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Chapter 1

Introduction

Born on 30 April 1777 in Braunschweig, Carl Friedrich Gauss was a German mathematician who
contributed to many different branches of mathematics. At the age of 24, when Gauss had just
finished his doctoral degree, he became a well established name as an academic, due to his work on
the prediction of the path of the dwarf planet Ceres [Kaufmann-Bühler, p. 45]. After its discovery
on February 11, 1801 by Piazzi, Ceres was observed for 41 days after which it disappeared into
the halo of the sun. Gauss discovered a method for computing the planet’s orbit and successfully
predicted where Ceres might be found after its exit from the halo.

Gauss continued working on planetary orbits and in 1809 published his Theoria motus cor-
porum coelestium in sectionibus conicis solem ambientium (Theory of motion of the celestial bodies
moving in conic sections around the Sun) [Gauss 1809, Gauss 1857]. In this work, Gauss used the
technique of least squares and gave some arguments for this method which will be discussed in Ch.
4.4 below. Later on he extended on this in a more fundamental theoretical way in his two memoirs
Theoria Combinationis Observationum Erroribus Minimis Obnoxiae (Theory Of The Combination
Of Observations Least Subject To Errors) [Gauss 1823, 1823a] with the Supplement [Gauss 1828]
which we will study in this thesis. Gauss wrote in Latin but the work was translated into German
[Gauss 1887, pp. 1-91] and English [Gauss 1995].

The investigations in the Supplement were inspired by his work on geodesy, which mainly
concerned the triangulation of the province of Hannover [Kaufmann-Bühler 1981, p. 95-109].
Using new and accurate observational tools, and the method of repetition, measurements became
a lot more precise. However, Gauss realized that measurements can never produce perfect values,
as he notes in the beginning of [Gauss 1823]: “However carefully one takes observation of the
magnitude of objects in nature, the results are always subject to larger or smaller errors” [Gauss
1995, p. 3]. Throughout his life he studied the nature of these errors, and in doing so also
discovered the ’Gaussian’ normal distribution which plays an important role in probability theory.

In the Supplement, he gives an extension and application for (some of) the discussed least
squares theory to geodesy. He starts with a very general problem setting, and his solutions are
not reader-friendly because he omitted many steps which he found easy, and because his notation
is difficult for a modern reader. When reading the Supplement, it is often not clear what Gauss
is discussing or how he achieves his results. The translator Stewart also calls Gauss’s style in the
Supplement “oblique” and “particularly demanding” [Gauss 1995, p. 232]. Then Gauss illustrates
his very general theories by a few concrete examples. The Supplement has not been discussed
in much detail in the literature on the history of mathematics; the existing reports are brief and
incomplete, and were written for specialists in statistics [Gauss 1995, pp. 232-235] or for geodesists,
see for example [Jordan-Eggert 1948, p. 519-520].

In this thesis I have tried to illustrate a small part of the mathematics in the Supplement by
turning Gauss’s procedure around. I start with his first example, which consists of some geodetic
measurements that had been made by G. Krayenhoff (1758-1840) in the Netherlands. From
the work Précis historique des opérations trigonométriques faites en Hollande, Gauss took 27
measurements of angles between the cities Ballum, Harlingen, Leeuwarden, Sneek, Oldeholtpade,
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CHAPTER 1. INTRODUCTION

Drachten, Oosterwolde, Groningen and Dokkum. To prepare for this thesis, we emulated the field
work done by Krayenhof by visiting most of these cities, to get an idea of the difficulty of making
these observations in an precise manner. We climbed the tower of the “Oldehove” in Leeuwarden
and inspected the location from which five measurements were made.

Because measurements done in the real world will always translate to some mathematical
inaccuracy, Gauss wanted to test their accuracy, by comparing them with known mathematical
properties. For instance the sum of the angles of a plane triangle is 180◦, and the sum of all angles
surrounding a point is 360◦. Because such requirements are not exactly met by the measured
angles, these angles need to be adjusted a bit. Krayenhoff had done this in rather arbitrary ways,
but Gauss did this in a better way by means of least squares, which method was not known to
Krayenhoff. I will explain the theory in the Supplement [Gauss 1828] only in the case of this
example. Thus we will see only a small part of the beautiful mathematics in the Supplement but
we can avoid many of the generalities which make Gauss’s own argument so difficult. In this
way I try to make Gauss’s reasoning accessible to students who have finished their first year in
mathematics. In an earlier work published in 1809, Gauss had given an interesting motivation for
the method of least squares, see Chapter 4.4 below.

Gauss used his conclusions to criticize Krayenhoffs work and methods [Haasbroek 1972, p. 9].
This interesting criticism falls outside the scope of this thesis, compare [Haasbroek 1972, pp. 85,
109, 131].

2 Gauss’s method of least squares applied to geodetic measurements in Friesland



Chapter 2

The geodetic problem

Here is the first example to which Gauss applies his theories. These are 27 measurements (out
of more than 500) made by C.R.T. Krayenhof in 1807 and 1811 and published in his Précis
historique des opérations trigonométriques faites en Hollande [Krayenhoff 815, pp. 77-81, 113-
115] The measurements were made in nine localities, almost all in Friesland, on top of church
towers, by a high-precision instrument called “repetition circle”. The instrument was used to
measure angles between towers of other cities seen in the distance, usually between 20 and 40 km
away.

Figure 1: Painting of Krayenhoff [Haasbroek 1972, p. 7, 13] with his repeating circle on the left.

The towers in the distance were sighted by the two telescopes with a magnification of more
than 20. They could rotate over circular scales that could be read off by small microscopes which
can also be seen in the painting in Figure 1. Krayenhoff and his assistants read the individual
angles with an accuracy of 5 arc seconds [Haasbroek 1972 p. 29]. A special part of the instrument
(repetition circle) with a set of screws then made it possible to repeat the same measurement ca.
20 times. During this repetition, the sum of the measured angles was automatically indicated on
the circular scale, for details see Haasbroek [1972, p. 20-24]. The average of the 20 angles was
considered more accurate than the individual angle; it was computed in thousands of arc seconds,
although the last two digits are not significant from a modern point of view. The purpose of all
this was to draw a very accurate map of the Netherlands.

The high precision values make the mathematics more difficult. One meter seen from a distance
of 30 kilometer corresponds to an angle of ca. 6 arc seconds, so the height of the towers in the
distance cannot be ignored. If one climbs a tower of 30 meters high, the visible horizon sinks
ca. 10 arc minutes, because of the curvature of the earth, which therefore cannot be ignored
either.1 Therefore one had to make a trigonometrical computation in order to “reduce the angle

1One meter seen at a distance of 30 km corresponds to ca. (1/30000) ∗ (180/π) ∗ 60 ∗ 60 arc seconds. The
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CHAPTER 2. THE GEODETIC PROBLEM

(between the two towers) to the horizon.” This means: to find the angle between the perpendicular
projections of the two arms of the angle between the two towers, on the plane of the mathematical
horizon, that is the plane through the observer perpendicular to the direction of the zenith.
In order to do this computation one first needed to measure with the same precision, using the
repetition circle, the angles between the towers in the distance and the zenith. These zenith angles
are usually a bit more than 90 degrees. We will spare the reader the details, for all trigonometrical
formulas see [Haasbroek 1972, pp 51-56].

The “angles reduced to the horizon” are equal to the angles on the sphere between the great
circle arcs from the point of observation to the two towers in the distance. From now on we
will call these spherical angles the “observed angles” or “measured angles”, even though they are
products of a trigonometrical computation.

Here is a list of the 27 “measured angles” (that is, true spherical angles) which Gauss took
from Krayenhoff [Gauss 1995, p. 150-151]. Figure 2 displays the network of these measured angles.
Gauss calls each angle by a number 0 . . . 26, and we will also use these numbers in our notation.
We use wi, 0 ≤ i ≤ 26 for the measured values of these (spherical) angles. Gauss also lists the
nine triangles which can be made from the measured angles, as shown in Figure 2.

Figure 2. The network of 9 localities and 27 angles.

H = Harlingen B = Ballum Do = Dokkum
L = Leeuwarden S = Sneek Dr = Drachten
Ol = Oldeholtpade Oo = Oosterwolde G= Groningen

approximation formula for the depression of the visible horizon is
√

2h
R

radians, where h is the height of the tower,

R ≈ 6371 km the radius of the earth.
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CHAPTER 2. THE GEODETIC PROBLEM

Triangle 1

w0 = Harlingen . . . . 50◦58′15.238′′

w1 = Leeuwarden . . . . 82◦47′15.351′′

w2 = Ballum . . . . 46◦14′27.202′′

Triangle 2

w3 = Harlingen . . . . 51◦5′39.717′′

w4 = Sneek . . . . 70◦48′33.445′′

w5 = Leeuwarden . . . . 58◦5′48.707′′

Triangle 3

w6 = Sneek . . . . 49◦30′40.051′′

w7 = Drachten . . . . 42◦52′59.382′′

w8 = Leeuwarden . . . .87◦36′21.057′′

Triangle 4

w9 = Sneek . . . . 45◦36′7.492′′

w10 = Oldeholtpade . . . . 67◦52′0.048′′

w11 = Drachten . . . . 66◦31′56.513′′

Triangle 5

w12 = Drachten . . . . 53◦55′24.745′′

w13 = Oldeholtpade . . . . 47◦48′52.580′′

w14 = Oosterwolde . . . . 78◦15′42.347′′

Triangle 6

w15 = Leeuwarden . . . . 59◦24′0.645′′

w16 = Dokkum . . . . 76◦34′9.021′′

w17 = Ballum . . . . 44◦1′51.040′′

Triangle 7

w18 = Leeuwarden . . . . 72◦6′32.043′′

w19 = Drachten . . . .46◦53′27.163′′

w20 = Dokkum . . . . 61◦0′4.494′′

Triangle 8

w21 = Dokkum . . . .57◦1′55.292′′

w22 = Drachten . . . . 83◦33′14.515′′

w23 = Groningen . . . . 9◦24′52.397′′

Triangle 9

w24 = Oosterwolde . . . . 81◦5417.447
w25 = Groningen . . . .31◦5246.094
w26 = Drachten . . . . 66◦1257.246

Gauss uses these 27 measured angles between 9 locations in order to give an application of
the theory he discussed earlier in the Supplement. Gauss proceeds by setting up a system of
equations, as discussed in the following section. The mathematical correct values of the angles
should satisfy these equations but the measured values do not, and therefore Gauss computed
adjustments of the measured values using the method of least squares. In this way he could also
judge the reliability of the measurements. The reliability of measurements is relevant in this case
because small deviations from the true angles can result in big changes over long distances.

Gauss’s method of least squares applied to geodetic measurements in Friesland 5



Chapter 3

The equations

In the previous section we discussed the measured values of 27 spherical angles w0, w1, · · ·w26

between 9 different localities, as in Figure 2 above. Gauss now sets up a system of equations. We
will simplify his notations by the modern concept of functions.

There are certain mathematical properties the angles should satisfy, if the measurements could
have been done perfectly. Thus, (1) the sum of the angles surrounding one angular point is 360
degrees, (2) the sum of the angles of a spherical triangle is 180 degrees plus the spherical excess,
and (3) we will see that we can also derive another property of the angles from the sine rule in
any triangle.

With these mathematical properties in mind, we look at the network of angles in Figure 2
above. We find two points completely surrounded by angles (leading to f1 and f2 below), we
can make 9 triangles (this will lead to f3 · · · f11 below), and as we will see, the sine rule can be
exploited in two cases (leading to f12 and f13 below). We will use the notation v0, v1, . . . v26 for
“perfect values” of the 27 angles, not subject to measurement errors.

Two angular points, namely Leeuwarden and Drachten, are completely surrounded by angles.
This leads to two functions which must be zero at the perfect values vi:

f1(v0, v1, . . . , v26) = v1 + v5 + v8 + v15 + v18 − 360

f2(v0, v1, . . . , v26) = v7 + v11 + v12 + v19 + v22 + v26 − 360

Angles 0, 1, 2 form a spherical triangle so the sum of them should be 180 degrees plus the
spherical excess, if the measurements were done perfectly. So we now define f3(v0, v1, . . . , v26) =
v0 + v1 + v2 − (180 + s1) where s1 is the spherical excess in this triangle HLB in Figure 2. Then
for “perfect” values v0, v1, v2 of these angles, we have f3(v0, v1, . . . , v26) = 0 but if we enter the
observed values we find for f3(w0, w1, . . . , w26) a number close to zero but not equal to it. We will
give the numerical details below. In this way we can define nine functions for the triangles:

f3(v0, v1, . . . , v26) = v0 + v1 + v2 − (180 + s1)

f4(v0, v1, . . . , v26) = v3 + v4 + v5 − (180 + s2)

f5(v0, v1, . . . , v26) = v6 + v7 + v8 − (180 + s3)

f6(v0, v1, . . . , v26) = v9 + v10 + v11 − (180 + s4)

f7(v0, v1, . . . , v26) = v12 + v13 + v14 − (180 + s5)

f8(v0, v1, . . . , v26) = v15 + v16 + v17 − (180 + s6)

f9(v0, v1, . . . , v26) = v18 + v19 + v20 − (180 + s7)

f10(v0, v1, . . . , v26) = v21 + v22 + v23 − (180 + s8)

f11(v0, v1, . . . , v26) = v24 + v25 + v26 − (180 + s9)

6 Gauss’s method of least squares applied to geodetic measurements in Friesland



CHAPTER 3. THE EQUATIONS

The numbers s1, . . . s9 are the spherical excesses of the nine triangles, as explained in paragraph
3.2 below.

Two extra equations can be derived from the sine rules, the derivation of which will be shown
later. This will lead to two more functions which must be zero at the perfect values vi:

f12(v0, v1, . . . , v26)

= log(sin(v0 −
1

3
s1))− log(sin(v2 −

1

3
s1))− log(sin(v3 −

1

3
s2))+

log(sin(v4 −
1

3
s2))− log(sin(v6 −

1

3
s3)) + log(sin(v7 −

1

3
s3)

− log(sin(v16 −
1

3
s6)) + log(sin(v17 −

1

3
s6))− log(sin(v19 −

1

3
s7)) + log(sin(v20 −

1

3
s7)),

f13(v0, v1, . . . , v26)

= log(sin(v6 −
1

3
s3))− log sin(v8 −

1

3
s3))− log(sin(v9 −

1

3
s4))+

log(sin(v10 −
1

3
s4))− log(sin(v13 −

1

3
s5)) + log(sin(v14 −

1

3
s5)

+ log(sin(v18 −
1

3
s7))− log(sin(v20 −

1

3
s7)) + log(sin(v21 −

1

3
s8))− log(sin(v23 −

1

3
s8))−

log(sin(v24 −
1

3
s9)) + log(sin(v25 −

1

3
s9)).

The goal now is to find values v0, · · · v26 such that f1(v0, · · · v26) = f2(v0, · · · v26) = · · · =
f13(v0, · · · v26) = 0 and the v0, · · · v26 are “as close as possible” to the observed values w0, · · ·w26.
Gauss calls the transition from wi to vi the “best adjustment” and ei = wi − vi the “most
plausible error.” With “as close as possible Gauss means that the sum of the squares of the
differences ei = (wi−vi) is minimal. The reason for this last requirements is related to probability
theory and I will discuss Gausss argumentation in Chapter 4.3 below. When substituting values
w0, · · ·w26 into the 13 functions, the requirement f1 = f2 = · · · f13 = 0 is not met, but all function
values differ somewhat from 0. The reason for the existence of these deviations is that in practice
it is not possible to measure an angle with mathematical perfection.

3.1 The numerical equations for the most plausible errors

As mentioned before Gauss specifies three kinds of equations, two equations for the sum of the
angles surrounding Leeuwarden and Drachten, nine equations derived from the triangles, and two
equations based on the sine rule. We now discuss the numerical implementation.

For the first kind of equations this is as follows. Take all the observed values wi (i=1, 5, 8, 15,
18) of the angles with angular point Leeuwarden into consideration and sum these. We get 359◦

59′ 57.803′′ which falls 2.197 short of 360◦, the sum of the “perfect angles” vi. So we know that
the errors1 ei = wi − vi of all these angles sum to −2.197. This can be done in a similar way for
the angles of Drachten and we get the following two equations:

e1 + e5 + e8 + e15 + e18 = −2.197′′

e7 + e11 + e12 + e19 + e22 + e26 = −0.436′′

1Gauss did not use the notation i but he indicated the error in angle i by the number i inside a small circle.

Gauss’s method of least squares applied to geodetic measurements in Friesland 7
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We now take into consideration the triangle formed by the cities Harlingen, Leeuwarden and
Ballum. The sum of the spherical angles w0, w1, w2 in the triangle is 50◦ 58′ 15.238′′ + 82◦ 47′

15.351′′ + 46◦ 14′ 27.202′′ = 179◦ 59′ 57.791′′. Now because the measured angles are spher-
ical angles, we also need to take the spherical excess of 1.749′′ (for this specific triangle) into
consideration, see below Ch. 3.2 for its computation.

If the angles had been measured perfectly they should sum to v0 + v1 + v2 = 180◦+ 1.749. For
the observed values wi we find that w0+w1+w2 = 180◦−2.209′′. If we write as above wi = vi+ei
we find the first equation which Gauss uses as e0 + e1 + e2 = −3.958”. If this is done for all nine
triangles we find the following:

e0 + e1 + e2 = −3.958′′

e3 + e4 + e5 = +0.722′′

e6 + e7 + e8 = −0.753′′

e9 + e10 + e11 = +2.355′′

e12 + e13 + e14 = −1.201′′

e15 + e16 + e17 = −0.461′′

e18 + e19 + e20 = +2.596′′

e21 + e22 + e23 = +0.043′′

e24 + e25 + e26 = −0.616′′

Two more equations remain: these will be discussed in the next section.

3.1.1 Deriving the two equations of third kind

We consider the first equation of the third kind, and we will begin by explaining the principle.
Suppose first that the network of triangles in Figure 2 is in a plane. Now we apply the sine rule
in the triangles surrounding L=Leeuwarden. Call the sides of these triangles a=L-Harlingen, b
= L-Sneek, c=L-Drachten, d=L-Dokkum, e=L-Ballum. In the first triangle, between Harlingen,
Leeuwarden and Ballum, the sine rule gives e

sin(v0)
= a

sin(v2)
. Doing this for the other triangles

we also derive a
sin(v4)

= b
sin(v3)

, b
sin(v7)

= c
sin(v6)

, c
sin(v20)

= d
sin(v19)

, d
sin(v17)

= e
sin(v16)

. Multiplying

these five equations gives:

a

sin(v4)

b

sin(v7)

c

sin(v20)

d

sin(v17)

e

sin(v0)
=

b

sin(v3)

c

sin(v6)

d

sin(v19)

e

sin(v16)

a

sin(v2)
,

which is equivalent to:

sin(v0) sin(v4) sin(v7) sin(v17) sin(v20)

sin(v2) sin(v3) sin(v6) sin(v16) sin(v19)
= 1.

Now taking the logarithm:

log(sin(v0))− log(sin(v2))− log(sin(v3)) + log(sin(v4))− log(sin(v6)) + log(sin(v7))− log(sin(v16))

+ log(sin(v17))− log(sin(v19)) + log(sin(v20)) = 0

We now adapt the argument because the network is not on a plane but on a sphere. Gauss used
Legendre’s theorem for spherical triangles: If we have a spherical triangle with angular points A,
B and C and spherical angles α, β, γ, and spherical excess s, then the angles in the plane triangle

8 Gauss’s method of least squares applied to geodetic measurements in Friesland
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ABC are in very good approximation α − 1
3s, β −

1
3s, γ −

1
3s, see for a proof [Legendre 1798].2

Then we can use the same argument as above because we do not have to assume (to apply the
sine rule) that all the triangles are in the same plane.

We get, by plugging in the spherical excesses, the equation which Gauss used:

log(sin(v(0) − 0.583”))− log(sin(v(2) − 0.583”))− log(sin(v(3) − 0.382”))+

log(sin(v(4) − 0.382”))− log(sin(v(6) − 0.414”)) + log(sin(v(7) − 0.414”))

− log(sin(v(16) − 0.389”)) + log(sin(v(17) − 0.389”))− log(sin(v(19) − 0.368”)) + log(sin(v(20) − 0.368”)) = 0

This is the equation f12(v0, v1, . . . , v26) = 0 as above. If we do the same with all triangles
surrounding Drachten, we then get the equation f13(v0, v1, . . . , v26) = 0.

3.1.2 Linearization of the logarithm functions

The last two equations f12 = 0 and f13 = 0 were linearized by Gauss in order to obtain equations
for the unknown errors which can easily be solved. Gauss only writes the result without giving any
computation, so we will explain his procedure here. We write wi = vi + ei as above with wi the
observed value, vi a “correct” value, and ei the corresponding error. In this scenario Gauss assumes
that the margins of the (unknown) errors ei are sufficiently small to only consider the linear terms.
He uses the following general form: g(a− e) ≈ g(a)− eg′(a). So we get the following linearization:

log(sin(vi − 1
3s)) = log(sin(wi − 1

3s) − ei) ≈ log(sin(a)) − e cos(a)sin(a) = log(sin(a)) − e cot(a) with

a = wi− 1
3s and e = ei. Here log is the natural logarithm and a and e are in radians to make sure

that the derivative of sin(x) is cos(x). However, Gauss works with logarithms with base 10 (not e)
and with errors in arc seconds, not radians, and we note that 10 log x =e log x/e log 10 and 1 radian
= 180/π degrees = 3·603/π arc seconds. So if we have e in arcseconds, we have to divide by 3·603/π
to get e in radians. Therefore the linearisation becomes 10 log(sin(vi− 1

3s)) =10 log(sin(wi− 1
3s)−ei)

≈10 log(sin((wi − 1
3s))− e cot((wi − 1

3s)) ·
1

e log 10 · (π/3 · 603) if e is measured in arc seconds.

Here is the computation for the first term 10 log(sin(v(0)−0.583)) of the equation f12(v0, v1, . . . , v26) =
0. I print the formula in such a way that a modern student can easily program it in Mathematica
(or plug it in in wolframalpha.com) and thus check the numbers in Gauss’s equations.

10 log(sin((50 + 58/60 + 15.238/3600− 0.583/3600)(π/180)− e0))

≈ log(sin((50 + 58/60 + 15.238/3600− 0.583/3600) ∗ (π/180)))(1/ log 10)

− (1/ log(10)) cot((50 + 58/60 + 15.238/3600− 0.583/3600) ∗ (π/180))(π/(3 ∗ 603))e0.

= −0.109677114− 1.70679696× 10−6e0.

Doing this for all the terms in the equation the constants add up to:

− 0.109677114 + 0.14131122 + 0.10891981− 0.024830652 + 0.11888322− 0.16716926

+ 0.0120431368− 0.15798760 + 0.13664604− 0.05817592588

= −0.00003712508.

Adding the linearizations of all the logarithms, and multiplying by −107, we obtain an equation,
which we can write as follows, just like Gauss did:

17.068(e0)− 20.174(e2)− 16.993(e3) + 7.328(e4)− 17.976(e6) + 22.672(e7)− 5.028(e16)

+ 21.780(e17)− 19.710(e19) + 11.671(e20) = −371.

2If we assume that the earth is a perfect sphere, the adaptation does not seem necessary because the sine rule
changes from e

sin(v0)
= a

sin(v2)
to sin e

sin(v0)
= sin a

sin(v2)
and so on, where the distances e, a have to be computed in

radians rather than kilometers. This cannot have escaped Gauss, but he knew that Legendres theorem (possibly
generalized) is also valid on more general curved surfaces. See [Gauss 1995, p. 147] “each of which must be reduced
by one-third of the excess due to sphericity ore spheroidicity if they lie in a curved surface,” and [Gauss 1828a,
144-149] which appeared in the same journal issue as [Gauss 1828].
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CHAPTER 3. THE EQUATIONS

If we linearize the terms in f13 in the same way, we obtain

17.976(e6)− 0.880(e8)− 20.617(e9) + 8.564(e10)− 19.082(e13) + 4.375(e14) + 6.798(e18)

− 11.671(e20) + 13.657(e21)− 25.620(e23)− 2.995(e24) + 33.854(e25) = +370.

3.2 Spherical excess

The following is valid for spherical triangles, that is to say: triangles on a sphere whose sides are
arcs of great circles. A great circle is a circle whose center is the same as the center of the sphere.
The sum of the angles of a spherical triangle is (in radians) 2π plus the spherical excess, where
the spherical excess is the surface area of the sphere divided by the square of the radius of the
sphere. For a proof see, for example, [Molenbroek 1946, pp. 267-268]. The sphere in this case is
the earth, with a radius of approximately 6371 kilometer; this value was known to Gauss. The
distance between the cities was also known in good approximation.

An example of the spherical excess E of the triangle formed by Leeuwarden, Harlingen and
Ballum will be calculated by E = A

R2 , where A= the area of the triangle and R the radius of the

sphere. The area A can be approximated by Heron’s formula A =
√
s(s− a)(s− b)(s− c) where

a, b, c are the sides of the triangle and s = 1/2(a + b + c). For the area computation we assume
the (small) spherical triangle to be plane. In the triangle given here as an example we can use
the approximations, taken from a modern atlas, a = 25 km, b = 35 km and c = 28 km. So now
s = 44, and thus A =

√
44(44− 25)(44− 35)(44− 28) ≈ 347 km2. So E ≈ 347

63712 in radians and
to express this in arc-seconds: E ≈ 347

63712 × (180/π) × 3600 ≈ 1.763′′. Gauss uses 1.749. Our
computation is approximate; a precise reconstruction of the computation which Gauss (or, more
likely, his predecessor Kraijenhoff) used is outside the scope of this thesis.

Perhaps the reader will notice a circular reasoning here. The distance between the cities
(taken from an old map) is used to find the spherical excess, which is then used to compute a new
map, which can then be used to determine the distance between the cities again. However, the
adjustments of the distances between the cities (between old and new map) was small, usually less
than one hundred meters. Therefore the influence on the adjustment on the spherical excess can
be ignored.
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Chapter 4

Gauss’s solution to the problem

4.1 Solving the system of equations

We will first give a practical description of the steps Gauss takes to arrive at his solution (see
[Gauss 1995, pp. 149-158] combined with [Gauss 1995, pp. 107- 121]). The intuition behind
this procedure will be commented on in Chapter 4.3. For simplicity we will explain the general
procedure in a way inspired by our example, for m = 13 functions and n + 1 = 27 measured
quantities. We start with our thirteen functions f1, f2, · · · f13, 27 measured angles wi, 0 ≤ i ≤ 26,
and corresponding ”most plausible” values vi 0 ≤ i ≤ 26 (to be determined later in this Chapter),
as above. These “most plausible values” satisfy all equations fj = 0, but the measured values do
not.

The functions are all linear expressions in the variables plus a constant term, so we can rewrite
the equations f1 = 0, . . . f13 = 0 which the “most plausible values vi satisfy, as :

a1,0v0 + a1,1v1 + a1,2v2 + · · ·+ a1,nvn = s1

...

am,0v0 + am,1v1 + am,2v2 + · · ·+ am,nvn = sm

In these equations all coefficients ai,j and all constants si are known. The notation is modern, for
Gausss notation see the end of this section.

Instead of the ”most probable values” we can also substitute the measured value’s wi into the
equation. This yields:

a1,0w0 + a1,1w1 + a1,2w2 + · · ·+ a1,nwn = c1 + s1

...

am,0w0 + am,1w1 + am,2w2 + · · ·+ am,nwn = cm + sm

Here the numbers c1, . . . cm are non-zero and they can be computed by plugging the measured
values wi into the equations.

The measured values wi are not precisely the “most plausible” values vi, so we set wi = vi+ ei
as above and subtract the first set of equations from the second. Thus we obtain:

a1,0e0 + a1,1e1 + a1,2e2 + · · ·+ a1,nen = c1

...

am,0e0 + am,1e1 + am,2e2 + · · ·+ am,nen = cm

Gauss’s method of least squares applied to geodetic measurements in Friesland 11



CHAPTER 4. GAUSS’S SOLUTION TO THE PROBLEM

In our situation this gives the equations we mentioned above: first the two equations for all the
angles measured in Leeuwarden and in Drachten:

e1 + e5 + e8 + e15 + e18 = −2.197′′ (4.1)

e7 + e11 + e12 + e19 + e22 + e26 = −0.436′′ (4.2)

then the nine equation for the sums of the angles in the triangles:

e0 + e1 + e2 = −3.958′′ (4.3)

e3 + e4 + e5 = +0.722′′ (4.4)

e6 + e7 + e8 = −0.753′′ (4.5)

e9 + e10 + e11 = +2.355′′ (4.6)

e12 + e13 + e14 = −1.201′′ (4.7)

e15 + e16 + e17 = −0.461′′ (4.8)

e18 + e19 + e20 = +2.596′′ (4.9)

e21 + e22 + e23 = +0.043′′ (4.10)

e24 + e25 + e26 = −0.616′′ (4.11)

And finally the two equations of the third kind described earlier (for ei in arc seconds):

17.068(e0)− 20.174(e2)− 16.993(e3) + 7.328(e4)− 17.976(e6) + 22.672(e7)− 5.028(e16)

+ 21.780(e17)− 19.710(e19) + 11.671(e20) = −371

17.976(e6)− 0.880(e8)− 20.617(e9) + 8.564(e10)− 19.082(e13) + 4.375(e14) + 6.798(e18)

− 11.671(e20) + 13.657(e21)− 25.620(e23)− 2.995(e24) + 33.854(e25) = +370

We will now explain the solution in modern notation. We write ~c = (c1, c2, · · · , c13)t, a known
vector, and ~e = (e1, e2, · · · , e13)t, the vector of the “most plausible” errors, which we want to find,
and we use the matrix Q = (ai,j). The letter t or T will indicate the transpose of a vector or a
matrix. In the example we have

Q= 
0 1 0 0 0 1 0 0 1 · · ·
0 0 0 0 0 0 0 1 0 1 . . .
...

...
...

. . .
...

17.068 0 −20.172 −16.993 7.328 0 −17.976 22.672 0 . . .
0 0 0 0 0 0 17.976 0 −0.880 . . .



Now in modern terms Gauss wants to find a vector ~e such that Q~e = ~c , where the ci are
the constants found earlier by evaluating the equations at the measured values of the angles. Fur-
thermore he wants the solution ~e such that the sum of squares of the components (that is, the
square of the length of the vector ~e ) is minimized. We show his general solution to this problem
in our concrete example. In brief, Gauss first finds a vector ~x such that QQT~x = ~c and he then
finds ~e = QT~x . Here are the details.

First Gauss makes a computation which is equivalent to finding the square, invertible and
symmetric m×m= matrix QQT =
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∑26
i=0 a1,ia1,i

∑26
i=0 a1,ia2,i . . .

∑26
i=0 a1,ia13,i∑26

i=0 a2,ia1,i
∑26
i=0 a2,ia2,i . . .

∑26
i=0 a2,ia13,i

...
...

...
...∑26

i=0 a13,ia1,i
∑26
i=0 a13,ia2,i . . .

∑26
i=0 a13,ia13,i


In order to keep in touch with Gauss’s argument we will explain here some of the notation

which he used and which was frequently used by others after him (even by B.L. van der Waerden
in Mathematische Statistik [Van der Waerden 1965, p. 126] who calls this notation “old-fashioned”
but “very easy”). Here is Gauss notation a, a′, a′′, b, b′, b′′, c, c′, c′′ and its translation in our nota-
tion:

a = a1,0, a
′ = a1,1, a

′′ = a1,2, . . . , b = a2,0, b
′ = a2,1, b

′′ = a2,2 . . . c = a3,0, c
′ = a3,1, c

′′ = a3,2
. . . etc. Then Gauss defines [aa] = aa+a′a′+a′′a′′+. . . =

∑26
i=0 a1,ia1,i, [bb] = bb+b′b′+b′′b′′+. . . =∑26

i=0 a2,ia2,i, [ab] = ab+a′b′+a′′b′′+. . . =
∑26
i=0 a1,ia2,i, [ba] = ba+b′a′+b′′a′′+. . . =

∑26
i=0 a2,ia1,i,

and so on. Clearly [ab] = [ba].

In this notation of Gauss (who did not use the letter j in his mathematical notation), our
matrix QQT would look as follows (m=13):

[aa] [ab] . . . [an]
[ba] [bb] . . . [bn]

...
...

...
...

[na] [nb] . . . [nn]


Gauss does not use the concept of matrix but he sets up the system of 13 equations which we

can express as QQT~x = ~c .1

In the example, Gauss calls the coordinates of our vector ~x the “correlates A,B, . . . , N. He
introduces these numbers as the solutions of the equations which we can write as vecc = QQT~x .
The 13 equations appear as follows (* indicates errors in the translation [Gauss 1995, p. 155]; the

1Gauss tries to not assume that the functions fi are linear, and he works as long as possible with derivatives.
Instead of f1, f2, f3 . . . he uses X,Y, Z. In our notation, the elements of the matrix Q are his derivatives:

dX

dv(0)
= a1,0,

dX

dv(1)
= a1,1, · · ·

dY

dv(0)
= a2,0,

dY

dv(1)
= a2,1, · · ·

dZ

dv(0)
= a3,0

dZ

dv(1)
= a3,1, · · ·

...
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equations are printed correctly in the original text [Gauss 1826, p 90])

− 2.197 = 5A+ C +D + E +H + I + 5.917N

− 0.436 = 6B + E + F +G+ I +K + L+ 2.962M

− 3.958 = A+ 3C − 3.106M

+ 0.722 = A+ 3D − 9.665M

− 0.753 = A+B + 3E + 4.696M + 17.096N

+ 2.355 = B + 3F − 12.053N

− 1.201 = B + 3G− 14.707N

− 0.461 = A+ 3H + 16.752M

+ 2.596 = A+B + 3I − 8.039M − 4.874N

+ 0.043 = B + 3K − 11.963N

− 0.616 = B + 3L+ 30.859N

− 371 = 2.962B − 3.106C − 9.665D + 4.696E + 16.752H − 8.039I + 2902.27M − 459.33N

+ 370 = +5.917A+ 17.096E − 12.053F − 14.707G− 4.874I − 11.963K + 30.859L− 459.33M + 3385.96N.

Gauss then solves this system of 13 linear equations in 13 unknowns “by elimination” and finds
the following:

A = −0.598 H = +0.659
B = −0.255 I = +1.050
C = −1.234 K = +0.577
D = +0.086 L = −1.351
E = −0.447 M = −0.109792
F = +1.351 N = +0.119681
G = +0.271

In terms of the Gaussian “correlates, the equation ~e = QT~x boils down to:

ei = a1,iA+ a2,iB + a3,iC + a4,iD + a5,iE + a6,iF + a7,iG+ a8,iH

+ a9,iI + a10,iK + a11,iL+ a12,iM + a13,iN.

Doing this for all ei we get:

e0 = C + 17.068N e1 = A+ C e2 = C − 20.174M
e3 = D − 16.993M e4 = D + 7.328M e5 = A+D
e6 = E − 17.976M + 17.976N e7 = B + E + 22.672M e8 = A+ E − 0.880N
e9 = F − 20.617N e10 = F + 8.564N e11 = B + F
e12 = B +G e13 = G− 19.082N e14 = G+ 4.375N
e15 = A+H e16 = H − 5.028M e17 = H + 21.780M
e18 = A+ I + 6.798N e19 = B + I − 19.710M e20 = I + 11.671M − 11.671N
e21 = K + 13.657N e22 = B +K e23 = K − 25.620N
e24 = L− 2.995N e25 = L+ 33.854N e26 = B + L

Gauss only writes out the first four of these equations.
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Using this Gauss now determines the “most plausible errors e0 · · · e26 in arc seconds:

e0 = −3.108 e1 = −1.832 e2 = 0.981
e3 = +1.952 e4 = −0.719 e5 = −0.512
e6 = +3.648 e7 = −3.221 e8 = −1.180
e9 = −1.116 e10 = +2.376 e11 = +1.096
e12 = +0.016 e13 = −2.013 e14 = +0.795
e15 = +0.061 e16 = +1.211 e17 = −1.732
e18 + 1.265 e19 = +2.959 e20 = −1.628
e21 = +2.211 e22 = +0.322 e23 = −2.489
e24 = −1.709 e25 = +2.701 e26 = −1.606

Gauss notes that the sum of squares of these errors is 97.8845 and he then states that the “mean

error” is
√

97.8845
13 = 2.7′′. This number is connected to the reliability of the measurements.

4.2 Correctness of the method and its result

In his article Gauss also shows that his method to determine the “the most plausible errors”,
produces the solution for the system for which the squares of the errors is minimized. Because the
number of variables (the errors, so 27) is larger then the number of equations (we have 13 equations
in this instance), there is an infinite amount of possible solutions to the system. Clearly, the vector
~e = QT~x which Gauss has found is a solution to the system Q~e = ~c because Q~e = QQT~x = ~c ,
and that is how x was computed. He proceeds as follows (we render his argument in our modernized
notation but keep close to his line of reasoning).

Let ~E = (E0, E1, E2, . . .) be another solution to the system Q~E = ~c . We write out the equations:

c1 = a1,0E0 + a1,1E1 + a1,2E2 + · · ·
c2 = a2,0E0 + a2,1E1 + a2,2E2 + · · ·
c3 = a3,0E0 + a3,1E1 + a3,2E2 + · · ·

...

If we multiply the equations in turn by the 13 “correlates” A,B,C, · · · , add the equations and
change the order of the terms we get:

a1,0AE0 + a2,0BE0 + a3,0CE0 + · · ·
+ a1,1AE1 + a2,1BE1 + a3,1CE1 · · ·
+ a1,2AE2 + a2,2BE2 + a3,2CE2 + · · ·
...

= c1A+ c2B + c3C + · · ·

Furthermore we also have:

e0 = a1,0A+ a2, 0B + a3,0C + . . .

and indeed

ei = a1,iA+ a2, iB + a3,iC + . . .

.
So now rewriting the former equation for c1A+ c2B + c3C + . . ., we get:

e0E0 + e1E1 + e2E2 + · · · = c1A+ c2B + c3C + . . .
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This same procedure can of course be done for (E0, E1, . . .) = (e0, e1, . . .) (because this is also
a solution of the system), here we get:

e0e0 + e1e1 + e2e2 + . . . = c1A+ c2B + c3C + . . .

From this Gauss concludes the following:

e0e0 + e1e1 + e2e2 + . . .+ (E0 − e0)2 + (E1 − e1)2 + (E2 − e2)2 + . . .

= E0E0 + E1E1 + E2E2 + · · ·+ 2(e20 + e21 + e22 + · · · )− 2(e0E0 + e1E1 + e2E2 + · · ·
= c1A+ c2B + c3C + · · · = E2

0 + E2
1 + E2

2 + · · ·

And from this we see that for every other solution E0, E1, E2, . . . the sum of the E2
i must be larger

then e20 + e21 + e22 + . . .. Gauss concludes that the solution e0, e1, e2, . . . which he has found are
indeed the “most plausible errors” for our measured values wi.

In modern terms, we can describe this procedure in an even simpler way as follows. Assume
~E = (E0, E1 · · ·E26)t is an arbitrary solution of Q~E = ~c . If we denote the standard inner

product as < x, y >, we can now write: < ~e , ~E >=< QT~x ,E >=< ~x ,Q~E >=< ~x ,~c >. If we
set ~E = ~e we get also < ~e ,~e >=< ~x ,~c >. From this it follows that < ~E , ~E > − < ~e ,~e > − <
~E − e , ~E − e >=< ~E , ~E > − < ~e ,~e > − < ~E , ~E > +2 < ~E ,~e > − < ~e ,~e >= 2 < ~E ,~e >
−2 < ~e ,~e >= 2 < ~x ,~c > −2 < ~x ,~c >= 0. Now it is clear that < ~E , ~E >=< ~e ,~e > + <
~E − e , ~E − e >, but < ~E , ~E > is the sum of the squares of the components. Thus we conclude

that ~E is a solution with minimal sum of squares only if ~E −~e = 0, which proves that Gauss has
found the unique vector ~e such that the sum of the squares of the components is minimal.

4.3 The idea behind the solution method in modern terms

One of the difficulties in working on this thesis was to get a sense of how Gauss found his solution
method, or even to get a feel for the reasoning behind it. Gauss’ reasoning as described in
the Supplement is not very mind-full of the understanding of the not so advanced reader. The
literature [Gauss 1995] gives a few comments on the parts where the method is described but in
my experience this did not give much clarifications, if at all.

In his method (explained in the case of the example), Gauss started with 27 measured angles wi.
Mathematically, the angles should satisfy 13 equations but because of the errors of measurement,
the measured values wi of the angles do not satisfy the equations. Gauss then wants to find the
solution angles vi to the equations such that such the sum of squares of the measured angles minus
the solution angles is minimal i.e. min{

∑26
i=1(wi − vi)2} = min{

∑26
i=1 e

2
i }. He considers vi the

“most plausible” values of the angles; and wi−vi = ei the “most plausible” errors of measurement.

The idea behind Gauss’ method of solution can be understood in terms of Lagrange multi-
pliers (he doesn’t mention that he uses this principle, but it is clear that he does). Gauss wants

to minimize {
∑26
i=1 e

2
i } subject to 13 conditions which one can express as g1(e0, e1, . . . e26) =

c1, . . . g13(e0, e1, . . . e26) = c13. According to the principle of Lagrange multipliers, the extremum is

found in a point (e0, e1, . . . e26) such that∇(e20+e21+. . .+e226) = (2e0, 2e1, . . . 2e26) =
∑26
k=0 λk∇gk.

Here λk is (an as yet unknown) number, called Lagrange multiplier, and ∇gk is the vector of par-
tial derivatives of the function gk, that is the vector of coefficients of the linear function gk. Gauss
uses λ1

2 = A, λ2

2 = B, · · · , until λ13

2 = N . He calls the numbers A,B, . . . N the “correlates.” By

taking the first, second, etc. coordinate in the equation (e0, e1, . . . e26) =
∑26
k=0

1
2λk∇gk, we can

express the ei in terms of the correlates. This produces e0 = C + 17.068N and e1 = A+ C, etc.,
as in the end of the previous section. If we call, as above, Q the matrix with in the k-th row the
coefficients of gk, and ~x = (A,B, . . . , N) we can write ~e = (e0, e1, . . . e26) =

∑26
k=0

1
2λk∇gk as

~e = QT~x as above.

Now to find the A,B,C, etc. we know that ~x should comply to: ~c = Q~e = QQT~x .
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Since ~c is known and QQT can easily be computed, Gauss can find his correlates, that is ~x by
solving the system of 13 equations in the 13 unknowns.

4.4 The normal distribution

This paragraph is dedicated to Gauss’s motivation for using the least squares method. He starts
the article [Gauss 1823] [Gauss 1995, p. 1-10] by discussing different kinds of errors one can
encounter when doing measurements and makes a distinction between “random errors” and “
constant errors”, meaning systematic errors. He then argues why investigating these random errors
gives an idea of the accuracy of the measurements. An argument supporting this claim might go
as follows. When doing measurements there are bound the be some inaccuracies, intuitively it
is clear that some inaccuracies have a higher probability of happening then others. For example
when measuring the length of a piece of wood, lets say with a straightedge, it is obviously more
likely that the measurement will have an inaccuracy of 1 centimeter then 1 kilometer. Naturally
Gauss understood this very well, but to perform mathematics with this abstract notion in mind
a more precise way of determining probabilities of certain inaccuracies to occur is needed. Gauss
starts with the following assumptions: (1) small errors are more likely more likely to occur then
large errors, (2) given a collection of measurements of the same quantity the most likely value to
be observed is their average, that is their arithmetic mean. Another assumption is, (3) it is equally
likely that the inaccuracy in the measurement, relative to the true value, is a positive amount or
a negative amount with the same absolute value [Gauss 1995, p. 7]. But in [Gauss 1823] he gives
no clear motivation for using (least) squares of the errors [Gauss 1995, p. 9-10].

In an earlier work on motion of the planets [Gauss 1809] Gauss had used these assumptions to
determine a function which corresponds to the behavior (1), (2), (3). In modern day mathematics
this function would be known as a probability density function. In this derivation he needs to
solve a differential equation. He proceeds as follows, see the German translation in [Gauss 1887,
pp. 97-104] and the English translation in [Gauss 1857, pp. 253-261], see also [Sheynin 1972,
pp.30-31.] We will amplify Gauss’s account a bit, because it may be interesting for the modern
readers to see Gauss’s own argument for the normal ‘Gaussian’ distribution.
Let p be the true value of a measured quantity, and assume we are given n independent observations
M1, · · ·Mn. Suppose that φ(x) is the probability density function of the random error (which
function Gauss is deriving here). Gauss assumes that this is a differentiable function, and he says

that the probability that the error lies between a and b with a < b is the integral
∫ b
a
φ(x) dx.

Now combining the assumption that small errors are more likely then large ones (1) and the
assumption that negative errors are equally likely as positive ones with the same absolute value
(3), it follows that φ(x) is maximized at x = 0 and φ(x) = φ(−x).Now Mi − p is the error of the
i-th measurement. Because all the Mi are independent measurements he concludes that the joint
density function Φ of all n combined errors is given by:

Φ = φ(M1 − p)φ(M2 − p) · · ·φ(Mn − p).

Gauss denotes the average of the measurements by

M̂ =
M1 +M2 + · · ·+Mn

n

He now considers Φ as a function of p for given Mi, and he assumes that it is most likely that
the true value p is equal to the average M̂ . This means that the choice of p = M̂ maximizes the
function Φ, so Φ′(p) = 0 in p = M̂ .

Taking the logarithm of the equation Φ(p) = φ(M1 − p)φ(M2 − p) · · ·φ(Mn − p) on both sides
and differentiating we get the following:

Φ′(p)

Φ(p)
=
φ′(M1 − p)
φ(M1 − p)

+ · · · φ(Mn − p)
φ(Mn − p)

= 0
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If we define2 the function f as: f(x) = φ′(x)
φ(x) the former equation can be expressed as:

f(M1 − M̂) + f(M2 − M̂) + · · · f(Mn − M̂) = 0.

We note φ(−x) = φ(x), so φ′(x) = −φ′(x) and f(−x) = −f(x).
Now Gauss argues in a very clever way. Because we are not considering any specific case the

measurements Mi can assume any arbitrary value, and in particular if M and N are arbitrary
real numbers we can set M2 = M3 = · · ·Mn = M − nN and M1 = M . From this we obtain
M̂ = M − (n− 1)N and substituting this into the former equation, we get:

f((n− 1)N) + (n− 1)f(−N) = 0 so f((n− 1)N) = (n− 1)f(N).

Gauss concludes that f(x) = kx for some real number k,3 and from this it follows that φ′(x)
φ(x) = kx.

Integrating with respect to x we have:

log(φ(x)) =
k

2
x2 + c or φ(x) = Ce(

kx2

2
)

Now φ(x) reaches its maximum at x = 0 only when the constant k
2 is negative so we can set

k/2 = −h2. Now we have: ∫ ∞
−∞

e−h
2x2

dx =

√
π

h
.

So finally, it follows that:

φ(x) =
h√
π
e−h

2x2

Now suppose that, as in the previous chapter, there are n quantities whose “true values” are
v1, . . . vn, and whose measured values are w1, w2, . . . wn, and also suppose that the measurements
are independent and with the same accuracy, so the probability density for each error (vi −wi) is
the same function φ with the same h. Then the joint density function of these errors is

Φ = φ(w1 − v1)φ(w2 − v2) · · ·φ(wn − vn)

= (
h√
π

)n exp(−
n∑
k=1

h2(wk − vk)2)

For Gauss, the most likely errors w1 − v1, . . . wn − vn are the errors which maximize the joint
density function Φ. Which is equivalent to minimizing the term

∑n
k=0(wk − vk)2, so, in words,

minimizing the sum of the squares of the errors.

2Gauss denotes our function f by φ′; with the accent he means something like φ1 rather than the derivative.
Still, his notation will confuse many modern readers.

3 We can see that this is true because if s and t are natural numbers, also by choosing n = s+ 1, f((s/t)N) =
f(s · (N/t)) = sf(N/t) and then by choosing t = s, f(N) = f(t/t)N = tf(N/t) so for all positive rational numbers
a f(aN) = af(N), and by a continuity argument we can see that this is also valid for all positive irrational numbers
a because a is the limit of a series of rational numbers.
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