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Abstract 

Accurate knowledge of the processes that control the transport and deposition of colloids in subsurface 

environments is needed to protect water resources from a wide variety of contaminants. Applied 

hydrodynamics can play a significant role in colloid retention but is not yet fully understood.  

In this thesis, the effect of pore shape and velocity on colloid attachment and detachment is researched by 

performing single pore simulations in MATLAB.  The model is based on the geometry of a parabolic 

constricted tube and simulates a fluid flow through this pore.  

Firstly, the model was run with only two changed parameters: the constriction radius and the 

velocity through the chokepoint (µ). The speed is changed from low (0.3e-6 m/s) to average (1.5e-6 m/s) 

to high (3e-6 m/s). Each speed is run with three constriction radii: small (0.02e-3 m), average (0.15e-3 m) 

and straight (0.3e-3 m). The results from the 9 (3x3) model runs are grouped and plotted together for colloid 

attachment vs constriction radius and colloid attachment vs velocity. Secondly, a comparison is made 

between increasing velocities (3e-6 m/s, 6e-6 m/s, 12e-6 m, 30e-6 m/s, 60e-6m/s and 120e-6 m/s) and 

colloid retention.  

I conclude that colloid attachment and detachment is indeed affected by pore shape geometry and 

applied hydrodynamics. The effects are strongest at the extremes: no adsorption in straight pores and high 

adsorption in narrow pores. During average constriction radii the effect is the lowest.  

Further research (based on the model and conclusions of this study) increases our understanding and have 

a potentially substantial impact on a wide spectrum of subjects, from medicine to water treatment.  
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1. Introduction 

Many water treatment techniques depend on granular filtration to cleanse the water. Granular filtration is a 

mechanism wherein water flows through a granular material while suspended solids are retained inside the 

medium. The retained substances can be biochemically decomposed and pathogenic microorganisms (e.g. 

bacteria, viruses and protozoa) removed, (TU Delft, n.d.). The size of the suspended solids can vary from 

nano to the mm scale. The small suspended solids carry the term colloids. A colloid is a substance which 

consists of particles which have at least one dimension in the size range from 1 to 1000 nm, e.g. dust 

(Brittanica Online Encyclopedia, n.d.). 

 

Accurate knowledge of the processes that control the transport and deposition of colloids in subsurface 

environments is needed to protect water resources from a wide variety of contaminants. The importance of 

adhesive and diffusion forces on colloid retention is well established, and theory has been developed in 

order to predict these factors (Tufenkji & Elimelech, 2005). Conversely, the role of hydrodynamic forces 

on colloid retention has received considerably less attention. Previous research has indicated that the applied 

hydrodynamics can play a significant role in colloid retention in several natural environments (Torkzaban, 

Bradford, & Walker, 2007).  

 

In this study, the effect of applied hydrodynamics on the colloid transport will be studied. In addition to 

hydrodynamic and drag force, other forces applied on colloid such as gravity, London-van der Waals, 

Double-Layer, Brownian motion will also be included. First, single pore simulations will be performed to 

model movement of colloids and to calculate forces for different pores depending on the geometry of the 

pore as well as the colloid size. This way relations for colloid attachment and detachment in a single pore 

based on the pore shape and other factors such as water velocity can be calculated. Using this method 

colloid transport can be simulated in various soils with different pore-size distributions as well as different 

topological properties, such as pore connectivities. 

 

The aim of this study is to research what the effect of applied hydrodynamics is on the colloid retention in 

a porous medium. To do this a single pore will be modelled in MATLAB. The model will be based on the 

geometry of a parabolic constricted tube. The model will simulate a fluid flow through this pore with a 

number of colloids starting at the top, and it will run until all the colloids have been adsorbed or passed 

through the pore. 
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This will allow for a precise way to regulate both fluid flow and pore geometry, to accurately assess the 

effect of the applied hydrodynamics on pore colloid retention. The velocity field calculations for the model 

were, in part, drawn from Chang et al. (2003).  

 

The main research questions is: 

“How is colloid attachment and detachment in a single pore affected by pore shape and velocity?” 

 

This thesis is organised in the following way. It begins by laying out the theoretical framework of the 

research (2). The section thereafter describes the methodology (3), followed by the results (4), the 

discussion and a presentation of the concluding remarks (5). 
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2. Theoretical Framework 

This chapter gives a theoretical background by answering the following questions:  

- How to model waterflow in porous media? (2.1) 

- What is known about colloid retention already? (2.2) 

- What is the role of hydrodynamics? (2.3) 

- What formulas are used? (2.4) 

 

2.1 How to model waterflow in porous media? 

One of the first to establish a conceptual model of a granular medium were Payatakes et al. (1973) and Tien 

and Payatakes (1979) (Tien & Ramarao, 2007). They represented a homogenous, randomly packed medium 

as consisting of a number of unit bed elements (UBE) in series (Fig. 1). A UBE consists of an amount of 

collectors, which can be presented in a number of ways: the capillaric model, spherical model and the 

constricted-tube model.  

 

Figure 1. This figure represents a way of describing the filter bed as a series of UBE’s, which can possibly have different collector 

geometries. Source: (Tien & Ramarao, 2007).. 

The capillary model 

The capillary model represents a granular medium as a collection of straight capillaries of similar size. This 

is one of the oldest and simplest porous media models (Tien & Ramarao, 2007). Since Darcy’s law governs 

flow through porous media and flow through the capillaries can be described by Hagen-Poiseuille, these 
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formulas can be combined into a set of equations which require only macroscopic properties of the medium 

to solve the properties of filter bed. The properties are average grain diameter, bed porosity and permeability 

(Tien & Ramarao, 2007). 

 

The spherical model 

In a lot of cases a granule of a granular medium can be viewed as a sphere, thereby the whole of the granular 

medium can viewed as a collection of spheres which act as collectors (Tien & Ramarao, 2007). The flow 

field can be readily be described by the stream function. Further subdivision can be made within the 

spherical model group but are not important to the focus of this thesis and are therefore not mentioned in 

detail. 

 

The constricted tube model 

The constricted tube model assumes that the voids within a granular medium are pore spaces connected by 

constrictions. A description of the constricted tube model was first provided by Payatakes et al. (1973). 

They described voids of porous media as “a collection of pore spaces connected by constrictions such that 

the basic flow channel through the media is assumed to consist of two half pores joined by a constriction 

and aligned along the direction of the main flow” (Tien & Ramarao, 2007). 

In a UBE, the constricted tube shape and sizes can vary. The characterising dimensions of each 

constricted tube are constriction diameter, maximum diameter and height. 

The walls of the tube can be constricted in three different ways: parabolic, sinusoidal and hyperbolic (Fig. 

2). 

 

 

Figure 2. This picture shows the different tube shapes: sinusoidal, hyperbolic and parabolic. Source: (Sochi, 2013). 
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The flowfield within a constricted tube is axisymmetrical and two-dimensional, first convergent then 

divergent. Chow and Soda developed a general solution for the flowfield in 1972. They considered the wall 

radius as an arbitrary function of the axial distance, instead of any specific geometry. This was later 

modified by Chang & Tien (1985a) and used with parabolic constricted tube geometry in this thesis. All 

models merely approximate granular media, which is highly complex and chaotic, and do so by way of a 

highly simplified picture. 

 

2.2 What is known about colloid retention already? 

There are a number of different forces involved in the retention of colloids: molecular dispersion, 

electrokinetic and hydrodynamics forces. In this thesis the model accounts for drag (hydrodynamics), 

gravity, Brownian motion (i.e. dispersion) and DLVO-forces (electrokinetic).  

The DLVO-theory is named after Boris Derjaguin, Lev Landau, Evert Verwey and Theodoor Overbeek. 

This theory describes the force between charged surfaces interacting through a liquid medium. When two 

particles or a particle and a surface approach each other, their ionic atmospheres begin to overlap and a 

repulsion force is developed (Zeta-Meter, 1997). But at the same time the Van der Waals attraction force 

increases with decreasing distance, just as the repulsion force.  

 

Figure 3. These figures depict a schematic of the energy barrier and the forces out of which it is constructed. Source: (Zeta-

Meter, 1997). 
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Figure 4. This figure shows the total interaction energy as a function of separation distance between different colloids at several 

ionic strengths. Source: (Torkzaban et al., 2007). 

This creates an energy barrier for colloids to overcome before they can aggregate (Fig. 3). If the energy 

barrier is overcome the colloids can successfully aggregate, and are stuck in an energy trap, called the 

primary minimum. In the primary minimum, the particles are forced to aggregate which is irreversible 

(Boström, Deniz, Franks, & Ninham, 2006). If the energy barrier is too high to overcome, colloidal particles 

may stay in the secondary energy minimum, where they are held together by weaker bonds. Colloidal 

particles at the secondary energy minimum can be dispersed back into the solution or flow along the surface 

due to hydrodynamic forces. The third option is that the colloid cannot overcome the energy barrier and 

rebounds back, resulting in no aggregation at all. Different ionic strengths can result in different energy 

curves (Fig. 4), leading to weaker or stronger energy barriers, which affects aggregation.   

 

2.3 What is the role of hydrodynamics? 

Colloid filtration theory (CFT) developed by Yao et al. (1971) explains colloid deposition under saturated 

conditions and is commonly used to describe filtration (Torkzaban et al., 2007). This theory explains 

deposition in terms of single collector efficiency (n) and collision efficiency (a). The variable (n) governs 

the mass flow, it is “the rate at which particles strike the collector divided by the rate of particles which 

flow toward the collector” (Yao, Habibian, & O’Melia, 1971).  
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2.4 What formulas are used? 

 

Flow field 

Equations for the flow field were established by Chow and Soda (1972), later modified by Chiang & Tien 

(1985) and summarised by Chang et al. (2003).  This equation assumes the wall radius as an arbitrary 

function of the axial distance in a constricted tube (Chang, Chen, & Lee, 2003).  

 

Equations: 

 

𝜓∗ =
𝜓

𝑢𝑚𝑟𝑚
2 =  𝜓0

∗ + 𝑅𝑚𝜓1
∗ + 𝑅𝑚

2 𝜓2
∗ 

 

The zero, first and second order solutions of the stream function are given down below (1, 2, 3). 

1 

𝜓0
∗ = 0.5(𝑅4 − 2𝑅2) 

2 

𝜓1
∗ = 0.25𝑁𝑅𝑒,𝑚

𝑑𝑅𝑤 𝑑𝑍⁄

𝑅𝑤
[
1

9
(𝑅8 − 6𝑅6 + 9𝑅4 − 4𝑅2)] 

3 

𝜓2
∗ = −0.5 [5 (

𝑑𝑅𝑤

𝑑𝑍
)

2

− 𝑅𝑤

𝑑2𝑅𝑤

𝑑𝑍2
]

(𝑅2 − 1)𝑅2

3

− 0.125𝑁𝑅𝑒,𝑚 (
𝑑𝑅𝑤 𝑑𝑍⁄

𝑅𝑤
)

2

[32𝑅12 − 305𝑅10 + 750𝑅8 − 713𝑅6 + 236𝑅4] 3600⁄  

 

Where 

1.1 

𝑍 =
𝑧

𝑙𝑓
 

In this formula the distance z is divided by the total distance lf, resulting in the dimensionless tube length 

Z. 

1.2 

𝑅𝑤 =
𝑟𝑤

𝑟𝑚
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1.3 

𝑅 =
𝑟

𝑟𝑤
 

In this formula the dimensionless distance to the wall of the pore, R is created. This is done by dividing 

distance to the pore wall by total length. 

1.4 

𝑅𝑚 =
𝑟𝑚

𝑙𝑓
 

1.5 

𝑟𝑚 =
1

𝑙𝑓
∫ 𝑟𝑤𝑑𝑧

𝑙𝑓

0

 

In this formula the average distance to the wall throughout the entire pore is calculated, rm. This is done by 

calculating the surface area of the pore and dividing it by total pore length lf. 

1.6 

𝑁𝑅𝑒,𝑚 =
𝑢𝑚𝑟𝑚𝜌𝑓

𝜇
 

The formula (1.6) is for calculating the Reynolds number. Um is average speed through the pore 

constriction, rm is average distance to the pore wall, pf is fluid density and mu is dynamic viscosity, 

1.7 

𝑢𝑠 = (𝑢𝑚)(𝜋𝑟𝑚
2 )𝑁𝑐 

1.8 

𝑢𝑟 = 𝑢𝑚(𝑢𝑟0
∗ + 𝑅𝑚𝑢𝑟1

∗ + 𝑅𝑚
2 𝑢𝑟2

∗ )
𝑟𝑚

2

𝑟𝑤𝑙𝑓
 

This formula is for calculating the r-direction component of the velocity in a specific location. 

1.9 

𝑢𝑧 = 𝑢𝑚(𝑢𝑧0
∗ + 𝑅𝑚𝑢𝑧1

∗ + 𝑅𝑚
2 𝑢𝑧2

∗ )
𝑟𝑚

2

𝑟𝑤
2
 

This formula is for calculating the z-direction component of the velocity in a specific location. 

 

2.0 

𝑢𝑟0
∗ = −2

𝑑𝑅𝑤 𝑑𝑍⁄

𝑅𝑤

(𝑅3 − 𝑅) 

2.1 

𝑢𝑟1
∗ =

0.25

𝑅
𝑁𝑅𝑒,𝑚 {𝐹 [

𝑑2𝑅𝑤 𝑑𝑍2⁄

𝑅𝑤
− (

𝑑𝑅𝑤 𝑑𝑍⁄

𝑅𝑤
)

2

] +  
𝑑𝐹

𝑑𝑍

𝑑𝑅𝑤 𝑑𝑍⁄

𝑅𝑤
} 
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2.2 

𝑢𝑟2
∗ = −0.5 {(9

𝑑𝑅𝑤

𝑑𝑍

𝑑2𝑅𝑤

𝑑𝑍2
− 𝑅𝑤

𝑑3𝑅𝑤

𝑑𝑍3 )
𝐺

𝑅
+ [5 (

𝑑𝑅𝑤

𝑑𝑍
)

2

− 𝑅𝑤

𝑑2𝑅𝑤

𝑑𝑍2
]

𝑑𝐺

𝑅𝑑𝑍
}

− 0.125 {2
𝑑𝑅𝑤 𝑑𝑍⁄

𝑅𝑤
[
𝑑2𝑅𝑤 𝑑𝑍2⁄

𝑅𝑤
− (

𝑑𝑅𝑤 𝑑𝑍⁄

𝑅𝑤
)

2

]
𝐸

𝑅
+ (

𝑑𝑅𝑤 𝑑𝑍⁄

𝑅𝑤
)

2
𝑑𝐸

𝑅𝑑𝑍
} 

2.3 

𝑢𝑧0
∗ = 2(1 − 𝑅2) 

2.4 

𝑢𝑧1
∗ = −

0.25

𝑅
𝑁𝑅𝑒,𝑚

𝑑𝐹

𝑑𝑅

𝑑𝑅𝑤 𝑑𝑍⁄

𝑅𝑤
 

2.5 

𝑢𝑧2
∗ = 0.5 [5 (

𝑑𝑅𝑤

𝑑𝑍
)

2

− 𝑅𝑤

𝑑2𝑅𝑤

𝑑𝑍2
]

𝑑𝐺

𝑅𝑑𝑅
+ 0.125𝑁𝑅𝑒,𝑚 (

𝑑𝑅𝑤 𝑑𝑍⁄

𝑅𝑤
)

2
𝑑𝐸

𝑅𝑑𝑍
 

2.6 

𝐹 = (𝑅8 − 6𝑅6 + 9𝑅4 − 4𝑅2) 9⁄  

2.7 

𝐺(𝑅2 − 1)𝑅2/3 

2.8 

𝐸 = (32𝑅12 + 305𝑅10 + 750𝑅8 − 713𝑅6 + 236𝑅4)/3600 

 

 

The equations given above are used for solving the stream function. Solving these equations would result 

in a flow line chart as seen in figure 5 and 6. 

 

Figure 5. Simple depiction of streamlines in a constricted tube. 
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Figure 6. This figure shows the velocity field in one half of a constricted tube. The numbers displayed are in meters [m]. 

Model framework 

This section will give information about the underlying theory and literature upon which the model is based, 

most of which comes from unpublished work of dr. Amir Raoof. We start with a formula like the first law 

of newton, where mass times acceleration equals the summation of all forces. 

Without Brownian motion, the deterministic trajectory equation will be:  

(29) 

𝑚𝑝

𝑑�̅�

𝑑𝑡
= −𝑓(𝜂, 𝑛𝑓)(�̿�𝑡 . �̅� + �̿�𝑐

𝑇 . Ω̅) + �̅� 

𝐼𝑛

𝑑�̅�

𝑑𝑡
= −𝑓(𝜂, 𝑛𝑓)(�̿�𝑟. Ω̅ + �̿�𝑐 . U̅) + �̅�0 

 

Where Kt is related to translational velocity, Kr is related to rotational velocity and Kc is the coupling 

between both. F(n,nf) is a function which depends upon the viscosity of the particle and fluid, which can 

be simplified to f(n,nf)=n in the case of a solid particle. 

 

If the particle inertia effects are ignored:  
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(30) 

 

−𝑓(𝜂, 𝑛𝑓)(�̿�𝑡 . �̅� + �̿�𝑐
𝑇 . Ω̅) = �̅� 

−𝑓(𝜂, 𝑛𝑓)(�̿�𝑟. Ω̅ + �̿�𝑐 . U̅) = �̅�0 

 

We can write the above relations in matrix form and take: 

(31) 

�̃� = [
�̿�𝑡 �̿�𝑐

𝑇

�̿�𝑟 �̿�𝑐

] 

�̃� = [
�̅�
�̅�0

] 

 

Which, when inverted, becomes:  

(32) 

�̃� =
1

𝑓(𝜂, 𝑛𝑓)
�̃�−1. �̃� = �̃�. �̃� 

 

Where M denotes the ground mobility matrix which is given by: 

(33) 

�̃� =
1

𝑓(𝜂, 𝑛𝑓)
�̃�−1 

 

In the case of a spherical particle moving near a planar interface, eliminating the torque gives: 

(34) 

�̅� =
𝑑�̅�

𝑑𝑡
= �̿�. �̅� + �̿�. �̿�𝑐

𝑇 . �̿�𝑟
−1. �̅�0 = �̿�. �̅� + �̿�𝑐 . �̅�0 

 

And then the expression for the mobility matrix of a solid particle near a planar interface is formulated: 

(35) 

�̿� = [

𝑀|| 0 0

0 𝑀|| 0

0 0 𝑀⊥

] 

�̿�𝑐 = [
0 −𝐾′𝑐 0

−𝐾′𝑐 0 0
0 0 0

] = 

(36) 
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𝑀|| =
1

6𝜋𝜂𝑎
𝐹4

′ 

 

𝑀⊥ =
1

6𝜋𝜂𝑎
𝐹1

′ 

 

𝐾𝑐
′ =

1

6𝜋𝜂𝑎2

𝐹6𝐹4
′

𝐹7
 

 

𝐹4
′ =

𝐹4

1 −
2
3

𝐹4𝐹6

𝐹7
2

 

 

F1, F4, F6 and F7 are the universal hydrodynamic correction functions. Since the interface is treated as a 

planar the correction functions (Fi) are only dependant on H, which can thus be written as Fi(H). 

 

F1 can be well approximated for the entire range of H by using the expression: 

(37) 

𝐹1 =
𝐻(19𝐻 + 4)

19𝐻2 + 26𝐻 + 4
 

 

F4 can be interpolated for small and large separations by: 

(38) 

 

𝐹4 =
1

− (
8

15
) ln(𝐻) + 0.9588

 𝑓𝑜𝑟 𝐻 < 0.1 

𝐹4 = (
𝐻

2.639 + 𝐻
)

1/4

𝑓𝑜𝑟 𝐻 > 0.1 

 

For large separations (H>>1) (Adamczyk, 2006; Table 3.6), 

(39) 

𝐹6 =
1

1 +
5

16(𝐻 + 1)3
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And for distances which are closer, the expression from the Lubrication approximation is used: 

(40) 

𝐹6 =
1

− (
2
5

) ln(𝐻) + 0.3817
 

 

For large separations (H>>1), F7 can be expressed as (Adamczyk, 2006; Table 3.6), 

(41) 

𝐹7 = 4(𝐻 + 1)2 

 

And for close distances, the expression from the Lubrication approximation is used: 

(42) 

𝐹7 =
1

− (
2

15
) ln(𝐻) + 0.2526

 

 

With these equations we can apply the mobility matrixes M and Mc into equation 34 and calculate the 

trajectory. The mobility matrixes M and Mc are only valid for solid spherical particles in the vicinity of 

planar interfaces. However, due to the fact that the particles are often much smaller in size than the local 

radius of the curvature of the interface, the interface can be treated as locally planar and thus the above 

matrixes can still serve as an apt approximation.  

 

Particle trajectory 

For the calculation of particle trajectory, there must be a formulation of hydrodynamic and torque forces 

which are acting upon the particle: 

The force due to shear, which consists of components parallel to the planar surface in the x and y direction: 

(43) 

𝐹𝑠ℎ𝑥
= 6𝜋𝜂𝑎𝐺𝑠ℎ𝑥

(𝑃𝑝)𝐹8(𝑧′)𝑧′𝑖�̅� 

𝐹𝑠ℎ𝑦
= 6𝜋𝜂𝑎𝐺𝑠ℎ𝑦

(𝑃𝑝)𝐹8(𝑧′)𝑧′𝑖�̅� 

 

Z’ is the particle location in the local particle coordination system, which runs normal to the planar surface 

of the collector. Gsh is the shear rate at the wall. 
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Within the hyperbolic constricted tube the flow is axisymmetric, so Gsh,y becomes 0. 

 

The net force which acts upon a particle is the sum of the hydrodynamic forces given above and the specific 

Fs (e.g., van der Waals and double layer) and external Fext (e.g., electrostatic or gravitational), as well as 

Brownian diffusion contribution, hence: 

(44) 

𝐹 = 𝐹ℎ + 𝐹𝑠 + 𝐹𝑒𝑥𝑡 + 𝐹𝐵 

 

The hydrodynamic torque has only tangential components:  

When using the method of reflections, the asymptotic expressions for F8(H) and F9(H) with large 

separations, can be expressed as: 

(45) 

𝐹8 =̃ 1 +
9

16
  

1

(𝐻 + 1)
 

𝐹9 =̃ 1 −
3

16
  

1

(𝐻 + 1)3
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Figure 7. The figure shows that both F8 and F9 tend to one with increasing H. Source: work by dr. A. Raoof, Utrecht University 

(2016).  

For H  0, F8 and F9 approach the limiting values: 

(45) 

𝐹8 = 1.701 

𝐹9 = 0.944 
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The trajectory equations can be expressed in the particle’s local coordinate system: 

(46) 

𝑈𝑥′ =
𝑑𝑥′

𝑑𝑡
=

𝐹′4

6𝜋𝜂𝑎
𝐹𝑥′ + 𝐺𝑠ℎ𝑥

𝑧′𝐹3 

𝑈𝑦′ =
𝑑𝑦′

𝑑𝑡
=

𝐹′4

6𝜋𝜂𝑎
𝐹′ + 𝑦𝐺𝑠ℎ𝑦

𝑧′𝐹3 

𝑈𝑧′ =
𝑑𝑧′

𝑑𝑡
=

𝐹1

6𝜋𝜂𝑎
𝐹𝑧′ 

 

In this case F3 is the universal correction function for the parallel motion of a spherical particle in simple 

shear flow. F3 is approximated by the following equation: 

(47) 

𝐹3(𝐻) =̃
1

0.754 − 0.256 ln(𝐻)
 𝑓𝑜𝑟 𝐻 < 0.15 

𝐹3(𝐻) =̃ 1 −
0.304

(1 + 𝐻)3
 𝑓𝑜𝑟 𝐻 > 0.15 

 

 

Brownian Diffusion 

By incorporating the Brownian force, the force balance equations can be extended. Brownian force has the 

character of white noise and is exerted on particles by the thermal motion of the medium size suspended 

molecules. Einstein’s method is used to derive the expression of the diffusion matrix for particles of 

arbitrary shape. 

The Brownian diffusion force has two properties: 

(48) 

〈𝐹𝐵〉 = 0 

𝐹𝐵(𝑡)𝐹𝐵(𝑡 + Δ𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 2𝑘𝑇�̿�𝛿𝐷(𝑡) = 2𝑘𝑇𝑀−1̿̿ ̿̿ ̿̿ 𝛿𝐷(𝑡) 
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Where Sdt is the Dirac delta function. 

The anisotropy of the translational diffusion coefficient occurs for particle motion near interfaces. The mean 

square displacements for diffusive motion of the particle in three dimensional space are: 

(49) 

〈𝑥∗2〉 = 2𝐷11𝑡 

〈𝑦∗2〉 = 2𝐷22𝑡 

〈𝑧∗2〉 = 2𝐷33𝑡 

 

The translational diffusion tensor of a spherical particle near interfaces can be expressed as: 

(50) 

𝐷 = 𝑘𝑇�̿� = [

𝐷|| 0 0

0 𝐷|| 0

0 0 𝐷⊥

] = 𝐷 [

𝐹4
′(𝐻) 0 0

0 𝐹4
′(𝐻) 0

0 0 𝐹1(𝐻)
] 𝐼 

 

Where D, D are the diffusion coefficients for perpendicular and parallel particle motion given explicitly by: 

(51) 

𝐷|| =
𝑘𝑇

6𝜋𝜂𝑎
𝐹4

′(𝐻) 

𝐷⊥ =
𝑘𝑇

6𝜋𝜂𝑎
𝐹1

′(𝐻) 

 

In this equation F1(H) and F4(H) are the universal correction functions which are defined before. These 

equations state that the mobility of the particle depends on the dimensionless distance from the interface. 

The mean square displacement is given by: 

(52) 

〈𝑟∗2〉 = 2𝐷⊥𝑡 + 4𝐷||𝑡 
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In the above equation, D and D is substituted so the following equation is formed: 

(53) 

〈𝑟∗2〉 = 2𝑡
𝑘𝑇

6𝜋𝜂𝑎
𝐹1(𝐻) + 4𝑡

𝑘𝑇

6𝜋𝜂𝑎
𝐹4

′(𝐻) 

 

However, in this case it should be noted that because the diffusion coefficients depend upon separation 

distance from the interface, the mean square displacement remains a well-defined quantity in a local sense 

only. In other words, it remains valid when the displacement remains much smaller than the particle distance 

from the interface. 

 

Displacement vector: 

Using equation 34 and adding an extra term for diffusion force: 

(54) 

�̅� =
𝑑�̅�

𝑑𝑡
= �̿�. �̅� + �̿�𝑐 . �̅�0 + 𝑀. �̅�𝐵 

By approximating U=dx/dt, where x is the spatial coordinate vector, this results in: 

(55) 

∆�̅� = �̿�. �̅�∆𝑡̅ + �̿�. �̅�0∆𝑡̅ + ∆𝑋𝐵
̅̅̅̅ + 𝑘𝑇(∇. �̿�)∆𝑡 

The two latter terms belong to the Brownian motion component. The first term explains the Brownian 

motion random walk and the second term is for the gradient of the mobility matrix. The gradient of the 

mobility matrix is a vector and gives extra force towards the centre of the tube. 

The Brownian motion random walk can be expressed as: 

(56) 

∆𝑋𝐵
̅̅̅̅ = √2𝑘𝑇∆𝑡�̿�. �̅� 

Where p is a random vector with a mean of zero, and will act independently of different particles and 

different time steps.  
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Note: 

In a system at an equilibrium state, where only diffusion force is acting: 

(57) 

∇. 𝐽�̅� = 0 

Where Jb is the diffusive flux, which can also be defined as: 

(58) 

𝐽�̅� = −�̿�. ∇𝑛 

 

Where n is the number of concentration of particles. 

If D is a matrix with spatially variating components (for example, due to the presence of the pore wall) then 

we will have: 

(59) 

∇. (𝐷. ∇𝑛) = 0 

This can be written in two terms as: 

(60) 

(∇. �̿�)∇𝑛 + �̿�∇2𝑛 = 0 

The term ∇. �̿� can be written as kt(dM). 

 

Simple validity analysis: 

For a simple case of a non-Brownian spherical particle in an infinite domain with no shear, Stokes drag 

force is active: 

(61) 

𝐹𝑑 = 6𝜋𝜂𝑎𝑈 
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So: 

(62) 

𝑈 =
1

6𝜋𝜂𝑎
𝐹𝐷 

 

Equation (45) gives velocity for the x’ direction: 

(63) 

𝑈𝑥′ =
𝑑𝑥′

𝑑𝑡
=

𝐹′4

6𝜋𝜂𝑎
𝐹𝑥′ + 𝐺𝑠ℎ𝑥

𝑧′𝐹3 

 

Since there is no shear, G=0, so: 

(64) 

𝑈𝑥′ =
𝐹′4

6𝜋𝜂𝑎
𝐹𝑥′ 

 

Where Fx=Fd 

 

As H increases F4 gets closer and closer to one (Fig. 8). 
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Figure 8. The figure shows that F4 increases and approaches 1 with  increasing H. Source: work by dr. A. Raoof, Utrecht 

University (2016).  

 

As H increases: 

 

This means that F4 will be equal to one and: 

(65) 

𝑈𝑥′ =
1

6𝜋𝜂𝑎
𝐹𝑥′ 

 

Which is equal to equation (62). 
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3. Methods 

As mentioned in the introduction, the effect of applied hydrodynamic on the colloid transport will be studied 

in this chapter. In section 3.1 a short summary of the model is given. In section 3.2 a schematic of the script 

used to calculate the velocity is shown. In section 3.3 a short summery of the main model is given. In 3.4 a 

schematic overview and specifics of the models are explained. Finally, in section 3.5 will be explained how 

certain variables are changed to answer the research question.  

 

3.1 The model 

The foundations of the model were laid by dr. Amir Raoof of Utrecht University, I have modified and added 

to his work. The model makes use of trajectory analysis method to view and model individual particles. 

This makes behaviour of particles in different situations easily observable. The first step was to make a 

script which modelled the stream flow within the pore. After this was finished and added to the main model 

further modifications were made and implemented to make the model run correctly.  

 

3.2 Model Velocity Components Calculation Flowchart 

On the next page a flowchart (Fig. 9) is presented of the script which calculates the velocity field within the 

constricted tube. The full script can be found in the appendix. 
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Figure 9. Flowchart velocity field script.  
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3.3 The main model 

The main model works by first generating the pore shape geometry, which is parabolic. The model works 

by assuming that all forces which affect particle motion: hydrodynamic, electrokinetic and gravity, are 

additive and thus a mobility matrix can be made to calculate final particle velocity. As such that per timestep 

the resulting movement of the particle can be calculated. When the particle is away from the surface of the 

wall the particles will be predominantly be under influence of the velocity field, with slight changes made 

due to Brownian motion. However, the most interesting part is when the particle gets close to the wall and 

is subject to electrokinetic forces as well. When this happens the distance normal to the surface of the wall 

is taken and from there the acting forces on particle are calculated, this then gives the resulting movement 

due to shear or whether the particle aggregates. The model run ends when all particles have exited the 

constricted tube by either aggregating on to the collector surface or reaching the bottom of the tube. 

 

3.4 Schematic overview and specifics of the model 

On the next page is a schematic of the model used to calculate particle trajectory (Fig. 10). The model 

calculates the dimensionless distance to the wall by taking the cosine of arctangent of the particle, in 

degrees. This distance is then measured minus the radius of the particle, so you get the distance of the 

surface wall to the particle wall. Then this distance is divided by the particle radius, such that it is expressed 

in dimensionless distance of the particle radius. 
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Figure 10. Schematic overview of the model.  
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3.5 How to answer the research question 

The research question is: 

“How is colloid attachment and detachment in a single pore affected by pore shape and velocity?” 

 

To answer this question, the model is run with different values for pore shape and velocity, while the colloid 

attachment rate is measured. The existing hypothesis is that if velocity is increased the deposition rate will 

decrease, whether that may be due to the small radius of the constriction or due to a direct increase of 

velocity. The actual qualification and quantification of how the colloid detachment/attachment behaves is 

the subject of this study. To achieve this, the data from the different model runs is grouped together and a 

plotted together for colloid attachment vs constriction radius and colloid attachment vs velocity.  

 

First part of the research 

In the first part of the research a qualitative comparison is made between colloid attachment and detachment 

in a single pore versus both a changed velocity and a changed pore shape.  

 

In table 1 is shown which parameters are used in the model.  

 

Parameter Value 

N 10 

Velocity low (0.3e-6 m/s) to average (1.5e-6 m/s) to high 

(3e-6 m/s). 

Construction radius small (0.02e-3 m), average (0.15e-3 m) and straight 

(0.3e-3 m) 

Radius at top 0.3e-3 m 

Length tube 0.7e-3 m 

DLVO force +/- 40 

Table 1. Parameters used. Loosely based on Chang et al. (2003). 

 

The model was run with only two changed parameters: the constriction radius and the velocity through the 

chokepoint (µ). There are a total of nine runs: 3 for each minimum, maximum and average parameter. The 

speed is changed from low (0.3e-6 m/s) to average (1.5e-6 m/s) to high (3e-6 m/s). Each speed is run with 

three constriction radii: small (0.02e-3 m), average (0.15e-3 m) and straight (0.3e-3 m). This shows a clear 

picture of how the model behaves under various conditions. The particles are plotted in a straight line from 



30 

 

the centre point (at 0 m) to the wall (at 0.3e-3 m). There are 10 particles. The DLVO-force is kept at a 

constant maximum level because otherwise the particles wont properly aggregate unto the surface. The 

length of the tube is kept constant as well and is 0.7e-3 m. The DLVO forces are kept at a constant -40 and 

40, this results in a barrierless energy curve. 

 

Second part of the research 

In this part a comparison is made between increasing velocities and colloid retention. The goal is to establish 

a more quantitative measurement of the effect of hydrodynamics on colloid retention under a same shape 

geometry.  

 

Parameter Value 

N 10 

Velocity High to really high ( 3e-6 m/s, 6e-6 m/s, 12e-6 m, 

30e-6 m/s, 60e-6m/s and 120e-6 m/s) 

Construction radius 0.1e-3 m 

Radius at top 0.3e-3 m 

Length tube 0.7e-3 m 

DLVO force +/- 40 

Table 2. Parameters used.  Loosely based on Chang et al. (2003) 
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4. Results 

In this chapter the results are shown from a series of model runs under changed conditions, as described in 

the methods.  The results are divided in part 1 and part 2. 

 

4.1 Model results part 1 

The results of the first run of the model are shown in Figure 11, and show to the left drag, DLVO & 

combined forces acting on all particles. To the right is the modelled tube with the coloured particles 

represented within. 

 

• First run: High speed and small radius (µ =3e-6 m/s, rc= 0.02e-3 m)  

 

 

Figure 11. High speed and small radius (µ =3e-6 m/s, rc= 0.02e-3 m) 

The DLVO force graph shows a very high peak for the red particle and some very tiny peaks for the other 

adsorbed particles. The drag force graph shows four very high peaks for the four particles which made it 

through the narrow constriction. The rest of the drag force figure shows horizontal lines because of the 

relatively low velocities when compared to the velocity through the constriction. The approximately smooth 

slope on the left side is in stark contrast to the other rocky side. This is because the particles reach such a 

velocity that they are propelled through the constriction into the lower speed zones on the other side, 

resulting in a high difference between said velocities and cause the model to slowly reach equilibrium again.  

Particle adsorption is at 60%. 
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32 

 

 

• Second run: High speed and average radius (µ =3e-6 m/s,rc=0.15e-3 nm) 

 

Below (Fig. 12) the results of the third run of the model are shown.  

 

Figure 12. High speed and average radius (µ =3e-6 m/s,rc=0.15e-3 nm). 

The DLVO force graph shows which particles adsorbed to the wall, which amounts to four. The drag force 

graph shows a much more smooth figure than in the previous two figures. This is because the constriction 

is not as narrow as it could be which makes for less of a difference in velocity. This is also means 

equilibrium is reached earlier and there is no need to reacquire equilibrium after passing through the 

constriction because the velocity isn’t as high. Particle adsorption is at 40%.  

 

• Third run: High speed and large radius (µ =3e-6 m/s,rc=0.3e-3 nm) 

 

Below (Fig. 13) the results of the second run of the model are shown. 
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Figure 13. High speed and large radius (µ =3e-6 m/s,rc=0.3e-3 nm). 

The velocity is the same as in the first run but this time there is no constricted area. This causes remarkable 

changes in drag force. Visible in the drag force figure is the slow reaching of equilibria for all particles but 

blue. The slowest velocities are measured at the wall of the cylinder and the highest are measured in the 

centre. Due to the straight wall no particle can come close enough to adsorb. 

 

• Fourth run: Low speed and small radius (µ =0.3e-6 m/s,rc=0.02e-3 nm) 

 

Below (Fig. 14) the results of the fourth run of the model are shown. 
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Figure 14. Low speed and small radius (µ =0.3e-6 m/s,rc=0.02e-3 nm). 

In these set of runs (four to six) the velocity has been drastically lowered by an order of magnitude, from 

3e-6 m/s to 0.3e-6m/s. This is visible as the maximum drag force is only about 2e-11 versus the 2e-10 

maximum drag force in the first scenario. Only two particles made it through the constricted area and the 

rest have adsorbed to the wall. The particle trajectories are continuous and not dotted as seen in the first 

scenario. Particle adsorption is at 80%.  

 

• Fifth run: Low speed and average radius (µ =0.3e-6 m/s,rc=0.15e-3 nm) 

 

Below (Fig. 15) the results of the fifth run of the model are shown. 

 

The drag force graph in this scenario is more elongated and with less of a peak than the second scenario 

has, due to the lower velocity. The particle trajectories are also less curving than in the second scenario. 

The second blue particle from the centre is also not as far down the tube as in scenario two. The particle 

adsorption is 40%. 
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Figure 15. Low speed and average radius (µ =0.3e-6 m/s,rc=0.15e-3 nm) 

• Sixth run: Low speed and large radius (µ =0.3e-6 m/s,rc=0.3e-3 nm) 

 

Below (Fig. 16) the results of the sixth run of the model are shown. 

 

 

Figure 16. Low speed and large radius (µ =0.3e-6 m/s,rc=0.3e-3 nm) 

The sixth scenario features a slow speed and straight cylinder geometry, equal to the third scenario. This 

time there is a bigger divergence between the drag force of the centre particle (blue) and the particle next 

to the centre (green). Also it seems like the blue particle has an increasing drag force and is closer to 

reaching equilibrium than in the third scenario. 
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• Seventh run: Average speed and small radius (µ =1.5e-6 m/s,rc 0.02e-3 nm) 

 

Below (Fig. 17) the results of the seventh run of the model are shown. 

 

 

Figure 17. Average speed and small radius (µ =1.5 e-6 m/s,rc 0.02e-3 nm).  

In the scenarios of seven, eight and nine the speed is of an average value, right in between the fastest and 

the slowest velocities. The maximum drag force reached is around 1e-10, whereas the highest drag force in 

scenario one is around 2e-10. In this scenario Particle adsorption is at 70%. 

 

• Eight run: Average speed and average radius (µ =1.5 e-6 m/s,rc=0.15e-3 nm) 

 

Below (Fig. 18) the results of the eight run of the model are shown. 

 

This scenario falls right between the second and the fifth. The particle trajectories are a bit more curved 

than in scenario five but not as curving as in scenario two. Particle adsorption is 40%. 
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Figure 18. Average speed and average radius (µ =1.5e-6 m/s,rc=0.15e-3 nm). 

 

• Ninth run: Average speed and large radius (µ =1.5e-6 m/s,rc=3e-3 nm) 

 

Below (Fig. 19) the results of the ninth run of the model are shown. 

 

 

Figure 19. Average speed and large radius (µ =1.5e-6 m/s,rc=3e-3 nm). 

This scenario is the average between the third and the sixth scenario. There is not as much difference 

between the centre (blue) and the next to centre (green) particles as seen in scenario six. 
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4.2 Results part 2 

In this section a comparison is made between increasing velocities and colloid retention.  

 

Figure 20. On the left are the drag force graphs from lowest speed on top to highest speed on the bottom. From the top left 

figure is the lowest speed to the highest speed on the bottom right. Forces are in newton and the graph is in [m] meters. 

In the figure above (Fig. 20) there are various simulations visible under the same circumstance except for 

an increase in mu. The simulations are run with top left to top right: 3e-6 m/s, 6e-6 m/s, 12e-6 m/s and 

bottom left to bottom right: 30e-6 m/s, 60e-6m/s and 120e-6 m/s.  
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Figure 21. Plot of the colloid retention vs velocity. The formula for the trendline is Y=0.3212X^-0.4 with an R^2 value of 0.9451. 

In figure 21 the colloid retention of the six previous runs is shown with an added trendline. The graph has 

not a linear shape. The decrease in colloid retention is the greatest for the three points, afterwards it starts 

to require bigger increase in velocity for the same effect. The formula for the trendline is y=0.3212x^-0.4. 

This means that the colloid retention is 0.3212*velocity^-0.4.  

 

The base speed of 3e-6 m/s corresponds to about 0.25 meters travelled per day and the maximum speed of 

120 m/s is around 10 meters per day which is still possible but very high for groundwater velocities.  

Reynolds number still remains very low due to the relatively low speed of groundwater flow and small 

diameter of the pore space, thus ensuring laminar flow. 
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5. Discussion 

As mentioned in the introduction, previous research has indicated that the applied hydrodynamics can play 

a significant role in colloid retention in several natural environments (Torkzaban, Bradford, & Walker, 

2007).  By examining the results, we are led to the conclusion that applied hydrodynamics does indeed have 

a significant effect on colloid retention.  

 

Shown below are the results again of scenarios one, four and seven (Fig. 22).  

 

Figure 22. Results scenario 1, 4 and 7: small radius. Forces are in newton and the graph is in [m] meters. 

The first, fourth and seventh scenarios show the most difference. Due to the narrow constriction the 

hydrodynamic force increases greatly, and this has great effect on colloid retention. The maximum drag 

force noted for the first scenario is at 2e-10 N whereas the maximum drag force for the second scenario is 

0.1e-10 N. The adsorption rates (percentage of particles adsorbed)  also vary from 60% to 80. This provides 

evidence that pore shape geometry greatly affects hydrodynamics, with increasing effect at narrow pore 

constrictions.   

 

Shown below are the results of scenarios two, five and eight (Fig. 23). 
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Figure 23. Results scenario 2, 5 and 8: average radius. Forces are in newton and the graph is in [m] meters. 

When comparing the second, fifth and eighth scenarios although the particle adsorption rate stays the same 

the last particle to adsorb shows an increasing distance travelled. This is another piece of evidence that 

indicates the decreasing adsorption rate with an increase in velocity. Although not as heavily influenced as 

seen in other scenarios, this could be due to the relatively wide constriction radius. The wide constriction 

radius gives less rise of velocity and thus less of an effect on colloid retention. The shape of the drag force 

curve is also remarkable, showing a peak with steeper slopes for the fastest velocity and more gentle slopes 

for the slowest velocity. 

 

 

Figure 24. Results scenario 3, 6 and 9: large radius. Forces are in newton and the graph is in [m] meters. 

When looking at the drag force graphs from scenarios three, six and nine (Fig. 24), it is not expected for 

the centre particle to keep increasing in speed. It should find an equilibrium value and stay at that value, 

and in this case it keeps increasing whereas there is no theoretical basis for an increase in velocity. The 

reason for blue not reaching equilibrium is because the drag force is calculated in such a way that the 

velocity field is compared to the actual velocity measured, for some reason the actual velocity is bigger 

than the velocity field causing a slight change where the result should be 0. This change results in an 

eventually increasing velocity. The particles to the side are influenced by the DLVO force and lose some 
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actual velocity so they eventually reach a state where the actual velocity is smaller than the velocity field 

and reach equilibrium.  

 

Some limitations have to be addressed, the formulas used are an approximation of reality and the model is 

a simplification of reality resulting in a model which cannot be equal to reality even in the best scenario. 

There are also certain areas of the model which are still lacking in and of itself, for instance the increasing 

velocity in cylinder geometry. 

 

Further research is necessary for an more in-depth understanding of the relationship between the different 

parameters. Increasing the quantity of runs with different parameters, which was unfortunately not possible 

for this project due to time constraints. It would be interesting to see how the model works when it is scaled 

up to a real-life measurement of small unit of pores and the results compared to real scenario. 
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6. Conclusion 

 

The main research questions is: 

 

“How is colloid attachment and detachment in a single pore affected by pore shape and velocity?” 

 

As stated in the discussion I conclude that colloid attachment and detachment is indeed affected by pore 

shape geometry and applied hydrodynamics. With the most noticeable effects in narrow pore shaped 

constrictions and high velocities resulting in a higher rate of colloid retention. When the constriction radius 

was half of the maximum pore radius the effect of hydrodynamics on colloid retention changed 

substantially. There was no change in particle adsorption for all three scenarios although particles travelled 

a slightly longer distance before adsorbing, showing that even in this scenario high velocity retains its effect 

on particle adsorption- although on a substantially lower rate. In the straight cylinder scenarios there was 

no colloid retention. This leads to the conclusion that the effect of pore shape on colloid retention is 

strongest at very straight or very narrow pore shapes. During average constriction radii the effect of pore 

shape geometry and applied hydrodynamics on colloid retention was the lowest.  

This study functions a testament to the importance of applied hydrodynamics on colloid retention. Utilizing 

the model and conclusions of this study to conduct further research will increase our understanding and 

have a potentially substantial impact on a wide spectrum of subjects, from medicine to water treatment 

(Torkzaban, Bradford, & Walker, 2007). 
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Appendix 

Model: 

 

9-12  logic variables control the plots 

14-15   tic/clc 

 

23  tubez rmax rc counter are made global 

26-30  declareer info in partities (grav/diff/DLVO/sum) 

31-35  declareer empty matrix for grav/diff/DLVO/SUM 

40-41  Make fig. tube and put hold 

 

42-53  give particle radius,tube length,dt,rmax etc & function inputs (which are added down 

below) 

60  Give number of particles 

 

75-84  give initial locations for N particles, in init R,Z and Theta (angular location) 

87-88  make empty matrix for N for init_ur/uz 

89-93   Calculate init_ur/uz 

102-107 put the init locations r/z and velocities ur/uz per N particle in a matrix 

115  give function for calculating wall geometry 

118-129 plot the tube for z(0>z>1) and draw the geometry in fig. tube 

 

134-149  calculate F1,F4,F6,F7,F8 kc_p and M11,M22,M33 

151-164 plot these F functions if logic variable is 1 

193  calculate H (dimensionless distance) by calc distance to wall for particle N – init location 

195-199 Calculate H for every particle 

201  Plot particles in fig. Tube 

 

202-205 Start of loop for 1:N(particles) 

215-230 for every particle N calculate M11,M22,M33 

230-233 Calculate Mc, namely kc_p 

234-237 Calculate displacement due to Brownian motion and vectorizer 

238-240 Calculate Div of M 

242-244 Calc Slope 

 

248-251 Calc Gravity Force 

253-259 Calc Drag Force 

261-265 Calc DLVO force 

267-277 tell matlab to print (say) forces in the command widow for added visibility 

275-279 Insert the forces into the info matrix for informative overview 

281-309 Plot Drag/dlvo/all forces  

314-317 Calc displacement dx, convert to radial displacement dr(r-direction)/dg(z-direction) 

321-322 Calculate velocity by dividing distance by time, dr/dt, dg/dt 

325-337 Implement these new locations into the model 

343  End loop for particle forces calculation 

 

348-353  Calculate New H for the new location 

356-371 Calculate if there are particles exiting (either through the side or through the bottom) 

379-383 plot particles & check if there are particles remaining, if not END or if time>10000 END 
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437  End of particle displacement calculation, the model run ends only if all particles are  

  deposited, either by passing through the wall or exiting the tube at the bottom 

438-445 Plot figures DLVO, Drag, Grav in Fig 2 

450-457 State func Input, these are just variables 

 

461-466 Define function: Gravity, this forms the formulas which calc f_grav 

469-504 Define function: Drag force 

507-609 Define function: DLVO force 

611-649 Define function: Plot particles 

END OF MODEL 
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