
(5.13)

When we are dealing with an imbalanced dataset in which we prioritize the correct

classification of the minority class (anomalous class) we are interested in computing

the so-called macro-average of the evaluation measures. Macro averaging calculates

the corresponding metric for each of the existing classes, and then averages the results
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together. The equations for the macro averaged precision and recall can be seen in

Equations 5.14 and 5.15.

Precisionmacro =
P1 + P2 + ...+ Pc

c
; where c is the number of classes. (5.14)

Recallmacro =
R1 +R2 + ...+Rc

c
; where c is the number of classes. (5.15)

5.2.5.3. F1 Score. The F1 score is a measure of a test’s accuracy. The F1 score is

defined as the weighted harmonic mean of the test’s precision and recall. If we put it

in another way, what the F1 score does is it conveys the balance between the precision

and the recall. This score is calculated according to the Equation 5.16:

F1 =

(
2

recall−1 + precision−1

)
= 2 · precision · recall

precision + recall
(5.16)

Again, in order to account for the class imbalance we need to use the macro

averaged F1 score, as it gives equal importance to each class. Macro F1 is the harmonic

mean between precision and recall where the average is calculated per class and then

averaged across all classes. The equation for the Macro F1 can be seen in Equation

5.17:

MacroF1 =
1

c

c∑
i=1

2 · Precisioni ·Recalli
Precisioni +Recalli

(5.17)

5.2.6. Statistical significance test

5.2.6.1. Test concerning two proportions. There are several different statistical hy-

pothesis testing frameworks that are being used in practice to compare the perfor-
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mance of classification models, including conventional methods such as the difference

of two proportions. In our case, the proportions are the estimated scores (Macro Recall

and Macro F1) from the test set, for which we can construct 95% confidence intervals

(α = 0.05) based on the concept of the Normal Approximation to the Binomial dis-

tribution. The test concerning two proportions is defined as follows [64]: Let there be

two treatments with population proportions p1 and p2 and sample sizes of n1 and n2

respectively. Samples associated with a certain event are x1 and x2 with the respective

proportions.

p̂1 =
x1
n1

and p̂2 =
x2
n2

H0 : p1 = p2 (5.18)

TS : Z =
p̂1 − p̂2√

p̂(1− p̂)( 1
n1

+ 1
n2

)
p̂ =

x1 + x2
n1 + n2

Here, p̂ is the pooled estimate of the proportions p1 and p2. The null hypothesis

H0 states that the proportions are the same. The alternative hypothesis, H1, states

that the proportions are different. The condition that needs to be satisfied in order for

H0 to be rejected is |Z| ≥ zα/, where z is a value from the standard normal table and

α is the specified significance level.

5.3. Unsupervised learning

The unsupervised learning phase of our research is going to be relatively smaller

and shorter compared to the time series supervised learning phase. This phase in-

tends to find out if we can discover new cases in our dataset that deviate from the

normal behavior, leading to potential waste discharge cases undetected until now by

authorities.
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Figure 5.3: Unsupervised learning process pipeline

The unsupervised learning process pipeline, seen in Figure 5.3, will be used to

answer the following research question (and the sub-research questions that it contains):

• Based on the log-likelihood scores of the individual trips, are the tanker-specific

fitted models able to detect new anomalous cases residing in the dataset?

5.3.1. Gaussian Mixture Model implementation

As seen in the research question above, in our unsupervised learning approach we

intend to create tanker-specific fitted models and we aim to do that for each class sep-

arately (normal and anomalous). Gaussian Mixture Models, background information

given in Subsection 3.3.1.1, are one of the most used density estimation or clustering

techniques when it comes to modeling data by isolating individual class distributions.

For each fitted Gaussian Mixture Model of each class, the number of components

will be selected based on the BIC score. In statistics, the Bayesian information criterion

(BIC) is a criterion for model selection among a finite set of models where the model

with the lowest BIC is preferred [65]. When fitting models, it is possible to increase the

likelihood by adding parameters, but doing so may result in overfitting. BIC attempts

to resolve this problem by introducing a penalty term for the number of parameters in

the model [65].
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In order to maximize the possibility of anomaly detection using this approach,

we are going to use the knowledge acquired from the time series supervised learning

phase. This means that as input to the models we will only use the data of the most

discriminatory time interval instead of the complete trajectories.

After fitting the class-specific Gaussian Mixture Models and obtaining the overall

log-likelihood scores, we are especially interested in the log-likelihood scores of indi-

vidual trajectories in order to find out how good do they fit to each class. In order

to have fair comparisons between individual trajectories, we are going to subsample

each of them in a fixed-size representation of the same length L. All the trajectories

will be tested in both class-specific GMM’s and the log-likelihood output scores of

both models will be analyzed, separately. Since each trajectory will be represented by

L samples, for each individual sample we will compute the weighted log probabilities.

The final log-likelihood score for each trajectory will be the summed score of individual

samples. Finally, the summed trajectory scores will be sorted and compared to each

other. Eventually, as a part of this research or as an extension of it, The Top N (or

Top N percent) trajectories with the higher likelihood of being anomalous according

to the models will be selected, plotted and further inspected, also with the help of the

domain inspectors.
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6. EXPERIMENTS AND RESULTS

In this chapter we are going to discuss the experimental configurations of both

the supervised and unsupervised approaches where sections will be dedicated to each

of them separately. In addition, in this chapter we will present the final results of this

research.

6.1. Time series supervised learning experimental setup - Part I

As discussed in Chapter 5, the time series supervised learning approach is de-

veloped with two goals in mind: 1. Testing the predicting power of individual time

resolution feature sets, and 2. Achieving acceptable performance in differentiating

between normal and anomalous instances as early as possible with respect to time t.

The initial experimental tests are designed to give us information about the pre-

dicting power of individual time resolution feature sets, the difference in performance

between using only the low-level descriptors and using all the engineered features, and

to gain initial insight on how good our chosen classifiers perform and the differences

between them. The experimental setup that we have devised in order to answer the

research question contains the following configurations:

(i) Feature set/subset selection - In order to test the predicting power of the low-level

descriptors and the different time resolution engineered features, five different sets

of features were selected to be evaluated:

• Low-level descriptors only: t latitude, t longitude, t speed, t orientation.

• Full time resolution engineered features (40 features)

• Last 10 minutes time resolution features (40 features)

• Last 60 minutes time resolution features (40 features)

• All features (124 features)

(ii) Train/test set selection - Only a subset of the data was used to acquire the initial
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results. In order to combat the class imbalance problem we experimented with

different majority:minority class ratios, as it will be explained in the next bullet

point. The testing set always contained the same 45 normal instances and the

same 5 anomalous instances for fair comparisons.

(iii) Majority:minority class ratio configuration - One of the class imbalance overcom-

ing techniques we discussed in Subsection 5.2.2 is the adjustment of the ratio

between the majority and minority class training instances. Different models

were trained with the following majority:minority ratios:

• k : 9 where k = 18, 27, 36, ..., 81 ; step size = 9

(iv) Number of iterations per ratio configuration - In order to test the robustness of the

models using different normal training instances as input we ran each model sev-

eral times to get the average scores and their standard deviation. Another reason

to perform more iterations of each classifier is to get an ensemble of predictions

and then classify each instance according to the majority voting methodology

discussed in 5.2.4.2.

• Number of iterations for each ratio configuration = 50

(v) Dimensionality reduction configuration - PCA will be performed in such a way

that it will automatically select the number of components it needs to explain at

least 90% of the variance.

(vi) Classifiers evaluated - XGBoost and Random Forests.

(vii) Evaluation measures - As discussed in Section 5.2.5, we are interested in the per-

formance scores that take the class imbalance problem into account. To quantify

the performance of our models the following evaluation measures were used:

• Macro Recall average (standard deviation)

• Macro F1 average (standard deviation)

6.2. Evaluation of individual time resolutions

The initial time series supervised learning experiments were performed in order

to find out if the engineered time resolution features discussed in Subsection 5.2.1 have

additional predicting power compared to using only the original low-level descriptors
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(latitude, longitude, speed and orientation). Looking at the performance results of

the individual time resolution feature sets, shown in Table 6.1, we see that the best

performing feature set is the one labeled as “Last 60 minutes resolution”, the time

resolution that considers the window containing the data points of the last 60 minutes

of the trajectory. The “Last 60 minutes resolution” achieves a Macro Recall score of

71%, that is 2% higher than the original low-level descriptors and 6% higher than the

“Full time resolution” that considers all the preceding data points of a trajectory.

Individual time resolution performance XGBoost Random Forest

Features Metric k = 18 k = 81 k = 18 k = 81

Low-level descriptors
Macro Recall Avg (Std) 0.69 (0.04) 0.54 (0.02) 0.67 (0.03) 0.60 (0.01)

Macro F1 Avg (Std) 0.58 (0.03) 0.55 (0.03) 0.58 (0.03) 0.62 (0.02)

Full time resolution
Macro Recall Avg (Std) 0.65 (0.05) 0.52 (0.02) 0.63 (0.05) 0.51 (0.01)

Macro F1 Avg (Std) 0.55 (0.03) 0.52 (0.03) 0.55 (0.03) 0.50 (0.02)

Last 10 minutes resolution
Macro Recall Avg (Std) 0.70 (0.03) 0.53 (0.02) 0.69 (0.03) 0.61 (0.01)

Macro F1 Avg (Std) 0.58 (0.02) 0.54 (0.03) 0.59 (0.02) 0.64 (0.01)

Last 60 minutes resolution
Macro Recall Avg (Std) 0.71 (0.04) 0.54 (0.02) 0.70 (0.03) 0.60 (0.01)

Macro F1 Avg (Std) 0.59 (0.03) 0.55 (0.03) 0.59 (0.02) 0.62 (0.02)

Table 6.1: Individual time resolution performance

In these preliminary results, one of the most important aspects that we can

focus on is the difference in performance between using only the low-level descriptors,

and using all the time resolution engineered features as input to the machine learning

classifiers. The results shown in Table 6.2 tell us that when using all the features as

input, XGBoost achieves a Macro Recall of 73%, that is 4% higher than when using

only the low-level descriptors. This indicates that our approach of using statistical

functionals to engineer time resolution based features does increase the predictive power

of the machine learning models.

Performance using all features XGBoost Random Forest

Features Metric k = 18 k = 81 k = 18 k = 81

All features
Macro Recall Avg (Std) 0.73 (0.04) 0.57 (0.03) 0.71 (0.04) 0.57 (0.02)

Macro F1 Avg (Std) 0.58 (0.03) 0.59 (0.04) 0.59 (0.03) 0.59 (0.02)

Table 6.2: Performance using all features



70

An important configuration detail that we have to mention is that in order to ob-

tain these preliminary results only a subset of the data was used, and as a consequence,

the normal:anomalous instance ratio in the test set is not indicative of the real dataset

proportion. Analyzing these results gave us the initial impressions on how good each

individual feature set performs, if our approach of performing statistical functionals

increases model performance, and on which feature sets (if not all) we should focus on

when developing our final models.

6.3. Time series supervised learning experimental setup - Part II

The second and the main part of the time series supervised learning approach

is concerned with clarifying one of the most important aspects of our research, that

being: How early (and with acceptable performance) in the trajectories can we correctly

differentiate between normal and anomalous cases?

The experimental setup that we have devised in order to help us answer that

question contains the following configurations:

(i) Feature set selection - All features (124 features)

(ii) Majority:minority class ratio configurations - Same as in Part I (Section 6.1)

(iii) Cross-validation - A 3-fold cross-validation will be performed.

• A total of 670 trips in our dataset. 656 normal and 14 anomalous.

• In order to approximate the real dataset normal:anomalous instance ratio,

in each test fold we will have around 218 normal instances and around 5

anomalous instances.

• The cross validation performance results will be used to select the optimal

majority:minority training instance ratio that is going to be used to train

the final models.

(iv) Final model & individual instance predictions

• The final model will be built with the ratio configuration seen as optimal

from the previous step.
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• In order to get an ensemble of 10 prediction for each time instance the

classifier will be iterated 10 times. The number of iterations was reduced

from 50 to 10 because of time and computational limitations.

(v) Dimensionality reduction configuration - Same as in Part I (Section 6.1)

(vi) Time series prediction smoothing and optimization - As discussed in 5.2.4.3, we

are going to perform another optimizing step with the hopes of smoothing the tra-

jectory predictions even further. Different N -sized windows will be experimented

with:

• N = 3, 6, 9, 12, all previous instances.

(vii) Additional “expert system rule” - Trips under 12 hours will always be classified

as normal.

(viii) Classifiers evaluated - XGBoost, Random Forests, Support Vector Machines.

(ix) Evaluation measures - The performance will be evaluated at different time points

and for different time intervals.

• Overall Macro Recall & F1.

• Macro Recall & F1 at different time points.

• Macro Recall & F1 for different time intervals.

(x) Time Ensemble Classifier evaluation - In the final phase of the supervised learn-

ing approach we are going to evaluate the performance of our model using the

evaluation measures described above. We are going to evaluate the following:

• Overall performance: [0h,48h].

• Performance at time points: t = 10h (Baseline), 12h, 14h, 16h, 18h, 20h,

25h, 30h, 35h, 40h, 48h.

• Performance for time intervals: [10h,16h], [15h,20h], [10h,20h], [15h,35h].

6.4. Evaluation of Time Ensemble Classifier

In the next paragraphs, we summarize the performance of our final models and

discuss the performance achieved at particular time intervals, or at specific points in

time. First, the cross-validation results shown in Table 6.3, indicate that, as far as

performance is concerned, the choice of classifier (XGBoost, Random Forest or SVM),
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is not a very important aspect. XGBoost achieves a Macro Recall of 67%, Random

Forest a Macro Recall of 68%, and SVM a Macro Recall of 66%. The cross-validation

performance of the classifiers of our choice is almost identical, however, the runtime

of the XGBoost ensemble classifiers was shorter by a considerable margin. Given that

there isn’t any dramatic difference in performance between the classifiers, XGBoost

will be considered as the main classifier for the next part, the main reason being that

it reaches almost identical performance as the others, but does so in a much shorter

runtime. For this research, experiments were also performed using Random Forests

and SVM, and the results will mostly be used for comparison purposes. The cross-

validation phase was also used to experiment with different majority:minority instance

ratios to train our models with, in order to maximize performance. The results showed

that the optimal majority:minority ratio that maximized performance was at k = 36

(Ratio 4:1), meaning that 36 normal trajectories and 9 anomalous trajectories were

used in the training sets of our final models.

3-Fold Cross-Validation XGBoost Random Forest SVM

All features
Macro Recall Avg 0.67 (0.05) 0.68 (0.06) 0.66 (0.04)

Macro F1 Avg 0.49 (0.02) 0.5 (0.03) 0.47 (0.02)

Table 6.3: 3-Fold Cross-Validation results (k = 36)

Looking at Figures 6.1 and 6.2, we depict the performance of our final models

at different time points t, ranging from 10 hours (baseline) to 48 hours (end of trajec-

tories). At t = 10 hours (baseline), the model achieves a Macro Recall of 64% and a

Macro F1 of 53%. At t = 18 hours, the model achieves a Macro Recall of 80% and

a Macro F1 of 60%, where the best results are achieved using N = 12 (the number

of previous predictions taken into consideration to smooth the trajectory predictions).

The very best results are achieved at t = 40 hours, where the model achieves a Macro

Recall of 96% and a Macro F1 of 67%, however, we are not very concerned what hap-

pens this late into the trajectories because our goal is to reach acceptable performance

as early as possible, and at t = 40 hours, it might be too late to potentially stop a

waste discharge instance (in real time applications). That is why the main focus is
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analyzing the performance of the model between the time interval [10h,20h], and as

discussed, the highest performance is achieved at t = 18 hours. Another important

aspect that needs to be mentioned is that the Macro Recall scores might be boosted

a bit from the fact that we always “expertly” classify trips under 12 hours as normal.

This assumption, discussed in Section 4.9, is based on statistical analysis and domain

expert opinion.

Figure 6.1: Time Ensemble Classification Performance - Recall (XGBoost)
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Figure 6.2: Time Ensemble Classification Performance - F1 Score (XGBoost)

Analyzing the results of Tables 6.4 and 6.5, we try to find out if there are par-

ticular time intervals where it is easier to discriminate between normal and anomalous

behavior. In these performance analysis scenarios we consider the predictions of all in-

stances at each time point and for each trajectory. In Table 6.4, we see that XGBoost

achieves an Overall Macro Recall of 82% and an Overall Macro F1 of 62%. The overall

performance is calculated by taking into account all predictions, at all times, and for

each trajectory, so the full time interval [0h,48h]. The different time interval scenarios

that we were guided to analyze by our findings are shown in Table 6.5. Looking at

the results, we see that all three different classifiers (XGBoost, Random Forest, SVM)

perform differently at different time intervals. This makes the time interval scenarios

difficult to analyze and discuss, and maybe inconclusive. That being said, we can see

that when the time interval [15h,35h] is considered, XGBoost achieves a Macro Recall

of 84% and a Macro F1 of 63%, which is slightly better than the overall performance.
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Overall Time Ensemble Performance (N=1) XGBoost Random Forest SVM

All features
Macro Recall Avg 0.82 0.75 0.82

Macro F1 Avg 0.62 0.59 0.61

Table 6.4: Overall Time Ensemble Performance (k = 36)

Time interval performance XGBoost Random Forest SVM

10h-16h
Macro Recall Avg 0.78 0.7 0.81

Macro F1 Avg 0.58 0.56 0.58

15h-20h
Macro Recall Avg 0.78 0.82 0.82

Macro F1 Avg 0.59 0.6 0.6

10h-20h
Macro Recall Avg 0.78 0.82 0.81

Macro F1 Avg 0.58 0.6 0.59

15h-35h
Macro Recall Avg 0.84 0.78 0.79

Macro F1 Avg 0.63 0.62 0.6

Table 6.5: Time interval performance (k = 36)

6.5. Model statistical significance test (Best performance vs Baseline)

Test concerning two proportions (two-tailed):

• P1: Best performance: t = 18 hours

• P2: Baseline: t = 10 hours

• H0: P1 = P2

• H1: P1 6= P2

• α = 0.05

• Z = 6.456. Z is not in the 95% critical value accepted range: [−1.9600 : 1.9600].

• p < 0.00001

• Since p < α, H0 is rejected. The difference between the proportion of the Best

performance and Baseline populations is big enough to be statistically significant.
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6.6. Unsupervised learning experimental setup

As discussed in Chapter 5, the unsupervised learning approach is developed in

order to detect new potentially anomalous trajectories residing in our dataset. In order

to do so, the following experimental setup and configurations have been devised:

(i) Gaussian Mixture Models - Two separate Gaussian Mixture Models will be fitted.

One using only the data of the normal trajectories, one using only the data of

the anomalous trajectories.

(ii) Number of components - The number of components (clusters) will be selected

based on the BIC score discussed in Subsection 5.3.1. The lower the BIC score

the more appropriate the number of components for the models.

• 14 mixture components for the GMM fitted with normal data.

• 4 mixture components for the GMM fitted with anomalous data.

(iii) Time interval data used for input - The results shown in Subsection 6.4 indicate

that one of the most discriminative time intervals between normal and anomalous

trajectories is between 10 and 20 hours. In order to fit the GMM’s, only the data

between this time interval will be used as input.

(iv) Fixed-size representation of trajectories - Each trajectory will be represented by

exactly 100 sampled instances from the previously mentioned time interval. The

sample size is fixed in order for the overall trajectory log-likelihood scores to be

fairly compared to each other.

(v) Degree of anomaly measure - Each trajectory will be represented by 100 sam-

pled instances, as stated above. First, each of the samples will have their log-

probability computed individually. Then, for each trajectory the log-likelihood

scores will be summed together to obtain the overall trajectory log-likelihood.

The obtained scores will be sorted in such way that the potentially anomalous

trajectories will be on top. Whether the sorting is in ascending or descending

order, it depends on which fitted GMM we take into account.

(vi) Top N anomalous cases - The Top 20 anomalous cases according to the models

will be plotted (only the Top 6 will be shown in the results subsection), visualized
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on maps and will be further inspected. Eventually, as part of this research, the

visualized trajectories will also be shown to the domain inspectors, mirroring the

initial process in which our already known anomalous cases were identified.

6.7. Evaluation of the unsupervised learning approach

In this section, we discuss the output of our Gaussian Mixture Model unsupervised

learning approach. There are three things to discuss: the “looping” behavior that it

detects, the detection of one trajectory instance leaving Rotterdam and returning to

Rotterdam, and the potential of this approach if more anomalous data were available.

Analyzing the Figures 6.3 and 6.4, where in each figure the Top 6 ranked anoma-

lous trajectories are visualized, the first thing to be noticed is that the Gaussian Mixture

Model approach is able to detect the “looping” behavior, albeit, there is some confusion

involved. We can see that most of the visualized trajectories have some kind of “loop”,

or let’s say a U-turn involved, however, it can also be seen that it doesn’t involve the

same port. Because of the geographical position of the ports of Rotterdam, Amsterdam

and Antwerp, in order to go from one point to another between these three ports, the

trajectory is obviously expected to be in the form of a U-turn. In addition to that,

because of the closeness of these ports, the dataset is expected to have a huge amount

of data involving trips from one of the aforementioned ports to another. This results

in the Gaussian Mixture Models confusing our targeted “looping” behavior with the

previously discussed U-turn, and in doing so, models them as if they exhibit the same

ship movements or behavior.
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Figure 6.3: Top 6 anomalous trajectories according to the GMM fitted with normal

data (Ground truth = Normal trajectory, for all six instances)

Trip ID Port Destination Cargo type

253 Rotterdam Antwerpen NAN

80 Rotterdam Grangemouth NAN

336 Rotterdam NL RTD 4 ORDERS Recognizable hazard

609 Rotterdam TJELDBERGODDENˆ2CNOR Hazard

473 Rotterdam Amsterdam Hazard

636 Rotterdam FLUSHING Unspecified

Table 6.6: Top 6 anomalous trips according to the GMM fitted with normal data

(Destination name is the actual reported and unaltered text)

Looking at the visualization of trajectory number two in Figure 6.4, we can see

the detection of one new and previously unseen instance of a ship departing Rotter-

dam and returning to Rotterdam without visiting another port. This instance was

missed during the initial process of labeling anomalous instances because there exist

two port destination features in the datasets: one belonging to the AIS dataset and
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another belonging to the Portcall dataset. This is one of the cases that highlights that

the approach of merging the AIS and Portcall datasets will lead to mismatches and

irregularities, also discussed in Subsection 4.7.2, because both datasets are collected

with different usages in mind. That being said, in this case, with the existence of two

different features describing the same thing in different datasets, we ended up with the

detection of another potential anomalous trajectory.

Figure 6.4: Top 6 anomalous trajectories according to the GMM fitted with anomalous

data (Ground truth = Normal trajectory, for all six instances)

Trip ID Port Destination Cargo type

222 Rotterdam Gethenborg NAN

297 Rotterdam Rotterdam NAN

423 Rotterdam Hamburg NAN

164 Rotterdam STEENBANK ANCHORAGE Unspecified

439 Rotterdam Antwerpen Hazard

36 Rotterdam NL RTM>NL TNZ NAN

Table 6.7: Top 6 anomalous trips according to the GMM fitted with anomalous data

(Destination name is the actual reported and unaltered text)
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It is also important to note that visualizing and analyzing the Top 6 anomalous

instances according to the unsupervised learning models, we also see that they contain

some trajectories that are perfectly normal, but are ranked high based on the anomaly

score. This highlights the need for the acquisition of more anomalous instances that

would be used to fit these kinds of unsupervised models. At the same time, the detec-

tion of the U-turn and the Rotterdam-Rotterdam trajectory gives us positive indicators

that this approach can be additionally refined to be more efficient when it comes to

anomaly detection.
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7. CONCLUSIONS

In the final chapter of the thesis, we answer our research questions defined in

Section 1.5 , reiterate the key points of this research, explain the relevance and sig-

nificance of the work, and give recommendations for future work on this topic. Each

sub-research problem will be answered and discussed individually, and as a collective,

they contribute to answering the main research question.

The first research sub-problem was defined as follows:

• What is the effect of summarizing the low-level descriptors that come with the

AIS data (e.g. latitude, longitude, speed, orientation), over past records?

The preliminary results obtained after performing the initial experiments, shown

in Tables 6.1 and 6.2, indicate that our approach of applying statistical functionals

to summarize the low-level descriptors increases the performance by 4%, achieving a

Macro Recall of 73% when all engineered features are used as input. When it comes

to comparing the individual time resolutions, the time resolution labeled as “Last 60

minutes resolution” performs the best, achieving a Macro Recall of 71%, that is a

2% increase compared to using only the low-level descriptors as input. Looking at

the results discussed above, and also in Section 6.2, we can say that the approach of

applying statistical functionals in order to engineer new features that contain historical

information about the trajectories, does, in fact, boost the performance.

The second research sub-problem was defined as follows:

• Utilizing the AIS trajectory data, can we train models using previous sequential

data points up to a specific point to detect our targeted behavior before occurring,

or as early as possible after occurring?



82

One of the main goals defined for this research was to be able to distinguish

between normal and anomalous instances as early as possible in the trajectories. At

the baseline time point, defined at t = 10 hours, the model achieved a Macro Recall of

64% and a Macro F1 of 53%. As time progresses, the model’s ability to discriminate

between normal and anomalous instances increases. At t = 18 hours, the model reaches

the best performance, time optimization also taken into account, achieving a Macro

Recall of 80% and a Macro F1 of 60%. A statistical significance test was also performed

(test concerning two proportions) in order to find out if the difference in performance

between the model at t = 10 (Baseline) and at t = 18 (Best performance) is significant.

The results showed that the difference between the proportion of the best performing

model and the baseline model populations is big enough to be considered statistically

significant. This means that we were able to achieve a significant improvement in

performance, and did so in a relatively short time.

The third research sub-problem was defined as follows:

• Based on the log-likelihood scores of the individual trips, are the tanker-specific

fitted models able to detect new anomalous cases residing in the dataset?

The unsupervised Gaussian Mixture Model (GMM) approach was devised with

the goal of finding previously undetected anomalous cases residing in the AIS dataset of

April-May 2017. The results showed that this approach has a lot of potential, however,

a dataset with a higher amount of anomalous instances is necessary, as expected. The

fitted GMMs are able to detect variations of the “looping” behavior, including the

“U-turn” trajectory form, where ships travel between Rotterdam, Amsterdam and

Antwerp. Because of the small amount of anomalous data instances, the model is not

able to distinguish very well between our targeted “looping” trajectories and the “U-

turn” trajectories, resulting in ranking them as anomalous very frequently. That being

said, even with the small amount of anomalous data it already managed to detect one

case of our targeted behavior. This means that with further tweaking, and fitted with

a higher amount of quality data, this approach has the potential to be very useful.
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The fourth research sub-problem was defined as follows:

• Is the amount and the quality of the data available to us sufficient for waste

discharge anomaly detection?

This research question does not have a black or white resolution, understandably,

because the more data that we have in our disposition, the greater our possibilities

for successful implementations. However, there are certain aspects that we can discuss

after getting more acquainted with these datasets during this research, concerning both

the amount and the quality. First, it is clear that there is a lack of data labeled as

anomalous, so, the data indicating our targeted behavior. The lack of anomalous data

was an important limitation in our research because it restricted our methodological

choices and approaches, meaning that even the techniques that we did manage to

implement included substantial configurations and tweaks. Second, in terms of quality,

the general limitations concerning AIS data, discussed in Section 1.3, also applied to

our dataset. This included missing data, inconsistencies, mismatches, and very likely

intentional reporting of incorrect information by ship operators.

And finally, the main research question was defined as follows:

Given the availability of the AIS dataset and the potential of supervised and

unsupervised techniques to solve complex problems: Is it possible to develop machine

learning models that detect ship waste and residue discharge at the North Sea

effectively (with performance significantly higher than chance level) and efficiently

(with minimal cost and preferably real-time)?

The discussions of the individual research sub-problems in the preceding para-

graphs have already contributed to answering our main research question. To summa-

rize it, we can conclude that, yes, it is possible to develop models that discriminate

between normal and anomalous instances effectively and efficiently. In essence, our

model achieves a Macro Recall of 80%, and does so in 18 hours time elapsed. That
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being said, the specific scenario of detecting ship waste discharge at the North Sea is

a more complicated matter, even though there are many positive indicators. Because

of the frequently mentioned limitation that is the lack of anomalous data, we had to

combine the trajectory instances of “Class 1” (anomalous, but not expected to have

exhibited waste discharge behavior), and “Class 2” (anomalous, typical waste discharge

behavior), into one class. This means that our model learns the anomalous behavior

as a combination of the previously mentioned “Class 1” and “Class 2”. That is not the

scenario that we would aim for in perfect circumstances, however, it was a necessary

step to carry out in order to obtain performance results that would have a meaningful

interpretation. Finally, it is important to mention that at t = 18 hours, our model

correctly classifies 9 out of 14 anomalous instances, a good indicator that it would be

able to achieve similar, or very likely better performance, if we had a higher amount

of anomalous “Class 2” instances to train and test our models.

Last but not the least, we will discuss what the results of our thesis signify, and

give a final suggestion on where to go from here. First, we found out that it actually

is possible to discriminate between normal and anomalous behavior relatively early in

the trajectories. Second, based on the global and local time analysis plots, (Figures

6.1, 6.2, A.1, A.2, A.3, A.4, A.5), we found out that the time interval [10h,20h] is very

informative when it comes to distinguishing between normal and anomalous instances.

These findings align with our initial data exploratory analysis that indicated that 13

out of 14 anomalous trips have a trip length of over 12 hours. This also aligns with

domain expert opinions that suggested that waste discharge behavior is likely to be

exhibited after 12 hours or longer after departing the port of Rotterdam. And lastly,

to conclude everything on a positive note, this newly acquired knowledge has given us

positive indicators that this research can be used as a stepping stone to (near) real time

detection of waste and residue discharge at the North Sea, and that we can further

refine both the time series supervised approach and the unsupervised learning approach

to achieve even higher performance.
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APPENDIX A: Additional results

Figure A.1: Local plot analysis - Anomalous Trip ID = 108

Figure A.2: Local plot analysis - Anomalous Trip ID = 109
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Figure A.3: Local plot analysis - Anomalous Trip ID = 221

Figure A.4: Local plot analysis - Anomalous Trip ID = 291
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Figure A.5: Local plot analysis - Anomalous Trip ID = 424

Figure A.6: Gaussian Mixture Model Selection - Input: Normal data
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Figure A.7: Gaussian Mixture Model Selection - Input: Anomalous data


