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Abstract

Computing viewsheds from different viewpoints is an important procedure with
many applications in multiple Geographic Information Science (GIS) fields. While
much research has been done on viewsheds obtained from a single viewpoint, view-
sheds from multiple viewpoints are still mostly unexplored. This thesis attempts
to give more insight into the complexity of multiple viewsheds by analyzing several
measures from different GIS fields on real-world terrains. Sky visibility index, ter-
rain ruggedness index, terrain shape index, fractal Dimension, and prickliness were
calculated on datasets of around 50 real-world terrains and statistically analyzed
with viewsheds generated from multiple viewpoint configurations. Because GIS
fields have different preferences on terrain representations, both digital elevation
model (DEM) and triangular irregular network (TIN) terrains were used. This
thesis shows some relevant insight into the behavior of viewsheds on realistic ter-
rains. It also provides evidence that measures like prickliness are a good indicator
for (multiple) viewshed complexity in some common use cases.
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Fig. 1: The viewsheds of three viewpoints on a 2.5D terrain. (From Hurtado
et al. [1])

1 Introduction

Visibility is an important topic within multiple fields; examples of problems
include finding the best locations to place cameras, determining visible geom-
etry within a 3D environment (e.g., in games), and guard (tower) placement
[2]. Visibility is not limited to sight problems, for example, finding the best
locations to place radio towers [3] or Wi-Fi hotspots can also be seen as
visibility problems. Within the geosciences visibility tools are used for the
analysis of archaeological locations and urban environment planning [4, 5].
In essence, all these problems pose the same question: “Amidst several ob-
stacles, are two points visible from each other?” The focus of this thesis is
on 2.5D terrains. In other words, xy-monotone surfaces in R3, meaning any
vertical line intersects the surface at most once. An important concept re-
lated to visibility is the viewshed of one or multiple viewpoints. A viewshed
is defined as the regions of a terrain that are visible from the viewpoint, see
Figure 1. Within this thesis, viewpoints are assumed to have unlimited sight
distance.

The computation of a viewshed belonging to a single viewpoint is a well-
studied topic. However, Hurtado et al. [1] found that the problem of com-
puting the viewshed (or visibility map) belonging to multiple viewpoints had
been left open. They studied visibility maps on 1.5D and 2.5D terrains, intro-
duce three visibility structures, and analyze their space and time complexities
for both dimensions. For 2.5D terrains, they show that the visibility map
can have Ω(m2n2) complexity. This is proven using a theoretical “courtyard”
terrain, see Figure 2. However, in the real world, this type of terrain is not
commonly encountered. Therefore, it is interesting to explore the complex-
ity of visibility maps on real-world terrains. It is also interesting to explore
real-world measures used by researchers in fields that predominantly work
on terrains scanned from the real world and see if they show a correlation to
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the complexity of visibility maps.

Fig. 2: An example of the “courtyard” terrain with Ω(m2n2) complexity, as
described by Hurtado et al. [1]. The terrain consists of a flat plane
surrounded by a thin wall with O(n) windows. Each viewpoint is
placed so they all see through each window into the courtyard. The
joint viewshed inside the courtyard then forms an Θ(mn) × Θ(mn)
grid.

In the field of GIS, a lot of terrain measures are used in the analysis and
interpretation of topographic features. These measures are sometimes called
topographic attributes (TAs). Dong et al. [6] systematically classified a
number of these measures based on previous classification methods by scien-
tists in different fields. Most of these measures only provide information for
specific parts of a terrain, like catchment areas (basin shaped areas that can
collect water) or valleys. Other measures convey information that is unlikely
to correlate with viewshed complexity (on their own); examples of this are
mean aspect (the direction of a slope) and plane area. From the remaining
measures, the ones used for this thesis project were chosen based on their
common use being related to visibility or the features they analyze influence
viewsheds and thus have the potential to show a correlation with viewshed
complexity. The selected measures are terrain ruggedness index [7], terrain
shape index [8], fractal dimension [9, 10], sky visibility index (a simplifica-
tion of solar radiation index described by Tabik et al. [11], and prickliness.
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Prickliness is a new measure defined by Acharyya et al. [12] during the same
time as this project, so it is not listed in the paper by Dong et al. [6].

Researchers in the different fields that work with terrains use separate ways
of representing terrains. GIS and Geology fields primarily use a Digital El-
evation Model (DEM), a rectangular 2D raster with elevation values stored
in its cells. While computational geometry, graphics, and virtual world fields
primarily use a Triangular Irregular Network (TIN), a continuous 3D (De-
launay) triangulation made up of 3D vertices and edges. To create a bridge
between these fields (and terrain representations), it is interesting to investi-
gate the behavior of the joint viewsheds and the selected measures on both
terrain representations and find out if the same correlations hold between
them.

Section 2 contains the definitions of the measures, algorithms, and other
concepts used in this project. Section 3 describes the algorithms and adap-
tions that were implemented specifically for this project. Section 4 contains
a description of the experimental setup. The results are listed in Section 5,
followed by their interpretation in Section 6. In Section 7, the findings and
recommendations based on the results are given. Finally, some recommen-
dations and ideas for possible next steps are discussed in Section 8.
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2 Theory and definitions

2.1 Viewsheds

The viewshed of viewpoint p is the set of all visible points on a terrain T .
A point q is considered visible if the line pq does not intersect T . The joint
viewshed is then the union of all viewsheds belonging to the set of all view-
points P .

To generate the viewsheds for the DEM terrains, we can utilize the “viewshed
2” function of the ArcGIS Pro [13] software package. This function uses a
brute-force algorithm that tests every cell independently instead of a typical
wavefront or sweep line algorithm, which uses an approximate solution (e.g.,
[14, 15]). “Viewshed 2” works by constructing a 3D sightline from each view-
point to every cell center in the DEM terrain. If a sightline is not obstructed,
the target cell is marked as visible.

For this project, the viewshed complexities for the DEM terrains were de-
termined by converting the DEM joint viewsheds to a polygon and counting
its vertices. This polygon was constructed using the “Raster to Polygon”
function of ArcGIS Pro [13] with the “simplify” parameter set, so the edges
of the polygon become straight line segments instead of conforming to the
cell edges.

While ArcGIS Pro [13] provides multiple implementations for viewshed gen-
eration on DEM terrains, it does not contain one for TIN terrains. In fact, no
publicly available TIN viewshed algorithm could be found. For this reason,
the viewsheds for the TIN terrains were generated with an own implementa-
tion of the hidden-surface elimination algorithm presented by Goodrich [22].
This algorithm runs in O(n log n + k + t) time, where n is the number of
edges of the terrain, k (resp. t) the number of intersecting pairs of line seg-
ments (resp. polygons) created by projecting the edges (resp. triangles) of
the terrain onto the 2D projection plane π. This algorithm was chosen for
its ease of implementation while still having a good runtime complexity. The
details of this implementation are described in Section 3.3.

The viewshed complexities for TIN terrains are the number of vertices on
the boundaries of the viewshed arrangement.
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2.2 Terrain measures

This section describes the measures used for this project. Most of these
measures were only defined for either DEM or TIN terrains. How these
were adapted to both formats, while preserving their meaning, is described
in Section 3. To explore how the terrain influences viewshed complexity,
different strategies are used. Some measures only analyze properties local to
a viewpoint, while others consider the terrain as a whole.

2.2.1 Terrain ruggedness index

According to Riley et al. [7], the “Terrain Ruggedness Index (TRI) pro-
vides an objective quantitative measure of topographic heterogeneity.” In
other words, it shows how variable the elevation of the terrain is. They
also state that terrain heterogeneity is an important variable for predicting
animal habitats because it helps identify areas that provide cover for prey
and stalking cover for predators. Because these traits are tied to visibility,
it seems interesting to look at the relation between TRI and joint viewshed
complexity.

Calculating TRI is done by summing the squared differences between the
elevation of a DEM grid cell and its eight neighboring cells and taking the
root of this sum. The measure can be calculated for a whole terrain to iden-
tify regions with high change in elevation. TRI is normalized by taking the
mean of the sum of squared differences.

ssdiff =
1

N

N∑
n=0

((Zn − Zv)
2)

TRI =
√

ssdiff

(1)

Where Zn is the elevation at point n on the circle with radius R, and
Zv is the elevation of the circles’ center, which is the viewpoint. For DEM
terrains, the points are the cells lying on the circle. Because there is no TRI
definition for TIN terrains, this measure was adapted by placing 360 evenly
spaced points on the circle for Zn.
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2.2.2 Terrain shape index

The Terrain Shape Index (TSI) is a measure described by McNab [8]. It
represents the geometric shape of a terrain. In the original paper, it is used
for predicting tree height based on landforms.

Mathematically it represents the mean relative difference in elevation be-
tween the center of a plot and its circular boundary. The difference in eleva-
tion (with respect to the middle point) is sampled N times on the radius R
and averaged. For convex topography, the sign of the TSI will be negative
because the mean elevation is less than the elevation at the sample point.
The sign will be positive for concave topography, and the TSI will be near
zero for linear, but not necessarily level, topography. The TSI is normalized
by dividing it by R. This makes it equivalent to the mean change in elevation
per meter along the radius.

Z̄ =
1

N

N∑
n=0

(Zn − Zv)

TSI = Z̄/R

(2)

Where Zn is the elevation at point n on the circle with radius R, and
Zv is the elevation of the circles’ center, which is the viewpoint. For DEM
terrains, the points are the cells lying on the radius. Because there is no TSI
definition for TIN terrains, this measure was adapted by placing 360 evenly
spaced points on the circle for Zn.

2.2.3 Fractal dimension

First described by Mandlebrot [10], fractal dimension (FD) is an index of
terrain complexity that shows how much a pattern changes depending on
the scales at which it is measured. Fractal dimension was used by Taud and
Parrot [9] to study the relationships between geomorphic features and surface
roughness of DEM terrains. They found that using local fractal dimension
provides useful information about geological and geomorphic features. They
also describe a so-called box-counting method to extract the fractional di-
mension from a DEM terrain:
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A cube of size s × s × s is centered on a point that lies on the terrain’s
surface. The volume under the surface is filled up by a set of voxels, the sides
of which are equal to the DEM cell size. The cube contains a tower of 0 to
s voxels, based on the terrain’s elevation, at each (x, y) coordinate within it.
The cube is then partitioned in boxes of size q varying between 1 and s/2,
depending on the whole dividers of s. Each of these boxes is considered as
filled if at least one voxel is contained in this box. The variable box size q and
the resulting amount of filled boxes n are recorded, and their log values are
graphed. The fractal dimension is then the inverse of the slope of the linear
regression line. Figure 3 shows an example of the box-counting method, with
the accompanying graph in Figure 4.

Fig. 3: Local fractal dimension with s = 12, q = 1, 2, 3, 6, and N = 6, 3, 2, 1.

0 0.5 1 1.5

0

0.5

1

1.5

ln(q)

ln
(n

)

Fig. 4: Graph of the box-counting example in Figure 3, the slope of the line
is −1, taking the inverse results in a fractal dimension of 1.
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2.2.4 Sky visibility index

Initially, “solar radiation index” [11] was selected as one of the experimental
measures because it calculates the amount of solar radiation parts of the ter-
rain receive. This solar radiation can be limited by the obstructions between
the measured point on the terrain and the sun. This description is similar
to a visibility problem because the “visibility” of the sun at a point on the
terrain is tested. Upon further inspection, however, this measure also con-
siders data that is not relevant to viewsheds. Examples of this are the time,
day, year, light transmittivity through the sky, and the path the sun travels
over the terrain. To extract only the visibility component and reduce its
computational complexity, “solar radiation index” was simplified to a “sky
visibility index.”

In this project, “Sky visibility index” is defined as the visible percentage
of a horizontal skydome centered on a viewpoint (see Figure 5 for a 2D ex-
ample). ArcGIS Pro [13] has a “skyline” tool built-in, which generates the
skylines for multiple viewpoints and a DEM or TIN terrain. The “skyline
graph” tool returns the percentage of visible sky based on these skylines.
Because at higher points of the terrain there are fewer obstructions, this
measure should, in theory, be higher at peaks and lower in pits. Kim et al.
[16] showed a similar trend regarding viewshed coverage: By placing view-
points at peaks, viewshed coverage increases, and by placing viewpoints in
pits, viewshed coverage decreases as well.
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Fig. 5: An example of sky visibility in 2D. A horizontal dome centered on the
viewpoint is placed around the terrain. A skyline is drawn based on
the obstructing terrain, then the percentage of visible sky is calculated
based on this skyline. In this example, the left mountain obstructs
41◦, and the right mountain 31◦. The total dome is 180◦, so the sky
visibility index is 108

180
= 0.6.

2.2.5 Prickliness

Prickliness is a terrain-wide measure defined by Acharyya et al. [12] specif-
ically to show the potential of 2.5D terrains to have high complexity view-
sheds. It is defined as such:

The formal definition by Acharyya et al. [12] is as follows; Let T be an
xy-monotone terrain. Let A be an affine transformation. The local maxima
of A(T ), m(A(T )), is the number of internal and convex vertices of T which
are extremal in the z-direction. That is, all adjacent vertices have a lower or
equal z-coordinate. Let A(T ) be the set of all affine transformations of T .
The prickliness of T , π(T ) is then defined as the maximum number of local
maxima over all transformations of T .

In simpler terms, let ~v be a vector in R3, let π~v(T ) be the number of lo-
cal maxima of terrain T in direction ~v. That is, the points in T that do not
allow further traversal in direction ~v. (For a vector along the z-axis, this
would be the points on the terrain where the surrounding points are all at a
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lower elevation.) The prickliness π(T ) for T is then the maximum number
of local maxima over all directions.

Observe that to traverse from vertex v to an adjacent vertex va in direc-
tion ~vt, the dot product of the vectors (v, va) and ~vt has to be positive. The
directions for which this is true and false can be separated by a plane per-
pendicular to (v, va) and passing through v. Then the cone constructed by
all the perpendicular planes belonging to v and its adjacent vertices contains
all the directions for which v is a local maximum.

Fig. 6: A 2D representation of the prickliness cone. Planes (red dashed lines)
are placed perpendicular to the edges adjacent to vertex v, passing
through v. For all the directions originating from v and pointing
“above” all the perpendicular planes, v is a local maximum. This
region (green) is recorded on a horizontal plane (light blue line), with
its origin translated slightly above v. The region on the 2D plane with
the most overlapping viewshed cone fragments contains the prickliness
direction(s). The number of overlapping cones within this region is
the prickliness π(T ) for terrain T .
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0

8

5◦
10◦

15◦
20◦

Fig. 7: An example of a TIN terrain (left) and the accompanying 2D ar-
rangement of local maxima (right). The colors in the arrangement
indicate the number of local maxima in direction ~v in degrees from
direction vector (0,0,1). The prickliness is 8 in the directions roughly
13◦ north-east from the origin.

3 Implemented algorithms and datasets

Several algorithms had to be implemented, and a dataset was created to
run the experiments for this project. The algorithms were implemented be-
cause they were conceived explicitly for this project, or there was no publicly
available implementation. If (legally) possible, the implementations of these
algorithms and datasets will be made publicly available for future research.

3.1 Terrain datasets

To make the results statistically significant, a dataset of 52 terrains with
equal dimensions but different elevation properties was created by identifying,
extracting, and processing regions of the real world with varying terrain
configurations. The gathering of these terrains was done using the “terrain”
world elevation layer [19] provided by the Environmental Systems Research
Institute (ESRI) using the ArcGIS Pro software package [13]. The terrain
extents of these terrains are listed in appendix A.
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Each of the gathered terrains has a cell size of 10 meters and a dimension
of 1400 rows by 1200 columns, the total size being 14000m×12000m. Zhang
et al. [20] found a DEM resolution of 10 meters to be the best compro-
mise between high resolution and processing time of measurements. More
recently, Maynard et al. [21] found that moderate resolutions (i.e., 10 to 20
meters) accurately represent terrain features while fine resolutions (i.e., 1 to
5 meters) only provide a marginal improvement in accuracy of various ter-
rain measures while increasing computational requirements. Finally, because
a resolution of 10 meters seems to be used often within the GIS field, and
thus widely available, it is the obvious choice.

The TIN terrains were also generated with the ArcGIS Pro software package
[13] using the “Raster to TIN” function. This function generates a Delaunay
triangulation to avoid long, thin triangles as much as possible.

3.2 Adaption of measures

Most of the measures used in this project were described only for either DEM
terrains or TIN terrains. To be able to run all experiments on both terrain
representations, their counterparts had to be conceived and implemented.

3.2.1 TRI and TSI

TRI and TSI are defined explicitly for DEM terrains. Both of these measures
use the elevation difference between the viewpoint and the elevation of the
DEM cells lying on a circle centered on that viewpoint. All the DEM cells
that intersect a circle with a given radius are measured (Figure 8.) In essence,
these measures use an approximation of the elevation values under a circle.
Because there is no definition for TIN terrains, these measures were adapted
by measuring the elevation at 360 evenly spaced points on the circle centered
on the viewpoint.
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Fig. 8: To adapt the TRI and TSI measures for larger radii, the elevation val-
ues of the (green) cells lying underneath the (red) circle were counted
for these measures.

3.2.2 Fractal Dimension

For this project, fractal dimension was adapted for TIN terrains while ad-
hering to the same method described in Section 2.2.3. To obtain the voxel
surface at a viewpoint, equal distant points in the xy plane were taken, origi-
nating from the viewpoint. The distance between the points was determined
by the voxel size v, and the number of stacked voxels at each point was
determined with d zxy

v
e, where zxy is the elevation at the (x, y) coordinate.

3.2.3 Prickliness

Using the observation from Section 2.2.5, an O(n2) algorithm for TIN terrains
was developed (with Acharyya et al. [12]) and implemented using CGAL [17]
and its “2D arrangements” [18] library. It works in the following steps:

1. For each interior vertex v of T , iterate through every adjacent vertex
va of v. Construct a plane perpendicular to the vector (v, va) passing
through v. Intersect this plane with a horizontal plane with its origin
placed slightly above v. The intersecting line marks a boundary of the
region of local maxima vectors for v.

2. These lines are added to a 2D arrangement M creating regions where
the numbers of local maxima are equal.

3. After iterating through all vertices, perform a breadth-first traversal
of M starting by determining the number of local maxima m in an
arbitrary face and traversing over the boundaries. When traversing
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over a boundary increment (resp. decrement) m for every local maxima
cone we enter (resp. exit). Note that being inside a cone means being
above all the perpendicular planes belonging to it.

4. Finally, return the highest number of local maxima within the arrange-
ment as the prickliness.

The prickliness values for the DEM terrains were approximated because
the DEM terrains have significantly more vertices (cell centers) and a con-
stant eight neighbors, this causes a significant increase in computation time
and, more importantly, memory usage. The approximation algorithm trans-
lates a horizontal grid G of n by n and cell size s above the cell center ct of
each interior cell. The vectors originating from ct to every cell center in G are
then tested and counted for being a local maximum (i.e., if it is contained
within the local maxima cone). Cell size s was set to 0.05, based on the
results of the TIN terrains. This method should, in practice, produce a close
approximation of prickliness.

3.3 Goodrich viewshed algorithm

While ArcGIS Pro [13] provides multiple implementations for viewshed gen-
eration on DEM terrains, it does not contain one for TIN terrains. In
fact, no publicly available TIN viewshed algorithm could be found. The
hidden-surface elimination algorithm presented by Goodrich [22] was selected
to generate the viewsheds for the TIN terrains. This algorithm runs in
O(n log n + k + t) time, where n is the number of edges of the terrain, k
(resp. t) the number of intersecting pairs of line segments (resp. polygons)
created by projecting the edges (resp. triangles) of the terrain onto the 2D
projection plane π. This algorithm was chosen for its ease of implementation
while still having a good runtime complexity. It works in four steps:

1. Project the set of 3D polygons P onto a 2D plane π and store this in
a 2D arrangement based on a doubly connected edge list (DCEL).

2. Construct “overlap relation” R, a directed graph with every node cor-
responding to a polygon and each edge storing the spatial order and
overlap relations between the polygons.

3. Using R, sort the polygons back-to-front.
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4. Using the “painter’s algorithm” “draw” the 2D polygons back to front,
removing previously visible edges within the newly added 2D polygon.

The final arrangement contains the 2D projection of the 3D viewshed,
with every half-edge containing a 3D polygon index. To project these half-
edges back into 3D, a ray is shot through both edge points. An intersection
test is then performed on the 3D polygon creating a 3D edge from the inter-
section points. Combining these 3D edges forms the viewshed.

(a) (b)

(c) (d)

Fig. 9: An example of viewshed generation using the implemented Goodrich
hidden-surface elimination algorithm [22]. Figure (a) shows a ter-
rain with a view frustum in blue, originating from a viewpoint in the
center. Figure (b) shows the 2D projection of the polygons inside
the view frustum. Using the overlap relation graph and painter’s al-
gorithm, the obscured (parts of) polygons are removed, resulting in
Figure (c). Finally, the polygons are projected back into 3D, produc-
ing the final viewshed in Figure (d).
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The “painter’s algorithm” works by drawing the 2D polygons one-by-one
starting with the furthest polygon. When a newly added polygon Pn over-
laps the previously added polygon(s), the edges inside Pn are removed using
a depth-first search on the inner edges connected to the boundary vertices of
Pn. Note that this operation can create redundant vertices on the edges of
Pn. These have to be removed as not to inflate the viewshed complexity.

The overlap relation graph R is constructed by traversing the boundary of
each polygon projected onto π. When the boundaries of two polygons inter-
sect, their obscure/obscures relation is stored in R depending on their spatial
ordering. Polygons are fully embedded if its boundary edges do not inter-
sect the boundary of another polygon. When a fully embedded polygon is
stored in R and obscures another polygon, it can simply be “drawn,” and the
depth-first search can be skipped. Polygons that are fully embedded and are
obscured by another polygon are always invisible, so they are simply removed.

The viewsheds from multiple viewpoints were overlaid using the algorithm
described by Finke and Hinrichs [23], as suggested by Hurtado et al. [1]. Be-
cause the algorithm by Goodrich [22] is described for a view frustum, it was
adapted to all directions by projecting the terrain onto a unit cube centered
on the viewpoint and processing each side individually before stitching the
results together.
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4 Experimental setup

Two software pipelines were set up to facilitate the automated testing of
a potentially large amount of terrains, one for the DEM terrains and an-
other for the TIN terrains. The pipeline for DEM terrains was developed
with python using the ArcPy library included with ArcGIS Pro [13]. This
library does not contain arbitrary-precision floating-point operations, but it
is a widely used software package within the geosciences and contains many
tools for DEM terrains.

The pipeline for TIN terrains was implemented using C++ and the CGAL
library [17], which does support arbitrary floating-point operations. CGAL
is well-known within the computational geometry field and provides multiple
algorithms and data structures that facilitate working with continuous sur-
faces like TIN terrains. CGALs “2D arrangements” [18] library was used to
compute the viewsheds and prickliness.

The experiments are run for each terrain in the following manner:

1. Pre-process the terrain

2. Generate viewpoint sets

3. Generate viewsheds

4. Run measures

5. Export results

The pre-processing step mostly applies to the DEM terrains. It generates
the TIN version (if it does not exist) and adds the spatial reference “WGS
1984 Web Mercator (auxiliary sphere)” needed by ArcGIS Pro to run some
of the measures. The exported results are used in the statistical analysis.
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4.1 Viewpoints

The viewpoints were generated within an evenly spaced grid to prevent clus-
tering, with one viewpoint per cell. Kim et al. [16] found that placing the
viewpoints at peaks produces viewsheds that cover hilltops, but not many
valleys. Placing them in pits produces the opposite, and passes a combina-
tion of the two. Three sets of viewpoints were generated for every terrain
to cover these different cases, with each viewpoint located on the highest,
lowest, and random point within their respective grid cell.

When viewpoints are placed close to the boundary of a terrain, measures
that use a radius or window size could extend past the terrains’ boundary. A
margin around the grid was added with its width set to the radius/window
half-size used in the measures to prevent this. Because a typical observer
(e.g., a person) is at least a meter above the ground, the viewpoints were off-
set to 1 meter above the surface. This offset also prevents artifacts caused by
viewpoints being underneath the terrain due to rounding errors. Both view-
point sets use the same xy-coordinates to make the DEM and TIN datasets
more comparable. Because elevation values are not equal between the two ter-
rain types, the z values of the viewpoint are re-interpolated for both datasets.
The number of viewpoints was set to 9 in a 3×3 grid. This amount typically
does not cover the whole terrain and provides a good spread.

Another dataset with a single viewpoint was also generated to explore the
change in behavior between single and multiple viewpoints. This dataset
was generated in the same way as the multiple viewpoint dataset to make
the results comparable. The single viewpoint was generated in the middle
cell of a 3× 3 grid.

4.2 Terrains

For this project, a dataset of 52 DEM terrains was created using the “terrain”
world elevation layer [19] provided by the Environmental Systems Research
Institute (ESRI) using the ArcGIS Pro software package [13]. The terrain ex-
tents of these terrains are listed in appendix A. Each of the gathered terrains
has a cell size of 10 meters and a dimension of 1400 rows by 1200 columns,
the total size being 14000m× 12000m. Zhang et al. [20] found a DEM reso-
lution of 10 meters to be the best compromise between high resolution and
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processing time of measurements. More recently, Maynard et al. [21] found
that moderate resolutions (i.e., 10 to 20 meters) accurately represent terrain
features while fine resolutions (i.e., 1 to 5 meters) only provide a marginal
improvement in accuracy of various terrain measures while increasing com-
putational requirements. Finally, because a resolution of 10 meters seems to
be used often within the GIS field, and thus widely available, it is the obvious
choice.

The TIN terrains were also generated with the ArcGIS Pro software package
[13] using the “Raster to TIN” function. This function generates a Delau-
nay triangulation to avoid long, thin triangles as much as possible. With
the z-tolerance setting, the triangulation complexity can be controlled by
determining an allowed deviation from the DEM elevation values. Initially,
a z-tolerance of 100 meters was used. This z-tolerance generated TIN ter-
rains that ensured reasonable processing times. To further explore certain
measures’ behavior and come closer to the detail level of the DEM terrains,
a TIN terrain set with a z-tolerance of 50 meters was also generated.

4.3 Statistical analysis

After running the experiments, each measure and viewshed complexity com-
bination is loaded into a scatterplot to determine the relationship’s shape
and identify patterns. Linear regression was performed on these combina-
tions using Pearson’s r, using the following value thresholds:

Strong linear correlation 0.9 < r ≤ 1.0
Medium linear correlation 0.7 < r ≤ 0.9
Weak linear correlation 0.5 < r ≤ 0.7
No or doubtful linear correlation 0.0 < r ≤ 0.5

For interesting correlation values, the significance was determined by
looking at the R2 values and scatter plots. The R2 values were roughly
interpreted in the following manner:

Strong effect size 0.7 < R2 ≤ 1.0
Moderate effect size 0.5 < R2 ≤ 0.7
Weak or low effect size 0.3 < R2 ≤ 0.5
None or very weak effect size 0.0 < R2 ≤ 0.3
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5 Results

After running the experiments, the values obtained from the measures were
tested for correlation with the accompanying viewshed complexities. This
section starts with the results for a single viewpoint on the terrains, then
multiple viewpoints, and finally, the higher complexity TINs. To keep this
section clearer, it contains the scatter plots for the prickliness with the highest
viewpoints because they are the most interesting. The other plots can be
found in appendix B.

5.1 Single viewpoints

Table 1 shows the linear regression results between the measures and the
viewshed complexity of a single viewpoint on the DEM terrains. All the mea-
sures show no to weak correlation values. The correlation between prickliness
and the viewshed complexity is the highest with a positive correlation value
of 0.629. The accompanying graph (Figure 10) and the R2 value shows this
not to be very significant.

Single viewpoint on DEM terrains
Highest Lowest Random

Measures R R2 R R2 R R2

Sky visibility index 0.114 0.013 0.321 0.103 0.345 0.119
Prickliness 0.629 0.396 0.100 0.010 0.176 0.031
Terrain ruggedness index -0.402 0.162 -0.278 0.078 -0.261 0.068
Terrain shape index -0.399 0.159 -0.278 0.077 -0.261 0.068
Fractal Dimension 0.272 0.074 0.220 0.048 0.275 0.076

Tab. 1: The correlation R and accompanying R2 values between the terrain
measures and the DEM terrains’ viewshed complexities with a single
viewpoint.
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Fig. 10: The scatter plots for the DEM (left) and TIN (right) prickliness and
viewsheds originating from a single viewpoint placed at the highest
point.

The results for the viewshed complexity from a single viewpoint on the
TIN terrains (Table 2) show a better correlation for the TRI and TSI values.
These correlation values are also consistent across the three viewpoint selec-
tion procedures, with a weak positive correlation of around 0.500. However,
the scatter plots for these two measures show a large variation, and the R2

values show these not to be significant. Prickliness shows an improvement on
TIN terrains with a weak to moderate correlation, especially when placing
the viewpoints at the highest points. However, the lowest and random points
still show a large variance.
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Single viewpoint on TIN terrains
Highest Lowest Random

Measures R R2 R R2 R R2

Sky visibility index -0.041 0.002 -0.451 0.204 -0.610 0.372
Prickliness 0.746 0.556 0.414 0.172 0.637 0.405
Terrain ruggedness index 0.552 0.305 0.498 0.248 0.595 0.354
Terrain shape index 0.552 0.304 0.403 0.162 0.430 0.185
Fractal Dimension -0.047 0.002 -0.096 0.009 -0.499 0.249

Tab. 2: The correlation R and accompanying R2 values between the terrain
measures and the viewshed complexities of the TIN terrains with a
single viewpoint.

5.2 Multiple viewpoints

For the viewsheds of the DEM terrains originating from 9 viewpoints, none
of the measures seem to have a statistical significance, with most of the R2

values being below 0.200. The exception to this is the correlation between
prickliness and the joint viewsheds originating from the viewpoints placed
on the highest points. With a correlation of 0.9 and an R2 value of 0.810,
this measure shows a very strong relationship and high significance.

Multiple viewpoints on DEM terrains
Highest Lowest Random

Measures R R2 R R2 R R2

Sky visibility index 0.205 0.042 0.394 0.155 0.458 0.210
Prickliness 0.900 0.810 0.194 0.038 0.644 0.415
Terrain ruggedness index -0.374 0.140 -0.332 0.110 -0.419 0.175
Terrain shape index -0.373 0.139 -0.346 0.120 -0.415 0.172
Fractal Dimension 0.357 0.127 0.471 0.222 0.318 0.101

Tab. 3: The correlation R and accompanying R2 values between the terrain
measures and the viewshed complexities of the DEM terrains with
nine viewpoints.
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The correlation values on the 100m z-tolerance TIN terrains are all higher
than on the DEM terrains. Sky visibility, terrain ruggedness index, and ter-
rain shape index all show a moderate (negative) correlation with a weak
to moderate significance. Prickliness shows very strong correlation values
with high significance on all viewpoint variations. The scatter plots for these
measures show the same. Sky visibility, terrain ruggedness index, and ter-
rain shape index show a slight to moderate variance from the regression line.
Prickliness shows a very clear linear relationship (see Figure 11).

Multiple viewpoints on TIN terrains (100m)
Highest Lowest Random

Measures R R2 R R2 R R2

Sky visibility index -0.716 0.513 -0.847 0.718 -0.884 0.782
Prickliness 0.952 0.907 0.896 0.804 0.949 0.901
Terrain ruggedness index 0.735 0.540 0.829 0.688 0.837 0.700
Terrain shape index 0.728 0.530 0.806 0.650 0.830 0.690
Fractal Dimension -0.715 0.511 -0.374 0.140 -0.698 0.487

Tab. 4: The correlation R and accompanying R2 values between the terrain
measures and the viewshed complexities of the TIN terrains with
nine viewpoints. The TIN terrains for these results were generated
with a z-tolerance of 100 meters.
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Fig. 11: The scatter plots for the DEM (left) and 100m TIN (right) prickli-
ness and viewsheds originating from a single viewpoint placed at the
highest point.

5.3 Higher complexity TINs

To explore the difference in correlation between DEM and TIN terrains, TIN
terrains were re-generated with a lower z-tolerance, and the experiments were
re-run on these. The lower z-tolerance increases the complexity of the TIN
terrains and brings them closer to the DEM terrains’ detail level. The results
of this experiment show a slight drop in correlation for all measures except
prickliness, and the accompanying scatter plot for prickliness shows a wider
variance (Figure 12). These results indicate that the measures are sensitive
to higher complexity terrains, and more information is needed to improve
the correlation with the complexity of the joint viewsheds.
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Multiple viewpoints on TIN terrains (50m)
Highest Lowest Random

Measures R R2 R R2 R R2

Sky visibility index -0.644 0.415 -0.739 0.546 -0.770 0.592
Prickliness 0.968 0.937 0.832 0.692 0.932 0.869
Terrain ruggedness index 0.674 0.455 0.731 0.534 0.710 0.504
Terrain shape index 0.699 0.488 0.679 0.461 0.668 0.446
Fractal Dimension -0.555 0.308 -0.345 0.119 -0.753 0.566

Tab. 5: The correlation R and accompanying R2 values between the terrain
measures and the viewshed complexities of the TIN terrains with
nine viewpoints. The TIN terrains for these results were generated
with a z-tolerance of 50 meters.
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Fig. 12: The scatter plot for the 50m TIN prickliness and viewsheds origi-
nating from a single viewpoint placed at the highest point.
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6 Discussion

The terrain ruggedness index (TRI) and terrain shape index (TSI) measures
do not seem to be a good predictor of viewshed complexity on high complex-
ity terrains. This could be explained by the fact that TRI and TSI measure
at set radii from the viewpoints, which can result in a lack of information
because sight obstructions can be placed at any distance from the viewpoint.
When looking at the results, both of these measures show a moderate cor-
relation with joint viewshed complexity on the lowest complexity terrains
(Table 4). However, when the terrains become more detailed, they show a
clear drop in correlation (Table 5). This drop is further supported by the
results on the DEM terrains (Table 3), which at a resolution of 10 meters,
preserves the smaller obstructions to a higher degree than the TIN terrains.
Finally, these measures show even worse correlation when only using a single
viewpoint (Tables 1 & 2), which decreases the amount of information gath-
ered on the terrain compared to the nine viewpoints that have been spread
over the terrain.

The results for the fractal dimension measure are harder to explain. Unlike
the TRI and TSI, it considers the variability within an area of the terrain as
opposed to a radius. Taking a closer look at the fractal dimension values for
both terrain datasets shows a minimal variation, with most of them being
close to 3.0, which, according to Taud et al. [9], indicated a near-constant
terrain. These results seem to indicate that this measure fails to detect the
variation in elevation levels with the chosen parameters.

The sky visibility index inversely links to viewshed complexity to a limited
extent. A trivial example of this is a flat terrain; the sky is completely visi-
ble while viewshed complexity is low. When adding obstructions, inevitably,
parts of the sky become covered, which reduces the sky visibility index. While
this measure is not affected by range, the limiting prediction factor could be
explained by the observation that, in a particular direction, only the obstruc-
tion with the largest angle with respect to the viewpoint gets counted. This
results in lower obstructions not being counted in this measure but still con-
tributing to viewshed complexity. As the results show, this causes the sky
visibility index to correlate less when the terrain’s complexity increases.
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For TIN terrains, the results show that prickliness correlates very well
with viewshed complexity, especially when the viewpoints are placed on the
highest points. For DEM terrains, this seems only to be the case for view-
sheds originating from the highest points. When the viewpoints are placed
at the lowest points of the DEM terrains, the correlation disappears. Prickli-
ness measures the peaks in the terrain in all directions in the positive z-axis.
This means that when a viewpoint is placed at the highest elevation and
the viewshed gets split up by the protrusions (which seem to be accurately
tracked by prickliness), there is a strong correlation. However, when the
viewpoints are placed at the lowest points, the viewsheds become severely
limited by the walls of the pits or valleys in which they are placed. Even
when placing multiple viewpoints, these viewsheds do not seem to encounter
enough of the protrusions that are detected by the prickliness measure. The
difference between the results on the TIN and DEM terrains for prickliness
can once again be attributed to the higher detail level the DEM dataset of-
fers; the TIN terrains contain few small pits resulting in viewsheds that still
cover large parts of the terrain and thus encounter more of the complexity
increasing protrusions.

The main reason why prickliness performs so well compared to the other
measures is also mentioned by Acharyya et al. [12]. While obstructions are,
of course, a difference in elevation, the height of the obstruction does not
necessarily matter. For example, if there is a column in front of the view-
point, the viewshed will be split regardless of its height. Thus measuring
only the elevation difference could paint the wrong picture of what is actu-
ally affecting the viewshed’s complexity. This gives prickliness an advantage
because it detects the protrusions of the whole terrain without considering
their elevation.
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(a) (b)

Fig. 13: Left a joint viewshed (blue) created from viewpoints placed on the
highest points. Right a joint viewshed (blue) created from viewpoints
placed on the lowest points.

7 Conclusion

This thesis project took multiple measures from different GIS fields and ex-
plored their correlation with (multiple) viewshed complexity on real-world
terrains. The behaviors of the selected measures and viewsheds were ex-
plored on both TIN and DEM terrain representations to create a bridge
between the different scientific fields using them. The results of the project
differ greatly between these two terrain representations. TIN terrains show
a moderate to strong correlation with most of the measures, but the DEM
terrains show mostly the opposite. A more detailed discussion on the findings
for the individual measures has been provided in Section 6.

The divide in the ability to predict viewshed complexity can be largely
attributed to the difference in resolution. DEM terrains offer a very fine
resolution while maintaining a predictable and easily exploitable grid for-
mat. 10 meters was used in this case, but even a DEM resolution of 1 meter
or less is available for some parts of the world. On the other hand, TIN
terrains are harder to work with. Computing the viewsheds and measures
on TIN terrains is computationally (and algorithmically) more complex and
put a limitation on the resolution used in this project. When generating
TIN terrains from DEM terrains, z-tolerances below 50 meters increase the
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number of vertices, and thus space/time complexity, dramatically. However,
to preserve the small protrusions on the terrain, which significantly affect the
viewshed complexity, a small z-tolerance is required.

When working with TIN terrains of similar complexity, sky visibility index,
terrain ruggedness index, and terrain shape index can be used to get a quick
(but rough) idea of the viewshed complexity. However, the correlation values
of these measures deteriorate when increasing the resolution of the terrain.

For TIN terrains, prickliness has a very strong correlation with the view-
shed complexity of multiple viewpoints. On DEM terrains, only prickliness,
in combination with viewsheds origination from multiple viewpoints placed
on the highest points of the terrain, shows a strong correlation. In compari-
son, the other measures show no statistically significant correlation. Placing
the viewpoints on the peaks of the terrain is a common procedure if, for
example, the goal is to maximize the viewshed coverage (e.g., guard place-
ment, radio towers) [16, 2]. Based on our results, it is recommended to use
prickliness as a measure to predict the complexity of the viewsheds in these
use cases.

8 Future work

There are many possible experiments that could provide more insight into
viewshed complexity, especially when the viewpoints are placed on lower ele-
vations. One key observation seems to be that elevation difference is a good
indicator of viewshed coverage [16], but this does not seem to be the case
for viewshed complexity. Therefore, it is interesting to also look at mea-
sures that detect terrain variability without (only) looking at elevation (e.g.,
[24]). There also seems to be a difference in predicting viewshed complexity
for single viewpoints versus multiple viewpoints. Measures that consider the
whole terrain could negatively affect the correlation with single viewpoint
viewshed complexity because these viewsheds are usually limited to a subset
of the terrain. Combining several measures to take into account the effects
of peaks and pits should also improve the correlation values.

While prickliness maintains a very strong correlation when the viewpoints
are placed on the peaks of the terrain, placing them in the pits of the terrain
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negatively affects the correlation. With these observations in mind, attempts
could be made to improve this measure. One simple idea might be to look
at a “negative” prickliness that looks at local minima instead of local maxima.

For the simpler measures like terrain ruggedness index and terrain shape
index, which use a local window/radius, multiple sizes could be combined to
(for example) detect near, mid, and far terrain variability.

Finally, more insight could also be gained from experiments on the effects
of DEM and TIN resolutions. The results of this project show considerable
variability between the different resolutions that were used.
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Appendix A Terrain extents

The terrain dataset used in this project consists of the following terrains and
their extents as used in the “export raster” tool in ArcGIS Pro [13] and the
“Terrain” elevation layer [19]:

Name Top Left Right Bottom
AlpsBlatten 5858688 866422 878422 5844688
Andes -2415431 -7382757 -7370757 -2429431
Andora 5248628 159122 171122 5234628
Apeldoorn 6865468 646362 658362 6851468
Appenines 5241888 1504882 1516882 5227888
Aravalli 2889538 8184562 8196562 2875538
AustralianPlains -4042661 15475202 15487202 -4056661
Brookfield -4063751 15524152 15536152 -4077751
CarnChuinneag 7937468 -511867 -499867 7923468
CastlePeak 4785118 -13401127 -13389127 4771118
CerroBoliv -2500441 -7454297 -7442297 -2514441
Eikelandsosen 8472638 647792 659792 8458638
Everest 3258248 9673602 9685602 3244248
Finsteraarhorn 5875768 898332 910332 5861768
Gabriac 5498768 406162 418162 5484768
Gourdon 5433228 774402 786402 5419228
GrandCanyon 4303408 -12649207 -12637207 4289408
GWTiersTasmania -5072921 16280862 16292862 -5086921
Hymalaya 3459318 9255762 9267762 3445318
K2 4292778 8511822 8523822 4278778
Kameuiekuuchikaushi 5265188 15888422 15900422 5251188
Karakoram 4404808 8484222 8496222 4390808
Kruger -2884081 3533102 3545102 -2898081
KunlunChina 4453558 8499862 8511862 4439558
Liabygda 8947808 783492 795492 8933808
Lick 4566858 -8912897 -8900897 4552858
LincolnWA 6035938 -13169667 -13157667 6021938
Lowther 7454398 -422717 -410717 7440398
MaroonPeak 474330 -11916227 -11904227 4729308
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Name Top Left Right Bottom
Monument 5130628 -12988007 -12976007 5116628
Moorfoot 7516658 -345897 -333897 7502658
MountFuji 4221568 15437462 15449462 4207568
MountKinabalu 682988 12969932 12981932 668988
MountWilhelm -636581 16140522 16152522 -650581
Nebraska 5184478 -10859897 -10847897 5170478
OssaTasmania -5142221 16236232 16248232 -5156221
Oystese 8520508 686572 698572 8506508
Paradise 5102938 -13088777 -13076777 5088938
Pyrenees 5282258 -50647 -38647 5268258
QuinnValley 5112608 -13124117 -13112117 5098608
Rocky 5506908 -12231717 -12219717 5492908
Sahara 3126578 2530192 2542192 3112578
Sairecabur -2590661 -7562257 -7550257 -2604661
Salisbury 6678008 -216677 -204677 6664008
Serre 5552048 786782 798782 5538048
Sheep 5542608 -12177277 -12165277 5528608
SierraNegra -85121 -10150587 -10138587 -99121
Sjani 5259368 4970502 4982502 5245368
StNiklaus 5988648 1528332 1540332 5974648
Stonehenge 6657598 -209137 -197137 6643598
Tomuraushi 5403938 15899242 15911242 5389938
Verignon 5426878 695342 707342 5412878
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Appendix B Scatter plots

B.1 Single viewpoint
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B.3 Multiple viewpoints (50m)
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