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Abstract

When analyzing a set of trajectories, usually a very large amount of data is available. This
dataset may be so large it makes full analysis impossible. A solution is to cluster the dataset into
smaller subsets, and then to generate a representative trajectory for each subset, which represents
the unique characteristics of the trajectories in the set. One way to do this is an algorithm called
Central Trajectories, which generates a trajectory consisting of parts of the input trajectories and
which is central relative to the trajectories in the set. This results in a trajectory that is relatively
close to all other trajectories at all times. I analyze the complexity of the output of the algorithm,
using multiple different methods and a large variety of real-world and synthetic datasets. The two
main research questions are: “What is the real-world complexity of Central Trajectories? ” and
“What is the effect of path-simplification algorithms on the complexity of Central Trajectories? ”
The results suggest answer to the first question is that the complexity of the output is linear in the
input, but the characteristics of the linear relationship between input and output vary depending on
the characteristics of the dataset, in addition to the parameter epsilon (ε) of the Central Trajectory
algorithm, which determines the maximum size of a discontinuity. Additionally, simplifying the
output of Central Trajectories can greatly reduce the amount of vertices, since many redundant
vertices are removed in the process.
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1 Introduction

1.1 Motivation

My thesis focuses on the study of trajectories. A trajectory in this context means: the path an object
follows when it moves. Nowadays, a large amount of trajectory data is available, generated using
for example GPS trackers. By determining its position at regular moments in time, a GPS tracker
can make a trajectory of an entity’s movement over time. This means a large variety of interesting
trajectories can be generated without much effort, by tracking, for example, the movement of vehicles,
animals and humans.
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1.1.1 Vehicles

By tracking cars, a large amount of interesting data becomes available, which is especially useful for
branches of science such as traffic congestion analysis, urban planning, environmental research, etc.

Many countries use a Vessel Monitoring System (VMS) to track the activity (including position) of
fishing vessels in real time. The purpose of this system is to ensure vessels abide by the rules and
overfishing does not occur, which would harm the local marine ecosystem.

Finally, airplanes are tracked in real time as well, since it is vital to know the location of airplanes in
real time to know whether or not a potential disaster is about to occur, to enable timely prevention (e.g.
diverting two airplanes on a collision course to prevent a mid-air collision). But these trajectories are
useful in non-real time scenarios as well, for example for environmental research (to give an example:
the delay of ongoing expansion of the Lelystad Airport).

1.1.2 Animals

Tracking (wild) animals over time gives interesting insights into their behavior, since the trajectory
of an animal reveals a lot about their routines. For example, a stationary trajectory indicates an
animal is resting or sleeping, but a trajectory that traverses large distances may indicate the animal
is scavenging for new territories, or maybe it is searching for food or water.

1.1.3 Humans

Humans can also be tracked with GPS trackers, and this is already happening with smartphones:
for example, Android smartphones by default create a trajectory of everywhere you go. (I will leave
the privacy implications of this aside, but it is worth a research on its own.) But there are also
datasets of human movement that are publicly available, for example OpenPFLOW[1], which consists
of (anonymized) trajectory data of pedestrians in Tokyo, Japan. This data can be very valuable,
similarly to vehicle data, for branches of science such as urban planning, evacuation/riot handling,
crowd simulation and sociology.

1.1.4 Hurricanes

It is also possible to track objects without using GPS trackers. For example, hurricanes are tracked
in real time by satellites that analyze the movement of clouds, deducing wind information from this
analysis, and then deducing the location of a hurricane from this wind information. This enables
knowing not only the past and present location of a hurricane, but also predicting its future position.
This information can be potentially life-saving, since it enables timely evacuation of citizens that are
located near the hurricane’s future predicted trajectory.

1.2 Mathematical context

In a formal, mathematical context, a trajectory is defined as a sequential list of points in space. I will
focus on two-dimensional space here, but some algorithms extend naturally to three dimensions and
beyond. Additionally, every point contains a timestamp. It may be tempting to model time by simply
increasing the dimensionality of the points, and using time as the last dimension, but this does not
make sense, since time is defined in seconds, yet location is defined in meters. Many spatial measures,
such as Euclidean distance, only make sense when all dimensions are defined in the same units.

Trajectory clustering is the gathering of trajectories into groups, in which trajectories have similar
characteristics. To cluster trajectories, various algorithms are available: see Section 2.1 and Section
3.4 for a sample of relevant algorithms.

After applying clustering, groups of trajectories that belong together are revealed: either because they
follow similar paths, or because they share common sub-parts of the path. Then, for every cluster, it
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Figure 1: A cluster of three different trajectories going from A to B. When picking a representative
trajectory, picking a random one will give the wrong result in this scenario, since none of the trajectories
capture all three unique features at once (looping up, going straight, and looping down). A good
representative trajectory would first follow the blue trajectory, then follow the green trajectory by
looping down, then follow the orange trajectory by looping up, and then continue to the end. A
summarization algorithm may find a trajectory like this.

is usually desirable to create a representative trajectory which captures the essence of all trajectories
in the cluster. Generally speaking, a random trajectory is picked from the cluster for this purpose.
However, this is not always a good solution, since the unique features of a cluster might, by chance,
not be present in the selected trajectory. For a visual demonstration, see Figure 1.

A better algorithm would assemble a new representative trajectory, retaining the unique characteristics
of the trajectories in the cluster. One of the ways to do this is to use an algorithm called Central
Trajectories [2]. The key idea is to build a new trajectory that consists of sub-parts of trajectories in
the cluster, allowing small discontinuous jumps between different trajectories if required. Note that
the paper introduces only a theoretical algorithm, without any implementation. Thus, the paper only
made claims about the theoretical complexity of the algorithm, not the real-world complexity.

The research of this paper consists of two research questions, aiming to discover the performance of the
algorithm in practice. The first one is: “What is the real-world complexity of Central Trajectories? ”.
The second one is: “What is the effect of path-simplification algorithms on the complexity of Central
Trajectories? ”. More elaboration can be found in Section 1.3. To answer them, the Central Trajectories
algorithm has been implemented, and its real-world performance has been measured using various
experiments, described in Section 4.3. The results can be found in Section 5, and the discussion and
conclusion based on these results can be found in Section 6 and 7, respectively.

1.3 Research questions

This section will explain all research questions for the research project.

1.3.1 Question 1

The first research question is:

What is the real-world complexity of Central Trajectories?

The theoretical worst case complexity is superquadratic: O(nm5/2), where n is the amount of vertices
per trajectory and m is the amount of trajectories. This upper bound is reached by constructing
a pathological zigzagging pattern, as described by van Kreveld et al. [2]. But how often does this
occur in real world data? Its complexity is largely defined by the size of the input and the amount of
intersections between trajectories.

Hypothesis I expect the real-world complexity to be much lower than the theoretical bound of
O(nm5/2), since the zigzagging pattern mentioned in the paper, which triggers the upper bound, is
very artificial.
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(a) Before applying clustering. (b) After applying clustering.

Figure 2: Six different trajectories going from A to B. After clustering, groups of trajectories that
travel closely together are revealed.

1.3.2 Question 2

The second research question is:

What is the effect of path-simplification algorithms on the complexity of Central Trajec-
tories?

That means, if the complexity of the dataset happens to increase after running the Central Trajectories
algorithm on it, how much of this increased complexity can be mitigated by running path-simplification
algorithms before or after the Central Trajectories algorithm?

Hypothesis Path simplification will greatly reduce complexity of the generated trajectories. How
effective this reduction is depends on the data: for example, flight data might reduce more in complexity
than zoological data, since they are mostly straight lines.

2 Related work

Various algorithms have been introduced and implemented to analyze trajectories in various ways:
this section will show a few examples. This section will be similar to the summary of trajectory
algorithm types found in the thesis by Staals [3] and the paper by Konzack [4]. The most important
subsections will be the ones dedicated to trajectory clustering and the generation of representative
trajectories (summarization). Clustering is important to any research that implements summarization,
since summarization usually assumes the input trajectories are already somewhat clustered. That
means, a clustering algorithm must be used before running a summarization algorithm. However,
trajectory visualization and classification will be considered as well – as we will see, they are tangentially
related.

2.1 Clustering

Trajectory clustering is the gathering of trajectories into groups, in which trajectories are similar
according to some kind of distance and/or time metric. For a visual example, see Figure 2.

Buchin et al. [5] introduce the notion of a cluster (or group) and present algorithms for computing all
groups over a set of trajectories. The goal is to analyze the trajectories in such a way that we can find
groups of trajectories, which can change over time. For example, when many trajectories converge, a
new group is formed; when many trajectories diverge, a group is disbanded. To formalize the definition
of a group, three metrics are used:

• A distance metric for the maximum mutual distance between the moving entities in a group,
which is limited by a parameter ε.

• A time metric for the minimal duration of a group, called δ.
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• A number for the minimum amount of members of a group, called m.

That means, when many entities move together in such a way their mutual distance is always at most
ε, the group lasts for at least δ time units, and there are at least m entities moving together, then the
moving entities form a group.

Van Kreveld et al. [6] build further upon this work, and introduce a more refined model that corre-
sponds better to human intuition, especially in dense crowds. For example, in the old model, consider
a large crowd of moving entities. Two entities that move together in the opposite direction of the entire
crowd will be grouped together with the others in the crowd. But this does not make sense, since the
two entities move in distinctly different directions compared to the rest of the crowd. So, although the
two entities themselves should be together in a group, the rest of the crowd should not be part of that
group.

Van Goethem et al. [7] also build upon the foundations laid by Buchin et al. [5] by introducing a
specialized data structure that can be used to experiment with different values of ε, δ and m in
real-time, to see which values most accurately capture the groups we are looking for.

A different approach, used by Lee et al. [8], is to partition all trajectories into line segments, and then
apply clustering on these line segments, instead of on the trajectories themselves. The line segments
are grouped based on certain distance metrics between them. The advantage of this approach is that it
allows the algorithm to cluster based on small parts shared among different trajectories, even though
the trajectories themselves might globally look totally different. The approach is density-based, which
means clusters are formed where the density of points is the highest.

Andrienko et al. [9] focus on the domain of aviation trajectories. They introduce a clustering approach
of trajectories using density-based methods such as DBSCAN, according to the similarity of the followed
routes. This can be quantified using a specialized distance function, which, when given two trajectories,
calculates the distance between them. An unique characteristic of their approach is the fact that they
use a so-called relevance mask, which filters out irrelevant points such that they no longer have an
effect on the distance function. An example would be to filter outliers, or in the domain of aviation,
filtering out takeoff/landing parts of the trajectory. Trajectories that are too far away from every other
trajectory are assigned to a “noise” cluster, which means they do not belong anywhere and are probably
outliers. Note that the noise cluster is a characteristic of the DBSCAN algorithm, and DBSCAN was
originally only made for clustering of points. Andrienko et al. [10] use a similar approach.

Gariel et al. [11] also focus on the domain of aviation trajectories. The goal is to identify common
flight routes, and to detect whether or not airplanes nicely follow their predetermined flight routes.
This is important, because if airplanes deviate too much from their routes, more attention is required
from air traffic controllers to ensure a safe separation between aircraft. Their main contribution is the
observation that airplane trajectories consist mostly of straight lines, with a few important waypoints
near airports or other important locations. These points are called turning points, since they are points
at which the airplane makes a turn, and usually the trajectory followed between two turning points is a
straight line. This implies airplane trajectories can be simplified tremendously by removing all points
from the trajectories that are not waypoints, without major loss of information. Then, after reduction,
the trajectories can be clustered using the LCSS (Longest Common Subsequence) algorithm.

Precursory work by Buchin et al. [12] describes a clustering method with a clear purpose: to detect
commuting patterns in traffic GPS data. They use the Fréchet distance as distance metric between
two trajectories. The Fréchet distance has the useful property that it is invariant under differences in
speed, so the two trajectories do not necessarily have to be aligned in the time domain. This enables
commuting patterns to be discovered along groups of commuters, even when they are not traveling at
the same speed. Inside the so called free space diagram, which is closely related to Fréchet distance, a
distinct pattern can be seen whenever multiple trajectories (or multiple parts of a big trajectory) follow
a roughly identical path in space; by detecting this pattern, clusters of trajectories can be discovered.

Gaffney and Smyth [13] use a previously unseen approach: they use a finite mixture model, which is a
probability density function (PDF) consisting of a linear combination of smaller PDFs, also known as
regression model components. These components represent the clusters, and they are learned using an
expectation-maximization algorithm. Generally, the regression model components are modeled using
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a simple Gaussian distribution – that means, the expectation-maximization algorithm finds the most
likely mean µ and variance σ for every regression model component in an unsupervised manner. The
authors went for a probabilistic clustering approach, since they assume the input data is noisy, so there
is a certain amount of uncertainty involved. The algorithm does not require all trajectories to have an
equal amount of vertices, unlike other clustering methods such as K-means. The drawback, however,
is that the amount of clusters, K, is fixed and must be determined by hand. Additionally, since the
algorithm is probabilistic, it might not always be clear to which cluster a certain trajectory belongs:
for instance, the probability that a trajectory T belongs to cluster i might be equal to the probability
that it belongs to cluster j.

The paper by Gaffney et al. [14] builds upon the previous approach, and has a clear real-world ap-
plication. Given a historic dataset of air pressure levels across the globe, collected over the span of
multiple decades, the algorithm works by first discovering the cyclones themselves, together with their
(future) trajectories: this works by detecting small areas of very low pressure. Then, given these
cyclone trajectories, probabilistic clustering is used to classify the cyclones into three possible clusters,
based on their movement direction: S-N (south to north), SW-NE (south west to north east) and W-E
(west to east). Note that there is no category for west-moving cyclones: because of the rotation of the
earth, cyclones generally do not travel to the west. The algorithm uses a finite mixture model, as seen
before. The authors found that quadratic polynomials provide the best fit among all possible regression
models. Like the previous approach, the algorithm does not require all trajectories to have an equal
amount of vertices, but does require the amount of clusters to determined manually beforehand.

Fu et al. [15] introduce a new spectral clustering approach, for a clear real-world purpose. They
aim to cluster trajectories of cars, extracted from security camera footage, into frequently travelled
paths. The algorithms works by constructing a similarity matrix between the trajectories, based on
their mutual distances, and then finding an optimal partition of the graph induced by the similarity
matrix. Additionally, their approach enables real-time anomaly detection, which reveals cars which
are travelling too fast or in the wrong direction.

Lin et al. [16] aim to introduce a new method to approximate time series, which is a generalization
of trajectories, although the paper focuses on one-dimensional trajectories. Their goal is to apply
trajectory algorithms, such as clustering and anomaly detection, to very large datasets which do not
fit in memory. To deal with such large datasets, they aim to approximate the trajectories using a
method named SAX (Symbolic Aggregate approXimation), and then running the trajectory algorithms
on this approximated version of the original. The dataset is approximated symbolically, which means
it is converted into a list of discrete letters (symbols) to form a word. It is possible to experiment with
the alphabet size, which is the amount of possible letters. The obvious drawback of the approach is
that it focuses on one-dimensional time series, which means it does not work on traditional trajectories
gathered using e.g. GPS data – the authors acknowledge that an extension to higher-dimensional time
series would be useful. Finally, notice the algorithm is also capable of classification and summarization.

Kim and Mémoli [17] introduce the concept of a formigram, which is a slightly different version of a
dendrogram. A dendrogram is a way to visualize an hierarchical clustering of entities. However, for
clustering trajectories, it is not suitable, because it assumes once groups are formed, they are never
disbanded again – an unrealistic assumption. To deal with this, the authors modify the dendrogram
slightly to allow for groups that form and disband over time – they call this modified version a
formigram. Additionally, they introduce a distance metric to determine the distance between two
formigrams.

Zhang et al. [18] aim to compare different clustering algorithms using multiple experiments with real-
world data, perturbed with random noise, while also randomly removing points from the trajectories.
The trajectories are extracted from surveillance camera footage, as seen before in the paper by Fu
et al. [15], except this time pedestrians are tracked instead of cars. The clustering methods tested in-
clude Euclidean, PCA+Euclidean (Principal Component Analysis), Hausdorff, HMM (Hidden Markov
Model), LCSS (Longest Common Subsequence), and DTW (Dynamic Time Warping). A new metric
called the CCR (Correct Clustering Rate) is introduced, which measures intra-cluster similarity and
inter-cluster disparity. A high CCR means trajectories within every cluster are mutually alike, while
clusters from different trajectories are sufficiently different: this is an indication that the clustering
algorithm is performing well. The computation time is also measured. The results are as follows.
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Euclidean, PCA+Euclidean, LCSS and DTW all produce roughly equal results in terms of CCR, al-
though PCA+Euclidean is much less computationally expensive to compute compared to all other
algorithms. When noise is introduced, the Euclidean algorithm quickly fails to cluster trajectories
correctly. Generally, Hausdorff and HMM produce the worst results, even though they are relatively
expensive to compute.

2.1.1 Trajectory distance metrics

As mentioned before, to cluster trajectories, some kind of distance and/or time metric is needed, which
calculates how (dis)similar two trajectories are. The metric can be anything that results in a useful
clustering of trajectories.

The simplest metric is the Euclidean distance. In the discrete case, given two trajectories A and B
with their corresponding points ai and bj with 1 ≤ i ≤ n and 1 ≤ j ≤ n, the Euclidean distance
between two trajectories is defined as the average (or maximum) of the Euclidean distances between
all corresponding points of the two trajectories [18], mathematically formulated as:

1

n

n∑
i=1

√
(ai − bi)2

The obvious drawback is that both trajectories need to have exactly n points. In the continuous form,
the distance becomes:

1

l

ˆ l

0

√
(a(t)− b(t))2dt

And the condition becomes: they should both span exactly the same time interval (from 0 to l).
Note that trajectories that follow identical paths in the opposite direction are considered to be highly
dissimilar, according to the Euclidean distance – depending on the application, this might be undesired.

There are also other techniques like Dynamic Time Warping, which aim to match two trajectories by
warping their respective time series – this allows distance to be measured between two sequences which
vary in time and speed.

Finally, other examples include the Fréchet distance, the Hausdorff distance and LCSS (Longest Com-
mon Subsequence). The LCSS is a variation of the edit distance. The basic idea is to match two
sequences by allowing them to stretch, without changing the order of the elements, yet allowing some
elements to remain unmatched[19].

Wiratma et al. [20] introduce various metrics that can be used not just for comparing two trajectories,
but also for comparing two groups of trajectories. A few examples include group similarity (average
distance to another group), group closeness (the average distance to the nearest other group at each
time), and group centrality (the average distance to the central position of the other groups).

2.2 Summarization

As mentioned before, after applying trajectory clustering, for every cluster we want to find a repre-
sentative trajectory that captures the essence of all trajectories in the cluster. We do not want to pick
a random trajectory from the cluster as representative, since the randomly picked trajectory might
not contain all defining features of the group. The process of generating a representative trajectory is
called summarization. For a visual example, see Figure 3.

van Kreveld et al. [2] introduce the concept of a Central Trajectory. A Central Trajectory is a trajectoid,
a trajectory which consists of sub-parts of the input trajectories, which stays as central as possible
according to some centrality measure. In the paper, the centrality measure used is the distance to the
furthest point across all trajectories at a given time t.

van Kreveld et al. [2] also introduce a dichotomy between time-dependence and time-independence.
Time-dependence means that time is relevant; time-independence means that it is not, and only the
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(a) Before summarization. (b) After summarization. The dotted red line is a
possible representative trajectory.

Figure 3: Visual demonstration of the summarization of a cluster of three trajectories.

geometry or physical shape of the trajectory matters. The algorithm described in this paper is time-
dependent, and most algorithms that deal with trajectories are.

A notable exception is the paper by Buchin et al. [21], which introduces the concept of a median
trajectory. Like a Central Trajectory, a median trajectory is also a trajectoid, but there are three
major differences. First off, the algorithm does not take time information into account, which makes it
a time-independent algorithm. Secondly, the algorithm uses the median as centrality measure. Finally,
the algorithm also supports the preservation of homotopy. This means it can identify poles, which are
important locations in the paths the clusters take, and ensure the generated representative trajectory
always curves along these poles in the same way as the input trajectories. This prevents the generated
trajectory from skipping important turns, or missing essential landmarks.

The algorithm described by Lee et al. [8], seen before in Section 2.1, has an interesting side effect –
it not only clusters trajectories, but it can also be used to find a representative trajectory for every
cluster. So, it is a combination of both techniques. Additionally, the algorithm is time-independent,
since it only uses the geometry of the trajectories. The included timestamps are left unused.

Another paper which combines clustering and representative trajectory generation is the one by An-
drienko et al. [9], mentioned before in Section 2.1. It uses the aforementioned Central Trajectories
algorithm to do summarization of the trajectories. It does not require the trajectories to have equal
lengths.

Johard and Ruffaldi [22] focus on human movement analysis. The goal is to study trajectories followed
by human body parts during a certain activity, such as sports. To measure the skill of the player,
a good metric would be to analyze the variance of movement across multiple repetitions of the same
action, such as kicking a football. The main idea is that a low variance is an indication that the
player can reliably perform the same action repeatedly. On the other hand, a high variance means
the player has not mastered this particular motion yet, resulting in clumsy movement that cannot be
accurately reproduced. Thus, to quantify player skill, the paper introduces two statistical measures
that can be applied to clusters of trajectories: the mean trajectory and the trajectory variance. The
mean trajectory actually has a misleading name: it does not necessarily have to be the mean of the
trajectories, it should just be representative of the set of trajectories in the input cluster. In the
paper, the mean trajectory is calculated using an approach which is a generalization of the Dynamic
Time Warping (DTW) Barycentric Averaging (DBA) algorithm, which combines the DTW algorithm
with a self-organizing map. The algorithm can be considered time-independent: since Dynamic Time
Warping is applied to the points, time information is not relevant, except for the order of the points.
The trajectory variance is a measure of how much the trajectories in the cluster diverge from each
other at a certain point in time. The variance can vary over time – ideally, it is minimized along
the entire length of the mean trajectory. If all trajectories inside the cluster are identical, then the
trajectory variance is zero. The variance depends on the mean: since the variance can be considered
as a second-order moment, and the mean as a first-order moment, the two are closely related.

2.3 Visualization

Since this thesis focuses on trajectories, and trajectory data is hard to digest in its raw, textual
form, we need some kind of tooling to visualize the trajectory data, preferably on top of a geographic
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representation of the environment in which the trajectory data was captured. For instance, if we have
gathered GPS data from taxis in Los Angeles, we would like to plot the data on top of a map of Los
Angeles. There are some tools out there to do this, but data scientists have also thought of new and
inventive ways to visualize the data to make it even easier to understand.

For example, the paper by Andrienko et al. [9] which was mentioned before, aims to visualize air traffic
in a multitude of different ways. After applying trajectory clustering, the trajectories can be visualized
either in 3D, in which more common trajectories are drawn as thickened cylinders, or in 2D, using a
density map drawn on top of a topographical one. The latter approach reveals not only commonly
used air plane trajectories, but also the holding lines they follow before landing.

In another paper by the same authors [10], trajectories of airplanes are plotted in polar coordinates
onto a density plot. The result is essentially a circular heatmap: an intuitive visualization of the
density of air traffic flight direction – in other words, a quick way to see in which direction air traffic
tends to fly.

Gomes et al. [23] aim at detecting, in real-time, the formation (or dissipation) of hot routes from
continuous trajectory data streams. Hot routes are parts of the road network that have a very high
traffic density, indicating possible traffic jams and accidents. Using a GPU based approach, they can
also visualize these hot roads on a map, giving a quick and real-time indication of possible traffic events
happening in a certain area. The algorithm has multiple parameters, such as density threshold and
continuous analysis time, which can be adjusted in real-time, giving rise to experiments to quickly find
the optimal values.

The thesis by Konzack [4] focuses on trajectory analysis and visualization. The problem domain is
the visualization of seagull trajectories and their stopovers. The thesis introduces multiple methods to
visualize their trajectories, and also ways to correlate different trajectories. For instance, the author
introduces a method to quickly visualize the time difference between two seagulls that are travelling
together. Both trajectories are drawn in lat-long space, but colored lines are drawn between them.
Red lines indicate the first seagull is ahead of the second seagull (in time); blue lines indicate the
opposite. This makes it easy to see which seagull is following the other seagull, and the moments at
which their leadership changes, without needing to watch the entire trajectory like a movie.

2.4 Classification

A small amount of papers are dedicated to trajectory classification. This task is slightly different from
trajectory clustering, since classification is applied to individual trajectories, after discovering clusters
of trajectories. As stated by Vlachos et al. [19], the problem of classification is formally defined as
follows: given a database D of trajectories and a query trajectory Q (not already in the database), we
want to find the trajectory T that is closest to Q. Thus, classification algorithms usually aim to build
some kind of indexing data structure, which generally requires some time to preprocess, after which
new, unseen trajectories can be classified in real-time.

Vlachos et al. [19] discover similar multidimensional trajectories using similarity functions based on
the Longest Common Subsequence (LCSS). According to the authors, this method is more efficient
than the Euclidean and DTW distance metrics, especially when noise is present. Additionally, using a
specialized data structure, nearest neighbor queries can be answered quickly – that means, formally,
given a trajectory T , find the trajectory T ′ which is most similar to T . The approach scales to arbitrary
dimensions, and can handle trajectories with irregular sampling rates or speeds, which makes it quite
powerful. Finally, unlike the Euclidean distance, their approach can also compare two trajectories with
a different amount of points, and also considers trajectories that are identical but translated copies of
another trajectory to be similar.

Lee et al. [24] focus on the domain of nautical vessel identification. By tracking the GPS location
of vessels on the sea, it can be classified as a multitude of possible vessels. For example, a vessel
that visits a refinery will likely be a tanker, and a vessel that comes across a fishery will likely be a
fishing boat. Their trajectories might be really similar, which means most classification systems will
fail. Instead, they use region and subtrajectory based classification, which means classification happens
based on which regions the vessel passes through, and which subparts of trajectories are near a certain
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(a) Using epsilon ε = 2. (b) Using epsilon ε = 20.

Figure 4: Some example Central Trajectories generated by the implementation. The pink lines indicate
the original trajectories within a cluster, and the black line indicates the resulting Central Trajectory.
The cluster was taken from the dataset generated by TrajGen.

waypoint. In the previous example, the subparts of the trajectory that lead to a refinery are part of
the subtrajectory, and the fishery is the region. Thus, they first apply region-based clustering, and
then trajectory-based clustering. The trajectory-based clustering algorithm is based on the partition-
and-group framework proposed by Lee et al. [8]. By combining the two clustering approaches together
into a hierarchical approach, the classification accuracy and efficiency are increased significantly.

3 Background

This section will explain the background knowledge needed to understand this research project.

3.1 Trajectory models

To represent a trajectory, the most common method used is to simply store a list of points, optionally
with time stamps. The trajectories are assumed to follow the points, linearly interpolating between
them. This means the trajectory points are stored discretely, but the trajectory itself is considered
continuous, since there are no “jumps” or “gaps” in it. Deciding whether a trajectory can be considered
discrete or continuous depends on the author’s interpretation of it. In the discrete case, a trajectory A
is modeled as a list of n points: ai with 1 ≤ i ≤ n and i ∈ N. In the continuous case, a trajectory A is
modeled as a vector-valued function of time a(t) with 0 ≤ t ≤ l, where l is the length of the timespan
covered by the trajectory, and t ∈ R. In this paper, I will assume trajectories are continuous.

Note that in this paper, the words “trajectory” and “entity” will be used interchangeably.

3.2 Central Trajectories

As mentioned before in Section 2.2, a Central Trajectory (CT) is a trajectoid, a trajectory which consists
of sub-parts of the input trajectories, which stays as central as possible according to some centrality
measure. The algorithm takes a cluster of trajectories as input, and outputs a single trajectory. In the
paper, the centrality measure used is the distance to the furthest point across all trajectories at a given
time t. The trajectory might jump to new trajectories at certain points, if this causes the trajectory
to be more central at that moment in time, although its jump distance is limited by the parameter
epsilon (ε). Since all coordinates in this paper are defined in meters, ε is defined in meters as well.

When it is possible to jump between two entities σ and ψ via a sequence of other entities, without
jumping more than ε units at a time, the two entities are said to be ε-connected at a time t.

Some example Central Trajectories can be found in Figure 4 and 5. As you can see, increasing ε makes
the trajectory more erratic and more likely to contain noticeable discontinuities. The higher epsilon,
the more likely the algorithm is to prefer centrality over aesthetics. Generally speaking, if ε is equal
to or smaller than the size of a pixel on the screen, then the jumps are not noticeable.

The algorithm consists of the following four steps:
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Figure 5: An example Central Trajectory generated on a cluster found in the real-life Geolife dataset.
The thin colored lines represent individual trajectories, and the thick red line indicates the Central
Trajectory. The trajectories all start at seemingly random points, but they all eventually come together,
travelling on the same road. This is the same road that the Central Trajectory has chosen as its most
central part, which means it is doing its job correctly.
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1. Find Reeb Events

2. Create Reeb Graph

3. Calculate Edge Weights

4. Find Central Trajectory

They will be described in detail below.

3.2.1 Find Reeb Events

A Reeb event is a moment in time when any two trajectories lie exactly ε units away from each other.
The first stage of Central Trajectories aims to find all Reeb events between all pairs of trajectories –
this can be done by solving a simple quadratic equation per line segment pair, giving either 0, 1 or 2
solutions. Every Reeb event also stores a boolean, indicating two possibilities: either the trajectories
were more than ε units apart beforehand and they just came together, or they were less than ε units
apart beforehand and they just split up. Note that the pathological case where two trajectories are
exactly ε units apart for their entire duration, resulting in infinite Reeb events, is assumed to be absent.
This is because the input trajectories are assumed to be in general position, so no two line segments
in any trajectory are parallel.

3.2.2 Create Reeb Graph

A Reeb graph is a directed acyclic graph that captures the structure of a two- or higher-dimensional
scalar function, by considering the evolution of the connected components of the level sets[5]. In the case
of Central Trajectories, it captures the change (forming and disbanding) of the groups of trajectories
over time. A vertex in the Reeb graph represents a moment when two groups of trajectories split
up or join together: it is called a Reeb vertex. An edge in the Reeb graph represents a group (or a
component) of (one or many) trajectories: it is called a Reeb edge. The component of a Reeb edge e
is referred to as Ce. Since the graph takes time into account, every Reeb vertex has a timestamp, and
every Reeb edge has a timespan in which it is active: it is the time between its start vertex and its end
vertex. This means it is possible to take a cross-section of the Reeb graph by fixing a certain value of
t: this cross-section reveals which groups of trajectories are active at time t.

Given the Reeb events from the previous step, the Reeb graph can be constructed in a fairly straight-
forward manner, as described in the paper by Buchin et al. [5].

There are four different kinds of Reeb vertices:

Reeb Start This vertex type appears only at the start of the Reeb graph. There is one Reeb start
vertex for every separate component of ε-connected entities at t = 0 (the very start). It has no
incoming edges, and it has 1 outgoing edge.

Reeb End This vertex type appears only at the end of the Reeb graph. It has no outgoing edges,
and it has 1 incoming edge.

Reeb Split This vertex type appears when a group of trajectories splits up into two. This happens
when two entities are no longer less than ε units apart, and no other trajectory remains to stay
ε-connected with the rest of the group. It has 2 outgoing edges, and it has 1 incoming edge.

Reeb Merge This vertex type appears when two groups of trajectories merge into one. This happens
when two entities, which were not ε-connected before, become less than ε units apart. It has 2
incoming edges, and it has 1 outgoing edge.
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3.2.3 Calculate Edge Weights

All edges in the Reeb graph are assigned a weight. This weight can be seen as the centrality of the
edge: the lower the weight, the higher the centrality of the edge. That means, if an edge has a low
weight, the trajectories in the edge’s associated group tend to lie in the middle of all trajectories,
during the time span of this edge. On the contrary, if an edge has a high weight, its trajectories tend
to lie on the outskirts.

The exact definition of centrality is flexible: in the paper, centrality is defined as the distance to the
furthest point across all trajectories at a given time t. Given that a Reeb edge is defined on a time
span, not a single timestamp, the integral of the centrality over the time span is used as edge weight.

Formally, given a Reeb edge e, its weight ωe is defined as follows:

ωe =

tvˆ

tu

L(Fe)(t)dt

Where L is the lower envelope of a set of functions (or the minimum), tu is the start of the timespan of
the edge, tv is the end of the timespan of the edge, and Fe = {fσ | σ ∈ Ce} is the set of weight functions
of all trajectories contained in the edge’s component Ce. The weight function fσ of a trajectory σ is
defined as the distance between σ and the trajectory furthest away from σ (of all trajectories, not just
the ones in Ce) over time. Formally:

fσ(t) = max
ψ∈χ
‖σ(t)ψ(t)‖

Where σ(t) indicates the (interpolated) location of the entity at time t, ‖σ(t)ψ(t)‖ indicates the
Euclidean distance between the entities σ and ψ at time t, and χ is the set of all trajectories.

To sum it up, at every moment in time on the timespan of the edge, the weight functions of all
trajectories in its component are calculated. The minimum is taken over the output of these functions,
and this value is used in the integral as part of the total weight of the edge.

The integral can be calculated in two ways: either analytically or numerically. Doing it analytically
gives the most precise results, however it requires an integral solver and is difficult to implement, since
it requires splitting up the Reeb edges at every moment in time the maximum changes in any of the
fσ functions relevant to that particular edge. (This moment is called a breakpoint, since it indicates
moments in time in which the weight graph of the edge displays a discontinuity.) Doing it numerically
means approximating the integral, using a Riemann sum, for example.

3.2.4 Find Central Trajectory

Once all Reeb edges have a weight, the final step is to find a minimum-weight path from a source to a
sink in the Reeb graph. Since an edge with a low weight has a high centrality, the resulting path is a
trajectoid with maximum centrality. In the case that a Reeb edge on the path holds a group of more
than one trajectory, the trajectory with the highest centrality is used. The most central trajectory in
the group might change during the span of a single Reeb edge: if this happens, the trajectoid jumps to
another trajectory in the group. This is always allowed, since all trajectories in a group are all within
distance ε of each other. This jump event is called a mid-edge jump: a jump occurring in the middle
of a Reeb edge. There are also on-vertex jumps, which means the Central Trajectory jumps to another
trajectory at a Reeb vertex, instead of a Reeb edge.

3.3 Elementary Resample

After clustering the trajectories, there is one more necessary step before the Central Trajectories
algorithm can be applied. Since it requires that all input trajectories have the same amount of points,
the trajectories have to be resampled in such a way that the following requirements hold:
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Figure 6: An example of simplification. In this trajectory, many redundant points can be removed,
without changing its geometry. However, non-linear time information may be lost.

• All trajectories start/end at exactly the same moment in time.

• All trajectories have their points at exactly the same moments in time.

This operation is called an elementary resample. For example, define a cluster of two trajectories
{A,B}, where A has 3 points on the times t = 1, t = 3 and t = 6, and B has 4 points on the times
t = 2, t = 4, t = 6 and t = 7. After elementary resampling, both trajectories will have their points at
t = 2, t = 3, t = 4 and t = 6. As you can see, this operation might cut off parts of a trajectory.

This might pose a problem in the case when two trajectories do not overlap in time. For example, if
trajectory A has 2 points on the times t = 1 and t = 6, and B has 2 points on the times t = 7 and
t = 10, then this cluster cannot be elementary resampled.

3.4 Clustering

The Central Trajectories algorithm assumes all input trajectories are somewhat clustered. If this is
not the case, a clustering algorithm must be run first. Two clustering algorithms were used, and they
will be described below:

3.4.1 K-means

The idea of K-means is to cluster a bunch of points into a predetermined amount of clusters k,
alternating two steps for a certain amount of iterations: Assignment and Update. The algorithm was
adapted to work on trajectories as well. This works as follows: every point of every trajectory is used
as input for K-means. After clustering, every trajectory counts how many of its points lie in a certain
cluster: this is done for every cluster. Then, the trajectory is assigned to the cluster which has the
most of the trajectory’s points inside of it.

3.4.2 QuickBundles

This algorithm, introduced by Garyfallidis et al. [25], is developed to be used in neuroanatomy. When
an MRI scan is made of the brain during a tractography, a very large amount of nerves is revealed in
the form of streamlines. Such a large amount of streamlines is hard to visualize, interact with, and
interpret. QuickBundles aims to quickly gather usable clusters from such large datasets. A streamline
is a list of three-dimensional points: it is almost a trajectory, except for the fact that the time dimension
is missing. Additionally, a streamline is three-dimensional, while a trajectory is two-dimensional. To
use the algorithm for trajectories, the time dimension is thrown away and the Z-coordinate is set
to zero for all points. The algorithm takes a threshold parameter, which determines the maximum
distance between two trajectories before they are no longer considered to be part of the same cluster.
Like all spatial parameters in this thesis, it is defined in meters.
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3.5 Simplification

To reduce the complexity of a trajectory, simplification can be applied, which makes a new trajectory
which is similar to the original, but the amount of vertices is greatly reduced. See Figure 6 for a
visual demonstration. An example of a widely used simplification algorithm is the Douglas-Peucker
algorithm[26]. This algorithm has a parameter delta (δ), which determines the maximum distance (in
meters) between the original curve and the simplified curve (using the Hausdorff distance metric).

In a nutshell, the algorithm works recursively, by repeatedly marking a first and last point and finding
the most distant point between them (that means: the point furthest away from the line segment
between the first and last point). If this point has a distance of ≤ δ to the line segment, then all
unmarked points are discarded. If not, the point is marked (so it is kept), and the algorithm recurses
on two halves: one half from the first to the distant point, and another half from the distant to the
last point.

Note that this algorithm does not take time into account, which may cause non-linear time information
to be lost during simplification. As mentioned before, it may be tempting to use the three-dimensional
variant of the Douglas-Peucker algorithm, in addition to using time as the Z-axis. However, this will
give very non-intuitive results, since the X- and Y-dimensions are defined in meters, yet the Z-dimension
is defined in time: as a result, no distance metric will give sensible results in this space.

4 Methodology

To answer the research questions, I created a program satisfying various requirements, and I gathered
various datasets. Using this program, I conducted various experiments. They will all be described in
this section.

4.1 Implementation

This section describes the implementation details of the various implemented algorithms.

The implementation was written in C++ for two reasons. First off, C++ is a highly performant
language, which means it can quickly deal with potentially very large amounts of trajectory data.
Secondly, there are many useful libraries such as CGAL[27], Boost, and MoveTK, which provide
implementations of a variety of geometry, graph, and trajectory algorithms respectively, which are all
made to be used via C++.

4.1.1 Central Trajectories

The Central Trajectories algorithm is implemented by following the four steps described before in 3.2.
There are some implementation details to note:

• In the “Create Reeb Graph” step, the Boost.Graph library is used to create the graph. Addi-
tionally, there are some additional “dummy” vertices and edges in the graph, at the very start
and at the very end. The dummy vertices are connected to the Reeb start and end vertices via
dummy edges. This means we can find a shortest path from a source to a sink in the graph by
using the dummy start vertex as the source, and the dummy end vertex as the destination. This
avoids the need of trying to find a path from every possible Reeb start vertex to every possible
Reeb end vertex: a possible combinatorial explosion.

• In the “Calculate Edge Weights” step, the edge weight integral is numerically approximated using
a Riemann sum, using a maximum of 1000 samples over the entire time span of all trajectories.
This value appears to be sufficient for all used datasets.
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• In the “Find Central Trajectory” step, the decision to perform a mid-edge jump is considered at
every point in time the previously described Riemann sum is evaluated. That means, since the
Riemann sum in total is evaluated 1000 times, there can be no more than 1000 mid-edge jumps
in a Central Trajectory. However, this does not appear to have a great effect on the end result,
since the great majority of the jumps are on-vertex jumps, not mid-edge jumps.

• In the “Find Central Trajectory” step, the Dijkstra algorithm is used to find a shortest path from
a source to a sink.

4.1.2 Clustering

The two clustering methods, described before, were either implemented manually or imported from a
library. Implementation details will be described below.

K-means This algorithm was manually implemented. Since this is a very basic algorithm, it has
some issues: for instance, trajectories with greatly varying point density bias the results.

QuickBundles An implementation of the algorithm can be found in the DIPY library[28], a Python
library made specifically for computational neuroanatomy. To be able to use this library from C++,
the Boost.Python library was used to be able to run Python code from C++.

In practice, the algorithm appears to generate very uneven clusters: some clusters have hundreds
of trajectories, while a lot of clusters contain only a single trajectory. To mitigate this problem, a
minimum cluster size filter was implemented, such that clusters that have less than x trajectories
are discarded, where x depends on the dataset used. This also helps tremendously in reducing the
amount of outliers: since outlier trajectories become part of their own cluster, containing only 1 or 2
trajectories, they are discarded automatically.

Another problem with QuickBundles is the fact that it does not differentiate between trajectories that
have the same shape and geometry, but are travelling in opposite directions. To fix this, a “cluster
splitter” was implemented, which takes the clusters from QuickBundles and splits them up into smaller
clusters, depending on the angle of the trajectories. A quick summary of how it works:

• For every trajectory σ, calculate its angle α(σ). (The angle of a trajectory is simply the angle
between its first and its last point.)

• Convert the point (1, α(σ)) from polar coordinates to Cartesian coordinates. This results in a
point (x(σ), y(σ)) on the unit circle.

• For every cluster C of trajectories:

– Gather a list of all the points (x(σ), y(σ)) for every trajectory σ ∈ C and use the list as
input for a point clustering algorithm. In this case, the DBSCAN algorithm was chosen,
with a minimum sample size of 1 and an epsilon of 0.5. (Note: epsilon is the name of a
parameter of DBSCAN, not to be confused with Central Trajectory epsilon.)

– Create a new unique cluster for every cluster the clustering algorithm returns, and assign
the trajectories in C to it accordingly.

Intuitively, every trajectory is turned into a point on the unit circle, and these points are clustered.
Since the clustering algorithm is constrained to work within the trajectories of one “original” cluster
(that means, a cluster QuickBundles returned originally), no two trajectories from different “original”
clusters can be merged back together – which is a good thing, because if they were anywhere near each
other, they would be part of the same “original” cluster anyway.

Finally, clusters returned by the cluster splitter which have less than 3 trajectories are removed, to
prevent running CT on clusters that are too small to return useful results.

17



Dataset Trajectory
count

Spatial range Start date End date

TrajGen 16,016 1km by 2km - -
SmallDutch 1300 47km by 46km January 9, 2019 January 10, 2019
Starkey 253 8km by 14km May 7, 1993 August 15, 1996
T-Drive 2500 250km by 332km February 2, 2008 February 8, 2008
Geolife 14,300 100km by 100km April 12, 2007 May 14, 2012

OpenPFlow 17,000 218km by 148km January 12, 2017 January 13, 2017
MarineCadastre 5000 407km by 9000km April 1, 2007 April 30, 2007

Table 1: A summary of all dataset characteristics. Note that some preprocessing steps were applied
before determining the trajectory count and spatial range, to ensure outliers are not counted. A dash
(-) indicates the given field is not relevant (e.g. date is not relevant for synthetic data).

Note that not all datasets use the cluster splitter: since it reduces the total amount of clusters, it also
reduces the statistical validity of the results, and it causes outliers to have a much greater effect on
the average trends. Since some datasets have a small amount of clusters to begin with, it would not be
advantageous to use the cluster splitter on them: for example, Starkey contains only 253 trajectories.
Additionally, some datasets contain trajectories that are too complex to classify based on their angle:
two examples of this are Starkey and MarineCadastre. These datasets contain trajectories that are
more complicated than just a path from A to B: they usually go back and forth multiple times, taking
various detours and visiting many destinations in a row. On all other datasets, however, the cluster
splitter works quite well.

4.2 Data

To perform the research experiments, which are described in Section 4.3, I have gathered many datasets,
ranging from vehicle location data to marine location data, and even some animal trajectories. The
reasons I picked such varied datasets are as follows:

• It enables the analysis of the general trends that occur when changing various parameters of
the CT algorithm, to ensure the results are useful for a wide variety of research branches, which
generally use very different datasets.

• It prevents a dataset from being an outlier itself. That means, if one dataset happens to give
totally different results compared to most other trajectory datasets, then this will not bias the
results.

• It allows analysis of the effect of various dataset characteristics on the results. For example,
some datasets are spatially larger than others, while others may have trajectories that have a
much higher sampling rate, others may have very angular trajectories, et cetera. By analyzing
the datasets themselves alongside with the results, a correlation can be drawn between specific
patterns in the results and the unique characteristics of the dataset.

4.2.1 Datasets

This section will describe all datasets that I have used. A summary of all dataset characteristics can
be found in table1.

SmallDutch This is a dataset gathered by the company Here consisting of GPS data of cars travelling
in the Netherlands, near The Hague and Rotterdam. The data was gathered in a period of 24 hours,
ranging from 9 January 2019 23:00 to 10 January 2019 23:00. The spatial range of the data is roughly
47km by 46km. The data is actually a subset of a much larger dataset, reducing it to only 1300
trajectories. The sampling frequency differs per trajectory, ranging from 1 to 10 seconds between
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points – it does not vary over time. The amount of points per trajectory varies from 20 to 1500, and
the average duration of a trajectory is about 15 minutes.

A visualization of the dataset can be found in Figure 7a.

Starkey The Starkey dataset was gathered in a long-term study of elk, deer and cattle behavior,
examining the effects of ungulates on ecosystems[29]. It is one of the most comprehensive field research
projects ever attempted. Using GPS trackers, the location of various animals was tracked during a time
span ranging from 7 May 1993 to 15 August 1996, although the research was only conducted during
spring, summer and fall. In the winter, the animals were fed manually. The experiment was conducted
in a very large animal enclosure near La Grande, Oregon, USA, spanning a region of 8km by 14km.
Since the enclosure is larger than the summer home range of most deer and elk, the animals inside
the area are living under conditions similar to wild, free-ranging herds. This ensures the resulting
trajectories form a realistic representation of animal behavior in the wild.

The dataset consists of 253 trajectories, most of them spanning the entire duration of the study. The
amount of points per trajectory varies from 161 for short trajectories, up to 4000 for long trajectories.

Since data was not collected during the winter months, the dataset was split up on a per-year basis.
That means, for instance, if a trajectory ranges from 1993 to 1996, it was split up into four trajectories,
one for every year it spans. This prevents the trajectories from displaying erratic behavior, since there
are no samples during the winter months. Additionally, it makes clustering easier.

A visualization of the dataset can be found in Figure 7b.

T-Drive This is a dataset containing GPS trajectories of 10,357 taxis, gathered in a period of one
week, from 2 February 2008 to 8 February 2008, near the city of Beijing[30]. There are about 17
million points in the dataset, occupying around 750MB of disk space, and the total distance travelled
is about 9 million kilometers. The average sampling interval is about 177 seconds, with an average
distance between two points of about 623 meters.

This dataset contains a lot of outliers: there are lots of random points that are way off, and lots of
zeroes as well. These outliers were filtered by removing all points outside a rectangle spanning the
majority of the city Beijing and the surrounding areas. Most trajectories span the entire range of one
week, with some outliers starting a few days after 2 February and some ending a few days before 8
February.

Since the trajectories are very long and complex, the dataset was split up by day. Because the dataset
spans a week of data, on average, every trajectory was split up into seven smaller trajectories. After
splitting, trajectories with a bounding box area smaller than 2,800,000,000 m2 were filtered out. After
filtering, about 2500 trajectories remain, with an amount of points varying from 5 up to 9000, all of
which are contained within a bounding box of 250km by 332km.

A visualization of the dataset can be found in Figure 7c.

Geolife This is a dataset gathered in the Microsoft Research Asia Geolife project over a time span
of three years, from April 2007 to May 2012[31]. It is a fairly large dataset, both in storage and in
dimensions: it consists of 1.6GB of raw data, and spans a region of 30,000km by 40,000km, although
the dataset contains some outliers – most of the trajectories are contained in the 100km by 100km
region surrounding Beijing. This makes the dataset similar to T-Drive, except it actually contains
a greater variety of transportation modes: not only just taxis, but also pedestrians, cyclists, regular
cars and even some airplanes. There are 14,300 trajectories in the dataset, with a sampling frequency
ranging between 1 and 10 seconds per point, although there are some outliers which can go up to 200
seconds between points. This means the amount of points per trajectory varies greatly, ranging from
18 to 11,000. Additionally, a single trajectory can last anywhere from 1 minute to 30 hours. This
makes sense, since the datasets contains a multitude of different transportation modes.

A visualization of the dataset can be found in Figure 7d.
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(a) SmallDutch. (b) Starkey.

(c) T-Drive. (d) Geolife.

(e) OpenPFLOW. (f) MarineCadastre.

Figure 7: Visualizations of the datasets used.
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OpenPFlow This is a dataset based on human movement in urban areas, gathered in and around
the city of Tokyo[1]. For privacy reasons, the data was anonymized such that no entity in the dataset
matches the actual movement of any real person. A simulator was written which uses the real data
to generate realistic but synthetic movement data – the output of which can be freely shared online.
This means the dataset is technically synthetic, although since it was based on classified real data, the
resulting synthetic dataset is very realistic.

Another result of the artificiality of the data is the volume of the data – since the simulator can
generate an unlimited amount of data, the entire dataset can be made very large without much effort:
43.8 GB. Due to its sheer size, only a small subset of the data (99 million points) was analyzed in my
thesis. This results in about 17,000 trajectories. The spatial range is roughly 218km by 148km.

An interesting quirk of this dataset is that every single trajectory contains about 1200 vertices, with
a very small deviation (the majority of the trajectories have between 1197 and 1201 vertices, with
some very exceptional outliers). This may sound like a good thing, however, remember that Central
Trajectories not only requires all trajectories to have an equal amount of points, but also that all
trajectories are sampled at exactly the same moment in time, which is not always the case. Thus,
elementary resampling is still required.

A visualization of the dataset can be found in Figure 7e.

MarineCadastre This dataset, gathered by the U.S. Coast Guard Navigation Center from 2009
to 2017, consists of vessel traffic data containing the location and characteristics of large vessels in
U.S. and international waters. It includes information such as location, time, ship type, speed, length,
beam, draft, et cetera. Like OpenPFlow, due to its sheer size (84GB just for the 2017 data), only a
small subset of the data was actually used. The dataset is split up by year, month, and UTM zone.
There are 60 UTM zones in total, spanning the Earth entirely, although only 20 of the zones cover the
U.S., which means not every zone appears in the dataset. Every UTM zone covers a vertical slab of
the earth, each 6° of longitude in width. The 15th zone was used, using only data gathered in April
2007, resulting in about 8.7GB of data.

The used part of the dataset has about 5000 trajectories. Most trajectories are located in the northern
half of the Gulf of Mexico. Since this zone contains a large part of the Mississippi river, and many
ships follow a common route when entering or leaving a harbor, the dataset can be easily clustered.
The region spanned is about 407km horizontally by 9000km vertically, although most of the data is
near the center of the region. There are a lot of vertical outliers.

The dataset contains a lot of trajectories that are almost completely stationary – these are likely to
be fishing ships, remaining near the same location for the entire duration of the trajectory. Since
it is impossible to generate a sensible Central Trajectory for these entities, the dataset was filtered:
trajectories that have a total bounding box area below a certain threshold are removed.

A visualization of the dataset can be found in Figure 7f.

4.2.2 Data generation

To increase the amount of useful pre-clustered data, I have written my own data generation program
called TrajGen using the Godot game engine. It generates semi-realistic trajectories in clusters of
entities, which tend to move together, although with a slight randomization applied. The entities are
simulated using simple Euler integration, taking position, velocity and acceleration into account. They
are instructed to roughly follow an AI agent that finds a path from a starting point to a destination,
situated on a grid of random blocks. The path can deviate on a per-agent basis, since the starting point
and destination are slightly randomized. This results in trajectories that are mostly similar within a
single cluster, although some agents might take a different route compared to the other agents in the
cluster. The result of this is that the trajectories have some context to them – a world of obstacles that
need to be avoided. This is one of the situations in which the Central Trajectories algorithm shines:
since a Central Trajectory consists solely of parts of the input trajectories, it can never go through
obstacles. Some example generated trajectories can be found in Figure 8.
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Figure 8: A selection of trajectories generated by TrajGen. The colors indicate clusters. Every cluster
contains 16 trajectories.

The dataset generated with TrajGen consists of 16,016 trajectories, which are already clustered and
elementary resampled by default, which means there is no need to apply any processing to the data
before running experiments on it. The amount of points per trajectories varies from 70 to 150, since
the length and sampling rate varies per trajectory, giving rise to a total amount of 1,524,960 points.

4.2.3 Data preprocessing

Most of the datasets required some form of preprocessing before they could be used in the results.
A summary of preprocessing steps applied on the various data can be found in Table 2. The values
in the columns were found by experimentation, aiming to extract about 2000 useful trajectories per
dataset, clustered into roughly 50 clusters. This prevents running into computational and memory
limits, while still getting a statistically useful sample size. Additionally, all trajectories in all datasets
were shifted to the start (after the “Split by” step), to ensure the trajectories within a cluster overlap
at least partially in time.

A notable exception is of course the TrajGen dataset, consisting of synthetic data: this dataset was
not preprocessed, since it was generated in such a way to (a) have no outliers (b) be aligned in
time, mitigating the need for elementary resampling and time shifting, and (c) be already clustered.
Additionally, it has way more clusters than the others: up to 1000.

In Table 2, the column “Split by” indicates whether or not the dataset was split by a certain time
measure. That means, for example, if the dataset was split by year, then every trajectory that spans
more than a year is split up into multiple trajectories, one trajectory per year.

The preprocessing pipeline is applied in the following order: “(Split by x →) Shift to start → Remove
trajectories below bounding box area → QuickBundles → Elementary resample”. Generally speak-
ing, this pipeline works very well on very large datasets such as T-Drive, Geolife, OpenPFlow and
MarineCadastre. This is because, for clustering to work well, there are four desiderata:

• The trajectories are mostly aligned in time: that means, all trajectories cover mostly the same
period of time. If this is not the case, then the resulting clusters cannot be elementary resampled,
which is a necessary step before Central Trajectories can be applied. (Remember, a cluster can
only be elementary resampled if all trajectories in the cluster overlap in at least one moment in
time.)

• The trajectories are not too long and complex. In the case that the trajectories are long, then
ideally they do not go across the same area more than once, follow a non-self-intersecting curve,
and have regular sampling rates.

• The trajectories have a clear direction, and do not remain near the same point for the entirety
of its duration. If this criterion is not met, then the resulting clusters are not very useful for the
Central Trajectories algorithm, due to their shortness.
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Dataset Cluster method Elementary
resample

Rectangle
outlier
removal

Split by

Remove
trajectories

below bounding
box area (m2)

TrajGen - - - - -

SmallDutch

QuickBundles,
threshold 2000
(min clus 7) +
cluster splitter

Yes - - -

Starkey QuickBundles,
threshold 1500 Yes - Year -

T-Drive

QuickBundles,
threshold 9000
(min clus 7) +
cluster splitter

Yes Yes Day 2,800,000,000

Geolife

QuickBundles,
threshold 3000
(min clus 7) +
cluster splitter

Yes - - 100,000,000

OpenPFlow

QuickBundles,
threshold 3500
(min clus 7) +
cluster splitter

Yes - - 230,000,000

MarineCadastre QuickBundles,
threshold 15000 Yes - - 18,500,000,000

Table 2: A summary of preprocessing steps applied to the datasets. A dash (-) indicates the prepro-
cessing step was not applied.

• There are not too many trajectories in total – the manageable limit seems to be about 5000. Going
beyond this limit causes the QuickBundles algorithm to perform extremely poorly, potentially
taking hours to cluster a dataset. However, a dataset of about 2500 trajectories can be clustered
in a few minutes. (Although the algorithm is called QuickBundles since it can supposedly quickly
cluster a large dataset, the implementation is written in Python, which causes a large performance
penalty.)

The “Shift to start” step provides the first desideratum, the “Split by x” step provides the second, the
“Remove trajectories below bounding box area” step provides the third and fourth, and the “Quick-
Bundles” step also provides the fourth (remember: clusters that have less than three trajectories are
removed, so outliers are nicely discarded). The datasets SmallDutch, Geolife and OpenPFlow already
have relatively short and simple trajectories, which makes the “Split by x” step unnecessary.

The column “Cluster Method” indicates the cluster method used. By default, a minimum cluster size
of 3 is used: if this is not the case, then it is indicated within parentheses: “(min clus x)”. Additionally,
datasets that use the cluster splitter are indicated by “+ cluster splitter”.

4.3 Experiments

To answer the research questions, experiments have been be conducted using the implemented algo-
rithms. The experiments are as follows:

4.3.1 Question 1

As stated before, the first research question is:
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What is the real-world complexity of Central Trajectories?

To find the answer, I have conducted two experiments:

1. A dataset has been clustered, elementary resampled, and then Central Trajectories was applied
to every cluster individually, while measuring the amount of vertices in the resulting CT. Then,
comparing this to the amount of vertices in the input trajectories, this pair of input/output vertex
count is plotted in a scatterplot. Then, after fitting a curve to the data, a conclusion can be
drawn about the output complexity of the algorithm. This experiment has been conducted using
three different values of epsilon: ε = 1, ε = 10 and ε = 100. These values were chosen such that
the complexity could be analyzed at three different orders of magnitude, revealing potentially
interesting trends without using too many values of ε, which would clutter the resulting graph.

2. The same experiment has been conducted, however this time ε was used as the X-axis, instead
of the amount of input vertices. Twenty different values of epsilon, ranging linearly from 0 to
100 (or 1000 in the case of Starkey, to capture the moment of convergence), are plotted against
three possible Y-values. This experiment reveals the value of epsilon which gives the highest
complexity of the end result. The Y-values that have been tried are:

(a) The amount of Central Trajectory vertices.

(b) The amount of jumps in the Central Trajectory.

(c) The amount of Central Trajectory vertices divided by the amount of input vertices (basically,
the output:input ratio).

Both experiments were conducted on both synthetic data (generated by TrajGen) and real life data.

Note that the used values of ε are very high, likely much higher than values that would be used in
practice. (Remember, ε is defined in meters, which means, for example, using a value of ε = 100
on a vehicle traffic dataset means vehicles are allowed to jump up to 100 meters, which is quite
a discontinuity.) The reason for this is that it causes the complexity to converge long before the
maximum value of ε is reached. This gives an interesting graph, with a clear indication of the “point
of diminishing returns”, where increasing ε does not increase the amount of points/jumps much.

Also note that the experiments count the amount of input and output vertices after applying a very
small amount of simplification (δ = 0.01, or 1cm), such that the redundant points added by the
elementary resample step and Central Trajectories are removed. This means that all points in the
resulting scatterplot that belong to the same cluster have the same Y-value, since they all produce the
same Central Trajectory. In the case of experiment 2c (output:input ratio), the input vertex count of
a trajectory is set to be equal to the average (simplified) vertex count over all trajectories within its
cluster.

4.3.2 Question 2

As stated before, the second research question is:

What is the effect of path-simplification algorithms on the complexity of Central Trajec-
tories?

To find the answer, the following experiment has been conducted. The value of ε was fixed to a very
high value of ε = 100, for the following reasons:

• It allows CT to create a lot of extra edges that were not already present in the input dataset.

• It ensures most of the simplification is applied to the extra edges created by Central Trajectories,
not on the edges that were already present in the input dataset. This ensures the resulting graph
does not just become a plot of the vertex count of the input dataset, which is not very useful,
and it also ensures there is a significant difference between the different simplification modes.
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After running CT, one out of four different simplification methods is applied:

1. No simplification.

2. Simplification of the input trajectories before applying Central Trajectories.

3. Simplification of the output, after applying Central Trajectories.

4. A combination of 2 and 3.

As in question 1, the amount of output vertices has been compared to the amount of input vertices,
which is then plotted in a graph. Then, fitting a curve to this graph reveals the complexity of the
output.

Again, a very small amount of simplification (δ = 0.01, or 1cm) is applied on all trajectories (both
input and output) before determining the vertex count, regardless of the actual simplification mode.
This removes the redundant points added by the elementary resample step and Central Trajectories.

The experiment was conducted on both synthetic data (generated by TrajGen) and real life data. On
top of that, every experiment is repeated three times, each with a different value of δ: 1, 10 and 100.
(Remember, δ indicates simplification strength.)

As a sidenote: it may seem tempting to scale ε with the spatial range of the dataset. As mentioned
in Table 1, the spatial range varies wildly between datasets, ranging from only 1km by 2km to up to
407km by 9000km. Using bigger values of ε for the bigger datasets seems tempting, but there are some
problems with this:

• There is no clear way to make ε dependent on both the width and height of the dataset. Should
the total area be used? Or maybe the length of the diagonal? Or maybe the minimum/maximum
of the width and height? Not a single choice will work across all datasets.

• ε is defined in meters, and since some datasets are spatially huge, ε could take on unrealistically
high values in these cases. As mentioned before, a dataset consisting of vehicle trajectories which
contain discontinuities that jump beyond 1000 meters is highly undesirable. An important thing
to realize is that ε should be considered an absolute measure, not a relative one. That means,
regardless of whether the dataset is 1km by 1km or 10,000km by 10,000km, entities should never
be able to jump these huge gaps.

5 Results

This section will describe the results of the conducted experiments. The experiments were run on a
computer with an Intel i5 4670k CPU @ 3.4GHz with 32GB RAM.

5.1 Question 1

As mentioned before, to answer the first research question, two experiments were conducted. They
will be described in the following subsections.

5.1.1 Experiment 1

The results of this experiment can be found in Figure 9 on the following page. As you can see, there
is a scatterplot of input vertices against Central Trajectory vertices for every dataset. Every point in
the scatterplot represents a trajectory, with their color indicating the value of ε: either red for 1, green
for 10 or blue for 100. Additionally, since the data appeared to be linear, a line was fitted through the
points for every value of ε, using a least squares fit.
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(a) Using synthetic data with 1000 clus-
ters.
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(b) Using SmallDutch with 65 clusters.

0 200 400 600 800 1000 1200 1400
Input trajectory vertices

0

200

400

600

800

1000

1200

1400

Ce
nt

ra
l T

ra
je

ct
or

y 
ve

rti
ce

s

CT Epsilon = 1
CT Epsilon = 10
CT Epsilon = 100
X=Y

(c) Using Starkey with 30 clusters.
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(d) Using T-Drive with 42 clusters.
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(e) Using Geolife with 71 clusters.
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(f) Using MarineCadastre with 39 clus-
ters.
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(g) Using OpenPFLOW with 47 clus-
ters.

Figure 9: A scatterplot of input vertices against Central Trajectory vertices, on seven different datasets.
The lines are fitted through the data using a least squares fit. The gray dotted line represents the line
X = Y , for easy comparison.
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5.1.2 Experiment 2

The results of this experiment can be found in Figure 10 on the next page (containing the smaller
datasets) and Figure 12 on page 38 (containing the larger datasets). As you can see, the graphs plot
ε against Central Trajectory vertices, jumps and input:output ratio on all datasets. This means there
are three graphs per dataset. Every transparent orange line in the plot represents a cluster. The
average value of all the transparent lines is shown as a thicker orange line.

5.2 Question 2

The results of this experiment can be found in Figure 11 on page 29 (containing the smaller datasets)
and Figure 13 on page 39 (containing the larger datasets). The graphs plot the amount of input
trajectory vertices compared to the amount of Central Trajectory output vertices, while trying four
different simplification modes, indicated by different colors. Additionally, three different values of δ
are tried, on all datasets. Every point in the scatterplot represents a trajectory, and lines are fitted
through the data for every simplification mode using a least squares fit.

6 Discussion

This section will discuss the results.

6.1 Question 1

6.1.1 Experiment 1

Looking at the fitted line in Figure 9a on the previous page (the synthetic case), the gathered data
appears to be linear in the amount of input vertices, with a slight vertical shift occurring when the
value of ε is increased. That means in general, the higher ε, the higher the complexity of the output.
This makes sense, since a higher ε allows the Central Trajectory to jump more often between the
trajectories in the cluster, and every jump incurs at least two extra vertices: one when leaving the first
trajectory, and one when entering the second trajectory. (However, as we will see, in some pathological
cases, CT might actually decrease the complexity of the input trajectories.)

An interesting question raises when comparing the three fitted lines: why are they parallel, and why do
they not go through the origin? In other words, why do the lines differ additively, not multiplicatively?
The most likely reason for this effect is the variation of the sampling rate of the synthetic dataset.
Remember, the sampling rate is randomly varied per trajectory. That means, some trajectories have
more points than others, even though their geometry is mostly the same, since the trajectories follow
mostly similar paths. If you feed a trajectory into Central Trajectories, increase the sampling rate of
the trajectory and feed it into Central Trajectories again, the amount of jumps in the CT does not
increase the second time, even though the amount of vertices did. This is because a CT is allowed to
jump multiple times on a single edge, so it does not require a lot of vertices to perform a lot of jumps.
However, as stated before, increasing ε does increase the amount of jumps, thus the amount of output
vertices. That means, for this particular dataset, the amount of jumps is not correlated to the amount
of input vertices, so the amount of extra vertices added by CT remains constant for a given value of
ε. This is reflected in the shifted lines: the higher ε, the higher the shift on the Y-axis.

When looking at the real-world case in Figure 9b (SmallDutch), the data appears to be closer to the
line X = Y , with small but noticeable differences between the three fitted lines. Changing ε in this
case has a small effect. Upon closer inspection, the three lines appear to be less parallel than the
synthetic dataset, which means the sampling rate is more consistent. This implies that if a point has
a higher amount of vertices, it must be a longer, more complicated trajectory, which tends to jump
more often.

In Figure 9c (Starkey), it is apparent that applying Central Trajectories to the Starkey dataset has
a more pronounced effect on the complexity compared to SmallDutch. As you can see, increasing ε
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(a) Plotting Central Trajectory vertices on
synthetic data, with 1000 clusters.
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(b) Plotting Central Trajectory vertices
on SmallDutch, with 65 clusters.
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(c) Plotting Central Trajectory vertices
on Starkey, with 30 clusters.
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(d) Plotting Central Trajectory jumps on
synthetic data, with 1000 clusters.
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(e) Plotting Central Trajectory jumps
on SmallDutch, with 65 clusters.
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(f) Plotting Central Trajectory jumps
on Starkey, with 30 clusters.
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(g) Plotting output:input ratio on syn-
thetic data, with 1000 clusters.
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(h) Plotting output:input ratio on
SmallDutch, with 65 clusters.
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(i) Plotting output:input ratio on
Starkey, with 30 clusters.

Figure 10: A plot of many clusters, plotting ε versus various statistics, on three datasets. The average
of all clusters is shown as a thicker orange line. The black bars represent error bars, indicating one
standard deviation. Note that the Starkey experiment uses a different range of ε: it ranges from
0...1000 instead of 0...100, since it does not converge within the 0...100 range.
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(a) Using synthetic data with 1000 clus-
ters and δ = 1.
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(b) Using SmallDutch with 65 clusters
and δ = 1.
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(c) Using Starkey with 30 clusters and
δ = 1.
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(d) Using synthetic data with 1000 clus-
ters and δ = 10.
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(e) Using SmallDutch with 65 clusters
and δ = 10.
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(f) Using Starkey with 30 clusters and
δ = 10.
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(g) Using synthetic data with 1000 clus-
ters and δ = 100.
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(h) Using SmallDutch with 65 clusters
and δ = 100.
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(i) Using Starkey with 30 clusters and
δ = 100.

Figure 11: A scatterplot of input vertices against Central Trajectory vertices, trying four different
simplification modes, three different values of δ, and three datasets. The lines are fitted through the
data using least squares. The gray dotted line represents the line X = Y , for easy comparison.
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increases the amount of vertices quite significantly, especially compared to the other two datasets. For
example, looking at the highest cluster at the top-right, increasing ε brings the amount of vertices from
1050 up to 1300. Additionally, it appears the lines are not parallel. This means, again, that (nearly)
all trajectories in the dataset have the same sampling rate.

Looking at Figure 9d (T-Drive), an interesting anomaly appears that only occurs in one other dataset
(OpenPFLOW): the blue line (ε = 100) actually lies below the other lines. A possible explanation
is a follows. The dataset may contain some simpler trajectories that are outliers, but which are still
somewhat central in a bigger cluster: this is a possibility, since the cluster threshold is large (9000),
which implies trajectories within a cluster may be quite far apart. Since they are outliers, a large
value of ε = 100 is required to be able to make the jump. However, as soon as the jump is made, the
amount of vertices drops significantly, since these outliers may have much less vertices than the other
trajectories in the cluster.

Looking at Figure 9e (Geolife), another interesting anomaly appears: the green line (ε = 10) lies below
the other two lines. Again, this could be caused by the large clustering threshold, or by statistical
error due to wildly varying point counts.

Looking at Figure 9f (MarineCadastre), it appears the general trends are similar to the other graphs.
Regardless of the distribution of points, the fitted lines appear to correspond nicely with the expected
results.

Looking at Figure 9g (OpenPFLOW), the blue line appears below the others, similarly to T-Drive.
Again, this could be caused by the large clustering threshold, or simply due to statistical error: for
example, looking beyond the x = 450 range, there are only 3 clusters: their point distribution has a
large effect on the fitted line, since they are the only ones that contain such a large amount of vertices.
Additionally, another interesting anomaly is the fact that the vast majority of the trajectories have
more than 40 input points, but there is a single cluster that has only a handful of points (the blue
points all the way on the left).

Comparing Figure 9a to the other graphs reveals that the graph of the synthetic dataset is very different
compared to all other datasets, since it is the only one in which the three lines appear to be exactly
parallel. This indicates the synthetic dataset might actually be biased in some way, making it less
realistic. This will be discussed further in Section 8.3.

6.1.2 Experiment 2

Looking at Figure 10 (the top row of graphs), it is apparent that increasing ε increases the amount
of vertices, as mentioned before. However, it is interesting to see the different convergence behavior
across datasets. For instance, the synthetic dataset (Figure 10a) initially has a strong response to
the increasing of ε, however, around the ε = 50 mark, the amount of vertices appears to converge –
increasing ε beyond this value has very little effect. Looking at the graph below it (Figure 10d), which
plots the amount of jumps instead of the amount of vertices, explains why this happens: the amount of
jumps converges at roughly the same moment. And remember, every jump adds two new vertices, so
the amount of jumps largely determines the amount of vertices in the output. The reason the amount
of jumps converges is likely because the distance between two trajectories in a cluster is limited, and
if ε goes beyond this limit, no new jumps will occur, since the Central Trajectory can already jump
to any trajectory it wants to within the cluster. Essentially, there are no new opportunities for jumps
when ε takes on a higher value.

When looking at Figure 10b (SmallDutch), the effect of increasing ε is much less pronounced. The
average amount of vertices stays within the 200...220 range. This phenomenon can be easily explained
by looking at the graph below it (Figure 10e), which plots the amount of jumps instead of the amount
of vertices. It is apparent that the amount of jumps is very low, converging at ε = 40 to an average
value of about 6. This explains why the amount of vertices does not increase much: since every jump
adds two new vertices, performing only 6 jumps on average means there are 12 new vertices on average
per cluster: a small increase, compared to the average vertex count of 200. (Note that the average
decrease in the amount of jumps at ε = 100 is caused by an outlier: looking closely at the transparent
lines reveals that one of them drops significantly around this point, causing the average to drop as
well. This outlier can be seen in the graph below it (Figure 10h) as well.)
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When looking at Figure 10c (Starkey), the graph is completely different again. (But note that ε now
goes up to 1000 instead of 100, to capture the moment of convergence.) The amount of vertices steadily
increases up to about ε = 700, where it converges to an average value of about 410. Again, looking
at the graph below it (Figure 10f) reveals the cause: the amount of jumps converges at around the
same value of ε. Interestingly, it seems the amount of vertices rises much more strongly compared to
the previous two datasets (synthetic and SmallDutch): it ranges from 180 all the way up to 400, more
than double the amount of vertices. Again, this is explained by the amount of jumps, which lies much
higher than the other two datasets: on average, it can go up to 100, compared to only 19 and 6 for the
synthetic dataset and SmallDutch, respectively. And some outliers in the Starkey dataset jump up to
290 times, which is the highest jump count among all analyzed clusters in all datasets.

Since Starkey has a smaller spatial range than SmallDutch (only 8km by 14km, compared to 47km by
46km for SmallDutch), it makes sense that it would produce more jumps than SmallDutch. However,
even when using an identical value of ε = 100 on both datasets, Starkey gives 50 jumps on average,
compared to 6 for SmallDutch. This probably means there are much more trajectories per cluster,
which makes sense, since the trajectories lie closer together, so more of them will end up in the same
cluster.

Analyzing the larger datasets, contained within Figure 12 on page 38, reveals some interesting results.
Among all datasets, the amount of jumps increases when increasing ε, as expected. But in some cases,
the amount of vertices actually decreases. (This is also visible in the output:input ratio graphs in the
bottom row, where the ratio drops below 1.) As mentioned before, the amount of vertices in a CT can
decrease while increasing ε if the CT happens to jump to outlier trajectories that have a lower vertex
count than the others, within the same cluster. Since they are outliers, it is not possible to jump to
them with a low ε, because the required jump distance is simply too big. Another possible explanation
is that the CT jumps more often to trajectories that have simple geometry (such as straight lines
or slight curves), which means they contain points that are easily simplified away (remember, a tiny
amount of simplification is applied before counting the vertices).

Even among the bigger datasets, the amount of jumps varies significantly. The average amount of
jumps appears to range from 8 (MarineCadastre, Figure 12g) to 50 (T-Drive, Figure 12e). However,
looking at the transparent lines, it is apparent that the amount of jumps varies largely even within a
dataset: for example, in the case of Geolife (Figure 12f), one cluster jumps up to 110 times, even when
epsilon takes on a relatively small value of ε = 50. Another indication of this is the fact that the error
bars, which indicate one standard deviation, are generally very large.

There is one interesting anomaly that appears only in Figure 12l (OpenPFLOW). Since many of the
trajectories in this dataset have an (almost) equal amount of vertices, many of the transparent lines
coincide with the line y = 1. Additionally, there are some extreme outliers visible in the graph. These
outliers are caused by trajectories in the dataset that have a very large amount of redundant points.
For example, after simplification, some trajectories only retain 2 or 3 points. Applying CT on a cluster
that contains a trajectory like this will cause the output:input ratio to shoot up dramatically, since
the average amount of CT vertices for this dataset lies around 200. This gives an output:input ratio
of 200

2 = 100, which can be seen in the graph in the form of a huge outlier.

6.2 Question 2

Looking at the global trends in Figure 11 on page 29, it is apparent that applying Central Trajectories
with a high value of ε, without any form of simplification, increases the complexity of the trajectories.
(Note that the X- and Y-scales vary quite a lot: use the dashed line, indicating the line x = y, as
reference.) This increase was already revealed in Figure 9 on page 26. However, some interesting
patterns start to arise when multiple methods of simplification are applied. For instance, in general,
applying simplification before CT (the green line) appears to give a smaller reduction in the complexity
compared to applying simplification after CT (or both), indicated by the red and blue lines. However,
the difference depends highly on the dataset. For example, in the synthetic case (leftmost column of
plots in Figure 11), the difference between simplification before and after CT appears to range from
10 to 30 vertices on average. However, looking at SmallDutch (central column of plots), the difference
appears to be much smaller, even when accounting for the different Y-scale on the graph. Finally,
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when looking at Starkey (rightmost column of plots), the average difference in the amount of vertices
suddenly becomes huge, ranging up to 300.

Additionally, increasing δ decreases the complexity, as expected, but the degree in which the slope
of the complexity changes appears to vary between datasets. For instance, looking at the rightmost
column of plots of Figure 11 (Starkey), the slope of the green “Simply before CT” line does not change
much when increasing δ from 1 to 10. However, looking at the same trend in the central column of
plots (SmallDutch), the slope of the green line goes down dramatically when increasing δ from 1 to 10.
This is due to the fact that the input trajectories in Starkey are much longer and more angular than
SmallDutch, even though the area covered by the trajectories in Starkey much smaller: only 8km by
14km, compared to 47km by 46km for SmallDutch. Additionally, both datasets appear to have roughly
the same amount of vertices per trajectory (the X- and Y-scale of both graphs are comparable). Since
SmallDutch has a much higher sampling rate, its trajectories must be much shorter and simpler, which
means simplification has a much stronger effect on them.

The average amount of CT jumps for Starkey can be deduced by looking at Figure 10f on page 28
and reading the value at ε = 100 (since this value of ε is used for all simplification experiments): in
this case it appears to be 50. This means, on average, applying CT with ε = 100 on Starkey increases
the vertex count by about 2 × 50 = 100 (without taking simplification into account). This can be
clearly seen in Figure 11c, since all lines appear to intersect the X-axis at about y = 100. However,
when the amount of input vertices increases, the difference becomes smaller and smaller until about
x = 800, after which the difference becomes negative, and applying CT actually decreases the amount
of vertices slightly. I have previously mentioned some possible explanations for this, but in this case it
may actually be a statistical error, since there are only three clusters that have more than 800 vertices.
This could have been mitigated if the Starkey dataset was bigger: it contains only 250 trajectories.

Looking at the larger datasets, contained within Figure 13 on page 39, reveals some interesting patterns.
The central two columns of plots (Geolife and MarineCadastre) follow the same pattern: simplification
after CT is slightly better than simplification before CT. Applying simplification both before and after
CT has roughly the same effect as only applying simplification afterwards. However, the differences
between the simplification modes are very small.

Two datasets, however, appear to deviate from the norm. The first one is T-Drive (leftmost column of
plots in Figure 13). In this case, the red line lies below the green line, which lies below the blue line.
This indicates simplification before and after CT is better than the other simplification modes, which
was already established, but the green and blue lines are now swapped. That means, simplification
before CT is now better than simplification after CT. This may be due to the fact that T-Drive generally
has a high amount of jumps, as seen in Figure 12e on page 38.

The second defiant dataset is OpenPFLOW (rightmost column of plots in Figure 13). In this case,
the blue line now lies below the red line, which lies below the green line. In other words: applying
simplification after CT is better than simplification both before and after CT, which seems counter-
intuitive. Additionally, simplification before and after CT is better than only applying simplification
before CT: this follows the trends of the other datasets. The former observation could be explained
either by statistical error, or by geometric traits that differ significantly from the other datasets.

7 Conclusion

When looking at the results, it is clear that the complexity of Central Trajectories is linear when
applied to real-world data, even though its theoretical upper bound is slightly above quadratic, as
mentioned before: O(nm5/2), where n is the amount of vertices per trajectory and m is the amount
of trajectories. That means, the pathological case given in the paper by van Kreveld et al. [2], which
triggers the quadratic behavior, does not seem to appear in real world scenarios.

Additionally, the effect of ε appears to be strongly dependent on the dataset used. As mentioned
before, increasing ε on the Starkey dataset has a huge effect, with the amount of jumps and vertices
increasing dramatically. However, doing the same thing on the SmallDutch dataset has only a very
minor effect. The general trend appears to be that every single dataset produces an unique graph,
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which could be called a response curve, for various values of ε. This makes sense, since there are lots
of parameters of the dataset that have an effect on the Central Trajectory vertex count. To name a
few: trajectory amount, length, sampling rate, spatial range, timespan, cluster amount, cluster size,
et cetera.

Finally, the effect of simplification is quite significant, even when using small values of δ. This is an
indication Central Trajectories adds a lot of redundant vertices, which are easily simplified away, since
they are usually collinear with other points on the same trajectory. However, as with ε, the effect of
increasing δ depends strongly on the dataset used. For example, with small values of δ, there are two
datasets that do not respond strongly at all: Starkey and T-Drive, since they have a low sample rate,
which means their trajectories are more angular and thus more difficult to simplify.

Generally speaking, applying simplification both before and after CT gives the best results, and apply-
ing simplification before CT gives the worst results (but not all datasets follow this trend). However,
in the latter case, the reduction in complexity is still quite impressive. The results indicate it may
be beneficial to store a database of simplified trajectories when doing trajectory analysis, instead of
storing the originals. Then, since the simplified trajectories have such a low amount of vertices, they
are much easier to work with, and running CT on them only takes a fraction of a second. In addition,
the resulting CT will also have a low complexity, making it easier to work with as well.

8 Future work

This section will describe possible future work, and some things that were originally going to be part
of the research project but were canceled due to lack of time or other resources. They provide a
interesting opportunity for future endeavors.

8.1 Research question 3

Originally, there were three different research questions. One of the research questions, “What is the
performance of mean trajectories compared to central trajectories for different kinds of data? ”, was
removed. The reason is as follows.

The experiment needed to answer this question required inventing a certain performance measure
(meaning: the quality of the generated output, not computational performance). This measure would
be based not only on the amount of vertices, but also on the degree in which it can avoid obstacles
and capture the unique defining features of the clustered trajectories. Checking whether a trajectory
intersects an obstacle is fairly trivial (it can be done with basic collision detection), however, in my
research, I have not found a single trajectory dataset that also provides contextual data, such as
nearby obstacles. Using TrajGen in combination with its generated obstacles would work, however it
would mean the experiment could only be run on synthetic data. Additionally, the degree in which
unique defining features of a trajectory are captured is not exactly trivial to determine computationally.
Humans are good at extracting these features, but for computers, this poses an algorithmic challenge.

8.2 Effect of trajectory count (m)

Another question that my research does not answer is the effect of trying various values of m – the
amount of trajectories – on the complexity of Central Trajectories. In theory, we know the effect
can be slightly above quadratic (remember, the theoretical bound is O(nm5/2)), but it would be
interesting to see what would happen in practice. The research could be conducted by, for example,
using random subsets of the clusters and making a scatterplot of cluster size on the X-axis, versus
Central Trajectory vertex count on the Y-axis. Then, fitting a polynomial to this graph could reveal
its real-world complexity.

33



8.3 Synthetic data bias

As mentioned before, some of the graphs based on the experiments conducted on the synthetic dataset
are very different compared to all other graphs. This means there must be some kind of bias in this
dataset, making it unlike the real datasets. A possible explanation is the fact that the generated tra-
jectories are simulated using a Verlet physics engine, taking acceleration and momentum into account.
The problem with this is that the entities constantly accelerate towards a “goal” trajectory, which
makes them oscillate around it randomly. This oscillation causes a large change in velocity over time,
going up and down like a rollercoaster, which means the trajectories have a very non-linear distribution
of points.

Additionally, entities that are further away from the goal trajectory are usually travelling at higher
speeds than those that are near the goal trajectory, since the acceleration towards it is proportional
to the distance from it. This results in trajectories that have a high point density near the center of
the cluster, but a low point density near the outskirts of the cluster.

Conclusively, the trajectories do not follow the behavior displayed by most entities in real life, even
though the laws of physics are accurately simulated. A possible solution would involve some tweaks
in the physical parameters to ensure the trajectories have a more constant speed, regardless of their
distance to the target trajectory.

Another possible explanation is the fact that the synthetic dataset has a much higher amount of
clusters. It may be the case that if the other datasets had more clusters to use, the results would be
more consistent.

8.4 Accuracy of vertex counting

In the experiments, the amount of vertices of a trajectory is determined by using a slightly simplified
version of the trajectory (δ = 0.01), and then counting those vertices. This avoids counting redundant
vertices in the output, which are added by various algorithms such as elementary resampling, Central
Trajectories itself, etc. However, this method is not entirely accurate. For example, imagine a tra-
jectory that has a sample rate that is constant not in time, but in space. That means, for example,
its vertices are always 10 meters apart, but the time difference can vary. Now imagine this trajectory
speeding up over time, while it traverses in a straight line. The simplification step would remove all
vertices except the first and last one, even though there is lots of valuable time information on the
line itself. This time information is thrown away, which might not be desirable, especially since it
cannot be easily reconstructed in the case the time information was not linear (which, in the case of an
accelerating trajectory, it is definitely not). In other words, the simplification step throws non-linear
time information away.

A better approach would keep track of the manner in which a vertex is added. It could distinguish
between original vertices, vertices added by resampling, vertices added by a Central Trajectory jump,
vertices added by a Central Trajectory Reeb edge change, et cetera. This would allow more accurate
vertex counts, without any kind of simplification. This was already partially implemented, but the
results were not perfect due to the inherent difficulty in keeping track of the vertex origins while
applying the various (preprocessing) steps in the Central Trajectory pipeline. Thus, it was decided to
use the simplification method instead, which was much easier to implement, at the cost of a slightly
less accurate vertex count.

8.5 Performance measures

Since some of the used datasets are quite large, some preprocessing steps and experiments take quite
a while to complete. It would be interesting to measure the performance of some algorithms, such
as Central Trajectories, on the various datasets, comparing the dataset size to the amount of time it
takes to generate a CT. Comparing this with research question 2, it would also be interesting to see
the effect of simplification before CT on the running time of CT. According to van Kreveld et al. [2],
the theoretical bound on the running time is O(nm3), where n is the amount of points per trajectory
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and m is the amount of trajectories. That means, theoretically, increasing the amount of trajectories
should have a much stronger effect on the running time, compared to increasing the amount of points
per trajectory.
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Appendix

Extra graphs

To prevent cluttering the thesis with a large amount of graphs, part of the graphs were placed in the
Results section, while others were placed in the appendix. See figures 12 and 13.

Program implementation details

This section will give some more details about the program that was written for the purpose of this
research.

Visualization

Since trajectory data is hard to digest for humans in its pure, textual form, I have implemented a
trajectory visualization program. It also aids in debugging the various trajectory algorithms, since it
will allow real-time feedback on the generated trajectories. The program has the following features:

• Loading datasets from a SQLite database or CSV file, while converting latitude and longitude
to meters via planar projection.

• Drawing trajectories in a window, allowing zoom and panning control to look around, optionally
with a customizable background grid for scale reference.

• Playing back the trajectories like a movie, to analyze the behavior of the entities over time.

• Showing statistics for individual trajectories, such as start and end time, total duration, and
average sampling density.

• Showing/hiding certain trajectories, either manually or by filtering on trajectory key, cluster id,
total distance travelled or bounding box area.

• Shifting the trajectories in time.

• Applying various clustering algorithms to the visible trajectories, with user-defined parameters.
(K-Means and QuickBundles)

• Applying various resampling algorithms to the visible trajectories, with user-defined parameters.
(Regular resampling and elementary resampling)

• Applying the Douglas-Peucker simplifying algorithm to the visible trajectories. The simplification
amount δ can be changed at will.

• Applying the Central Trajectory algorithm to the visible trajectories, and drawing the cor-
responding Reeb graph for debugging. The value of ε can be changed at will, updating the
trajectory in real time.

• Drawing a histogram of the trajectory’s points in time, allowing the analysis of the time distri-
bution of the trajectories.
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(a) Plotting Central Trajectory
vertices on T-Drive, with 42
clusters.
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(b) Plotting Central Trajec-
tory vertices on Geolife, with
71 clusters.
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(c) Plotting Central
Trajectory vertices on
MarineCadastre, with 39
clusters.
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(d) Plotting Central
Trajectory vertices on
OpenPFLOW, with 47
clusters.
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(e) Plotting Central Trajectory
jumps on T-Drive, with 42 clus-
ters.
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(f) Plotting Central Trajec-
tory jumps on Geolife, with
71 clusters.
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(g) Plotting Central Trajec-
tory jumps on MarineCadas-
tre, with 39 clusters.
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(h) Plotting Central Trajec-
tory jumps on OpenPFLOW,
with 47 clusters.
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(i) Plotting output:input ratio
on T-Drive, with 42 clusters.
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(j) Plotting output:input ra-
tio on Geolife, with 71 clus-
ters.
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(k) Plotting output:input ra-
tio on MarineCadastre, with
39 clusters.
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(l) Plotting output:input ra-
tio on OpenPFLOW, with 47
clusters.

Figure 12: A plot of many clusters, plotting ε versus various statistics, similar to Figure 10, on the
four largest datasets.
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(a) Using T-Drive with 42
clusters and δ = 1.

0 1000 2000 3000 4000 5000 6000 7000
Input trajectory vertices

0

1000

2000

3000

4000

5000

6000

Ce
nt

ra
l T

ra
je

ct
or

y 
ve

rti
ce

s

No simplification
Simplify before CT
Simplify after CT
Simplify before and after CT
X=Y

(b) Using Geolife with 71 clus-
ters and δ = 1.
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(c) Using MarineCadastre
with 39 clusters and δ = 1.
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(d) Using OpenPFLOW with
47 clusters and δ = 1.
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(e) Using T-Drive with 42
clusters and δ = 10.

0 1000 2000 3000 4000 5000 6000 7000
Input trajectory vertices

0

1000

2000

3000

4000

5000

6000

Ce
nt

ra
l T

ra
je

ct
or

y 
ve

rti
ce

s

No simplification
Simplify before CT
Simplify after CT
Simplify before and after CT
X=Y

(f) Using Geolife with 71 clus-
ters and δ = 10.
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(g) Using MarineCadastre
with 39 clusters and δ = 10.
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(h) Using OpenPFLOW with
47 clusters and δ = 10.
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(i) Using T-Drive with 42 clus-
ters and δ = 100.
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(j) Using Geolife with 71 clus-
ters and δ = 100.
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(k) Using MarineCadastre
with 39 clusters and δ = 100.
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(l) Using OpenPFLOW with
47 clusters and δ = 100.

Figure 13: A scatterplot of input vertices against Central Trajectory vertices, trying four different
simplification modes, three different values of δ, and four datasets, similar to Figure 11.
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• Drawing a compass of the trajectory’s angles, allowing the analysis of the directional distribution
of the trajectories. (Remember, the angle of a trajectory is simply the angle between its first
and its last point.)

• Running the experiments described in Section 4.3 on page 23 and writing the resulting data to
a SQLite database.

The program uses the following libraries:

• Boost (Boost.Python for the Python interface needed for QuickBundles, and Boost.Graph for
the Central Trajectory implementation)

• SFML (for drawing trajectories)

• ImGui (for the graphical user interface)

• LibGeographic, GeoPY, DIPY[28] (for the QuickBundles clustering algorithm)

• OpenMP (for parallelism)

• MoveTK (for trajectory operations such as simplification)

• SQLiteCpp (a C++ wrapper for SQlite, used for loading trajectory data and storing experiment
data)

• Fast C++ CSV Parser (for loading CSV files)

Reeb graph visualization

The program can also draw a Reeb graph used in the generated Central Trajectory, showing the
Reeb start, end, split and merge vertices, Reeb edges including their weights, and a per-edge graph of
centrality over time. An example can be found in Figure 14.

The green vertices at the bottom indicate Reeb start vertices, the red vertices at the top indicate Reeb
end vertices, the orange vertices are Reeb split vertices and the blue ones are Reeb merge vertices. The
thin gray edges indicate Reeb edges, and the thick white edges indicate Reeb edges on the lowest-weight
path from a Reeb start to a Reeb end vertex: they are part of the Central Trajectory.

Since the Reeb graph is defined over a period of time, the graph can indicate the current time by a
horizontal red line. The user can scrub through time, allowing to see the formation and disbanding of
groups over time. As mentioned before, taking a horizontal cross-section of the graph (a single moment
in time) reveals the groups currently active at that time.

The W = ... numbers indicate the edge weights, also known as the centrality: the lower it is, the more
central the trajectories on this edge are. The number(s) above it indicates the Reeb edge’s components,
also known as the group of trajectories this edge represents. For example, an edge with component “0,
3” contains the first and the fourth trajectory (since indexing starts from 0).

Finally, the user can select an edge by clicking on it, which makes it turn red. Then it will show the
edge’s centrality over time in the graph at the bottom, in addition to its component. The weight of
the edge is equal to the integral of this graph.

Output data

The program contains an Experimentor class, which is responsible for conducting the various exper-
iments described in Section 4.3 on page 23. The class tries a list of predefined combinations of ε, δ,
simplification mode, et cetera. Then it gathers data, and stores the results in a SQLite database. This
database can then be used for further analysis and plotting.
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(a) The Reeb graph window. (b) Its corresponding Central Trajectory. The Central Trajectory
is generated over four input trajectories (A, B, C, D) and is
marked in black.

Figure 14: The Reeb graph window and its corresponding Central Trajectory (using ε = 0.88).

Plotting

To generate the plots for the results, the Python library matplotlib is used. A Python script was
written for every experiment. The scripts read the database output by the program, analyze it and
then produce a plot in PDF format.
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