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One of the essential limitations for a physical realisation of topological-qubit based
quantum computing, is the problem of uncontrolled quasiparticle poisoning of the
superconducting charge island. These quasiparticles have been previously reported
as a known limiting factor in most of the superconducting architectures. To this
end, we consider the importance of equilibrium quasiparticle poisoning in hybrid
semiconducting-superconducting systems believed to be able to host Majoranas.

We employed gate-based dispersive sensing by investigating a reflected radio-
frequency (RF) signal from a resonator, which is capacitevly coupled to one of the
gate electrodes of the hybrid double dot realised in an InAs nanowire. This way,
the quantum capacitance of the system can be probed, which in turn reveals charge-
tunnelling processes, and can be used as an indicator of single-electron tunnelling
events. By operating the device in a so-called floating regime, where a double dot
system is entirely decoupled from the leads, external non-equilibrium quasiparti-
cle poisoning events can be exponentially suppressed. By appropriately tuning the
chemical potentials on the quantum dot and the superconducting island, we attempt
to scrutinise the dynamics of the quasiparticles innate to the superconductor. We in-
vestigated the dependence of quasiparticle tunnelling rates on the temperature of
the system, as well as the applied RF power, as both are predicted to increase the
average number of quasiparticles on the island. In both cases, we could find no
observational proof of quasiparticle tunnelling events through the use of our mea-
surement technique. We report an observation of a two-level resonator response,
which we explain using a two-level fluctuator. Analysing telegraph measurements,
we demonstrate the viability of the analysis tool, which allows us to determine av-
erage occupation times of each state. In principle, for processes occurring at rates
slower than the measurement frequency, this technique can be used to convert a
relatively faint difference between the “poisoned and unpoisoned state”, to the sig-
nal of the gate being on coulomb resonance versus on coulomb blockade, which is
a much clearer signal to distinguish. Both, the technique as well as the expected
rates of the physical processes within the island are evaluated in the context of the
experiment.
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Chapter 1

Introduction

QUANTUM COMPUTING is a recent but very promising area of research, which in-
tertwines two of the most significant advancements in science and technology of the
last century - computing and quantum mechanics. A quantum computer relying
on the fundamental phenomena of quantum mechanics such as superposition and
entanglement could solve some classical problems orders of magnitude faster than
any classical computer resulting in faster search and prime factorisation [1, 2] algo-
rithms, as well as provide secure communications channels [3], and simulate quan-
tum systems [4]. The latter is one of the most promising and potentially impactful
applications of quantum computing. Such simulations could be used to simulate the
dynamics of complex chemical reactions, with potentially revolutionary applications
in the fields of pharmacology, material sciences, energy storage and computational
chemistry, to name a few. (For a review see, e.g. ref. [5, 6].)

The fundamental building block of a quantum computer is a quantum bit or a
qubit, which can be represented by any two-level quantum mechanical system. The
central and defining difference is that a qubit can be in a coherent superposition
between two orthonormal states, |0〉 and |1〉 (e.g. spin-up and spin-down of an elec-
tron), as opposed to a classical bit which can take either one of the two values, 1 or 0.
A qubit can be realised in a variety of physical systems, with currently the most fo-
cus dedicated towards superconducting circuits, spinful quantum dots, NV centres
in diamond and trapped ions [7, 8]. However, a significant difficulty for nearly all
of the qubit architectures seems to arise from two seemingly contradictory require-
ments. On the one hand, qubits are extremely sensitive to destructive environmental
noise, so to ensure long coherence times, the microscopically small quantum system
should be nearly entirely isolated. On the other hand, to perform measurements
and ensure that the system evolves in the desired manner, the processing unit itself
cannot be perfectly isolated. To battle decoherence, quantum error correction can be
employed, resulting, however, in a much larger number of required qubits [9]. An-
other radically different approach towards circumventing the decoherence problem
is topological quantum computing (TQC).

A topological qubit1 is based on exotic quasiparticle excitations called non-Abelian

1The focus of this thesis is not primarily on topological quantum computing, but an overview of
the field can be found in [10]
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anyons. The main appeal of such qubit comes from its topological protection from
the environmental noise, where the qubit state information is encoded in multiple
spatially separated anyons. Moving one anyon around another, or braiding, can com-
pletely change the state of a system within the degenerate ground-state manifold.
This property can be used to define stable logic gates needed for quantum com-
putation [11], where rather than physically moving two particles, recent efforts have
focused on effective measurement-based braiding, which can be achieved by measuring
the joint occupational parity of a pair of particles [12–14]. Recently, one of the most
investigated candidates of non-Abelian anyons are so-called Majorana zero-energy
modes (MZMs)2 [15], which are predicted to arise as boundary states of some sys-
tems once they enter a spinless p-wave topological superconducting (TS) phase [16].

Although the leading appeal behind Majorana-based quantum computers is the
topological protection from decoherence, Majorana qubit dephasing can still occur
via incoherent exchange of parity due to insufficient separation of the two MZMs
[17] or via uncontrolled relaxation of single-electron-like excitations known as quasi-
particles3 (QPs) into the Majorana subspace, also called quasiparticle poisoning (QPP)
of the Majorana qubit [18]. Quasiparticles are present in any realistic physical super-
conductor, and their effects have been explored in the context of superconducting
[19–22] as well as semiconductor-superconductor hybrid devices [23–25]. The latter,
in particular, are more susceptible to poisoning as the induced superconducting gap
is reduced, and subgap states might appear.

Quasiparticles may originate from different mechanisms; they can be created
within the island by an external (even cosmogenic) environmental radiation, they
can be thermally excited within the Majorana qubit system, or they might be located
in one of the non-topological subgap states. While the external non-equilibrium
quasiparticle poisoning can be suppressed for a system decoupled from the leads
[26], experiments show that at low temperatures quasiparticle concentrations in the
system are not exponentially suppressed, as suggested by theory [27]. Instead, QP
density saturates to a constant value [19, 21], as the rate of QP recombination into
Cooper pairs becomes exponentially slow for decreasing densities of the QPs [28].
Although much experimental work has been dedicated to protection from quasipar-
ticle poisoning, it remains a critical limiting factor. It is estimated that in the presence
of quasiparticles, the Majorana-based qubit lifetime ranges between 10 ns to 0.1 ms
[23], which might be problematically low for some qubit gate implementations.

To investigate QPP rates, we attempt to measure single-quasiparticle tunnelling
events from a superconducting island by employing gate-based resonator sensing.

2Also known as Majorana bound states (MBSs)
3Commonly the term "quasiparticle" is used to describe a variety of emerging phenomena. For

most cases in the thesis, Majorana quasiparticles will be referred to as "Majoranas" or "Majorana zero
modes", while the trapping of excess unpaired electrons on the superconductor as "quasiparticle poi-
soning".
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Using reflectometry4 we monitor changes in the average charge of a device by scruti-
nising its quantum capacitance, ∂〈Q〉/∂Vg, using an LC resonator capacitively cou-
pled to one of the existing gate electrodes defining the double dot [14]. In a disper-
sive limit5 this measurement technique enables high-fidelity readout for both super-
conducting [29] and Majorana qubits [14]. It allows for the measurement of an elec-
tron tunnelling rate, which is an indicator of the state of the system - different qubit
states will impart different dispersive shifts on a resonator. This readout technique
offers several advantages such as reducing the number of on-chip components as
well as the ability to probe the system locally within the Coulomb blockaded region.

Although relatively well explored, the investigation of quasiparticle poisoning
was mostly performed in systems kept in contact with the leads, which are in itself
a big source of quasiparticles [26]. With recent advances in the dispersive read-
out, the requirement for the leads is alleviated, with some proposals for Majorana
qubit architectures allowing the systems to be operated and probed without any
need for the leads [13, 14]. Thus we feel motivated to further explore quasiparticle
poisoning processes happening within the island itself. The experiment described
in this thesis is the first time time-resolved quasiparticle poisoning is investigated in
a superconductor-semiconductor hybrid system that is completely decoupled from
the leads. It allows for all detected quasiparticle poisoning events to be associated
with the processes related to the SC itself.

1.1 Outline

The goal of this thesis is to introduce the theory of mesoscopic systems composing of
a charge island and a quantum dot, elucidate the working principles of gate-based
resonator sensing and use it to perform time-resolved measurements of quasiparti-
cle dynamics on the SC island. In Chapter 2, the theoretical background of quantum
dot theory, superconductivity and gate-based reflectometry sensing is introduced. In
Chapter 3, the experimental setup is outlined, starting from the large scale refrigera-
tors down to the smallest units of few µm in scale, the double dot device. Chapter 4
contains the core of the experiment, where we investigate quasiparticle dynamics by
intentionally inducing poisoning events, either by increasing the power of the read-
out signal or by increasing the temperature of the device. Additionally, we attempt
to provide the reasoning for the observations. The main results are summarised in
the final Chapter 5, where we once again review the experiment and its possible
improvements and extensions in the future.

4As we will explain later in the thesis, experimentally we are interested in the reflection coefficient
of the resonator (S11), which is measured indirectly via the transmission coefficient (S21) of the feedline
circuit.

5Regime where the detuning between the resonator and qubit transition frequency is much larger
than the interaction strength
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Chapter 2

Theoretical Background

This chapter presents the theoretical background behind some of the key concepts
used in the thesis. First, an overview of charge islands and quantum dots is offered,
followed by a crash-course in superconductivity. Lastly, a theoretical model behind
gate-based sensing is presented.

2.1 Quantum Dots

Treatment of the systems dealt with in this thesis starts with charging physics of
artificially fabricated sub-micron structures in semiconductors, allowing for inves-
tigation of electron transport features. In such structures, electrostatic interaction
between electrons can give rise to essential phenomena called Coulomb blockade,
which can be utilised to construct single and double quantum dots (QD and DQD,
respectively) - the central structures investigated in this thesis.

2.1.1 Electron Tunnelling

Consider several electrons, N, on an isolated conductor small enough, so that the
energy cost needed to add another charge is significant due to the electrostatic re-
pulsion between the electrons at the Fermi level. Such a conductor then acts as a
charge island for electrons. The charge on such islands is quantised and equals to Ne,
and if electrons are allowed to tunnel to and from the island, the total charge changes
by a multiple of the elementary charge e. Conveniently, the change of the Coulomb
energy due to tunnelling can be expressed in terms of the capacitance C of the island.
If an extra charge e is added to the system, the electrochemical potential changes by
the charging energy EC = e2/C. In order to resolve single-electron tunnelling events,
two main conditions must be met due to the discrete nature of charges; firstly, the
island must be coupled to a terminal, but not too strongly. This connection is called a
tunnel junction, and by relating typical timescales on which tunnelling events occur
with the Heisenberg’s uncertainty relation, the limit for its resistance can be estab-
lished. Secondly, the energy due to thermal fluctuations should be much smaller
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Rs, Cs Rd, Cd

QD

=

VdVs

Vg

Cg

(a)

µS(N)

µD(N)

µdot(N)

µdot(N + 1)

(b)

FIGURE 2.1: (a) A schematic depiction of a single quantum dot coupled via tunnel barriers
to the source and drain terminals. By applying voltage on the source, drain and gate voltage
Vs, Vd, Vg, chemical potentials of source, drain and the quantum dot can be tuned, allowing
for the tunnelling to occur, or be suppressed. (b) A density of states energy representation
of the system in part (a). The difference in chemical potentials of the source and drain leads
defines a bias window. If states of quantum dot are available within such window, the
current is non-zero. Arrows represent the path of electrons tunnelling.

than the charging energy. The two conditions can be summarised as [30]

R� h/e2 ≈ 12.9 kΩ (2.1a)

e2/C � kBT (2.1b)

The first condition is met by weakly coupling the island to the source and drain ter-
minals and the second one by reducing the total capacitance of the charge island (for
example by moving the gates further from the island) and lowering the tempera-
ture. The devices presented in this thesis have charging energies on the order of few
100 µeV, implying cryogenic sub-kelvin working temperatures to prevent thermal
excitations.

2.1.2 Single Quantum Dot

If the charging island is small enough, and the orbital electronic energy spacing be-
comes significant, a quantum dot is formed. Quantum dots allow for circuit-based
investigation of quantum mechanical phenomena, through single-electron transport
on and off the island. The most straightforward implementation of a quantum dot
is a single dot coupled to the source and drain contacts, as well as a third gate, used
to adjust the amount of charge on the island. A schematic representation of such a
device is given in Fig 2.1a.

To calculate the total energy of the system with N electrons on the island and
source, drain and gate terminal voltages Vs, Vd, Vg respectively, one can make use of
a constant interaction model, where all capacitances are assumed to be fixed1 [30,
31]. The resulting (ground state) energy is then given by [32]

1This assumption is justified if the size of a quantum dot is much larger than the average screening
length, i.e. there are no electric fields inside the dot.
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U(N) =
[−(N − N0)|e|+ CsVs + CgVg + CdVd]

2

2C
+

N

∑
p=1

Ep, (2.2)

with N0 the number of electrons intrinsically present on the island without any volt-
age applied to either of the electrodes, and C = Cs + Cg + Cd, the total capacitance
of the island2. The first part of the equation above is the purely classical electrostatic
contribution of a capacitor, whereas the second term includes the ground energy
of the p electrons in the dot at zero temperature, resulting from the quantum me-
chanical confinement, as the sum over the single particle energies Ep. As mentioned
earlier, this extra energy is the reason we refer to the charge island as a quantum dot.
A more interesting quantity in electron transport however, is the electrochemical po-
tential µ(N) of the states in the dot, defined as the minimum energy cost for adding
the N-th electron to the dot

µ(N) ≡U(N)−U(N − 1)

=EN + EC(N − N0 − 1/2)− e
C
(CsVs + CgVg + CdVd), (2.3)

with an EN the ground state orbital energy of the Nth electron state3. The spacing of
discrete energy levels in the quantum dot can be defined as the addition energy of a
quantum dot

Eadd(N) = µ(N + 1)− µ(N) = EC + ∆EN , (2.4)

with ∆EN = EN+1− EN � EC the energy spacing between two subsequent orbitals4.

Vsd

Vg

0
EC/e

N+1N

EC/αe

FIGURE 2.2: Coulomb Diamonds

By varying the gate voltage Vg, the
number of electrons on the dot can be
changed. The system can be visualised
in the density of states (DOS) represen-
tation, as in Fig 2.1b. By applying a
finite bias source-drain voltage Vsd =

Vs −Vd = (µs − µd)/e, a transport win-
dow between the chemical potentials of
the Fermi levels of source and drain can
be defined. If the number of available
states on the dot in such energy window
is non-zero, then electrons can tunnel through, and therefore a non-zero current is

2Notice that for a single electron (N − N0 = 1, and CsVs + CgVg + CdVd = 0), equation 2.2 yields
charging energy EC = e2/2C. For the description presented here, it is, however, more convenient to
take EC = e2/C as the unit of charging energy.

3This equation can be understood in a more familiar form as the sum of the chemical potential
µch(N) = EN resulting from quantum effects and the electrostatic potential resulting form the ’classi-
cal’ part relating to capacitances.

4In many-electron regime, the difference in the energy of two subsequent orbitals, EN+1 − EN , usu-
ally decreases with addition of more electrons. For the case of systems investigated in this thesis, this
number is on the order of 10− 100µeV.
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Rd, CdRs, Cs Rm, Cm

VdVs

Cg2

QD

Vg2

QD

Vg1

Cg1

FIGURE 2.3: Double Quantum Dot. In real systems potential cross-capacitances between dot
1(2) and plunger gate Vg2(1), shown in light grey.

observed. However, if no states are available within the window, the current can-
not flow, and the system is said to be in Coulomb blockade. This relation between the
current, and the voltages applied to the system, can be conveniently expressed in a
Coulomb diamonds scan (Fig. 2.2), where the diamond-shaped regions denote voltage
configurations where no current can run. From the dimensions of these diamonds,
several useful quantities can be calculated, such as all capacitances and the charging
energy of the quantum dot, as well as the gate lever arm α = Cg/C < 1 of the system;
a measure of how well the applied gate voltage is converted into chemical potential
induced on the dot.

In the rest of this thesis, theory and experiments will be restricted to the linear
response regime, where the bias voltage is ∼ 0. This simplifies the Eq. 2.3 to

µ(N) = EC(n− 1/2)− eαVg + EN , (2.5)

with n = (N − N0) the excess number of charges on the dot.

2.1.3 Double Quantum Dot

The extension to a double dot is relatively straightforward - a second quantum dot
can be added in series with the first one. As single quantum dots are often called
"artificial atoms" due to their discrete energy spectrum, two or more quantum dots
can form an "artificial molecule", with some inter-dot coupling. A circuit describ-
ing a double quantum dot is depicted in Fig. 2.3. If the electrons are localised on
individual dots, static redistribution of charge leads to attractive Coulomb interac-
tion, resulting in a weak binding, analogous to that of ionic bonding. If instead
two-electron states are quantum-mechanically coupled, and the electron can freely
tunnel in a phase-coherent way between two degenerate energy levels in the two
dots, a covalent-like bond occurs. In such case, the electron can no longer be re-
garded as a particle residing on one of the dots, but must rather be considered as a
coherent wave delocalised over the two dots.
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Vg2

Vg1

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(a)

Vg2

Vg1

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(b)

Vg2

Vg1

(1,0)

(0,1)

(2,0)

(1,1)

(0,2)

(2,1)

(1,2)

(0,0)

(2,2)

(c)

FIGURE 2.4: A charge stability diagram for a double quantum dot. Part a) is for zero inter-
dot coupling, b) for intermediate, and c) for strong.

The extension of the model presented in 2.1.2 is trivial. Analogous to the case
for a single dot, each dot is defined by tunnelling barriers and is capacitively cou-
pled to gate voltage Vg1(2) through a capacitor Cg1(2). The two dots are also coupled
to each other through a tunnel barrier represented by a capacitor Cm and a resistor
Rm connected in parallel. Assuming linear transport regime with negligible cross-
capacitances (e.g. between dot 1 and Vg2) and any other stray fields, the total elec-
trostatic energy as a function of charges on the island can be written as [33]

U(N1, N2) =
1
2

N2
1 EC1 +

1
2

N2
2 EC2 + N1N2ECm + f (Vg1, Vg2) (2.6)

f (Vg1, Vg2) =
1
−|e|

[
Cg1Vg1(N1ECm + N2ECm) + Cg2Vg2(N1ECm + N2ECm)

]
+

1
e2

[1
2

C2
g1V2

g1EC1 +
1
2

C2
g2V2

g2EC2 + Cg1Vg1Cg2Vg2ECm

]
where EC1(2) denotes the charging energy of dot 1(2) and ECm is the electrostatic
coupling energy, describing the change in energy of a dot, when an electron is added
to the other dot. In terms of capacitances, these can be expressed as

EC1 =
e2

C1
(1− C2

m/C1C2)
−1 (2.7a)

EC2 =
e2

C2
(1− C2

m/C1C2)
−1 (2.7b)

ECm =
e2

Cm
(C1C2/C2

m − 1)−1 (2.7c)

where C1(2) denotes the sum of all capacitances attached to the dot 1(2). These can be
seen as charging energies of a single quantum dot corrected with a factor accounting
for capacitive coupling. A full derivation, analogous to the one presented in 2.1.2,
together with reduced forms of Eq. 2.6 for cases of weak and strong inter-dot ca-
pacitances, as well as the derivations of electrochemical potentials for each dot, are
provided in [33].
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Similar to the Coulomb diamonds, we can represent regions of Coulomb block-
ade in a charge stability diagram (CSD), as in Fig. 2.4. For two quantum dots, this
yields a plot of regions of stable charge configuration, with equilibrium electron
numbers of the system (N1, N2), as a function of the two gate voltages Vg1 and
Vg2. Charge stability diagrams for three different regimes of inter-dot coupling are
shown. For Cm = 0, i.e. completely decoupled dots, the change in gate voltage Vg1(2)

will affect solely the charge on dot 1(2) 2.4a. In the intermediate regime, the grid
becomes hexagonal (Fig. 2.4b), with the vertices of the domains being dubbed the
"triple-points". In the limit Cm/C1(2) → 1, the triple-point separation is at maximum,
and the system can be modelled as an effective single dot system with (N1 + N2)

charges, and a capacitance of C1 + C2 − 2Cm.
As before, a multitude of information can be inferred experimentally from such

plots. Solid lines connecting two triple-points, separating different charge states, can
be understood as tuning configurations allowing for the electron to be delocalised
between the two dots when two energy levels are aligned, or degenerate (see Fig. 2.5).
From the parameters indicated in the figure, in combination with the gate lever arm
(obtained from the individual diamond scans of each dot), all capacitances can be
determined.
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FIGURE 2.5: Zoomed in diagram of the a single hexagon in a CSD for intermediate tunnel
coupling, at zero bias. From the parameters indicated, together with the gate lever arm, all
capacitances can be calculated. In the diagram, different lines representing different config-
urations allowing for the tunnelling of charges, where different conditions are met; either
the source chemical potential is aligned with the chemical potential of the first dot (blue
line), the chemical potential of the second dot is aligned with the drain chemical potential
(green line), or the chemical potentials of the two dots are aligned, allowing for the inter-
dot tunnelling. At the so-called triple points (red dot), all three of these conditions are met
simultaneously. In the diagram, the dimensions of the hexagon can be used to determine
characteristic charging energies as well as the capacitances of the system; ∆Vg1 = EC1/eα1,
∆Vg2 = EC2/eα2, ∆Vc

g1 = EC1Cm/C2eα1 and ∆Vc
g2 = EC2Cm/C1eα2.
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2.2 Superconductivity

One of the key ingredients necessary for the realisation of Majorana bound states is
induced superconductivity. As the temperature is decreased below a particular crit-
ical temperature TC, many materials enter a superconducting phase, characterised
by the zero resistance to an electric current [34], as well as the expulsion of magnetic
fields from the bulk of superconductor [35]. This extraordinary feature of nature
allows for direct observation of quantum mechanical phenomena macroscopically
and is, therefore, an ideal platform for realising a quantum computing system. Even
though the first experimental observation of superconductivity was already pro-
vided in 1911 by Heike Kamerlingh Onnes, it took nearly fifty years before the first
microscopic theory of superconductivity was proposed by J. Bardeen, L. N. Cooper
and J. R. Schrieffer (BCS Theory) [36]. Since then, superconducting materials have
been a subject of scrutinising scientific research and were most notably implemented
as extremely high power (MRI/NMR machines, particle accelerators, plasma con-
fining tokamak magnets) and extremely sensitive electromagnets (various magne-
tometers based on superconducting quantum interference devices (SQUIDs) using
Josephson junctions).

2.2.1 BCS Theory

The BCS theory stands at the centre of this thesis. It describes superconductivity as
a microscopic effect arising as a consequence of electrons constructively interacting
with positive atoms in the crystal lattice of the material, which in turn attracts an-
other electron with opposite spin. Through such electron-phonon interaction, the
effective attractive potential between the two electrons of opposite momentum and
spin will cause them to become correlated. A pair of such electrons is known as
a Cooper pair, and as long as the thermal energy attempting to break them apart
is small enough, the pair will stay together. A Cooper pair can now be seen as a
composite boson. At sufficiently low temperatures all Cooper pairs can occupy the
lowest zero-momentum energy state, thus undergoing Bose-Einstein condensation
and forming a charged superfluid liquid condensate. This roughly explains why
superconductivity requires low temperatures.

An obvious, and interesting problem arises with the quantum transport on the
interface between a normal conductor, and a superconductor. According to the
BCS description of the current, a single electron seemingly cannot induce a current
through the SC. Yet, it does. This occurs through a process called Andreev reflections.
This scattering process describes how the normal current can be converted into su-
percurrent. When an electron from the normal state material at energies too low to
enter the superconductor is incident on the interface with a superconducting ma-
terial, the electron will form a Cooper pair in the SC, and a retro-reflected hole of
opposite velocity and spin but equal momentum, in the normal conductor. Due to
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time-reversal symmetry, this process comes in alternative flavour as well; where an
incident hole is retro-reflected into an electron.

The energy spectrum of a superconductor can better be understood by first con-
sidering charge carriers in a normal metal with a Fermi gas model. At zero temper-
ature, the electrons form a momentum space, where all the states up to the Fermi
surface are occupied, and all the states above are empty. According to the BCS the-
ory, the charge carriers in the superconductor are pairs of electrons, so it can be
considered a Fermi liquid, for which (as shown by Landau in 1956) the treatment is
not that much different. The superconductor can then be visualised as a Fermi gas
composed of quasiparticles. In the mean-field approximation, the ground state of
the superconductor with Cooper pairs is therefore given by

∣∣ψϕ

〉
= ∏

k
(|uk|+ |vk|eiϕc∗k,↑c

∗
-k↓) |0〉 . (2.8)

In the equation above, |0〉 denotes the electron vacuum state5, |uk|, |vk| are nu-
merical factors such that |uk|2 + |vk|2 = 1, and c∗k,↑ (c∗-k↓) is a fermionic creation
operator responsible for creating an electron with momentum~k ( ~−k) with spin up
(down). The two terms in the equation imply, that a Cooper pair can be seen as a su-
perposition of the pair (~k ↑,−~k ↓) being occupied (with probability |vk|2) and being
unoccupied (with probability |uk|2).

2.2.2 Bogoliubov Quasiparticles

Formally, the term quasiparticle is given to any emergent phenomenom behaving
as a particle. In the context of Fermi gas, the term quasiparticle is usually used for
an excitation above a non-interacting Fermi gas or a Fermi liquid (leaving behind
another hole quasiparticle). This thesis, however, will mostly deal with a partic-
ular type of quasiparticles - Bogoliubov quasiparticles (sometimes simply named
Bogoliubons). In the most simple picture, a Bogoliubov quasiparticle is half of the
Cooper pair. As opposed to the normal metal, where the phases are random, in su-
perconductors with coherent phases, operators such as c−k↓ck↑ can have a non-zero
expectation values bk ≡ 〈c−k↓ck↑〉. This is also used to define a gap function ∆k

∆k = −∑
l

Vklbl, (2.9)

with Vkl being the attractive potential responsible for the Cooper-pair formation. In
the case considered by Bardeen, Cooper and Schrieffer, the origin of this potential
is electron-phonon interaction, with Vkl = V, being the measure of the electron-
phonon coupling. Bogoliubov showed, that by defining a new Fermi operator γ~k,
using an appropriate canonical transformation [37]

5All the states in momentum space up to the Fermi level are occupied.
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γ∗k0 =u∗kc∗k↑ − v∗kc-k↓

γ∗k1 =u∗kc∗-k↓ + v∗kck↑ (2.10)

and by appropriately choosing coefficients uk and vk,

|vk|2 = 1− |uk|2 =
1
2

(
1− εk

Ek

)
, (2.11)

the model Hamiltonian for a general superconductor can be written as [27]

H = ∑
k
(εk − Ek + ∆kb∗k) + ∑

k
Ek(γ

∗
k0γk0 + γ∗k1γk1), (2.12)

with εk the energy relative to the chemical potential. The first sum is constant, while
the second term gives the increase in energy above the ground state. Thus, the γk

describe the elementary quasiparticle excitations of the system. In equations 2.11,
2.12, we defined

Ek = (ε2
k + |∆k|2)1/2, (2.13)

which at the same time represents the energies of these excitations. Clearly, the
minimum excitation energy of the system is the energy gap ∆k, as even at the Fermi
surface (i.e. εk = 0), Ek = |∆k| > 0.

2.2.3 Superconducting gap

One of the defining features of a superconductor (and a crucial one in proposed ar-
chitectures for topological quantum computing) is the superconducting gap - a gap
to the next excited state above the condensate, usually on the order of few hundreds
µeV for typical superconducting islands investigated here. In simple terms, this
means that this gap parameter determines the energy cost for breaking a Cooper
pair. The probability for a fermionic quasiparticle to be excited in thermal equilib-
rium can then be modelled using the Fermi distribution function

f (Ek) = (eβEk + 1)−1 (2.14)

where β = 1/kT. Naively, this function predicts that at T = 0, f (Ek) goes to zero for
all k. This approximation is good to a certain extent, but as the experimental data
shows, at low temperatures quasiparticle density saturates to a constant value [19,
21], yielding a finite density of quasiparticles on the island. In such a case, we say
that the island is poisoned.

Using equations 2.14 in combination with 2.9, a self-consistent temperature de-
pendence of the superconducting gap, ∆(T), can be established numerically from
[27]

1
N(0)V

=
∫ h̄ωc

0

tanh 1
2 β(ε2 + ∆2)1/2

(ε2 + ∆2)1/2 dε, (2.15)
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with V the measure of the electron-phonon coupling (as defined above), and N(0)
the Fermi level electronic density of states. Following [27], this can be evaluated in
regimes close to the critical temperature and near 0

∆ =⇒

kTc = 1.13h̄ωce−1/N(0)V for T → Tc

∆(0) = 2h̄ωce−1/N(0)V for T → 0
(2.16)

where h̄ωc is a cut-off critical energy related to Debye frequency, and is much smaller
than the Fermi energy. The ratio of the two limiting cases yields 2∆(0) ≈ 3.53kTc,
one of the most celebrated early predictions of the theory [27]. Physically speaking,
as long as the number of thermally excited quasiparticles is low, the gap ∆ is nearly
constant. On the other side, near the critical temperature T = Tc, the order parameter
∆(T) varies with the square root of Tc− T - Something characteristic of all mean-field
theories.

2.2.4 Density of states

1

2

3

2∆

ε = E/∆
0 2 4-2-4

N(E)
N(0)

FIGURE 2.6: Density of states in a supercon-
ductor. Represented as a function of detun-
ing, in units of ∆ ,where states up to the fermi
level are already filled. Orange colour repre-
sents the density of states of a normal metal,
while the blue the density of states of a BCS
superconductor. Central, state-less supercon-
ducting gap of 2∆ is the characteristic prop-
erty of superconductivity.

Another handy quantity that can be
derived is the superconducting den-
sity of unpaired electron states Ns(E).
The derivation can be simplified signif-
icantly, by recognising that the quasi-
particle excitations described by the
fermionic operator γ∗k are in one-to-
one correspondence with the standard
metal electron creation operator, c∗k, un-
affected by any phase transition. As we
are mostly interested in energies in the
vicinity of the Fermi energy, the N(0)
can be taken to be constant, which leads
to a simple result

N(E)
N(0)

=


E

(E2−∆2)1/2 (E > ∆)

0 (E < ∆).
(2.17)

The density of states (DOS) is shown in figure 2.6, where the states below 0 en-
ergy are already filled. In the ground state, the energy states are therefore populated
up to −∆, and all excitations are raised above the gap ∆, leading to the expected
divergence of the density of states in the vicinity of E = ∆.
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2.2.5 Proximity effect

To be perfectly precise, the superconductivity investigated in this thesis is not strictly
speaking traditional. Typical distances between two electrons involved in the inter-
action can be estimated by considering Fermi velocity of electrons in a metal (∼ 106

m/s) and typical times it takes for the lattice to distort (∼ 100 fs), to be on the order of
hundreds of nm. This distance is also called the coherence length ξ. When a piece of
a superconducting material is in contact with a piece of normal metal, the density of
Cooper pairs cannot abruptly drop to zero upon transition from the superconductor
to the metal. The electron correlation thus extends within the normal metal on the
scale of ξ, inducing weaker superconductivity. This is known as a proximity effect,
and it plays a vital role within Majorana physics, as it allows for the combination of
strong spin-orbit coupling and superconductivity.
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2.3 Gate-Based Reflectometry Readout

Several different techniques can be employed for a readout of the quantum state
in solid-state systems. One such way is by investigating the electron transport by
measuring the current or differential conductance through the system. A downside
of this technique is that the system must be coupled to fermionic reservoirs, which
are in itself a significant source of decoherence and in the case of a superconduct-
ing charge island, quasiparticles. Additionally, single-electron transitions cannot be
resolved, an important limiting factor when probing local internal processes. An-
other approach that allows for selective and local measurements of single tunnelling
events from a quantum dot is by capacitively coupling a Quantum Point Contact
(QPC) or a Single Electron Transistor (SET) to the dot, and measuring the radio-
frequency (RF) conductance through it [38, 39]. By carefully tuning such devices,
tunnelling charges can be probed directly. As opposed to the traditional DC con-
ductance measurements, the system can be operated and investigated in a so-called
floating regime, i.e. entirely decoupled from the leads. However, as each sensor needs
to be in close proximity to the quantum dot, this method proves to have a disadvan-
tage of scalability. Reflectometry provides a way of alleviating these problems and
can serve as a compelling technique enabling scalable and high-fidelity readout of
qubits in solid-state systems. In particular, in the dispersive limit, where the res-
onator and qubit transition frequency are far detuned, dispersive gate sensing (DGS)
allows for the measurement of the tunnel coupling strength and events in the sys-
tem.

2.3.1 Reflectometry

By capacitively coupling an LC resonator tank circuit, with some inductance L, and
capacitance C0 to one of the gates of the system as in Fig. 2.7a, the technique of reflec-
tometry can be used to discern different states of the system. In particular, the idea
behind the reflectometry is as follows: the resonator is coupled to a double quantum
dot, which can be effectively modelled as a system of capacitors and resistors. Any
coherent single-electron tunnelling events will slightly perturb the bare capacitance
of the system by some shift Cp. In our devices, the resonators are transmission line
resonators (and will be further introduced in Section 3.2), which for a large sam-
ple impedance can be modelled as an effective LRC circuit with all components in
parallel with one another (see Fig. 2.7a). In the frequency domain, the resonators
impedance Z(ω) can be characterised by contributions of the inductive, capacitive
and resistive components as6

ZRLC(ω) =
(
1/iωL + iωC + 1/R

)−1, (2.18)

6In many electronics books and texts, the letter indicating the imaginary number is j rather than i.
In this text, we will simply keep to the conventions from the realm of mathematics, and use the latter.
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RC L

Qc

(a) (b)

FIGURE 2.7: (a) An LRC resonator scheme a notch geometry, where it is coupled to the trans-
mission line with some coupling factor κext [40], for large device impedance. Such geometry
allows for multiplexed readout of multiple resonators. The system is measured in transmis-
sion S21, with the resonance appearing as a dip in transmission coefficient spectrum. (b)
Charge hybridisation shifts the resonator’s characteristic resonant frequency, which results
in a shift in amplitude A and phase φ of the probe signal, relative to the response on resonant
frequency.

with C being the total capacitance of the system C = C0 + Cp and R some internal
resistance. The characteristic resonance frequency of this resonator is ω0 = 1/

√
LC,

which reduces the impedance in Eq. 2.18 to R. Therefore the shift in Cp will directly
correspond to the shift in the resonance frequency

∆ω =
1√

L(C0 + Cp)
− 1√

LC0
(2.19a)

∼−
ω0Cp

2C0
, Cp � C0. (2.19b)

The last simplification can be done as the perturbing shift is expected to be much
smaller than the capacitance of the resonator.

The carrier signal at ω0 is then off-resonance with the LC circuit, which shows as
a change in both magnitude as well as in phase of the reflected signal, as depicted in
Fig. 2.7b. To calculate each, one investigates the voltage reflection coefficient Γ as the
ratio between the incident and reflected RF voltage Vi and Vr respectively, Vr/Vi =

|Γ|ei∆φ [41]. Its magnitude can be expressed in terms of effective resistance R and
reactance X

|Γ| =
√
(R− Z0)2 + X2√
(R + Z0)2 + X2

(2.20a)

=
ω−ω0(1− i/2Q)

ω−ω0(1 + i/2Q)
(2.20b)

where Z0 = 50Ω is the standard impedance of the transmission line. Assuming
the system is probed at the resonator’s bare frequency (the detuning |δ| ≡ |1−ω/ω0| �
1), the expression can be simplified by expressing the reactance X = ωL− 1/ω(C0 +
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Cp). The Eq. 2.20b denotes the same coefficient in the frequency domain, where
Q = ω0/κext is the quality factor of the resonator, with κext the resonators external
coupling rate to the transmission line, which can be controlled through a coupling
capacitor. Clearly on resonance, the coefficient yields Γ(ω0) = −1, whereas for any
small magnitudes of detuning ∆ω away from it, the phase shift is

∆φ = arg(−1)− arg(Γ(∆ω)) =

=π − atan2
(

κext∆ω

∆ω2 + (κext/2)2 ,
∆ω2 − (κext/2)2

∆ω2 + (κext/2)2

)
, (2.21)

with atan2 being the two argument arctan function.

2.3.2 Parametric Capacitance

The shift in capacitance Cp, responsible for the shift in resonance frequency is called
a parametric capacitance. Its physical origin can be explored by investigating the dif-
ferential capacitance associated to the DQD as seen from the coupled gate voltage
on the second dot Vg2, as in figure 2.7a

Cdi f f =
d(Q1 + Q2)

dVg2
, (2.22)

with Qi the net charges on the respective dot [42]. These charges can be determined
by considering the average total existing charge on the island −e〈ni〉 = CgiVgi −
CV, the charge induced by the gate electrode and the mutual effects between the
two dots, which can be neglected in the weak coupling limit, where the mutual
capacitance is small compared to the total self-capacitance of each dot. The brackets
denote a quantum expectation value of the number of electron on the dot i, which in
the zero temperature limit we can take as being the expectation value in the ground
state. This leads to

Q1 + Q2 = e(α1〈n1〉+ α2〈n2〉) + (α1Cs + α2Cd)Vg2, (2.23)

with αi the lever arm on the dot i, defined as in 2.1, 〈ni〉 the average electron number
on the dot i, and Vg2 the gate voltage applied to the dot 2. Inserting Eq. 2.23 into Eq.
2.22 yields the two components of the differential capacitance; one independent of
the gate voltage describing the geometry of the system, which we shall conveniently
call the geometric or classical capacitance Cgeom, and one dependent on it - parametric
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capacitance Cp:

Cdi f f =(α1Cs + α2Cd)− e

[
α1

d〈n1〉
dVg2

+ α2
d〈n2〉
dVg2

]

= (α1Cs + α2Cd)︸ ︷︷ ︸
Cgeom

− eα′
d〈n2〉
dVg2︸ ︷︷ ︸
Cp

(near ICT) (2.24)

with α′ = (α2 − α1). Near the interdot charge transition (ICT), the exchange of elec-
trons happens between the two dots, so d〈n1〉/dVg2 = −d〈n2〉/dVg2. This approxi-
mation, however, becomes less valid away from the interdot transition, as one of the
dots could lose or gain an electron, without affecting the charge state of the other
dot. Notably, parametric capacitance depends on the change in the statistical aver-
age of the charge on the island. For small shifts around the Coulomb resonance,
dVg2, the energy change is dε = −eα′dVg2, which allows us to express the parametric
capacitance in terms of the local density of states ρ = d〈n2〉/dε. As the expected av-
erage number of electrons on a dot can vary both adiabatically and nonadiabatically,
which manifest itself as two different contributions to the parametric capacitance -
quantum capacitance Cq and tunnelling capacitance Ct.

2.3.3 Quantum and Tunnelling Capacitance

The adiabatic transition occurs when two quantum levels are hybridised, and the
contribution to the parametric capacitance resulting from the delocalisation between
the two quantum dots, is called quantum capacitance [42–44]. Near the interdot tran-
sition, at the anti-crossing between two charge states |n + 1, m〉 and |n, m + 1〉, the
electron does not have a well-defined position with respect to either dot, but is rather
in superposition between occupying the first or the second dot, causing the average
electron number to vary. The Hamiltonian for a DQD two-level system can therefore
be expressed as

H = tcσz +
ε

2
σx, (2.25)

with ε the detuning from the resonance, tc the interdot tunnel coupling energy, ac-
counting for the hybridization of the discrete charge states, and σ’s the Pauli matri-
ces (h̄ = 1). The corresponding energy eigenstates are Eg,e = ±[(ε/2)2 + |tc|2]1/2,
assuming no orbital degeneracy. Quantum capacitance of the system in the ground
state, can be expressed as [45, 46]

Cq = (eα′)2 ∂2Eg

∂ε2 . (2.26)

We can see that the quantum capacitance arises from non-zero curvature of the en-
ergy bands! For zero detuning ε = 0 (at avoided crossing), where the curvature of
the eigenenergies of the system is maximum, so is the quantum capacitance, which
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FIGURE 2.8: Explanation of processes related to quantum capacitance (the red arrows), and
to tunnelling capacitance (in green and purple, relaxations and excitations). Additionally,
Sisyphus resistance RSis is sometimes used to describe additional dissipation of the system,
which arises from the interaction with the phonon bath. The width of the anticrossing is
twice the interdot tunnel coupling energy, accounting for the hybridization of the discrete
charge states. By sending an RF pulse to the sample, we are causing an oscillation around
the detuning.

simplifies to [43, 45]

Cq

∣∣∣∣
ε=0

=
(eα′)2

4|tc|
, (2.27)

which reveals that the quantum capacitance has a direct correspondence to the state
hybridisation parameter of the system [47].

Tunnelling capacitance, on the other hand, does not require level hybridisation.
The charge can jump between band nonadiabatically, for example through relaxation
or thermal excitation. It, however, only arises when the rates of excitation and re-
laxation are on par with the probe frequency. Assuming that the dominant source of
charge excitation and relaxation is from phonons, we write Γe = Γcnp and relaxation
Γr = Γc(1 + np), with Γc the charge relaxation rate and np = [exp(−∆E/kbT)− 1]−1

the number of phonons described by Bose-Einstein distribution [46]. The two pos-
sible transitions, responsible for two possible capacitance contributions can be sum-
marised as in Fig. 2.8.

2.4 Dispersive Readout SNR

Identifying a poisoned state of the system from an unpoisoned one effectively trans-
lates to discriminating between a finite tunnel coupling and one that is nearly zero.
As explained in the section above, the tunnel coupling produces a state-dependent
frequency shift as a result of coherent single-electron tunnelling. The resonator is
probed with the RF voltage applied to the gate Vg2 (to agree with figure 2.7a). To
resolve different responses, one can look at the in-phase (I) and quadrature (Q) com-
ponents of the signal, and plot the response in the IQ space. If the attempt is to
discriminate between two possible responses of the resonator, i.e. two possible fre-
quencies giving rise to two possible phases, we can define the ’measure of quality’ of
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the signal, as signal-to-noise ratio (SNR) related to the square root of the ratio between
the signal power and noise power7

SNR =

√
PS

PN
sin(∆φ/2). (2.28)

Here, ∆φ is the phase shift and PS = n̄κexth̄ω is the signal power, with n̄ being the
number of circulating photons in the resonator. The noise power Pn = kBTN/Tm, is
described in terms of the measurement time Tm and the temperature of the noise of
the system TN . Since typically the Gaussian distribution of the two signals in the IQ
plane is assumed, we can associate the SNR with assignment fidelity through com-
plementary error function Pinc = 1/2 erfc(SNR/

√
2), assuming normalised Gaus-

sian distribution.
Looking at Eq. 2.28, it might seem that an easy path towards a higher signal-to-

noise ratio is simply by increasing the readout power. However, An important limi-
tation to acknowledge in order to maximise the SNR, is the fact that by increasing the
readout power the population of the excited state is increased through driving8. This
results in an incoherent mixture, reducing the contrast, as the quantum capacitances
of the excited and ground state are exactly opposite. In order to roughly estimate the
dynamics, we can employ a toy model using the Hamiltonian in Eq. 2.259. Driving
implies modulating the detuning ε around degeneracy with some frequency ω

ε = ε(t) = ε0 cos(ωt) =
ECCgVr f

e
cos(ωt)

=eαVr f cos(ωt), (2.29)

with Vr f the maximum amplitude of the gate voltage around the degeneracy. In the
rotating frame, the full Hamiltonian reads:

H̃ =
∆
2

σz +
Ω
4

(
σx + cos(2ωt)σx − sin(2ωt)σy

)
, (2.30)

with detuning from the resonance ∆ = τ − ω, with τ = 2tc/h̄, and Ω = eαVr f is
the on-resonance Rabi frequency. We can further make some reasonable approxima-
tions. By investigating the eigenstates of the time-independent part of the Hamilto-
nian, assuming that all fast-rotating terms lead to random phase jumps rather than
coherent processes, we can estimate the time-averaged population in the ground
state pgs. We find

pgs =
Ω2

Ω2 + (∆−Ωe f f )2 , (2.31)

7Sometimes, SNR is defined as the square value of 2.28. Here we chose this version, as it is equal to
the reciprocal of the coefficient of variation.

8From experiments we know that at high readout powers the frequency shift vanishes [48].
9This approach might not be as correct in principle as the full input/output theory modelling the

system of the resonator and the dot in the Jaynes-Cummings framework [49], but it still gives good
agreement with the current experimental data.
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where Ωe f f =
√

Ω2 + ∆2 is the effective detuned Rabi frequency. A more ’radi-
cal’ approach where we assume that the state vector randomly jumps between the
extreme values of the ground state population, pgs can be expressed as half the
maximum of the excited state probability from a detuned Rabi oscillation, pgs =

1−Ω2/Ω2
e f f . A full and detailed derivation is given in Appendix A. To summarise:

the dependence of the SNR on power results from the contention between the in-
crease in signal, and the excitation in the double dot, which reduces the contrast.
The optimum is reached at the point where the improvement gained from larger
accuracy in the IQ plane falls short to the diminishing frequency shift.
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Chapter 3

Experimental Setup

In this chapter, the experiment is described, as well as what is needed for its realisa-
tion, starting from the macroscopic equipment, such as cryogenic refrigerators and
DC and RF wiring schemes, down to the microscopic double quantum dot device
and the resonator chip design.

3.1 Measurement Setup

To ensure the quantum nature of our devices, superconductivity and good electric
transport properties, and to make sure Coulomb blockade is present, the experi-
ments need to be performed at low temperatures. Nowadays, the majority of con-
densed matter experiments operate in the temperature regime of millikelvins, which
necessitates closed and thermally isolated systems. At the same time, however, prob-
ing the system demands some information be exchanged with the environment. This
is usually done through the application of DC voltages to the system and reading the
conductance, or in reflectometry experiments, a microwave RF signal.

3.1.1 Dilution Refrigerator

The largest physical object directly involved in the experiment is a Bluefors dilution
refrigerator, responsible for ensuring operational base temperatures of around 10 -
20 mK. The entire cooling process is done in stages, which is reflected in the internal
structure of the fridge. First, cool-down to roughly 4 K is achieved via pulse-tube
vacuum pump refrigeration - a process known as dry cooling1. The final cooling stage
utilises endothermic properties achieved when two isotopes of helium, 3He and 4He,
are mixed in the so-called mixing chamber (MC). This mixture then separates into a
dilute phase where the lighter almost pure 3He floats on top of the diluted heav-
ier counterpart. By pumping the 3He phase away, the remaining phase is pushed
out of an equilibrium state, which in turn moves the 3He from pure into the dilute
phase. This process, however, extracts the temperature from the mixing chamber,
effectively cooling it down. Finally, the 3He gas is pumped out of the fridge through

1Alternatively, a wet fridge is one where the environment of the fridge is surrounded by liquid
nitrogen and liquid helium. Within QuTech laboratories, both can be found, but for the experiments
described in this thesis, a dry system is used.
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FIGURE 3.1: The innards of a Bluefors dilution refrigerator, similar
to the one used. Different plates corresponding to different working

temperatures indicated on the figure.

cold traps, which trap contaminants in the mixture, before it is at high pressures con-
densed again, completing the loop [50, 51]. Internally, the fridge consists of several
plates (as in Fig. 3.1), corresponding to sequentially lower operational temperatures
down the refrigerator: 50K plate, 4K plate, still (800 mK), cold (50mK) and finally
the MC plate at roughly 15mK, where the sample is located. Stages itself are held
together with thermally isolating fibreglass rods. The sample itself is mounted onto
a "cold finger", the top of the probe loaded into the fridge, which is attached to the
MC, and encompassed by a printed circuit board (PCB), providing bonding wires
between the lithographically defined lines on the sample, and the external electron-
ics within the fridge. In our experiment, the probe can be raised into the refrigerator
from below and is kept in thermal contact with the chamber, which provides for the
cooling of the device.

3.1.2 Electronics

To probe the system, and conduct the experiments, proper wiring is of fundamen-
tal importance. All signals used to operate and conduct experiments on the device
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originate from the electronics at room temperatures, and are thus very noisy. To that
effect, the electron temperatures can be much larger than the base temperatures of
the fridge. For that reason, it is vital to attenuate and filter the signal on the way into
the cryogenic setup and amplify on the way out. In our case, two different parts of
wiring are used and must be discussed: RF and DC.

To tune the system and change the chemical potential of the double dot system,
DC voltages controlled from a set of Digital to Analogue Converters (DACs) are
routed to the correct fridge DC lines by the matrix module. To restrain the effects
of the room temperature noise, DC lines are attenuated and heavily filtered using
QDevil RC filters.

RF signals needed for our experiment, on the other hand, come in two flavours.
The signal can be both generated and read out by either Rohde&Schwartz vector
network analyser (VNA), or a QuantumMachines OPX. The VNA is best suited for
frequency sweeps, and as it can output signals in the range of the resonant frequen-
cies of our resonant circuit (GHz), no up- or down-mixing is required before entering
the fridge. The OPX, on the other hand, cannot output signal in that frequency range,
so the OPX frequency ωOPX needs to be up-mixed with a signal from a local oscil-
lator (LO) at ωLO, creating a signal at ωLO − ωOPX

2. This up-mixed signal is then
sent in the refrigerator and is finally downconverted with the same LO to obtain the
component of the signal at ωOPX, which is then routed into the OPX for receiving
and processing the IQ data (the external wiring depicted in 3.3a). The main asset of
OPX for the needs of the experiments presented in this thesis is the integrated spe-
cialised field-programmable gate array (FPGA), which allows for the manipulation
and processing of the data with nanosecond precision, and its ability, to measure
with integration times (pulses) as short as a µs. All key constituents for performing
time-resolved measurements with µs resolution.

The setup of the RF wiring once inside the fridge is shown in Fig. 3.3b. Once
the signal enters the fridge, it is further heavily attenuated to reduce the noise, and
filtered using low pass filters and eccosorb, before reaching the puck with the sam-
ple. After the signal passes through the puck, it is fed into the directional coupler,
which makes sure that the attenuated component is transmitted to the PCB, while
the reflected signal almost in its entirety to the output port. The signal is then am-
plified again, twice at cryogenic temperatures, using Lincoln Labs Travelling Wave
Parametric Amplifier (TWPA) [52] and Cryogenic high electron mobility transistor
(HEMT) amplifier, and again at room temperatures. Using 50 Ω coaxial cables, the
RF signal is guided to either OPX or VNA, whereby comparing the in-phase (I) and
quadrature (Q) components of both signals, the amplitude (A) and the phase (φ)
information of the signal can be extracted as Aeiφ = I + iQ.

2The mixing process in fact also outputs the original LO frequency as well as their sum, but the
mixer is calibrated to reduce the other two signals to 0.
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3.2 The Quantum Dot Device

Finally, at the coldest point in the core of the cryogenic refrigerator, we find the
sample. For the experiments in this thesis, two devices have been fabricated and
measured. Both contain semiconductor and superconductor quantum dots, thus of-
ten simply called hybrid devices. For the experiments in this thesis, quintuple dot
systems were defined in an InAs nanowire (NW). One such device, based on the
same design as one of the devices used in the experiment, is pictured in Fig. 3.2.
The nanowire is deposited on an intrinsic silicon wafer with roughly 20 nm of SiNx
dielectric layer. The aluminium shell is epitaxially grown on two of the facets of
the nanowire and is removed using wet etching everywhere, except for an approxi-
mately 1 µm wire segment (1.9 µm for the second device3). At temperatures below
the critical temperature of aluminium, this wire segment enters a superconducting
phase due to the proximity effect.

2 µm

T1

T2
T3 T4 T5

T6

VSC
g VQD

g

FIGURE 3.2: An SEM image of a quintuple dot device based on the same design as the de-
vices in the experiment. For the purposes of this experiment, only the middle superconduct-
ing dot, and one of the neighbouring dots are used, defined using tunnel gates T3, T4 and T5
(coloured orange), as well as the side gates (in green), and top gates (in blue). By applying
a negative voltage to T3 and T5, the rest of the system can be effectively "pinched-off". The
device is placed within an on-chip resonator, depicted on the right side of the figure, with a
central transmission feedline with hanging resonators. The first resonator from each of the
two sets is connected to the bias-tee filter, allowing for DC biasing. Note that the resonator
architecture allows for two devices to be mounted simultaneously (one above and one below
the feedline).

Different quantum dots and the tunnelling barriers between them are controlled
using tunnel gates T1-6 (coloured orange in Fig. 3.2), lying on top of the nanowire.
They are separated from the nanowire by a relatively thin 10 nm AlOx dielectric
layer formed with atomic layer deposition, to ensure large lever arm. These gates
can be used to "pinch-off" the coupling to the leads and tune the interdot coupling
between the dots. In this manner, we can modify our system into several different
arrangements. For the first (second) device in our experiment, we apply large (-2 V)
electric voltage on the two side tunnel gates T3 and T5 (-1.3 V on T2 and T4 on the
second device), leaving us with a hybrid double quantum dot, entirely decoupled

3Estimated as the distance between the tunnel gate inner edges
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from the leads. In blue, another set of ’top’ or ’wrap’ gates4 can be used to define
chemical potential on each dot. However, in our experiment we control the chemical
potential, and thus the charge occupation of each dot, using the side gates (coloured
orange in Fig 3.2), while we use the top gates for resonator-based sensing. Having
the DC and RF gates completely separated is advantageous, as no additional bias
tees are needed to combine the RF and DC signals. The one exception is the bias tee
used for the source-drain bias. Additionally, compared to the side gates, wrap gates
have very high lever arms (as they are closed to the nanowire), which translates into
higher SNR.

To employ reflectometry, the sample is implemented within an on-chip super-
conducting coplanar waveguide (CPW) resonator [53], depicted in the right half of
Fig. 3.2 [54]. The resonator chip consists of the central transmission line, also called
the feedline, with resonators of different characteristic resonant frequencies capac-
itively coupled to it via a hanger geometry5. Experimentally, we are interested in
the state-dependent reflection coefficient of the resonator (S11), which is measured
indirectly via the transmission coefficient (S21) of the feedline circuit. In this geom-
etry, the resonances can be seen as an overall dip in the transmission spectrum, as a
function of frequency.

4As they lie on top of the nanowire/are wrapping the nanowire
5Resonators are "hanging" off the central feed line via a capacitive coupling element.
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(a)

(b)

FIGURE 3.3: The RF wiring of the setup. (a) Both VNA and OPX measurements can be
performed using the setup. In the case of OPX, the output frequency needs to be upmixed
using a local oscillator. (b) RF attenuation and wiring in the fridge. The incoming RF signal
is heavily attenuated using XMA Cryogenic attenuators (roughly additional 61 dB of atten-
uation) and filtered using K&L 10GHz low pass and Eccosorb filters (attenuating additional
1.6 dB per GHz) before entering the puck and reaching the sample. The attenuators are in
thermal contact with the corresponding stages of the refrigerator to ensure thermalisation of
the cable’s inner conductor, thus reducing the noise without further creating it. On the way
out, the signal is again filtered before passing through Quinstar circulator (green) and Kry-
tar directional coupler (blue), both thermalised using copper wires or brackets. The signal is
then amplified again, twice at cryogenic temperatures, using a Lincoln Labs Travelling Wave
Parametric Amplifier (TWPA) and Cryogenic high electron mobility transistor (HEMT) am-
plifier, and again at room temperatures. Although 0 dB attenuators might seem redundant,
they ensure thermalisation with the inner conductor of the cable.
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Chapter 4

Experimental Results

With all the fundamentals set in place, we can now get to work, and design and con-
duct the experiment, in which we hope to get a better understanding of the dynamics
of quasiparticles in superconducting systems.

4.1 Quasiparticle Poisoning

Before introducing the practicalities of the experiment, it is vital to place the exper-
iment in context. Quasiparticle poisoning is a very known limitation of supercon-
ducting devices and has as such been thoroughly investigated in the past by scruti-
nising metallic superconductors [20–22], as well as semiconductor-superconductor
hybrid structures [23–25]. In most cases, the population of odd relative to even states
of the SC (an excess QP on the island, or no excess QP on the island, respectively)
was investigated by either investigating the charge parity effects in SC [55], proper-
ties of supercurrent [56], or in recent attempts by employing radio-frequency reflec-
tometry [20, 57, 58], analogous to the method presented in this thesis. To investigate
the dynamics of QPs, time-resolved scans are typically carried out, with the state-
of-the-art technology allowing for probing the characteristics of poisoning events
on a microsecond scale. For the purpose of our experiment, we probe the system
using time-domain RF reflectometry on a microsecond resolution, an established
technique previously implemented in investigating quasiparticle dynamics [20, 57,
59, 60].

As sizes, materials and types of superconducting samples used vary significantly
between different experiments, it is difficult to make any concrete claims or predic-
tions about the rates of quasiparticle generation and relaxations, or their density in
the samples presented in this thesis. For a SC charge island in contact with metal-
lic leads, observed quasiparticle lifetimes1 are usually on the scale of few to tens of
microseconds [20, 24, 25, 57], with their densities saturating at low temperatures to

1The definitions of a "quasiparticle lifetime" often slightly vary based on the methods used.
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around 10 - 60 /µm3 [19, 58]2. This is within the experimental scope of this experi-
ment.

The origin of QPs in the system can be tracked to different mechanisms. They
might come from the surrounding environment (for example stray EM radiation
might excite an electron on a nearby quantum dot to tunnel onto the island), they
might be located within the topological subgap states, or might be internally excited
through external perturbations or phonons within the island itself. A phonon with
energy larger than twice the superconducting gap could break a Cooper pair, re-
sulting in two quasiparticles with opposite spin and momenta. Here we are mostly
interested in the last two mechanisms, the quasiparticle poisoning dynamics that
happen within the island. To limit poisoning to the events of interest, we can ex-
ponentially suppress poisoning due to the external quasiparticles by introducing a
gapped segment of the wire, while keeping electrical contact with the leads [26]. In
the experiments presented in this thesis, we take this a step further and decouple the
charge island from the surroundings completely and probe it solely using RF reflec-
tometry rather than conductance measurements. This way, we eliminate a need for
the leads, which are in themselves potential sources of quasiparticles.

This is the first time time-resolved studies of quasiparticle poisoning have been
conducted in a superconductor-semiconductor hybrid system, which is completely
decoupled from the leads. This investigation allows for all detected quasiparticle
poisoning events to be associated with the processes related to the SC itself.

4.2 Description of the experiment

To measure the electron-tunnelling events that could be related to quasiparticles on
the island, the following strategy is employed: an empty energy level of a quan-
tum dot is brought in resonance with an energy level on the island expected to host

2We need to keep in mind, that these experiments were performed in different systems with electri-
cal contact to the leads, with slightly different energy scales from the ones characteristic of our devices.
For example, [57] reports different gap profiles of otherwise identical devices lead to strikingly differ-
ent trap properties, with smaller gaps trapping the QP’s for a longer time.

(a) (b) (c) (d)

FIGURE 4.1: The different transitions corresponding to different peaks on double-dot CSD.
See Appendix B for details.
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quasiparticles, where we fix the chemical potentials and repeatedly measure the res-
onator response. If no quasiparticles are present, then no tunnelling should occur,
while if there is an excess of electrons on the island above the gap, the QPs can tun-
nel back-and-forth between the two available levels. This can be visible as the shift
in the magnitude and phase (or equivalently the I and Q signal components) of the
RF signal reflected from the system. Due to particle-hole symmetry in the supercon-
ductor (where creating a QP at positive energy is equivalent to annihilating a QP at
negative energy), we expect two energy tunings allowing for that transition (as illus-
trated in Figs. 4.1c and 4.1d). As the superconductivity in our sample occurs via the
proximity effect, we might expect a subgap state 2∆̃ away from charge transitions,
with ∆̃ the lowest single-particle energy state (a subgap state, shown as a blue line
in Fig. 4.1).

By carefully investigating possible tunnelling events between the SC and a nor-
mal QD in a floating regime, we can thus predict how quasiparticle poisoning events
should imprint themselves on the charge stability diagram of the system. A com-
plete and detailed description of the processes resulting in a CSD as the one in Fig.
4.2b, together with derivations of the spacings of the parallel lines, is given in Ap-
pendix B.

First, operating the hybrid double dot in a floating regime causes the CSD to lose
the grid-like structure, resulting rather in parallel lines, which become unevenly
spaced when one of the dots is superconducting, and even total charge number
is preferred on the island (Fig. 4.2b). This results in broader even regimes with
spacing Se/α = ESC

c + EQD
c + 2∆̃, and narrower odd regimes with spacing So/α =

ESC
c + EQD

c − 2∆̃. Combined with the energy spacings of the QP tunnelling config-
urations, we expect the "shadow" peaks, to lie in the middle of the even Coulomb
blockade regime, with the same odd-regime spacing. In other words, the expected
shadow peaks should reside exactly where the 1e periodic peaks would be if you
killed superconductivity. This feature has been experimentally observed before in
hybrid devices conductance measurements [24, 55, 61], but never in reflectometry
measurements.

Such CSDs have been previously reported within our group (figure 4a) in [62]),
but no additional "shadow" lines indicating QP transport was visible. Arguably,
however, it would be too early to claim no quasiparticle events occurred. The best
we can claim is that at the time resolutions and integration times used in the experi-
ment, no tunnelling events indicating the quasiparticle poisoning could be visible.
However, a CSD of the hybrid double dot in the floating regime (Fig. 4.2a), mea-
sured before proper shielding was in place, shows 1e periodicity in gate voltage3.
The most probable explanation is that external high-frequency radiation was inci-
dent on the sample, which caused a steady-state, non-zero number of quasiparticles

3It could be that the spacing in the diagram was, in fact, 2e, but based on the known values of the
lever arms we ruled that option out.
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(a) (b)

FIGURE 4.2: (a) 1e periodic signal, hinting at non-zero number of quasiparticles on the is-
land. This was sufficiently fixed using filters and protecting the sample from high-frequency
radiation, and the 2e periodic response as in (b) was restored. (b) An even-odd spacing in
the CSD indicates the preference for an even number of charges on the island, a character-
istics of superconductors. The difference in the even and odd peak spacing Seven − Sodd is a
direct measure of ∆̃.

on the island. After proper shielding was in place4, the 2e periodicity (as in Fig. 4.2b)
was restored.

To more precisely probe individual quasiparticle dynamics on the island, a single
line-cut of the diagram in Fig. 4.2b is measured (along the purple line), which ex-
perimentally corresponds to sweeping the voltage of the normal QD gate. What we
obtain is a single line-cut (bottom of Fig. 4.2b), which allows us to more thoroughly
investigate the spectrum, looking for a potential third and fourth peak. To investi-
gate time dynamics, we integrate over 1.000 and 30.000 successive 1 µs pulses. This
allows us to produce a ’time-map’ of tunnelling events of microsecond resolution.

4.3 System Tune-up and Characterisation

Before presenting the proper experimental results, it is useful first to discuss the
steps needed to tune the device, such that the experiment can take place. To do so,
we make use of both DC and RF measurements. In particular, we want to define a
double quantum dot decoupled from leads with an intermediate interdot coupling
(1), gain some information about the energy scales and energy values of the system
(2) and characterise the resonant frequency for each dot’s resonator (3).

In order to define floating quantum dot systems, it is necessary to investigate
the ranges of the tunnel gate voltages T3-5 (T2-4 in the second device), that either
completely restricts the flow of electrons or allow for weak tunnelling across them.

4More precisely, the addition of bandpass and eccosorb filters, circulators, and the directional cou-
pler. Afterwards, all the seams of the copper sample box were we sealed off using copper tape, sur-
rounded by eccosorb pads and finally wrapped in Mylar foil. The setup in Fig. 3.3b shows the already
shielded circuit)
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(a) (b) (c)

FIGURE 4.3: By investigating the current between two dots, pinch-off curves for each of the
gates can be plotted, and we can determine what voltage provides weak tunnelling across
them, and what regime completely decouples two neighbouring dots. An example of such
curves for (a) T3, (b) T4 and (c) T5 tunnel gates is given. These are hysteresis curves: we first
sweep the gate voltage in one direction (0.0 V → -0.5 V, black curve), and then back in the
other (-0.5 V→ 0.0 V, red curve). This is significant, as the similarity between the two curves
is an indicator of the stability of our device. An important thing to keep in mind is that if the
refrigerator is thermally cycled, pinch-off traces change as well, thus these curves, although
for the same gates on the same device, might differ from the ones given in Appendix C.1.

To do so, we can measure the current through the system, and plot so-called pinch-off
curves for each of the gates, an example of which for one of the devices is pictured
in Fig. 4.3. While these curves provide a good estimate of the pinch-off voltage5, they
mostly serve only as a rough indicator of the ranges of voltages necessary to provide
weak tunnel coupling between the two dots. To this end, we usually perform a
more "zoomed-in" RF measurement monitoring the reflected signal, as a function
of the tunnel gate voltage and dot’s side plunger gate voltage, trying to determine
what ranges give us the brightest (in this case) 2e periodic response. For the first
(second) device in our experiment, we applied electric voltage of of T3 = T5− 2 V
(T2 = T4 = −1.3 V), while setting the middle barrier T4 = −0.385 V (T3 = −0.4 V).
For the DC and RF pinch-off scans of our device, see Appendix C.1.

Returning to the theory chapter, a standard method of characterising the SC-QD
double dot, is by measuring the DC current (or RF signal) by sweeping the chemi-
cal potential of the charge islands using their plunger gates, together with the bias
voltage Vbias. This way, we obtain Coulomb diamonds - Coulomb blockade regions
of stable charge state configuration, whose dimensions are directly determined by
the characteristic energies of the system (as illustrated in Fig. 2.2). To focus only on
the SC-QD double-dot system, the gates not defining the double dot are ’opened’ not
to affect the system. This is achieved by simply setting them to zero voltage, thus
effectively extending the leads. It should be mentioned at this point, that the second
sample showed no conductance between the lead and the drain6, making Coulomb

5The voltage needed to completely suppress the current across the barrier, make the island floating.
6There still was conductance between individual dots, as well as functional gates allowing for QD-

SC system to be defined in the floating regime, thus making the experiment possible. The likely reason
for that was a disconnect at the contacts, or one of the bonds failed.
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FIGURE 4.4: Coulomb diamonds for the normal QD. Left panel shows current as a function
of gate voltage and bias, while the right figure shows conductance (numerical derivative of
the current, with respect to the bias voltage) in units of conductance quantum. In a similar
way, we can determine the charging energy of the SC (See Appendix C.2).

diamond DC measurement impossible. In that case, a CSD of the double dot system
could still be measured through RF sensing, although no claims about any precise
value of energies of the system could be made without the knowledge of the lever
arm.

A Coulomb diamonds DC current scan of the first device is shown in Appendix
C.2. The most striking feature to notice in the scan is that the diamonds overlap due
to superconductive leads. The Coulomb blockade diamonds, centred around zero
bias spread out due to the blockade induced by the superconducting gap in the SC.
This enforces another tunnelling restriction on the energy the electrons must obey.
At the same time, this implies that the value of ∆̃ can be read off the plot as the
width of the blockaded region. By measuring the height of the gap, as well as the
dimensions of the triangles on each side of it, the charging energy of the dot, as well
as its lever arm, can be determined. For the first sample, the values estimated from
the Coulomb diamonds are EQD

c ≈ 350 µeV, ESC
c ≈ 135 µeV, ∆̃ ≈ 125 µeV and lever

arms of αQD ≈ 0.8%, αSC ≈ 1.1% for the normal QD and SC island, respectively.
To draw the correspondence between the resonant frequencies of the resonators

and plunger gates, we can perform a full sweep of the probe frequency, noting reso-
nances as dips in the amplitude of the spectrum. Results of such a scan for the second
device are shown in Fig. 4.5, while the zoomed-in scans are given in Appendix C.3.

Both VNA and OPX can record the full complex transmission, so the resonator
response can be given in terms of the magnitude and phase, which can be translated
into the in-phase (I) and quadrature (Q) components. This way, measuring many
RF responses for a particular energy configuration of the system, the two compo-
nents from the complex signal can be extracted and represented in a 2-dimensional
IQ histogram. This way, a single peak in the histogram indicates a single frequency
response, while any splitting behaviour of the histogram indicates a two-level re-
sponse. Thus, this provides a handy and robust tool for the analysis. This will be
further illustrated in Section 4.4.

Lastly, we want to tune the power of the resonator to a suitable value. The opti-
mal SNR is a subject of balance between two competing factors. Namely, increasing
the power increases the signal relative to the noise, but at the same time drives more
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FIGURE 4.5: Resonator response for the second device. The responses identified to corre-
spond to the normal dot and the SC dot plunger gates are indicated on the plot. Using a
fitting algorithm, their frequency values of 5.79579 GHz and 6.28044 GHz, respectively, are
extracted. Other dips correspond to the plunger gates of other dots present on the chip. As
there are two devices mounted on the resonator chip simultaneously (see Fig. 3.2) half the
peaks correspond to either of the two devices7.

excitations in the double dot, which reduces the frequency shift. An initial power
scan of the first device is given in Appendix C.4, but a more detailed treatment is
described in Section 4.4.1.

4.4 Experimental Data

The experimental section consists of five main parts. First, temporal scans and their
heavy analysis are presented for systems in which we vary the tunnel gate between
the two dots (1), for systems where we intentionally try to induce quasiparticle poi-
soning events, either by increasing the RF power (2) or increasing the operating tem-
perature of the refrigerator (3). Additionally, we report an observation of histogram
splitting behaviour on resonances in certain scans (4), and finally discuss the results,
and list possible theoretical and practical limitations of the experiment (5). Mea-
surements reported in (1), (2), and (4) were performed on the first device, while the
temperature scans on the other one8.

At this point, the refrigerator is cooled down to the base temperature of 15 mK,
the gates of the quintuple dot device are appropriately pinched, forming a double
dot with an intermediate interdot coupling displaying an even-odd CSD pattern,
with resonators of different characteristic frequencies capacitively coupled to each
of the two dots, allowing for reflectometry readout. In the experiment, the chemical
potential of the SC is held constant throughout the measurement. At the same time,
the voltage on the plunger gates of the normal quantum dot is swept, in line with the
horizontal line-cut through a CSD for the double dot system, as the one indicated by

7Note: of the two devices on the chip, measurements presented in this thesis were performed only
on one.

8There is no particular reason for that division other than the availability of devices at the time of
measurement.
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a purple line in Fig. 4.2b. A suitable voltage on the SC dot is set, such that the system
is tuned into a regime with even-odd spacings and displaying little charge jumps9.
These values, along with the value of the interdot gates, were varied through the
experiment according to conditions listed above.

4.4.1 Power Scans

The idea is relatively straightforward; as noted in Fig. 4.2a, a sample without proper
shielding was subjected to large amounts of high-frequency environmental radia-
tion, causing a steady-state presence of quasiparticles on the island. Similarly, by
intentionally radiating the system with high-power RF signal we hope to induce
Cooper-pair breaking and get a few-quasiparticle population on the island, which
could manifest as a third and fourth peak within the Coulomb blockade. We further
investigate if that only happens when we are radiating the SC’s gate, or if there is
some cross-coupling interaction when applying the power on the neighbouring dot.
In order to conduct the experiment, we slightly reconfigure the setup by unplug-
ging the VNA and plugging an RF source, so that we can input a constant RF signal
through one of the resonators coupled to either the SC’s or the normal QD’s gates,
while independently measuring the other one using OPX.

We scan the QD gate voltage range between VQD
g = −1.9 V and VQD

g = −1.4 V,
covering about 4 transitions (producing roughly two pairs of parallel lines). We find
that VSC

g = −1.35 V yields a good regime, which is a value we use throughout
the entire power dependence investigation. At each point along the VQD

g , 1.000 re-
sponses are measured, each of 1 µs in duration. An example of one of such temporal
power scan is given in Fig. 4.6a, with the averages of all power scans, show in Fig.
4.6b.

From the plots, we can see that increasing power above -110 dBm diminishes the
response, as expected from the preliminary power dependence scans. The curves
are intentionally offset (1.3 rad) along the vertical axis for clarity, while the offset
along the horizontal axis (most notable when comparing the scans of -130 dBm and
-120 dBm) could be explained by a charge jump that occurred in-between the two
measurements. The expected power dependence of the imparted phase shift is ob-
served, with a gradual decrease in the height of the peaks towards the upper and
bottom limits of applied power. However, concerning the quasiparticle poisoning,
we cannot claim much from this plot - in particular, after averaging no third or fourth
peak can be visible, so the further subsequent analysis is required.

By plotting a histogram of the 1.000 I/Q values at each voltage, we can inves-
tigate the response more precisely. However, as it turns out, having only 1.000
points yields very scattered histograms, making it extremely challenging to reach
any conclusions about the general shape of the distribution. Assuming Gaussian
distribution of the histograms, we can fit each of them using a double 2-dimensional

9A sudden and random change in the electrostatic surrounding of the island (for example an elec-
tron in the gate oxide jumping closer to the island), which slightly offsets the CSD.
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(a)
(b)

FIGURE 4.6: (a) An temporal scan corresponding to resonator probe power of -120 dBm at
the sample level. Each point along the VQD

g in range of 0.5 V was measured 1000 times,
represented in the plot as the vertical axis. Even-odd spacings are still visible. (b) The effect
of different powers is summarised, different curves are offset for clarity. All of the responses
plotted in figure were obtained by applying the RF power to the resonator of the SC dot.
There was no significant change when applying the RF power to either of the neighbouring
dots.

Gaussian curve. We can compare the distributions characteristic of Coulomb block-
ades with those around the voltages where the third and fourth peak are expected
to show on the diagram. Their positions within the even regime is (Seven − Sodd)/2
distant from each of the two lines bounding the wide spacing, with Seven (Sodd) the
even (odd) spacing in the diagram (as illustrated in Fig. 4.7 and explained in Ap-
penedix B). Examples of histograms for an intermediate power of P = −110 dBm, at
resonance, the expected QPP regimes and within Coulomb blockade are illustrated
in Fig. 4.7, with additional figures for low and high power limits presented in the
Appendix C.4. The remainder of the analysis in this thesis was mostly done in the
same or very similar manner.

4.4.2 The effects of tunnel gate T4

Next, we investigate the effects of varying the interdot gate voltage of the system.
Following an approach analogous to the one presented above, we conduct the ex-
periment, where we construct a 4-dimensional data set: VQD

g vs iterations vs resonator
response vs T4. Here we investigate if any notable effects arise when we vary the volt-
age on the tunnel gate between the two dots. As the tunnel gates are directly related
to tunnelling amplitudes, it could be expected that decreasing the tunnel barrier in-
creases the probability of the quasiparticles tunnelling between the island and the
dot. We sweep over the gate voltage range between −1.9 V and 1.4 V in 201 incre-
ments, tunnel gate voltage T4 range between −0.1 V and −0.2 V in 101 steps, while
at each combination of the two, recording 10.000 1 µs pulses measuring the ampli-
tude and phase (or I and Q) values. Following the histogram-analysis presented
in the section above, the aim is to investigate if any of the histograms distributions
show splitting, elongation or any behaviour indicating a resonator response alternat-
ing between different values. To summarise the results, in short, varying T4 seems
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FIGURE 4.7: The power scans analysed using histograms. The top plot shows the relation
between the gate voltage and the measured amplitude of the signal. The white line shows
an averaged response, clearly showing two pairs of even and odd regimes. Using a peak
finding algorithm, we can determine the positions of resonances, as well as calculate the
expected positions of QPP peaks. We compare average histograms of Coulomb resonance
(bottom left, blue), along the line where we expect the shadow peaks (bottom middle, red)
and deep within Coulomb blockade (bottom right, green). The resonator response changes
when on resonance due to electron tunnelling, while no distinguishable difference can be
determined between the two other responses. The histogram of the resonant case shows a
splitting of the histogram distribution, rather than simply shifting. We discuss this in more
detail in Section 4.4.3.
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to have no noticeable effect on the telegraph plot, once the tunnel gate is tuned in a
suitable regime (as in Figs. C.1 and C.2). Similar to the measurements above, there is
a significant on-resonance dispersive shift, but histograms from within the Coulomb
blockade show no distinct pattern.

Having more points in the IQ histogram plane, the power dependence analysis
can be improved by more carefully scrutinising each of the histograms of interest.
In particular, the histograms of potential shadow peaks are compared with the av-
eraged response from all scans within the Coulomb blockade. In this way, effective
background filtering is achieved. In Appendix C.5, a concept of Gaussian division
of the two plots is introduced, where we show how tiny shifts manifest as distinct
coronae. However, even after such investigation, no particular response could be
detected for off-resonant cases. However, a particularly interesting response was
noted at some resonances of some values of T4.

4.4.3 Two Level Fluctuator

In some cases, a splitting behaviour rather than shifting is detected on Coulomb reso-
nances. An example of such splitting for the tunnel gate T4 = −0.36 V is illustrated
in Fig. 4.8 (some splitting behaviour can also be seen in Fig. 4.7). In general, we
expect to record a signal characteristically different from the one within Coulomb
blockade, which shows as a histogram distribution with a shifted peak. Using dis-
persive gate sensing (DGS), a single shot readout with an SNR of 2 for an integra-
tion time of 1µs has been previously reported, enabling differentiation between the
Coulomb blockade and resonance [48]. In the context of measurement-based quan-
tum computation, such as Majorana qubits, DGS has been proposed in some archi-
tectures as a viable way of high-fidelity and fast readout. Such resonant splitting as
repeatedly observed in some regimes might prove to be a limitation to these archi-
tectures, so it requires further analysis. At the same time, this investigation provides
a set of useful tools, in analysing a time-resolved telegraph signal of the resonator
response, such as we might observe in the case of quasiparticle poisoning.



Chapter 4. Experimental Results 39

FIGURE 4.8: Splitting on resonances. In some
cases, a splitting of the IQ histogram was observed
on Coulomb resonance. The upper plot shows an
averaged scan, while the bottom one shows the
histogram of all resonator responses measured at
the particular value of VQD

g (vertical line on the up-
per plot).

First, the split histogram is fit-
ted using a 2-dimensional double
Gaussian function, as in Fig. 4.8 be-
low. Using the obtained peaks, as
well as other Gaussian parameters,
we can (first rotate, then) divide the
histogram into three parts, charac-
terising which section the resonator
response falls into, with the mid-
dle section the "undefined" zone.
An example of the histogram of re-
sponses in Fig. 4.8 is given in Fig.
4.9a. Finally, as these responses
were measured in time, we can plot
the telegraph signal (Fig. 4.9b), and
infer counts of (confidently charac-
terised) resonator response for each
of the two histogram peaks, and av-
erage and maximum times of the
system giving one or the other res-
onator response. By measuring
the time dynamics of the two re-
sponses, we can gain knowledge about the time dynamics of the system itself.

Physically, the two different responses indicate the presence of two different
quantum states. Although this could be explained by excess quasiparticles on the
island, where a QP poisoning event is effectively causing the system to be in a block-
ade regime, we rule this option out, as in that case, we would also expect to see
some shadow peaks within the Coulomb blockade. The most probable explanation
for that, however, is that somewhere in the dielectric, some form of a two-level fluc-
tuator is coupling to the system, causing the two-level response in the resonator
response. This claim is further supported by the fact that at different tunings, the
distribution splitting seems to be random.

4.4.4 Temperature Dependence Scans

Finally, the last mechanism with which we try to induce Cooper pair breaking and
subsequent poisoning events is by raising electron temperature. As introduced in
Section 2.2, superconductivity is achieved when the temperature of some materials
is sufficiently lowered below a particular, material dependent critical temperature
TC, which is for aluminium at 1.2 K [63]. Contrary to the prediction implied in Eq.
2.14, that at T = 0, f (Ek) goes to zero for all momenta k, experiments show, that at
low temperatures quasiparticle density saturates to a constant value [19, 21]. As we
expect the rate of QP tunnelling to depend on the number of excited quasiparticle
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(a) (b)

FIGURE 4.9: By analysing the telegraph signal, we can determine the average occupancy of
each of the two states, giving two responses in the IQ plane. (a) shows a rotated histogram
after the two distributions have been identified, and the histogram has been rotated. We
define a middle section, from which the resonator responses cannot be reliably identified.
(b) An insert of the telegraph signal, showing the alternation between the two states. Points
in the middle do not affect the switching, and are assigned to the distribution from which the
last response came. This way, we obtain the upper limit time values. For this particular scan,
the average dwell times of the left and right distribution are 5.00 µs and 9.40 µs, respectively.

states on the SC island NS, it is worth relating the temperature to the actual number
of quasiparticles on the island [64]

NS =2D(EF)V
∫ ∞

∆
dE

E√
E2 − ∆2

fE (4.1)

≈
√

2πD(EF)V
√

∆kBTSe−∆/kBTS . (4.2)

Using the literature value for the normal-state density of states at Fermi energy
in aluminium D(EF) = 1.45 × 1047 J−1m−3 [59] and estimating the dimensions of
our SC island approximately V = 1µm × 70nm × 7nm (L = 1.9 µm for the second
device), we can roughly estimate the expected number of excess charges as a func-
tion of the temperature of our bath. An important thing to note here is that this
equation describes systems with a hard superconducting gap, which is not the case
in superconductor-semiconductor systems. This can still serve as a top-limit esti-
mate at what temperatures we might expect to be in a regime of few quasiparticles
on the island, and what temperature resolution we would require in order to sepa-
rate between ’few’ and ’many’ QP regimes on the island. For a typical value of the
superconducting gap between 100 and 200 µeV, the interplay between the average
number of QPs on the island and the temperature of the bath is illustrated in Fig.
4.10.

The estimates from Fig. 4.10 give us an indication of the ranges of temperatures
that coincide with a few QPs on the island and give a rough indication of what
resolution of temperature would be required to observe that transition. Not enough
QPs would result in no signal (as reported in sections above), while too many QP’s
on the island would turn the signal 1e periodic. Similar results were previously
already reported in [62]. Luckily, some control over the temperatures in the fridge
can be implemented. In particular, for this experiment, the response of the resonator
as a function of both gate voltage and the temperature is measured 30.000 times,
with 1 µs pulses, as before. The full parameter space over which the device was
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FIGURE 4.10: The quasiparticle number as a function of the temperature of the sample. As
we do not precisely know the value of our superconducting gap, this plot serves mostly
as an upper limit estimate of the temperature regime, and resolution we would require to
manipulate the average excess QP number on the island to be between 0.5 and 2. For our
system, these numbers are realistic, motivating us to investigate this further.

characterised is summarised in Table 4.1.

FIGURE 4.11: Magnetic field dependence, vertical axis off-
set for clarity. As the magnetic field is increased, 2e to 1e
transition is noticable, in line with superconductivity in our
sample.

For the investigation of
the temperature dependence,
only the second sample
was used. To establish the
presence of the supercon-
ducting gap and thus con-
firm the origin of 2e peri-
odicity in the CSD in the
floating regime, the sample
was first swept through a
magnetic field. As super-
conductivity at large mag-
netic fields is effectively de-
stroyed, we should be able to notice a 2e to 1e transition in the spectrum (as observed
in Fig. 4.11). Additionally, from the zero-field scan, even-odd spacings can be de-
termined, from which the charging energies (corrected with an unknown lever arm
α, presumably in 0-1 %) can be obtained. We measure the average even and odd
spacings to be Se = 0.2985 V, So = 0.11613 V, respectively, yielding α∆̃ = 0.0457 eV.

We follow the same analysis of this data-set, as described in sections above. Af-
ter investigating initial average scans (presented for temperatures near the 2e to 1e
transitions in Fig. 4.12) for subtle third and fourth peaks (to no avail), histograms for
different values are investigated using the method presented above and in Appendix
C.5. As expected, by increasing the temperature, initially 2e diagram transitions into
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T3 T2 = T4 OPX Power ω0(QD) VQD
g range T range

-0.4 V -1.3 V -39.81 dBm 5.79548 GHz -4 V→ -1 V 15 mk→ 240 mK
-8 V→ -5 V

TABLE 4.1: Parameter space for the temperature sweeps. Operating at increasing temper-
atures, re-tuning of the voltage range was required to ensure large enough SNR. In both
cases, the system was scanned in increments of 0.005 V. The operational temperatures of the
refrigerator were 15 mK (base temperature), 100 mK, and between 150 mK and 240 mK, in
increments of 10 mK. Initial VNA scans indicated 1e periodicity at 240 mK, confirming the
prediction from Fig. 4.10 for a gap on the order of hundred µeV.

1e periodic VQD
g dependence on the reflected signal. Although the transition is grad-

ual, "by-eye" we estimate that the transition happens between 180 mK and 190 mK.
As before, resonant configurations are observed as a shift in IQ histograms, while no
such pattern can be detected for configurations allowing for QP tunnelling events.
One of the bigger limiting factors in the analysis is the fact that due to small value
of ∆̃, even and odd regime spacings Seven, Sodd are nearly the same, which places the
two shadow peaks at the foothills of the degeneracy peaks. As the last point, it is
worth mentioning that we did not observe any two-level fluctuators on resonances
in either of the temperature scans.

FIGURE 4.12: Averaged scans for different temperatures between 170 mK - 210 mK, where
the 2e to 1e transitions gradually occurs.
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4.5 Discussion

So, where are all the quasiparticles? Or better yet, why aren’t we seeing any? In this
section, we explore and evaluate the two limitations that prevent quasiparticle tun-
nelling from being seen. First, we evaluate the methods used in this experiment,
and secondly, we investigate the physics of quasiparticle excitation relaxation and
poisoning rates.

It is useful to first discuss the limitations of our method. The time resolution
of the experiment is limited by a couple of factors. First, the length of the pulse
integration time is 1.000 µs, with about 400 ns of wait time in-between pulses. This
can roughly serve as a lower bound for the time resolution. The upper bound is
somewhat related to the length of the entire measurement along a single voltage,
which in our experiment ranges between 1 and 30 ms (between 1000 and 30 000
iterations). This means that the processes with rates that fall within this range can
be measured using the setup. Clearly, a process with rates much higher or much
lower than this resolution can not be resolved. We discuss the interplay of these
rates a bit more into detail later on.

Another methodological limitation comes from determining the energy values
of the system. Although for the analysis, relative energy values will do the trick,
in order to draw any conclusions and to calculate expected rates at various condi-
tions, these values can prove to be very useful. However, as the second device was
slightly damaged, we were not able to precisely determine the values of the charging
energies, which made temperature dependence calculation slightly less precise.

Γexc Γrel

Γt

FIGURE 4.13: The rates present in
the system, assuming any external
no external sources of quasiparticle
generation is negligible compared to
the rates from within the island. By
investigating these rates, we can bet-
ter understand the dynamics of the
system.

In the experiment, we need to acknowledge
three main rates, determining the dynamics of
the system: tunnelling rates between the island
and the dots Γt, the quasiparticle poisoning rates
(excitations from within the condensate) Γexc,
and quasiparticle relaxation rates Γrel . These
rates are schematically illustrated in Fig. 4.13.
The interplay of these rates should determine
the number of quasiparticles present on the is-
land, and the amount of QP that we can de-
tect using DGS. Do note that these two num-
bers are not necessarily the same, which might
explain the lack of the detected signal around
the shadow peak locations. In particular, either
the recombination rate of QP is much larger than
the tunnelling rate (so the QPs will preferentially
want to stay on the island), or the excitation rate
is much lower than the recombination rate (so the QPs are very rarely generated,
and when they are, they recombine quickly).
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Let’s first take a look at the relationship between the recombination and tun-
nelling rates. Importantly to note, DGS does not measure a single electron tunnelling
events. Rather, it indicates a degeneracy of two energy levels, when an electron
present on one can tunnel back and forth between the two dots thousands of times,
with rates on the order of GHz [48]. If the rates of recombination of quasiparticles
on the SC island are much larger than the rates of tunnelling between the dots, the
electron might recombine back in the condensate much too often, leaving behind
no characteristic footprint in the resonator response as compared to the Coulomb
blockade.

Detailed Balance condition rates

An important question, that has to be addressed in any telegraph measurement of
physical systems, is what are the expected rates of the processes we attempt to mea-
sure. In the case of this experiment, rates we are in particular interested in are the
excitation and relaxation rates of quasiparticles. To do so, we investigate the bal-
anced condition rates. The idea is that in any kinetic system in equilibrium, the
system’s elementary processes should also be in equilibrium with their reverse pro-
cess. For the systems under investigation here, we need to consider two states, the
ground state, where all the electrons are neatly paired up in Cooper pairs, and there
is no excess of quasiparticles on the island (a non-poisoned state), and the excited
state, where we have some finite unpaired electrons on the island (poisoned state).
The energy difference between the two states depends on the energy gap of the su-
perconductor - the minimal energy that is needed in order to break a Cooper pair,
2∆̃. The transition rates between the two states can be visualised as in Fig. 4.13,
where Γexc is the rate of exciting quasiparticles, and Γrel the rate of their relaxations.
These two rates are related to one another through

Γexc = e−∆E/kBTΓrel (4.3)

where ∆E is the energy cost of the transition, which in our case equals 2∆̃. To
avoid explicitly predicting the two rates, further analysis can be done by simply
investigating their ratio, which for typical value of the the energy difference ∆̃ =

150µeV and quasiparticle temperatures up to 1 K10

Γexc

Γrel
= e−∆E/kBT ≈ 0.06 (at 1 K) (4.4)

≈ 9× 10−7. (at 200 mK) (4.5)

This yields the rate of excitations many orders of magnitude below the number
for the rates of relaxations. At the same time, for very low QP concentrations, the
relaxation rate can be suppressed by virtue of the fact that it takes a while for two
quasiparticles to find each other and recombine.

10Reports from [20] cite quasiparticle temperature to be slightly larger than the electron temperature.
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Chapter 5

Conclusion and Future Directions

In this thesis, we have briefly introduced the working theory of (superconducting)
quantum dots, elucidated the principles of dispersive gate sensing, and attempted to
scrutinise a paradoxically known yet unexplored problem of quasiparticle poison-
ing (QPP) in superconductor-semiconductor hybrid double dot devices. Although
many previous experiments have been done investigating the rates related to the
poisoning processes, most of the available research data describe the dynamics in
pure superconducting devices or investigate the systems coupled to galvanic leads,
which are in itself a significant source of quasiparticles. In this work, we focus on
isolated superconducting islands embedded within a hybrid device, like the ones
proposed to host Majoranas.

To that extent, we have used a technique of dispersive gate sensing (DGS) and
designed an experiment in which we investigate the processes arising when excess
quasiparticles are present on the island. Using reflectometry for the purposes of
DGS, we were able to carry out the experiment in a so-called floating regime, where
using voltage-controlled tunnel gates, we were able to suppress external tunnelling
events from the nearby leads. This enabled us to focus solely on the internal poi-
soning processes of the superconductor, which were previously unexplored. Using
time-resolved spectroscopy, we recorded charge-tunnelling dependent resonator re-
sponses with a microsecond integration time. In principle, for a process occurring at
rates that are slower than the measurement frequency, this technique can be used to
convert a relatively faint difference between two states (for example a poisoned and
an unpoisoned state), into a much clearer signal of the gate being either on Coulomb
resonance versus on Coulomb blockade.

As no clear signal could be visible at the base temperature at normal operational
conditions, we attempted to intentionally induce quasiparticle poisoning by irradiat-
ing the sample with radio-frequency (RF) power, and by increasing the temperature
- both known factors with an effect of increasing the average number of quasipar-
ticles above the SC gap in superconductors. However, no QP tunnelling processes
could be observed. A possible answer to this observation could be provided by the
principle of detailed balance. It predicts that in thermal equilibrium at temperatures
used in cryogenic refrigerators, Cooper pair breaking rate falls multiple orders of
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magnitude short of the recombination rates. Alternatively, the models for super-
conducting systems we used to predict thermal effects might wrongly estimate the
quasiparticle density in hybrid devices and do not account for how the presence of
the Majorana modes itself changes np. Lastly, as the signal-to-noise ratio becomes
increasingly smaller at higher temperatures, as well as higher powers, quasiparticle
poisoning events might impart a minuscule dispersive shift, which hides within the
noise level of the device. For a more precise value, a quasiparticle number fluctu-
ation using a master equation formalism could be investigated, similar to the one
presented in [65].

Additionally, we have shown how a long telegraph measurement can make vis-
ible processes which are not necessarily evident from an averaged measurement.
This was further illustrated with the two-level fluctuator example, whereby charac-
terising a telegraph signal of two distinct histogram peaks in the I/Q plane, we were
able to determine average dwell times, and characteristic lifetimes of each state. This
approach is also well suited for quasiparticle poisoning data analysis, where two
different responses from the resonator would indicate either a poisoned or an un-
poisoned state.

An important thing to note is that not observing a shift, does not necessarily
imply that the island is not poisoned. DGS does not measure a single electron tun-
nelling events, but rather indicates a degeneracy of two levels, where an electron can
tunnel back and forth thousands of times, with rates on the order of GHz. If the rates
of recombination of quasiparticles on the SC island are much larger than the rates of
tunnelling between the dots, the electron might recombine back in the condensate
much too often, leaving behind no characteristic footprint in the resonator response.

To that end, an improvement to the proposed experiment could be made, where
these rates are increased in one way. By adding a second quantum dot to the double
dot system, we could design a sort of "vacuum cleaner" for the quasiparticles on the
island. By tuning the two dots in resonance with one another, but slightly below the
resonance with respect to the gap of the SC island, we could measure the tunnelling
events between the two dots. If initially, the two energy dots are empty, the only
source of electrons would be from above the gap of the superconducting island. In
this way, further insight into the dynamics of quasiparticles on the island could be
made.

Finally, a fair question that still needs to be addressed in relation to the outlook
of the experiment is whether the setup proposed in the experiment, where a dou-
ble dot system is completely decoupled from any leads, can be used in a context
of qubits, more precisely, Majorana qubits. Based on recent proposals for scalable
designs allowing for QPP-protected topological quantum computing [13, 14], a de-
vice predicted to host a topological qubit can (in theory) be operated entirely within
the Coulomb blockade relative to the leads. It stands to reason that the qubit could,
therefore, be realised and measured in a floating regime using DGS. Particularly, if
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the poisoning times are significantly shorter in floating regimes, this could probe the
way towards even more protected qubit schemes.
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Appendix A

Toy Model for Excited State
Driving

A.1 Hamiltonian in the Rotating Frame

The Hamiltonian for a double dot with finite tunnel splitting is given by

H/h̄ =
τ

2
σz +

ε

2
σx. (A.1)

where τ = 2tc
h̄ , with 2tc being the full splitting of the anti-crossing at charge degen-

eracy, and σi the Pauli matrices given by

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
, (A.2)

with simple commutation relations given by

[σi, σj] = 2εijkσk,

with εijk the Levi-Civita symbol. Modulation around degeneracy with frequency ω

implies

ε(t) = ε0 cos(ωt) =
ECCgVr f

eh̄
cos(ωt)

=
eαVr f

h̄
cos(ωt), (A.3)

with Vr f the maximum amplitude of the RF gate voltage around the degeneracy
point. In the last part we use the double dot electrostatic energy given by [33]. By
defining the unitary operator U as U = exp

(
i 1

2 ωtσz
)
,, the Hamiltonian transforms

according to:
H/h̄→ U(H/h̄)U† + iU̇U† := H̃/h̄, (A.4)



Appendix A. Toy Model for Excited State Driving 49

with daggers denoting complex conjugates, and the dot above U time derivative.
The second part of this equation, iU̇U†, can be evaluated relatively straightforwardly:

iU̇U† =i2 1
2

ωσz exp
(

i
1
2

ωtσz

)
exp

(
−i

1
2

ωtσz

)
=

=− 1
2

ωσz. (A.5)

The first part requires a little more effort. The idea is to commute the U† operator
through the Hamiltonian, where on the other side it will cancel out with U operator.
As the operators of the Hamiltonian will not necessarily commute with the operators
of the rotation operator U, this will result in extra terms.

U(H/h̄)U† =ei 1
2 ωtσz

(τ

2
σz +

ε

2
σx

)
e−i 1

2 ωtσz

= ei 1
2 ωtσz

(τ

2
σz

)
e−i 1

2 ωtσz︸ ︷︷ ︸
= τ

2 σz, as σz and σz commute

+ei 1
2 ωtσz

(ε

2
σx

)
e−i 1

2 ωtσz

=
τ

2
σz + ei 1

2 ωtσz
(ε

2
σx

)
e−i 1

2 ωtσz

=
τ

2
σz +

(
Icos(

1
2

ωt) + iσzsin(
1
2

ωt
)(ε

2
σx

)(
Icos(

1
2

ωt)− iσzsin(
1
2

ωt
)

=
τ

2
σz +

(
Icos(

1
2

ωt) + iσzsin(
1
2

ωt
)(

Icos(
1
2

ωt)
ε

2
σx − i

ε

2
sin(

1
2

ωt)σxσz

)
.

where the exponent was expanded according to the Euler’s identity

ei 1
2 ωtσz = Icos(

1
2

ωt) + iσzsin(
1
2

ωt).

Here, the commutation of σx and σz is not straightforward. We need to consider
the commutation relation between the two Pauli matrices, [σi, σj] = 2εijkσk, with
εijk being the Levi-Civita symbol. For the case of σx and σz this expression yields
[σx, σz] = σxσz − σzσx = 2i(−1)σy, which means that we can replace the σxσz in
the expression above with σzσx − 2iσy. Remember, the motivation behind this is to
commute the Hamiltonian term through the rotation operator in order to simplify
the expression in the next step, where the two complex conjugates should cancel out.
The detailed working out is presented below:
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U(H/h̄)U† =
τ
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)
The full Hamiltonian in the rotating frame can thus be written as1

H̃/h̄ =U(H/h̄)U† + iU̇U† =

=
τ

2
σz +

ε0

4

(
σx + cos(2ωt)σx − sin(2ωt)σy

)
− 1

2
ωσz

=
τ −ω

2
σz +

eαVr f

h̄
1
4

(
σx + cos(2ωt)σx − sin(2ωt)σy

)
=

∆
2

σz +
Ω
4

(
σx + cos(2ωt)σx − sin(2ωt)σy

)
(A.6)

with ∆ = τ −ω and Ω =
eαVr f

h̄ .

A.2 Time-Averaged Population of the Ground State

Further simplifications to A.6 above are limited due to timescales of our system. We
cannot neglect the counter-rotating terms at 2ω by making a rotating-wave approx-
imation, as the detuning ∆ is often on the orders of GHz. However, as the system is
expected to dephase rapidly when excited, and we are not in particular interested in
the fast time dynamics, we can assume that all time dependent terms lead to random

1This equation is in slight deviation with the equation obtained in [66]. In particular, there is a
difference of a factor 1/2 for zero phase of the RF field. This difference must come from the fact that
our expression for the driving field only includes the cosine term, which adds an additional factor of
one half.
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phase jumps in the driven frame, rather than coherent precession. The two Hamilto-
nian of our interest are the time-independent part of A.6 with (H1) and without (H2)
the presence of the driving field:

H1/h̄ =
1
2

(
∆ Ω0

Ω0 −∆

)
(A.7) H2/h̄ =

1
2

(
∆ 0
0 −∆

)
(A.8)

with ∆ = τ − ω and Ω0 = eαVr f /2h̄. This allows us to determine the time-
averaged population in the ground state pgs simply as the overlap probability of the
ground state eigenvector with the original ground state,

pgs = |〈g1|g2〉|2, (A.9)

with gi the ground state of corresponding Hamiltonian. By obtaining the eigen-
values λ and eigenvectors −→v through the usual calculation, det(H − Iλ) = 0 and
(H − Iλ)−→v = 0, the ground state eigenvectors and eigenvalues are then

λ1,g =− h̄Ωe f f /2

v1,g =

(
−Ω0/(∆ + Ωe f f )

1

) λ2,g =− h̄∆/2

v2,g =

(
0
1

)

with Ωe f f =
√

∆2 + Ω2
0. After normalising, this leads to the final result:

p(1)gs =
Ω2

0

Ω2
0 + (∆−Ωe f f )2

. (A.10)

In a slightly more radical approach, we could assume that the state vector jumps
randomly between the limiting values of pgs. Then, the time time-averaged ground
state probability can be expressed in terms of half the maximum excited state proba-
bility from a detuned Rabi oscillation p(2)gs = 1−Ω2

0/2Ω2
e f f . For a full tunnel splitting

2tc = 8 GHz and typical circuit parameters (similar to those reported in ref. [48]),
α ≈ 0.75, ∆ ≈ 7.5 GHz the relation between the excited state probabilities and the
applied RF voltage (translated into readout power in the right panel, assuming qual-
ity factor Q = 250 and the capacitance of the resonator C = 0.3 pF) is shown in Fig.
A.1.
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FIGURE A.1: The probability of driving to the excited state as a func-
tion of RF voltage (left) and translated into readout power (right).
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Appendix B

Tunnelling Between SC and QD

To understand the CSD as one in figure 4.2b, let us visualise the density of state of
the system on charge degeneracies. Let us consider decreasing the voltage of the
plunger gate of the normal quantum dot while leaving the chemical potential of the
superconducting island intact. That corresponds to moving left across a horizontal
line on the CSD (along the arrow in Fig. B.1), and energy levels of the quantum dot
moving upwards, with respect to the superconductor. As the superconductivity in
our sample occurs via proximity effect, we might expect some subgap states (blue
lines within the gap) at ∆̃ < ∆ above the Cooper pair condensate (at the dashed
line). The relationship between different energy scales of the system is ∆̃ < ESC

C ,
making the quasiparticle states accessible, and allowing the even-odd pattern to be
observed.

FIGURE B.1: Charge stability diagram; resonator phase shift as a function of the plunger
gates on the SC and the normal QD. The orange line indicates the even regime, the blue one,
odd regime. The energy spacings in terms of the charging energies superconducting gap are
given below. Dotted lines indicate where the empty energy level of the QD is aligned with
the energy state of the SC where quasiparticles might be located. Numbers denote different
energy configurations of the SC and the QD, schematically shown below. [Comment on

whether the voltage on the SC is kept at the value indicated on the plot.]

Even regime: ESC
C + EQD

C + 2∆̃ (B.1)

Odd regime: ESC
C + EQD

C − 2∆̃ (B.2)
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If quasiparticles indeed tunnel from the island, the signal would be visible along
the two dashed lines, located 2∆̃ from each side within the even regime. The spacing
between the two dashed lines, representing two lines of excess quasiparticle transi-
tion, is the same as the odd spacing.

FIGURE B.2: The right of the pair of parallel lines indicates a
tunnelling event when the energy level of the quantum dot is
aligned (degenerate) with the lowest available single-particle
energy state above the gap (number 1 in Fig. B.1). At this
point, the energy cost of an electron being on the quantum dot
is the same as for the electron on the superconductor, hence
the electron is free to tunnel between the two. This can be
visible as a shift in the phase (and amplitude) of the reflected

RF signal.

FIGURE B.3: The left of the pair of parallel lines indicates a
tunnelling event when the energy level of the quantum dot
is aligned (degenerate) with the lowest single-particle energy
state below the gap (number 2 in Fig. B.1). At this point,
the two electron can recombine into a Cooper pair. An al-
ternative way of seeing this process is an electron tunnelling
into the available hole quasiparticle below the gap, which be-
came available when the electron from that energy state re-
combined with an existing electron (quasiparticle) on the is-
land. As before, this results in a shift in the phase (and am-
plitude) of the reflected RF signal. Notice that compared to
the previous situation, the change in energy, and thus the odd
spacing is given by EQD

C + ESC
C − 2∆̃, accounting for the energy

needed for adding an electron to the SC.

FIGURE B.4: Shifted 2∆̃ from the last point, the empty energy
level of the quantum dot aligns with the lowest single-particle
subgap state on the superconductor (number 3 in Fig. B.1). If
quasiparticles are present on the island on the subgap state,
they can tunnel between the SC island and the dot, which
again should results in a shift in the phase (and amplitude)

of the reflected RF signal.
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FIGURE B.5: The hole-symmetric process of the one above is
depicted here (number 4 in Fig. B.1). In this case, an elec-
tron from the quantum dot can recombine with a quasipar-
ticle from the SC. An alternative view of the process is an
electron from the sea of electrons below the condensate re-
combining with the quasiparticle from above the condensate,
leaving behind a hole quasiparticle to which an electron from
the dot can tunnel. This should again result in a shift in the
phase (and amplitude) of the reflected RF signal. After this,
the full cycle is completed, and the system is again in the state

presented in B.2.
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Appendix C

Additional Measurement Figures

C.1 Pinchoff Curves

FIGURE C.1: RF Pinchoff curves for the interdot gate T4 for the first sample. By investigating
the RF response between the two dots, pinchoff curves for the gate can be plotted, and we
can determine what voltage provides weak tunnelling across it. (Upper-left plot) A full map
of the I component of the signal, as a function of the gate voltage. An averaged I value
is plotted in the left-lower panel. A zoomed-in scan of the same graph is provided in the
right panel, clearly showing bright, 2e periodic lines around roughly T4 = −0.36V, with a
pinched-off regime at values below ∼ −0.4V.

FIGURE C.2: The RF pinchoff
curves for the interdot gate T3 for
the second sample. (Upper plot) A
full map of the I component of the
signal, as a function of the gate volt-
age. An averaged I value is plotted
in the lower panel. The gate value
of T4 = −0.4V gives a clear and

bright 2e spacing.
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C.2 Energy Characterisation

2∆

EQD
c /e

(a)

4∆

(b)

FIGURE C.3: Coulomb diamonds of the first device for the normal (a) QD and (b) SC island.
The left panel shows current as a function of gate voltage and bias, while the right figure
shows differential conductance (numerical derivative of the current, with respect to the bias
voltage) in units of conductance quantum. For the SC island, the leads are normal while the
dot is superconducting. The two-electron transport cycles produce the the diamonds that
are four times higher and twice as wide as in the case of single electron transport.

C.3 Resonator Responses - Determining the resonant frequen-
cies

(a) (b) (c) (d)

FIGURE C.4: Resonator response around the resonant frequencies for the two devices.
(a) QD on the first device (ω0 = 4.77674 GHz) (b) SC island on the first device (ω0 =
6.16824 GHz) (c) QD on the second device (ω0 = 5.79548 GHz) (d) SC island on the sec-
ond device (ω0 = 6.27949 GHz).
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C.4 Power Scan

FIGURE C.5: In-phase component versus gate voltage versus applied resonator power, in
units of dBm (power ratio with reference to one milliwatt, referenced relative to a 50-ohm
impedance. It can be seen from the diagram, that at higher powers the contrast between
the signal and background is reduced, possibly due to the destructively interfering quantum
capacitances of the excited states driven by large power, relative to the ground state. Another
affecting factor is that at around -40 dBm (input power, before ∼ 70 dB attenuation), TWPA
produces less gain, which could result in a lower signal response.
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(a)

(b)

FIGURE C.6: Power scans as the one in Fig. 4.7, with (a) P = −33 dBm and (b) P = −60 dBm.
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C.5 Gaussian Division

FIGURE C.7: A graphical approach towards splitting observation. Here we illustrate how we
can amplify very small splittings or elongations of a distribution. For this, we generated a
Gaussian distribution (left figure), and a second one with only a very slight splitting (middle
figure), that would be difficult to pick up with a naked eye. If we divide the two spectra, and
square the result, we observe a bright corona (right figure), where the original distribution
started to split.
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And lastly, I need to thank the person who has encouraged me and supported
me (literally) every second over the last few months. Simona, I could not achieve



Appendix C. Additional Measurement Figures 62

half of what I achieve if it weren’t for you. No words can describe the motivation,
confidence and lift you give me daily. Thank you my love.



63

Bibliography

[1] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer”. In: SIAM Journal on Computing
26.5 (1997), pp. 1484–1509. DOI: 10.1137/S0097539795293172. eprint: https:
//doi.org/10.1137/S0097539795293172. URL: https://doi.org/10.1137/
S0097539795293172.

[2] Lov K. Grover. “A fast quantum mechanical algorithm for database search”.
In: arXiv e-prints, quant-ph/9605043 (May 1996), quant–ph/9605043. arXiv:
quant-ph/9605043 [quant-ph].

[3] Charles H. Bennett and Gilles Brassard. “Quantum cryptography: Public key
distribution and coin tossing”. In: Theoretical Computer Science 560 (2014). The-
oretical Aspects of Quantum Cryptography – celebrating 30 years of BB84,
pp. 7 –11. ISSN: 0304-3975. DOI: https://doi.org/10.1016/j.tcs.2014.
05 . 025. URL: http : / / www . sciencedirect . com / science / article / pii /
S0304397514004241.

[4] Richard P. Feynman. “Simulating physics with computers”. In: International
Journal of Theoretical Physics 21.6 (June 1982), pp. 467–488. ISSN: 1572-9575. DOI:
10.1007/BF02650179. URL: https://doi.org/10.1007/BF02650179.

[5] David P. Divincenzo. “The Physical Implementation of Quantum Computa-
tion”. In: Fortschritte der Physik 48.9-11 (Jan. 2000), pp. 771–783. DOI: 10.1002/
1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E. arXiv: quant-
ph/0002077 [quant-ph].

[6] Ashley Montanaro. “Quantum algorithms: an overview”. In: npj Quantum In-
formation 2.1 (2016), p. 15023. ISSN: 2056-6387. DOI: 10.1038/npjqi.2015.23.
URL: https://doi.org/10.1038/npjqi.2015.23.

[7] T. D. Ladd et al. “Quantum computers”. In: Nature 464.7285 (Mar. 2010), pp. 45–
53. ISSN: 1476-4687. DOI: 10.1038/nature08812. URL: https://doi.org/10.
1038/nature08812.

[8] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information: 10th Anniversary Edition. 10th. USA: Cambridge University Press,
2011. ISBN: 1107002176.

[9] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. “Roads towards
fault-tolerant universal quantum computation”. In: Nature 549.7671 (Sept. 2017),
pp. 172–179. DOI: 10.1038/nature23460. arXiv: 1612.07330 [quant-ph].

https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://arxiv.org/abs/quant-ph/9605043
https://doi.org/https://doi.org/10.1016/j.tcs.2014.05.025
https://doi.org/https://doi.org/10.1016/j.tcs.2014.05.025
http://www.sciencedirect.com/science/article/pii/S0304397514004241
http://www.sciencedirect.com/science/article/pii/S0304397514004241
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://arxiv.org/abs/quant-ph/0002077
https://arxiv.org/abs/quant-ph/0002077
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/npjqi.2015.23
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature08812
https://doi.org/10.1038/nature23460
https://arxiv.org/abs/1612.07330


Bibliography 64

[10] David Aasen et al. “Milestones Toward Majorana-Based Quantum Comput-
ing”. In: Physical Review X 6.3, 031016 (July 2016), p. 031016. DOI: 10.1103/
PhysRevX.6.031016. arXiv: 1511.05153 [cond-mat.mes-hall].

[11] Chetan Nayak et al. “Non-Abelian anyons and topological quantum compu-
tation”. In: Reviews of Modern Physics 80.3 (July 2008), pp. 1083–1159. DOI: 10.
1103/RevModPhys.80.1083. arXiv: 0707.1889 [cond-mat.str-el].

[12] Parsa Bonderson, Michael Freedman, and Chetan Nayak. “Measurement-Only
Topological Quantum Computation”. In: Phys. Rev. Lett. 101 (1 2008), p. 010501.
DOI: 10.1103/PhysRevLett.101.010501. URL: https://link.aps.org/doi/
10.1103/PhysRevLett.101.010501.

[13] Torsten Karzig et al. “Scalable designs for quasiparticle-poisoning-protected
topological quantum computation with Majorana zero modes”. In: Phys. Rev.
B 95 (23 2017), p. 235305. DOI: 10.1103/PhysRevB.95.235305. URL: https:
//link.aps.org/doi/10.1103/PhysRevB.95.235305.

[14] Stephan Plugge et al. “Majorana box qubits”. In: New Journal of Physics 19.1
(2017), p. 012001. DOI: 10.1088/1367-2630/aa54e1. URL: https://doi.org/
10.1088%2F1367-2630%2Faa54e1.

[15] A. Yu Kitaev. “6. QUANTUM COMPUTING: Unpaired Majorana fermions in
quantum wires”. In: Physics Uspekhi 44.10S (Oct. 2001), p. 131. DOI: 10.1070/
1063-7869/44/10S/S29. arXiv: cond-mat/0010440 [cond-mat.mes-hall].

[16] Liang Fu and C. L. Kane. “Superconducting Proximity Effect and Majorana
Fermions at the Surface of a Topological Insulator”. In: Phys. Rev. Lett. 100
(9 2008), p. 096407. DOI: 10.1103/PhysRevLett.100.096407. URL: https:
//link.aps.org/doi/10.1103/PhysRevLett.100.096407.

[17] Christina Knapp et al. “Dephasing of Majorana-based qubits”. In: Phys. Rev.
B 97 (12 2018), p. 125404. DOI: 10.1103/PhysRevB.97.125404. URL: https:
//link.aps.org/doi/10.1103/PhysRevB.97.125404.

[18] Torsten Karzig, William S. Cole, and Dmitry I. Pikulin. “Quasiparticle poi-
soning of Majorana qubits”. In: arXiv e-prints, arXiv:2004.01264 (Apr. 2020),
arXiv:2004.01264. arXiv: 2004.01264 [cond-mat.mes-hall].

[19] John M. Martinis, M. Ansmann, and J. Aumentado. “Energy Decay in Su-
perconducting Josephson-Junction Qubits from Nonequilibrium Quasiparti-
cle Excitations”. In: Phys. Rev. Lett. 103 (9 2009), p. 097002. DOI: 10 . 1103 /
PhysRevLett.103.097002. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.103.097002.

[20] A. J. Ferguson et al. “Microsecond Resolution of Quasiparticle Tunneling in
the Single-Cooper-Pair Transistor”. In: Phys. Rev. Lett. 97 (10 2006), p. 106603.
DOI: 10.1103/PhysRevLett.97.106603. URL: https://link.aps.org/doi/
10.1103/PhysRevLett.97.106603.

https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://arxiv.org/abs/1511.05153
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://arxiv.org/abs/0707.1889
https://doi.org/10.1103/PhysRevLett.101.010501
https://link.aps.org/doi/10.1103/PhysRevLett.101.010501
https://link.aps.org/doi/10.1103/PhysRevLett.101.010501
https://doi.org/10.1103/PhysRevB.95.235305
https://link.aps.org/doi/10.1103/PhysRevB.95.235305
https://link.aps.org/doi/10.1103/PhysRevB.95.235305
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1088%2F1367-2630%2Faa54e1
https://doi.org/10.1088%2F1367-2630%2Faa54e1
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://arxiv.org/abs/cond-mat/0010440
https://doi.org/10.1103/PhysRevLett.100.096407
https://link.aps.org/doi/10.1103/PhysRevLett.100.096407
https://link.aps.org/doi/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevB.97.125404
https://link.aps.org/doi/10.1103/PhysRevB.97.125404
https://link.aps.org/doi/10.1103/PhysRevB.97.125404
https://arxiv.org/abs/2004.01264
https://doi.org/10.1103/PhysRevLett.103.097002
https://doi.org/10.1103/PhysRevLett.103.097002
https://link.aps.org/doi/10.1103/PhysRevLett.103.097002
https://link.aps.org/doi/10.1103/PhysRevLett.103.097002
https://doi.org/10.1103/PhysRevLett.97.106603
https://link.aps.org/doi/10.1103/PhysRevLett.97.106603
https://link.aps.org/doi/10.1103/PhysRevLett.97.106603


Bibliography 65

[21] D. Ristè et al. “Millisecond charge-parity fluctuations and induced decoher-
ence in a superconducting transmon qubit”. In: Nature Communications 4.1
(2013), p. 1913. ISSN: 2041-1723. DOI: 10.1038/ncomms2936. URL: https://
doi.org/10.1038/ncomms2936.

[22] V. F. Maisi et al. “Excitation of Single Quasiparticles in a Small Superconduct-
ing Al Island Connected to Normal-Metal Leads by Tunnel Junctions”. In:
Phys. Rev. Lett. 111 (14 2013), p. 147001. DOI: 10.1103/PhysRevLett.111.
147001. URL: https://link.aps.org/doi/10.1103/PhysRevLett.111.
147001.

[23] Diego Rainis and Daniel Loss. “Majorana qubit decoherence by quasiparticle
poisoning”. In: Phys. Rev. B 85 (17 2012), p. 174533. DOI: 10.1103/PhysRevB.
85.174533. URL: https://link.aps.org/doi/10.1103/PhysRevB.85.174533.

[24] S. M. Albrecht et al. “Transport Signatures of Quasiparticle Poisoning in a Ma-
jorana Island”. In: Phys. Rev. Lett. 118 (13 2017), p. 137701. DOI: 10 . 1103 /
PhysRevLett.118.137701. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.118.137701.

[25] A. P. Higginbotham et al. “Parity lifetime of bound states in a proximitized
semiconductor nanowire”. In: Nature Physics 11.12 (2015), pp. 1017–1021. ISSN:
1745-2481. DOI: 10 . 1038 / nphys3461. URL: https : / / doi . org / 10 . 1038 /
nphys3461.

[26] Gerbold C. Ménard et al. “Suppressing quasiparticle poisoning with a voltage-
controlled filter”. In: Phys. Rev. B 100 (16 2019), p. 165307. DOI: 10 . 1103 /
PhysRevB.100.165307. URL: https://link.aps.org/doi/10.1103/PhysRevB.
100.165307.

[27] Michael Tinkham. Introduction to Superconductivity. 2nd ed. Dover Publica-
tions, June 2004. ISBN: 0486435032. URL: http://www.worldcat.org/isbn/
0486435032.

[28] Anton Bespalov et al. “Theoretical Model to Explain Excess of Quasiparticles
in Superconductors”. In: Phys. Rev. Lett. 117 (11 2016), p. 117002. DOI: 10.1103/
PhysRevLett.117.117002. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.117.117002.

[29] Alexandre Blais et al. “Cavity quantum electrodynamics for superconducting
electrical circuits: An architecture for quantum computation”. In: Phys. Rev.
A 69 (6 2004), p. 062320. DOI: 10.1103/PhysRevA.69.062320. URL: https:
//link.aps.org/doi/10.1103/PhysRevA.69.062320.

[30] Leo P Kouwenhoven et al. “Electron transport in quantum dots”. In: Meso-
scopic electron transport. Springer, 1997, pp. 105–214.

[31] R. Hanson et al. “Spins in few-electron quantum dots”. In: Rev. Mod. Phys. 79
(4 2007), pp. 1217–1265. DOI: 10.1103/RevModPhys.79.1217. URL: https:
//link.aps.org/doi/10.1103/RevModPhys.79.1217.

https://doi.org/10.1038/ncomms2936
https://doi.org/10.1038/ncomms2936
https://doi.org/10.1038/ncomms2936
https://doi.org/10.1103/PhysRevLett.111.147001
https://doi.org/10.1103/PhysRevLett.111.147001
https://link.aps.org/doi/10.1103/PhysRevLett.111.147001
https://link.aps.org/doi/10.1103/PhysRevLett.111.147001
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1103/PhysRevB.85.174533
https://link.aps.org/doi/10.1103/PhysRevB.85.174533
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1103/PhysRevLett.118.137701
https://link.aps.org/doi/10.1103/PhysRevLett.118.137701
https://link.aps.org/doi/10.1103/PhysRevLett.118.137701
https://doi.org/10.1038/nphys3461
https://doi.org/10.1038/nphys3461
https://doi.org/10.1038/nphys3461
https://doi.org/10.1103/PhysRevB.100.165307
https://doi.org/10.1103/PhysRevB.100.165307
https://link.aps.org/doi/10.1103/PhysRevB.100.165307
https://link.aps.org/doi/10.1103/PhysRevB.100.165307
http://www.worldcat.org/isbn/0486435032
http://www.worldcat.org/isbn/0486435032
https://doi.org/10.1103/PhysRevLett.117.117002
https://doi.org/10.1103/PhysRevLett.117.117002
https://link.aps.org/doi/10.1103/PhysRevLett.117.117002
https://link.aps.org/doi/10.1103/PhysRevLett.117.117002
https://doi.org/10.1103/PhysRevA.69.062320
https://link.aps.org/doi/10.1103/PhysRevA.69.062320
https://link.aps.org/doi/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/RevModPhys.79.1217
https://link.aps.org/doi/10.1103/RevModPhys.79.1217
https://link.aps.org/doi/10.1103/RevModPhys.79.1217


Bibliography 66

[32] L. P. Kouwenhoven et al. “Single electron charging effects in semiconduc-
tor quantum dots”. In: Zeitschrift für Physik B Condensed Matter 85.3 (1991),
pp. 367–373. ISSN: 1431-584X. DOI: 10.1007/BF01307632. URL: https://doi.
org/10.1007/BF01307632.

[33] Wilfred G Van der Wiel et al. “Electron transport through double quantum
dots”. In: Reviews of Modern Physics 75.1 (2002), p. 1.

[34] H Kamerlingh Onnes. “The resistance of pure mercury at helium tempera-
tures”. In: Commun. Phys. Lab. Univ. Leiden, b 120 (1911).

[35] W. Meissner and R. Ochsenfeld. “Ein neuer Effekt bei Eintritt der Supraleit-
fähigkeit”. In: Naturwissenschaften 21.44 (1933), pp. 787–788. ISSN: 1432-1904.
DOI: 10.1007/BF01504252. URL: https://doi.org/10.1007/BF01504252.

[36] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. “Theory of Superconductivity”.
In: Phys. Rev. 108 (5 1957), pp. 1175–1204. DOI: 10.1103/PhysRev.108.1175.
URL: https://link.aps.org/doi/10.1103/PhysRev.108.1175.

[37] N. N. Bogoljubov. “On a new method in the theory of superconductivity”.
In: Il Nuovo Cimento (1955-1965) 7.6 (1958), pp. 794–805. ISSN: 1827-6121. DOI:
10.1007/BF02745585. URL: https://doi.org/10.1007/BF02745585.

[38] L. DiCarlo et al. “Differential Charge Sensing and Charge Delocalization in
a Tunable Double Quantum Dot”. In: Phys. Rev. Lett. 92 (22 2004), p. 226801.
DOI: 10.1103/PhysRevLett.92.226801. URL: https://link.aps.org/doi/
10.1103/PhysRevLett.92.226801.

[39] R. J. Schoelkopf et al. “The Radio-Frequency Single-Electron Transistor (RF-
SET): A Fast and Ultrasensitive Electrometer”. In: Science 280.5367 (1998), pp. 1238–
1242. ISSN: 0036-8075. DOI: 10.1126/science.280.5367.1238. eprint: https:
//science.sciencemag.org/content/280/5367/1238.full.pdf. URL: https:
//science.sciencemag.org/content/280/5367/1238.

[40] S. Probst et al. “Efficient and robust analysis of complex scattering data under
noise in microwave resonators”. In: Review of Scientific Instruments 86.2 (2015),
p. 024706. DOI: 10.1063/1.4907935. eprint: https://doi.org/10.1063/1.
4907935. URL: https://doi.org/10.1063/1.4907935.

[41] David M Pozar. Microwave engineering; 3rd ed. Hoboken, NJ: Wiley, 2005. URL:
https://cds.cern.ch/record/882338.

[42] R. Mizuta et al. “Quantum and tunneling capacitance in charge and spin qubits”.
In: Phys. Rev. B 95 (4 2017), p. 045414. DOI: 10.1103/PhysRevB.95.045414. URL:
https://link.aps.org/doi/10.1103/PhysRevB.95.045414.

[43] T. Duty et al. “Observation of Quantum Capacitance in the Cooper-Pair Tran-
sistor”. In: Phys. Rev. Lett. 95 (20 2005), p. 206807. DOI: 10.1103/PhysRevLett.
95.206807. URL: https://link.aps.org/doi/10.1103/PhysRevLett.95.
206807.

https://doi.org/10.1007/BF01307632
https://doi.org/10.1007/BF01307632
https://doi.org/10.1007/BF01307632
https://doi.org/10.1007/BF01504252
https://doi.org/10.1007/BF01504252
https://doi.org/10.1103/PhysRev.108.1175
https://link.aps.org/doi/10.1103/PhysRev.108.1175
https://doi.org/10.1007/BF02745585
https://doi.org/10.1007/BF02745585
https://doi.org/10.1103/PhysRevLett.92.226801
https://link.aps.org/doi/10.1103/PhysRevLett.92.226801
https://link.aps.org/doi/10.1103/PhysRevLett.92.226801
https://doi.org/10.1126/science.280.5367.1238
https://science.sciencemag.org/content/280/5367/1238.full.pdf
https://science.sciencemag.org/content/280/5367/1238.full.pdf
https://science.sciencemag.org/content/280/5367/1238
https://science.sciencemag.org/content/280/5367/1238
https://doi.org/10.1063/1.4907935
https://doi.org/10.1063/1.4907935
https://doi.org/10.1063/1.4907935
https://doi.org/10.1063/1.4907935
https://cds.cern.ch/record/882338
https://doi.org/10.1103/PhysRevB.95.045414
https://link.aps.org/doi/10.1103/PhysRevB.95.045414
https://doi.org/10.1103/PhysRevLett.95.206807
https://doi.org/10.1103/PhysRevLett.95.206807
https://link.aps.org/doi/10.1103/PhysRevLett.95.206807
https://link.aps.org/doi/10.1103/PhysRevLett.95.206807


Bibliography 67

[44] M. D. Schroer et al. “Radio Frequency Charge Parity Meter”. In: Phys. Rev.
Lett. 109 (16 2012), p. 166804. DOI: 10.1103/PhysRevLett.109.166804. URL:
https://link.aps.org/doi/10.1103/PhysRevLett.109.166804.

[45] K. D. Petersson et al. “Charge and Spin State Readout of a Double Quantum
Dot Coupled to a Resonator”. In: Nano Letters 10.8 (2010), pp. 2789–2793. ISSN:
1530-6984. DOI: 10 . 1021 / nl100663w. URL: https : / / doi . org / 10 . 1021 /
nl100663w.

[46] M. Esterli, R. M. Otxoa, and M. F. Gonzalez-Zalba. “Small-signal equivalent
circuit for double quantum dots at low-frequencies”. In: Applied Physics Letters
114.25 (2019), p. 253505. DOI: 10.1063/1.5098889. eprint: https://doi.org/
10.1063/1.5098889. URL: https://doi.org/10.1063/1.5098889.

[47] Matias Urdampilleta et al. “Charge Dynamics and Spin Blockade in a Hybrid
Double Quantum Dot in Silicon”. In: Phys. Rev. X 5 (3 2015), p. 031024. DOI:
10.1103/PhysRevX.5.031024. URL: https://link.aps.org/doi/10.1103/
PhysRevX.5.031024.

[48] Damaz de Jong et al. “Rapid Detection of Coherent Tunneling in an In As
Nanowire Quantum Dot through Dispersive Gate Sensing”. In: Physical Review
Applied 11.4, 044061 (Apr. 2019), p. 044061. DOI: 10.1103/PhysRevApplied.11.
044061. arXiv: 1812.08609 [cond-mat.mes-hall].

[49] K. D. Petersson et al. “Circuit quantum electrodynamics with a spin qubit”. In:
Nature 490.7420 (2012), pp. 380–383. ISSN: 1476-4687. DOI: 10.1038/nature11559.
URL: https://doi.org/10.1038/nature11559.

[50] Gustav Teleberg and Graham Batey. “Principles of dilution refrigeration.” In:
Oxford Instruments Nanoscience (2015).

[51] Frank Pobell. “The 3 He–4 He Dilution Refrigerator”. In: Matter and Methods at
Low Temperatures. Springer, 2007, pp. 149–189.

[52] Ananda Roy and Michel Devoret. “Introduction to parametric amplification
of quantum signals with Josephson circuits”. In: Comptes Rendus Physique 17.7
(2016). Quantum microwaves / Micro-ondes quantiques, pp. 740 –755. ISSN:
1631-0705. DOI: https://doi.org/10.1016/j.crhy.2016.07.012. URL: http:
//www.sciencedirect.com/science/article/pii/S1631070516300640.

[53] Daan Waardenburg. “On-chip circuit design for capacitive gate based read-
out.” MA thesis. the Netherlands: Delft University of Technology, 2019.

[54] M. Göppl et al. “Coplanar waveguide resonators for circuit quantum electro-
dynamics”. In: Journal of Applied Physics 104.11 (2008), p. 113904. DOI: 10.1063/
1.3010859. eprint: https://doi.org/10.1063/1.3010859. URL: https:
//doi.org/10.1063/1.3010859.

https://doi.org/10.1103/PhysRevLett.109.166804
https://link.aps.org/doi/10.1103/PhysRevLett.109.166804
https://doi.org/10.1021/nl100663w
https://doi.org/10.1021/nl100663w
https://doi.org/10.1021/nl100663w
https://doi.org/10.1063/1.5098889
https://doi.org/10.1063/1.5098889
https://doi.org/10.1063/1.5098889
https://doi.org/10.1063/1.5098889
https://doi.org/10.1103/PhysRevX.5.031024
https://link.aps.org/doi/10.1103/PhysRevX.5.031024
https://link.aps.org/doi/10.1103/PhysRevX.5.031024
https://doi.org/10.1103/PhysRevApplied.11.044061
https://doi.org/10.1103/PhysRevApplied.11.044061
https://arxiv.org/abs/1812.08609
https://doi.org/10.1038/nature11559
https://doi.org/10.1038/nature11559
https://doi.org/https://doi.org/10.1016/j.crhy.2016.07.012
http://www.sciencedirect.com/science/article/pii/S1631070516300640
http://www.sciencedirect.com/science/article/pii/S1631070516300640
https://doi.org/10.1063/1.3010859
https://doi.org/10.1063/1.3010859
https://doi.org/10.1063/1.3010859
https://doi.org/10.1063/1.3010859
https://doi.org/10.1063/1.3010859


Bibliography 68

[55] M. T. Tuominen et al. “Experimental evidence for parity-based 2e periodicity
in a superconducting single-electron tunneling transistor”. In: Phys. Rev. Lett.
69 (13 1992), pp. 1997–2000. DOI: 10.1103/PhysRevLett.69.1997. URL: https:
//link.aps.org/doi/10.1103/PhysRevLett.69.1997.

[56] J. Aumentado et al. “Nonequilibrium Quasiparticles and 2e Periodicity in Single-
Cooper-Pair Transistors”. In: Phys. Rev. Lett. 92 (6 2004), p. 066802. DOI: 10.
1103/PhysRevLett.92.066802. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.92.066802.

[57] O. Naaman and J. Aumentado. “Time-domain measurements of quasiparticle
tunneling rates in a single-Cooper-pair transistor”. In: Phys. Rev. B 73 (17 2006),
p. 172504. DOI: 10.1103/PhysRevB.73.172504. URL: https://link.aps.org/
doi/10.1103/PhysRevB.73.172504.

[58] P. J. de Visser et al. “Number Fluctuations of Sparse Quasiparticles in a Su-
perconductor”. In: Phys. Rev. Lett. 106 (16 2011), p. 167004. DOI: 10 . 1103 /
PhysRevLett.106.167004. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.106.167004.

[59] N. A. Court et al. “Quantitative study of quasiparticle traps using the single-
Cooper-pair transistor”. In: Phys. Rev. B 77 (10 2008), p. 100501. DOI: 10.1103/
PhysRevB.77.100501. URL: https://link.aps.org/doi/10.1103/PhysRevB.
77.100501.

[60] M. D. Shaw et al. “Kinetics of nonequilibrium quasiparticle tunneling in su-
perconducting charge qubits”. In: Phys. Rev. B 78 (2 2008), p. 024503. DOI:
10.1103/PhysRevB.78.024503. URL: https://link.aps.org/doi/10.
1103/PhysRevB.78.024503.

[61] J. M. Hergenrother, M. T. Tuominen, and M. Tinkham. “Charge transport by
Andreev reflection through a mesoscopic superconducting island”. In: Phys.
Rev. Lett. 72 (11 1994), pp. 1742–1745. DOI: 10.1103/PhysRevLett.72.1742.
URL: https://link.aps.org/doi/10.1103/PhysRevLett.72.1742.

[62] Jasper van Veen et al. “Revealing charge-tunneling processes between a quan-
tum dot and a superconducting island through gate sensing”. In: Phys. Rev. B
100 (17 2019), p. 174508. DOI: 10.1103/PhysRevB.100.174508. URL: https:
//link.aps.org/doi/10.1103/PhysRevB.100.174508.

[63] John F. Cochran and D. E. Mapother. “Superconducting Transition in Alu-
minum”. In: Phys. Rev. 111 (1 1958), pp. 132–142. DOI: 10.1103/PhysRev.111.
132. URL: https://link.aps.org/doi/10.1103/PhysRev.111.132.

[64] C. M. Wilson, L. Frunzio, and D. E. Prober. “Time-Resolved Measurements
of Thermodynamic Fluctuations of the Particle Number in a Nondegener-
ate Fermi Gas”. In: Phys. Rev. Lett. 87 (6 2001), p. 067004. DOI: 10 . 1103 /
PhysRevLett . 87 . 067004. URL: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevLett.87.067004.

https://doi.org/10.1103/PhysRevLett.69.1997
https://link.aps.org/doi/10.1103/PhysRevLett.69.1997
https://link.aps.org/doi/10.1103/PhysRevLett.69.1997
https://doi.org/10.1103/PhysRevLett.92.066802
https://doi.org/10.1103/PhysRevLett.92.066802
https://link.aps.org/doi/10.1103/PhysRevLett.92.066802
https://link.aps.org/doi/10.1103/PhysRevLett.92.066802
https://doi.org/10.1103/PhysRevB.73.172504
https://link.aps.org/doi/10.1103/PhysRevB.73.172504
https://link.aps.org/doi/10.1103/PhysRevB.73.172504
https://doi.org/10.1103/PhysRevLett.106.167004
https://doi.org/10.1103/PhysRevLett.106.167004
https://link.aps.org/doi/10.1103/PhysRevLett.106.167004
https://link.aps.org/doi/10.1103/PhysRevLett.106.167004
https://doi.org/10.1103/PhysRevB.77.100501
https://doi.org/10.1103/PhysRevB.77.100501
https://link.aps.org/doi/10.1103/PhysRevB.77.100501
https://link.aps.org/doi/10.1103/PhysRevB.77.100501
https://doi.org/10.1103/PhysRevB.78.024503
https://link.aps.org/doi/10.1103/PhysRevB.78.024503
https://link.aps.org/doi/10.1103/PhysRevB.78.024503
https://doi.org/10.1103/PhysRevLett.72.1742
https://link.aps.org/doi/10.1103/PhysRevLett.72.1742
https://doi.org/10.1103/PhysRevB.100.174508
https://link.aps.org/doi/10.1103/PhysRevB.100.174508
https://link.aps.org/doi/10.1103/PhysRevB.100.174508
https://doi.org/10.1103/PhysRev.111.132
https://doi.org/10.1103/PhysRev.111.132
https://link.aps.org/doi/10.1103/PhysRev.111.132
https://doi.org/10.1103/PhysRevLett.87.067004
https://doi.org/10.1103/PhysRevLett.87.067004
https://link.aps.org/doi/10.1103/PhysRevLett.87.067004
https://link.aps.org/doi/10.1103/PhysRevLett.87.067004


Bibliography 69

[65] CM Wilson and DE Prober. “Quasiparticle number fluctuations in supercon-
ductors”. In: Physical Review B 69.9 (2004), p. 094524.

[66] L. M. K. Vandersypen and I. L. Chuang. “NMR techniques for quantum con-
trol and computation”. In: Rev. Mod. Phys. 76 (4 2005), pp. 1037–1069. DOI:
10.1103/RevModPhys.76.1037. URL: https://link.aps.org/doi/10.1103/
RevModPhys.76.1037.

https://doi.org/10.1103/RevModPhys.76.1037
https://link.aps.org/doi/10.1103/RevModPhys.76.1037
https://link.aps.org/doi/10.1103/RevModPhys.76.1037

	Abstract
	Introduction
	Outline

	Theoretical Background
	Quantum Dots
	Electron Tunnelling
	Single Quantum Dot
	Double Quantum Dot

	Superconductivity
	BCS Theory
	Bogoliubov Quasiparticles
	Superconducting gap
	Density of states
	Proximity effect

	Gate-Based Reflectometry Readout
	Reflectometry
	Parametric Capacitance
	Quantum and Tunnelling Capacitance

	Dispersive Readout SNR

	Experimental Setup
	Measurement Setup
	Dilution Refrigerator
	Electronics

	The Quantum Dot Device

	Experimental Results
	Quasiparticle Poisoning
	Description of the experiment
	System Tune-up and Characterisation
	Experimental Data
	Power Scans
	The effects of tunnel gate T4
	Two Level Fluctuator
	Temperature Dependence Scans

	Discussion
	Detailed Balance condition rates


	Conclusion and Future Directions
	Toy Model for Excited State Driving
	Hamiltonian in the Rotating Frame
	Time-Averaged Population of the Ground State

	Tunnelling Between SC and QD
	Additional Measurement Figures
	Pinchoff Curves
	Energy Characterisation
	Resonator Responses - Determining the resonant frequencies
	Power Scan
	Gaussian Division

	Acknowledgements
	Bibliography

