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Abstract

Trains are cleaned and inspected regularly to keep passengers happy, and costs
low by preventing accidents. These services are done within a shunting yard
based on a schedule created by the Dutch Railways. In practice, the execution
of a schedule often deviates because a train arrives too late, or arrives with
carriages in an unexpected order. If these disruptions break the schedule in any
way, it will have to be corrected manually. We propose a local search technique
to aid the adjustment of the schedule, while also aiming for the resulting schedule
to be similar to the original. We introduce a score for similarity based on
comparing the machinist schedules.
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Chapter 1

Introduction

The Dutch Railways (NS) is the biggest railway company in the Netherlands,
each day transporting around a million passengers. Most will be travelling
during peak hours in the morning and the evening.

During the off hours and especially at night, there will be fewer passengers,
and consequently, the NS requires fewer trains on the rails. Trains that were used
during the peak hours and are not required in the off hours need to be taken
off the railway-network to make space. These trains are stored on shunting
yards throughout the Netherlands. Yards also provide room for services to be
performed on trains. These services can be: cleaning both inside and outside
the train, inspections for safety, and small repairs. Some of these services can
only be performed at specific locations within a yard, forcing trains requiring
the same service to wait for each other.

Shunting yards tend to be located close to stations. As a result, they are
found in urban areas with limited space available, and trains need to be spread
throughout the yard efficiently. Another issue is the trains being constrained to
tracks, hence limiting their flexibility: If a train is parked on a track, another
train cannot drive over it.

Due to the many trains that need to be stored at a yard, they can not
be thoughtlessly moved whenever they want or be parked wherever they want.
Doing so could cause complications for future trains, causing extreme delays.
Therefore, a schedule is created, ensuring that every service can be completed
in time and no train will be blocked by other trains. This schedule results in
every train being able to depart on time.

The schedule describes the execution of services and movements. It dictates
how the trains move through the yard and at what times. It prevents the trains
from conflicting with each other, and the required services are performed. It
might be possible that the composition of some trains needs to change between
their arrival and departure. This will be included in the schedule by telling
trains when and where to split or combine.

Before such a schedule can be created, we need information regarding the
trains that will be arriving and departing at a yard. This information is known
in advance and is the deterministic input for a schedule. It consists of the
composition of arriving and departing trains, combined with their arrival and
departure times. Furthermore, each arriving train contains a list of services that
need to be performed.
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The NS has a team of planners who create the schedule based on the deter-
ministic input. Because of the constraints present on a shunting yard, this is no
easy task.

Moreover, the number of passengers is increasing every year, and soon the
number of trains will not be able to keep up with passenger growth. This means
that the NS will have to add more trains to meet demand.

Consequently, more and more trains will be found in the service yards, result-
ing in higher capacity utilization and vastly increasing the difficulty of creating
new schedules. The NS is already expending effort to create new tooling for
planners to help them with making decisions to increase the speed of creat-
ing new schedules and improve the quality. Computationally generating these
schedules is a difficult problem, as it is similar to several known NP-hard prob-
lems such as Resource-Constrained Project Scheduling Problem; Open Shop
Scheduling Problem or Train rearrangement[1].

As a consequence of executing the schedule in the real world, deviations
during the execution will frequently occur, rendering the schedule infeasible due
to conflicts. Conflicts can range from trains departing too late, to two trains
being scheduled to drive through each other, which would lead to a crash.

A schedule containing conflicts is unusable. However, creating an entirely
new one is not recommended due to the difficulty of creating one and time
constraints. For this reason, the NS has a team of experts who manually adjust
the plan to remove conflicts. While it is not as much work as generating a new
schedule, it will still be a difficult task. Therefore, the NS aims to develop tooling
to help the teams of experts with suggesting adjustments, increasing the speed
and improving the quality of schedules in preparation for future disruptions.

This paper aims to develop and evaluate a local search algorithm that can
be used to repair the schedule by adjusting it to remove conflicts by applying
small changes in meaningful ways. Besides the removal of conflicts, another aim
for the algorithm should be to keep as many features of the original schedule as
possible, thereby having the adjusted schedule proceed in more or less the same
manner as it did before. We will describe a method of measurement in Section
4.6.1.

In Chapter 2, an in-depth description of the problem is given. Then in the
third chapter, a literature overview will be shown. In the fourth chapter, an
approach is introduced, which will be evaluated in the fifth chapter. Lastly, a
conclusion will be written in the final chapter, Chapter 6.
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Chapter 2

Problem Description

In this chapter, we will provide an in-depth description of the individual com-
ponents that play a part in the problem, followed by the problem itself.

2.1 Shunting yards

Figure 2.1: A Shunting yard at The Hague: Kleine Binckhorst

NS manages several shunting yards throughout the Netherlands. At these loca-
tions, they store passenger trains and perform necessary services. The layout
of such a shunting yard consists of multiple tracks connected by switches, an
example of which is seen in Figure 2.1. Trains enter these yards via one or more
entrance tracks connected to the main railway network, which is managed by
the Dutch task organization ProRail. Multiple trains enter via these tracks. For
this reason, trains cannot park there.

The available space at a shunting yard is small. Hence, tracks cannot be
made longer than the location allows, and the number of trains parked on a track
is limited. This constrains the total amount of trains found at a shunting yard,
limited even further by safety regulations. Tracks only support one traversing
train at a time and require some leeway for safety before the next train can
traverse the track. For this reason, they have to wait for each other, which
limits their ability to reach their destinations in time.
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Some yards contain electric switches. These can be flipped from a cen-
tral command system. However, most of the yards contain manual switches.
Whenever a machinist wants to use a switch, he has to walk and ensure their
correct placement before traversing them. The benefit of electric switches is
their flexibility; they allow a higher throughput of trains. However, installing
and maintaining electric switches is difficult. The yard will be out of commission
during their instalment, making it difficult for other locations.

If a train is not moving, it is either parked or serviced at a facility. Parked
trains are wholly contained in a track and do not occupy switches. Facilities
are connected to tracks where they can service trains standing on them. Most
facilities are specialized for specific activities, and some facilities are the only
ones found in a yard where their service can be performed. One is a washing
complex for externally cleaning trains. Having many of these facilities is too
costly, and they take too much space. Other facilities provide services such as
internal cleaning, multiple kinds of inspections, or small repairs.

2.2 Trains
The NS uses various types of trains divided into different types, each having its
properties and purposes. For example, the NS uses intercity trains, consisting of
types: DDZ, ICM, and VIRM. They are used for longer distances while Sprint-
ers, SLT or Flirt, are used for shorter distances. These specialities, together
with different connectors, stop trains from using multiple types.

To accommodate variable amounts of passengers, a train is designed to be
modular and consists of a combination of up to four train units of the same
type. The units themselves are a combination of multiple carriages that cannot
be divided. When two units are of the same type, they do not need to contain
the same number of carriages. Types can be split up in multiple sub-types to
denote that the units have the same type and can be connected, but contain a
different number of carriages. For example, the Flirt unit-train appears in two
variants: Flirt3, containing three carriages and Flirt4, containing four.

Figure 2.2: The upper train consists of two units of type ‘Flirt3‘ while the lower
train consists of two units of type ‘Flirt4’. Both trains are of the same type,
namely ‘Flirt‘ but are of a different sub-type.

Within a yard, a few limitations are placed on trains. One of these limitations
is the requirement of being driven by a machinist at one end of the train. A
machinist can only drive in the direction he is facing. If the train needs to drive
the other way, the machinist will have to exit the train and walk to the other
end.

2.3 Shunting schedule
A shunting schedule describes the activities in a yard for a time-window of
up to 24 hours. Yards tend to have a high capacity utilization rate, making it
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challenging to move trains around freely; they are easily blocked by one another.
Consequently, having services complete, and depart on time becomes challenging
and requires a good schedule to perform the work on a yard efficiently.

A schedule describes which trains arrive, their arrival time, and where they
should go after entering the yard. It also shows a list of activities that occur,
together with detailed information per activity. The schedule describes three
parts: The scenario, matching, and a list of planned activities showing the
starting time, finishing time, and locations where they should happen.

The scenario contains information about trains arriving and departing within
the time-window applicable. It is the deterministic input from which the rest
of the schedule is derived. The scenario itself consists of two smaller parts:
the arriving trains and the departing trains. The first part is a list containing
trains arriving at the yard. Each train has an arrival-time, location of arrival,
which units it contains, and the type and sub-type composition. Individual
units also have services that need to be performed during their stay at the yard.
The second part contains a list of trains which will leave the yard and their
departure times, together with a type/sub-type combination of units in which
it should depart.

For any scenario, we work with the assumption that all units included within
the arriving train will be part of some departing train. Consequently, no train
is found in the yard at the start or end of the schedule.

Figure 2.3: A yard with a high utilization

The second part of the schedule is the matching, and it uses the scenario
as input. The matching assigns arriving units to departing trains. Unfortu-
nately, the units within arriving trains do not necessarily have the same unit
composition as their matched departing train; trains possibly have to be split
and recombined before being able to depart.

The final part of the schedule is the list of activities that take place in the
yard. The activities on this list include their starting time and the train units
to which they are applied. The activities also represent services, movements,
combinations, and splits, along with some information specific to the activity.
In a period where none of the activities uses a train, the train will stay parked
and waits for the next activity that uses it. The activities used in this paper
will be further defined in the following paragraphs.

The first type of activity, the service activity, contains additional information
regarding the performed types of services. The different types of services consist
of, among other things, internal- and external-cleaning, inspections, and small
repairs. It also shows which team of qualified experts performs the service and
at which facility they perform it. In this paper, we assume that a team is always
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available, preventing constraints regarding an insufficient workforce at the yard.
The time it takes to complete the service depends on the type of service. Each
service has its expected duration, which is used in the schedule as the amount
of time the activity takes to complete.

The second type of activity is the movement of a train. The movement
contains a starting track, a destination and, a route between the two. The
person responsible for moving the train is a machinist, he ensures that the train
can safely reach its destination by walking past every switch along the route and
flipping it if necessary. After correcting the switches, the train starts to move,
but can only move in the direction with the machinist in front. Consequently,
this hinders the train from reaching certain tracks within the yard. If the train
has to reach these tracks, then it has to reverse. The machinist exits the train,
and he walks to the other end, but not before ensuring that all switches for the
next part of the path are flipped correctly.

During the duration of the movement, tracks used in the route are reserved.
This reservation blocks other trains from traversing them for safety. To approxi-
mate the time needed for a movement, we assign approximated times to flipping
a switch and traversing tracks. Flipping a switch gets an approximation of 30
seconds, the traversal of a track, including the starting and destination tracks,
is approximated to be 1 minute. The time to reverse the train depends on its
length.

For example, a train traverses three tracks and two switches, after which
it reverses and traverses four more tracks connected with three switches, com-
pleting a single movement. The first three tracks and two switches will take
3 · 60 + 2 · 30 = 240 seconds. Reversing train takes the machinist 60 seconds.
The second part of the journey takes 4 · 60 + 3 · 30 = 330 seconds. It should be
noted that four tracks are used in the second calculation: The track on which
the train reverses is used twice to calculate the total duration of the movement.
The total amount of seconds this movement takes equals to 240+60+330 = 630
seconds.

The third and fourth activities are related to splitting and combining. The
split activity describes how a single train splits into two, and a combine-activity
shows how two trains combine into one.

2.4 Problem
The NS generates efficient schedules, one for every shunting yard. Activities may
deviate from the schedule during the execution, potentially creating conflicts.
A plan with conflicts cannot execute if it results in undesirable scenarios, like
trains departing late or trains crashing.
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Figure 2.4: A plot of the disruptions occurring at Kleine Binckhorst, negative
delay is the same as a train arriving early.

In this paper, we will model two types of disruption that may cause a devi-
ation. The first disruption is a train arriving late or early. The disruption may
force other activities to wait and have trains depart late. Figure 2.4 shows delay
occurrences from Kleine Binckhorst collected over six months; most fall between
being five minutes early and 10 minutes late. The next disruption happens when
a train has a different sub-type order than was written in the scenario, causing
trains to depart in a wrong order or to drive through each other.

We will give an example of a disruption occurring while executing a schedule.
The example first shows a schedule executing without any disruption. After
that, it shows the same schedule but with a disruption.

1

2

3 4

Figure 2.5: A small yard

A small schedule will execute on an example shunting yard, shown in Figure
2.5. Trains arrive and depart from the entrance track 1, and they are not
permitted to park there. The tracks where trains can park are tracks 2, 3, and
4. These tracks are long enough to contain both trains used in the scenario.

The scenario proceeds as follows: train A containing two units of sub-type a
arrives at 9:00. After that, train B arrives at 9:30 with three units of different
sub-types (b1, b2, b3). Train A contains two units of type a, both the same sub-
type, and train B units of type b with the different sub-types b1, b2 and b3.
Both trains park for some time before departing. Train B departs first at 15:00
and train A at 17:00.
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Action train time
arrival A(a, a) 9:00:00
arrival B(b1, b2, b3) 9:30:00
departure B(b1, b2, b3) 15:00:00
departure A(a, a) 17:00:00

Train A(a, a) arrives at 9:00 and moves to track 2. At 9:30, train B(b1, b2, b3)
arrives and proceeds to move towards track 2.

The next action within the schedule is moving train B to track 1, after
which it proceeds to depart. Moving the train to Track 1 takes approximately
2.5 minutes; to let the train depart at 15:00, it needs to start moving at 14:57:30.
Two hours after the departure ofB, train Amakes preparations for its departure.
Train A starts moving to track 1 at 16:57:30 before immediately departing at
17:00.

The next figures show the states at various stages on the shunting yard in
chronological order. The green coloured lines represent that route a train has
taken.

1

2

3 4

Train A arrives and moves to track 2

1

2

3 4

b1 b2 b3

Train B arrives and moves to track 2

1

2

3 4

b1 b2 b3

Trains A and B parked on track 2

1

2

3 4

b1 b2 b3

Train B moves to track 1 and departs

1

2

3 4

Train A moves to track 1 and departs
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A disruption during execution

Next, we take a look at a scenario where Train B arrives in an unexpected order:
(b2, b1, b3), but still has to leave in (b1, b2, b3). The scenario requires the train
to depart in the correct order, which is not possible if the original schedule is
maintained. Therefore, the schedule has to be adjusted, starting from the point
where Train B arrives at the yard. Various states occur in the yard, which is
displayed chronologically in the images below.

Once train B arrives, it moves to Track 3 instead. There it is immediately
split into two smaller trains: (b2) and (b1, b3). After the split, Train (b1, b3)
immediately continues moving to Track 4, where it splits again, resulting in
trains (b1) and (b3).

After the second split, Train (b1) moves to Track 2, after which Train (b2)
moves next to Train (b3) at Track 4. These two movements cannot be executed
in parallel because they both make use of the same tracks.

Train (b2) is now next to (b3), and they combine into Train (b2, b3). The
last step is to put Train (b1) in front of it again. After moving Train (b1) from
Track 2 back to Track 4 it is added to Train (b2, b3) to create Train (b1, b2, b3),
now B′, and replaces Train B for departure.

To prepare Train B′ for departure at 15:00, it starts the move to Track 1 at
14:56 before departing.

Train A finds no change in actions related to it and proceeds according to
the old schedule.

1

2

3 4

1

2

3 4

Train A arrives and moves to track 2

1

2

3 4

b2 b1 b3

Train B arrives and moves to track 3

1

2

3 4

b2 b1 b3

Train B splits into (b2) and (b1, b3)
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1

2

3 4

b2 b1 b3

Train (b1, b3) moves to track 4

1

2

3 4

b2 b1 b3

Train (b1, b3) splits into (b1) and (b3)

1

2

3 4

b2

b1

b3

Train (b1) moves to track 2

1

2

3 4

b2

b1

b3

Train (b2) moves to track 4

1

2

3 4

b2

b1

b3

Trains (b2) and (b3) combine into one

1

2

3 4

b2b1 b3

Trains (b1) moves to track 4

1

2

3 4

b2b1 b3

Trains (b1) and (b2, b3) combine into one
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1

2

3 4

b1 b2 b3

Train B moves to track 1 and departs

1

2

3 4

Train A moves to track 1 and departs

Currently, the NS has dedicated teams of experts who manually adjust the
shunting schedule to remove the conflicts. The NS wants to develop tools that
assist this team of experts in decision-making and to speed up the process.

In this paper, we want to develop and test a local search based technique to
be used in disruption management on shunting yards.

Research questions
Given an existing schedule for a shunting yard and a disruption that introduces
conflicts in said schedule. We want to adjust the original schedule using a local
search algorithm. This leads to the next three research questions:

• How fast does a local search solve a conflicted schedule.

• How similar are rescheduled solutions to the original schedule.

• How does a local search compare to van den Broek’s[2] Simulated Anneal-
ing algorithm. Described in Chapter 3.
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Chapter 3

Literature review

In this chapter, we will give a small overview of the work related to the train
shunting problem and similar fields. As far as our knowledge goes, there is no
literature written solely about repairing train shunting schedules after disrup-
tions. For this reason, we also review the progress on disruption management
in other fields.

Many industrial fields have an interest in disruption management, and most
research has been done in the context of aircraft rescheduling. Clausen et al.[3]
give an overview of techniques used in operation research within the airline in-
dustry. This generally includes the generation of flight schedules, the assignment
of planes to flights and crew to aeroplanes. This has some resemblance to the
train unit shunting problem, but aircraft have greater freedom in the air and on
the ground than trains attached to the track. This paper will study disruption
management in the context of shunting yards.

Clausen et al.[4] give a comprehensive overview of methods used for dis-
ruption management in Operation Research, specifically in the field of Aircraft
Scheduling. One promising solution regarding the disruption of aircraft has
been researched by Argüelo et al.[5] They attempt to reconstruct aircraft rout-
ings using a GRASP approach. This is done in two phases: The first phase
generates a solution using a greedy heuristic and then utilizes a local search to
find a feasible solution. The next phase uses local search and three neighbour-
hoods to improve the feasible solution and reach a local minimum. The three
neighbourhoods are simple and involve moving a flight to different routes, ex-
changing flights between two routes or cancelling a flight. Using this approach
manages to give good results close to the minimum within roughly 15 seconds
on instances with 42 flights assigned to 16 aircraft.

A more comprehensive research on disruption management is done by Zhu
et al.[6], with a focus on resource-constrained project scheduling. Their ap-
proach consists of a hybrid algorithm combining Mixed Integer Programming
and Constraint Propagation. The MIP formulation iteratively gets tightened
with the help of CP. They reasoned that adjusting precedences with the help of
CP would give better results than calculating everything with a MIP approach.
To test this method, a collection of instances containing 20 activities was eval-
uated. Many of which solved in roughly a minute.

A related field to disruption management is recoverable robustness. Ci-
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cerone et al.[7] have been trying to define the robustness of optimizations. Their
definition of a robust solution consists of the capability of such a solution to han-
dle small disruptions using a robust algorithm. This is an algorithm that is able
to compute a new robust solution from any disruption. To evaluate the quality,
a price of robustness is constructed by taking the maximum ratio between the
optimal and the solution created by the algorithm, of every problem instance.
Cicerone et al. then proceed to apply these ideas to a simplified version of a
shunting yard designed for freight-trains to demonstrate the effectiveness. Dur-
ing this evaluation, they show how robustness heavily affects performance.

Freling et al.[8] are the first ones who study the problem of creating a
shunting schedule. They call it the Train Unit Shunting Problem (TUSP).
Their primary focus is to match arriving with departing trains and assign them
a track to park while waiting for departure. Their approach to generating new
schedules is to split the problem into two steps and solve them sequentially.
The first step is matching the arriving units to departing trains by using an ILP
formulation. This formulation minimizes the number of splits and combinations
needed by taking subsets of adjacent train units as blocks and assigning them to
slots in the departing trains. The second step continues with the blocks defined
earlier, assigning them a parking spot where they do not block the arrival or
departure of one another. They solve this problem by using ILP with column
generation. The master problem selects parking assignments which are gener-
ated by a dynamic programming subroutine. These parking assignments are
made for individual blocks of trains and are independent of each other. Using
this two-step approach, they manage to generate feasible solutions within a rea-
sonably short amount of time. They show their ability to generate schedules for
a generic weekday on a yard in Zwolle within an hour.

TUSP can be extended with the scheduling of services and assigning crew
to these services. Van den Broek et al.[2] propose a novel approach using local
search with simulated annealing as a metaheuristic. This is realized by mod-
elling the activities taking place on a yard in a partial ordering schedule, which
is iteratively improved by making small mutations. An initial solution is cre-
ated in two small steps. The first step creates a feasible match assignment and
proceeds to minimize the number of splits and combines necessary by running
a simulated annealing algorithm with limited time. The second step continues
with the matching and greedily assigns tasks, parking spots and routes between
the tasks to the units. The resulting approach manages to generate a feasible
schedule for a realistic scenario within roughly two minutes.

In further research, van den Broek et al[9] searched for strong robustness
measurements, to measure the strength against possible disruptions. They in-
troduced two new robustness measurements. The first is a path based measure.
For the top K most relevant paths in a partial ordering schedule, a normal
distribution is estimated which combines the distributions of service comple-
tion times. The second measure is a probability distribution based on the total
makespan of the schedule.

These two measures were compared with existing measurements by way of a
Monte Carlo simulation study. The findings suggest that the newly introduced
measurements strongly correlate with the used performance statistics. Van den
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Broek concludes that the measurement based on the makespan performs equally
well as the path based measurement, but that the former measurement is pre-
ferred based on speed.

The Simulated Annealing algorithm made by van den Broek assumes that
all information is known in advance and no disruptions occur. In an attempt
to create a solution taking disruptions during execution into account, Peer et
al.[10] devise a method to create a shunting schedule using deep reinforcement
learning. Their aim is to introduce consistency to the schedules. For their tests,
the neural network was trained on a yard containing nine tracks on problem
instances with no services to be performed. Training their model consisted of
14 hours with 30, 000 problem instances, after which it developed a preferred
way of solving problem instances. This preference introduced consistency to the
schedules, which is convenient for repairing schedules with disruptions. Regen-
erating the schedule with an introduced disruption will return a new schedule
with similar features as the original one. The deep learning model of Peer et al.
[10] is an experimental approach and did not consider more complex yards. More
complex problem instances will require more training data and more training
time, whereas our approach does not have these requirements while also being
more flexible.
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Chapter 4

Local search

4.1 Local Search: Simulated Annealing and Tabu
search

This chapter describes a local search algorithm capable of repairing schedules
that became infeasible after a disruption occurred.

We assume that the reader is familiar with the basics of local search; we will
only explain the essential parts of our local search approach that are specific
to our problem. We refer to the work done by Blum et al. [11] for a general
introduction into the area of Local Search.

Local Search approaches are capable of getting stuck in a local maximum.
Over the years, multiple techniques have been developed to escape local maxima;
two of these techniques are Simulated Annealing and Tabu search.

Simulated Annealing is a metaheuristic that allows moving to a worse solu-
tion under certain probabilities to escape local maxima. These worse solutions
are accepted based on a probability that decreases the longer that algorithm is
running. The probability of accepting a worse solution depends on the quality
of the two solutions and a temperature T > 0. As the algorithm runs, the
temperature cools down, resulting in lower probabilities of accepting a worse
solution. The quality of a solution is measured with an objective function f
taking a solution as input. This score has to be maximized. The probability p
of accepting the worse solution b over the current solution a, f(b) < f(a) can
be defined as:

p = e

f(b)− f(a)
T (4.1)

Another metaheuristic is Tabu search. Tabu search attempts to escape the
local maxima by accepting worse solutions. However, unlike Simulated An-
nealing, which accepts a worse solution with a given probability, Tabu search
evaluates a randomly sampled set of neighbours with size E and selects the best
neighbour for further evaluation. If the selected neighbour is worse than the
current one, it is possible that the current neighbour can be found in the neigh-
bourhood of the selected solution, to prevent the algorithm from going back and
selecting the solution it came from, a tabu list is maintained. Once a solution
is selected, it will be added to the tabu list, and it cannot be reselected.
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This paper uses a combination of Simulated Annealing and Tabu search. The
best solution is chosen from a random subset of the neighbourhood, containing E
solutions and no solutions found in the tabu list. Then, this solution is accepted
based on the probability function as described in Simulated Annealing. If the
solution is accepted, it will be used in the next iteration.

In the next sections, we describe the different parts of our local search and
how they come together.

4.2 Solution Representation
The local search moves through a solution space in search of an optimal solution.
For the local search to work with these solutions, they need to be represented in
a data structure that contains all the information needed to construct a schedule
and that can be easily adjusted to find neighbouring solutions.

To this end, van den Broek[2] uses an acyclic directed graph to represent
solutions. We use a similar graph to represent a solution. This graph consists
of multiple nodes representing actions ai that are executed within a shunting
yard and directed edges representing precedence relations between these actions.
The nodes used in the graph consist of 7 different nodes representing: Arrival,
Departure, Movement, Service, Split, Combine, and finally Turning actions.
Parking a train does not have a specific node; it is implied that trains are
parked in a period where they do not act.

Every node has a starting time α(ai) and a finishing time ω(ai)
representing start and finishing times of the action.

The first node is the arrival node. These nodes are derived from the
scenario, where every single node stands for an arriving train in the scenario.
It mainly consists of three components: Firstly the arrival time, secondly the
track from which the train enters the yard and finally the train composition of
sub-types.

The next node, also derived from the scenario, is the departure node.
These nodes contain information for scheduling the departure of a train. This
information includes the planned departure time from the scenario, the actual
departure time, train composition and the track it leaves the yard from. While
it is possible that the actual departure time differs from the planned one, it
should not be happening and is an infeasibility.

The third node is the movement node. The movement node is used to
show when and how a specific train should be moving. This includes where it
starts, which tracks it drives over, the destination track and finally, the expected
duration time the movement will take.

Fourthly, the service node shows which service is performed on a train at
a facility and the duration. More specifically, it shows the set of unit-trains on
which the service is performed.

The next type is the split node. When a train needs to be split into two,
this node provides a description of how the split should proceed. It contains the
original train and the two trains it splits into, along with the duration it takes
to split the train. Similarly, the combine node describes a combination of two
trains into one, along with the combination duration.
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The final node is the turning node. A train can be scheduled to reverse its
direction to be able to reach other locations. To make the reversal possible, the
machinist has to walk to the other side of the train. This act, together with the
duration it takes to walk to the other side, is described with the turning node.
The reason turning is not included in the movement node, is to increase flexi-
bility; it is easier to modify multiple smaller nodes than a single big movement.

Directed edges are used to model the precedence relations within the graph
and determine an order of execution within the nodes.

A precedence ai → aj models the starting time of node aj to occur after ai
is finished.

Consequently, it can be stated that for starting time α(aj) and the finishing
time ω(ai), the constraint α(aj) ≥ ω(ai) holds. In ai → aj , ai is the parent and
aj is the child.

We define two different kinds of precedence relations. The first type is a
train relation. These can be found between two nodes referencing the same
train, or in the case of split or combine, overlapping train units.

The next relations are the ‘other’ relations defining precedences between
nodes referencing different trains. These relations are needed to order nodes that
access the same resources at the same time, for example: when two movement-
nodes make use of the same tracks, or when two service nodes require the same
facility. Coincidentally, these two types of nodes are the only ones who need
‘other’ relations.

Using the precedence relations, we can determine starting times for nodes.
Arrival nodes are assigned a starting time, after which the starting times can
be propagated through the graph via the precedence relations.

All nodes execute as early as possible conform the precedence relations.
However, the departure node is an exception because it should not depart earlier
than planned. The preceding movement action should be executed directly
before the departure to prevent trains waiting on an entrance track. Having a
departure depart after the planned time is possible, but it will be counted as an
infeasibility.

Figure 4.1 shows a visualization of such a graph. This graph shows the
actions executed in the second example from Chapter 2.4. The straight arrows
are train relations, and the dotted arrows are other relations.
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Figure 4.1: The graph displays the procedure to solve the example with disrup-
tion described in Chapter 2.4

.
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4.3 Pathfinding
Each movement stores its route from the origin to the destination. If a new
movement is added to the graph, then a pathfinding algorithm finds new routes
for these movements. Finding a route is done with an A*-algorithm which
evaluates the more promising paths first.

Rails within a yard are laid out in graph, in which a path is searched. Nodes
in the graph represent either a track, switch or an intersection, and they are
connected by edges to represent which rails connect.

The A*-algorithm starts searching for a path from the origin node and stops
as soon as it finds the destination node. While searching, the train’s driving
direction is kept in mind. Some nodes, mainly switches, can reach different
nodes depending on the direction the train is moving.

While exploring a node, reachable neighbouring nodes are added to a priority
queue, which orders nodes based on a summation of a weight and a lower bound.
The weight of a node is based on the duration to reach the node, starting from
the origin. This time is similar to the one in movement-actions, a straight track
adds 60 seconds to the weight, and each switch adds another 30. Additionally,
the turning of a train adds an approximated 180 seconds and moving through a
track where trains are parked adds another 600 seconds per train, to discourage
these tracks.

The lower bound is similar to the weight mentioned above. It is the time to
reach the destination from the current node. The time is pre-calculated using
a Floyd–Warshall algorithm. It is used to find the shortest paths between all
pairs of nodes, including the trains being able to turn. A straight track adds 60
seconds, a switch adds 30 and turning the train adds 180 seconds.

While a pre-calculated path is the shortest path between two locations, it
does not account for obstacles standing in the way. The obstacles need to be
taken into account while finding a path, hence the A*-algorithm.

4.4 Schedule changes
Besides containing all the information required to construct a schedule, the
solution encoding also has to be flexible enough to make changes easily. A
change applied to a solution results in a new solution which is a neighbour of
the original. In the following section, we will describe the possible changes in
detail.

4.4.1 Modelling disruptions
The first two changes are used to introduce disruptions into the plan. They are
applied at the start of the local search to mirror the disruption that occurred
during execution.

Add or remove arrival delay

The first change that can be applied is to add or remove an arrival delay. Plan-
ners apply this change to indicate a train arriving early or late. It can be
adjusted within the solution encoding by merely adjusting the starting time of
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the corresponding arrival node to the new starting time, followed by propagating
this new time through the directed graph.

Change arrival order

The next change changes the arrival order of units within a train. This models a
disruption where a train arrives with its units in a different order than was given
by the scenario. The schedule has to be adjusted to ensure that the unexpected
order does conform to the departing trains in the scenario.

The original train, as described by the scenario, will henceforth be referred
to as the original train, while the train with the changed order will be referred
to as the new train.

We make the assumption that a train arriving in unexpected order does not
consist of more than three sub-types. On a shunting yard, trains containing
more than three sub-types are rare, and we will ignore them.

This change starts with modifying the arrival node to refer to the new train,
but it also adjusts other nodes and possibly adds new nodes to the graph. When
applying the change, it becomes important to adjust the graph based on what
happens to the train during its stay at the yard. If the train, at some point, is
split into the same sub-type compositions as with the original split, then nothing
needs to be adjusted. The possibly introduced conflict, such as trains driving
through each other, will be resolved during the execution of the local search.
If, on the other hand, the train can not split into the same compositions as the
original, then we will have to add some nodes to move units and reorder them
according to the original ordering of units.

If the original train is not scheduled to be split, but the train arrives in a
different sub-type order, the train needs to be split up and recombined in the
correct order. This is done by introducing new nodes to the graph and having
the local search fix occurring conflicts.

4.4.2 Changes for exploring neighbourhoods used in the
algorithm

The next changes are applied during the local search and are used to change
a solution into a neighbouring one. Change and neighbourhood will be used
interchangeably.

Add a precedence

This change adds ‘other precedence relations’ between a parent and a child node
of the same type. For example, if two movements overlap each other, they share
tracks and their times overlap, then adding a precedence relation between the
two will force one to wait for the other.

Reverse precedence

Another useful change is to reverse a precedence relation, such that the order
of execution for two nodes is reversed. This reversal makes it possible for an
action to start earlier at the cost of a different one starting later.
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Figure 4.2: Reversing the precedence a→ b to become b→ a

Remove a service

When a train can not depart in time, it might be beneficial to skip a service
executed on a unit. Skipping a service can be represented in the graph by
removing the corresponding node. After removal, the parents and the children
of the removed node need to be connected with precedence relations to preserve
a correct ordering.

Add a service

On the other hand, when a service has been previously removed, it might be
possible to add the service back again. To facilitate this possibility, a new change
introduces services to the graph by adding a new service node and precedence
relations. If the train does not visit a facility where the service can be performed,
a new movement has to be introduced, moving the train to a facility where it
can be serviced.

Changing parking or service location

This change will adjust the parking location of a single train by replacing the
necessary movements to move the train to a different track instead of the original
one, potentially relocating the services at the old location as well. This has the
added benefit that the change can be used to relocate services as well. This
change does not add a new movement to move the train away, but it ensures
that the train is never parked at the original track in the first place.

Besides changing the location of parking and services, this change is also
used to change locations where splits and combinations are to happen. Changing
these locations is a little different because there are three trains involved instead
of one. In the case of splitting a train, this will be the one train being split into
two other trains. Conversely, during combination, it will be the two trains
combining into a single train. This causes the need to create new movements
for three trains instead of one.
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Move train out of the way

A movement is blocked if it traverses a track on which a train is parked. This
change moves the train out of the way. The blocking train has to move to a new
parking location from its current track. An efficient path is created to reach this
location while potentially scheduling a stop in between to let the blocked train
through. Ensuring that the initially blocked train can complete its movement.

The difference between this change and the previous change is as follows:
This change allows the train to be parked still at the track where the blocked
train moves through but then moves away to let the train through. While on
the other hand, the previous change ensures that the train never parked there
in the first place.

Add in between stop during a movement

Sometimes it is handy to split one big movement into two smaller ones. For
example, a train arrives and needs to move to Track c, via Track b. If Track c
is temporarily unavailable, then this change could let the train park at Track
b, splitting the entire movement into two, one movement from the entrance to
Track b, and another one from Track b to Track c.

Recalculate movement

This change adjusts a movement to depart and/or arrive from a different side
than it currently does. This is useful, for example, when a train should depart
from one side of a track when the other side is blocked. Another use case is
when a train should arrive at a different side of the track. For example, when a
train needs to arrive at a different side to correctly combine.

Swapping trains of the same sub-type

The last change swaps trains referenced by two groups of actions. A group
is a chain of actions connected by a train precedence relationship. These two
trains have the same sub-type composition; the swapping change forces one
train taking over part of the other’s planning and vice versa. Due to a train
exchanging a part of the planning, it will happen that some performed services
are not required anymore while others are missing. The non-required services
are removed from the graph. Missing services will be added during the further
iterations of the local search. Because the two trains are likely found in different
places, new movements will be created to connect the trains properly.

For example, Figure 4.3a shows two chains in an existing schedule. The
upper chains corresponds to Train T1, while the lower corresponds to Train T2.
Both trains have the same sub-type composition. The green nodes represent
services both trains require, while the red node is a service only the upper
chain, Train T1, requires. In this example, the destination of the two thick
arrows will be swapped, resulting in Figure 4.3b. Because Train T2 does not
require the red service node, it will be removed from its chain, becoming the
final scenario displayed in Figure 4.3c.
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Figure 4.3: Three phases of a train exchanging parts of their planning. Black
nodes are nodes with nothing special, green nodes represent services that are
executed on both trains and a red node represents a service that is only executed
on Train T1.

4.4.3 Resemblence to van den Broek’s simulated anneal-
ing

Because of the similarities between previously described changes and the neigh-
bourhoods described by van den Broek, this section will compare the two.

Van den Broek’s algorithm has some more neighbourhoods. For example, a
neighbourhood left out in this paper is the combination of two movement nodes.
It is not included because we believe it decreases the flexibility for later rounds.

Multiple iterations of our changes can imitate some neighbourhoods from
van den Broek. One such neighbourhood in van den Broek’s algorithm is taking
a movement and shifting it to an earlier or later position of ordering. We can
achieve this by switching precedences one or more times. Another neighbour-
hood is swapping the parking location of two trains, we do not see the immediate
usefulness of this neighbourhood, but if it is useful, it can be recreated with two
iterations of changing parking locations.

There are two neighbourhoods that van den Broek does not have. One
neighbourhood has the ability to remove services from trains, and one can add
services.
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4.5 Conflicts
The previously described changes, the neighbourhoods, are used to create neigh-
bouring solutions. To limit the number of changes and explore more promising
solutions first, we opted for conflict based neighbourhoods: The conflicts gen-
erate sensible changes. We proceed to describe conflicts, including the changes
they generate.

Facility over capacity

Facilities can only manage a certain number of trains; it can happen that some
change incorrectly burdens the facility with too many tasks at the same time.

Adding precedences between pairs of actions has a high possibility to solve
this conflict with minimal impact on the entire schedule. The conflict generates a
precedence relation for all permutations of two services performed at the facility.

In other cases, it might be handy to relocate a service to be executed at
a different facility instead. For every service action, a change is generated to
change the service location to a different facility.

Track over capacity

Just like a facility being over capacity, a track can also be over capacity. The
combined length of parked trains exceeds the size of the track.

A possible change is to add some precedences to the movement actions of
trains related to the conflict. The goals of adding precedences are to either let
a train depart early, thereby creating space for another train to arrive. Alterna-
tively, let an arriving train wait for the departure of a different train to create
enough space. Another option to resolve the conflict is to park trains somewhere
else instead.

Late departure

The departure of a train is recorded in the scenario, but it also has the earli-
est departure time, which is derived from precedence relations. It occurs that
changes made to the schedule can force a train to depart after the time it was
supposed to, creating a conflict.

This conflict works with the assumption that every node in the graph starts
as soon as possible. With this assumption, a chain of consecutive actions can
be found, which ends at the conflicting departure node.

If the chain contains a consecutive pair of nodes connected by ‘other’ prece-
dences, then it can be concluded that one train has to wait for another causing
a bottleneck. If there are no bottlenecks in the chain, then the only option for
the train to depart on time is to drop non-essential services.

On the other hand, if there are bottlenecks, there are a few changes able to
fix the bottlenecks. Flipping the precedence between the two actions causing the
bottleneck causes the child action to start before its parent, thereby allowing the
chain to finish faster. However, it is not a given that the chain will finish faster
because they can have other influencing relations. Another option is to relocate
one of the actions in the bottleneck to a different location, thereby removing the
precedence relation between the two and allowing the waiting action to start
early.
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Missing service

A scenario describes which services should be executed on which train units.
If one of these services is not planned in the solution, it will be counted as a
conflict. The apparent change is to introduce the service for the units to the
solution as described in the add service change.

Two movements sharing tracks at the same time

A movement reserves the tracks it uses for the duration of its executions. If
another movement attempts to use the tracks while they are reserved, they risk
colliding with each other. Even if they do not crash into each other, there will
be the issue of switches. For example, if the first train uses a track a minute
before the second, the paths of the two would diverge at some point by means
of a switch. At some yards the machinists have to walk and manually flip the
switches to the correct state, they both require the switch to be in their own
state at the same time, which is not possible. What we can do, however, is to
split a single movement into multiple, effectively adding an in-between stop and
freeing reserved tracks.

This occurrence can be resolved in two different ways. The first and most
obvious way is to add a precedence relationship between the two movements.
The second way is to change the destination of one of the movements, parking
the train at a different location and ensuring that the tracks are not shared.

Combination conflict

Sometimes, a change causes a combination-node to become invalid: the node
tries to combine two trains, but they are not placed on the track in the order
the combination wants them to be. What we can do to remedy this conflict,
is to add precedences letting the trains arrive in the required order. Another
possibility is, if there are no other trains on the track, to let a train arrive at
the other side.

Train blocking a movement

The last conflict occurs when a train is scheduled to move through a track having
a train parked on it. Again, multiple ways to change the schedule exist to stop
the moving train from crashing into the parked one.

The first change is to move the parked train out of the way, adding a new
movement node, such that it does not interfere with the other one.

Another change is changing the parking location of the blocking train to a
different track. Unlike the previously proposed change which moves the train
away by adding a new movement, changing the parking location modifies the
existing movement moving the train to the parking spot to move somewhere else
instead. The next possible change is to swap one of the trains with an identical
one. Finally, the last change is forcing the moving train to start moving after the
parked one has moved by adding new precedences between the movements.
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4.6 Objective function
An objective function gives desirable solutions a better score while giving worse
solutions a worse score. An essential aspect of the objective function is the aim
of the Local Search. We aim to create a feasible schedule without conflicts while
resembling the original schedule.

This aim can be partly reflected in the objective function by assigning penal-
ties to occurring conflicts and other undesirables, such as having too many
movements. The objective function does not contain a measure of similarity
between the original schedule and a current solution; we believe the main focus
of the objective function should be to find a feasible solution, moreover due to
the nature of the neighbourhoods used, non-drastic changes, a feasible solution
should be quite similar to the original schedule. In Chapter 5, we back up our
claims of not needing a similarity score in the objective function.

4.6.1 Penalties
The objective function consists of a summation of penalties and a weight as-
signed to the penalty. The various conflicts are responsible for most of the
penalties, but other undesirables are also penalized. These are having too many
movements, splits, combination or turning nodes within the solution.

We will give a small overview of the penalties derived from conflicts that are
found on a solution s. Each penalty has its own weight.

For a given solution s.

Figure 4.4: The average of the area under the line. The y-axis shows the excess
amount of services and the x-axis the time.

The first penalty discourages facilities being over capacity. Each facility f
used in the solution s gives a penalty value focs(f) ≥ 0. This value is calcu-
lated by multiplying the number of excess services in a time period with the
time period in seconds. When plotting the excess services over a time period
as shown in Figure 4.4, the surface under the line is taken as the penalty value
focs(f).
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The next penalty discourages the track being overcapacity. Each track τ
gives a penalty value tlvs(τ) ≥ 0. This value is calculated in the same way as
the previous penalty, but the meters exceeding the length of track τ replace
the number of excess trains. However, it is possible that this value becomes
very low and is drowned in other penalties. For this reason, another penalty
tlvcs is introduced. tlvcs is equal to the number of tracks containing too many
trains. A track can be counted multiple times if it becomes over capacity mul-
tiple times. Incidentally, this can cause the combination of two small conflicts
into one bigger conflict, depending on the weights taken.

The next penalty penalizes the delay of trains. The penalty delays(d) is the
delay of departure train d in minutes. Assuming that a train cannot depart
earlier than scheduled, the delays(d) function can only be higher or equal than
0. delays(d) ≥ 0. This penalty has the same problem as the previous penalty:
The delay can be very small and drowned out by others. A new penalty delaycs
is introduced, equal to the number of trains departing late.

The following penalty penalizes combination conflicts. The penalty combines
represents the number of combination conflicts.

Next, services not performed on train unit u are penalized as well. The
penalty for a unit u becomes mss(u), representing the amount of services that
are not performed on u.

The next penalty punishes two movements sharing tracks at the same time.
The penalty crs(m1,m2) becomes the amount of tracks shared between two
conflicting movements m1 and m2.

The final penalty related to conflicts occurs when a parked train is blocking
a moving train. The penalty cts(m) is the amount of times a movement m
drives through a parked train.

Unfortunately, we forgot to include the penalty and weight of the combina-
tion conflict. With the deadline quickly approaching, we believe it infeasible to
rerun the experiments in time. However, these results will be displayed in the
revision, and conclusions will be updated accordingly.

The next four penalties are designed to limit the amount of nodes needed.
The type of nodes to limit are the movement nodes ms, the combination nodes
cs, the split nodes ss and the turning nodes ws.

As mentioned before, every penalty has its own weight. This paper uses the
following weights:

wfoc wtlvp
wtlvcp

wdelayp
wdelaycp

wmsp
wcrp

wctp
2 0.0003 40 0.08 40 2 20 60

wcombines
wmp

wcp
wsp

wtp
10 0.5 1 1 1

All these penalties combine into a single equation, where M is the set of
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movement nodes, T the set of tracks, D the departing trains and F the set of
facilities.

P (p) = wfoc ·
∑
f∈F

focp(f) (4.2)

+ wtlvp
·

∑
τinT

tlvp(τ) (4.3)

+ wtlvcp · tlvcp (4.4)

+ wdelayp
·

∑
d∈D

delayp(d) (4.5)

+ wcombines · combines (4.6)
+ wdelaycp · delaycp (4.7)

+ wmsp
·

∑
u∈U

msp(u) (4.8)

+ wcrp ·
∑
m1∈M

∑
m2∈M

crp(m1,m2) (4.9)

+ wctp ·
∑
m∈M

ctp(m) (4.10)

+ wmp
∗mp (4.11)

+ wcp
∗ cp (4.12)

+ wsp
∗ sp (4.13)

+ wtp ∗ tp (4.14)

Each penalty has its own weight to denote the importance. The lines 4.2 to
4.10 represent conflicts within the solution, if all of these lines sum to 0 with
weights bigger than 0, the solution is conflict free.

4.6.2 Similarity measure
The similarity measure focusses on machinists. We believe they are the individ-
uals most affected by rescheduling a schedule.

Every machinist available is assigned a chain of movement actions. The
initial assignment is created greedily. Every movement action is assigned in
order of starting time to the machinist that can reach the starting location first.
A precomputed table of walking times between tracks is used to calculate which
machinist arrives first. If none of the machinists can arrive in time for the start
of the movement, it has to wait for the first one available.
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The initial mapping is improved via a simple local search. The neighbour-
hood of a mapping consists of mappings where the chains of two machinists
are partly swapped. The score function is the averaged walking time of every
machinist, which should be minimized. The local search iteratively improves
the mapping by moving to a better neighbour with a lower score until no more
improvements are possible.

As an example, Figure 4.5a shows a subset of a mapping, machinist M1
performs the movements depicted as green blocks and machinist M2 performs
the movements in the red blocks. One of the neighbouring mappings is shown
in Figure 4.5b. Machinists M1 and M2 exchange some of their movements.

Once the machinist schedules are optimized, the similarity measure is the
difference of average walking times between the two. Durations of machinists
driving the trains are not considered in the similarity values. We believe that
these durations will not be significantly different in the context of this paper.
In this paper, the difference will be taken between two machinist schedules per-
taining to four machinists: One of the original non-disrupted shunting schedule,
and the other one, found by the algorithm. If the difference is larger than zero,
then the machinist has to walk that many minutes extra. Otherwise, if the
difference is less than zero, the machinist walks that many minutes less.

Unfortunately, this method is elementary, because it averages the walking
times. Multiple times can cancel each other out. A more advanced method
could be created that uses scores the walking times on a more individual basis.

More extensive research in scheduling personnel is done by van den Broek et
al. [12] He proposes two advanced techniques to schedule personnel. Not only
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machinists are scheduled, but also other specialized personnel, such as engineers
or cleaners.
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Chapter 5

Experiments and Results

This chapter evaluates the performance of the algorithm. Experiments are car-
ried out to accomplish this. They give insight in the performance of the algo-
rithm using statistics.

Figure 5.1: A Shunting yard at The Hague: Kleine Binckhorst

The experiments require test cases to give insight into performance. We use
1421 different scenarios that are generated using tools provided by the NS. The
time starting at 14:00 until 07:00 is the busiest on the yard. Consequently, that
is when most problems occur under a disruption. The test cases are placed in
this time frame because they result in more relevant situations. On average, a
scenario contains 11 trains, 15 train units and roughly 30 performed tasks.

This paper looks at two different types of disruptions: Trains arriving with
units in an unexpected order, and trains arriving early or late. A set of test
cases is created for both disruptions. The first set is for the unexpected order
disruption. For every train in a scenario, a permutation is taken as a new test
case, resulting in 5000 different test cases. The second set is for disruptions in
the arrival time. Four different time adjustments are selected from real-world
data displayed in Figure 2.4. The first adjustment is a train arriving 5 minutes
early. It does not often occur and is an adjustment with a high chance of
creating conflicts. Another disruption is a train arriving 10 minutes late, also
with a significant chance of conflicts. Trains arriving 2 minutes early and 1
minute late, are two disruptions with a small probability to create a disruption.
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We are applying these four disruptions to every train results in 44890 test cases.
Running all of these test cases would take a long time. Therefore, we sample
5000 cases with high confidence in them representing the entire set.

The algorithm requires parameters to be set up. It will use the weights
shown in Chapter 4.6.1 for running test-cases:

wfoc wtlvp
wtlvcp

wdelayp
wdelaycp

wmsp
wcrp

wctp
2 0.0003 40 0.08 40 2 20 60

wcombines
wmp

wcp
wsp

wtp
10 0.5 1 1 1

In chapter 5.1, we will use four variations of local search to solve instances.
Three of these require specific parameters for running. The first variation is
Iterated Improvement which is a variation that needs no parameters. The sec-
ond variation is Tabu search, which only requires the single parameter E. It
evaluates E random solutions in the neighbourhood from which the best solu-
tion is taken for next iterations. The current solution is then put in a tabu list
which contains solutions that will never be re-evaluated. After various small
runs using 250 cases with E set to 2, 5, 8, or 10, we concluded that Tabu search
with E = 10 solves the most instances.

E
10

The third variation, Simulated Annealing, has two parameters: Temperature
T and cooling factor α. This variation evaluates a random solution from the
neighbourhood, until one is accepted based on a probability based on T . To cool
the temperature, we multiply T with the cooling factor α after every iteration.
Like Tabu search, we let Simulated Annealing run on 250 cases to find an optimal
configuration for the two parameters. The attempted combination of variables
are (T, α) = (340, 0.8), (550, 0.9), (300, 0.8) and (600, 0.9).

T α
600 0.9

Finally, the combination of Tabu search and Simulated Annealing combines
evaluating E random solutions from the neighbourhood with accepting the best
solution from these, based on a probability function based on temperature T .
Again, T is cooled with a cooling factor α. These values are chosen based on
the runs of the previous two variations.

T α E
600 0.9 10

5.1 Running times
Disruptions often occur without warning, but trains do not wait for conflicts to
be removed from the schedule. Therefore, NS believes it is vital that a feasible
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schedule is found quickly. The first experiment explores the runtime of the
algorithm and compares it to different versions of the algorithm.

The primary algorithm is a local search that combines Tabu search with Sim-
ulated Annealing(TSSA). We compare the combination against Tabu search(TS),
against Simulated Annealing(SA), and Iterated Improvement(II). All of which
are described in the section above. These variations are run on the sets of test
cases. A single case runs up to 15 times per algorithm but stops earlier if a
feasible schedule is found. A single run searches for a maximum of 20 seconds.

We evaluate the two sets of test-cases independently. Table 5.1a shows the
run time results of the first set, while Table 5.1b shows the run times of the
second set. Another difference between the algorithms can be found in the
number of neighbourhoods explored and changes applied. These results are
shown in tables 5.2a and 5.2b.

Solved
mean std max count

TS 776 ms 1095 ms 6,961 ms 4,492
SA 101 ms 266 ms 11,477 ms 3,297
II 38 ms 52 ms 538 ms 2,111
TSSA 766 ms 1109 ms 6,724 ms 4,389

(a) First test case set
Solved

mean std max count
TS 423 ms 683 ms 5,703 ms 4,969
SA 93 ms 194 ms 5,993 ms 4,037
II 64 ms 128 ms 1,274 ms 2,948
TSSA 419 ms 676 ms 5,742 ms 4,958

(b) Second test case set

Table 5.1: Results of two sets. Only results for cases for which a feasible solution
is found are shown. The results contain a mean, standard deviation, and the
number of occurrences.

Solved
evals depth

TS 75 4
SA 12 2
II 5 1

TSSA 74 4
(a) Averaged results of the first test case
set.

Solved
evals depth

TS 48 2
SA 10 2
II 7 1

TSSA 48 2
(b) Averaged results of the second test case
set.

Table 5.2: Evals is short for the amount of solutions evaluated, while depth is
the amount of changes applied.

We notice a trend in the results. If the algorithm finds a feasible schedule,
it will find it very quickly. Otherwise, if it does not find one, it will take
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significantly longer before the algorithm stops searching. For example, if the
TSSA-algorithm runs longer than 6.7 seconds, then the algorithm will likely not
find a feasible schedule. In conclusion, a run time of 20 seconds is not restraining
the algorithms, because a solution should be found within that period.

Another observation is that SA and II solve an instance significantly faster
than TSSA. II is fast, but weak in finding feasible schedules requiring more
than one change. This is because it cannot escape local maxima. Evidently, a
schedule often has to become worse by introducing new conflicts in order for a
feasible one to be found. On the other hand, SA is able to solve more cases, but
still gets stuck in local maxima relatively quickly.

TS and TSSA have a similar performance in run-time and the number of
cases solved. While TS has a faster average run time, it is not statistically sig-
nificantly faster than TSSA. Both are able to escape local maxima and generally
find a feasible schedule with a few changes applied.
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5.2 Similarity
The goal of the next experiment is to test the similarity, defined in Chapter
4.6.2, between feasible schedules and the original undisrupted schedule. We
want to see if the algorithms create schedules with a good similarity value. A
good result is when the similarity value is smaller or equal to zero.

We look at, and compare, the four algorithms again. A single algorithm
runs 15 times on a single test case and takes the average similarity of feasible
schedules. Tables 5.3a and 5.3b show the resulting similarity scores of the first
and second set of test cases, respectively. Only the results are shown of cases
for which a feasible solution is found. The results show the mean, min, and max
similarities. If the similarity has a value less than 0, then the machinists have
to walk on average that many seconds less within the schedule. Conversely, if
the value is larger than 0, the machinist has to walk that many seconds more.

II has a better similarity score. However, we believe that due to its inability
to escape local maxima, it does not apply many changes. As a result, the
schedule is not able to change significantly.

In the previous experiment, we found that TSSA and TS have similar results.
After executing students t-test on their similarity score, we find that TSSA yields
significantly better similarity scores than TS, for both sets of test cases.

If every machinist has to walk an hour longer, it will be in a period from
14:00 to 07:00, for a total of 17 hours. We believe that the similarity scores are
acceptable if they do not exceed 30 minutes. With 30 minutes, the machinist
has to walk on average 1.8 minutes longer per hour if it was spread out over
the 17 hours. However, the machinist schedule is affected after the disruption
occurs. Therefore, the machinist has to walk its seconds more, in a smaller
time-frame than 17 hours. We believe that an extra time of 30 minutes covers
most scenarios.

mean min max
TS 117 s -1,143 s 2,637 s
SA 42 s -1,429 s 2,028 s
II 13 s -1,112 s 1,823 s
TSSA 103 s -1,108 s 2,194 s

(a) Results for first test cases
in seconds

mean min max
TS 45 s -970 s 1,845 s
SA 28 s -1,357 s 1,861 s
II 6 s -935 s 1,201 s
TSSA 43 s -935 s 1,755 s

(b) Results for second test cases
in seconds

Table 5.3: Cases where a feasible schedule is found

We show the weight distribution of the results in Figures 5.2 and 5.3. We
see multiple distributions with the average close to 0. While the curves look like
normal distributions, according to the Shapiro-Wilk test, none of them are. The
curves show that most of the similarity scores are centred around their mean
value, values larger than 1,500 seconds are rarely encountered. Consequently,
most feasible schedules are acceptable in similarity.
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Figure 5.2: The weight distribution of similarity scores on the first set of cases

Figure 5.3: The weight distribution of similarity scores on the second set of
cases
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5.3 Comparison with van den Broek’s Simulated
Annealing

The final experiment compares the number of feasible schedules. It compares
the schedules created by TSSA with the schedules created by the Simulated
Annealing algorithm of van den Broek et al.[2], which we will shorten to VDB.
This algorithm creates an entirely new schedule. Therefore, it requires the sce-
nario to be adjusted. We adjust the scenario to capture the new situation after
the disruption happened, including removing services that have been executed
and putting trains on tracks where they are supposed to be at the time of the
disruption. VDB runs with a maximum run time of 60 seconds.

From the four local search implementations, we chose TSSA for comparison
because it performs well enough, and is not significantly better than TS.

Tables 5.4a and 5.4b both show four numbers representing test cases solved
only by TSSA, only by VDB, solved by both, and solved by neither of the two.

Solved
Only TSSA 869
Only VDB 417
Both 3,022
Neither 130

(a) Results on first set of cases, trains
units arrive in unexpected order

Solved
Only TSSA 913
Only VDB 30
Both 4,104
Neither 19

(b) Results on second set of cases,
trains arrive early or late

Our algorithm yields more feasible solutions than VDB in less time. This is
likely because TSSA works from an existing schedule containing conflicts, while
VDB recreates an entirely new one. While our algorithm is capable of solving
more cases than VDB, VDB can solve quite a few cases that our algorithm can
not. This observation shows that TSSA does not always find a feasible schedule
when there is one. We believe that this new schedule structure is so different
from the original, that our algorithm could not find it, and could only be found
by creating an entirely new schedule.

A keen reader might notice that the results do not count up to 5000, this
is due to the author making mistakes. Rerunning the algorithms for results
will not complete before the deadline of this paper, but correct results will be
present in the revision.
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Chapter 6

Conclusion

Shunting schedules often deviate from their original plan due to disruptions: a
train arriving at a different time, or arriving with units in an unexpected order.
If these disruptions break the schedule in any way, it will have to be corrected
manually.

We proposed a local search technique with the help of Tabu search combined
with Simulated Annealing to aid in removing created conflicts while aiming for
a minimum deviation from the original schedule. The algorithm uses a directed
graph to model activities taking place on the yard. In this graph, nodes model
the activities and directed edges imply the order in which they execute. Our
algorithm transforms an existing schedule into a graph, applies the disruption
and then proceeds to resolve conflicts by applying small changes to the graph.

In Chapter 5, we performed experiments using variations of the algorithm.
These variations include local search, Simulated Annealing, Tabu search, and
the combination of the latter two. In the first experiment, we showed that
the algorithms are capable of finding feasible schedules within seconds if it can
find one. With the second experiment, we showed that newly found schedules
generally are similar enough to the original schedule. This was decided by using
a similarity score based on a comparison of average walking times between
machinist schedules of the original and the new schedule. This approach is
the first attempt at quantifying similarity between schedules, and can still be
improved. The final experiment compared our algorithm against the Simulated
Annealing algorithm designed by van den Broek et al.[2] This showed that, while
our algorithm was able to solve more test cases, it does not always find a feasible
schedule if there is one available.

Overall, we believe that Tabu search combined with Simulated Annealing is
a promising approach for aiding NS planners in rescheduling.

6.1 Further research
The current similarity function is mainly based on the emotions of the machin-
ists, while we believe these should certainly be incorporated, a method based on
structural differences would be more desirable. However, finding such a method
would be difficult, because comparing graphs is difficult.
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More research could be done in finding smart neighbourhoods and constrain-
ing search space by applying constraint programming techniques.
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