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Abstract
An important part of writing programs is to ensure that these programs be-
have as expected. Oftentimes, unit tests are written to show that parts of a
program behave correctly in specific cases. Rather than resort to testing only
some cases, we can use formal verification to prove that our program behaves
correctly in all possible cases. Purely functional programming languages allow
us to reason about programs as mathematical functions, but they do not con-
tain side effects (impure operations). Using free monads, we can introduce the
syntax of impure operations into a pure programming language, allowing one
to syntactically define programs containing side effects. To execute and reason
about such programs, we define semantics for the free monad by interpreting
their impure operations within a target monad. By defining semantics in terms
of monad transformers, combining them comes down to building up a monad
transformer stack, and the choice of base monad gives rise to different kinds of
semantics. This lets us write and reason about programs containing a variety
of side effects in a modular way.
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Chapter 1

Introduction

Almost any real-world application, whether written in an imperative or func-
tional programming language, is bound to have side-effects, ranging from ex-
ceptions and mutable state to probabilistic choice and general recursion. Take,
for example, the following function, that non-deterministically finds an element
in a binary tree for which a predicate p holds. The function amb represents
non-deterministic (ambivalent) choice between two arguments.

fun find(p, tree):
if tree.isLeaf:
return fail

else:
if p(tree.value):
return tree.value

else:
return amb(find(p , tree.left), find(p , tree.right))

We would like to show that find behaves as expected. That is, it will only
return values for which p holds, and, if the tree contains any values for which
p holds, it will find (at least) one of them. Purely functional programming
languages are well suited for this kind of formal verification, as they allow us to
apply equational reasoning (Wadler [1987]), but, by definition, such languages
do not contain side effects.

We can however try and model find in a pure language, by making the
internal interpretation of ambivalent choice explicit. But what should this in-
terpretation be? A computation of ambivalent choice might return a list of all
possible outcomes, or use a random number generator to choose one outcome,
or perhaps perform a parallel search. Rather than settle on one interpretation,
we would like to allow the programmer to choose any interpretation as they see
fit. To do this, we will separate the pure parts of our functions from the impure
parts (the side effects), by defining a monad Amb, which syntactically extends
otherwise pure code with the impure operations amb and fail.
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We will model this in the dependent programming language Agda, in which we
can both write programs and reason about their correctness. The rest of this
thesis will be presented as a literate Agda file, ensuring that all code typechecks.
Any pseudocode or code that does not typecheck will have a grey background
to avoid confusion.

data Amb where
pure : a → Amb a
amb : Amb a → Amb a → Amb a
fail : Amb a

We define find in our pure setting as a function returning Amb a.

find : (a → Bool) → Tree a → Amb a
find P Leaf = fail
find P (Node l x r) = if P x then pure x

else amb (find P l) (find P r)

The programmer can then choose a handler function, which assigns an inter-
pretation (semantics) to both the pure values and the impure operations. For
example, we define a handler function collect that returns all possible out-
comes in a list.

collect : Amb a → List a
collect (pure x) = [ x ]
collect (amb a b) = collect a ++ collect b
collect fail = []

Alternatively, we define a handler function parallel that performs a parallel
search within the monad Par.

parallel : Amb a → Par a
parallel (pure x) = return x
parallel (amb a b) = fork (parallel a) (parallel b)
parallel fail = yield

1.1 Reasoning about effects
One way to give a specification for a value v : t is to define a predicate
P : t → Set that should hold on v. The type Amb a represents an impure
computation returning a value of type a. As such, we give a specification
for the computation c : Amb a as a predicate P : a → Set. To show that
P holds for c, we have to define what it means for a predicate to hold on a
non-deterministic value. Following Swierstra and Baanen [2019], we will trans-
form predicates on a to predicates on Amb a using predicate transformers of type
(a → Set) → (Amb a → Set). There are two canonical predicate transform-
ers for ambivalent choice: pt∀, which requires the predicate to hold for every
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possible outcome (demonic non-determinism), and pt∃, which requires the pred-
icate to hold on at least one possible outcome (angelic non-determinism).

pt∀ : (P : a → Set) → Amb a → Set
pt∀ P (pure x) = P x
pt∀ P (amb a b) = pt∀ P a ∧ pt∀ P b
pt∀ P fail = >

pt∃ : (P : a → Set) → Amb a → Set
pt∃ P (pure x) = P x
pt∃ P (amb a b) = pt∃ P a ∨ pt∃ P b
pt∃ P fail = ⊥

We can use both pt∀ and pt∃ to show that find behaves as expected. We use
the function isTrue to turn a predicate of type a → Bool into a predicate of
type a → Set.

isTrue : Bool → Set
isTrue false = ⊥
isTrue true = >

The type of find∀ states that, for every tree t, the predicate P holds for every
possible result of find P t. It is easily proven by induction on the branches of
t.

find∀ : (P : a → Bool) (t : Tree a)
→ pt∀ (isTrue ◦ P) (find P t)

Note that find∀ alone is not sufficient to show that find behaves correctly.
For example, find∀ also trivially holds on the degenerate function find’ which
always fails.

find’ : (a → Bool) → Tree a → Amb a
find’ _ _ = fail

find∀’ : (P : a → Bool) (t : Tree a)
→ pt∀ (isTrue ◦ P) (find’ P t)

find∀’ _ _ = tt

To show that find will actually find values for which P holds, provided they
exist, we use the inductively defined relation Exist.

data Exist (P : a → Set) : Tree a → Set where
here : P x → Exist P (Node l x r)
left : Exist P l → Exist P (Node l x r)
right : Exist P r → Exist P (Node l x r)
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The function find∃ states that, for every tree t, if it contains any values for
which P holds, there is at least one possible outcome of find P t for which P
holds. The proof of find∃ follows by induction on Exist.

find∃ : (P : a → Bool) (t : Tree a) → Exist (isTrue ◦ P) t
→ pt∃ (isTrue ◦ P) (find P t)

Together, find∀ and find∃ ensure that find is syntactically correct, but they
do not prevent us from using a degenerate handler function like collect’, which
defeats the purpose of find∃.

collect’ : Amb a → List a
collect’ _ = []

To show that the handler function collect respects the predicate transformers
pt∀ and pt∃, we relate them to the predicate transformers All and Any respec-
tively, each of which have type (a → Set) → (List a → Set). We say that
pt∀ is sound with respect to collect if, for every computation c : Amb a on
which P holds according to pt∀, the predicate P also holds on all values returned
by applying the handler collect to c. We show that both pt∀ and pt∃ are
sound with respect to collect using some helper functions over All and Any.

sound∀ : ∀ P (c : Amb a) → pt∀ P c → All P (collect c)
sound∀ P (pure x) Px = Px :: []
sound∀ P (amb a b) (Pa , Pb) =
All++ (sound∀ P a Pa) (sound∀ P b Pb)

sound∀ P fail tt = []

sound∃ : ∀ P (c : Amb a) → pt∃ P c → Any P (collect c)
sound∃ P (pure x) Px = here Px
sound∃ P (amb a b) (inj1 Pa) = Any++ (sound∃ P a Pa)
sound∃ P (amb a b) (inj2 Pb) = ++Any (sound∃ P b Pb)

1.2 Mutable state
A more common side effect in imperative programming is that of mutable state.
Similarly to ambivalent choice, we will model mutable state using the impure
operations read and write.

data St where
pure : a → St s a
read : (s → St s a) → St s a
write : s → St s a → St s a

The more familiar functions get and put can be defined in terms of read and
write, which we can then use to define stateful computations like incr.
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get : St s s
get = read pure

put : s → St s 1
put s = write s (pure tt)

incr : St N 1
incr = get >>= put ◦ suc

To execute a stateful computation, we use the handler function run, which maps
a stateful computation to the state monad s → a × s.

run : St s a → s → a × s
run (pure x) s = x , s
run (read k) s = run (k s) s
run (write s k) _ = run k s

To give a specification for stateful computations, rather than just using a pred-
icate on its result, we define a relation between the result and the initial and
final state values. For example, the specification for incr ensures that the final
state value is equal to the successor of the initial state value.

incrSpec : N → a → N → Set
incrSpec init result final = final ≡ suc (init)

Note how, given an initial state n, incrSpec n is a predicate on the output
values of incr. To show that this predicate holds on a stateful computation, we
define the predicate transformer ptSt that, given an initial state, transforms a
predicate of type (a → s → Set) to a predicate of type St s a → Set.

ptSt : s → (P : a → s → Set) → St s a → Set
ptSt s P (pure x) = P x s
ptSt s P (read k) = ptSt s P (k s)
ptSt _ P (write s k) = ptSt s P k

We can then prove that incr adheres to the given specification.

incrCorrect : ∀ n → ptSt n (incrSpec n) incr
incrCorrect _ = refl

To prove that ptSt is sound with respect to run, we define the predicate
transformer StPT which, given an initial state, transforms a predicate of type
a → s → Set to a predicate over the state monad.

StPT : s → (a → s → Set) → ((s → a × s) → Set)
StPT s P x = uncurry P (x s)
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soundSt : ∀ (i : s) (P : a → s → Set) (c : St s a)
→ ptSt i P c → StPT i P (run c)

soundSt _ P (pure x) p = p
soundSt s P (read k) p = soundSt _ P (k s) p
soundSt _ P (write s k) p = soundSt _ P k p

1.3 Research objectives
So far, we have seen how to syntactically formulate simple effects and how to
define semantics for them in terms of handler functions and predicate transform-
ers. Oftentimes, we want to write code containing a variety of different effects.
When writing parser combinators, for example, we want our computations to
be both stateful and non-deterministic. Syntactically, we can define the combi-
nation of two effects using coproducts in the style of Swierstra [2008]. Defining
semantics for combinations of effects turns out to be less straightforward. The
objective of this thesis is to extend and generalize the study of algebraic effects
and semantics defined over them. In particular,

• We formalise effectful computations and semantics defined on them using
algebraic effects and free monads (chapter 2).

• We adapt the techniques from Schrijvers et al. [2019] for defining modular
semantics to use monad transformers (chapter 3) and generalise them to
work on predicate transformers and other specificational semantics (chap-
ter 5) while showing that they are monad homomorphisms (chapter 4).

• We define an alternative technique for combining continuation-style se-
mantics (chapter 7).

• We show how the effect of general recursion can be combined with other
effects in a modular fashion by adapting the petrol-driven semantics as
defined by McBride [2015] to work for combinations of effects (chapter 8).

• We formalise the notion of soundness in terms of a refinement relation
and lay the groundwork for proving the soundness of modular semantics
(chapter 9).

• We show how predicate transformers give rise to Dijkstra monads (Ahman
et al. [2017], Maillard et al. [2019]) and how handler functions give rise to
morphisms between Dijkstra monads (section 9.3).
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Chapter 2

Algebraic effects

So far, we have defined our effectful computations in terms of a set of character-
istic operations. This approach to effectful computations is known as algebraic
effects (Plotkin and Power [2002, 2003]). We can formulate an algebraic effect
as a monad M , characterised by a set of algebraic operations, each of which is
an n-ary function of the form

op : ∀a.(Ma)n →Ma

for which the algebraicity property holds:

op (x1, . . . , xn) >>= k = op (x1 >>= k, . . . , xn >>= k) (2.1)

For example, the effect of ambivalent choice, as we saw before, is characterised
by the binary operation amb : ∀a. Ma→Ma→Ma and the nullary operation
fail : ∀a. Ma. It is easy to see that amb and fail are isomorphic to the algebraic
operations branch : ∀a. (Ma)2 →Ma and abort : ∀a. (Ma)0 →Ma respectively.
The algebraicity property states that branch(x, y)>>=k = branch(x>>=k, y>>=k)
and abort()>>=k = abort(), i.e. that branching results in independent computa-
tions and that abort short-circuits the computation.

The effect of mutable state, identified by the operations read : ∀a. (Ma)s →
Ma and write : s→Ma→Ma, also forms an algebraic effect. It is easy to see
that read has the correct form, but write has an extra argument s. To alleviate
this, for every value x : s, we introduce an operation writex : ∀a. Ma→Ma.

Rather than prove that the monad instances for ambivalent choice and state-
ful computations adhere to the algebraicity property, we will reformulate our
effects such that they are algebraic by construction. Whereas op describes a sin-
gle algebraic operation, we can use a dependent pair to model a set of algebraic
operations as

ops : ∀a. Σ(c:C)(Ma)Rc →Ma

where C represents the choice of operation and Rc the arity of the operation
c : C. We call the combination of C and Rc the signature of an algebraic effect
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and define the corresponding effectful monad M , in the style of Hancock and
Setzer [2000a,b], as

M = λa. µx. a+ Σ(c:C)x
Rc

It is fairly straightforward to show that M is indeed a monad, by defining >>=
in terms of the algebraicity property! In particular, M is the free monad on the
container functor with shapes C and positions Rc. This shows us that there is a
corresponding container functor for every algebraic effect and, vice-versa, that
every container functor induces an algebraic effect.

Whereas Plotkin and Power [2002, 2003] specify the intended semantics of al-
gebraic operations using equations, stating that, for example, branch(x, abort())
is equal to x, we will assign semantics to algebraic effects by implementing their
algebraic operations in the target monad of our choice. For example, we can
assign a semantics to ambivalent choice that collects all possible results in the
list monad. We implement branch : ∀a. List a → List a → List a as list con-
catenation and abort : ∀a. List a as the empty list. In general, we can assign
semantics to an algebraic effect in terms of a fold over the free monad:

fold : ∀a b. (gen : a→ b)→ (alg : Σ(c:C)b
Rc → b)→Ma→ b

For semantics returning a monad, we choose the generator function gen to be
return, so that a semantics can be specified entirely in terms of the algebra alg.

2.1 Modeling algebraic effects
We formulate the signature of an effect as the Sig data type, which is equivalent
to a container (Abbott et al. [2003, 2004]). It consists of a type of commands
and an indexed type of responses to those commands. A signature can be
constructed using . (or I, if the responses are independent of the command).

record Sig where
constructor _._
field
Cmd : Set
Res : Cmd → Set

_I_ : Set → Set → Sig
C I R = C . λ _ → R

The effect of ambivalent choice can be defined as having two commands, one of
which, branch, has two possible continuations and the other, abort, has none.

data AmbCmd where
branch abort : AmbCmd
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Amb : Sig
Amb = AmbCmd . λ where

branch → 2
abort → 0

For stateful computations on a state of type s, the signature St s has a com-
mand read with |s| possible continuations and a family of commands writex,
each of which has only a single continuation.

data StCmd s where
read : StCmd s
write : s → StCmd s

St : Set → Sig
St s = StCmd s . λ where
read → s
(write s) → 1

Next, we model the free monad as being either a pure computation or a call to
a command c (corresponding to an algebraic operation from the signature f)
along with a continuation k, describing how to continue for each of the possible
responses to that command.

data _?_ f a where
pure : a → f ? a
call : (c : Cmd f) (k : Res f c → f ? a) → f ? a

The type f ? a can be read as a computation that may call any number of
operations from f before returning a value of type a.

2.2 Generic effects
The free monad defines the syntax of effects and allows us to write programs
in terms of their algebraic operations. Like in chapter 1, however, we prefer
to define our programs not in terms of the algebraic operations, but rather in
terms of the more familiar smart constructors such as amb, fail, get and put.

amb : Amb ? a → Amb ? a → Amb ? a
amb a b = call branch λ where
false → a
true → b

fail : Amb ? a
fail = call abort λ ()

12



get : St s ? s
get = call read return

put : s → St s ? 1
put s = call (write s) return

These smart constructors are often referred to as generic effects.

2.3 Semantics
As mentioned before, we will assign semantics to an algebraic effect by assigning
semantics to each of its algebraic operations. We do this by using an algebra
on the corresponding signatures.

_-alg_ : Sig → Set → Set
(C . R) -alg a = (c : C) (k : R c → a) → a

The fold over the free monad is defined in terms of an algebra on its signature
and a generator function.

fold : (gen : a → b) (alg : f -alg b) → f ? a → b
fold gen alg (pure x) = gen x
fold gen alg (call c k) = alg c (fold gen alg ◦ k)

2.3.1 Handler functions
To implement the handler function collect, we define an algebra for ambivalent
choice to the list monad.

collectAlg : Amb -alg List a
collectAlg branch k = k false ++ k true
collectAlg abort k = []

We then apply the semantics defined in this algebra to the free monad using the
fold function. We choose return as the generator function, to lift pure values
to the target computational monad.

collect : Amb ? a → List a
collect = fold return collectAlg

For stateful computations, we define the handler function run in terms of the
algebra stAlg.

stAlg : St s -alg (s → t)
stAlg read k s = k s s
stAlg (write s) k _ = k tt s

run : St s ? a → s → a × s
run = fold return stAlg

13



In general, for a signature f and a monad m with algebra alg : f -alg (m a),
we define a handler function as follows:

handler : f ? a → m a
handler = fold return alg

2.3.2 Predicate transformers
We can also define predicate transformers, like pt∀, as a fold over the free
monad.

∀-alg : Amb -alg Set
∀-alg branch k = k false ∧ k true
∀-alg abort k = >

pt∀ : (a → Set) → Amb ? a → Set
pt∀ P = fold P ∀-alg

Since the carrier type of our fold is Set, we can use the predicate P : a → Set
as the generator function. Doing the same for stateful computations is not so
straightforward, since we have a predicate of the form P : a → s → Set. To
alleviate this, we rewrite ptSt using an isomorphic type signature:

ptSt : (a → s → Set) → St s ? a → s → Set

This way, the carrier type of our fold is s → Set, allowing us to use the predi-
cate of type a → s → Set as the generator. This conveniently also allows us
to reuse stAlg, since we defined it generically over any carrier type of the form
s → t.

ptSt P = fold P stAlg

This construction works in this specific case, but how do we define predicate
transformer semantics in general?

2.3.3 Specificational semantics
An interesting observation is that we can reorder pt∀ such that its return type is
the continuation monad (a → Set) → Set. Not only can we now use return
as the generator function, but the carrier type (a → Set) → Set allows us
more freedom in the definition of our algebra, by giving access to the to be
transformed predicate.

pt∀’ : Amb ? a → (a → Set) → Set
pt∀’ = fold return λ where
branch k → λ P → k false P ∧ k true P
abort k → λ P → 1

14



This alternative interpretation makes clear that, whereas handler functions map
an algebraic effect to a computational monad, our predicate transformers map
an algebraic effect to a specificational monad. Therefore, we speak of handler
functions as computational semantics and predicate transformers as specifica-
tional semantics. We have taken this idea from Maillard et al. [2019], which we
will come back to in section 9.3.

In a similar fashion, the type of ptSt can be reordered to get the return type
s → (a × s → Set) → Set. We might interpret this type as the continua-
tion monad on a × s, given some initial state value. In fact, it is equal to the
state monad transformer applied to the continuation monad, and thus a valid
specificational monad!

ptSt’ : St s ? a → s → (a × s → Set) → Set
ptSt’ = fold return stAlg

It is easy to show that both pt∀’ and ptSt’ are pointwise equivalent to pt∀
and ptSt respectively.

∀≡ : ∀ (c : Amb ? a) (P : a → Set)
→ pt∀’ c P ≡ pt∀ P c

st≡ : (c : St s ? a) (P : a × s → Set) (x : s)
→ ptSt’ c x P ≡ ptSt (curry P) c x

In general, for a signature f and a monad transformer t, we define a semantics
of the form f ? a → t (cont Set) a as fold return alg, where alg is an
algebra of type f -alg (t (cont Set) a) and cont Set is the continuation
monad on Set. We will see that both interpretations, that is, that of a predicate
transformer and of a semantics to the transformed continuation monad, will
prove useful.

2.4 Exceptions and modal operators
Another well-known algebraic effect is that of exceptional behaviour. We model
it as having a command for every possible value of the exception type e, each
of which has zero responses, accompanied with the generic effect throw.

Exc : Set → Sig
Exc e = e I 0

throw : e → Exc e ? a
throw e = call e λ ()

sqrt : Float → Exc String ? Float
sqrt f = if f < 0.0

then throw "Error: square root of negative!"
else return (primFloatSqrt f)

15



The handler try attempts to execute a computation, but fails when an exception
is thrown.

try : Exc e ? a → Maybe a
try = fold return λ _ _ → nothing

In most languages, exceptions show that the program has reached some state
from which cannot be recovered while notifying the programmer what went
wrong. Ideally, programs should never reach such a state. To encapsulate
this, we can write the predicate transformer ptSafe, which guarantees that no
exception is thrown. Alternatively, we might be fine with our code containing
some exceptional behavior, as long as the result satisfies P when no exceptions
are thrown. This behavior is captured in the predicate transformer ptUnsafe.

ptSafe : (a → Set) → Exc e ? a → Set
ptSafe P = fold P λ _ _ → ⊥

ptUnsafe : (a → Set) → Exc e ? a → Set
ptUnsafe P = fold P λ _ _ → >

Note how this duality in interpretation is similar to the choice between pt∀
and pt∃ for ambivalent choice. This duality can be captured using the modal
operators � and �. The algebra �-alg states that a predicate should hold for
every possible response, whereas �-alg states that it should hold for at least
one response.

�-alg �-alg : f -alg Set
�-alg c k = ∀ r → k r
�-alg c k = ∃ r → k r

pt� pt� : (a → Set) → f ? a → Set
pt� P = fold P �-alg
pt� P = fold P �-alg
It is straight-forward to show that pt� and pt� are pointwise isomorphic to
the respective predicate transformers pt∀ and pt∃, and similarly ptUnsafe and
ptSafe.
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Chapter 3

Modular effects

Oftentimes, we would like to work with combinations of multiple different ef-
fects. Rather than define a new signature and new semantics specifically for
every possible combination of effects, we would like to reuse the signatures and
semantics of their constituent effects to assign meaning to combinations of ef-
fects.

3.1 Modular syntax
In the style of parser combinators (Hutton and Meijer [1996]), we will define a
parser as a non-deterministic stateful computation with backtracking. We can
define a signature for this effect as St String ⊕ Amb, using the _⊕_ combi-
nator. The resulting command is simply the coproduct of the commands from
St String and Amb. The corresponding response is constructed by combining
their respective responses using the _O_ combinator, which combines two de-
pendent functions if their return type is dependent on the coproduct of their
input types.

_O_ : {r : a ] b → Set}
→ ((x : a) → r (inj1 x))
→ ((y : b) → r (inj2 y))
→ (z : a ] b) → r z

(f O g) (inj1 x) = f x
(f O g) (inj2 y) = g y

_⊕_ : Sig → Sig → Sig
(C1 . R1) ⊕ (C2 . R2) = (C1 ] C2) . (R1 O R2)

This construction allows us to use inj1 and inj2 to access the algebraic oper-
ations of St String and Amb respectively. Unfortunately, however, we cannot
define parser combinators in terms of the generic effects of St and Amb, because
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their types do not match the combined signature St String ⊕ Amb. To rem-
edy this, we might redefine, for example, the generic effects fail and get for
parsers as follows:

fail’ : (St String ⊕ Amb) ? a
fail’ = call (inj2 abort) λ ()

get’ : (St String ⊕ Amb) ? String
get’ = call (inj1 read) return

Not only does this approach require us to redefine our generic effects for every
combination of effects, but we also have to redefine any helper functions. For
example, we can define the function guard for ambivalent choice, which aborts
a computation if a boolean value returns false.

guard : Bool → Amb ? 1
guard false = fail
guard true = return tt

To use guard to define parser combinators, we would have to redefine it using
fail’. A more scalable approach would be to define all effectful computations
generically over any list of effects containing the required effects in the style of
Baanen [2019], Baanen and Swierstra [2020]. To do so, we will formulate our
modular effects in terms of a list of effects. Given a list of effects, we compute
their coproduct using foldr, with the empty effect ø as the base case.

ø : Sig
ø = 0 . λ ()

q : List Sig → Sig
q = foldr _⊕_ ø

We can use the membership relation ∈ to formulate which effects are represented
within a list of effects.

data _∈_ : a → List a → Set where
here : x ∈ (x :: xs)
there : x ∈ xs → x ∈ (y :: xs)

Using this relation, generic effects can be formulated in terms of a list of ef-
fects containing the required signature. Rather than requiring the programmer
to explicitly show that a list of effects contains a signature, we use Agda’s in-
stance arguments, represented by the double brackets, which can be inferred
automatically, provided that there exists a unique value of that type.

fail+ : {{_ : Amb ∈ f+}} → (q f+) ? a
amb+ : {{_ : Amb ∈ f+}} → (q f+) ? a → (q f+) ? a → (q f+) ? a
get+ : {{_ : St s ∈ f+}} → (q f+) ? s
put+ : {{_ : St s ∈ f+}} → s → (q f+) ? 1
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But how do we implement these? Note how the combinations of injections
required to define fail’ and get’ are determined by the positions of Amb and
St String in St String ⊕ Amb ⊕ ø. We define the helper function alg∈,
that looks up an algebra of type f within an algebra of type q f+, by induction
on the membership relation.

alg∈ : {{_ : f ∈ f+}} → (q f+) -alg a → f -alg a
alg∈ {{here}} alg = alg ◦ inj1
alg∈ {{there f∈}} alg = alg∈ {{f∈}} (alg ◦ inj2)

Using alg∈, we define call+ as a modular alternative to call.

call+ : {{_ : f ∈ f+}} → f -alg (q f+ ? a)
call+ = alg∈ call

The implementation of our generic effects now follows immediately from their
original implementations, but using call+ in place of call.

fail+ = call+ abort λ ()

amb+ a b = call+ branch λ where
false → a
true → b

get+ = call+ read return

put+ s = call+ (write s) return

Using these modular generic effects, we can define effectful computations, like
guard, generically over a list of effects containing the required signature.

guard+ : {{_ : Amb ∈ f+}} → Bool → (q f+) ? 1
guard+ false = fail+

guard+ true = return tt

For convenience, the type Parser⊆ f+ captures that f+ contains both Amb and
St String. We define the classic parser combinator token, which reads char-
acters from the state and matches them to the input string.

token : {{_ : Parser⊆ f+}} → String → (q f+) ? 1
token [] = return tt
token (x :: xs) = do
y :: ys ← get+

where [] → fail+

guard+ (x == y)
put+ ys
token xs
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In order to define a full-fledged parser library, we would like to define the classical
parser combinators _<$>_, _<*>_ and _<|>_ and several variations on them, like
_<$_, _<*_ and _*>_. Most of these follow directly from the monad instance of
the free monad, except for _<|>_, which we define simply as amb+.

_<|>_ : {{_ : Amb ∈ f+}} → q f+ ? a → q f+ ? a → q f+ ? a
_<|>_ = amb+

Using these parser combinators, we can define many parsers like parseBool.

parseBool : {{_ : Parser⊆ f+}} → (q f+) ? Bool
parseBool = token "true" *> return true

<|> token "false" *> return false

3.2 Modular handlers
To run a modular computation like parseBool, we would like to reuse the han-
dler functions collect and run. Since we defined these handler functions in
terms of algebras on their signatures, a straightforward approach to defining
handlers for modular effects is to try and combine their algebras. Since algebras
are essentially dependent functions, we can combine them using the _O_ com-
binator, but this requires them to have the same carrier type, i.e. it requires
our handler functions to map to the same monad.

Schrijvers et al. [2019] show how we can define modular handlers by handling
effects one at a time. The partial handler function partiala executes the effect
of ambivalent choice, but keeps the other effect(s) intact, essentially assigning
semantics to only the algebraic operations corresponding to Amb.

partiala : (Amb ⊕ g) ? a → g ? List a

We can define partiala by defining algebras for Amb and g, both of which have
g ? List a as their carrier type, and then use _O_ to combine them.
To define the algebra on Amb, we will generalize collectAlg to be generic over
any monad m.

alga : Amb -alg (m (List a))
alga branch k = do
a ← k false
b ← k true
return (a ++ b)

alga abort k = return []

We then have the freedom to choose a different monad for alga: we can choose
the free monad over g to define partiala, or, for example, choose the identity
monad to recover collectAlg.

The algebra on g (called the forwarding algebra) is simply equal to call, the
identity algebra, because the algebraic operations of g are defined polymorphi-
cally. For example, for g = St s, we can always update the state using writex,
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for some x : s, regardless of whether our computation is of type St s ? a or
St s ? List a, so the algebraic operation writex is mapped to itself.

fwda : g -alg (g ? List a)
fwda = call

We can then implement partiala by combining these two algebras with the
_O_ combinator and choosing pure ◦ return as the generator function.

gena : a → g ? List a
gena = pure ◦ return

partiala = fold gena (alga O fwda)

A combined semantics runCollect can now be defined as simply the function
composition of run and partiala.

runCollect : (Amb ⊕ St s) ? a → s → (List a) × s
runCollect = run ◦ partiala

This pattern is easily expanded to any amount of effects, by applying partial
handlers until only a single effect is left, to which we then apply the regular
handler function. For lists of effects, as described in the previous section, we
always handle the empty effect ø last using the handler function escape, which
essentially escapes the monadic context.

escape : ø ? a → a
escape = fold id λ ()

For a list of n effects with signatures fx, each equipped with a partial handler
function

partialx : (fx ⊕ g) ? a → g ? (mx a)
partialx = fold genx (algx O fwdx)

we define a modular handler function on the coproducts of these effects of the
form

modular : (f1 ⊕ . . . ⊕ fn ⊕ ø) ? a → (mn ◦ . . . ◦ m1) a
modular = escape ◦ partialn ◦ . . . ◦ partial1

Unfortunately, not all algebraic effects have a partial handler function of the
form (f ⊕ g) ? a → g ? (m a). For stateful computations, for example, we
expect the partial handler function to accept an initial state value.

partials : (St s ⊕ g) ? a → s → g ? (a × s)
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To accommodate this, we will interpret the target computational monad of
an effect as mx = ϕx ◦ ψx, the functor composition of an outer functor ϕx

and an inner functor ψx. In the case of mutable state, we choose s →_ as
the outer functor and _× s as the inner functor. For simple monads mx (like
List and Maybe), we choose ϕx = id and ψx = mx. We can now formulate
the partial handler function of the corresponding effects as having the type
(fx ⊕ g) ? a → ϕx (g ? (ψx a)).

Using this alternative representation, genx and fwdx can no longer be defined
as simply pure ◦ return and call respectively. For stateful computations, for
example, gens and fwds have to correctly pass the state value along.

gens : a → s → g ? (a × s)
gens x s = pure (x , s)

fwds : g -alg (s → g ? (a × s))
fwds c k s = call c λ r → k r s

partials = fold gens (stAlg O fwds)

Furthermore, we can no longer simply compose partial handlers, since the result
of a partial handler is not the free monad on g, but rather it is wrapped in
the outer functor ϕx. To address this, we will introduce a finally construct
finx : ϕx a → a, that strips away the outer functor ϕx. We will apply it to
the result of partialx, such that the next partial handler can be applied. Using
this finally construct, we can define a handler function for a list of effects with
signature fx of the form

modular : (f1 ⊕ . . . ⊕ fn ⊕ ø) ? a → (ψn ◦ . . . ◦ ψ1) a
modular = escape ◦ finn ◦ partialn ◦ . . . ◦ fin1 ◦ partial1

For example, in the case of stateful computations, we implement fins by ap-
plying a value of type s.

fina : id a → a
fina = id

fins : s → (s → a) → a
fins s f = f s

runCollect’ : s → (Amb ⊕ St s ⊕ ø) ? a → (List a) × s
runCollect’ s = escape ◦ fins s ◦ partials ◦ fina ◦ partiala

The only downside to this approach is that, whereas fina can be defined gener-
ically, fins requires an initial state value as argument, which we have to in-
troduce manually. Note, however, how we can represent such an argument
using the outer functor s →_. By wrapping a computation in the outer functor
s →_, we essentially bring the finally construct fins into scope. We capture
this behaviour by introducing an initialisation function inits that separates the
introduction of the argument s from its application.
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inits : ((fin : ∀ {a} → (s → a) → a) → b) → s → b
inits f s = f (fins s)

We can trivially do the same for ambivalent choice.

inita : ((fin : ∀ {a} → id a → a) → b) → id b
inita x = x fina

This allows us to define runCollect without having to manually introduce s
into scope.

runCollect” : (Amb ⊕ St s ⊕ ø) ? a → s → (List a) × s
runCollect” c = inita λ fina → inits λ fins →
(escape ◦ fins ◦ partials ◦ fina ◦ partiala) c

We can generalise initialisation functions for a functor ϕ as follows:

init : ((fin : ∀ {a} → ϕ a → a) → b) → ϕ b

To conclude, for a list of signatures fx we define a modular handler of the form

modular : (f1 ⊕ . . . ⊕ fn ⊕ ø) ? a
→ (ϕ1 ◦ . . . ◦ ϕn ◦ ψn ◦ . . . ◦ ψ1) a

modular c = init1 λ fin1 → . . . → initn λ finn →
(escape ◦ finn ◦ partialn ◦ . . . ◦ fin1 ◦ partial1) c

We can now define a handler function runParser using these techniques:

Parser : List Sig
Parser = St String :: Amb :: []

runParser : (q Parser) ? a → String → List (a × String)
runParser c = inits λ fins → inita λ fina →

(escape ◦ fina ◦ partiala ◦ fins ◦ partials) c

To use runParser, let us look at a simple parser parseConjunction, which
parses two boolean values and returns their conjunction.

parseConjunction : {{_ : Parser⊆ f+}} → (q f+) ? Bool
parseConjunction = return conjunction <*> parseBool <*> parseBool

When we run parseConjunction by applying it to the string "truefalsetrue",
the result is a single parse, returning the conjunction of true and false along
with the remaining string "true".
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> runParser parseConjunction "truefalsetrue"
[ false , "true" ]

If we run parseConjunction again on the remaining string "true", it cannot
parse two boolean values and will return the empty list.

> runParser parseConjunction "true"
[]
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Chapter 4

Monad transformers and
homomorphisms

In the previous section, we have shown how to define handler functions for
combinations of effects by handling effects one at a time. Being able to apply
handler functions one after the other is one of the advantages of algebraic effects.
For example, if we want to compose two computations with different effects, we
can handle some of their effects until their signature matches. On the flip side,
we have to be careful that our resulting computations make sense. Firstly, we
want our final computation to be monadic. Secondly, if we compose multiple
computations, it should not matter whether we compose them before or after
applying handler functions. In this chapter, we will address these concerns and,
in doing so, give a more succinct definition of modular handler functions.

4.1 Monad transformers
The order in which we handle effects determines the interpretation of the com-
bined effect. For example, in the case of non-deterministic stateful compu-
tations, we have the choice between local versus global state. This choice is
reminiscent of the different ways in which we can compose monad transformers.
In fact, we can interpret the target monads of our handler functions as monad
transformers to ensure that their composition is itself a monad!

We defined our handler functions to return some computational monadmx =
ϕx ◦ ψx, such that the modular composition of n handler functions returns a
functor m’ = ϕ1◦ . . .◦ϕn◦ψn◦ . . .◦ψ1. We will define the composition of ϕx and
ψx with a monad m as tx = λ m→ ϕx ◦m ◦ψx, such that m’ = (t1 ◦ . . . ◦ tn) id.
If we show that, for every effect, tx is a monad transformer, m’ is a monad
transformer stack applied to the identity monad and therefore also a monad.
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4.2 Monad homomorphisms
Not only do we want our semantics to return monads, we want them to be monad
homomorphisms. A monad homomorphism is a function morph : ∀a. m a→ n a
between two monads m and n such that the following laws hold:

morph (returnm x) = returnn x (4.1)

morph ◦ (f >=>m g) = (morph ◦ f) >=>n (morph ◦ g) (4.2)

where >=> represents Kleisli composition. Intuitively, these laws state that it
should not matter whether we apply a handler function before or after composing
two effectful computations. In the rest of this thesis, we will refer to monad
homomorphisms as simply morphisms, unless we want to specifically mention
that they do, in fact, abide by the previous laws.

As shown by McBride [2015], the monad homomorphism laws enforce that
any monad homomorphism from the free monad on C . R to a monad m is
exactly given by fold return (_>>=_ ◦ h), for some characteristic function h
of type (c : Cmd) → m (R c).
We will refer to h as a morphism of type (C . R) ⇒ m.

_⇒_ : Sig → (Set → Set) → Set
(C . R) ⇒ m = (c : C) → m (R c)

Handler functions from the free monad on f to a target monad m can then be
defined in terms of a morphism of type f ⇒ m using morphism application.

J_K : f ⇒ m → f ? a → m a
J morph K = fold return (_>>=_ ◦ morph)

For example, we can define collect as the following morphism:

collect : Amb ⇒ List
collect branch = false :: true :: []
collect abort = []

This definition might seem unintuitive. What does it mean that the branch
case returns a list of booleans? To understand these morphisms better, let
us reconstruct collectAlg from collect. The morphism application J_K is
defined using the algebra (_>>=_ ◦ morph). Note how _>>=_ here is the bind
operation of the target monad, which, in the case of the list monad, is defined
as flip concatMap. As such, the resulting algebra for the collect handler is
λ c k → concatMap k (morph c). For the morphism collect, unfolding the
definition of concatMap gives us the original definition of collectAlg.

collectAlg : Amb -alg List a
collectAlg branch k = k false ++ k true ++ []
collectAlg abort k = []
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In short, we supply the arguments to which the continuation k should be ap-
plied in such a way that the bind operation of the target monad can combine the
results. This prevents us from defining nonsensical handler functions, like, for
example, a variant of collect which combines k false and k true by inter-
leaving their elements rather than concatenating them. Such a definition would
not result in a valid monad homomorphism, unless, of course, we define our list
monad using the same interleaving operation.
Similarly, we might define pt∀ as a morphism to the continuation monad:

pt∀ : Amb ⇒ cont Set
pt∀ branch P = P false ∧ P true
pt∀ abort P = >

It is interesting to note that a morphism to the continuation monad is equal to
(c : C) → (R c → Set) → Set. Apart from the dependency of R on c : C,
we can reorder this as (R → Set) → (C → Set), which reveals its predicate
transformer nature.

4.3 Modular monad morphisms
Assuming that the modular handler construction in chapter 3 gives rise to cor-
rect monad morphisms, we should be able to define modular handler functions
by composing their morphisms. To do this, we define the semantics for an effect
in terms of a polymorphic morphism morph whose target monad is a monad
transformer applied to a polymorphic base monad.

morph : {{M : Monad m}} → f ⇒ t m

The partial morphism partial is then computed by using _O_ to combine morph
with a forwarding morphism, which lifts the identity morphism idMorph over
the monad transformer t.

idMorph : g ⇒ (g ?_)
idMorph c = call c return

partial : (f ⊕ g) ⇒ t (g ?_)
partial = morph O (lift ◦ idMorph)

We can easily define polymorphic morphisms for the effects we described so far.

morphCollect : Amb ⇒ listT m
morphCollect branch = return (false :: true :: [])
morphCollect abort = return []

morphState : St s ⇒ stateT s m
morphState read s = return (s , s)
morphState (write s) _ = return (tt , s)
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morphTry : Exc e ⇒ maybeT m
morphTry e = return nothing

If the target monad of a monad morphism is again a free monad, we can compose
it with another morphism using morphism application and function composition,
for which we define the operator _•_:

_•_ : g ⇒ m → f ⇒ (g ?_) → f ⇒ m
morph1 • morph2 = J morph1 K ◦ morph2

Along with a morphism for the empty effect, we can define handlers for lists of
effects, like, for example, a variant of collect defined over the singleton list.

escape : ø ⇒ id
escape ()

collect’ : q [ Amb ] ⇒ List
collect’ = escape • partialCollect

Like we saw before, we have to do some more work for morphisms whose target
monad is not simply the free monad. For example, for stateful computations,
the target monad is wrapped in the outer functor s →_. We generalize this
morphism composition to be polymorphic in the monad transformer t by lifting
the applied morphism using the function liftMorph, which can be defined in
terms of init.

liftMorph : (∀ {a} → m1 a → m2 a)
→ ϕ (m1 (ψ a)) → ϕ (m2 (ψ a))

liftMorph f x = init λ fin → f (fin x)

_•_ : g ⇒ m → f ⇒ t (g ?_) → f ⇒ t m
morph1 • morph2 = liftMorph J morph1 K ◦ morph2

Using this more general composition, we can define the same modular handlers
as in section 3.2, but in a more succinct way, that is guaranteed to return monad
homomorphisms. For example, we can now define runParser as

runParser : q Parser ⇒ stateT String List
runParser = escape

• partialCollect
• partialState
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Chapter 5

Modular predicate
transformer semantics

Now that we know how to define modular handler functions, we would like to
apply these techniques to predicate transformer semantics. In short, handler
functions map an effectful computation to a computational monad, which is
defined as a monad transformer applied to the identity monad. Our technique
combines multiple effects by combining their respective monad transformers
into a monad transformer stack and applying it to the identity monad. In
this chapter, we show how we can adapt these techniques to work on predicate
transformer semantics by choosing another base monad.

5.1 Specificational base monad
As shown in section 2.3.3, predicate transformer semantics map an effectful
computation to a specificational monad, which is defined as a monad transformer
applied to the continuation monad. To define modular predicate transformer
semantics, we will also build up a monad transformer stack, but then apply it
to the continuation monad instead of the identity monad. Firstly, we generalise
escape to return any base monad.

escape : ø ⇒ m
escape ()

Secondly, we have to define our predicate transformer semantics as a monad
morphism to a monad transformer applied to a polymorphic base monad. For
stateful computations, this is trivial.

morphSt : St s ⇒ stateT s m
morphSt read s = return (s , s)
morphSt (write s) _ = return (tt , s)

29



Unfortunately, however, we cannot define such a polymorphic monad morphism
for many other predicate transformer semantics. For example, pt∀ is defined by
assigning amb = _∧_ and fail = >. The functions _∧_ and > are defined in
Set. In order to use them, we need access to the base monad cont Set.

Fortunately, for a single effect, there can be many different predicate trans-
former semantics. Ahman et al. [2017], Maillard et al. [2019] show that, for any
computational monad defined as a monad transformer applied to the identity
monad, there is an accompanying specificational monad defined as that monad
transformer applied to the continuation monad. This implies that there is an
alternative predicate transformer semantics ptList:

ptList : Amb ⇒ listT (cont Set)

We can define ptList to be polymorphic over the base monad. In fact, ignoring
the base monad, ptList has the same type as collect. We can thus define
ptList as morphCollect:

ptList = morphCollect

Originally, we used the predicate transformers pt∀ and pt∃ to apply a specifi-
cation of type a → Set to a computation of ambivalent choice. This alternate
predicate transformer ptList, however, does not accept a specification of type
a → Set, but rather one of type List a → Set. To remedy this, we use the
predicate transformers All and Any of type (a → Set) → (List a → Set)
to recover the semantics of demonic and angelic non-determinism respectively.

ptAll ptAny : Amb ⇒ (cont Set)
ptAll c = ptList c ◦ All
ptAny c = ptList c ◦ Any

To define a modular predicate transformer, however, we can only apply All and
Any after the composition. In a sense, we can use the predicate transformer
ptList in a modular fashion by postponing the choice between demonic and
angelic non-determinism. For example, we define a predicate transformer se-
mantics for parsers without choosing the interpretation of the non-determinism,
to which we then apply All to choose a demonic interpretation.

ptParser : q Parser ⇒ (stateT String ◦ listT) (cont Set)
ptParser = escape • partialCollect • partialState

ptParserAll : q Parser ⇒ stateT String (cont Set)
ptParserAll c s = ptParser c s ◦ All

Note, however, that this only works because we defined parser with local state,
so that we can use All to transform a predicate of type a × s → Set to a
predicate of type List (a × s) → Set. By combining ambivalent choice and
mutable state in the reverse order, we get a global state. We define ptGlobal
to be the predicate transformer semantics for non-deterministic computations
with global state.
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ptGlobal : (Amb ⊕ St s ⊕ ø) ⇒ (listT ◦ stateT s) (cont Set)
ptGlobal = escape • partialState • partialCollect

Unlike ptParser, ptGlobal requires a predicate of type (List a) × s → Set,
so we cannot give it a demonic interpretation by applying All to a predicate
of type a × s → Set. For this purpose, we define a predicate transformer
globalAll, which assigns a demonic interpretation to predicates of global state.

globalAll : (a × s → Set) → (List a) × s → Set
globalAll P (x , s) = All (λ y → P (y , s)) x

ptGlobalAll : (Amb ⊕ St s ⊕ ø) ⇒ stateT s (cont Set)
ptGlobalAll c s = ptGlobal c s ◦ globalAll

5.2 Predicate transformer transformers
Rather than define globalAll (or globalAny) by hand, we would like to derive
it automatically from All (or Any). Note how we can easily substitute All in
the definition of globalAll with Any. In fact, we can generalise globalAll
to accept any predicate transformer of type (a → Set) → (b → Set) and
return a predicate transformer of type (a × s → Set) → (b × s → Set).
We will call this generalised function pttSt a predicate transformer transformer
for stateful computations.

pttSt : ((a → Set) → b → Set) → (a × s → Set) → (b × s → Set)
pttSt pt P (x , s) = pt (λ y → P (y , s)) x

Rather than directly apply pttSt to All, we also define a predicate transformer
transformer for demonic non-determinism.

pttDem : ((a → Set) → b → Set) → (a → Set) → (List b → Set)
pttDem pt P = All (pt P)

We can now define a combined predicate transformer transformer as the com-
position of pttSt and pttAll, which we will apply to the identity function to
obtain the predicate transformer. Depending on the order in which we compose
them, we can define a predicate transformer for both global and local state.

globalDemonic : (a × s → Set) → ((List a) × s → Set)
globalDemonic = (pttSt ◦ pttDem) id

localDemonic : (a × s → Set) → (List (a × s) → Set)
localDemonic = (pttDem ◦ pttSt) id

We might interpret these predicate transformer transformers as possibly as-
signing semantics to the inner functors of the respective monad transformers:
pttDem assigns demonic semantics to the inner functor List of the list monad
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transformer, whereas pttSt leaves the inner functor _× s of the state monad
transformer intact. In general, we define a predicate transformer transformer
pttx as follows, where ψx is the inner functor of the corresponding monad
transformer and ψ’x represents the possibly new interpretation of ψx.

pttx : ((a → Set) → b → Set) → (ψ’x a → Set) → ψx b → Set

The predicate transformer for a list of effects is then defined as the function
composition of all its predicate transformer transformers applied to the identity
predicate transformer.

pt : ((ψ’n ◦ . . . ◦ ψ’1) a → Set) → (ψn ◦ . . . ◦ ψ1) a → Set
pt = (pttn ◦ . . . ◦ ptt1) id

To apply such a predicate transformer to our semantics, we use the initialisation
functions of ϕx. Note that, if we do not need access to every fin function
separately, we can compose initialisation functions as follows:

composeInit : ((fin : ∀ {a} → ϕ (ψ a) → a) → b) → ϕ (ψ b)
composeInit f = init1 λ fin1 → init2 λ fin2 → f (fin2 ◦ fin1)

This allows us to use a single call to init to apply the predicate transformer pt
to our predicate transformer semantics pts to get the final predicate transformer
semantics pts’.

pts’ : q f+ ⇒ (ϕ1 ◦ . . . ◦ ϕn ◦ cont Set ◦ ψn ◦ . . . ◦ ψ1)
→ q f+ ⇒ (ϕ1 ◦ . . . ◦ ϕn ◦ cont Set ◦ ψn’ ◦ . . . ◦ ψ1’)

pts’ pts c = init λ fin → fin (pts c) ◦ pt

Note that we have to make sure that the resulting predicate transformer se-
mantics is still monadic, by showing that every tx’ = λ m → ϕx ◦ m ◦ ψx’ is
still a monad transformer. In a sense, for every effect, we swap out its monad
transformer for another more specific monad transformer. For effects such as
Amb and Exc, the resulting monad transformer is simply the identity monad
transformer.

5.3 Recap: combining algebraic effects
Syntactically, we combine algebraic effects by taking their coproduct (_⊕_). We
give semantics for algebraic effects as monad homomorphisms. By defining these
semantics in terms of monad transformers, we can compose partial semantics
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using morphism composition (_•_), effectively handling effects one at a time.
This builds up a monad transformer stack, for which we are then free to choose
any base monad, which determines the nature of the resulting semantics. Most
notably, the identity monad gives rise to computational semantics, whereas the
continuation monad on Set gives rise to specificational semantics. For a list of
effects, a modular semantics is defined as

semantics : (f1 ⊕ . . . ⊕ fn ⊕ ø) ⇒ (t1 ◦ . . . ◦ tn) m
semantics = escape • partialn • . . . • partial1

In the case of modular predicate transformer semantics, we postpone the exact
choice of semantics (e.g. demonic versus angelic) until after the composition. For
each effect, this choice is then made by choosing the right predicate transformer
transformer.

pts : (f1 ⊕ . . . ⊕ fn ⊕ ø) ⇒ (t1’ ◦ . . . ◦ tn’) (cont Set)
pts c = init λ fin → fin (semantics c) ◦ (pttn ◦ . . . ◦ ptt1) id
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Chapter 6

Free monad transformers

6.1 Pretty-print semantics
Thus far, we have only concerned ourselves with the execution and verification
of effectful computations. Sometimes the programmer would just like to gain
some intuition about a part of a program. An important tool in this regard is
that of a pretty-printer, a function that outputs a stylistic formatting of a value
that is aimed at legibility for humans rather than compilers.

We would like to define a pretty-printer for algebraic effects of the form
f ? a → String that grants the programmer insight in the use of algebraic
operations. For example, pretty-printing the value amb (return true) fail
should return "branch(true,abort())". Evidently, to define this pretty-printer,
we need to know how to print boolean values. Because an effectful computation
can contain any type a, our pretty-printer requires an extra argument of type
a → String. For example, we define a pretty-printer for ambivalent choice as:

ppAmb : Amb ? a → (a → String) → String
ppAmb (pure x) pp = pp x
ppAmb (call branch k) pp =
"branch(" ++ ppAmb (k false) pp

++ "," ++ ppAmb (k true ) pp
++ ")"

ppAmb (call abort k) pp = "abort()"

Note how the return type of ppAmb is actually the continuation monad on
String. In fact, we can define ppAmb as a monad morphism.

ppAmb : Amb ⇒ cont String
ppAmb branch pp =
"branch(" ++ pp false

++ "," ++ pp true
++ ")"

ppAmb abort pp = "abort()"
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We get the expected result by applying ppAmb to amb (return true) fail and
providing a pretty-printer for booleans:

> J ppAmb K (amb (return true) fail) ppBool
"branch(true,abort())"

For stateful computations, we would like to be able to inspect the current state
value whenever read is called as well as the final state value when the compu-
tation is finished. For example, when printing incr with an initial state of 4 we
expect our pretty-printer to return "read()[4];write(5);tt[5]".

incr : St N ? 1
incr = get >>= put ◦ suc

First of all, we require an extra argument of type ppS : s → String, for state-
ful type s. Note that, unlike the argument of type a → String, the function
ppS is not polymorphic in s and is therefore not part of the return monad, but
rather a parameter of the pretty-printer. Furthermore, we need to pass along
the state value to get the correct results. Like with other semantics for mutable
state, we use the state monad transformer to pass along the state.

ppSt : (s → String) → St s ⇒ stateT s (cont String)
ppSt ppS read s pp = "read()[" ++ ppS s ++ "];" ++ pp (s , s)
ppSt ppS (write s) _ pp = "write(" ++ ppS s ++ ");" ++ pp (tt , s)

By applying the pretty-printer pp1×N we get the expected result:

pp1×N : 1 × N → String
pp1×N (t , n) = pp1 t ++ "[" ++ ppN n ++ "]"

> J ppSt ppN K incr 4 pp1×N
"read()[4];write(5);tt[5]"

6.2 Modular pretty-printers
When trying to define pretty-printers for combinations of effects using the tech-
niques described in the previous chapters, we run into the same problem as
with pt∀. That is, we cannot define ppAmb and ppSt polymorphic in the base
monad, because we need access to the String type, which is provided by the
base monad cont String. The solution we used for pt∀ was to postpone the
choice of demonic non-determinism by using the alternate predicate transformer
semantics ptList (defined using the list monad transformer) and, after composi-
tion, applying the predicate transformer All to choose a demonic interpretation.
Unfortunately, this approach does not work for pretty-printers. For example,
we might define the alternative pretty-printer semantics ppList:

ppList : Amb ⇒ listT (cont String)
ppList = morphCollect
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Similar to how we used the predicate transformer All to give an interpretation to
ptList, to recover the semantics of ppAmb from ppList, we require a pretty-print
transformer of type (a → String) → (List a → String). The problem
here is that we cannot recover the used algebraic operators from List. For
example, the list x :: y :: [] might, among others, correspond to "branch(x,
y)" or "branch(x, branch(abort(), y))".

6.3 Free monad transformers
By using a list monad transformer, we essentially flatten the tree-like struc-
ture of ambivalent choice, and erase all memory of the algebraic operations. A
more fitting monad transformer for pretty-printing purposes is the free monad
transformer with signature Amb.

freeT : Sig → (Set → Set) → Set → Set
freeT f m a = m (f ? a)

ambT : (Set → Set) → Set → Set
ambT = freeT Amb

Before we can define a morphism for Amb in terms of ambT, we have to show that
ambT is in fact a monad transformer. We will show that, for every signature
f , freeT f is a monad transformer if f is a finitary container (Abbott et al.
[2003]); i.e. each of its possible responses is isomorphic to a finite type.

finitary : Sig → Set
finitary f = ∀ c → ∃ n → Res f c ∼= Fin n

We will use the insight that, for any traversable monad t, λ m a → m (t a)
is a monad transformer. That is, given a function traverse and a monad m, we
implement return and _>>=_ for the transformed monad m ◦ t.

traverse : (a → m b) → t a → m (t b)

trans : Monad (m ◦ t)
trans = record
{ return = return ◦ return
; _>>=_ = λ mx k → mx >>= λ x → join <$> traverse k x
}

Furthermore, we define lift : m a → m (t a) by mapping return over m.

lift = λ x → return <$> x

As shown by Jaskelioff and O’Connor [2015], the extension of every finitary
container is traversable. Although we cannot define traverse generically over
any signature in Agda (without using reflection), the following construction
shows how to define it for a specific finitary signature.
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traverse : (a → m b) → f ? a → m (f ? b)
traverse f = fold (λ x → pure <$> f x) λ where
c0 k → do
x0 ← k 0
. . .
xn ← k n
return $ call c0 λ where
0 → x0
. . .
n → xn

. . .

For example, in the case of ambivalent choice:

traverseAmb : (a → m b) → Amb ? a → m (Amb ? b)
traverseAmb f = fold (λ x → pure <$> f x) λ where

branch k → do
x0 ← k false
x1 ← k true
return $ call branch λ where
false → x0
true → x1

abort k → return $ call abort λ ()

Now that we know that ambT is indeed a monad transformer, the corresponding
morphism is defined by simply lifting the identity morphism call c return.

morphAmb : Amb ⇒ ambT m
morphAmb c = return (call c return)

In fact, we can generalise this definition to any free monad transformer.

morphT : f ⇒ freeT f m
morphT c = return (call c return)

We can define a pretty-print semantics for ambivalent choice in terms of morphAmb
by choosing cont String as the base monad.

ppAmbT : Amb ⇒ ambT (cont String)
ppAmbT = morphAmb

Similarly to how we did for predicate transformer semantics in chapter 5, we
apply a pretty-print transformer to ppAmbT to reclaim the behaviour of ppAmb.
Interestingly, this pretty-print transformer is defined in terms of ppAmb.
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ppT : (a → String) → (Amb ? a → String)
ppT pp x = J ppAmb K x pp

ppAmb’ : Amb ⇒ cont String
ppAmb’ c = ppAmbT c ◦ ppT

Like in section 5.2, the pretty-printing of combinations of effects is done by build-
ing a monad transformer stack applied to the continuation monad on String,
to which we then apply a pretty-print transformer, which is constructed as the
composition of a list of pretty-print transformer transformers.

Unfortunately, this technique only works for effects that have finitary signa-
tures. For stateful computations, this means the state type s should be finitary,
which is not the case for many useful state types like N and String. For exam-
ple, this would imply that we are not able to define pretty-print semantics for
parsers in this way. It is, however, straightforward to define such a pretty-printer
by hand.

The problem of defining ppParser in a modular way does not lie with its
complexity, but rather with the limitations of our approach for defining modular
semantics, which relies on all our semantics being defined in terms of monad
transformers. In the next chapter, we will introduce a different approach for
defining modular semantics without building up a monad transformer stack,
and show how we can use it to implement ppParser.

6.4 Back to predicate transformer semantics
Despite our inability to define ppParser in a modular fashion, this does not
mean that free monad transformers are not useful. In the case of predicate
transformer semantics, for example, we can use the free monad transformer
where possible. For example, for ambivalent choice, we might use its free monad
transformer instead of the list monad transformer to define a modular predicate
transformer semantics.

ptAmb : Amb ⇒ ambT (cont Set)
ptAmb = morphAmb

The demonic predicate transformer transformer can then be defined in terms of
pt∀!

pttDem : ((a → Set) → b → Set) → (a → Set) → Amb ? b → Set
pttDem pt P x = J pt∀ K x (pt P)

This approach has several advantages over using ptList. Firstly, ptList as-
sumes that we will use collect semantics to execute our computation of am-
bivalent choice, whereas ptAmb does not discriminate between different compu-
tational semantics, like parallel search, random choice, etc. Secondly, we are
no longer reliant on predicate transformers like All and Any to choose between

38



different interpretations. Instead, we can use our previously defined predicate
transformers like pt∀ and pt∃. Even better, we can use the more general modal
predicate transformers pt� and pt�.
We can, for example, redefine ptParser using the free monad transformer on
Amb rather than the list monad transformer.

ptParser : q Parser ⇒ (stateT String ◦ ambT) (cont Set)
ptParser = escape • partialAmb • partialState

Instead of the demonic predicate transformer transformer pttDem, we can use
the more general modal predicate transformer transformer ptt�, which is de-
fined in terms of pt�, to assign a demonic semantics to ptParser.

ptt� : ((a → Set) → b → Set) → (a → Set) → f ? b → Set
ptt� pt P x = J pt� K x (pt P)

ptParser� : q Parser ⇒ stateT String (cont Set)
ptParser� c = init λ fin → fin (ptParser c) ◦ (ptt� ◦ pttSt) id
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Chapter 7

Continuation monad
transformer

As we have seen multiple times, when we use the continuation monad as the
base monad for our semantics, we often need access to the return type of that
continuation monad to define these semantics. For example, pt∀ needs access
to the return type Set and ppAmb needs access to the return type String. This
prevented us from defining pt∀ and ppAmb polymorphic in their base monad.
The solution to this problem was to postpone the actual logic (the choice of
a demonic interpretation for pt∀ and the pretty-printing for ppAmb) until after
building the monad transformer stack. For some semantics, however, like ppSt,
there exists no suitable monad transformer.
In this chapter, we will briefly explore an alternative way of composing semantics
using the continuation monad transformer.

7.1 Algebras as morphisms
In chapter 2, before we interpreted specificational semantics as monad trans-
formers applied to the continuation monad, we defined pt∀ in terms of an
algebra on Set. Upon further inspection, the type f -alg Set is equal to
(c : C) (k : R c → Set) → Set, which is exactly a monad morphism to
the continuation monad on Set! In general, f -alg r is equal to f ⇒ cont r.

We defined pt∀ in terms of a fold, with the predicate P : a → Set as the
generator and ∀-alg as the algebra. Using the knowledge that ∀-alg is a monad
homomorphism, we can redefine pt∀ using morphism application.

pt∀ : Amb ? a → (a → Set) → Set
pt∀ = J ∀-alg K

Assuming the extensionality of functions, we can prove, by induction on the free
monad, that these ways of constructing pt∀ from ∀-alg are equivalent.
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prf : ∀ (P : a → r) (x : f ? a) (m : f ⇒ cont r)
→ fold P m x ≡ J m K x P

Similarly, the algebra stAlg has type St s -alg (s → Set), which is equal
to St s ⇒ cont (s → Set). Rather than define specificational semantics as
some monad transformer applied to the continuation monad, we can define them
as the continuation monad transformer contT applied to some base monad!

contT : Set → (Set → Set) → Set → Set
contT r m a = (a → m r) → m r

For example, the specificational monad for ambivalent choice is defined as the
continuation monad transformer on Set applied to the identity monad and the
specificational monad for stateful computations is defined as the continuation
monad transformer on Set applied to the reader monad s →_.

In the case of ambivalent choice, it is easy to see that both interpretations are
equivalent. That is, both contT r id and idT (cont r) are equal to cont r.
In the case of stateful computations, these interpretations are not equivalent,
since stateT s (cont r) expands to λ a → s → (a × s → r) → r and
contT r (s →_) expands to λ a → (a → s → r) → s → r. They are,
however, isomorphic, by swapping their arguments and currying/uncurrying
the predicate.

7.2 Modular continuation-style semantics
To be able to combine semantics defined in terms of the continuation monad
transformer applied to some base monad, we have to be able to combine their
base monads. To do so, we require that these base monads are defined in
terms of their initialisation function. First, we show that any functor ϕ with an
initialisation function is, in fact, a monad.

InitM : Monad ϕ
InitM = record
{ return = λ x → init λ _ → x
; _>>=_ = λ x k → init λ fin → fin (k (fin x))
}

As shown in section 5.2, we can compose initialisation functions. As such, the
composition of two monads with initialisation functions is also a monad! We will
define the combinator _H_, which combines two continuation-style semantics if
their base monads have initialisation functions.

_H_ : f ⇒ contT r ϕ → g ⇒ contT r ψ
→ (f ⊕ g) ⇒ contT r (ϕ ◦ ψ)

To do so, we define two functions lift1 and lift2, each of which lifts continuation-
style morphisms by composing their base monad with another monad equipped
with an initialisation function.
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lift1 : f ⇒ contT r ϕ → f ⇒ contT r (ϕ ◦ ψ)
lift1 m c k =
init1 λ fin1 →
init2 λ fin2 →
fin1 (m c (map fin2 ◦ k))

lift2 : f ⇒ contT r ψ → f ⇒ contT r (ϕ ◦ ψ)
lift2 m c k =
init1 λ fin1 →
init2 λ fin2 →
fin2 (m c (fin1 ◦ k))

The combinator _H_ is then defined by combining both morphisms using _O_
after lifting them to the same return type.

(f H g) = lift1 f O lift2 g

Note how, unlike the techniques described in previous chapters, this technique
does not handle effects one by one, but rather combines all handlers in one go.

7.3 Modular pretty-printers
To give a correct definition of ppParser, we first use the isomorphism between
contT r (s →_) and stateT s (cont r) to redefine ppSt in terms of the
continuation monad transformer.

ppSt’ : (s → String) → St s ⇒ contT String (s →_)
ppSt’ ppS c pp s = ppSt ppS c s (uncurry pp)

ppString : String → String
ppString s = "”" ++ s ++ "”"

We can then define ppParser simply by composing the semantics for mutable
state and ambivalent choice using the _H_ combinator.

ppParser : q Parser ⇒ contT String (String →_)
ppParser = ppSt’ ppString H ppAmb H escape

To see ppParser in action, let us look at a simple parser parseBit, which reads
a single bit and returns it as a natural number.

parseBit : {{_ : Parser⊆ f+}} → (q f+) ? N
parseBit = token "0" *> return 0 <|> token "1" *> return 1

We provide a pretty-printer that prints the resulting number along with the
final state.

42



ppN×String : N → String → String
ppN×String n s = ppN n ++ "[" ++ ppString s ++ "]"

By applying this parser to the input state "1", we can see how the computation
branches and then, after reading the input state, aborts the first branch and
updates the state in the second branch before returning 1.

> J ppParser K parseBit ppN×String "1"
"branch(read()[”1”];abort(),read()[”1”];write(””);1[””])"
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Chapter 8

General recursion

An important feature of many programming languages is that of recursion,
allowing the programmer to write functions in terms of themselves. It is not
always clear whether a recursive function will terminate or get stuck in an infinite
loop, making recursive functions difficult to reason about. Take, for example,
the function quickSort, a classic example of the elegance and expressivity of
functional programming languages:

quickSort : List N → List N
quickSort [] = []
quickSort (x :: xs) =

let smaller = quickSort (filter (_≤ x) xs)
greater = quickSort (filter (_> x) xs)

in smaller ++ [ x ] ++ greater

As elegant as this definition is, Agda cannot infer that filter (_≤ x) xs and
filter (_> x) xs are smaller than x :: xs, so quickSort will not pass the
termination checker. To ensure that only total functions can be defined, Agda
allows only structural recursion. That is, at least one argument to the recursive
call has to be a strict subexpression of the corresponding argument to the main
function. For example, we can define plus recursively by stripping away the
suc constructor in the recursive call.

plus : N → N → N

plus zero m = m
plus (suc n) m = suc (plus n m)

8.1 Well-founded recursion
To prove to Agda that quickSort terminates, we have to define it using struc-
tural recursion, while proving that the recursive calls are on strictly smaller lists.
We will use a technique called well-founded recursion, where the required proof
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is passed along in an inductively defined data type such that the recursive step
depends on a structurally smaller proof. The type Acc denotes whether a value
x : a is accessible with respect to a relation _<_ : a → a → Set, meaning
that every value less than x (according to _<_) is also accessible. For example,
zero : N is accessible with respect to _<_ on natural numbers because there
are no natural numbers less than zero. Every other natural number is accessible
by induction.

data Acc (_<_ : a → a → Set) (x : a) : Set where
acc : (∀ {y} → y < x → Acc _<_ y) → Acc _<_ x

To use it, we add the accessibility predicate as an extra argument to our function.
At the problematic recursive step, we use structural recursion by stripping away
one acc constructor and applying the proof that y is smaller than x to obtain
the accessibility predicate for y. In the case of quickSort, we add an argument
stating that the length of the input list is accessible and apply the proof that, for
every predicate p, the length of filter p xs is less than the length of x :: xs.

quickSort : (xs : List N) → Acc _<_ (length xs) → List N
quickSort [] _ = []
quickSort (x :: xs) (acc f) =
let smaller = quickSort (filter (_≤ x) xs) (f (filterProof x xs))

greater = quickSort (filter (_> x) xs) (f (filterProof x xs))
in smaller ++ [ x ] ++ greater

Unfortunately, this definition is not as elegant anymore, and it gets only worse
for more complex functions that require large termination proofs. Ideally, we
would like to define quickSort syntactically and only worry about the termina-
tion upon execution. Additionally, there are many more techniques for proving
termination other than well-founded recursion. The choice of technique should
not influence the syntax of our functions, but only the semantics.

8.2 General recursion
McBride [2015] shows how we can define general recursion as an algebraic effect,
where a recursive call to a function of type I → O is represented by a call to a
command of type I with a response of type O. A generally recursive function of
type I → O can be defined as a Kleisli arrow on the free monad with signature
I I O. For convenience, we will write I # O to denote such a function.

_#_ : Set → Set → Set
I # O = I → (I I O) ? O

Now, rather than explicitly call a function recursively, we can call the generic
effect recurse.

recurse : I # O
recurse i = call i return
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This allows us to define quickSort syntactically without requiring any termi-
nation proofs.

quickSort : List N # List N
quickSort [] = return []
quickSort (x :: xs) = do

smaller ← recurse (filter (_≤ x) xs)
greater ← recurse (filter (_> x) xs)
return (smaller ++ [ x ] ++ greater)

Note that this definition is not actually recursive, but rather describes the recur-
sive structure. In order to execute it, we require a handler function that gives
semantics to these recursive calls in a way that complies with the termination
checker. There exist many different semantics for general recursion, like, for ex-
ample, a semantics based on invariants (Swierstra [2008], Baanen and Swierstra
[2020], Baanen [2019]). We will, however, restrict ourselves to the petrol-driven
semantics as defined by McBride [2015], which assigns semantics to recursive
functions by choosing a maximum recursion depth.

8.2.1 Petrol-driven semantics
Note how the type I # O is equal to (I I O) ⇒ ((I I O) ?_), a morphism
for general recursion. This morphism describes exactly how to unroll the func-
tion f once, by inlining f at the recursive call. This allows us to use morphism
composition to unroll quickSort a number of times. For example:

quickSort3 : List N # List N
quickSort3 = quickSort • quickSort • quickSort

The morphism abandon throws an exception at all remaining recursive calls,
essentially giving up after the maximum recursion depth is reached.

abandon : (I I O) ⇒ (Exc String ?_)
abandon _ = throw "max recursion depth reached"

To set the maximum recursion depth for quickSort, we abandon after a number
of unrolls.

runQuickSort3 : (List N I List N) ⇒ (Exc String ?_)
runQuickSort3 = abandon • quickSort • quickSort • quickSort

Using a fold function over natural numbers, we define the petrol-driven seman-
tics petrol, which unrolls a computation n times before abandoning.

foldN : a → (a → a) → N → a
foldN z s zero = z
foldN z s (suc n) = s (foldN z s n)

petrol : (I # O) → N → (I I O) ⇒ (Exc String ?_)
petrol unroll = foldN abandon (_• unroll)
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Note that the resulting morphism has type I → Exc String ? O. To run a
generally recursive function f, we simply apply the input of type I to petrol f n,
after which we apply a handler function for Exc String, like try.

runQuickSort : N → List N → Maybe (List N)
runQuickSort n = try • petrol quickSort n

We can use runQuickSort to sort, for example, the list 4 :: 2 :: 3 :: [] with
a recursive depth of 4.

> runQuickSort 4 (4 :: 2 :: 3 :: [])
just (2 :: 3 :: 4 :: [])

If we use a smaller recursive depth, it will abandon the computation before
reaching a solution and return nothing.

> runQuickSort 3 (4 :: 2 :: 3 :: [])
nothing

8.2.2 Petrol-driven predicate transformers
To reason about the correctness of a generally recursive function, in addition
to showing that the result of executing that function adheres to some specified
postcondition, we also have to make sure that the function terminates. For
petrol-driven semantics, this comes down to showing that, for every possible
input, there exists a large enough maximum recursion depth. We compose our
petrol-driven semantics with the modal predicate transormer pt�, which states
that, after unrolling n times, there should be at least one result adhering to the
postcondition.

ptQuickSort : N → (List N I List N) ⇒ cont Set
ptQuickSort n = pt� • petrol quickSort n

To define a postcondition for quickSort, we define a relation sorted, where
sorted xs ys denotes that ys is the result of sorting xs.

sorted : List N → List N → Set
sorted xs ys = permutes xs ys ∧ ascending ys

In the case of quickSort, the worst possible input is a list xs that is sorted in de-
scending order, requiring a maximum recursion depth of at least 1 + length xs.
The proposition quickSortCorrect then states that applying quickSort to the
list xs is guaranteed to give a correct result if we choose a maximum recursion
depth of 1 + length xs.

quickSortCorrect : (xs : List N)
→ ptQuickSort (1 + length xs) xs (sorted xs)
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8.3 Modular general recursion
The efficiency of quickSort depends on which pivot is chosen from the input
list. Rather than always choose the first element from the list, we might choose
the pivot at random. This way, we can reason about the efficiency of quickSort
independent of the order of the input list. We will model this random choice
using the effect of ambivalent choice. First, we define the function pick, which
non-deterministically picks an element from a list.

pick : {{_ : Amb ∈ f+}} → List a → q f+ ? (a × List a)
pick [] = fail+

pick (x :: xs) = return (x , xs) <|> do
y , ys ← pick xs
return (y , x :: ys)

For convenience, we write QuickSort to denote the list of signatures containing
both Amb and (List N I List N) and write QuickSort⊆ f+ to show that
these signatures are contained in f+. Using pick, along with the modular generic
effect recurse+, we define a non-deterministic variant of quickSort:

quickSort+ : {{_ : QuickSort⊆ f+}}
→ List N → q f+ ? List N

quickSort+ [] = pure []
quickSort+ xs = do
y , ys ← pick xs
smaller ← recurse+ (filter (_≤ y) ys)
greater ← recurse+ (filter (_> y) ys)
return (smaller ++ [ y ] ++ greater)

In order to define petrol-driven semantics for combinations of effects, we adapt
abandon to work on lists of effects, effectively replacing the effect of general
recursion with the effect of exceptions.

abandon+ : q (I I O :: f+) ⇒ (q (Exc String :: f+) ?_)
abandon+ (inj1 _) = throw+ "max recursion depth reached"
abandon+ (inj2 c) = call (inj2 c) return

The modular petrol-driven semantics petrol+ are then defined by abandoning
after unrolling the computation n times, all the while forwarding the other
algebraic operations.

fwd : q f+ ⇒ (q (I I O :: f+) ?_)
fwd c = call (inj2 c) return

petrol+ : (I → q (I I O :: f+) ? O) → N

→ q (I I O :: f+) ⇒ (q (Exc String :: f+) ?_)
petrol+ unroll = foldN abandon+ (_• unroll O fwd)
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Using morphism composition, we can first unroll the computation n times using
petrol+, after which we simply use the modular semantics as defined in chap-
ter 4. Note that we have to apply the petrol-driven semantics before handling
any other effects, since handling an effect will change the return type of our gen-
erally recursive function, which means that it is no longer a correct morphism
and cannot be used to unroll the computation. We will use collect semantics
(rather than, for example, random choice) so that we can better inspect the
different possible results.

runQuickSort+ : N → q QuickSort ⇒ (List ◦ Maybe)
runQuickSort+ n = escape

• partialCollect
• partialTry
• petrol+ quickSort+ n

If we use the non-deterministic quickSort+ to sort the same list as before1, we
can see that, as expected, every possible combination of pivots gives the same
result.

> runQuickSort+ 5 (inj1 (4 :: 2 :: 3 :: []))
just (2 :: 3 :: 4 :: []) :: just (2 :: 3 :: 4 :: []) ::
just (2 :: 3 :: 4 :: []) :: just (2 :: 3 :: 4 :: []) ::
just (2 :: 3 :: 4 :: []) :: []

To prove that this is the case for every possible input, we will define a modular
predicate transformer semantics for quickSort+. Using modal operators (sec-
tion 2.4), we want this semantics to express that every possible branch (�) of
quickSort+ should return at least one correct answer (�). First, we postpone
this choice of interpretation and use the free monad transformers for Exc and
Amb to construct a modular predicate transformer semantics.

ptQuickSort+ : N → q QuickSort ⇒ (excT String ◦ ambT) (cont Set)
ptQuickSort+ n = escape

• partialAmb
• partialExc
• petrol+ quickSort+ n

Then, we use the predicate transformer transformers ptt� and ptt� to give
our predicate transformer semantics the right interpretation.

ptQuickSort�� : N → q QuickSort ⇒ cont Set
ptQuickSort�� n c = init λ fin →

fin (ptQuickSort+ n c) ◦ (ptt� ◦ ptt�) id

Finally, the proposition quickSortCorrect+ states that every possible result of
applying quickSort+ to the list xs is guaranteed to be correct if we choose a
maximum recursion depth of 1 + length xs.

1Note that we have to use inj1 to apply the input, because runQuickSort+ can get any
command from q QuickSort as input.
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quickSortCorrect+ : (xs : List N)
→ ptQuickSort�� (1 + length xs) (inj1 xs) (sorted xs)

To conclude, petrol-driven semantics allow us to execute and reason about gener-
ally recursive effectful functions, provided that we choose a maximum recursion
depth that is large enough.
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Chapter 9

Soundness and Dijkstra
monads

So far, we have shown how to define computational and specificational semantics
for many different effects, such that we can execute and reason about effectful
programs. It is not immediately obvious what it means to use specificational
semantics to reason about a program. In this chapter, we will show how to
reason about programs in terms of their specificational monads and how we can
guarantee that this reasoning is sound, as well as show how computational and
specificational semantics relate to Dijkstra monads.

9.1 Refinement
The specificational monad corresponding to an effectful computation gives some
insight into the behaviour of that computation. In the case of predicate trans-
former semantics, the specificational monad cont Set describes, for every post-
condition P, the weakest precondition that should hold in order to satisfy P. By
showing that, for some postcondition P, the corresponding weakest precondition
is inhabited, we prove that P is guaranteed to hold on the output of executing
our computation.

Alternatively, we can reason about a computation by relating its weakest
precondition to the weakest precondition of another computation. To do so, we
define a refinement relation (Morgan [1994]):

_v_ : (wp1 wp2 : cont Set a) → Set
wp1 v wp2 = ∀ {P} → wp1 P → wp2 P

For two computations c1 and c2, with respective weakest preconditions wp1 and
wp2, we say that c2 refines c1 if wp1 v wp2, i.e. if every possible postcondition
holding on the output of c1 also holds on the output of c2. We can use this
refinement relation to show that a computation is, in some sense, at least as
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good as another computation. For example, we can show that quickSort is a
refinement of the less efficient, but known to be correct insertionSort, thereby
expressing the correctness of quickSort in terms of a reference implementation.
For some predicate transformer pt, we write

pt insertionSort v pt quickSort

Rather than specify a computation using a reference implementation, we can
define its specification more directly, simply by constructing a value of type
cont Set a. One way to do this is to define the specification of our computation
in terms of a pre- and postcondition monad pre/post, and from this pre- and
postcondition derive the weakest precondition.

pre/post : Set → Set
pre/post a = Set × (a → Set)

pre/post⇒wp : pre/post a → cont Set a
pre/post⇒wp (pre , post) P = pre ∧ ∀ x → post x → P x

For example, we can define a pre- and postcondition for a function that sorts
lists of natural numbers in ascending order. The precondition > states that
the function should work on any input list. The postcondition states that the
output list is sorted ascendingly and is a permutation of the input list.

sort-pre/post : (xs : List N) → pre/post (List N)
sort-pre/post xs = > , λ ys → sorted xs ys

sort-wp : (xs : List N) → cont Set (List N)
sort-wp = pre/post⇒wp ◦ sort-pre/post

This allows us to express the correctness of quickSort in terms of its specifica-
tion:

sort-wp v pt quickSort

Usually, programs are not written in one go, but rather build up incrementally.
For example, in the style of Swierstra and Baanen [2019], Baanen [2019], we
might define partially implemented programs as a mix between pure code and
typed holes containing specifications. Starting from only a single hole, at ev-
ery step we refine the current program by filling a hole with another partially
implemented program adhering to its specification until eventually no holes are
left. For some predicate transformer semantics pt, which computes the weak-
est precondition of a partially implemented program, this gives us a series of
refinement steps:

pt hole v pt p1 v . . . v pt pn v pt code

To ensure that the final program is a refinement of the initial specification, we
show that the refinement relation is a preorder on the computational monad.
That is, it is both reflexive and transitive:
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v-refl : x v x
v-trans : x v y → y v z → x v z

In fact, we can define a refinement relation for any specificational monad that
is ordered (Katsumata and Sato [2013]). For example, the refinement relation
_vs_ for stateful computations is defined as follows:

_vs_ : (wp1 wp2 : stateT s (cont Set) a) → Set
wp1 vs wp2 = ∀ {P} s → wp1 s P → wp2 s P

For simplicity, we will restrict ourselves to _v_ in the rest of this chapter, but
the described techniques readily extend to other refinement relations like _vs_.

9.2 Soundness as a refinement
As briefly discussed in the introduction, we can use specificational semantics to
reason about the behaviour of a computation syntactically. To ensure that our
reasoning still holds after executing a computation, we have to show that our
computational semantics are sound with respect to our specificational semantics.
For example, we can show that, if a postcondition P holds on a computation of
ambivalent choice according to the demonic predicate transformer J pt∀ K, this
implies that, after applying the handler function J collect K, the predicate P
should hold on every value in the resulting list:

∀ P (x : Amb ? a) → J pt∀ K x P → All P (J collect K x)

Note how this definition is a specific instance of a refinement relation! We can
specify the soundness of J pt∀ K and J collect K as a refinement relation as
follows:

(x : Amb ? a) → J pt∀ K x v flip All (J collect K x)

Intuitively, executing a program using a handler function is the last step in
refining that program. Note how both J pt∀ K and flip All are functions to
the specificational monad cont Set. In the style of Dijkstra monads (Ahman
et al. [2017], Maillard et al. [2019]), we will call flip All an effect observation.

Since we defined our semantics in terms of monad homomorphisms, let us
try and prove the soundness of our semantics in terms of the soundness of
the corresponding monad homomorphisms. We define sound∀ as a refinement
relation, describing that collect refines commands from the Amb signature.
That is to say, within the target monad, we can represent the command c as
collect c, and this representation is sound with respect to pt∀.

sound∀ : ∀ c → pt∀ c v flip All (collect c)
sound∀ branch (pf , pt) = pf :: pt :: []
sound∀ abort tt = []
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To show that the soundness of J collect K and J pt∀ K follows from sound∀,
we require All to be a monotone predicate transformer. A predicate trans-
former is monotone if it preserves the relative order of predicates. We define the
preorder _⊆_ on predicates, which states that, for two predicates P and Q, the
set of values on which P holds is a subset of the set of values on which Q holds.

_⊆_ : (P Q : a → Set) → Set
P ⊆ Q = ∀ {x} → P x → Q x

The monotonicity of All is now defined as follows:

mono : P ⊆ Q → All P ⊆ All Q

Furthermore, we require flip All to be a monad homomorphism from the list
monad to the continuation monad on Set. We define the following functions
homo-return and homo-bind, which are essentially specific instances of the
homomorphism laws (equation 4.1 and equation 4.2 respectively).

homo-return : return x ⊆ flip All (return x)

homo-bind : (flip All x >>= flip All ◦ k) ⊆ flip All (x >>= k)

In general, we prove that J run K is sound with respect to J pt K if run is
sound with respect to pt and the effect observation ϑ : m a → cont Set a is
a monotone monad homomorphism. We model this within the function 〈〈_〉〉, so
that the soundness of J collect K with respect to J pt∀ K can be defined as
〈〈 sound∀ 〉〉.

〈〈_〉〉 : (sound : ∀ c → pt c v ϑ (run c))
→ ∀ (x : f ? a) → J pt K x v ϑ (J run K x)

〈〈 sound 〉〉 (pure x) p rewrite homo-return x = p
〈〈 sound 〉〉 (call c k) p rewrite homo-bind (run c) (J run K ◦ k) =
mono (〈〈 sound 〉〉 (k _)) (sound c p)

While it is not in the scope of this thesis to prove for every combination of
handler functions that they are sound, this approach gives a good starting point
for proving such soundness results.

9.3 Dijkstra monads
In recent work on Dijkstra monads, Ahman et al. [2017], Maillard et al. [2019]
show how we can reason about a computational monadm in terms of an ordered
specificational monad w with a refinement relation 4. They identify a monad-
like structure that relates a computation with its specification as a dependent
pair of a computation and the proof that it adheres to its specification. This
proof is defined in terms of the effect observation ϑ, which is a monad morphism
from m to w that observes the behaviour of a computation from m within
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the specificational monad w. This observed behaviour is then related to the
specification using the refinement relation 4. We can model a Dijkstra monad
as follows:

record Dijkstra
(ϑ : ∀ {a} → m a → w a)
(spec : w a) : Set where
field
comp : m a
proof : spec 4 ϑ comp

A value of type Dijkstra ϑ spec represents a computation in m that is guar-
anteed to adhere to the specification spec, according to the effect observation ϑ.
To be able to compute with a Dijkstra monad D, we require it to be equipped
with the monadic operations returnD and bindD, which essentially extend the
usual return and >>= operations of the computational monad by computing the
correct specifications to which the resulting computations adhere.

returnD : ∀ x→ D (return x)

bindD : (mx : D wx) (mk : ∀ x→ D (wk x))→ D (wx >>= wk)

It is easy to show that we can define both returnD and bindD if the effect
observation ϑ is a monotone monad homomorphism. The definition of bindD is
very similar to the soundness proof as described in the previous section, which
also required a monotone monad homomorphism.

As such, it is not surprising that we can define a Dijkstra monad with
computational monad List and specificational monad cont Set, by choosing
flip All as its effect observation. Similarly, the free monad with signature f
forms a Dijkstra monad with specificational monad cont Set if the effect obser-
vation J pt K is a monotone predicate transformer. All predicate transformers
that we defined in this thesis can easily be proven to be monotone and thus give
rise to Dijkstra monads.

Knowing that predicate transformer semantics give rise to Dijkstra monads,
what is the meaning of handler functions in this context? Take for example
J collect K, which is a monad morphism from the free monad of ambivalent
choice to the list monad. These two monads are exactly the computational
monads of the Dijkstra monads that arise from the effect observations J pt K
and flip All respectively. We might try and define a morphism collectD
between these two Dijkstra monads:

collectD : (D : Dijkstra J pt∀ K spec) → Dijkstra (flip All) spec

Let x denote the computational part of the original Dijkstra monad D. We can
define the computational part of the target monad as simply J collect K x. To
complete collectD, we have to prove that flip All (J collect K x) refines
the specification spec. Since D has a proof that J pt∀ K x refines spec, using the
transivity of refinement we only have to show that flip All (J collect K x)
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refines J pt∀ K x. In other words, we have to prove that J pt∀ K is sound with
respect to J collect K!

In general, any monotone predicate transformer semantics J pt K gives rise
to a Dijkstra monad and every sound handler function J run K gives rise to a
Dijkstra monad morphism.
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Chapter 10

Conclusions & further work

In this thesis, we have described techniques for the verification of effectful com-
putations, by assigning semantics to programs using a variety of different effects
in terms of the semantics of the individual effects. We define semantics for in-
dividual effects as monad homomorphisms from the free monad to some target
monad. By choosing as the target monad a monad transformer applied to a
polymorphic base monad, combining semantics comes down to building up a
monad transformer stack, where the choice of base monad determines the na-
ture of the semantics. This approach gives us a lot of freedom when writing
effectful computations: we can handle effects one at a time and reason about
the intermediate results because the computational and specificational seman-
tics are defined in the same way. The monad homomorphism laws guarantee
that we get the same results regardless of whether we compose two programs
before or after applying our semantics.

Whereas the ease at which new effects and semantics can be introduced is
an important part of the techniques we described, a well-documented collec-
tion of effects along with semantics and soundness proofs relating them would
be an instrumental contribution towards the usability of our techniques. So
far, we have shown how to define modular semantics for the effects of mutable
state, exceptional behaviour, ambivalent choice and general recursion. Apart
from these effects and combinations thereof, there are many more interesting
effects, such as probabilistic choice and cooperative multithreading (Bauer and
Pretnar [2015]), as well as the well-known operation callCC (call-with-current-
continuation), which, as described by Schrijvers et al. [2019], can be modelled
using algebraic effects. It would be interesting to see for which of these effects
it is possible to define modular semantics using the techniques we described.

In the same vein, every effect can be given a variety of different seman-
tics. For example, Swierstra and Baanen [2019], Baanen and Swierstra [2020],
Baanen [2019] describe semantics for general recursion in terms of an invari-
ant. Compared to the petrol-driven semantics, this invariant-based semantics
is a lot more sophisticated and it is not immediately obvious whether it can be
integrated with the techniques described in this thesis.
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Additionally, there are some effects which are not strictly algebraic that we
would still like to be able to handle. For example, we might want to define
an effect for handling files which only allows the programmer to use a write
operation if a file is currently open. We believe it should be possible to define
such effects by generalising effect signatures to indexed containers (Altenkirch
et al. [2015]).

For every effect and every combination of effects we introduce, it is impor-
tant to make sure that their semantics are sound. In chapter 9 we described
soundness as a refinement relation and showed that we can prove the soundness
of semantics in terms of the soundness of their morphisms exactly if the corre-
sponding effect observation is a monotone monad homomorphism. We would
like to be able to show that the modular semantics we described preserve the
soundness of our semantics. That is, when combining semantics that are sound,
the resulting semantics should also be sound. While there is still some work to
be done before we can state that this is the case, we believe that the techniques
we described give a good starting point for proving the soundness of modular
semantics.

In practice, most programmers do not write programs in one go, but rather
in a series of small steps that eventually lead to executable code. This idea of
stepwise refinement, which we discussed briefly in section 9.1, requires that every
refinement step correctly updates the current proof obligations. Ahman et al.
[2017], Maillard et al. [2019] achieve this by equipping Dijkstra monads with
the monadic operations returnD and bindD. Baanen [2019] proposes a slightly
different approach, introducing similar operations for predicate transformer se-
mantics, and ponders whether this approach is more expressive compared to
Dijkstra monads, given that Dijkstra monads do not inherently separate syntax
and semantics. It seems to us that this potential loss in expressivity is mit-
igated by the introduction of Dijkstra monad morphisms between syntactical
Dijkstra monads (arising from specificational semantics on the free monad) and
computational Dijkstra monads, as described in section 9.3.

Much of this thesis comes down to providing techniques for generating proof
obligations, which the programmer is then required to discharge by hand. In
terms of usability, there is still a lot of room for improvement. We might, for
example, adapt the techniques by O’Connor [2019] to defer proof obligations,
use macros to enhance the syntax of effectful computations, or take inspiration
from the implementation of Dijkstra monads within the dependent programming
language F? (Swamy et al. [2013, 2016]).

There is still a great deal of work to be done before modular predicate trans-
former semantics can be used in the formal verification of large-scale applica-
tions, but we believe that the findings in this thesis form a valuable contribution
towards this goal.

58



Bibliography

Philip Wadler. A critique of abelson and sussman or why calculating is better
than scheming. ACM SIGPLAN Notices, 22(3):83–94, 1987.

Wouter Swierstra and Anne Baanen. A predicate transformer semantics for
effects (functional pearl). Proc. ACM Program. Lang., 3(ICFP), July 2019.
doi: 10.1145/3341707. URL https://doi.org/10.1145/3341707.

Wouter Swierstra. Data types à la carte. Journal of Functional Pro-
gramming, 18(04), July 2008. ISSN 0956-7968, 1469-7653. doi: 10.
1017/S0956796808006758. URL http://www.journals.cambridge.org/
abstract_S0956796808006758.

Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff. Monad trans-
formers and modular algebraic effects: what binds them together. In Pro-
ceedings of the 12th ACM SIGPLAN International Symposium on Haskell
- Haskell 2019, pages 98–113, Berlin, Germany, 2019. ACM Press. ISBN
9781450368131. doi: 10.1145/3331545.3342595. URL http://dl.acm.org/
citation.cfm?doid=3331545.3342595.

Conor McBride. Turing-completeness totally free. In Ralf Hinze and Janis
Voigtländer, editors, Mathematics of Program Construction, pages 257–275,
Cham, 2015. Springer International Publishing. ISBN 978-3-319-19797-5.

Danel Ahman, Cătălin Hriţcu, Kenji Maillard, Guido Martínez, Gordon Plotkin,
Jonathan Protzenko, Aseem Rastogi, and Nikhil Swamy. Dijkstra monads for
free. ACM SIGPLAN Notices, 52(1):515–529, January 2017. ISSN 03621340.
doi: 10.1145/3093333.3009878. URL http://dl.acm.org/citation.cfm?
doid=3093333.3009878.

Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martinez, Catalin Hritcu,
Exequiel Rivas, and Éric Tanter. Dijkstra monads for all. Proc. ACM
Program. Lang., 3(ICFP), July 2019. doi: 10.1145/3341708. URL https:
//doi.org/10.1145/3341708.

Gordon Plotkin and John Power. Notions of computation determine monads.
In Proc. FOSSACS 2002, Lecture Notes in Computer Science 2303, pages
342–356. Springer, 2002.

59

https://doi.org/10.1145/3341707
http://www.journals.cambridge.org/abstract_S0956796808006758
http://www.journals.cambridge.org/abstract_S0956796808006758
http://dl.acm.org/citation.cfm?doid=3331545.3342595
http://dl.acm.org/citation.cfm?doid=3331545.3342595
http://dl.acm.org/citation.cfm?doid=3093333.3009878
http://dl.acm.org/citation.cfm?doid=3093333.3009878
https://doi.org/10.1145/3341708
https://doi.org/10.1145/3341708


Gordon Plotkin and John Power. Algebraic operations and generic effects. Ap-
plied Categorical Structures, 11:2003, 2003.

Peter Hancock and Anton Setzer. Interactive programs in dependent type the-
ory. In Peter G. Clote and Helmut Schwichtenberg, editors, Computer Science
Logic, pages 317–331, Berlin, Heidelberg, 2000a. Springer Berlin Heidelberg.
ISBN 978-3-540-44622-4.

Peter Hancock and Anton Setzer. Specifying interactions with dependent types.
In Workshop on Subtyping and Dependent Types in Programming, Ponte de
Lima, Portugal, 2000b. INRIA.

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Categories of containers.
In Proceedings of Foundations of Software Science and Computation Struc-
tures, pages 23–38, 2003.

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers – construct-
ing strictly positive types, 2004.

Graham Hutton and Erik Meijer. Monadic parser combinators, 1996.

Anne Baanen. Algebraic effects, specification and refinement. Master’s thesis,
Utrecht University, the Netherlands, 2019.

Anne Baanen and Wouter Swierstra. Combining predicate transformer seman-
tics for effects: a case study in parsing regular languages. Electronic Proceed-
ings in Theoretical Computer Science, 317:39–56, May 2020. ISSN 2075-2180.
doi: 10.4204/EPTCS.317.3. URL http://arxiv.org/abs/2005.00197v1.

Mauro Jaskelioff and Russell O’Connor. A representation theorem for
second-order functionals. Journal of Functional Programming, 25:e13,
2015. ISSN 0956-7968, 1469-7653. doi: 10.1017/S0956796815000088.
URL https://www.cambridge.org/core/product/identifier/
S0956796815000088/type/journal_article.

Carroll Morgan. Programming from specifications. Prentice Hall international
series in computer science. Prentice Hall, New York, 2nd ed edition, 1994.
ISBN 9780131232747.

Shin-ya Katsumata and Tetsuya Sato. Preorders on monads and coalgebraic
simulations. In In Proc. FoSSaCS 2013, LNCS 7794, pp.145–160. Springer,
2013.

Andrej Bauer and Matija Pretnar. Programming with algebraic effects and han-
dlers. Journal of Logical and Algebraic Methods in Programming, 84(1):108–
123, January 2015. ISSN 23522208. doi: 10.1016/j.jlamp.2014.02.001. URL
https://linkinghub.elsevier.com/retrieve/pii/S2352220814000194.

Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor Mcbride, and Peter
Morris. Indexed containers, 2015.

60

http://arxiv.org/abs/2005.00197v1
https://www.cambridge.org/core/product/identifier/S0956796815000088/type/journal_article
https://www.cambridge.org/core/product/identifier/S0956796815000088/type/journal_article
https://linkinghub.elsevier.com/retrieve/pii/S2352220814000194


Liam O’Connor. Deferring the details and deriving programs. In Proceedings
of the 4th ACM SIGPLAN International Workshop on Type-Driven Develop-
ment, TyDe 2019, page 27–39, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450368155. doi: 10.1145/3331554.3342605.
URL https://doi.org/10.1145/3331554.3342605.

Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin
Livshits. Verifying higher-order programs with the dijkstra monad. In Pro-
ceedings of the 34th ACM SIGPLAN conference on Programming language
design and implementation - PLDI ’13, page 387, Seattle, Washington, USA,
2013. ACM Press. ISBN 9781450320146. doi: 10.1145/2491956.2491978. URL
http://dl.acm.org/citation.cfm?doid=2491956.2491978.

Nikhil Swamy, Markulf Kohlweiss, Jean-Karim Zinzindohoue, Santiago Zanella-
Béguelin, Cătălin Hriţcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, and Pierre-
Yves Strub. Dependent types and multi-monadic effects in F*. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages - POPL 2016, pages 256–270, St. Petersburg, FL,
USA, 2016. ACM Press. ISBN 9781450335492. doi: 10.1145/2837614.2837655.
URL http://dl.acm.org/citation.cfm?doid=2837614.2837655.

61

https://doi.org/10.1145/3331554.3342605
http://dl.acm.org/citation.cfm?doid=2491956.2491978
http://dl.acm.org/citation.cfm?doid=2837614.2837655

	Introduction
	Reasoning about effects
	Mutable state
	Research objectives

	Algebraic effects
	Modeling algebraic effects
	Generic effects
	Semantics
	Handler functions
	Predicate transformers
	Specificational semantics

	Exceptions and modal operators

	Modular effects
	Modular syntax
	Modular handlers

	Monad transformers and homomorphisms
	Monad transformers
	Monad homomorphisms
	Modular monad morphisms

	Modular predicate transformer semantics
	Specificational base monad
	Predicate transformer transformers
	Recap: combining algebraic effects

	Free monad transformers
	Pretty-print semantics
	Modular pretty-printers
	Free monad transformers
	Back to predicate transformer semantics

	Continuation monad transformer
	Algebras as morphisms
	Modular continuation-style semantics
	Modular pretty-printers

	General recursion
	Well-founded recursion
	General recursion
	Petrol-driven semantics
	Petrol-driven predicate transformers

	Modular general recursion

	Soundness and Dijkstra monads
	Refinement
	Soundness as a refinement
	Dijkstra monads

	Conclusions & further work

