
Determinization with Monte Carlo Tree Search for the card game Hearts

Freek Bax
University of Utrecht

Monte Carlo Tree Search (MCTS) is a popular algorithm used in AI for games. It is most
famous for its implementation in the game Go. Determinization is a technique used to extend
an algorithm for a game of perfect information to a game of imperfect information. It does
this by determinizing the lacking information and calculating the average best move over all
the instances with the perfect information algorithm. This paper provides an implementation
of MCTS for the card game Hearts and it uses determinization to extend MCTS to games of
imperfect information. We analysed the influence of better sampling in the determinization
process on the performance of the player. We found that an improvement in the quality of the
samples improves the performance of the player. We also show that inference methods could
further increase the performance.

Contents

1 Introduction 1

2 Background 2
2.1 Hearts . 2
2.2 Game Theory 2
2.3 Monte Carlo Tree Search 3
2.4 Determinization 4

3 Method 4

4 Results 5

5 Discussion 5

6 Conclusion 6

7 References 6

1 Introduction

Since the beginning of research in AI, games have been
a popular topic sparking many innovations that pushed
the boundaries of AI. Chess is a prime example of this
with influential papers dating back to the 40s (de Groot,
1946) and 50s (Shannon, 1950). Some even call it the
drosophila of AI. Although this might be an exaggeration, it
shows how influential Chess research has been (Ensmenger,
2012). The goal of AI for board games is to beat human
experts and eventually reach superhuman level. A famous
breakthrough is IBM’s Deep Blue beating Chess world
champion Kasparov in 1997 (Campbell, Hoane Jr, & Hsu,
2002). One of the hardest games for AI to crack is the
Chinese board game Go, due to the large branching factor of
the game tree and lack of a good evaluation function. Monte
Carlo Tree Search (MCTS) yielded a breakthrough for Go,

with the famous AlphaZero from DeepMind eventually
beating human champions (Silver et al., 2016). Most
research of AI in board games focuses on games of perfect
information, like Chess and Go. However there has also
been development in imperfect information games; where
some information is hidden. In the card game poker a recent
development has pushed AI to superhuman level (Brown &
Sandholm, 2018). But improvements can still be made in a
lot of other games of imperfect information.

This is why we implemented and analysed an AI for the
trick-based card game Hearts, a game of imperfect informa-
tion. The AI uses MCTS with determinization. MCTS is an
algorithm which builds a game tree of the search space and
estimates the rewards of the states using simulations. Deter-
minization is a technique to extend an algorithm suitable for
perfect information games to imperfect information games.
It samples possible instances of the imperfect information
and solves the determinized perfect information games from
the sample. The average best action is then chosen as the best
option for the imperfect information game. For Hearts, deter-
minization is used to sample opponents hands. We analysed
different methods of sampling the opponents hands and anal-
ysed the influence of the quality of samples on the strength
of the player.

Earlier research into determinization and MCTS has been
done in a few different games. The first successful imple-
mentation of determinization was in the card game bridge,
this used determinization in combination with more standard
game tree search methods (Ginsberg, 1999). MCTS has been
implemented to play the perfect information variant of Hearts
successfully (Sturtevant, 2008). MCTS has also been used
with Determinization in the chinese Card game Dou Di Zhu
(Powley, Whitehouse, & Cowling, 2011) and Magic: The
Gathering (Cowling, Ward, & Powley, 2012). Other areas

2 FREEK BAX

where determinization in combination with MCTS has been
researched are in the stochastic single played game Klondike
solitaire (Bjarnason, Fern, & Tadepalli, 2009) and probabilis-
tic planning (Yoon, Fern, & Givan, 2007). However, the ef-
fect of the quality of samples in determinization has never
been investigated.

MCTS is a versatile algorithm which can easily be be ap-
plied in different applications, since it does not need a lot of
domain-specific knowledge like an evaluation function. Our
research could answer whether domain-specific knowledge
is necessary to optimize determinization. Recent state-of-
the-art development in AI for games shows promising results
for combining reinforcement learning techniques like MCTS
and machine learning approaches like neural networks. This
approach has beaten humans in computer games like Atari
(Guo, Singh, Lee, Lewis, & Wang, 2014), (Mnih et al., 2015)
and 3d games like Doom (Dosovitskiy & Koltun, 2016), but
also in the board game Go (Silver et al., 2017). We hope
to contribute to the broad spectrum of implementations of
MCTS (Browne et al., 2012). Understanding and improving
MCTS for imperfect information games could also help ex-
tend the combination of reinforcement learning and machine
learning in environments with less information then current
applications.

The next section will introduce the game Hearts. It will
also provide background information on game theory and it
will introduce Monte Carlo Tree Search and Determiniza-
tion. Section 3 will explain the implementation of the algo-
rithm and the setup of the experiments. After that section
4 gives an overview of the results. In section 5 the results
are interpreted. In the conclusion we briefly summarize the
results and give recommendations on future research.

2 Background

2.1 Hearts

Hearts is a trick-based card game, usually played by four
players, where the goal is to minimize points taken. There
are a lot of different variants out there. Most of the variants
change the swapping phase of the game or add additional
rules to when a suit can or must be played. We will test a
basic variant with no swapping phase and no addition rules.
The rewards are from the ’Black Lady’ variant of the game,
since this is by far the most played reward set. The amount
of cards played with can vary: the internationally known ver-
sion is played with a standard deck of 52 cards, while a Dutch
variant is played with a piquet deck of 32 cards. This does
not affect the rules, but only the starting hand sizes, which are
13 for a standard deck and 8 for a piquet deck. We will use
the piquet variant with 32 cards in the deck. This reduces the
search space and therefore also reduces computation time.

Every round of Hearts starts with all 4 players having a
full hand. The player with the lowest club leads the first

trick. In every trick, all players play one card in a clockwise
order. The suit of the card lead (played first) is the suit of the
trick. Every player must play the suit of the trick if possible,
otherwise they can play any card from their hand. The player
with the highest card of the suit of the trick wins the trick.
The winner of the trick will lead the next trick. All tricks
are played this way until all player hands are empty. Af-
ter this the points are rewarded, every heart taken is 1 point
and the Queen of spades is worth the amount of Hearts in
the deck. So for a standard deck 26 points are rewarded, 13
Hearts and 13 for the queen of spades. For a piquet deck 16
points are rewarded, 8 Hearts and 8 for the queen of spades.
There is one exception to this. If a player takes all points in a
round, he gets awarded zero points and all other players get
rewarded the maximum amount of points for the round. This
is referred to as "Shooting the moon". When a player reaches
a certain amount of points at the end of a round, the game is
over. The player with the least amount of points wins the
game. The amount of points is 100 for the 52 deck variant
of Hearts. For the piquet variant there are different versions
with varying amounts of points. We will use 75 points as the
ending criteria.

2.2 Game Theory

Before we introduce the Monte Carlo Tree Search algo-
rithm, we will first give some background into Game The-
ory. For detailed information about game theory and other re-
lated topics see: Artificial Intelligence: A Modern Approach
(Russell & Norvig, 2002). Games are a multiagent environ-
ment. When an agent makes decisions in these kinds of envi-
ronments it needs to consider the actions of other agents and
how they affect the outcome of its decisions. Games are a
special form of multiagent environments: they are competi-
tive. This means the goals of the agents are in conflict with
each other. A game is formally described by the following
components:

• S : The set of states in the game. S 0 is a special kind
of state, the initial state. In Hearts, a state can be seen
as a combination of hands of players, cards played in
the current trick and all the tricks taken by players. A
starting state in Hearts is a state where all the players
have a full hand.

• S T : The set of terminal states. In Hearts a state is a
terminal state when all the players have empty hands.

• n: The number of players, in our variant of Hearts 4.

• A: The set of actions. In Hearts the actions are a player
playing a card.

• f : S × A→ S : The transition function. This function
takes a state and action, which it transforms into the
new state. In Hearts this combines a state and a card

DETERMINIZATION FOR MCTS 3

Figure 1. A partial game-three for the game tic-tac-toe, taken from Artificial Intelligence: A Modern Approach.

played by a player, which it transforms into the state
where the card is played.

• R : S T → R: The utility function. A function which
gives the rewards for a given terminal state. In Hearts
it looks at the cards the players have taken and gives
the players the points the cards are worth.

With these components a search space can be searched
through, usually by creating a game tree. In this tree the
nodes are game states and actions connect two nodes to-
gether. The root of the tree is a node corresponding to an
initial state. When a game tree is complete, the leaves of the
tree are terminal states. Figure 1 is an example of a game tree
for the game Tic-Tac-Toe. At the top is the starting state with
no actions taken. All the 9 possible actions are represented
on the second level as children of the starting node. The next
levels are shown for only a few of the children of the first
action. At the bottom are 3 terminal states with the outcome
of the utility function.

For most games constructing a complete tree is not possi-
ble. For example, Chess has a branching factor of around 35
and games can easily reach 50 moves. This would mean a
game tree would consist of 10154 nodes, which is way more
than the amount of atoms estimated in the universe and there-
fore not possible. So to search a game tree more effectively
algorithms like minimax are used to limit the search space.

Games have different properties. These properties say
something about the nature of the game and the way algo-
rithms need to be designed to solve them.

• Zero-sum: The sum of rewards is always equal and
normally equal to one. For example: Chess is a zero-

sum game where the winner gets 1 and the loser 0 or
both 1

2 when the game is drawn.

• Information: A game can be fully or partially observ-
able to the players. In Chess both players have all the
information available, but in Hearts each player can
only see his own cards.

• Determinism: Whether the game is influenced by
chance. Chess is a deterministic game. Hearts is not a
deterministic game, as the starting hands are random.
But the actions of player are deterministic.

Hearts is a partially observable, non-deterministic game. It
can also be seen as zero-sum, because the total rewards each
round are the same and distributed between all players.

2.3 Monte Carlo Tree Search

In this section we will introduce the Monte Carlo Tree
Search algorithm used. MCTS is a family of algorithms
from which we will use the version proposed by Kocsis and
Szepesvári called Upper Confidence Bound (UCB) extended
for Trees, mostly referred to as UTC (Kocsis & Szepesvári,
2006). The breakthrough of MCTS is mainly due to UTC and
most research involving MCTS uses a version or extension
of the UTC algorithm. To get an overview of the algorithm
and a lot of the variants and enhancements see: A Survey of
Monte Carlo Tree Search Method by Browne et al. (Browne
et al., 2012).

MCTS builds a game tree and approximates rewards by
simulating games from the leaves of the tree it is building.
MCTS does not have a specific terminal criteria so it is given

4 FREEK BAX

a computational budget, after which it returns the best action
estimated at that point. This budget is usually a set amount
of iterations. Each iteration has 4 distinct steps:

• Selection: From the starting node, a child is selected
through a tree policy. This policy is used to select the
child best fit of exploration. The existing tree is tra-
versed through a leaf node with this policy.

• Expansion: When the selection process halts at a leaf
node, the node is expanded. One of the children de-
fined by the actions possible in the node is added to
the tree.

• Simulation: From the state of this new node, a simula-
tion is done with a default policy. This policy defines
the actions taken by all the players. The most used de-
fault policy lets all players make random actions, but
other policies can be defined by simple heuristics.

• Backpropagation: The results from the simulation are
updated for the new leaf node and all its parents.

This gives us an updated tree with one new node created and
rewards updated for the path the tree policy took this itera-
tion. Every new iteration starts over with the selection pro-
cess starting at the root node. Because every iteration goes
trough the expansion and simulation stage, with more itera-
tions the algorithm can better estimate the rewards and search
trough more of the search space, as more nodes are created
and simulations are done with each iteration.

The UTC algorithm adds a tree policy to this general defi-
nition of MCTS. This policy balances the exploitation versus
exploration dilemma. This dilemma is the tradeoff between
exploring new strategies or exploiting already explored good
performing strategies. The policy selects a child using the
Upper Confidence Bound. It chooses the child with the max-
imum value of the following function:

UCB1 =
Q(v′)
N(v′)

+ c ∗

√
2 ∗ ln ∗ N(v)

N(v′)

In this formula v is the node a child is selected from and
v′ is the child the UCB value is calculated for. Q(x) is the
reward for a given node x and N(x) is the number of ex-
plorations for a given node x. c is a parameter chosen be-
forehand. This parameter determines the amount of explo-
rations versus the amount of exploitation. When the c value
is higher there will be more exploration, because the second
term of the formula will be bigger. The second term of the
formula has a higher value the less a child is explored com-
pared to the other children of the node. c needs to be greater
than 0 and can be selected trough experiment or theoretically.
Kocsis and Szepesvári showed that for rewards between 0
and 1, c = 1

√
2

satisfied the Hoeffding inequality (Kocsis &
Szepesvári, 2006).

2.4 Determinization

To make UTC suitable for a game of imperfect informa-
tion we need to extend the algorithm, since we can not create
a game tree when we do not know the actions other players
can take. In Hearts we do not know the hands of the other
players and therefore we do not know the possible actions
other players can take. One of the techniques to use MCTS
in games of imperfect information is determinization. De-
terminization samples different states from the set of possi-
ble states, making different states of perfection information
which can be solved by perfect information algorithms, like
minimax or MCTS. Hence for Hearts we sample different
possible hands for the opponents.

For each of these determinized games, we can use the
standard UTC algorithm to calculate the best move possi-
ble for that game. The combination of all these results is
an approximation of the best action to take for the imperfect
information state. This method is also referred to as Perfect
Information Monte Carlo (PIMC). The first breakthrough of
PIMC was in the game of Bridge. Ginsberg created the GIB
player, which became the strongest bridge AI and on par with
human experts (Ginsberg, 1999). It combines the idea of de-
terminization with domain knowledge about the bidding pro-
cess of bridge to infer information about the unknown cards
of the opponents. With this information the sample of possi-
ble states represents the actual state of the game better. These
samples were searched with standard game tree search meth-
ods.

3 Method

We have implemented the UTC algorithm as de-
scribed in the previous section for the perfect informa-
tion variant of Hearts. The code can be found on
https://github.com/freekbax/UCTHearts. To reduce
the computation time we will use the Dutch version of
Hearts, which plays with a 32 card deck. Every game ends
when a player reaches 75 points. In all our tests, we played
with 4 players: 2 of each algorithm we were comparing. We
first tested the UTC algorithm to see which value of c per-
forms best. This parameter determines the ratio between ex-
ploration exploitation done. c = 0.1 performed best, so we
used this value for all versions of our algorithm. This is lower
than conventional values of c. This means our algorithm does
not explore the search space as much as in other implemen-
tations. An explanation for this is that Hearts is a game with
a small branching factor and our search space is also limited
because we use a 32 card deck. We have analysed the influ-
ence of the computational budget on the performance of the
algorithm by varying the amount of iterations the algorithm
performs.

To analyse determinization, we implemented three dif-
ferent methods of determinizing opponents hands. A first

DETERMINIZATION FOR MCTS 5

version where all three opponents were given random cards.
This version does not take into account which cards are al-
ready played and therefore does not use all the information
available. This is similar to a human player who does not re-
member the cards already played in the game. We will refer
to this method as the Random Sample. The second version
does use this information. It gives all the opponents random
cards from the cards that were not played already. We will
refer to this method as the Cards Played Sample. This still
does not use all the information available. In the case where
a player does not play the suit a trick is lead with, it can
be inferred that the player does not have the suit the trick
was lead with. Our third version also takes this information
into account. It determinizes opponents hands with cards not
played and with the suits the player has, based on which the
player has played. We will refer to this method as the Suits
and Cards Played Sample.

To analyse the strength of these different sampling meth-
ods, we played them against a perfect information player.
The three versions all played with the same amount of deter-
minizations of opponents hands (d) and iterations (i), d = 25
and i = 250. Earlier research showed that the amount of
determinizations needed for a strong player in the card game
Dou Di Zhu was around 20 and increasing the amount of
determinizations after this did not have a large impact on
performance (Powley et al., 2011). Increasing the amount
of iterations will probably increase the performance, but we
see no obvious reason this should affect any of the sam-
pling methods more than the others. The perfect informa-
tion player played with 125 iterations. To show how good a
player would be when it infers opponents cards perfectly we
also tested a perfect information player with 250 iterations
against the player with 125 iterations. As a benchmark, we
also included a player which actions are completely random
within the rules of the game.

4 Results

Table 1 shows the performance of different versions of
perfect information UTC against itself with different compu-
tational budgets. Each column is a version with an i amount
of iterations and played against a version with double the
amount of iterations. The first row shows the amount of
points the player got, the second row shows the amount of
points the opponent with double the computational budget
got. The third row shows the win rates of the player, the win
rate of the opponent is 100% minus the win rate of the player.
The sample size is a 1000 games. All results are statistically
significant with over 99% confidence. Within the brackets
after the amount of points is the standard deviation of the
sampled points. We can see that doubling the iterations im-
proves the performance. The opponents get about 5 points
less on average. Remember that less points is better. The
win rate of the player with double the amount of iterations is

about 55% to 60%.
Table 2 shows the performance of the different versions of

determinized UTC explained in the method section. It also
displays the performance of a random player and a perfect
information variant with the same amount of iterations. The
opponent was a perfect information UTC player with 125 it-
erations. The first row shows the amount of points the player
got, the second row shows the amount of points the opponent.
The third row shows the win rates of the player, the win rate
of the opponent is 100% minus the win rate of the player.
The sample size is a 1000 games. All results are statisti-
cally significant with over 99% confidence, except the differ-
ence between the Card Played Sample and Suits and Cards
Played Sample. These were statistically significant with 95%
confidence. We see the performance of the determinization
players improving with each improvement in the sample of
opponents hands. The difference between the Random Sam-
ple and the Cards Played Sample is larger than the difference
between the Cards Played Sample and the Suits and Cards
Played Sample.

5 Discussion

The perfect information UTC algorithm performs as we
expected. When the algorithm gets more computation time,
the performance of the algorithm increases. When the
amount of iterations is doubled, the player achieves an aver-
age score of 6 points lower and a win rate of about 60%. This
is also in line with earlier research (Sturtevant, 2008). This is
notable, because in Sturtevants research the algorithms were
tested on the 52 card version of Hearts, while we tested on the
32 card version of hearts. So even though the search space
was a lot smaller in our implementation, the influence of the
amount of iterations remains the same.

For the different determinization methods we see an effect
on performance. When more information is used to sam-
ple opponents hands, the performance increases. The effect
is very strong between the Random Sample and the Cards
Played Sample. This suggests that adding domain specific
knowledge to the determinization process greatly increases
the performance of the player. As an addition of cards played
increases the performance of our player drastically.

For the second improvement of sampling; the Suits and
Cards Played Sample, the effect is noticeable but weaker.
This is because making an inference from the cards that have
been played limits the possible sample a lot more than mak-
ing an inference from a player not following suit. In the for-
mer case, every action reduces the sample size by one card,
but players not following suit is a much rarer occurrence and
may not happen at all in a given game. The performance of
UTC with perfect information shows that there is still room
for improvement with better inference techniques. However
Hearts is a card game where information is not inferred eas-
ily. This is especially true in the beginning of the game, be-

6 FREEK BAX

i 50 100 125 250 500
points player 59,23(18,66) 58,97(18,62) 59,28(18,75) 58,26(18,89) 58,83(18,75)
points opponent 53,29(19,14) 53,63(19,06) 52,77(19,23) 54,18(19,06) 53,53(19,23)
win rate player 42,3% 40.8% 41.1% 44,0% 42,5%

Table 1
Performance of Perfect information UTC against UTC with double the iterations

Random Sample Cards Played Sample Suits and Cards Played Sample Random player UTC250
points player 64,38(18,05) 60,32 59,32(18,53) 66,14(17,63) 52,77(19,23)
points opponent 38,53(17,73) 51,86 53.76(19,18) 28,60(15,11) 59,28(18,75)
win rate player 14,3% 37,3% 42,1% 3,4% 59.1%

Table 2
Performance of determinization players against UTC with 125 iterations

cause there is no bidding phase in which players reveal infor-
mation about their hand, unlike other card games as Bridge
or Spades. So at the start of the game there is no information
available, until cards are played.

6 Conclusion

Our experiment shows that improvement of sample
quality for determinization improves the quality of play. The
better the hands of opponents can be estimated, the better
the agent performs. Especially when the amount of possible
hands is reduced by a lot, as shown by the difference between
the Random Sample and Cards Played Sample. We do not
see any clear reason why this effect should not be present
in other areas. This indicates that efforts to improve sample
quality will likely improve the performance of a player. The
performance of the perfect information player shows that
inference techniques can also improve a player significantly.
For card games with a bidding phase like bridge or spades,
inference can improve a player more than a card game
like Hearts, because bidding reveals information about the
strength of a hand. In future research, the combination of
inference with determinization is a topic worth looking at,
especially in games where more information can be inferred.
One other interesting avenue for broadening this research
is in exploring its applicability to less obviously related
problems such as probabilistic planning.

The biggest limitation of our research was computation
time, because determinization is an expense technique. It
would be interesting to investigate the effect of better sam-
ples with more determinizations and more iterations. It is
not clear yet if more samples could compensate for the qual-
ity of samples or if incorrect samples influence the algorithm
as much or more with more samples. This could be done
by varying the amount of determinization and looking if the
effect we measured is larger or smaller for different amounts
of determinizations.

Hearts is a game with a small branching factor. One of

the strengths MCTS compared to other tree search methods
is that it can handle a large branching factor. This is why the
algorithm helped the breakthrough of AI for Go, a game with
a very large branching factor. In future research determiniza-
tion for games with a higher branching factor could use this
strength of MCTS.

New approaches to AI for games have combined re-
inforcement learning techniques like MCTS with machine
learning. This approach has shown promising results in both
computer games and perfect information board games. This
approach could also be used for board games with imperfect
information. however exact applications of this are a matter
of future research.

7 References

Bjarnason, R., Fern, A., & Tadepalli, P. (2009). Lower
bounding Klondike solitaire with Monte-Carlo plan-
ning. In Nineteenth international conference on auto-
mated planning and scheduling.

Brown, N., & Sandholm, T. (2018). Superhuman AI for
heads-up no-limit poker: Libratus beats top profes-
sionals. Science, 359(6374), 418–424.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., . . . Colton, S. (2012).
A survey of monte carlo tree search methods. IEEE
Transactions on Computational Intelligence and AI in
games, 4(1), 1–43.

Campbell, M., Hoane Jr, A. J., & Hsu, F.-h. (2002). Deep
blue. Artificial intelligence, 134(1-2), 57–83.

Cowling, P. I., Ward, C. D., & Powley, E. J. (2012). Ensem-
ble determinization in monte carlo tree search for the
imperfect information card game magic: The gather-
ing. IEEE Transactions on Computational Intelligence
and AI in Games, 4(4), 241–257.

de Groot, A. D. (1946). Het denken van den schaker:
een experimenteel-psychologische studie. Noord-
Hollandsche Uitgevers Maatschappij Amsterdam.

DETERMINIZATION FOR MCTS 7

Dosovitskiy, A., & Koltun, V. (2016). Learning to act by pre-
dicting the future. arXiv preprint arXiv:1611.01779.

Ensmenger, N. (2012). Is chess the drosophila of artificial
intelligence? A social history of an algorithm. Social
Studies of Science, 42(1), 5–30.

Ginsberg, M. L. (1999). GIB: Steps toward an expert-level
bridge-playing program. In Ijcai (pp. 584–593).

Guo, X., Singh, S., Lee, H., Lewis, R. L., & Wang, X. (2014).
Deep learning for real-time Atari game play using of-
fline Monte-Carlo tree search planning. In Advances
in neural information processing systems (pp. 3338–
3346).

Kocsis, L., & Szepesvári, C. (2006). Bandit based Monte-
Carlo planning. In European conference on machine
learning (pp. 282–293).

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., . . . others (2015). Human-level
control through deep reinforcement learning. Nature,
518(7540), 529–533.

Powley, E. J., Whitehouse, D., & Cowling, P. I. (2011). De-
terminization in Monte-Carlo tree search for the card
game Dou Di Zhu. Proc. Artif. Intell. Simul. Behav,

17–24.

Russell, S., & Norvig, P. (2002). Artificial intelligence: a
modern approach.

Shannon, C. E. (1950). Xxii. Programming a computer
for playing chess. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Sci-
ence, 41(314), 256–275.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., . . . others (2016). Master-
ing the game of go with deep neural networks and tree
search. nature, 529(7587), 484.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., . . . others (2017). Mastering
the game of go without human knowledge. Nature,
550(7676), 354–359.

Sturtevant, N. (2008). An analysis of UCT in multi-player
games. ICGA Journal, 31(4), 195–208.

Yoon, S. W., Fern, A., & Givan, R. (2007). FF-replan: A
baseline for probabilistic planning. In Icaps (Vol. 7,
pp. 352–359).

