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Figure 1: Sample outputs of the proposed iterative relaxation algorithm. The
left column uses directional derivative constraints for connecting terrain to the
path, the right column uses roughness constraints.
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1 Introduction

Procedurally generating content is an increasingly important topic within the
simulation of virtual worlds such as in computer games; it aims to automate
the creation of a huge variety of content. Not only terrain, but also vegetation,
buildings, characters or even rule-based missions set in procedural environments
and spaces [12]. Research has even ventured into human-built structures such
as roads [17] and entire cities [19, 23] that could be placed upon a terrain. This
makes the development process of the designers more efficient and it creates more
unexpected content for the player to keep exploring. Procedural generation can
be further expanded by modifying the generated content based on the desired
player experience [29] or even tailoring the generated content to the player
during actual play based on the progress and behavior of the player [6].

Methods for procedural generation are now sophisticated enough that some
games start to rely on them extensively. In these cases it is vital that the gener-
ated content is varied enough to let the player keep exploring new configurations.
The world in these types of games is finite, yet there is an infinite number of
variations and often there is no way to ‘complete’ the game. It can be observed
that no manual content creation can ever achieve this, as game designers can
only deliver a finite number of variations. Examples of games that rely on con-
tent that is infinitely random are Rogue [44] and Spore [46]. Some games take
this to the extreme and procedurally generate infinite terrains or environments,
examples are Minecraft [30] and No Man’s Sky [25].

A common trope of infinite games is that they enable exploration play, which
is a type of play that is recently being studied more [5]. Conversely, these games
do not allow easy integration of a story line or a progression of sequential mis-
sions as seen in many adventure type games such as Magicka [31] or Tomb
Raider [13]. This disadvantage is due to the lack of ability to constrain linearity
in a world where the player can go anywhere. This work introduces a procedu-
ral terrain modification algorithm that is tailored to adventure type games that
want to introduce an infinite terrain to emphasize exploration play. The chal-
lenge is to embed a ‘natural’ path the player walks along into an infinite natural
terrain that forces a certain degree of linearity. This allows the introduction of
(semi-)sequential missions or story lines into the game.

1.1 Proposed Algorithm

The algorithm that this work will propose works under the assumption that
infinite terrain is greedily created by generating patches of terrain. All patches
are strictly square so that they can be stitched together to form a seemingly
infinite terrain in all four cardinal directions (north, east, south, west), see
Figure 2 for an illustration. Such a patch of terrain will be represented as a
finite two-dimensional heightmap, which is a widely used way to define terrains
in computer games or simulations. Similar approaches of dividing up a terrain
into square patches are occasionally used in other works [32, 47], however not
much material exists that uses such a system to greedily generate worlds of
unknown size (or theoretically infinite).

The proposed algorithm is a post-processing step that takes a square patch of
terrain as input and produces an output patch of equal dimensions that can be
seen as a modification of the input. In the most basic sense, the problem it tries
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Figure 2: Illustrated example of eight generated patches that are stitched to-
gether to form a bigger terrain (left). A graph that covers multiple patches (and
even not yet generated patches) is cut so that the input graph G for a single
patch (right) is well defined.

to solve is as follows: given a square patch of terrain, denoted by L, transform
it into a new patch of terrain of equal dimensions, denoted by H, by modifying
L such that a given planar input graph, denoted by G, is embedded into H as
a path that can be walked upon. This means the player, or any character, can
walk on a path through output terrain H defined by input graph G. This in
turn means the slope, or more precisely; the norm of the gradient of every point
of the path in any direction must not exceed a given maximum value.

A crucial constraint needs to be considered: the realism of the path through
the terrain. The goal is to generate a realistic looking terrain, naturally the
path through it should look realistic as well. It is, for example, undesirable
to simply move all vertices of L that touch the embedding of G downwards so
that they can be walked upon. The path should follow the shape of the actual
base terrain. More precisely, the terrain connected to the boundaries of the
path must connect in a ‘natural’ way, preserving the realism of the terrain. We
want to maintain the ‘realism’ of output terrain H by imposing mathematical
constraints based on graph G. We can attempt to formulate what ‘realistic’
means in the design of the constraints.

Within the patch-based model, the boundaries of H need to align to its
neighboring four patches seamlessly, in other words: given set height values for
the border of H, modify its interiors such that it ‘realistically’ connects to its
borders. A method will be discussed that flows from the proposed constraints.
Input graph G can be obtained from any source; one can imagine that if we
have a graph that is bigger than one patch, it could be cut up into squares, as
illustrated in Figure 2, such that each patch has its own input graph. If the total
size of the world is unknown, we could procedurally expand this graph. This
patch system could then easily facilitate greedily generating entire new areas of
the world.

Compare this problem to real life; when humans make a path, a reasonable
assumption is that they want to exert the least amount of work possible, there-
fore we want to modify the input terrain as little as possible; graph G should
be embedded in output terrain H such that it has changed as little as possible
from input terrain L. The Earth Mover’s Distance (EMD) [36] is chosen as a
metric to evaluate the distance between the input and output terrains. The pre-
cise definition used in this work is given later on in the mathematical problem
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description. In short: the EMD from L to H, denoted as EMD(L,H), is the
minimum cost of turning L into H. It measures the amount of material moved
and weighs it by the distance it needs to be moved, which has nice similarities
with what we would expect in reality.

At this point, we can define the algorithm as an optimization problem, where
the objective is to minimize the cost of transforming L into H. This problem can
be solved directly to obtain a global optimum H0. However, methods for solving
such a problem optimally don’t scale well with the input size. Therefore this
work proposes an iterative relaxation method that approximates this optimal
solution. Further work may focus on expanding this algorithm to generate a
more appropriate base terrain L, procedurally generating the graph to embed
in the terrain or generating the actual missions and rules [12] to augment this
algorithm.

2 Related Work

There are many different approaches to procedurally generate environments.
Take for example dungeon games; these take place in a labyrinth of rooms,
corridors, hidden places, treasures and monsters. Dungeons are an easy way to
conceptually think of a world with characters in it, you do not need an outside
world with distant mountains or a sky above. The places characters can move to
are naturally restricted by the layout of the dungeon. Consequently, dungeons
are one of the first procedural environments that were used in games. These
environments often rely on a constructive method using some space partitioning
algorithm to make a subdivision of space, yielding rooms, corridors or caves [42].
Similar yet distinct processes can be performed to achieve all kinds of dungeon-
like structures. A common approach is to use generative grammars, which are
strings of symbols that are rewritten according to predefined rules until the
string only contains terminal symbols. These symbols can represent graphs, to
generate the structure of a dungeon [3], but they can also represent the geometry
of the individual spaces [12]. Other methods include (but are not limited to)
cellular automata, genetic algorithms and, for example, using agents that define
the shape of the dungeon by their movements [45].

However when trying to generate three-dimensional terrains with hills, moun-
tains and other natural phenomena that believably mimic the outside world,
dungeon generation techniques fall short. Many algorithms that do produce
such terrain exist such as the uplift model [34], the hill algorithm, the fault al-
gorithm and various post-processing techniques [20]. Although they are useful
algorithms, the most powerful and extendable approaches appear to be fractal
landscape modeling, physical erosion simulation, genetic terrain programming
and methods to constrain the generated terrain such as synthesis based on input
features or synthesis from sample terrain patches.

2.1 Fractal terrain

Noise is a widely used technique to generate natural terrain [20, 28, 33, 37, 43].
To get visually believable slopes we generate random values on a coarser lattice
than the heightmap and interpolate between them. This way the terrain height
gradually increases or decreases. However, this approach produces sharp peaks
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and valleys connected with straight slopes. Instead of generating the height val-
ues directly, we can also generate random slope (also called gradient) values and
infer height values from that. Since we are now generating gradients, i.e. rate of
change, we have an extra level of smoothness; the gradients are interpolated, so
the gradient of the terrain will change gradually. This is also called perlin noise
[20], which is a widely used primitive in many facets of procedurally generating
content.

The method above still has a major visual drawback, namely that it only os-
cillates at one frequency. In nature, landscapes have the same kind of variations
at multiple scales. This self-similarity is the basis of fractals, and generated
terrain with this property is called fractal terrain [43]. A conceptually simple
way to introduce such self-similarity is by generating multiple heightmaps, each
with a different frequency, and adding these different frequencies together to
form a single terrain. However, more efficient and straightforwards methods
exist; perhaps the most well known algorithm to produce fractal terrain is the
midpoint displacement algorithm [33]. Instead of calculating each height value
for each frequency, the midpoint displacement methods works by recursively
calculating the missing values halfway between already known values and off-
setting the new values with a random value whose range is determined by the
depth of the recursion. A few variations of the midpoint displacement algorithm
exist such as the triangle-edge subdivision or the diamond-square subdivision.
These variations differ in what lattice points are selected for each recursive step,
resulting in slight differences in the resulting overall shape of the the terrain.

One of the major advantages of the midpoint displacement method is that
in each recursive step, adjustments can be made to the random offset to better
reflect the terrain type. For example, the height fluctuations of lattice points
can be taken into account so that the range of the random offset is smaller in flat
landscapes, but greater for more rugged landscapes [28]. This technique, and
all other fractal terrain techniques mentioned above, produce realistic looking
terrain (some artifacts may occur). However, they all lack any form of control
over the location or size of terrain features.

2.2 Erosion simulation

Erosion simulation is an approach to synthesizing terrains based on the erosion
from fluid streams running through it. It is often used as a post-processing
step to further refine the terrain by adding ridges and valleys to enhance re-
alism. The two most widely used methods are based on thermal erosion [26]
and hydraulic erosion [9]. Thermal erosion simulates material breaking loose
and being deposited at the bottom of a slope. Hydraulic erosion is material
being transported by flowing streams of water. One of the greatest weaknesses
of such algorithms is the computation cost of the transportation of water. This
is a complex and expensive process to perform. some effort has been made to
integrate more complex fluid simulation into the erosion process [10]. On top of
that, a lot of research has gone into optimization of erosion algorithms to run
on the GPU [24, 27, 39].

All the above algorithms still suffer a lack of control over the shape of the
terrain. Some methods are suggested that combines the actual terrain genera-
tion and the erosion simulation [11, 18]. Instead of eroding an already generated
terrain, these methods allow the designer to paint a simple sketch (or similar)
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that will define either the rough shape of the mountain ranges or the shape
of the river system. However, there is still no control over the finer details of
the terrain. Another method introduced by Olsen [28] attempts to modify ero-
sion algorithms such that the terrain satisfies constraints with use for computer
games in mind. Olsen observes that for computer games, it is desirable to have a
low average slope of the generated heightmap such that buildings can be built or
characters can walk upon areas of the terrain. However, some height variation is
desired, so a second constraint is introduced that says the slopes should have a
high standard deviation. By careful modification of the erosion algorithm Olsen
succeeds in quickly generating terrains that satisfy these constraints.

The above erosion algorithms sketch ways to exert some control over the
location or shape of terrain features in fractal terrains. At large scales we can
guide the general shape of the terrain and at smaller scales we can make sure
it satisfies certain constraints concerning the shape of the terrain. Unfortu-
nately, large-scale control does not translate to small scale control and small
scale constraints do not allow for precise control over the location or size of
terrain features, which is exactly what we aim to do in this work.

2.3 Search based terrain

Another approach to generating terrain is to use genetic programming [14].
The method was inspired by the lack of control over most terrain generation
algorithms. The idea behind the approach is to use interactive evolution with
genetic programming to generate terrain programs. A terrain program is sim-
ply a program that can be executed to generate a new, novel terrain. Such a
program is designed with specific terrain features in mind such as cliffs, corals
and mountains. These terrain programs are the individuals on which genetic
programming is applied, a human designer manually selects individuals for each
generation. Some effort has been made to improve the generated programs
such that other parameters can be imposed upon the terrain such as accessibil-
ity [15, 16]. However, these methods still have major drawbacks, namely that
the search for the right terrain program is rather difficult and time-consuming.
Furthermore, continuous human interactivity is needed to ensure the resulting
terrains are realistic, or at least believable.

Simpler search based methods rely on a local search algorithm using heuris-
tics to match an exact shape or exact constraints on the terrain [4, 38]. It is easy
to see how these are more practical to use within computer games, they do not
require an interactive process of evolving a terrain program and they give more
control over the output shape. Especially the technique proposed by Stachniak
and Stuerzlinger [38] provides a useful yet simple local search algorithm. Similar
to erosion simulation the algorithm is essentially a post-processing step applied
to already generated terrains. It modifies terrain using simple gaussian kernels
and provides a very powerful model of constraining the terrain. It allows to
match an exact shape, stitch terrain patches together, carve paths through the
terrain and more. The major drawback of such a technique is that it is only
a post-processing step, it offers little control over large-scale terrain features.
Furthermore, the search space is rather large, it is very time-consuming and
nowhere near real-time. However, it does output promising results.
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2.4 Controlling terrain

The techniques discussed in previous sections do not allow for precise control
over the location, size and shape of the generated terrain features all at once.
Most techniques do allow control over one of these aspects, but are lacking in
another. A lot of research has gone into giving precise control and the ability
to constrain terrain as desired. Several authors have investigated sketch-based
systems [2, 40, 41], these methods take a rough sketch of desired features from
the designer and generate terrain based on it. Another sketch-based method
utilizes real landscape data [47]. This example-driven method takes a designer-
sketched feature map and combines it with patches of real heightmap data to
get the desired features in the generated terrain. A different method instead
takes exact vector based feature curves as input [21], which has been extended
to volumetric terrain generation [7].

Another school of thought to introduce more control is to constrain points
in the heightmap to be generated. One such method uses local search and is
already highlighted above [38]. However, it is a very time consuming algorithm.
For use in video games it is desirable to decrease the search space such that
terrain patches can be generated while the player is moving towards them. An-
other interesting method uses simple incremental construction to get a mountain
peak at an exact location [22]. Unfortunately, no research has been done to ex-
tend this to allow for entire mountain ranges. Another approach is to constrain
existing generation models such as constraining the midpoint displacement algo-
rithm [8]. This technique first fixes lattice points and then runs bottom-up (i.e.
recursively, but bottom-up instead of top-down) to further expand the starting
constraints of the algorithm. This allows the fixed points to naturally influence
the landscape around it. Afterwards, it runs the midpoint displacement algo-
rithm as usual. Such an approach enables to fix the exact height of given lattice
points in the landscape. Unfortunately it offers no intuitive control over larger
areas yet; to affect an entire group of lattice points, we have to specify each
location precisely, so it would need augmentation from some other algorithm to
be useful.

Finally we address seamlessly stitching different patches of terrain together.
This appears to be a relatively simple problem; many of the methods discussed
above can achieve this. For example, the algorithms taking vector based fea-
ture curves as input [7, 21] could define a feature curve at the boundary of a
patch. Alternatively, the bottom-up midpoint displacement algorithm [8] could
simply constrain the vertices at the boundary. The method by Stachniak and
Stuerzlinger [38] could easily perform a local search to modify two boundaries
to match. The algorithm in [32] proposes a simple cubic spline interpolation
between the boundaries of two patches that slightly overlap and finally the
example-driven method in [47] solves a poisson equation inspired by methods
to perform pixel matching across seams in a color image.

3 Problem Description

As stated before, the algorithm is an iterative relaxation method that can be
seen as a post-processing step on an already generated base terrain L, where
L = {l1, l2, ..., lN} is a patch of terrain with N = n × n points arranged in a

7



square grid with equal sides of length n. Similarly, let H = {h1, h2, ..., hN} be
the yet unknown output patch of equivalent arrangement and dimensions as L.
The algorithm takes input patch L and transforms it into output patch H such
that a given planar input graph, denoted by G, is embedded into H as a path
that can be walked upon and EMD(L,H) is minimal. The ‘walkability’ of the
path, among other features, is implemented as a constraint of the optimization
problem. Another such feature is that terrain next to this path should connect
seamlessly to it in a realistic manner.

To generate base terrain L, this work uses the midpoint displacement algo-
rithm. Note that we can immediately solve the problem of stitching patches of
terrain together by applying the method that constrains the midpoint displace-
ment method as discussed above [8]. However, we will discuss an alternative
method integrated within the proposed algorithm such that we are not confined
to using the midpoint displacement method. This way we can use any source
as our base terrain, even real-life data.

Figure 3: Overview of the pipeline of this work. Graph G and terrain L together
form the input. G is pre-processed into subdivision S where every subset Sν ⊆ S
imposes a specific constraint on output terrain H. S and L together form the
input for the iterative relaxation.

Besides the high-level realism constraint formulated as the minimization ob-
jective, we impose low-level constraints on output terrain H such that the points
of H that belong to the path can be walked upon and the points that do not
belong to the path still behave in a realistic way. Essentially, input graph G is
pre-processed based on L to obtain a subdivision of L that tells the algorithm
what parts need to change and how. This subdivision is denoted as S, where
every subset Sν ⊆ S imposes one specific constraint on every point in Sν . Given
every subset Sν is a set of points, they can be thought of as subsets of output
H as well, each containing the points their constraint applies to.

To compute S, we fix every node of G on a desired location and for every edge
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we perform a path-finding algorithm on terrain L. We can interpret every point
in heightmap L as a path-finding node, where each pair of directly neighboring
points are connected with an edge, including diagonals. In this work, the A∗

algorithm is used to find a path through heightmap L to connect all the nodes
of G. After this is done, every node and found path is given a width such that
all subsets Sν can be properly defined with the correct points in them. For
the A∗ algorithm to work, it is required to define the cost of traveling between
all the points in L. For simplicity, only directly neighboring points, including
diagonals, are considered to be connected with a path-finding edge. The idea
is that we want to penalize terrain with a high slope such that the path would
naturally flow in-between steep terrain features like humans would.

This pre-processing of G is separate from the proposed algorithm and S is
considered input to the algorithm. This allows us to swap out this pre-processing
and path-finding with any process to give shape to the path and desired terrain
features as we see fit. Once subdivision S is obtained, the proposed algorithm
will try to compute H, solving for all constraints such that EMD(L,H) is
minimal. See Figure 3 for a schematic overview of the pipeline.

3.1 Optimization Problem

The mathematical problem is formulated as a modification of the Earth Mover’s
Distance. Instead of just solving for the distance between two known terrains,
one terrain is known, and one terrain will be the unknown output to solve.
To achieve this, a term is added to the total cost to account for creation or
destruction of material and the low-level constraints are added to give rise to
desired features in the terrain, such as the ‘walkability’ of the path.

Let the ground distance matrix be defined as D = [dij ], where dij denotes the
ground distance between points li ∈ L and hj ∈ H. The ground distance can be
any metric, here the L1 distance was chosen. Furthermore, let the height of any
point li or hj be denoted by itself. The additional low-level constraints to give
rise to desired output features are applied to predefined regions of the terrain.
Let Sν ⊆ H be a subset of points in H that constraint ν is applied to, where ν(j)
is the constraint value of constraint ν at point hj . The discussed constraints and
their associated regions are gradient constraint g in region Sg ⊆ H, directional
derivative constraint g◦ in region Sg◦ ⊆ H, roughness constraint r in region
Sr ⊆ H and position constraint p in region Sp ⊆ H.

We want to find output terrain H and flow F = [fij ], where fij is the flow
from li to hj , that minimizes overall cost of generating H. Let σ denote the
cost of creating or destroying material:

min

 N∑
i=1

N∑
j=1

fijdij + σ

∣∣∣∣∣∣
N∑
i=1

li −
N∑
j=1

hj

∣∣∣∣∣∣


subjected to the following constraints:

fij ≥ 0 1 ≤ i ≤ N, 1 ≤ j ≤ N (1)

N∑
j=1

fij ≤ li 1 ≤ i ≤ N (2)
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hj ≥
N∑
i=1

fij 1 ≤ j ≤ N (3)

N∑
i=1

N∑
j=1

fij = min

 N∑
i=1

li ,

N∑
j=1

hj

 (4)

and the following additional constraints:

|∇H(hj)| ≤ g(j) ∀hj ∈ Sg (5)

|∇H(hj) ·D(j)| ≤ g◦(j) ∀hj ∈ Sg◦ (6)

R(hj) = r(j) ∀hj ∈ Sr (7)

hj = p(j) ∀hj ∈ Sp (8)

where constraint value g(j) is the maximum slope (i.e. magnitude of the gradi-
ent) the terrain may take at point hj in any direction and ∇H is the 2-d vector
field with partial derivatives of H at all points (i.e. the gradient of the terrain).
Constraint value g◦(j) is the maximum slope in the direction denoted by 2-d
unit vector D(j) that the terrain may take at point hj . Constraint value r(j)
is the roughness the terrain must have at point hj , where R(hj) denotes the
actual roughness at point hj . Finally, constraint value p(j) is the height point
hj must take. All regions Sν and constraint values are predefined, meaning they
are constants in the optimization problem.

As can be seen, there are four types of low-level constraints with which this
problem models all desired features: gradient (5), directional derivative (6),
roughness (7) and position (8) constraints. The gradient constraint is used to
model the actual path defined by G, we need characters in a game to be able
to walk upon this area, hence the slope may not exceed the maximum given by
g(j). The directional derivative constraint is the first option to make sure the
terrain next to this path connects seamlessly to it. It is the same as the gradient
constraint, except that it is only necessary to be satisfied in a single direction
given by D(j). In this work, this direction is always chosen to be perpendicular
to the path, the further a point is from the path, the greater maximum slope
g◦(j) will be. Both the gradient and directional derivative constraints rely on
the gradient ∇H, given our terrains are represented as finite heightmaps, we
need an approximation for this derivative. The first-order finite difference was
chosen for this:

∇H(hj) =

[
hx(j) − hj

δ
,
hy(j) − hj

δ

]
where δ is the distance between any point and its nearest neighbors and x(j)
and y(j) are the closest next neighbor of index j in the x and y direction
respectively. Both constraints demand the above holds in four directions, once
in each ‘quadrant’ around point hj , however for readability this detail is omitted
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in the problem formulation. The roughness constraint is firstly designed to be
an alternative to the directional derivative constraint. It proposes to maintain
the roughness of every point, this concept is defined by Riley, DeGloria and
Elliot [35] and slightly adjusted for our purposes as follows:

R(hj) =

√√√√ ∑
k∈τ(j)

(
hk − hj

δ

)2

where τ(j) is the set containing the eight direct neighbors of index j. The divi-
sion by δ was added so it is invariant to the resolution of the terrain. This work
tries to maintain roughness, i.e. r(j) = R(lj), in other words; the roughness
of any point hj ∈ Sr should be equivalent to the roughness at point lj . This
makes sure no new discontinuities will be introduced in the terrain. Finally we
have the position constraint, this simply forces a point to be at a given height,
in combination with the roughness constraint it is used to stitch the boundaries
of a terrain patch to those of its neighboring patches.

As for the EMD constraints, constraint (1) dictates that material is moved
from L to H and not vice versa. Constraint (2) limits the amount of mate-
rial that any point li can send and constraint (3) dictates the least amount of
material that any point hj must receive. Finally, constraint (4) forces to move
the maximum amount of material possible, this is called the total flow in the
original Earth Mover’s Distance. Note that if we fix H to be known, the value
of EMD(L,H) can be calculated as the minimization objective of this prob-
lem without the additional constraints (5, 6, 7, 8). In the original metric, the
resulting value was divided by the total flow in order to avoid favoring smaller
signatures in the case of partial matching. However L and H are of the same di-
mensions by definition, rendering this problem irrelevant. When H is a decision
variable, the minimization objective will still yield the value of EMD(L,H).

4 Method

The optimization problem can be solved directly, yielding a global optimum H0.
Unfortunately this is a very time-consuming process, the original Earth Mover’s
Distance is a linear problem, however the added low-level constraints (5) and
(7) are quadratic, making the problem even more time-consuming. On top of
that constraint (7) is non-convex, which often makes the problem unsolvable.
Finally it can be proven there are constraint values for which the problem is
strictly unsolvable because it is over-constrained.

For all of the above reasons this work proposes an iterative relaxation method
that approximates the solution. This algorithm needs certain threshold values
so we can accept a ‘solution’ when the constraints are satisfied within a certain
threshold value from their goals. This is necessary due to floating point errors,
however it might also give us a reasonable output terrain even when the problem
is technically infeasible. There are methods with which we could solve for a local
solution with thresholds, for example a local search based method that solves
for arbitrary mathematical constraints [38], however these methods still have a
running time impractical for use in games.

The proposed algorithm is loosely based on an iterative method that directly
generates new terrains from vector based constraints [21]. This method essen-
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tially imposes constraints on a per-point basis, in the same way our low-level
constraints are formulated. The idea is to ‘relax’ each point individually, re-
sulting in a new terrain that is closer to a solution. We keep iterating the same
relaxations until all constraints are within an acceptable threshold from a local
solution. The difference is that our method allows the relaxation of a single
point to affect its direct neighbors, making the process more complex, but also
more versatile. Observe that the running time of such a method is inherently
faster than local search based methods; we do not need to compute multiple
candidates during each iteration and choose one of them. Instead we greedily
compute a next candidate without computing any other candidate.

To get a sense for how well the relaxation algorithm approximates a global
optimum, we do actually try to solve for H0. This was implemented using the
Gurobi Optimizer [1]. Unfortunately this can only be run for constraints values
that have a feasible optimum.

4.1 Implementation

In all implementations, height values of all points li ∈ L are roughly speaking
in the interval [0, 1], this is used as reference for choosing other constants. For
all experiments, some constant values were chosen as will be discussed below.
However the value of g(j) for all points hj ∈ Sg (for all points, the same value is
chosen) and the threshold values for relaxation are varied to measure the impact
on performance.

Remember that input graph G is first pre-processed into subdivision S. To
do this, every node of G is fixed on a desired location and for every edge we
find a path between its endpoints by using the A∗ algorithm on heightmap L.
During the path-finding process, when we are at point li, we consider its eight
direct neighbors as next points to visit. The cost of traveling each of those edges
to the next point has to be defined for the A∗ algorithm:

cost(li, lk) = dik + dik ∗ α
∣∣∣∣ lk − lidik

∣∣∣∣β
where lk is the next considered neighbor, dik is the L1 distance from li to lk.
The idea is that we want to avoid terrain with a high slope, such that the path
gently avoids mountain peaks and other terrain features that we would naturally
walk around. Therefore we penalize edges with a high slope; α is the linear cost
and β is the exponential cost. In this work the values α = 10000 and β = 1.8
were empirically chosen for all experiments.

Furthermore, the directional derivative constraint is used to make sure the
terrain next to the path connects seamlessly to it. It has constraint value g◦(j)
for every point hj ∈ Sg◦ that expresses the maximum allowed slope, this value
grows larger the further hj is from the actual path and is written as follows:

g◦(j) = g(k) + γ ∗
√
djk
b

where hk is the closest point to hj that is on the path and γ is a constant
value denoting the maximum increase in allowed slope. For this formula to
work, distance djk from hj to hk is divided by the constant border width b
such that the resulting value is in the interval [0, 1]. Any point with a distance
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from the path greater than b is not in Sg◦ . In this work, the value γ = 0.05
was empirically chosen for all experiments. The value of b can be altered until
desired results are achieved.

Finally, in the objective of our optimization problem, a term was added
to account for creation or destruction of material, σ denotes the cost of doing
so. In the relaxation algorithm, material is only created or destroyed when a
position constraint is applied, for example to seamlessly stitch the borders of
a patch to that of its neighbors. All other constraints are solved such that
they do not create or destroy any material. However to implement a solver to
get a global optimum, we need a value for σ. Conceptually, we would rather
move material to neighboring areas instead of completely removing it from the
terrain. Similarly, creating more material is only desired when necessary. For
this reason, the value of σ must be greater than any value dij in ground distance
matrix D. In this work, the value σ = 2nδ was chosen, where n is the length of
a single side of the terrain grid and δ is the distance between any point and its
nearest neighbors.

4.1.1 Iterative Relaxation

The idea behind the iterative relaxation method is to consider all points hj ∈ H
individually and relax them, i.e. adjust its height or the height of its neighbors
until it locally satisfied the applied constraints. H will be initialized as a copy
of L. One relaxation of all points in H is considered a single iteration of the
algorithm. The algorithm halts when all constraints are within an acceptable
threshold from their goals, or when the maximum number of iterations Im is
reached. The slope and roughness constraints need such a threshold, let these
be denoted as Ts and Tr respectively. The algorithms below demonstrate how
these thresholds are applied. The position constraint is always handled last in an
iteration, therefore it will be satisfied exactly and no threshold value is necessary.
Below we will discuss how one relaxation on a single point is performed for each
of the four low-level constraints.

The gradient (5) and directional derivative (6) constraints both rely on a
1-d slope variant. In 1-d, a slope constraint can be defined that says the slope
between the point hj and its neighbor hk may not exceed a maximum slope.
The general idea is to minimize EMD(L,H), where moving material over the
least amount of distance is preferred, therefore we only move material between
directly neighboring points. To solve the 1-d slope constraint, we move material
from the highest point to the lowest point, this can be expressed in an algorithm
as follows:

1: procedure RelaxSlope1D(hj , hk, maxSlope)

2: slope = (hk − hj)/δ
3: if |slope| > maxSlope then

4: move = (|slope| −maxSlope) ∗ δ/2
5: if slope < 0 then

6: move = −move . Negate when hj > hk.

7: hj += move

8: hk −= move
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For the 2-d gradient constraint (5), we are not concerned with the 1-d slope of
a single edge between two points. Instead, we are concerned with the magnitude
of the gradient at each point. The gradient is defined to always be pointing in
the direction of steepest slope, where its magnitude is equivalent to the 1-d
slope. Therefore, we constrain the gradient. To compute the magnitude, we not
only need the neighbor of hj in the x-direction hx(j), but also its neighbor in
the y-direction hy(j). In algorithm form, this constraint is solved as follows:

1: procedure RelaxGradient(hj)

2: xSlope = (hx(j) − hj)/δ
3: ySlope = (hy(j) − hj)/δ
4: gradient =

√
xSlope2 + ySlope2

5: if gradient > g(j) + Ts then . Note slope threshold Ts is added.

6: f = g(j)/gradient

7: RelaxSlope1D(hj , hx(j), |xSlope| ∗ f)

8: RelaxSlope1D(hj , hy(j), |ySlope| ∗ f)

At the boundaries of the terrain grid different rules apply because of missing
neighbors, plus the constraint is actually applied four times, once in each di-
rection or ‘quadrant’ around point hj , however for readability these details are
omitted.

Solving the directional derivative constraint (6) is almost identical to solving
the gradient constraint. The only difference is that we only care for the slope in
a given direction, instead of the direction of the steepest slope. It is expressed
in an algorithm as follows, where Dx(j) and Dy(j) are the x-component and
y-component of D(j) respectively:

1: procedure RelaxDirectionalDerivative(hj)

2: xSlope = (hx(j) − hj)/δ
3: ySlope = (hy(j) − hj)/δ
4: derivative = |xSlope ∗Dx(j) + ySlope ∗Dy(j)|
5: if derivative > g◦(j) + Ts then . Note slope threshold Ts is added.

6: f = g◦(j)/derivative

7: RelaxSlope1D(hj , hx(j), |xSlope| ∗ f)

8: RelaxSlope1D(hj , hy(j), |ySlope| ∗ f)

The roughness constraint (7) is solved by multiplying each term in R(hj)
with a factor that will make the roughness equivalent to the value we want it
to be. This is done by altering each of the eight neighbors of hj , such that their
height differences with hj get amplified or suppressed as required. Note that
this may create or destroy material, therefore we move all nine points up or
down with the same amount such that there is no net difference in total amount
of material. Again, this tries to minimize EMD(L,H) by only moving material
between neighboring points. It is expressed in algorithmic form as follows, where
the set containing the eight neighbors of index j is τ(j):
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1: procedure RelaxRoughness(hj)

2: if |R(hj)− r(j)| > Tr then . Note roughness threshold Tr is used.

3: f = r(j)/R(hj)

4: moved = 0

5: for all n ∈ τ(j) do

6: move = (hn − hj) ∗ f − (hn − hj)
7: hn += move

8: moved += move

9: for all n ∈ {j} ∪ τ(j) do

10: hn −= moved/9

Lastly we have the position constraint (8), which is always solved last, in
a separate loop, such that all points in H always satisfy position constraints
exactly. This is such that when we try to stitch boundaries of a patch, there
is no gap in the terrain. The interior of the terrain is handled by roughness
constraints, such that it naturally connects with the boundaries. Also note that
this is the only constraint that creates or destroys material and the only one
that does not touch any neighboring points of hj . The algorithmic form is rather
trivial:

1: procedure RelaxPosition(hj)

2: hj = p(j)

4.1.2 Optimization Program

To implement a direct solver for H0 in the Gurobi Optimizer [1], the mathe-
matical problem formulation had to be adjusted slightly. The absolute value in
the objective make it a non-linear problem that could not be implemented in
Gurobi, therefore it had to be implemented using linear constraints, as did the
min() operator in constraint (4). To circumvent the absolute value, two new
decision variables are introduced, the so called slack variables s+ and s−. The
minimization objective is changed to the following:

min

σ(s+ + s−) +

N∑
i=1

N∑
j=1

fijdij


and the following two constraints are added:

N∑
j=1

hj −
N∑
i=1

li ≤ s+

N∑
i=1

li −
N∑
j=1

hj ≤ s−

This makes sure that both the positive and negative values that the difference
in total material can yield will be minimized towards zero.
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The min() operator in constraint (4) gives a bigger problem. The operator
cannot be written differently with the same results, however the closest possi-
bility is to split it up in two separate constraints as follows:

N∑
i=1

N∑
j=1

fij = min

 N∑
i=1

li ,

N∑
j=1

hj


w�

N∑
i=1

N∑
j=1

fij ≤
N∑
i=1

li

N∑
i=1

N∑
j=1

fij ≤
N∑
j=1

hj

Unfortunately, this allows for all values fij in flow matrix F to stay all zeros.
In order to force all flow values to be used, constraint (3) is changed to a strict
equality:

hj ≥
N∑
i=1

fij 1 ≤ j ≤ N

w�
hj =

N∑
i=1

fij 1 ≤ j ≤ N

In order words, the sum of all flow towards point hj cannot be lower than the
amount of material at hj , forcing the solution to have non-zero flow values.
This has the side effect that it also disallows hj to grow any larger than the
flow towards it. In other words, this formulation does not allow for the creation
of new material. Similarly, if instead we changed constraint (2) to an equality,
it would not allow for the destruction of material. Unfortunately no way was
found to circumvent this problem, this means that inputs that demand creation
or destruction cannot be directly solved unless you know if the total material of
H0 will be larger or smaller than L beforehand. In practice this means no input
with position constraints can be solved directly.

All the other constraints could all be implemented, including the additional
low-level constraints, even though constraints (5) and (7) are quadratic. How-
ever as mentioned earlier, constraint (7) is actually non-convex, any input given
to the solver that uses this constraint could not be solved. In conclusion this
means an optimal solution H0 can only be calculated for inputs that exclusively
use gradient or directional derivative constraints.

4.2 Evaluation

There are four configurations of types of constraints that we will discuss. The
path itself will always be constrained by the gradient constraint. The directional
derivative and roughness constraints are two mutually exclusive options to deal
with seamlessly connecting the path to its surrounding terrain. Both of these
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options have the ability to stitch the terrain’s borders to those of its neighboring
patches using a combination of position and roughness constraints. Besides these
four distinct configurations, for any input terrain L, we run the algorithm at
different resolutions (i.e. different values for input terrain size N = n × n) to
see how our measures are affected by input size. The same input graph G is
used for all experiments.

All measurements will be run on all configurations and resolutions they can
be run on. For any configuration-resolution pair, the algorithm is run for Ns
samples (one sample being a randomly chosen unique input terrain L). The
value for Ns is chosen based on the resolution that takes the most time to
compute, the computation time for different configurations at the same resolu-
tion were comparable enough. We look at three separate measurements for all
configurations and resolutions:

• Firstly, we look at the running time, expressed in the number of iterations
it took to find a solution. Given we run the experiments at different
resolutions of the terrain, we can estimate the asymptotic running time of
the algorithm expressed in input size N .

• Secondly, we try to solve for an optimal solution. This program out-
puts the value of EMD(L,H0). This will be compared to the value of
EMD(L,H), where H is the output of the iterative relaxation. The ratio
between the two gives us a sense for how well the algorithm approximates
a global optimum.

• Lastly, for cases that cause the algorithm to never halt, we output some
statistics about the resulting terrain. We look at the percentage of con-
straints that are not yet satisfied and the average distance from the goal
for those constraints. Note that for many cases it is not certain the algo-
rithm will never halt, however they are halted when the maximum number
of iterations Im is reached. The value for Im is experimentally chosen.

Furthermore, the value for maximum path slope g(j) for all points hj ∈ Sg
and the threshold value Ts will be varied for a handful of configurations to mea-
sure impact on the first two performance measurements. The roughness thresh-
old value Tr will be discussed individually, as it has some unique properties.
Finally, besides numerical results, a handful of sample outputs are visualized in
Figure 1 to show what types of results can be expected from the algorithm.

5 Results

Each of the aforementioned measures is plotted against terrain size N = n× n.
For most experiments the resolution ranges from 3 × 3 = 9 up to 129 × 129 =
16641. The value for the number of samples to take Ns was based on how long it
took to compute the results for a resolution of 129×129. A value of Ns = 10 was
chosen. Unfortunately this is a rather low sample size, however going lower in
resolution was thought to be more hurting than leaving the sample size lower. A
higher resolution took an unrealistic amount of time to run for any configuration
that does not reliably satisfy all constraints. Only for measuring the running
time, where no roughness constraint was necessary, was the experiment run
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on a size of 257 × 257 = 66049. The maximum number of iterations Im was
experimentally chosen for lower resolutions. The values of Im = 100, 000 and
Im = 1, 000, 000 were chosen for resolutions 129×129 and 257×257 respectively.

All results are plotted against terrain size (i.e resolution). The dotted lines
represent the average values of all Ns = 10 samples. These are plotted on the
same x-coordinates and can be visually compared. Besides these, the plots have
the actual data points visualized as circles, sometimes with a boxplot when
thought useful. These circles and boxplots are displaced along the x-axis so
they can be viewed next to each other, but do note that they do not align with
the average lines exactly.

Any image visualizing the output of the algorithm is colored per point in the
terrain. The red parts of any image is the path, where only gradient constraints
are applied. Any yellow part uses the directional derivative constraint and
finally any green part uses the roughness constraint.

5.1 Running Time

Figure 4: Number of iterations at which the iterative relaxation terminated
plotted against terrain size N = n× n, i.e. the number of points in the terrain
(e.g. 66049 = 257×257). Each line represents the expected number of iterations
I(N) for varied values of g(j).

Figure 4 shows the number of iterations it took to find a solution for increas-
ing terrain sizes starting at 3 × 3 up to 257 × 257. We only show results for
a single configuration here: using the directional derivative constraint without
border stitching, this was done so we could go higher in resolution. The maxi-
mum slope g(j) for the entire path through the terrain is varied to show impact
on performance. The value g(j) = 0.0005 represents a path that is nearly flat,
in this case, the terrain has to be modified a lot to satisfy all constraints and a
lot of iterations are necessary. The value g(j) = 0.0035 represents a reasonable
path gradient that you could expect in an adventure type game. Lastly for the
value g(j) = 0.0095 it is barely required for the terrain to be modified at all, we
can see the number of iterations required slowly drops to zero as g(j) increases.
For all other experiments the value g(j) = 0.0035 is chosen because this value
represents a realistic path. See Figure 5 for a visualization of an example output
for all three values.

We express the expected running time of the iterative relaxation algorithm
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Figure 5: The same input terrain L and input graph G with different values
for g(j). Left: g(j) = 0.0005, top: g(j) = 0.0035, right: g(j) = 0.0095.

as I(N) ∗ Is(N), where I(N) is the expected number of iterations for terrain
size N = n×n and Is(N) is the running time of a single iteration. The latter is
linear in the size of the terrain, i.e. Is(N) = Ω(N). This is easy to see; there are
four types of constraints, that means each of the N points in the terrain has a
constant number of constraints applied to them. Furthermore, the running time
of solving a single constraint once is constant. Therefore the running time to
process one iteration of all constraints on one point is constant and the running
time for N points is Ω(N).

N 81 289 1089 4225 16641 66049
g(j) = 0.0005 82.8 385.7 2368.7 8828.1 51781.6 219010.8
g(j) = 0.0035 58.2 219.1 1102.5 5276.0 26898.2 116102.7
g(j) = 0.0095 11.3 18.3 39.4 155.6 998.3 3744.4

Table 1: Values of I(N) from 9× 9 = 81 up to 257× 257 = 66049.

The value of I(N) is plotted in Figure 4, it can be seen this is approximately
constant in terrain size N . Unfortunately we cannot make any definitive state-
ments, however the multiplication factor of the value of I(N) appears to be
fluctuating around 4, getting larger and smaller as we vary the value of g(j).
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This is close to the multiplication factor on the number of points in the terrain,
which approaches 4. We can see this a bit clearer in Table 1. Thus we estimate
the the upper bound on I(N) to be O(N). This gives us a rough, forgiving esti-
mate on the total running time of the entire algorithm of O(N)∗Ω(N) = O(N2).
However more data is required to draw a definitive conclusion.

Figure 6: Number of iterations plotted against terrain size N = n × n for all
four configurations, a logarithmic scale is used to see how they compare.

All above results only discuss a single configuration that does not use rough-
ness constraints, in Figure 6 the results for all other configurations are shown as
well, this only goes up to a resolution of 129×129. Here we can clearly see that
the performance of using either the directional derivative or the roughness con-
straint is nearly identical. See Figure 7 for a visual comparison between the two.
Unfortunately we cannot say so about when we try to stitch borders with sur-
rounding patches. A lot of data points are missing for these configurations, this
is due to the fact that they are often over-constrained and end up in a state that
does not allow the algorithm to halt (i.e. not all constraints can be satisfied).
Especially on lower resolution we often lack the ability to properly represent
high frequency features described by the constraints, however it still happens at
higher resolutions. When and how this happens will be discussed further later
on. Still, for the data points that did manage to satisfy all constraints, we can
see they do not lie that far from the results we’ve seen so far.

Figure 7: Comparison of solving for the same input terrain L and input graph
G using directional derivative (left) and roughness (right) constraints. A small
value of g(j) was chosen to make the differences visible.
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5.1.1 Parallelism

An interesting note is that the algorithm is readily parallelizable. It scales well
and can, for example, be implemented on a graphics processing unit. To see this,
it is necessary to observe two facts. First; that the implementation of each of
the gradient (5), directional derivative (6) and roughness (7) constraints never
set the value of any of the points hj ∈ H to a new, absolute value. Instead
they always add or subtract a value. Second; the set of neighboring points of
any point hj that affect it by solving their constraints is constant. Meaning
at any point, the computation necessary to get the new height of any point hj
is invariant during the entire algorithm. Knowing these two facts, we can see
that for each point hj , we can compute all necessary computations individually
for the aforementioned constraints and we get a set of values that each of the
constraints want to add to or subtract from the height of hj . We then take the
average of those delta values to get the actual value we will add to hj . The
maximum number of values we take the average of is 16 gradient or directional
derivative constraints + 9 roughness constraint = 25 values. Finally, the position
constraint (8) is solved last such that it is always satisfied exactly.

Given each of the delta values is divided by 25, it takes much more iterations
to converge to a solution. On top of that, each constraint is solved multiple times
for each of the points it affects. However they can now run in parallel, meaning
that the running time of a single iteration Is(N) can be significantly reduced. In
theory, it can be reduced to O(1) by running all points simultaneously, meaning
that the optimal running time of the algorithm could be O(N) ∗O(1) = O(N).
However in practice it would be unexpected and the value of Is(N) would likely
be a in the form O(N/p), where p ∈ N+ is the number of points that can be run
in parallel, making a rough estimate of the optimal running time of O(N2/p).

5.2 Accuracy

Figure 8: The approximation ratio, defined as EMD(L,H)/EMD(L,H0),
plotted against terrain size N = n × n. The same data set as in Figure 4 is
used, where g(j) is varied.

Figure 8 shows the approximation ratio (also called the ρ-approximation) of
the found solutions. This value is calculated by dividing the distance from L
to the found solution of our algorithm H, denoted as EMD(L,H) by the same
value for an optimal solution found by Gurobi, denoted as EMD(L,H0). As can
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be seen, for a maximum slope of g(j) = 0.0035, representing a realistic path, the
approximation ratio increases as the terrain resolution increases. However due
to the lack of data for higher resolutions little conclusions can be made about
the behavior of this increase. Unfortunately for any resolution above 33 × 33
Gurobi could not solve for an optimal solution due to running out of resources.

Still, some useful information can be seen in the plot. As explained ear-
lier, by varying the maximum slope g(j), we vary the way the output terrain is
supposed to look, in other words; this plot shows how well the algorithm approx-
imates an optimal solution for different path types. We can see that when we
decrease g(j), making the path flatter, it does not radically change behavior of
the approximation ratio, suggesting that we cannot do much worse. Conversely,
when we increase g(j), allowing much of the path to be left unmodified, we can
see the approximation gets much closer to an optimal solution. Conceptually
this makes sense, it is likely that in this case only slight local changes are made
to the terrain, therefore it is less likely to fall in a local minima.

To look a bit closer at the accuracy of the iterative relaxation, the slope
threshold value Ts is also varied to measure how close we can get to an optimal
solution, see Figure 9. It is crucial to understand that the implementation in
Gurobi to get a global optimum does not consider any threshold value. It tries to
solve for exact satisfaction of all constraints. The iterative relaxation algorithm
does not. Technically, this approximates a different problem, initially this was
necessary because the algorithm would never halt due to floating point errors,
but as we will be discussed below, it can actually help in getting a minimal
running time of the algorithm whilst maintaining a nearly identical solution.

Figure 9: The approximation ratio plotted against terrain size N = n × n.
The slope threshold value Ts is varied while keeping the maximum slope fixed at
g(j) = 0.0035.

See Figure 9 again, for comparison, the yellow plot is equivalent to the yellow
plot in Figure 8. When we increase Ts we get a solution that seems to be closer
to an optimal solution. However we can also see that the approximation ratio
occasionally slightly dips below one. This means the value of EMD(L,H) is
smaller than EMD(L,H0), which should be impossible. This is due to the
fact that the Gurobi program does not account for thresholds. Because the
slope threshold is higher, any gradient or directional derivative constraint can
be satisfied earlier in the relaxation program whilst they are still far away from
their goal values, this gives us too many satisfactory solutions. The conclusion
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is that the slope threshold Ts should be small enough in order to properly
approximate the actual problem we are trying to solve. A value of Ts = 0.00001
seems to do the trick. When we decrease Ts even further we can see we do not
get a significantly better approximation, in fact a tenth of the value Ts = 0.00001
appears to be yielding nearly identical solutions.

Figure 10: Number of iterations plotted against terrain size N = n × n. The
same data set as in Figure 9 is used, where Ts is varied.

To see how the above helps us in getting a minimal running time, we look at
the number of iterations it takes to find a solution again, see Figure 10. As we
can see, picking a higher value for Ts clearly results in less iterations required.
But more importantly, decreasing Ts beyond Ts = 0.0001 still results in more
required iterations, whilst not resulting in a better approximation. From this we
can conclude that it is not preferable to pick the smallest value for Ts, in fact, for
the configurations used here, a value of Ts = 0.00001 appears to roughly be the
optimal value where we get the best approximation whilst keeping the number of
required iterations minimal. When this algorithm is applied in practice, similar
experiments should be run for the relevant configurations and resolutions to get
the optimal threshold value to use in production.

5.2.1 Infeasible Constraints

All accuracy measurements so far have not discussed any configuration that
uses the roughness constraint. This is because this constraint is non-convex and
Gurobi could not solve for the optimal solution. On top of that, the iterative
relaxation algorithm often would not halt when roughness constraints were used
due to the fact that the terrain is often over-constrained, and not all constraints
could be satisfied. Unfortunately the possibility that some samples would halt,
but did not do so because the maximum number of iterations Im was reached,
cannot be excluded. This means we can make no definitive conclusions about
when samples were infeasible.

To dive a bit deeper into what is happening in the case of infeasibility due
to roughness constraints, some statistics were gathered about samples that the
relaxation did not find a solution for. In Figure 11 the results for all four
configurations are shown, it goes up to the highest resolution that could be
run in a reasonable amount of time of 129 × 129. It shows the percentage of
all constraints that were left unsatisfied after the algorithm hit the maximum
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Figure 11: Percentage of unsatisfied constraints plotted against terrain size
N = n× n for all four configurations.

number of iterations Im. We can see that when only the directional deriva-
tive constraint was used, all solutions were completely satisfied, however when
roughness constraints are introduced some errors start to appear. Conceptually,
any terrain with slope constraints only can always be solved; it only imposes
a maximum slope, so completely flattening the terrain will always satisfy all
constraints. This is not the case for roughness constraints, given the rough-
ness at any point needs to be an exact value (within given bounds defined by
the roughness threshold Tr). When trying to stitch borders with surrounding
patches, we can immediately see some major errors on the lower resolutions.
As stated previously, these low resolution terrains simply lack the ability to
properly represent high frequency details. The percentage of errors appears to
decrease as resolution goes up, unfortunately there is no way of telling what
happens at extreme resolutions. See Figure 12 for a visual demonstration of
stitching together the borders of patches.

Figure 12: Comparison of ‘solving’ for the same input terrain L and input
graph G using directional derivative (left) and roughness (right) constraints in
conjunction with position and roughness constraints to stitch the borders of the
patch to that of its neighbors’.

There are two cases of over-constraining a terrain that can be visually ver-
ified. The first is when roughness constraints conflict with a necessary slope
along a stretch of terrain such that position constraints at the borders of the
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patch are satisfied. This often happens in the corners of the terrain, or when
the path is close to the border of the terrain. See Figure 13 for a visualization,
the surrounding terrain is not modified anymore, but in the lower right corner
we still see some flickering between the same states, meaning the constraints
will never be satisfied.

Figure 13: Demonstration of a set of infeasible constraints due to conflicting
roughness and position constraints at the border of a terrain. The two images
were taken during the relaxation algorithm at different iteration numbers, some
flickering can be seen.

The second case is when roughness and gradient constraints are in conflict.
Remember that gradient constraints are always used to model the path, when
there is a small area in-between the path that has a roughness constraint, the
two constraints form a race condition. One wants to flatten the area, the other
wants to roughen it. See Figure 14 for a visualization, the area of terrain keeps
rotating between two states, never allowing either constraint to be satisfied.

Figure 14: Demonstration of a set of infeasible constraints due to conflicting
roughness and gradient constraints along the path. A ‘rotating’ movement can
be seen.

Look back at the plot in Figure 11, when we use directional derivative con-
straints to solve the area around a path, it still shows the same percentage of
unsatisfied constraints. However the case where gradient and roughness con-
straints are in conflict cannot happen, therefore it means the case that happens
most often is the former, where roughness and position constraints are in conflict
at the border of the terrain. At resolution of 65× 65 and up we see that when
we use the directional derivative constraints, we have slightly less errors. This
decrease is explained by the lack of gradient and roughness constraints being in
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conflict.
There is one property of the roughness constraint that is left untouched,

which is the roughness threshold Tr. See Figure 15 for a snapshot of the terrain
during the relaxation process for three different values of Tr. The value Tr = 0.04
is used for all other experiments. When we increase the value of Tr we can see
the terrain around the path is barely modified. However when we decrease the
value of Tr something interesting happens; the terrains tends to flatten and
converge towards a noisy, flickering plain. Meaning that attempting to exactly
match the roughness at every point in H with that of every corresponding point
in L does not preserve the terrain, instead it launches it in a very unstable
state. This is explained by the fact that the roughness constraint only sees high
frequency details; namely those between points and their direct neighbors. Low
frequency details, such as the overall curvature of a hill or mountain, are not
registered by the local constraint. Therefore these features can accidentally be
squeezed flat when the threshold is too tight, which unfortunately appears to
always be the case. When this algorithm is applied in practice, a proper value
for Tr should be empirically chosen such that it is just large enough to allow
low frequency terrain features to remain.

Figure 15: Comparison of ‘solving’ for the same input terrain L and input
graph G with different values for Tr. Left: Tr = 0.2, top: Tr = 0.04, right:
Tr = 0.004.
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6 Discussion

The proposed algorithm attempts to solve an optimization problem based on
minimizing the Earth Mover’s Distance between input terrain L and output
terrain H. Four constraints are added to give rise to desired features in the
terrain. These constraints make it a quadratic programming problem, with
one constraint being non-convex. Due to this complexity the running time
would be unrealistically high for use in games, for this reason the choice of
an approximation algorithm was made. Because the search space is huge, an
iterative relaxation algorithm was designed that greedily picks the next successor
state each iteration. The drawback being that the output is less accurate, as it
can easily fall into a local minima. For a visual comparison between the solution
found by our algorithm and the optimal solution found by Gurobi for the same
inputs, with a terrain resolution of 33× 33, see Figure 16. The optimal solution
costs less, but the solution of our algorithm looks more natural. Therefore
it might be worth considering that getting as close as possible to an optimal
solution is not always preferred. This begs the question if there exists a more
‘realistic’ optimal solution, how many of those exist, and what ‘realistic’ really
means mathematically.

Figure 16: Comparison of the solution H found by the iterative relaxation pro-
gram (left column) and the optimal solution H0 found by Gurobi (right column).
Top row: g(j) = 0.0035, bottom row: g(j) = 0.0005.

The individual constraints that were designed are the gradient (5), direc-
tional derivative (6), roughness (7) and position (8) constraints. The goal values
for each constraint are fixed at the start of the algorithm, but they can be any
value, they can even vary across the terrain. The results only show a constant
maximum slope g(j) across the terrain, however the algorithm can easily han-
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dle paths of different slopes. Furthermore, the input graph G, and method of
pre-processing it to get subdivision S can be swapped out for any process. This
makes the algorithm very flexible in the variety of paths it can output.

The four constraints and their implementations are only a proposal, much
more constraints could be conceived of, however manual implementation is re-
quired. Some constraints could be improved, the directional derivative con-
straint over-compensates for directions perpendicular to D(j). Compared to
the roughness constraint, it is visually less appealing, and the roughness con-
straint seems more promising. However, as opposed to the directional derivative
constraint, the roughness constraint is very unstable, meaning that it could eas-
ily cause conflicts in constraints, causing the problem to be infeasible and the
algorithm not to converge. Still, when used in practice, a reasonable output is
still wanted, even though it may not satisfy all constraints exactly. Unfortu-
nately the algorithm has no way of exiting for this case, except for waiting to
run the maximum number of iterations Im.

From the proposed constraints, a natural solution flows that solves the prob-
lem of stitching together the borders of neighboring patches. This could be very
useful for use in seemingly infinite worlds. However this is entirely based on po-
sition and roughness constraints and does not always result in a realistic looking
terrain. It also makes the algorithm even more unstable. Another constraint
would be preferable that somehow describes how the points at the border of
a terrain should behave to be ‘seamless’. An experiment was done using more
position constraints to match the first order derivative at the borders of neigh-
boring terrains. However this was proven very unsuccessful, the results were
almost identical and it was left out of consideration.

Lastly, results for higher resolutions were hard to gather due to the lack
of resources to generate sufficient data. However from the available data some
characteristics could still be deduced. A rough, forgiving estimate of the running
time was given. However no definitive statements could be made. How well the
algorithm approximates a global optimum and in what situations in performs
best was shown, however its behavior could not be exactly defined. Still, all
experimentation proved sufficient in showing what kind of threshold values are
preferable and what future work might be done to improve the work.

6.1 Future Work

There are a lot of facets of the current work that could be improved given more
resources to work on it. Firstly, more data could be gathered to increase the
accuracy and range of the results. The experiments should preferably be run
on higher resolutions so the asymptotic behavior of the algorithm can be de-
fined more precisely. Especially for the roughness constraint more data could be
gathered, unfortunately this is hard to do because of the complexity of the opti-
mization problem. Another strategy could be to look deeper into the theoretical
side of the constraints and determine when a constraint will always converge to
a solution.

Besides numerical and theoretical work, the iterative relaxation easily lends
itself to design of new constraints. Obviously new ideas for modeling the path
and its surrounding areas could be thought up. But more specifically, the pro-
cess of stitching borders of neighboring patches could be improved a lot. As
mentioned earlier, an experiment was done using position constraints to main-
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tain the first order derivative at the borders. A constraint that explicitly tries
to model this property across a wider band of points along the border could be
looked into. Furthermore, the roughness currently only registers high frequency
details of the terrain. If the constraint was applied at multiple scales on the
same terrain, it could also suffice as a method to maintain terrain features of
all frequencies. The only downside is the danger of over-constraining the ter-
rain even further, making the possibility of the algorithm never converging even
larger. More research could go into this subject.

Besides new or better constraints, the pre-processing of graph G into sub-
division S is open for improvement or even new algorithms, as it can easily be
swapped out with some other process. The path finding in this work is a sim-
ple implementation of the A∗ algorithm with a cost function such penalties are
given for steep slopes. This could be modeled differently, catered for a specific
kind of shape of the terrain. On top of that, one could think of a different way
of generating base terrain L. Currently a simple midpoint-displacement method
is used, however this process could also take into account the shape of G, gen-
erating a base terrain that already facilitates some of the desired features in
the output terrain. This could make the job of the iterative relaxation process
easier and maybe even faster.

More research could go into improving the performance of the iterative re-
laxation process. In its current state, the most beneficial way to try to do this
is to come up with an early-exit strategy. Currently the algorithm often does
not converge when roughness constraints are introduced due to conflicting con-
straints. If a method was devised that detects such a conflict one of two things
could be done: first, attempt to modify the state of the terrain such that it does
converge and second, simply exit the process earlier, such that we do not have
to wait for the maximum number of iterations Im to be reached.

Lastly, the pipeline that is shown in this work can be augmented or used
as inspiration for new work. One interesting school of thought is to expand
the dimensionality the terrain can express. The terrain is currently stored as
a finite heightmap, very similar to the method that iteratively generates new
terrains based on constraints [21]. This paper was later extended to voxels [7].
A very similar expansion could be applied to our iterative relaxation, making
it deal with voxels, which allows for caves, overhangs, tunnels or even floating
islands. The algorithm, whether it runs on heightmaps or voxels, was designed
to be used in for adventure type games that want to introduce infinite terrain to
emphasize exploration play. To work further towards this goal, this work could
be combined with other work that generates missions and rules [12] that fill the
world up with interesting gameplay.

7 Conclusion

Looking at the proposed algorithm from a zoomed out perspective, it attempts
to solve the following problem: given a square patch of terrain L, transform it
into a new patch of terrain H by modifying L such that a given planar input
graph G is embedded into H as a path that can be walked upon. To be able
to walk on a path means that the gradient of every point of the path in any
direction must not exceed a given maximum value. This is done by introducing
an iterative relaxation algorithm that does just this; it carves a path through
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the terrain where the gradient at every point of that path does not exceed this
maximum value. From this it flows that the entire graph is properly represented
in the terrain, each node and graph can be walked upon. An argument for a
rough, forgiving running time of O(N2) is shown. The algorithm is readily
parallelizable, cutting the running time to a potential O(N2/p), where p ∈
N+ is the number of points that can be run in parallel. However such an
implementation is not yet built and should be properly evaluated.

The gradient constraint is one of four constraints that together attempt to
embed a path in such a way that we maintain the ‘realism’ of output terrain H by
imposing mathematical constraints based on graph G. The iterative relaxation
algorithm approximates an optimal solution of an optimization problem, the
four constraints are added to this problem’s own constraints. The directional
derivative and roughness constraints are two distinct options to maintain the
‘realism’ of the terrain, however what ‘realistic’ means remains an open question;
it is up to the designer of the constraints. Furthermore, not all constraints allow
for guaranteed convergence of the algorithm, for this reason, the maximum
number of iterations Im, or an early-exit strategy should be carefully chosen.

The optimization problem itself imposes that graph G should be embedded
in output terrain H such that it has changed as little as possible from L. It does
this by minimizing the cost of transforming L into H by moving, creating or
destroying material, or more formally; the Earth Mover’s Distance EMD(L,H)
is minimized. The proposed algorithm’s results were compared to an optimal
solution to this problem to see how accurate it is. We can conclude that the
algorithm performs better when the constraints require less modification of the
base terrain, however not much can be said about the asymptotic behavior as
we scale the terrain resolution. To hone in on optimal accuracy, experiments
should be run to find a value for the slope threshold Ts. For the roughness
threshold Tr, the value should be empirically chosen.

From the proposed formulation and constraints a natural solution flows that
solves the following problem: given set height values for the border of H, mod-
ify its interiors such that it ‘realistically’ connects to its borders. It combines
position and roughness constraints to set the values and modify the interiors
respectively. This implementation is more of an experiment to see how much
the constraints can handle, more research is desired.
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