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Abstract

Bayesian networks (BNs) are powerful mathematical tools that have found
applications in many fields where uncertainty plays a role, such as medicine,
forensics and law. In short, a BNs consist of a graph and a set of probabil-
ity parameters, and can be used to compute a probability of interest. In
certain domains, data is becoming increasingly available; hence, in these
domains BNs can often be constructed directly from data. In data-poor
domains however, the network has to be handcrafted with the help of a
domain expert. The current literature provides little guidance on manual
construction of the BN graph. In this thesis we present a set of guide-
lines and comparison measures that provide practical aid in building a
BN graph by hand with the help of a domain expert for a problem from
any domain. In contrast to earlier approaches, we aim for a set of guide-
lines that can be used for cases from any domain while still maintaining
a high degree of practical applicability. To this end, we carry out a com-
prehensive literature study on current forms of guidance in this area, a
detailed examination of advantageous characteristics for BN graphs, and
create and assess a database of manually constructed BN graphs from the
literature.

To evaluate the applicability of these guidelines and measures we carry
out a case study, where we take BNs constructed in the forensic and le-
gal domains as our case. We find that we largely succeeded in providing
guidance for an inherently subjective process (i.e. manual BN graph con-
struction). In addition, the BN graphs from the forensic and legal domains
are generally in line with what our guidelines describe. Testing the ap-
plicability of our comparison measures however proved difficult, due to
the fact that the literature provided few different BN graphs for the same
case.
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1 Introduction

The ubiquity of uncertainty and randomness complicates the decision-making
involved in solving real-world problems. The handling of uncertainty therefore
has a pivotal role in the field of artificial intelligence (AI): an intelligent system
must be able to perform a task that requires intellect, based on its knowledge and
environment, even when its knowledge and/or understanding of its environment
is incomplete or uncertain. The predominant way of dealing with uncertainty
is with probability theory. One way of interpreting probabilities is as relative
frequencies of specific outcomes, but probabilities can also be used in a more
subjective way: to summarise the extent to which something is believed. In this
way, one can express a degree of uncertainty with probability theory [24]. Several
tools exist that support domain experts in modelling (domain) knowledge whilst
incorporating the uncertainties that go along with that, in order to perform
probabilistic inference to reason about the probability of particular outcomes.

One such tool is a Bayesian Network (BN) [38]. BNs are powerful mathemat-
ical tools that have found applications in many different fields where uncertainty
plays a role, such as medicine, forensics and law [24]. In short, a BN describes
a joint probability distribution over a set of variables by means of a graph and
a set of probability parameters.

For a given problem, there is no ‘one true BN model’: depending on the in-
tentions and preferences of those involved in building the model, different models
may be constructed varying in the structure of the graph and the specification
of the network parameters (parameterisation). The construction of a BN is a
complex, iterative process [13] in which the structure of the graph and corre-
sponding parameters can be learnt from data, established manually, or found
through a combination of these. A manual approach is used for cases from
data-poor domains, such as forensics or law. For these domains, the graph and
probabilities can be established by hand with help of an expert in the domain
of the problem.

The graph of a BN captures the independence relation among its variables
from the modelled problem, and specifies which probabilities have to estimated.
For BNs from data-poor domains, it is therefore essential that the graph cor-
rectly represents the beliefs of the domain expert in their view of the relevant
variables and the correlations between them. The graph also functions as a
visual communication tool, showcasing the variables and reasoning considered
in the case.

Even though data-poor domains require a manual approach to BN graph
construction, few methods or guidelines for handcrafting a BN graph exist. The
aim of this thesis therefore is to provide aid for a BN engineer tasked with
manually constructing the graph of the BN for a data-poor domain (i.e. with
help of a domain expert). Specifically, we propose a set of generally applicable
guidelines for the manual construction of BN graphs in data-poor domains, as
well as a set of specific measures to compare BNs on. In doing so this study
contributes to untangling the complex process of BN construction, such that
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their application to problems from different data-poor domains can increase.

1.1 Research questions

The ultimate goal in this thesis is to provide a set of guidelines and comparison
measures. This aim can be divided into two objectives. The first is to research
what manually constructed BN graphs should ideally look like, such that we
know what our guidelines aim to achieve. Secondly, we use this insight to for-
mulate a set of guidelines for BN graph construction in data-poor domains. In
addition, we propose a set of measures with which different BN structures for
the same case can be assessed on. The newly proposed guidelines and mea-
sures should be evaluated on whether they are in line with practices from the
field. The forensic and legal domains are data-poor domains where a significant
amount of work is done on manual BN construction. These domains are treated
as a case study, and the guidelines and measures are related to this ‘case’.

Concretely, this leads to the following research questions:

1. What are desirable characteristics for manually constructed BN graphs
for problems from data-poor domains and why are these desirable?

2. How can these insights be combined to formulate:

(a) a set of practical guidelines for the manual BN graph construction
with help of domain experts for a problem from any domain, and

(b) a set of comparison measures for analysing different BN graphs for
the same problem and establishing which graph is the most suitable
in a specific situation?

3. How do the guidelines and comparison measures from research question
2 relate to actual manually constructed BN graphs from the forensic and
legal domains?

To answer the first research question we first provide a comprehensive overview
of the guidelines on manual BN graph construction that are currently provided
by the literature. Additionally, we gather information on the manual BN graph
construction process by examining the characteristics of handcrafted structures
from the field, specifically from the forensic and legal domains. The guidelines
from the literature are examined on their applicability to domains in general, and
on the characteristics of their resulting graphs. The goal is to gather inspiration
for what the new guidelines and measures should look like, as well as what they
should achieve. This insight is translated into the formulation of practical set
of new guidelines in order to answer research question 2a. Where the methods
from the literature might be domain-specific, our set of guidelines is general-
purpose1. We also use our research to draw up a set of comparison measures
for the informed evaluation of BN graphs built for the same case, as specified
in research question 2b. Although these measures are not as detailed as we had

1General-purpose in that they are not domain-specific.
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hoped, they provide a good first step towards a structured way of comparing
the structure of BNs on particular aspects, which has not been done before. In
the final part of this thesis we evaluate the applicability of the newly drafted
guidelines and measures by carrying out a case study, where the ‘case’ is both
the forensic and legal domains. We show that the guidelines are applicable, but
argue that they can be tailor-made to accommodate to the specifics of particular
domains.

The approach to realising this thesis’ objective can be divided into three
parts:

• An extensive literature study to summarise current guidelines and meth-
ods for manual BN graph construction;

• A critical assessment of these guidelines and methods to gather inspiration
for our own guidelines and comparison measures;

• Observations from the “field” to determine the practices and choices in
BN graph construction.

In the first place we provide a thorough overview of the literature on manual
BN graph construction. Different approaches to designing the structure of a
BN, from general to domain-specific, are summarised. First of all, this serves
as an overview of previous work on the subject. Secondly, a synopsis of current
guidance on this topic is useful for several reasons. It gives a detailed overview of
existing methods, providing a comprehensive summary of a the possible courses
to take when designing a BN graph by hand. A literature overview such as
we present in this thesis has not been done before: the methods we discuss
illustrate both the scarcity of practical and general guidance for manual BN
graph construction as well as the diversity in approaches to this topic. As such
it contributes towards providing clarity and continuity to this part of the field.

Additionally, such an overview allows for a detailed assessment of the current
methods for handcrafting the BN graph. In doing so we identified strengths and
weaknesses in two of the methods from the literature, that provided us with the
knowledge on how our own guidelines and measures should be drafted and what
pitfalls to avoid. In addition to gathering inspiration, we present an evaluation
of the strengths and shortcomings of these methods and a list of advantageous
BN graph properties, two other contributions of this thesis.

Lastly, we gathered knowledge on manual BN graph construction on a more
concrete level from observations from ‘the field’. We did so in two ways. First
of all, a semi-structured interview with a person that is both a BN engineer and
domain expert was conducted to gain insight into the BN graph construction
process. Secondly, we studied manually constructed BNs from the forensic and
legal literature. These domains were chosen because they are data-poor, similar
in their approach to BN construction and provide a rich variety of handcrafted
BNs. A database of manually constructed BN graphs from the literature was
created and assessed on various aspects. To our knowledge, this is the first time
a repository of this magnitude, solely consisting of BNs from the literature, has
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been devised, which characterises a novel approach to researching handcrafted
BN graph traits.

1.2 Outline

This thesis is structured as follows: first, Section 2 provides an overview of the
basic concepts necessary to understand BNs, after which BNs are introduced.
Part I consists of Sections 3, 4 and 5, which together form the literature study.
Different forms of guidance are discussed, ranging from general construction
approaches in Section 3 to a highly domain-specific but practical method in
Section 4. In contrast to the stepwise method for BN graph construction from
Section 4, Section 5 provides a list of properties that BN graphs are desired
to possess. Parts II and III include the research we carried out for this thesis.
In Section 4 we describe the method with which we have obtained knowledge
of manual BN graph construction in practice. Desirable properties to which
BN graphs should adhere are established in Section 7. As our ambition is to
formulate practical guidelines, in Section 8 we examine the practicality of the
domain-specific method from the literature (Section 4) by relating this method
to the new properties as presented in Section 7. Following these insights, we
propose our guidelines and measures in Sections 9 and 10. These are tested
in a case study in Part III: here we relate the guidelines and measures to BNs
from the forensic and legal domain. We discuss our research in Section 12 and
conclude our findings in Section 13.

7



2 Preliminaries

In this section we provide preliminaries for the subsequent parts of this the-
sis. We start by introducing some concepts from graph theory in Section 2.1
which are relevant for Bayesian networks, the basics of which are introduced in
Section 2.2 (see for example [24] for a more elaborate introduction). Since this
thesis addresses the question of drawing up a set of guidelines for manual BN
construction, the general process of building a BN is explained in Section 2.3.
More specific guidance from the literature as to the development of the graph-
ical aspect of a BN is not discussed in this section, but in subsequent Sections
3, 4 and 5.

2.1 Graph theory and probability theory

The relevant notions from graph- and probability theory are discussed in this
section.

2.1.1 Graph theory

An undirected graph G is a pair (V,Ed), where V is a finite set of nodes and
Ed is set of unordered pairs (Vi, Vj), Vi, Vj ∈ V, called edges. A directed graph
(or digraph) G is a pair (V,A), where V is a finite set of nodes and A is set
of ordered pairs (Vi, Vj), Vi, Vj ∈ V, called arcs [21, p. 10]. An arc is denoted
as Vi → Vj , where Vi is the tail (or tail terminal) and Vj is the head (or head
terminal) [19]. The underlying graph of a digraph is obtained by replacing each
arc (Vi, Vj) ∈ A by an edge (Vi, Vj), resulting in an undirected graph [21, p. 11].

A node Vi ∈ V in a digraph is considered a parent of another node Vj if
Vi → Vj ∈ A. Vj in this case is considered the child of Vi. ρ(Vi) is the set of all
parents of node Vi, σ(Vi) denotes its set of children. The reflexive, transitive
closure of Vi under the parent relation, denoted as ρ∗(Vi), is the set of ancestors
of Vi. Similarly, σ∗(Vi) denotes the set of descendants of Vi. σ(Vi) ∪ ρ(Vi)
defines the set of neighbours of Vi, the size of which is its degree. The number
of parents of Vi, i.e. the size of σ(Vi), is its in-degree [21, p. 10].

A path from V0 to Vk in a digraph is a sequence of distinct nodes V0, . . . , Vk,
k ≥ 1, with distinct arcs Vi−1 → Vi ∈ A, 1 ≤ i ≤ k, between them. k is the
length of the path. A chain in a digraph is similar to a path, but does not take
the arc direction into account. A cycle in a digraph is a path from a node Vi

to Vi of non-zero length. In case a digraph contains a cycle it is called cyclic;
otherwise, it is called acyclic [21, p. 11].
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2.1.2 Probability theory

Let V2 be a set of n variables {V1, . . . , Vn}. A variable Vi ∈ V can assume one
out of a set of values (or states). A variable V can for example assume the values
true and false, denoted as v and ¬v respectively, making it binary-valued3.

A joint probability distribution Pr over V, written as Pr(V), describes the
probability of the variables in V taking on specific values. This probability
ranges from 0 to 1, with 0 meaning ‘certain not to occur’ and 1 expressing
‘certain to occur’. The probabilities from the same (conditional) distribution
for each state of a variable sum to 1, e.g. Pr(vi) + Pr(¬vi) = 1. If a distribution
requires m parameters to be estimated, m − 1 of these are free in that their
probability can be chosen freely as long as their sum is less than or equal to
one. The last remaining parameter is bound, because its probability must be
the number needed to complete the sum to one [21, p. 9].

The prior probability describes the probability for a value in the absence
of any other information. To illustrate, Pr(vi) = 0.2 denotes that there is a
20% chance that Vi will take on the value vi if nothing else is known. If more
information is available, i.e. if evidence is obtained, conditional probabilities
are used to specify the (revised) probability of a variable taking a particular
value. For two binary variables Vi and Vj , consider Pr(vi | vj): this expresses
the probability of vi given that vj is known with certainty (and nothing else is
known that might affect this probability).

2.1.3 Conditional independence

(Conditional) independence can be defined in terms of numerical quantities, i.e.
the independence relation is captured by the probabilities for the distribution
at hand. For disjoint sets of variables Vi, Vj ,∈ V, if Pr(Vi | Vj) = Pr(Vi),
Vi and Vj are independent. Knowledge about Vj does not influence the prob-
abilities of Vi. Vi and Vj are conditionally independent given Vk ∈ V if
Pr(Vi | Vj ,Vk) = Pr(Vi | Vk). In other words, if Vk is known, information of
Vj becomes irrelevant for Vi.

An independence relation amongst variables can also be represented in graphs.
We consider digraphs only, where the d-separation criterion can be used to de-
rive conditional independencies from a digraph. First, we introduce the concept
of blocking. Suppose three nodes V1, V2, V3 ∈ V appear consecutively on a chain
s. s is blocked by a (possibly empty) set of variables Z if one of the following
holds:

• arcs V1 → V2 and V2 → V3 form a serial connection on chain s, and V2 ∈ Z;

2Throughout this thesis we will use capital letters to denote a single variable V , which
when boldfaced, i.e. V, indicate a set of variables. Lower case is used for a specific value
v of V . In case of a binary valued variable V with values true and false, we use v and ¬v
respectively.

3For simplicity, in this thesis we assume binary-valued variables to take on values true and
false, unless stated otherwise.
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• arcs V2 → V1 and V2 → V3 form a diverging connection on chain s, and
V2 ∈ Z;

• arcs V1 → V2 and V3 → V2 form a converging connection on chain s, and
σ∗(V2) ∩ Z = ∅;

To illustrate, see Figures 1, 2, and 3, where the shaded nodes are part of the
blocking set Z.

V1 V2 V3

Figure 1: A serial connection

V2

V1 V3

Figure 2: A diverging
connection

V2

V1 V3

Figure 3: A converg-
ing connection

We now introduce the concept of d-separation: two nodes V1 and V2 are
d-separated by a (possibly empty) set of nodes Z if every chain between V1 and
V2 is blocked by Z. Two nodes V1 and V2 that are d-separated given Z are
considered conditionally independent given Z [21, p.27].

Lastly we discuss the concept of Markov equivalence in DAGs. The skeleton
of a DAG is the undirected underlying graph of the DAG. An immorality is
a converging connection (see Figure 3) with two parents that are not directly
connected by an arc. Two DAGs are Markov equivalent if they share the same
skeleton and have the same immoralities [19].

2.2 Bayesian networks

A Baysesian network [24, 38] describes a joint probability distribution Pr over
a set of random variables V. A BN consists of a qualitative and a quantitative
part.

The qualitative part includes an acyclic digraph (DAG) G. This graph
G = (V,A) represents the set of random variables V as nodes and A is a
set of directed arcs Vi → Vj , Vi, Vj ∈ V, which describe influences between the
variables4. The combination of nodes and arcs is often referred to as the struc-
ture or graphical component of a BN, and represents the independence relation
of V. The d-separation criterion, introduced in Section 2.1.3, can be used to
derive conditional independencies from G.

Each node in a BN is associated with a set of (conditional) probabilities,
summarised in a conditional probability table (CPT). These together make up
the quantitative part of a BN. For a variable V , the CPT defines the conditional
probabilities (network parameters) of the values of each node given each possible
configuration of outcomes of its parents.

4Technically a node represents a variable, but throughout this thesis the terms ‘variable’
and ‘node’ are used interchangeably.
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Figure 4 shows an example of a BN for computing the probability of a
particular cause of a fire incident, constructed by Biedermann and colleagues
[3]. All nodes are binary-valued, except node ‘H’ which has 3 states {h1, h2,
h3}. Only the ‘free’ parameters (see Section 2.1.2) are given. For a description
of the nodes we refer the reader to Figure 23 in Appendix A.

Figure 4: The BN from Biedermann and colleagues [3]

Figure 5: The graph

Pr(h1) = 0.0203 Pr(m) = 0.95

Pr(h2) = 0.3452

Pr(l | d, b) = 1

Pr(d | m,h1) = 0 Pr(l | d,¬b) = 1

Pr(d | m,h2) = 0 Pr(l | ¬d, b) = 1

Pr(d | m,h3) = 0.02 Pr(l | d,¬b) = 0

Pr(d | ¬m,h1) = 0

Pr(d | ¬m,h2) = 0 Pr(x) = 0.75

Pr(d | ¬m,h3) = 0

Pr(t | x, l) = 1

Pr(b) = 0.05 Pr(t | x,¬l) = 1

Pr(t | ¬x, l) = 1

Pr(e | t) = 0.99 Pr(t | ¬x,¬l) = 0

Pr(e | ¬t) = 0.001

Table 1: The network parameters

With the network parameters, a joint probability distribution can be defined
on V which respects the independence relation defined by the structure, with
the chain rule for Bayesian networks [24]:

Pr(V) =

n∏
i=1

Pr(Vi | ρ(Vi)) (1)

With this joint probability distribution, any (prior or posterior) probability of
interest can be calculated from the network. Doing so is a complex process,
that when approached without exploiting the independences represented by the
structure quickly becomes computationally infeasible [24]. For this reason sev-
eral algorithms have been proposed in the literature, such as that of Lauritzen
and Spiegelhalter [33].

2.2.1 Causality and intercausal interactions in a BN

Although the only requirement for the qualitative component of a BN is that
it encodes the independence relation of the variables from the modelled case,
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the arcs in a BN graph often have a causal connotation. That is to say, an arc
Vi → Vj signifies a relation where Vi is the cause of Vj . Directing arcs according
to this notion of causality facilitates the process of correctly modelling the (in-
)dependencies in the case (although these are not guaranteed by directing arcs
in a causal manner) [26], and eases probability estimation (discussed further in
Section 3.2.1).

The BN graph can serve as a way to represent intercausal interactions5.
One such interaction is the explaining-away effect, which can occur when two
variables Vi and Vj share a common child Vk (a converging connection, see
Figure 3). Both Vi and Vj can explain the occurrence of Vk. After observing
Vk or one of its descendants, an increase in the probability of Vi (Vj) can result
in a lower probability for Vj (Vi), and hence ‘explains away’ Vj (Vi). In case a
higher probability of one parent leads to a higher probability of the other, an
effect takes place called explaining-in [54]. Other types of intercausal reasoning
include noisy functional dependence (such as (leaky) noisy-or and noisy-and, see
[24]) and intercausal cancellation (see for example [58]). The type of intercausal
interaction is partially governed by the graph structure, but its occurrence is
determined by the parameterisation.

2.3 Overview of the Bayesian network construction pro-
cess

BNs can be constructed in different ways: the structure and parameters can be
extracted automatically from data, constructed by hand with help of a domain
expert, or established through a combination of these. Regardless of the ap-
proach, the construction of a BN generally involves two tasks: establishing the
qualitative and the quantitative component of the BN model. The first task can
be further divided into two sub-tasks, namely the identification of variables and
their values, and the graph design. In short, BN construction involves:

1. Defining the BN graph:

(a) Identification of the relevant variables from the case to be modelled
and specification of their values;

(b) Determining the graphical structure.

2. Specifying the network parameters (parameterisation).

As the structure determines which probabilities have to be estimated, the steps
are initially carried out sequentially. Finalising a BN model however is an
iterative process where engineers will go back to and alternate between the
steps, assessing the resulting BNs in between, before ending up with a conclusive,
satisfactory BN [13].

5We note that, while the term ‘intercausal interaction’ is used, these interactions can occur
regardless of the type of relation between parents and child [12].
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Regarding automated BN construction, there are several algorithms to estab-
lish the qualitative component (step 1 in the construction process). Constraint-
based algorithms aim to identify a structure from data, where the the condi-
tional independence relationships amongst the variables serve as constraints for
the structure. Score-based algorithms take a different approach: they deter-
mine how well a given structure fits the data for which it is built, according to
some scoring criterion [8, 9]. For a given structure, parameters can be learnt or
estimated from data (through for example Maximum Likelihood Estimation or
Maximum A-Posteriori estimation).

As this thesis will deal with data-poor domains, we will not further consider
automatic construction of BN models from data (but see for example [8] for a
discussion on several algorithms for learning BN structures). Handcrafted BNs
are built in close collaboration with a domain expert, who is involved in all
steps described above. Sections 3.1 and 3.2 discuss in depth the steps involved
in designing the qualitative component of the BN (i.e. steps 1a and 1b). As
these are considered guidance from the literature on building the BN graph, we
elaborate on them in Part I of this thesis.

2.3.1 Obtaining the network parameters

Step 2, i.e. establishing the quantitative component of the BN, involves estimat-
ing the network parameters for each node in the network. Often these estimates
are taken from literature on the domain to which the BN belongs, from statisti-
cal data or elicited from domain experts [13]. Various techniques exist to obtain
probabilities through expert elicitation, such as numerical probability scales or
reference lotteries [40].

Nevertheless, these sources rarely present all necessary probabilities for the
newly constructed model: there might be missing information, data can be
biased, data might not exactly include the variables established in the network,
and so on [21, p. 85]. Obtaining reliable estimations therefore is a difficult and
time-consuming task [13].

Inaccurate probabilities negatively influence the reliability of the output of
the BN model. Performing a sensitivity analysis can help in investigating how
sensitive the outcome of a model is to minor differences in probabilities [24]. A
variety of sensitivity analyses exist, but in its simplest form a sensitivity analysis
involves adjusting the probabilities of a variable and assessing its effect on the
main probability of interest. This technique can aid probability elicitation, since
it reveals how influential a variable is on the main variable of interest, as well
as assist in the process of fine-tuning the parameters.

2.3.2 Model validity

The validity of a model defines how well it corresponds to the system it repre-
sents, regarding both the output and the mechanism that generates that output
[39]. Testing the validity of a BN generally happens once it is completely spec-
ified, i.e. once its structure is complete and all probabilities are specified. The
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procedures for testing the validity of a BN are usually quantitative in nature
and regard the quality of the model’s predictions (e.g. computing the Brier
score [37] or accuracy of a model). In domains where little data is available,
these measures will usually not suffice, because there simply is not enough data
for a reliable evaluation.

The validity of models in data-poor domains is generally assessed by dis-
cussing the performance of the model with the domain expert(s) that con-
tributed to its development [39]. Careful examination of the outcomes of the
BN with different instantiations of evidence allows the domain expert to check
whether the BN is a good representation of the their view of the case.

Domain experts can disagree amongst each other on for example the mod-
elling choices regarding the inclusion of variables, the values of the nodes, arc
inclusion, arc direction, parameterisation and representation of (conditional)
(in-)dependencies [56]. To allow for discussions about modelling decisions, it
is important to thoroughly document any design choices or other steps of the
modelling process (assumptions, motivations for building the model, sources of
data). This however does not happen often in the literature. Efforts have been
made to accommodate BN engineers and domain experts that are in discus-
sion about modelling decisions for a particular BN, for example by Wieten and
colleagues [56] using argumentation.
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Part I

Guidance from the literature on
manual BN graph construction
In this part of the thesis we summarise guidance provided by the literature on
manually building the qualitative component of a BN model. Section 3 discusses
in detail the construction process of the graph and expands on two approaches
to graph construction for BNs from any domain. Section 4 elaborates on a
method for BN graph construction for BNs regarding forensic DNA/biological
traces. In other words, this is a method that is developed for designing highly
domain-specific BNs, but it is also practical: as a stepwise construction method
it specifies in detail which variables to include and how to connect them. This
method is discussed because for our new guidelines we wish to achieve a similar
level of practical applicability. Lastly in Section 5, some desirable properties
for BN graphs specific to argumentation are discussed. Instead of stepwise
guidelines, these properties could rather be considered a list of advantageous
BN graph characteristics to keep in mind and work towards whilst establishing
the structure. This list also functions as a checklist after completion of the
graph. These properties form our main inspiration for proposing advantageous
properties for BN graphs from any domain in Part II.
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3 Manual graph construction – guidance from
the literature

Section 2.3 included a brief insight into the general construction process of a
BN. As in this thesis the focus lies on the qualitative component of BN models,
it is useful to provide a more comprehensive synopsis of the steps involved in
designing the BN graph (Sections 3.1 and 3.2). We also take a closer look
at existing guidance the literature provides with respect to the development
of the BN graph. Because the data-driven approach to graph construction is
not applicable to data-poor domains, we focus exclusively on any guidelines on
manual construction of the graph of a BN. The literature provides two general
approaches, which are discussed in this section: Section 3.2.1 introduces a causal
approach to building a BN graph, and Section 3.2.3 illustrates the use of idioms
for designing a BN graph.

3.1 Identification of the variables and their values

The first steps in building a BN are identifying the relevant variables for the case
to be modelled and specifying their values. Variables can be classified into differ-
ent groups. These groups are merely useful for construction and organisational
purposes: a BN is a mathematical model that does not recognise these classes
and does not use them for performing probabilistic inference. Several types of
nodes are distinguished by for example Jensen and Nielsen [24], Kjærulff and
Madsen [26], and Korb and Nicholson [30] to capture the roles of each variable:

• Hypothesis variables: The main event(s) of interest and the one(s) of which
the probabilities of its values are desired can be modelled in the hypothesis
variable (also target, query, or output node [30], or problem variable [26]).

• Information variables: These represent variables which can be observed or
measured and which possibly influence the hypothesis variable(s). Kjærulff
and Madsen [26] further distinguish between:

– Symptom information variables: these represent information that is
available as a consequence of the main event of interest.

– Background information variables: Aspects that can be viewed as
causes for the main event(s) of interest or symptom variables cap-
tured in background variables.

• Mediating variables The third type of variables are mediating variables.
These are unobservable variables, typically not causes, of which the prob-
abilities are not of immediate interest. They are only introduced into
the network for special purposes, such as to function as the middleman
in order to correctly model independences, for computing inference more
efficiently, and/or to enhance the graphical interpretation.
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When the variables of importance are established, the values that variables can
take should be specified. A variable’s values should not overlap in their poten-
tial to occur (mutual exclusivity) and should exhaust all possibilities (collective
exhaustion). Preferably, values of a variables should not be mutually exclusive
with one or more values of other variables, although this condition can be vi-
olated. While it is possible to include continuous variables in a BN, these are
often discretised so their values represent non-overlapping intervals of the range
of the original continuous variable [30].

Variables and values that are (eventually) insignificant to the case should not
be included in the model, as they unnecessary complicate the network without
being of any significant value in computing the probability of interest. It is
possible that variables that were included at first are later ‘pruned’ from the
structure in later iterations of the construction process.

3.2 Building the graph

Once relevant variables and their values are established, the next task is to draw
arcs between variables in order to establish the network structure. There are
two general approaches: drawing arcs based on the relations between variables,
and establishing the network graph by means of idioms.

3.2.1 The notion of causality

It is important to remember that a BN graph merely represents the indepen-
dence relation of a distribution at hand (see Section 2.2), and arcs do not carry
any semantic connotation other than representing a possible correlation be-
tween two variables. However, when starting the construction process, thinking
in terms of different types of relationships between variables can help in deter-
mining the appropriate network structure.

As a first heuristic, variables are often examined for any causal relations be-
tween them [24]. Causality is central in BNs [26] because it facilitates the process
correctly capturing the independence relation amongst variables: a causal rela-
tionship typically corresponds to a conditional dependency. Moreover, another
advantage of using the notion of causality is the possibility of intercausal in-
teractions. The intuitive nature of causal relations makes a BN graph easier
to explain as well as interpret. Lastly, a causal relationship between variables
alleviates the task of probability estimation [26]. Estimating the probabilities
for the occurrence of a particular effect assuming a known cause is easier than
the other way around, as there can be other causes for a particular effect.

For these reasons, establishing arcs according to the notion of causality is
generally suggested as a first heuristic by authors offering guidance to BN con-
struction (such as [24, 26]). In case a variable has a direct causal effect on
another, an arc is directed from cause to effect: specifically, an arc Vi → Vj is
directed from Vi to Vj if Vi can be considered a direct cause of Vj . The relation-
ship between two binary variables ‘Rain’ and ‘Wet grass’ for example can be
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seen as causal: rain leads to the grass being wet. An arc is drawn from ‘Rain’
to ‘Wet grass’, as demonstrated in Figure 6.

Note that the structure in Figure 7 is not in line with directing arcs according
to the notion of causality: wet grass does not result in rain. Although this
structure is Markov equivalent to that in Figure 6 and mathematically there
is no reason to choose one over the other, directing arcs as done in Figure 7
is strongly advised against in the literature (e.g. by Jensen and Nielsen [24]).
Probabilities for ‘Rain’ have to be specified given ‘Wet grass’: wet grass can be
caused by rain, but could also have been the result of another cause (a sprinkler
for instance), which complicates the probability estimation.

Rain Wet grass

Figure 6: A correct representa-
tion of a causal relation

Rain Wet grass

Figure 7: Incorrectly represent-
ing a causal relation

Causal relations are not always obvious and are often subject to contentious
debate, as Jensen and Nielsen [24] point out. Conflicting opinions can result
in different BN graphs, even if these graphs exhibit the same independence
relation (i.e. they are Markov equivalent). This is not uncommon as knowledge
engineering is inherently subjective.

Kjærulff and Madsen [26] identify a basic structure that is typical for many
BNs, based on a causal ordering between the different classes of variables es-
tablished in Section 3.1. They argue that problem variables cause symptom
and mediating variables (if any), and are in turn causally influenced by back-
ground variables. Background variables also can be seen as causes of symptom
and mediating variables, and are therefore often root nodes in the network. If
mediating variables are included, they often have a causal impact on symptom
variables. This leads to the overall structure shown in Figure 8. Classifying the
relevant variables from a case into the different categories and connecting them
following the basic causal structure is one way of constructing the BN graph.

3.2.2 Other types of relationships

Aside from causal relationships, other types of relationships exist. These include
association and temporal relations [30] and definitional relations. When knowl-
edge of one variable provides information about another without any causal
connotation, this can be seen as an associative relationship. An example is the
association between age and literacy: age does have an effect on someone’s lit-
eracy in that statistically, the higher a person’s age, the more likely they are to
possess the ability to read. However, this association should not be mistaken
for causality: ageing does not cause someone to learn how to read. However
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Figure 8: A basic structure for a BN, taken from [26, p. 155].

there is still an associative relationship between age and literacy, which can be
captured by an arc.

Temporal relationships allow for a temporal ordering of variables. If a vari-
able’s value changes before another, an arc can be drawn from the former to the
latter so as to mimic the order in which events take place. Time plays a role
in causal relations as well: in order for an effect to occur, its cause must have
taken place earlier. Lastly, when a variable (an attribute) is defined by one or
more variables (sub-attributes), they are in a definitional relationship.

The relationships between variables discussed in this section and Section
3.2.1 are merely helpful tools for BN graph construction. One has to keep in
mind though that the arcs in a BN graph solely represent the (conditional)
dependencies and independencies that hold in the modelled case. These d-
separation properties should be checked after constructing the graph on whether
they are correctly encoded to represent the views and knowledge of the domain
expert [24]. Software tools exist that can help BN engineers with exploring
these questions of whether (in)dependencies between variables in (initially) con-
structed BNs are correctly modelled, such as Matilda ([5] as described in [30]).

3.2.3 An idiom-based approach

Another approach to manual BN graph construction is based on the use of
idioms, referring to fragments of BNs in which very generic types of reasoning
are modelled. The idea is that complex inferential problems can be broken down
into smaller components of generic reasoning patterns for which these idioms
can be used as building blocks.

Idiom-based approaches are used in a variety of domains. In 1997, Laskey
and Mahoney [32] introduced ‘network fragments’ and a framework for combin-
ing these in the field of military intelligence. In the same year Koller and Pfeffer
[29] developed Object-oriented Bayesian networks (OOBNs), which allow a hi-
erarchical way of organising a BN efficiently, akin to the framework of Laskey
and Mahoney. Hepler [23] examined how an OOBN could be built for legal
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cases. Quite similar to OOBNs, Van Gosliga and Van de Voorde [20] designed
the Hypothesis Management Framework (HMF), which can be used for creating
and extending BNs in a modular way.

Here we discuss idioms designed by Neil, Fenton and Nielson [35], who have
developed idioms that are generally applicable to any domain. Fenton, Neil and
Lagnado [16] and Lagnado, Fenton and Neil [17] also designed idioms specifically
for the legal domain, these are instantiations of the general idioms and not
considered further. Vlek and colleagues [51] also proposed idioms for modelling
and combining scenarios in legal cases, which are not discussed in further detail
here.

Neil, Fenton and Nielson identified five idioms in [35] for general manual
BN graph construction. Each is discussed in more detail. The first idiom,
the cause-consequence idiom from Figure 9, straightforwardly models a causal
process from cause(s) to effect. The arc direction reflects this process. This
concept is similar to the general heuristic of directing arcs in accordance with
the notion of causality (as discussed in Section 3.2.1). Although the authors did
not make use of idioms in constructing their BN, an example where this type
of idiom can be identified is in the BN from De Ronde and colleagues [42], (see
Figure 26 in Appendix A), where a suspect ‘S’ climbing the balcony (captured
in the node ‘S climbed the balcony’) causes their fingermarks to be present on
the balcony (node ‘Fingermarks S through climbing’).

Figure 9: Cause-consequence
idiom (based on [35])

Figure 10: Defini-
tional/synthesis idiom (copied
from [35, p. 269])

Figure 11: Measurement idiom (copied from [35, p. 273])
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The definitional/synthesis (Figure 10) idiom does not incorporate any causal
notion, but rather represents a definitional relationship between the nodes (see
Section 3.2.2). The arc is oriented in the direction in which a sub-attribute
(or combination of sub-attributes) defines an attribute. An example is how
someone’s paternal and maternal gene define their genotype, as in Dawid and
colleagues’ simple paternity network [11] (see Figure 28 in Appendix A). Note
that here again the authors did not make use of idioms in their network.

With the measurement idiom uncertainties regarding the accuracy of some
observation can be modelled, whether this observation is done by ourselves, by
others, or established by means of an instrument. In the measurement idiom in
Figure 11, the ‘true value of attribute’ is the probability we are interested in. The
‘estimated value of attribute’ is instantiated: it is the result of a measurement
done with a particular ‘estimation accuracy’ and acts as a “surrogate” for the
true value, which is a latent variable and cannot be observed. An example can
be found in Fenton and colleagues’ BN of the Simonshaven case ([18], see Figure
34 in Appendix A). They used an instantiation of the measurement idiom for
modelling testimony evidence, where the ‘accuracy’ is the ‘credibility’ of the
witness.

Figure 12: Induction idiom (copied from [35, p. 274])

When a sequence of results of a particular parameter are used to induce
the result of another, perhaps slightly different, future parameter, the induction
idiom (Figure 12) can be used. It is a way of modelling Bayesian inference,
where context differences can be taken into consideration when the attribute
or case in question is different from other historical cases (other children in
this case). This idiom can be applied when inductive reasoning is the issue:
suppose for example that we wish to know the effectiveness of a specific kind of
treatment in a particular situation. Information is available on the application
of this treatment in several previous cases, and a measure on the similarity or
differences of these previous situations compared to the one at hand is available
as well. With this idiom, one can induce the effectiveness of the treatment in
the new situation from previous situations.

This idiom can also be used for instance to learn the probabilities for the
estimation accuracy for a particular instrument from the measurement idiom.
There are situations where no historical cases can be produced but the engineer
is able to model the population parameter. In many cases an instance of the
induction idiom in its full form is superfluous, as the population parameter can
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Figure 13: Simplified version of the induction idiom, copied from [35, p. 275]

simply embody the distribution learnt from statistical data. In these cases a
simplified version of the induction idiom can be used, as shown in Figure 13.

Figure 14: Reconciliation idiom (copied from [35, p. 276])

The last idiom models the reconciliation of a single node that is measured,
defined, or produced by different methods (i.e. idioms or even BNs). In the
reconciliation idiom in Figure 14, a node X results from two independent BNs
(model A and model B). The reconciliation node is a binary node with values
‘true’ when the value of node X in model A is equal to that in model B, and
‘false’ otherwise.

The authors designed a flowchart (shown in Figure 15) to establish which
idiom can be used in different situations. Along with this, the steps below
describe the method they created for choosing and applying idioms.

1. Identify relevant variables

2. Identify relationships between these variables, resulting in subsets of vari-
ables

3. Examine these subsets in terms of the flowchart to determine the idiom
which can represent the subsets.

Unfortunately the authors do not give any further information on how this
flowchart was developed. Any motivation on why the questions are ordered this
way is lacking.
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Figure 15: The flowchart for deciding what idiom to use (copied from [35,
p. 278])

3.3 A note on model complexity

The qualitative component6 of a BN determines the complexity of the model.
When building a BN graph, one has to strike a balance in finding the right level
of complexity: a highly complex model in terms of many nodes, many parents
and many values might lead to an excess in construction costs and infeasibil-
ity of performing probabilistic inference, but there must be just enough detail
in the model to be able to perform meaningful computations whilst correctly
representing the (in-)dependencies between the variables of the case. Adding
nodes and arcs can increase the complexity of the model: the number of network
parameters to be specified grows exponentially with the number of parents a
node has. BN engineers should take this into account during the construction
process. There are several ways to reduce the number of parents, if necessary.

One way is to remove “weak” arcs, which are those arcs that do not have
a large influence on their children [30]. It is up to the domain expert and BN
engineer to determine what constitutes a weak arc, but several methods exist
to aid this decision (see for example [25] and [41]). Note that the influence of
a variable on another by means of an arc can only be assessed after (initial)
parameters have been specified.

6In this thesis we assume the qualitative component of a BN includes the values of variables.
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Another technique is divorcing. In situations with many parent nodes for
one child node, mediating nodes are introduced between a subset of all parents
and the child node. Although this results in additional nodes in the structure
and hence additional CPTs, it reduces the size of the CPT of the child node
[24]. For example, a binary node with four binary parents requires 2 · 2 · 2 ·
2 · 2 = 32 parameters to be estimated, of which 16 are free. A binary node
with only two binary parents requires only 2 · 2 · 2 = 8, of which 4 are free
parameters: dividing the four parents into two subsets and introducing binary
mediating nodes between these and the child node results in less probabilities
to be estimated, even though two new nodes are introduced. Figure 16 shows
this effect.

In addition, in case of binary parent nodes, the states of the mediating
nodes are often configurations of its parents. The parameters of these states are
assigned ones if its corresponding parents are true, and zeroes otherwise. This
does not complicate the process of probability estimation.

Caution has to be taken when applying the divorcing technique. Divorcing
parent nodes from other parents is only possible when the impact of the divorcees
on the effect node can be considered separately and independently from the
impact of the non-divorced parents [15].

Figure 16: The introduction of a mediating variable reduces the number of
parameters: assuming all variables are binary, the lowest node in the upper BN
requires 16 free parameters to be estimated, the three lower nodes in the lower
model combined require 12 due to the insertion of mediating variables (taken
from [49, p. 94]).
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4 BN construction in the forensic domain: A
template by Taylor and colleagues

The guidance from the literature as discussed in the previous section aids the
construction of BN structures in general. The guideline which is discussed in
this section is highly domain-specific, but also very practical. It is useful to
examine whether this specificity and practical applicability can be generalised
for our own set of guidelines.

This section introduces a template by Taylor and colleagues [47] for build-
ing a BN graph by hand for forensic cases involving biological traces. Before
discussing the template we first provide a short introduction on the necessary
background information concerning forensic investigation and the use of BNs in
this domain. The template is given in Section 4.3.

4.1 The evaluation of forensic traces

The task of a forensic practitioner is to examine the evidence (or findings) in
light of a particular case with specific case circumstances. They can express
their degree of confidence with a likelihood ratio (LR) for a set of forensic
hypotheses7. It has become common practice that a pair of forensic hypotheses is
defined where one forensic hypothesis represents the position of the prosecution
in a case (denoted as Hp), while the other the one of the defence (Hd). The
forensic practitioner evaluates the evidence, based on other information that
has been provided, given these forensic hypotheses: how probable is it to find
these results assuming forensic hypothesis Hp, respectively Hd is true? [45, 48].

Formulating a set of forensic hypotheses is not always easy or straightfor-
ward, which is why Cook and colleagues [10] specified a hierarchy of foren-
sic hypotheses by classifying them into categories, or levels, to assist forensic
practitioners in forensic hypotheses forming. Starting from the bottom of the
hierarchy and going up, these are: (sub-)source, activity, and offence (or crime).

• (Sub-)source level : Forensic hypotheses on source level regard identifying
the source of the evidence found, i.e. the donor of the trace, and deter-
mining the type of trace that is detected. An example of a pair of source
level forensic hypotheses is:

Hp: Blood recovered from the victim’s clothes came from the suspect

Hd: Blood recovered from the victim’s clothes came from an unknown
person

Even lower is the sub-source level, which deals with the source of the
trace, but is concerned not with the cell type of the trace but only the
DNA. This subtle distinction exists because it is possible to obtain DNA

7The standard term used in the literature is propositions. We however refrain from this
term to avoid confusing these propositions with the general notion of propositions as used in
BNs, namely as the values of variables [24].
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profiles for traces of which it is uncertain from what body fluid or cell type
they originate. The sub-source version of the previously stated forensic
hypotheses is:

Hp: DNA recovered from the victim’s clothes came from the suspect

Hd: DNA recovered from the victim’s clothes came from an unknown
person

• Activity level : The issue of interest for activity level forensic hypotheses is
not only the who, but also the how: who deposited the evidence and what
activity has resulted in the deposit of this evidence. Addressing these
hypotheses involves not only assessing observations but also taking into
account case-specific circumstances such as the transfer and persistence of
the evidence. Below are examples of activity level forensic hypotheses.

Hp: The accused taped the victim

Hd: An unknown person taped the victim

• Offence level : At the offence (or crime) level, the forensic hypotheses
encompass the question of whether or not a crime has been committed
and who has committed it. This level closely resembles the activity level,
with the important difference that these forensic hypotheses are often
outside the domain of the forensic practitioner and up to the trier of fact
(judge or jury) to evaluate. Example forensic hypotheses are:

Hp: The accused is the offender

Hd: Someone else is the offender

Thanks to technological advances over the past decades, identifying the source of
a forensic trace, such as the donor of DNA, has become very reliable. Therefore
the source of a trace is rarely challenged these days, but rather the manner of
deposition of the trace, i.e. the activity that led to the trace ending up where
it did, is put to question [27].

4.2 The use of BNs in the forensic domain

Since forensic hypotheses are a central component of the interpretation of foren-
sic findings, BNs in the domain of forensic science and law are often constructed
around a set of forensic hypotheses. A BN is built that propagates all evidence
and returns the LR, often in a separate forensic hypotheses node, which can
be used to communicate an informed decision on the interpretation of evidence
under either forensic hypothesis. An advantage of BNs is that they can be
updated easily when provided with new information. During construction this
ability is useful, because BN engineers can monitor more easily how adding
evidence influences this LR.

Where the focus in the past has mostly been on source-level BNs, i.e. BNs
built for the evaluation of evidence under a set of forensic hypotheses that can
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be classified as source level (e.g. [11, 34, 50], recently it has shifted towards
activity level BNs (e.g. [42, 44, 47, 55]).

The hierarchy of forensic hypotheses is of relevance to BN construction in
the forensic domain because the forensic hypotheses make up the ultimate hy-
potheses in the case to be modelled. Parallels can be drawn between BNs with
forensic hypotheses from the same level. For example, variables that are often
included in source-level BNs are number of contributors to a DNA trace (e.g.
[34], [59]) and test results, e.g. for body fluid types ([36], [46], [57]).

For activity-level BNs, variables that are often included are transfer and
persistence of biological material ([28, 44, 55, 57]), contamination of the sample
([4, 55]), trace characteristics (e.g. sampling location ([2, 55]), visual aspects
([22]), location ([42])), and sample donor characteristics ([22, 42]).

4.3 A template for activity level BN construction for bi-
ological traces

With the increase in activity-level evaluation of evidence in forensic investigation
and the rise in the use of BNs for this type of cases, Taylor and colleagues [47]
recognised both the relevance and difficulty of BN construction. To tackle this,
they came up with a stepwise method of constructing BNs for forensic biology
cases with activity level forensic hypotheses:

1. Define main hypothesis node: determine the forensic hypotheses and in-
clude them as the values of a single node, which is the main (hypothesis)
node of the model.

2. Define activity nodes: identify the activities in the case and draw a node
for each of these. Make them children of the hypothesis node. Taylor and
colleagues advocate the inclusion of non-disputed activities (which are true
under both Hp and Hd). These can be seen as redundant nodes, unnec-
essarily complicating the structure, but this way the model can clearly
represent the influence of undisputed activities on findings nodes.

3. Group similar findings: if possible, combine (sets of) findings of similar
samples such that they can be considered a single item. The samples
should be similar in the sense of originating from closely related areas
(e.g. a set of tape lifts taken from different areas of the same item).

4. Define findings node(s): draw a single node for each group of similar
findings. These nodes are eventually instantiated in the model. No arcs
are drawn yet in this stage to connect them to the other nodes.

5. Define transfer and persistence nodes: these nodes describe the mecha-
nisms of how the activity resulted in the findings and are placed between
the activity and findings nodes. Connect the nodes while taking the fol-
lowing into account:

• There can be more than one activity contributing to a single result.
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• There can be more than one transfer and/or persistence node in a
chain from activity to findings node.

• The order of activities and transfer is potentially of importance.

• Mediating nodes can be included to increase the comprehensibility
and reduce the complexity.

6. Define root node(s): these nodes represent variables that do not relate to
any activity but are relevant (as parents) to transfer and/or persistence
nodes (e.g. background levels of fluids, contamination).

7. Check for absolute support within the BN: this also relates to probabil-
ity estimation; avoid obtaining a BN where one piece of evidence can,
upon instantiation, result in a single forensic hypothesis being true while
the other is false. To avoid this, Taylor and colleagues advise not using
probabilities 1 and 0 in the CPTs of the transfer and persistence nodes
(an exception is made for the values of mediating nodes). Additionally,
the BN should be checked on whether all findings are observable under
each forensic hypothesis. This means that there should be multiple chains
leading to a findings node, at least one corresponding to the events of
one forensic hypothesis and one to those of the other forensic hypothesis.
In practice there are typically two competing causes for a findings node,
these causes take the form of either two competing activity nodes, or a
competing activity and root node. If there is only one chain to a findings
node, the BN is at risk of having a probability of 1 for one of the forensic
hypotheses once the evidence is instantiated.

Taylor and colleagues applied their method to an example case and the resulting
BN is shown in Figure 25 in Appendix A. De Ronde and colleagues [42] also use
this method, see Figure 26 in Appendix A.
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5 Advantageous properties for BN graphs con-
structed from arguments

Previous sections discussed BN graph construction guidelines from the liter-
ature, with general approaches in Section 3 and a domain-specific method in
Section 4. In this section we discuss another form of guidance to BN construc-
tion the literature provides, in the form of a list of advantageous properties8

for BN graphs from Timmer [49]. Timmer proposed this set of properties for
BNs for argumentation schemes. These properties do not serve as a stepwise
method for BN graph construction, but rather as a list of BN characteristics that
should or can be achieved during construction and as a checklist for evaluating
the structure after (initial) construction.

In order to understand Timmer’s properties, we briefly introduce some con-
cepts from argumentation. In argumentation, an argument consists of one or
more premises and a conclusion. A premise provides support or a reason for
drawing a particular conclusion. Naturally, a conclusion follows from one or
more premises. Timmer specifically addresses BN construction of argumenta-
tion schemes9, which are formal structures that capture a general pattern of rea-
soning, such as modus ponens, or argument from position-to-know [53]. These
schemes are often accompanied by a set of ‘critical questions’, which address
weak points in the argumentation scheme where it can be attacked, or which
question the application of the argumentation scheme [53].

The advantageous properties, copied from p. 96, are listed here with a short
explanation.

1. Critical questions are explicitly modelled by a node: this property sup-
ports the inclusion of an explicit node for each critical question that is of
relevance for an argument in a particular situation.

2. Critical questions can explain away the hypothesis (via a [converging con-
nection]): this structure allows for the possibility of intercausal inter-
actions (specifically, explaining away) between the hypothesis, i.e. the
conclusion of the argument in the argumentation scheme, and the critical
questions. For this to happen, the hypothesis and critical questions re-
quire a common child node (the premise) which is either instantiated or
has an instantiated descendant.

3. The number of free model parameters is as small as possible: this property
addresses the need for reducing the computational complexity and keeping
the task of probability estimation doable. In order to reduce the number

8Timmer uses the word ‘criteria’, even though these are not meant as strict norms a BN
has to adhere to. For this reason we use the word ‘properties’.

9Timmer’s properties only apply to embedding critical questions in a BN for a selection
of argumentation schemes, namely evidential argumentation schemes. This method is not
straightforwardly applicable to predictive argumentation schemes or other types. We will not
discuss this distinction further here, but refer the reader instead to Timmer [49].
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of model parameters, one should strive to keep the number of parents to
a minimum, as well as limit the number of possible values for a variable.

4. No redundant [arcs] are included: additional arcs complicate the model
and increase the number of parameters to estimate. Furthermore, this
property prevents unwanted interactions between variables of which it is
known they do not interact or of which is uncertain whether they do.

5. Premises and conclusions are explicitly modelled by a node: it is advisable,
if not essential, when modelling arguments in a BN to include nodes for
the premises and conclusions.

6. There can be an active chain from the hypothesis to the evidence given the
variables that can potentially be observed: following this property allows
for the evidence to influence the hypothesis. An active chain is neces-
sary, unless it is desired that the effect of evidence is undone given other
variables that are observed (which block the chain upon instantiation).

7. When applicable, [arcs] follow the direction of temporal/causal precedence:
this property captures directing arcs according to the notion of causality
(discussed in Section 3.2.1) or in a temporal manner, from events that
occur earlier to later ones.

The first four properties are formulated specifically for those BNs that model
(evidential) argumentation schemes and incorporate critical questions. Prop-
erties 5 through 7 relate to the general construction of BNs from information
expressed as arguments or argument schemes, i.e. whether they include critical
questions or not.
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Part II

Formulating new guidelines and
comparison measures
In the previous sections we have provided an overview of the construction pro-
cess for the qualitative aspect of a BN. After a brief introduction of the relevant
concepts of BN theory and its general building process in Section 2.2, we concen-
trated on the manual construction of the BN graph. Several guidelines from the
literature were summarised: Section 3 expanded mainly on causal arc direction
and an idiom-based approach to graph construction. A highly domain-specific
method by Taylor and colleagues [47] is described in Section 4. Finally, Section
5 provided not so much a method, but a list of desirable properties by Timmer
[49], again for domain-specific BN graphs.

In Part II we aim to formulate a set of practical guidelines for manual BN
graph construction for cases from any domain,as well as a list of measures to
compare BN structures by. Because of the practical nature of Taylor and col-
leagues’ template, it could serve as a good inspiration for our own guidelines.
However, first we have to examine whether this template is even remotely ap-
plicable to problems from other domains. To do so, we have to find a way to
assess the BN graphs resulting from this template. Timmer proposes a list of
properties. These are again specific, but in contrast to the template, specific to
argumentation instead of to a particular domain. Nevertheless, they could be
informative for the properties any BN should possess.

In this part we first describe the process of collecting raw data on handcrafted
BN structures from observations from the literature and information obtained
through an interview with a BN engineer and domain expert (Section 6). We
use these observations from the field throughout Parts II and III to base our
conclusions on. We further aim to generalise Timmer’s properties in such a way
that any manually constructed BN graph can be analysed on these properties
(Section 7). In judging how to generalise these properties We use the general
graph construction approaches described in Section 3 and the obtained BN
graph knowledge (Section 6) for this purpose. The resulting new properties
form our main inspiration for our comparison measures. In addition, these
properties describe desirable characteristics of BN graphs. As such they can be
informative in designing our guidelines, as we aspire that the BNs resulting from
our guidelines possess these properties. In Section 8 we explore whether the BN
structures resulting from Taylor and colleagues’ template encompass these new
properties to examine whether this template can help in the formulation of the
guidelines. Finally in Section 9 we propose our set of guidelines, and in Section
10 our comparison measures.
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6 Manual BN graph construction - Obtaining
observations from the field

In order to get acquainted with the modelling conventions and motivations be-
hind modelling choices in practice, we made the effort of studying what actual
handcrafted BN graphs from the field look like and how these are constructed.
We did so in two ways.

Firstly, we gathered information from existing BN graphs that were con-
structed by hand for problems from two data-poor domains, namely the forensic
and legal domains. From 32 articles ranging from 2002 to 2019, a database of
69 BNs was created (see Table 4 in Appendix B for a complete overview). All
BN graphs are hand-crafted. We examined these structures on several aspects:

• Numerical characteristics: the number of nodes, number of arcs, number
of head-to-head nodes, maximum number of incoming arcs (highest in-
degree), number of values

• Approaches to graph construction and modelling choices

• Motivations for constructing the BN

• Level in hierarchy for the forensic hypotheses, if any (see Section 4.1)

• Variable relationships and arc direction

• (Conditional) dependencies and independencies represented by the graph

• Origin, i.e. from which institute the authors originate

In addition, a selection10 of the BNs was examined on adhering to an adapted
version of the properties by Timmer (see Section 5).

This in-depth investigation of actual BNs formed a solid basis for our knowl-
edge of what BN graphs look like in practice. The graphical aspects we studied
provided a nuanced image of the conventions and considerations in BN graph
construction in these domains.

Secondly, a semi-structured interview was conducted with a forensic scientist
with DNA expertise at Netherlands Forensic Institute (NFI), where manual
construction of BNs is widely used. The interviewee can be considered as both
an expert in the forensic domain as a BN engineer. The purpose of this interview
was to gain insight into the methods employed by this department at the NFI in
construction of BNs, specifically BN graphs. A concise outline of the interview
is given in Section B in Appendix B.

These two approaches together serve as ‘raw data’, which is used in sub-
sequent parts of this thesis. The insights gained from collecting and assessing
this data is used to base our conclusions on when examining the theoretical
methods.

10Due to time constraints, we could not examine the database in its totality on this aspect.
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7 A new set of advantageous properties for BNs
from any domain

This section explores whether Timmer’s properties (Section 5) can be gener-
alised such that they are applicable for BNs from any domain. We make use
of the general graph construction approaches described in Section 3, as well as
additional literature and the practical knowledge from the field (see Section 6)
in deciding if and how to adapt Timmer’s original properties. By individually
assessing each of Timmer’s properties we formulate a new set of properties. Af-
terwards we also inspect whether it is achievable for a BN graph to possess all
new properties. In extending the applicability of Timmer’s original properties
to a new set of non domain-specific properties we find inspiration for our own
guidelines and comparison measures.

Property 1: Critical questions are explicitly modelled by a
node

According to Timmer, a reason for modelling critical questions as explicit nodes
is to facilitate explaining-away, which is dealt with in further detail when dis-
cussing Property 2. Another reason is that other evidence can be connected to
a critical question node that pertains to that question only.

To illustrate this, suppose that an expert E asserts that a particular hy-
pothesised event A (which falls under E ’s domain) is true. From this, one
might conclude that A is true. This is an informal explanation of the Argument
from Expert Opinion scheme, from Walton [53]. A critical question associated
with this argumentation scheme concerns E ’s expertise: ‘How credible is E as
an expert source?’, questioning whether A can be validly concluded from E
testifying to A. In case there is evidence of E being partial for example, E ’s
credibility is put into question.

Figures 17 and 18 model this argumentation scheme, where ‘H’ is the hy-
pothesised event A, ‘CQ’ is the critical question, ‘Exp’ is the expert’s testimony
to A, and ‘Bias’ represents the evidence of a bias. In Figure 17 the hypothesised
event and critical question are modelled together in a single node. The evidence
‘Bias’ is only relevant to the critical question, but since probabilities have to be
estimated for every configuration of values of the parent node(s), the probability
of this evidence given the hypothesised event has to be estimated. In Figure
18 the hypothesised cause and critical question are modelled separately, such
that ‘Bias’ is only connected to ‘CQ’. Meaningless probability estimations are
avoided in this way.

In order to generalise this property, we take a look at the role that critical
questions play in this type of argumentation schemes: they can be viewed as
causes that compete with the hypothesised cause. Evidence resulting from the
hypothesised cause can also emerge as a result from a critical question. For the
argumentation scheme in the example above, the conclusion (A in this case) can
be seen as the hypothesised cause, and the premise (E ’s testimony to A) as the
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H/CQ

Exp Bias

Figure 17: Collapsing the hypothe-
sised cause and critical question into
a single node

H

Exp

CQ

Bias

Figure 18: Separate modelling of
the critical question as a single node

observed effect. However if E turns out to be not a credible source, this could
also ‘cause’ E to assert A. The critical question can be viewed as an alternative
cause to the effect.

Timmer models these “alternative causes” as explicit nodes. Causes do not
necessarily have to be critical questions. We consider causes more broadly.

As mentioned in Section 3.2.1, BN graphs are often built with the arc direc-
tion in the first place according to the notion of causality. Neil and colleagues
idioms include an idiom to model cause and effect (the cause-consequence idiom,
Section 3.2.3). The way in which causes are modelled is important for BNs from
any domain. In this light, we extend property 1 such that causes are modelled
by separate nodes.

New property 1. Causes are explicitly modelled by separate nodes.

The reason to model causes in separate nodes is the same as Timmer describes
for his first property: collapsing competing causes into a single node poses a
problem. Compare Figures 19 and 20, which model the same case. In this case,
adapted from Fenton, Neil and Lagnado [14], two alternative causes C1 and C2
lead to a common effect E. In addition, there is a variable V1 that only leads
to C1, which in turn only results in evidence E1.

Causes

E1 E

V1

Figure 19: Modelling competing
causes as a single node

E

C1 C2

E1

V1

Figure 20: Modelling competing
causes as separate nodes
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The main problem with modelling the causes as distinct values of a single
node, as done in Figure 19, has to do with the causes and evidence being part of
a distinct causal chains. By collapsing the alternative causes into a single node,
we are forcing the causes to be part of each other’s chain. As a consequence,
meaningless probabilities have to be estimated, which we will explain in more
detail.

Suppose the states of the Causes node in Figure 19 are {c1, c2}. In addition
to the fact that the possibility of neither (or both) causes occurring is ruled out,
this way of modelling is problematic for correctly filling out the CPTs. The
reason is that the causes are part of each other’s chain, specifically the chain
between E1 and V1 via Causes. V1 is relevant for cause C1 and therefore the
probabilities Pr(c1 | v1) and Pr(c1 | ¬v1) will (likely) differ. The probabilities of
C2 given v1 or ¬v1 should be the same, i.e. Pr(c2 | v1) = Pr(c2 | ¬v1) = Pr(c2),
because the occurrence of C2 should not be influenced by V1. Not only are we
forced to consider V1 when estimating the probabilities of C2, also as can be
seen in Table 2, Pr(c2 | v1) 6= Pr(c2 | ¬v1) because the probabilities for each
(conditional) distribution in a CPT must sum to 1.

Similarly, estimating the probabilities for the CPT for E1 involves the point-
less consideration of C2, making these parameters meaningless (see the question
marks in Table 3). Lastly, specifying the values of the Causes node this way
rules out the possibility of the presence of both causes, as well as their joined
absence, which can be relevant for E. Even adding these as values does not
resolve the issues mentioned above.

V1 → v1 ¬v1

Causes
c1 x y

c2 1− x 1− y

Table 2: CPT for the Causes
node from Figure 19, with
values {c1, c2}

Causes → c1 ¬c2

E1
e1 x ?

¬e1 1− x ?

Table 3: CPT for node E1
from Figure 19, with values
{c1, c2} for the node Causes

Explicitly modelling alternative causes as separate nodes, as done in Figure
20, avoids irrelevant state combinations. V1 and E1 are now only part of C1 ’s
chain, such that no meaningless probabilities have to be estimated.

Another valuable feature of modelling causes individually is that it is often
beneficial to the representational aspect the BN graph provides. Separate nodes
often allow for a quicker overview of which variables have been considered for
a node than when they are modelled as distinct values of a single variable. Of
course there is a limit to this representational profit: too many causes might
overcomplicate the network visually.

A difficulty arises when two causes are mutually exclusive: preferably, the
values of a nodes must not be mutually exclusive with those of another variable.
This property calls for separate nodes for the causes, but mutual exclusivity is
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not enforced in this way. To illustrate, suppose E in the example above stands
for ‘Missing lunch’ from the fridge at work. E and E represent ‘Someone ate it’
and ‘Someone threw it out’. E and E are mutually exclusive: if one is true, the
other cannot also be true11. Property 1 however calls for separate modelling
as done in Figure 20, which leads to the forced estimation of the impossible
probability of Pr(missing lunch | someone ate it∧ someone threw it out) for the
CPT of E. In other words, the event that both are true is not excluded with
this way of modelling.

To solve this issue, several options have been proposed, for example by Korb
and Nicholson [30] and Jensen and Nielsen [24]. The collapsing of the causes into
a single node is, as we have just shown, not preferred. An arbitrarily directed
arc could be drawn between the two causes to introduce a dependency, such
that it does not matter what numbers are specified in the CPT for E. There is
no natural arc direction, and again the problem of non-distinct chains emerges:
in case the arc is drawn from E to E, for any other variables leading to E, the
probabilities of E must be estimated with E in mind.

Fenton, Neil and Lagnado [14] propose a satisfying solution: adding a deter-
ministic constraint node as a mediating node, with its parents as values and an
additional value ‘NA’, not applicable. This last value ensures mutual exclusivity
by being equal to 1 for impossible state combinations12. Figure 21 illustrates
this constraint node is introduced between the competing causes and effect node
from the previous example. We find this is the most elegant way of enforcing
mutual exclusivity whilst keeping cause nodes separate. Additionally, it works
for any number of competing causes. This approach is a useful feature for our
guidelines.

Con

C1 C2

E

Figure 21: Enforcing mutual exclusivity between mutually exclusive causes,
where ‘Con’ is a constraint node, copied from Fenton, Neil and Lagnado [14]

11Here we make the assumption that the lunch was tasty, such that someone starting it will
have finished eating it and will not have thrown it out halfway.

12For details on how to specify the probabilities we refer the reader to Fenton, Neil and
Lagnado [14].
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Property 2: Critical questions can explain away the hy-
pothesis (via a converging connection)

Thanks to property 1, critical questions are explicitly modelled by separate
nodes. The event (A in the example in the previous section) is the hypothesis.
The hypothesis and critical question(s) together can form a converging connec-
tion, with the common effect as the head-to-head node. This allows for the
possibility13 of the explaining away effect.

The explaining-away effect is of course not only useful in the domain of
argumentation. Allowing for the possibility of it is also beneficial for cases from
other domains. Building on the previous paragraph on property 1, we could then
straightforwardly adjust this property so that alternative causes can explain each
other away, via a converging connection. In generalising this property however
we can aim broader: any type of intercausal interaction should be captured by
the BN graph. We can therefore adapt this property as follows:

New property 2. The network structure can allow for intercausal interaction.

Property 3: The number of free model parameters is as
small as possible

In the interest of reducing the computational complexity and keeping the task
of probability estimation doable, property 3 should be pursued for any BN. The
number of (free) parameters to be estimated increases exponentially with the
number of parents for a node (see Section 3.3). Keeping this number of parents
as small as possible reduces the number of parameters to be specified and with
that increases the computational feasibility of the model.

Timmer specifically aims to reduce the number of free parameters, as these
are the ones that have to be explicitly specified (in contrast to the bound ones,
whose numbers result from the specification of its free counterparts). We keep
the property as is:

New property 3. The number of free model parameters is as small as possible.

Following this property amounts to both minding the number of states for a
node, as well as minding the number of parents. Additionally, keeping the CPT
sizes acceptable lowers the number of probabilities to estimate. Section 3.3 has
already dealt with techniques to confine the number of parents of a node to a
minimum.

This property is difficult to follow in case mediating nodes are included in
a BN. These often have all possible parent configurations as values, which can
lead to a large number of states. Probability estimation and model complex-
ity however are often not an issue, since mediating nodes are nearly always
deterministic. Since mediating nodes therefore help in reducing the model com-
plexity and this is the goal of this property, we propose that the total number

13Whether explaining away actually occurs of course depends on the specification of the
parameters.
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of free parameters does not have to include the parameters from the CPTs of
deterministic mediating nodes.

Property 4: No redundant arcs are included

Like property 3, property 4 also strives to keep the computational complex-
ity under control. Arcs bring along parenthood and with that larger CPTs.
Furthermore, this property prevents unwanted interactions between variables of
which it is known they do not interact or of which is uncertain whether they
do. Aiming to adhere to this property will stimulate the BN engineer to think
critically of the influences of variables on others.

Determining whether an arc is redundant involves considering the influence
between the connected variables and the representation. Weak arcs (see Section
3.3) can be removed to strive to follow this property. BN engineers should keep
in mind though that removing an arc removes the direct dependency between
two variables, but does not exclude the possibility of an indirect effect through
another active chain.

Property 4 is directly applicable to BN graphs from other domains. We
therefore keep it as is.

Property 5: Premises and conclusions are explicitly mod-
elled by a node

‘Premises’ and ‘conclusions’ are well-defined terms in argumentation. It proves
difficult to directly generalise this property, as it is complex to find a general
term for any concepts from other domains that are similar to ‘premise’ and
‘conclusion’.

One possibility is to view premises as observed evidence and conclusions
as hypotheses. This is not straightforwardly so, as for example in some types
of reasoning premises are not necessarily observed. Additionally, there can be
intermediate conclusions which can serve as a premise for a later conclusion,
although this was not the case for the specific argumentation schemes that were
the subject of Timmer’s research. We therefore refrain from generalising this
property, but allow it to inspire us to form our own.

For a BN to function properly, nodes should be included for the main hy-
pothesis of interest, as well as for observed evidence. Any other nodes connected
to these are not strictly necessary for the BN to function. We argue every hy-
pothesis and every piece of information that is or can practically be observed
in the case should be modelled as a separate node, and not as values of sin-
gle nodes, in similar fashion to property 1. This increases the value of a BN
graph as a representational tool by providing a clear overview of the variables
considered for the model. The argument of distinct chains (see property 1) also
applies here. We choose to encase this in a property:

New property 5.

5.1 Hypotheses are explicitly modelled by separate nodes
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5.2 Evidence is explicitly modelled by separate nodes

In many domains the main hypothesis or hypotheses of interest can be viewed
as cause(s) for the observed evidence. Modelling these as separate nodes is
already covered in property 1. This is not always the case: in some BNs,
the main hypothesis of interest is more a result of a series of other (possibly
observed) causes, for example when examining the status of a phenomenon or
determining the utility based on (a combination of) different variables. We
therefore choose to draw a property 5.1 explicitly for hypotheses.

Property 6: There can be an active chain from hypothe-
sis to evidence given the variables that can potentially be
observed

This property should be respected, indeed if there is no possibility of an active
chain between hypothesis and evidence, the evidence does not influence the
hypothesis and should be left out. Theoretically any node in the model can be
instantiated, but in practice only nodes which can be observed in the case will
be. These should not block chains between other observed evidence and the
hypothesis node(s).

Only if it is absolutely desired that there be an independence between ob-
served evidence and hypothesis upon instantiation of other nodes in the chain,
can one allow for blocked chains. There cannot be any uncertainty regarding the
observed variable that blocks the chain, since it will fully prohibit any influence
between the hypothesis node(s) and the evidence node(s) on that chain.

As this goes for any BN graph, we keep this property in its original form.

Property 7: When applicable, arcs follow the direction of
temporal/causal precedence

This practice stimulates a clear understanding and interpretation of the BN and
additionally facilitates the construction of the network, as well as probability
estimation. This property reflects the general tendency of causal arc orientation
as a first heuristic of drawing arcs as favoured by authors in the literature (e.g.
[24], see Section 3.2.1).

As mentioned in Section 3.2.2, variables can be not only in a causal or
temporal relationship, but also in a definitional relationship. This last relation
mirrors the way the arcs are directed in the definitional/synthesis idiom (See
Section 3.2.3, Figure 10), namely from sub-category to category or sub-attribute
to attribute. We can therefore choose to extend this property as follows:

New property 7. When applicable, arcs follow the direction of temporal, causal
or definitional direction.
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A note on the internal coherence of the list of properties

The properties, both in their original form and in their adapted form, have
disagreeing goals. Trying to adhere to all properties discussed above is prob-
lematic. Those properties supporting representational value of the graph clash
with the ones aiming to minimise the computational complexity. Specifically,
property 3 is in conflict with aiming to follow properties 1, 5.1 and 5.2: sepa-
rate modelling of variables results in more parents, with which the size of the
CPT of the child node grows exponentially, leading to a higher number of (free)
parameters to estimate. Property 1 also collides with property 4, because if
causes can be modelled as a single node, one could argue that modelling them
separately leads to redundant arcs.

We can conclude from this that, when building a BN graph, there is a trade-
off between computational complexity and visual representation of the modelled
case. Both are important, but in some domains one might weigh more than the
other. In the forensic domain, where BNs are used as a tool to communicate
how a LR is established, representation might carry more value than in domains
where the modelled cases include a myriad of nodes and arcs. In such domains
computational feasibility might matter more, such as for some cases from the
medical domain with many symptoms and influential variables.

7.1 Conclusion

In the previous paragraphs we discussed how Timmer’s list of advantageous
properties can be adapted to formulate new properties for BNs from other do-
mains. We kept properties 3, 4 and 6 in their original form. To summarise,
adding a ‘P’ to distinguish the new properties from Timmer’s properties:

P1 Causes are explicitly modelled by separate nodes.

P2 The network structure can allow for intercausal interactions.

P3 The number of free model parameters is as small as possible.

P4 No redundant arcs are included.

P5.1 Hypotheses are explicitly modelled by separate nodes.

P5.2 Evidence is explicitly modelled by separate nodes.

P6 There can be an active chain from hypothesis to evidence given the vari-
ables that can potentially be observed.

P7 When applicable, arcs follow the direction of temporal, causal or defini-
tional precedence.

We feel these properties reflect the important issues to keep in mind during
construction: representational value of the BN structure, computational com-
plexity, facilitation of parameter estimation, and the basic requirements for BNs
to function.
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8 Assessment of the template by Taylor and col-
leagues by means of the new properties

This section takes a closer look at Taylor and colleagues’ method [47] (Section
4) to assess whether following the steps results in a BN graph that incorporates
the new properties as adapted from Timmer [49] (see the final list in Section
7.1). The template is designed specifically for BN graph construction for forensic
biological traces given activity-level forensic hypotheses. The adapted properties
should be applicable to BNs from any domain and therefore should also pertain
to the BN graphs resulting from Taylor and colleagues’ template. By assessing
the steps in Taylor and colleagues’ method to see how they relate to the new
properties, we can draw inspiration for the guidelines that we will formulate
in Section 9. In addition, any properties not incorporated in the BNs from
this method demonstrate gaps in the method, which we can learn from when
drafting our guidelines.

We go through the steps as prescribed by Taylor and colleagues, denoted as
for example ‘Ta1’ for step 1 of the method.

Ta1: Define main hypothesis node

By formulating a main hypothesis node, the BN will have a single node which
models the activity-level forensic hypotheses. These forensic hypotheses are
modelled as distinct values of a single node, which is not in line with property
P5.1. According to this property, separate nodes should be included for every
hypothesis.

Nonetheless, as discussed in Section 4.1, forensic practitioners typically use
a BN to formulate likelihood ratios (LRs), which are presented to the trier of
fact. These LRs can be directly read from the hypothesis node. Therefore, this
specific sub-domain of the forensic domain might benefit from combining the
forensic hypotheses in a single node.

Ta2: Define activity node(s)

The activities from the case can be considered different explanations of the
evidence, which can be seen as alternative causes for that evidence. Since the
method calls for drawing a node for each activity, this is in line with property
P1.

By also including undisputed activities as nodes, the method does not nec-
essarily follow properties P3 and P4: a node that has equal probabilities under
both forensic hypotheses is essentially redundant and can be omitted (and con-
sequently redundant arcs are removed and the number of parents for other nodes
decreases). The authors state that this is an option: omit the arcs from these
activity nodes to the hypothesis node or omit these nodes altogether and adjust
the probabilities in the other nodes accordingly. However, the increase in com-
prehensibility and explainability of the BN is worth the loss of computational
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efficiency, according to the authors.

Ta3: Group similar findings & Ta4: Define findings node(s)

Not including every single piece of evidence as a node in the model but in-
stead grouping similar samples together is an improvement with respect to the
computational complexity. This is in line with properties P3 and P4.

Property P5.2 calls for explicit modelling of evidence: every piece of evidence
should be included in a separate node. If, however, different pieces of evidence
originate from the same area and share a similar influence on other variables,
modelling all these pieces individually needlessly complicates the model. The
graph then includes a myriad of nodes representing these pieces of evidence and
complex dependencies between them which are not particularly informative and
difficult to estimate. Treating them as a single piece of evidence is therefore
acceptable, and does not completely contradict P5.2.

Ta5: Define transfer & persistence node(s)

In this step the activity nodes are connected to the findings nodes through the
transfer and persistence nodes. If more than one activity is connected in this
way to a single result in a findings node (which is eventually instantiated), this
allows for an indirect explaining away effect between the competing activities.
This is in line with property P2.

Mediating nodes can be added to summarise the transfer and persistence
nodes. This can help in reducing the number of parents for a single node, and
with that the number of parameters (property P3). The BN in Figure 25 in
Appendix A contains a mediating variable such that the findings node ‘family
YSTR profile [...]’ has two parents instead of three.

Lastly, none of the activity or transfer and persistence nodes are instantiated.
Because of the way the arcs are drawn, this results in there being at least
one chain between the forensic hypotheses and each evidence node, forming a
series of serial connections that is not blocked. There is an active chain from
hypothesis to evidence, so this conforms to property P6.

Ta6: Define root node(s)

Depending on their definition, the role of root nodes is often as a cause for a piece
of evidence that competes with the activity node(s) connected to that evidence.
By including root nodes as separate nodes, this step is in line with property P1.
Additionally by making them a parent of the findings node, explaining away
can take place (property P2).

Again Taylor and colleagues suggest that the root nodes can be omitted
whilst adjusting the probabilities in the findings nodes. Doing so would be in
pursuit of properties P3 and P4, but again the authors vouch for including them
to increase the representational value and comprehensibility.
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Ta7: Check for absolute support in BN

In this step the BN is checked whether all results are observable under either
forensic hypothesis. For this to happen, there must be first of all no chains
between evidence and hypothesis that are blocked by variables that will be
instantiated given the case (i.e. evidence). Property P6 dictates this feature.

Furthermore, this step explicitly calls for a the inclusion of multiple causes
for a findings node. Generally there are two competing causes, each supporting
one of the forensic hypotheses. As such, property P2 can be incorporated in
this step, although there is no explicit mention of explaining-away.

Taylor’s method in general

As a result of starting at step 1 and ending at 7, the general tendency of di-
recting the arcs is from hypothesis to activity nodes, to transfer and persistence
and eventually findings nodes. In other words, arcs are directed in a causal or
temporal manner (property P7). Drawing arcs from root nodes (as alternative
causes) to findings also follows the notion of causality. Finally, introducing a
mediating node as a child from transfer and persistence nodes mirrors a defi-
nitional arc direction: the transfer and persistence nodes define the mediating
node.

Apart from the possibility of including mediating variables, there is no ex-
plicit effort to adhere to property P3, i.e. to keep the number of parameters as
small as possible by minding the number of values for a node or the number of
parents. Ways to do so are described in Section 3.3. It is possible to conclude
that this method does not aim to achieve the best conceivable computational
efficiency.

The evaluation of the graph is subtle. The resulting graph is not evaluated on
the basic requirements for a BN graph, i.e. no cycles and a correct representation
of the independence relation amongst the variables. We note that the way
these steps are designed, it follows that cycles will generally not occur, and in
most cases the (in-)dependences will be correct. However, if in a particular
case there are more complex dependences between variables, the method does
not provide any guidance. Additionally, the method does not offer room for
iteration: options to return to earlier steps are not explicit, although the BN
graph construction is usually iterative [13].

BNs with activity-level forensic hypotheses are aimed at answering questions
regarding the source and manner of deposition of traces. However, this method
enforces that these questions are answered in the form of activities, which there-
fore have to be clearly formulated. For complex problems (e.g. the question of
whether or not a piece of tape contains a DNA sample from a perpetrator or
unknown person on a specific location on that tape, as in [55], or multiple fin-
gerprints left at a crime scene at different points in time), it can be difficult to
follow this method as it offers no guidance on how to model complex conditional
dependencies that come along with complex problems. This method is aimed
at a particular sub-domain of the forensic domain, but it not straightforwardly
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employed in other domains.
To conclude, we have examined the method from Section 4 on the advan-

tageous BN graph properties established in Section 7. This method is aimed
at BN graph construction for cases from a sub-domain of the forensic domain,
namely that of forensic biology traces, which are evaluated under activity-level
forensic hypotheses. The observations we have made for this method relate
to this sub-domain only, but in Section 11 we deal with the forensic and legal
domains more broadly.

In following this method the resulting BN graph reflects the new properties,
with the exception of property P5.1. We argue that Properties P3 and P4 are not
adhered to as much, because this method pays little attention to minimising the
computational complexity of the model. Rather than computational feasibility,
the focus in this method is the representational value of the BN graph: the
resulting BN graph is seemingly more detailed than strictly necessary because
of separate nodes for each activity, multiple nodes between hypotheses and
evidence and even the inclusion of non-disputed activities. The authors argue
that this is a possible loss of efficiency is worth it for the increase in the graph’s
capacity to communicate the reasoning considered in the case. Furthermore, the
steps implicitly prescribe an arc direction as specified in property P7, but the
method does not explicitly focus on the type of relationship between variables.
A similar observation can be given for property P2: the way the variables are
connected, the structure can allow for explaining-away or explaining-in, but the
authors do not allude to this possibility. Lastly, the evaluation of the graph and
iterative character of the construction process is not emphasised.
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9 Guidelines

In the previous two sections we researched advantageous properties for BN
graphs and how these relate to Taylor and colleagues’ template for BN con-
struction. In this section we summarise our findings and propose a new set of
guidelines for the manual construction of BN graphs in data-poor domains.

Firstly we conclude that depending on the rationale for building the BN,
different graph properties are desired. There is a dichotomy between computa-
tional efficiency and representational value, and improvements in one area are
often at the expense of the other. The motivation behind construction of the
graph can vary depending on the phase of construction: in early attempts at
designing the graph, the emphasis is often more on the representational value of
the graph to allow for discussions on the included variables and representation
of the independence relation amongst them. In later stages the graph can be
simplified or adjust for the benefit of computational efficiency.

The template by Taylor and colleagues promotes the representational value
of the BN and focuses little on the computational feasibility of the model. We
prefer to provide guidance for both motivations for building a BN. As such,
multiple BN graphs can be developed with these guidelines, varying in purpose.

The new properties, outlined in Section 7, serve as an inspiration for the
formulation of the guidelines. The resulting BN graphs should adhere to the
new properties as much as possible, and the steps in the guidelines are specified
with this goal in mind.

Taylor and colleagues’ template is practical: it is a stepwise method that
defines which variables to model, where they should be in the structure, and
how to connect them. We hope to achieve a similar functionality, but have to
keep in mind that these guidelines are not domain-specific. As a consequence
we therefore develop these guidelines on a more abstract level by focusing on
the roles of variables and type of relationship between them.

The template dictates a linear process of graph construction, whereas we
argue that this is too simple. Properties P3, P4 and P6 for instance implicitly
represent an evaluative check in which the graph can be altered, indicating at
least some level of iteration. It is already mentioned in Section 2.3 that the
BN construction process is iterative, and we find that the graph construction
process is too. This should be reflected in the guidelines. Additionally, Taylor
and colleague’s method pays little attention to evaluating the structure. More
room should be given to evaluation of the (intermediate) graph.

We furthermore note that although the literature discussed in Part I of this
thesis was helpful as inspiration for these guidelines, not all idioms were useful.
The measurement, induction and reconciliation idiom (see Section 3.2.3) were
not used in designing these guidelines, as these were not reflected in the BN
graphs we studied.

Lastly, although causality takes a prominent place in BN modelling (see
Section 3.2.1), not all relationships between variables are causal. The idioms
reflect this, and so does property P7. We focus on more types of relationships
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in our guidelines.
In the remainder of this section we propose our set of guidelines for the

manual construction of BN graphs in data-poor domains. They are written
for BN engineers tasked with constructing a BN with help of domain experts
and aid them in the manual design of the network structure. We aim for these
guidelines to be:

• General enough to be applicable to problems from any domain;

• Flexible enough to accommodate to specificities of problems from any
domain;

• Specific enough to be practically useful;

In developing a BN graph, multiple versions are often developed in parallel.
Our guidelines specify that this is a possibility. If at the end multiple eligible
candidate BNs emerged from the steps, one can make an informed decision of
which BN graph is the best candidate from the set of comparison measures for
BN graphs, presented in Section 10.

The guidelines are listed first, after which they are discussed in more detail:

1. Identification and classification of the variables:

(a) Identify the relevant variables in the case;

(b) Establish the values;

(c) Categorise the variables into sets of hypothesis, evidence and medi-
ating nodes.

2. Establish the network structure:

(a) If any, assess the type of relation between the variables from each
category;

(b) Draw an arc if there is a direct influence, with the arc orientation
based on the type of relation.

3. Evaluation of the structure:

(a) on computational feasibility;

(b) on representational value, i.e. as a visual aid providing an overview
of the variables and reasoning considered in the case;

(c) on BN graph requirements, i.e. the fulfillment of the basic conditions
for BN graphs (no cycles, correct representation of the independence
relation of the variables according to the views of the domain expert).

Although the steps above suggest a linear process, one can alternate between
the steps. The process is sequential in that one starts at steps 1a and ends at
3c, and generally advances from 1 to 3, but steps can be (and generally will be)
revisited at any point in the method.
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9.1 Identification and classification of the variables

The first task is to identify the variables to be included in the model, as well
as their values. Although these two tasks are drafted as separate steps 1a and
1b, in practice these are intertwined. Decisions regarding variables (such as
combining them) usually affect values. This task of obtaining a well-crafted
variable set with values is often not straightforward and requires practice.

1a: Identification of the variables

The following can help in identifying the relevant variables: example:

1. The first step is to identify the hypothesis variable(s) (see Section 3.1).
These can be established by asking what the problem or hypothesis to be
tested is.

2. The next step is to gather information affecting the hypotheses: What
precedes, causes, correlates with and/or results from the problem? These
can be, but are not limited to events, actions, concepts, and other aspects,
henceforth denoted as ‘determinants’.

3. Can other relevant determinants be identified that affect the variables
established in the previous step?

Thought should be given to the name of the variable, so that it clearly portrays
the element it represents. The variables identified in steps 2 and 3 can be
classified as information variables (the symptom and background variables) and
mediating variables from Section 3.1. Later in step 1, more specifically in Section
9.1, when the values are also established, the variables are categorised according
to their role in the graph, such that it is easier to assess the relationships between
the nodes.

In the previous sections we have seen that separate nodes are generally pre-
ferred: the template (Section 4) calls for separate nodes for each activity, and
properties P1, P5.1 and P5.2 prescribe separate modelling as well. We there-
fore advise to draw separate nodes representing each identified determinant.
We argue this facilitates probability estimation and generally enhances graph
comprehensibility.

That being said, the computational feasibility of the model has to be kept in
mind, and sometimes not every determinant has to be represented separately.
Based on step 3 of Taylor and colleagues’ template (Section 4) and our research
on the consequences of combining nodes (see the discussion of property P1 in
Section 7), it is possible to collapse multiple variables into a single variable if:

1. The influences between them and other variables are identical or at least
similar;

2. Their combined effect is not larger than each effect individually, or is not
relevant;
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3. Combining them does not lead to a loss of representational value of the
graph, and;

4. There is no influence between one of the to-be-combined variables or
its values and another variable (separate from the other variable(s) with
which it will be combined).

This way, a structure including a series of nodes highly similar with respect
their influences and with complex dependencies between them can be avoided.
To illustrate, suppose smoking increases blood pressure, and so does alcohol.
Suppose these effects are similar, in compliance with condition 1. If for the
issue at hand it is not relevant how much how the combined effect of smoking
and alcohol influences blood pressure or there their combination does not lead to
an increased effect on blood pressure (2), they can be modelled in the same node.
By naming the node ‘smoking and/or drinking alcohol’, which can be binary, no
representational value is lost (3). This decision is up to the BN engineer, who
should confer with the domain expert. Now suppose there is another variable
which is caused by alcohol but not smoking according to the domain expert,
such as ‘memory-loss’. This is not in accordance with 4, and collapsing the
two variables is problematic: probabilities have to be estimated for memory-
loss given smoking and/or drinking alcohol. In this situation, keeping the nodes
separate is the best option.

1b: Establishing the values

When identifying the variables, the values for each variable have to be deter-
mined. First of all, the values of a variable must be mutually exclusive and
exhaustive to qualify for inclusion into the model.

Care should be taken when establishing the values for a node: more values
means more parameters to be estimated, i.e. a higher computational complexity.
It is advisable to only include the states for a variable relevant to the current
problem in the eyes of the BN engineer and domain expert [6]. Suppose for
example that a variable ‘Temperature’ can take the values {high, medium, low}.
If for the problem at hand the only important value of the ‘Temperature’ variable
is whether it is high or not, there is no need to include ‘medium’ as a value.
Note that now the value ‘low’ covers both the states ‘medium’ and ‘low’, which
can be confusing. It is advisable to change the values, for example to {high,
other} where ‘other’ signifies anything below ‘high’. It often suffices to keep
nodes binary: the ‘Temperature’ node from the example can also be changed to
‘High temperature’ and be made binary. Here we see that value determination
is closely connected with variable formulation, since establishing the values can
bring along changes in the variables as well.

Ideally, there should not be any variables whose values are mutually exclusive
with those of another variable. Suppose a BN engineer and domain expert come
up with two binary variables, ‘Age: <50 years’ and ‘Age: ≥50 years’: their
values are mutually exclusive, since if ‘Age: <50 years’ is true, ‘Age: ≥50 years’
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must be false. It can be valuable to convert them into a single variable, say
‘Age’, with values {<50, ≥50}, to reduce the complexity of the model.

In some cases this principle can be violated, as at times it is desired to keep
the two variables separate for reasons of increasing the representational value of
the structure and distinct chains (see the discussion on property P1 in Section
7). We advise to keep mutually exclusive variables distinct when:

• Their individual content promotes the representational value. By this we
mean that separate variables can be informative visually and can com-
municate what variables were considered in the model. It might not be
valuable to have two binary variables ‘Low temperature’ and ‘High tem-
perature’, but it might be valuable to have variables ‘Cause of death:
accidental’, ‘Cause of death: intentional’, and ‘Cause of death: natural’,
as opposed to one variable ‘Cause of death’ with values {accidental, in-
tentional, natural}.

• Other variables have an influence on only one of the variables, in other
words: there is need for distinct chains. Continuing the previous exam-
ple, separating variables avoids having to estimate the probability of the
presence of a bloody knife given an accidental or natural cause of death.

To enforce mutual exclusivity between these nodes, a constraint node can be
included if necessary (see Fenton, Neil and Lagnado [14] as discussed in Section
7).

1c: Categorising the variables

Once the variables have been identified and the values established, the result-
ing set of relevant variables is denoted as V. The variables in V should be
categorised, so that V = H ∪E ∪M, where:

H: The set of variable(s) in V which can be classified as hypothesis variable,
i.e. those of which the probabilities are desired (see Section 3.1).

E: The set of evidence variables which are observed in the case to be modelled
or which are expected to be observed. This set consists of the information
variables established in Section 9.1, but is renamed ‘evidence’ variables to
clarify that these are or can be observed.

M: The set of mediating variables. These are generally not observable, but
provide information on hypothesis or evidence variables or how these are
connected.

Classifying variables is a similar concept to the causal approach described by
Kjærulff and Madsen ([26], see Section 3.2.1). We however refrain from stating
a general causal relation between groups of variables, but advise to examine the
relation in more detail for each pair of nodes.

In concluding step 1 of our guidelines we would like to mention that it is
possible to obtain different sets of variables for the same case, for example due
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to identifying variables at different levels of granularity. To illustrate, one set of
variables can include nodes ‘Soil’, ‘Groundwater’ and ‘Surface water’, whereas
the other summarises all these in one node ‘Environmental conditions’. This of
course leads to different BN graphs, and the comparison measures in Section 10
can assist in assessing which is preferred for the task for which it is built.

9.2 Designing the graph

In this step the variables are connected by arcs to design the network structure.
Step 2 of our guidelines is quite demanding of the BN engineer and domain ex-
pert: they have to take into account many construction features simultaneously.
When in doubt about the arc presence or arc direction, we advise to construct
multiple candidate BN graphs in parallel, and determine the best one with use
of the comparison measures from the next section.

To draw arcs, the relations between nodes have to be identified. To maximise
the value of the BN graph as a representational tool, we focus on the types of
relations discussed in Sections 3.2.1 and 3.2.2.

Assess the relation between each pair of nodes Vi, Vj ∈ V. Inspired
by Taylor and colleagues’ method, we start with the hypothesis variable(s), then
the evidence variable(s) and lastly the mediating variable(s).

Specifically, start with the variables Vi ∈ H and Vj ∈ E: Identify whether
there is a direct influence between Vi and Vj . If so, an arc should be drawn
between them. Determine the arc direction based on the relation between the
nodes:

• If Vi is a cause for Vj , draw an arc Vi → Vj .

• If Vi is a sub-attribute of Vj , draw an arc Vi → Vj .

• If Vi represents an event that takes place before Vj , draw an arc Vi → Vj .

• If Vi is somehow associated with Vj in another way than mentioned above,
the arc direction is arbitrary. Make a choice while considering:

1. which arc direction leads to the easiest probability estimation;

2. which arc direction leads to the lowest number of parents;

The above also holds if Vj is a cause, sub-attribute, etc. for Vi. Note that in
many cases, there is seldom a direct influence between a hypothesis and evidence
variable: oftentimes mediating variables appear in between.

Do the same for:

1. Vi ∈ H and Vj ∈M

2. Vi ∈M and Vj ∈ E

3. Vi and Vj ∈ E, i 6= j

4. Vi and Vj ∈M, i 6= j
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We consider it good practice to place root nodes at the top of the BN, and place
the nodes in such a way that arcs are directed downward (relatively) vertically,
if possible. This mirrors how Taylor and colleagues have created their template,
and the idioms have a similar appearance. This way, the resulting BN will end
up having a layered architecture. Uniformity in this area can allow for easier
reading of the graph.

In order to increase the interpretability of the BN graph, it is possible to
assign a label x to the arcs in the structure denoting the type of relationship
between to variables 14. We propose a labelling of an arc

x−→, x ∈ {c, t, d, a},
where x signifies whether a link is causal (c), temporal (t), definitional (d), or
associative (a). Other labels can be added in case other relations are inherent
to a particular domain.

If the influence between variables is uncertain, there are several possibilities:

1. Assume (conditional) independence and refrain from drawing an arc: this
leads to a slight loss of information, but since this information is uncer-
tain, a simpler structure is preferred. This is especially desirable if the
motivation for building the BN is computational efficiency.

2. Add a mediating node capturing the uncertainty between parent(s) and
child: for example in case of disputed paternity, a putative father and an
alternative father can both contribute to a child’s genotype, but not at
the same time. A mediating node simulating the true father can be added
in between the parent and child nodes to resolve this uncertainty. This
option often benefits the representational value of the graph.

Whilst at this step, the following modelling options (inspired by those from
Taylor and colleagues’ method) can be taken into account:

• There can be more than one mediating node on the same chain. Caution
has to be taken: the longer the chain, the more likely it is that the impact
of a node early in the chain on a latter one is weaker, and the more
uncertainty is propagated through the chain [6].

• Allow for intercausal interaction in the structure: in assessing the relations
between nodes, keep in mind whether there is any interaction for which
the graph has to be adapted to reflect this interaction (Section 2.2.1).
To illustrate, suppose two direct causes15 Vi and Vj have been identified
for an effect Vk. In case these causes are in competition, i.e. each cause
individually can account for the occurrence of Vk and they are mutually
exclusive, they could explain each other away, which the structure should
allow for. From the steps above, two arcs Vi

c−→ Vk and Vj
c−→ Vk arise, such

that a converging connection emerges. Keep in mind that the converging
connection need not involve direct arcs for explaining away to happen
(although the effect might be weaker the longer the chain).

14This idea is inspired by Vlek and colleagues [52].
15Again, we note that a causal relationship is not strictly necessary for intercausal interac-

tions to take place, but for the sake of the explanation we assume a causal relationship.
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• The chain between hypothesis and evidence must be active, otherwise the
evidence cannot influence the hypothesis. This step follows property P6.
Active chains are desired unless it is certain that observing a variable
cancels the influence of evidence on hypothesis. This can for example be
the case when a contract is found (evidence) that is the result of a hy-
pothesised deal between two parties. If however there is evidence that the
document is a fake, the impact of the document can be undone by blocking
the chain using this evidence. We strongly advise against using inactive
chains in most cases, because the uncertainty regarding the evidence that
blocks the chain is not incorporated.

9.3 Evaluation of the structure

Our research suggests that in constructing the graph, the following have to be
taken into account: basic functionality, computational complexity, and repre-
sentational value. None of the methods discussed in Part I include an explicit
step to evaluate how the BN graph performs with respect to these goals. This
is why our method includes an explicit step for evaluation of the structure.

The evaluation steps described below are drawn up in this order with a
reason, but this order is not strict. The general idea behind this ordering is
that in assessing the complexity of a model (step 1), there is a chance the model
will look very different due to the removal of arcs and/or nodes, insertion of
mediating nodes or reversal of arrows. Afterwards the model network should
be inspected on its role as a communication tool (step 2): does the graph
still provide a comprehensive visual overview of the case? These two steps
can be assessed alternately until a balance is found between complexity and
representation that suits the BN engineer and domain expert.

The evaluation of the structure should always conclude with analysing whether
the structure fulfills the basic requirements of a BN graph (step 3): correct rep-
resentation of the independence relation and acyclic. If any adjustments are
made to the structure in this last step, we advise that the graph is re-evaluated,
to make sure it still adheres to the intentions of the BN engineer and domain
expert. In case the guidelines lead to multiple BN graphs, the candidate graphs
can be evaluated on the comparison measures (step 4) proposed in the next
section (Section 10).

The (initial) graph should be evaluated on the following:

1. Check the computational complexity of the structure:

(a) Check the number of parents for each node: strive to keep this num-
ber to a minimum. Divorcing can initially be used to reduce the
number of parents, and removal of weak arcs can be done once (ini-
tial) parameters are specified.

(b) Critically assess the (number of) values for the nodes: is every value
necessary, or can values be excluded or contained in another value?
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(c) (After (initial) parameterisation) examine the nodes: does every node
that is included in the model have a significant influence on at least
one other variable, or can a node be excluded (whilst adjusting the
parameters for other nodes)? Sensitivity analyses (Section 2.3.1) can
be used to this end.

2. Check the representational value of the structure:

(a) Check whether introducing mediating nodes can help clarifying the
model structure with respect to its representational value, or facili-
tate easier probability estimation.

3. Check the functionality of the structure:

(a) Verify the conditional (in-)dependencies represented by the struc-
ture: for each pair Vi, Vj ∈ V, check whether their conditional (in-
)dependency is correctly mirrored in the structure. The structure
should reflect the independence relation of V as considered by the
domain expert.

(b) Check for cycles: cycles are not allowed in a BN graph. To ‘break’ a
cycle, arcs can be reversed or removed.

4. In case multiple candidate BN graphs emerge from the method: base the
final decision on the comparison measures (discussed in Section 10).
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10 Comparison measures

This thesis is aimed at providing aid in constructing the BN graph by hand.
As mentioned in the guidelines, multiple candidate graphs can emerge, and
therefore part of this aim is to formulate measures to allow for a comparison of
BN graphs and making an informed decision.

These measures are intended for the comparison of two or more different
BN graphs which model the same problem. As mentioned before, different BN
graphs can all be correct in the sense of adequately representing the knowledge
and views of the domain experts, but some might be more appropriate or suit-
able than others for the case at hand or depending on the rationale for designing
the BN. If during the construction of the graph multiple structures emerge, the
decision which graph is favoured over others can be based on these measures.
The last step of the newly proposed guidelines (Section 9) incorporates the use
of these measures.

The guiding principles from the literature (Part I) and the new properties
(Section 7) again serve as inspiration in the formulation of these measures. We
assume that the BN graph candidates qualify as a BN graph in that they are
acyclic digraphs for the case at hand.

10.1 Development of the measures

We set out to formulate concrete comparison measures, preferably in the form
of quantifiable statements. We based initial versions of our measures on the new
properties, as these capture advantageous BN features.

The earliest variants of the measures were formulated in more absolute terms,
which we illustrate here. In comparing the selected BN graphs, the “best” graph
is the one which adheres to a number of measures, such that this graph:

1. Has the lowest number of parameters to be estimated;

2. Does not contain redundant arcs;

3. Does not contain nodes with an in-degree of four or more;

4. Does not contain more than five consecutive nodes between the hypothesis
and evidence nodes;

5. Contains only binary nodes;

6. Contains separate nodes for each alternative cause for a common effect;

7. Contains separate nodes for each hypothesis;

8. Only includes arcs that represent a causal, temporal or definitional direc-
tion.
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This quickly proved too radical, as these measures often lead to the premature
exclusion of good BN candidates. All criteria are absolute, either not allowing a
particular characteristic or only allowing a specific property. Absolute numbers
such as in criteria 3 and 4 are based on observations from the database. These
numbers might be concrete and easily established, but such a number cannot
be straightforwardly generalised across all domains. Additionally, there is the
possibility that all BN graphs in the comparison are excluded when neither of
them adheres to these criteria. We approached this problem by mitigating these
criteria to “contains the lowest/highest number of ...”. Other issues remained,
however.

One such issue is inherited from the new properties: the measures are inher-
ently inconsistent. Measures 5 and 6 contradict measures 1 through 3, making
it difficult for a graph to be in line with all criteria in the list. We tried to
solve this by coming up with priority ordering: Not every measure had to be
obeyed, and in choosing the most suitable BN for the case at hand one can
prioritise particular measures over others. Measures 5 and 6 for instance can be
prioritised over the others in case the BN is used as a visual tool. This was an
improvement, but still the measures were not satisfactory.

Lastly and most importantly, we found that the measures did not achieve
what we wanted them to achieve. The motivation behind the first five mea-
sures is ensuring that the chosen BN graph provides the optimal computational
complexity (whilst still adequately representing the case at hand), but this is
not guaranteed with these measures. There are for example situations where
a graph with a higher number of nodes and arcs (and hence, a higher number
of parameters) is preferred over more compact networks (as in Section 11.4).
Measures 6 through 8 were drafted with the goal of choosing the BN with the
maximum representational value. The measures merely favour networks with
separate nodes and interpretable arc directions, and do not prohibit that a vi-
sually overly-complex network is favoured over a more compact but clearer one.

We tried to formulate a set of detailed level, which did not work well. We
concluded that we had to distance ourselves from formulating concrete measures
and examined comparable aspects on a more abstract level: in what situations
are particular BN graph properties preferred? The division in motivations for
the BN graph returned: using the BN to perform probabilistic inference and
therefore aiming for the best computational feasibility leads to different mod-
elling choices than when using the BN graph as a visual tool to communicate the
reasoning considered in the modelled case. The best computational feasibility
and representational value are sums of several components. We formulated our
measures in such a way that they capture these components and in this way
provide a good starting point of aspects to consider when comparing BN graphs.

10.2 Final measures

The measures are as follows: For x BN graph candidates (x ≥ 2), choose the
BN graph which:
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1. Is computationally most feasible, based on:

(a) the number of parents per node.

(b) the number of values per node.

2. Has the most representational value:

(a) separate nodes are included for each cause, hypothesis and piece of
evidence.

(b) the arcs reflect a causal, temporal or definitional direction.

10.3 Measure 1 - Computational complexity

As mentioned before, comparing BN structures on computational complexity is
not as straightforward as comparing the absolute number of parameters to be
estimated16, which is dependent on the number of nodes and number of values.
In some cases, a structure that is more extensive in terms of the number of
nodes is preferred over a more compact graph with a higher number of nodes
with many parents (especially if the nodes are non-binary valued). We therefore
advise to assess the number of parents per node for each graph and let this weigh
in on the decision.

In addition to the number of parents, the number of values determines the
complexity of a BN structure. Generally the BN graph that contains only binary
nodes or contains the highest number of binary nodes (excluding deterministic
nodes) is preferred.

10.4 Measure 2 - Representation

A BN graph should demonstrate a level of transparency of the reasoning used
in building the structure. The subjectivity of this characteristic is difficult to
quantify into a comparison measure. We argue that representing variables in
separate nodes as much as possible is a good starting point. BN graphs with
this property are preferred. In addition to a separate representation, the arc
orientation can help in showing the direction of reasoning, in particular for
Markov equivalent graphs. Structures with (the highest number of) causal,
definitional or temporal arcs increase the interpretability of the graph, and are
therefore preferred over others.

10.5 Priority ordering

As measures 1 and 2 contradict each other, a priority ordering should be given
to these measures, which is dependent upon the preferences BN engineer, the
domain expert and the held from which the problem to be modelled originates.
In some domains where complex and extensive BNs are the order of the day,

16Note that two Markov Equivalent structures for one set of variables with set values share
the same set of immoralities and therefore have the same number of parameters.
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computational efficiency might be higher on the list of properties of a BN graph
than for other domains with simple and small models.

An ordering can be given as follows: measure 1 ≤ measure 2 denotes that
measure 2 is preferred over measure 1. Adding this priority ordering to the
documentation of how model was built, with motivations why, could help in
communicating the goals for the BN (i.e. as a communicative tool or to compute
probabilities (most) efficiently).
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Part III

Case Study

11 Evaluating the guidelines and comparison mea-
sures for the forensic and legal domains

In Part II we proposed a new set of guidelines for the manual construction of
BN graphs with the help of domain experts, as well as a set of measures for the
comparison of multiple BN graphs. As we have aimed to keep these general, it
is worth examining how they relate to specific data-poor domains. In Section
8 we already provided a careful examination of Taylor and colleagues’ template
with respect to the new properties that form the basis of our guidelines. The
method is aimed at a sub-field of the forensic domain (i.e. biological (DNA)
traces under activity-level forensic hypotheses), whereas now we will look at
the forensic domain in general with forensic hypotheses at any level (if any), as
well as the legal domain. The legal domain is included since BNs for legal cases
bear a resemblance to BNs from the forensic domain: they include crime-level
forensic hypotheses and deal with (forensic) evidence.

In this section we applied the information obtained in the interview that was
conducted with a forensic scientist with DNA expertise at Netherlands Forensic
Institute (NFI) and examined whether the BNs from the forensic and legal
domains adhere to our new guidelines and comparison measures, and if there
is room for extending and/or adjusting them specifically for these domains. To
this end we reassessed the database of BN graphs from the forensic and legal
domains (see Section 6) on whether they are in line with what the guidelines
and measures prescribe. We examined how the BN graphs are established with
respect to the three main steps from the guidelines, and the measures:

1. Variable identification: we assessed what variables and values were in-
cluded in the graph given the case description, and how these are estab-
lished. We examined whether the different options for modelling variables
and values are reflected in the BNs.

2. Graph development: we analysed the choices in arc presence, arc absence
and arc direction. In addition we looked whether any of the authors
made use of the specific modelling options mentioned in this step of the
guidelines.

3. Structure evaluation: we surveyed whether any of the authors mention
that they payed attention to some form of evaluation of the structure
and researched whether the authors had a tendency to prefer enhancing
the representational value of the graph or optimising the computational
complexity.

4. Comparison measures: We tried comparing multiple BN structures for the
same case, but could only find one instance where this was possible.
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Few authors provide motivations for their choices, but conclusions can be drawn
from the way the graphs are built. The BN graphs are used as examples to
illustrate the concepts from the guidelines.

We discuss the BNs from the literature in relation to the three main steps
from the general guidelines, i.e. variable identification, graph design, and struc-
ture evaluation.

11.1 Variable identification

A crucial difference with the guidelines and forensic BN graph conventions is
the inclusion of a single node for the pair of forensic hypotheses (see Section
4.1). Our guidelines suggest separate nodes for each hypothesis, whereas in
forensic BNs these are collapsed into one node to provide a direct reading of the
LR. Nearly all forensic BNs from the database possess this ‘forensic hypothe-
sis node’17 or at least a decision node. Indeed the inclusion of a single node
facilitating the direct reading of the probability of interest is even explicitly
advocated by Dawid and colleagues [11]. The first step in the template from
Taylor and colleagues prescribes modelling the forensic hypotheses in human
DNA cases as distinct values of a single node. In the discussion of this first step
of the template in Section 8 we argued that this hypothesis node is beneficial
for this specific sub-domain, but it appears that this can be generalised to the
domain of forensic science. The proposed guidelines could be adapted so as to
include a single node for the forensic hypotheses for BNs built in the domain of
forensic science: steps 1a and 1b of the guidelines could contain an additional
instruction to draw a single node for both forensic hypotheses.

Some authors make use of the grouping of variables and/or values. In their
BN shown in Figure 25 in Appendix A, Taylor and colleagues [47] group together
two pieces of evidence, namely two tapelifts of the inside and outside of an
item clothing, and regard these as one large tapelift. Both tapelifts revealed
quantities of DNA of the suspect, but only on one tapelift low levels of DNA
from another person was detected. Despite the fact that the DNA from this
other person was only found on one tapelift, the authors argue that there is
little evaluative difference between regarding the presence and absence of DNA
in these bordering surfaces and considering the presence of DNA for the general
area (i.e. the whole area of the item of clothing from which the tapelift evidence
is gathered).

Although the case modelled by Szkuta and colleagues [44] (see Figure 24 in
Appendix A) involves two victims, the authors have grouped both these victims
when considering the presence and transfer of their DNA on pieces of evidence.
For the questions in the present case (i.e. whether a suspect ‘F’ was present),
and who held a piece of evidence (‘F’, another suspect ‘S’, one of the victims or
an unknown individual) the impact of the victims individually is not relevant.

17Exceptions being Fenton et al [18] (although they do include a constraint node to enforce
mutual exclusivity between the forensic hypotheses (see Section 7)), Oosterman et al [36],
Smit et al [43], Vlek et al [51], and De Zoete et al [59].
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Note that it would have been possible for this BN to construe a single node
‘DNA on didgeridoo’ with mutually exclusive18 and exhaustive values {F, S,
V, U}. This is however not desired for the sake of distinct chains, as well
as representation. To illustrate, the variable ‘Background DNA’ for example
considers the presence of DNA of an unknown prior to any offence and is only
relevant to ‘U’. Collapsing the nodes would force the probability estimation of
each individual’s DNA on the piece of evidence given the background presence
or absence of an unknown person’s DNA. In addition, the persons considered
in the case are directly observable from the structure of the graph. Szkuta
and colleagues model mutually exclusive causes as separate nodes, but do not
use a constraint node (see Figure 21) to enforce this mutual exclusivity. From
the interview [27] it followed that explicitly enforcing mutual exclusivity is not
typically performed. It turns out that only Fenton and colleagues [18] and Vlek
and colleagues [51] make use of this constraint node in their BN, see Figures 36
and 38 in Appendix A.

Szkuta and colleagues furthermore consider the transfer, persistence and
recovery of DNA together in the binary nodes ‘Transfer/Persistence [. . . ]’. The
BNs by Taylor and colleagues [47] and De Ronde and colleagues [42] (Figures
25 and 26 in Appendix A), both created using Taylor and colleagues’ template
(see Section 4), also consider these together. Wieten and colleagues [55] (Figure
27 in Appendix A) favour to include these separately. This last approach is
encouraged by the guidelines, as it allows for easier probability estimations and
increases the comprehensibility of the BN graph. We note however that this is
a domain-specific issue for which we do not possess the knowledge to determine
which way is best: it might well be possible for the domain expert to consider
these variables together.

11.2 Network structure

The majority of the papers on forensic and legal BNs we examined have no
documentation on the realisation of the BN structure. This complicates relating
the structure to our guidelines, as we cannot be certain of the considerations
behind the modelling choices.

Source-level BNs tend to include fewer ‘causal arcs’, and more definitional
arcs. Source-level BNs concerning the identification of donors of DNA, such as
the paternity network by Dawid and colleagues [11] or the mixed DNA trace
network by Mortera and colleagues [34] (Figures 28 and 32 in Appendix A),
include separate nodes for the paternal and maternal genes that define a geno-
type. The source-level BN by Taylor and colleagues [46] includes an example of
a temporal arcs: the arc directed from the node ‘HemaStix results’ to ‘Hema-
Trace results’ reflects a temporal relation, since the first is carried out before the
other. De Wolff and colleagues [57] initially drew an arc between two tests in-
cluded in their case in the same way, which was later removed (discussed further
in Section 11.3).

18The authors make the assumption that only one person handled the didgeridoo at the
time of the offence, making these values mutually exclusive.
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Causal relations can be found between variables from activity-level BNs, as
activities, transfer, persistence, and contamination can generally be viewed as
causes for the findings in a case. Examples can be found in the BNs resulting
from Taylor and colleagues template, such as one by De Ronde and colleagues
[42] in Figure 26 in Appendix A. The ‘4. Fingermarks S through climbing’ and
‘5. Fingermarks S through leaning’ are causes of the red nodes that represent
observed pieces of evidence. Contamination of a sample can be considered a
cause of a particular outcome in analysing that sample. All BNs taking con-
tamination into account, such as in Biedermann, Bozza and Taroni’s gunshot
residue BN [4] and Wieten and colleagues tape BN [55] (Figures 31 and 27
in Appendix A), direct arcs away from the contamination nodes, directly or
indirectly towards findings nodes.

There are few mentions of explicit intercausal interactions in the BNs from
our database. Biedermann and colleagues parameterised their “cause-of-fire”
BN such that the presence of terpenes, an organic combustible compound,
within the floor explains away the presence of terpenes at the sampling point
of a fire (see nodes ‘L’, ‘X’ and ‘T’ in Figure 23 in Appendix A). Even though
explaining away is desired (and possibly used) in other BNs, such as the one by
De Ronde and colleagues, the use of this effect is not discussed in the article.
No other types of intercausal interactions could be identified in the BNs from
the database.

From the interview [27] we gathered that intercausal interactions such as
explaining away were not taken into account in BN (graph) construction at
that particular department at the NFI. A reason for this is that the area of
expertise of the interviewee is (human) DNA analysis, where explaining away is
not always desirable. DNA can accumulate: a higher probability of DNA ending
up somewhere due to an innocent activity then does not automatically mean
that this person did not (also) perform a criminal activity resulting in the DNA
being there. The simultaneous occurrence of both these activities is possible,
and in both instances DNA could have been left. One activity explaining the
other away is then not desired.

For this sub-domain of the forensic domain, the suggestion of considering
intercausal interactions, or rather, explaining away specifically, from our guide-
lines might not be relevant. Other sub-domains however, such as fingermarks,
might benefit.

The BNs from the database contain some examples of incorporating more
mediating nodes to enhance the interpretability of the graph. Biedermann and
colleagues [2] for example, stress that nodes ‘A: presence of gasoline after the
fire’ and ‘S: presence of gasoline in the sample at the time of analysis’ can be
eliminated from the graph (see Figure 22 in Appendix A, such that nodes ‘G:
presence of gasoline before the start of the fire’ and ‘E: gasoline detected’ exhibit
a direct dependency. For the sake of transparency, nodes ‘S’ and ‘A’ are included
in this BN. They are excluded in subsequent networks from the same authors
[3] built from this network (see for example Figure 23 in Appendix A), because
the uncertainties captured by these nodes (namely regarding the environmental
conditions in the retention of the combustible liquid and contamination of the
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sample) were not relevant to these cases.
Mediating nodes are used in some models to enhance the computational

feasibility and representation. Fenton and colleagues [18] for example, introduce
a mediating node to summarise the capability and motive of the defendant,
shown Figures 34 and 35 in Appendix A. De Wolff and colleagues [57] summarise
the presence of sources other than saliva of a particular enzyme into a mediating
node (see Figure 30 in Appendix A).

11.3 Evaluation of the structure

In this section we discuss whether the authors of the articles from which the
BNs originate devote attention to any of the areas the evaluation step of our
guidelines considers. We notice that the BNs from the database are quite sim-
plistic. To illustrate, the smallest network contains just three nodes, the largest
57, but most contain between 10 and 14 nodes. The number of head-to-head
nodes is not very high, nor is the number of parents for a single node. The
focus on computational complexity is not high, and few authors mention trying
to optimise their BN graph in terms of feasibility.

Most BNs tend to include more nodes to increase the transparent communi-
cation of the variables considered and reasoning involved. We already mentioned
Biedermann and colleagues’ choice for including nodes ‘S’ and ‘A’ in Figure 22,
which are not strictly necessary but help in understanding the reasoning done
in the case. Taylor and colleagues’ BN [47] from Figure 25 also includes vari-
ables which are always in a particular state and do not influence the hypothesis
variable. This follows from their method, which prescribes to include nodes for
non-disputed activities. Some networks contains nodes with a large number of
parents, e.g. that of Langford and colleagues [31], Figure 37 and of De Wolff
and colleagues [57], Figure 30. Nothing about the complexity of inference is
mentioned in these articles however.

The tendency to include more nodes was echoed by the forensic practitioner
in our interview [27]. Motivations included clearly communicating the consid-
erations in developing the model and easing the task of probability estimation.
Their focus remains on representation, and computational feasibility does not
play a role in forensic biology cases (within this department at the NFI at
least). It seems safe to conclude that at the moment, in forensic and legal BN
modelling, representation has priority over computational feasibility.

Regarding the independences captured by the graph, some authors motivate
their modelling choices. Aitken, Taroni and Garbolino [1] (Figure 39 in Ap-
pendix A) for example discuss the presence of the arc between nodes 5 and 6,
i.e. the transfer of biological material from victim to suspect in node 5 and vice
versa in node 6. If it is known whether contact was established between the
victim and the suspect (node 11), nodes 5 and 6 do not become independent
because information on the success or failure of transfer from victim to suspect
is still directly relevant for the probability of the other transfer. De Wolff and
colleagues [57] mention an initial dependency between two tests (nodes 7 and 8
in Figure 30): a positive result for the first test could predict a positive result
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for the second test, or the sample could be wasted during the first test, influ-
encing the outcome of the second test. Either way, a dependency was assumed
and an arc was drawn, and a node indicating whether or not the first test was
performed was added. In the subsequent case study however it appeared the
presumed dependency was not significant, and the arc and additional node were
removed. It should be noted that although this removed the direct dependency
between the two tests, an active chain remained (nodes 7, 6 and 8) and an
indirect dependency might still exist.

11.4 Comparison measures

Most authors of the articles in our database neglected to include any primary
attempts or other candidate BNs/BN graphs, but we established that represen-
tation generally has priority over computational feasibility within the forensic
and legal domains. We base this on the fact that some BNs from the database
include a large number of parents, and no divorcing was performed to minimise
that number (e.g. 8 parents in the BNs from Langford and colleagues 37 and
De Wolff and colleagues 30, 6 in Vlek and colleagues 38). Additionally, the
interview [27] revealed that computational complexity was not an issue for the
BNs constructed in this department, but rather that BN engineers concentrated
on conveying the reasoning involved in the cases by including more nodes (even
if their inclusion can be avoided).

Mortera and colleagues [34] did document the development of their BN graph
by demonstrating two attempts for the same case in their article. They argue
that the first BN graph, shown in Figure 32, is visually intuitive, but is compu-
tationally inefficient. The network contains 18 nodes, but also includes a node
with at least 8 values19 and 7 parents (of which most are multi-valued as well).
The size of the CPT for this node is large, 124416 entries at the very least. The
authors therefore built a different network, displayed in Figure 33, which is the
preferred network. While containing more nodes (46), performing calculations
with this BN is computationally more feasible: the large table has been reduced
to 768 entries. This network still includes separate nodes for each determinant,
yet appears more complex graphically.

In conclusion, unlike most other authors we examined, Mortera and col-
leagues based their decision on the computational feasibility: they assessed the
number of parents and parameters for each network and picked the most efficient
one. Even though the first network is favoured in terms of visual comprehensibil-
ity, the second network prevailed. The comparison measures capture the criteria
on which this decision was based. Suppose Mortera and colleagues would have
used our measures, given that they aimed for efficient computations with their
BN, measure 1 would have priority over measure 2 (i.e. measure 2 ≤ measure
1). We argue that by employing the measures they would have preferred the
same BN.

19Depending on the case, different DNA markers with different numbers of alleles can be
considered. For markers with a high number of alleles, the number of values for the nodes in
this network can be even higher.

63



12 Discussion

In this section we discuss our proposed guidelines and comparison measures
(Part II) and the case study regarding the forensic and legal domain BNs (Part
III).

In the first place, this thesis deals with an inherently subjective topic. What
constitutes a good BN graph is dependent on the personal preferences and
motivations of the BN engineer and the domain expert. This brings along
difficulties in designing guidelines and measures claiming to result in good BN
graphs. We had to find a balance between providing instructions and offering
room for the preferences of the BN engineer and domain expert whilst keeping
the new properties in mind. For example, we recommended to draw separate
nodes as much as possible, in line with properties P1, P5.1 and P5.2, but allowed
for the option of combining variables if this was desired by the BN engineer.

Secondly, the in-depth survey of observations from the field is one-sided:
only BN graphs from the forensic and legal domains were examined, and the
interviewee was a forensic scientist. The risk here is that the conclusions based
on these observations are partial towards these domains.

Another aspect that made the development of guidelines and measures diffi-
cult was the fact that at times the many exceptions made it difficult to develop
a rule, especially in the first step of the guidelines (variable establishment) and
in the measures. Many situations where the rules do not apply are context-
dependent, and it proved difficult to take these into account when developing
general guidelines and measures. Moreover, this complicated maintaining a clear
direction throughout the guidelines, as we often had to sidestep to mention sit-
uations where the rules do not apply.

Much work in the guidelines and especially measures rests on the assumption
that those involved in constructing a BN graph always incline more towards
reducing computational complexity or increasing the value of the graph as a
representational tool. In practice one might simply aim to achieve the opti-
mal model without leaning more towards one motivation. We lacked practical
knowledge of the motivations for building BNs and the modelling choices that
go along with that, which we tried to solve by conducting an interview with a
BN engineer. This was useful, but of course only shed light on BN construction
in that specific area.

We aimed for the guidelines to be “specific enough to be practically useful”
and have tried to achieve a level of practical applicability similar to that of Taylor
and colleagues. Due to the fact that we also had to keep the guidelines general,
it is uncertain whether this practicality is actually achieved. Our guidelines
offer a number of good considerations for a BN engineer, but at times do not
adhere to the level of stepwise graph construction as in Taylor and colleagues’
template. Because of this loss in practicality a lot of work still lies with the BN
engineer and domain expert. Sometimes the guidelines are quite demanding,
step 2 in particular asks to draft the network structure whilst keeping a number
of aspects, which can be quite complex, in mind. On the other hand, a list of
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the concrete aspects to consider is preferred over no such list at all, and in this
way the guidelines do offer assistance.

The measures in particular were difficult to formulate. Earlier versions in-
cluded measures that quantified a specific characteristic of the BN graph heavily
based on the new properties, such as ‘choose the BN with the lowest number of
parameters’. We came to the conclusion that these measures would not hold up,
and eventually had to settle for less concrete measures that still provide help in
making a subjective decision.

Lastly, the relation of the guidelines to the BNs from the forensic and legal
domains was fruitful. It showed that most of what the guidelines postulate is
reflected in the BN graphs from these domains. Sometimes the guidelines were
more extensive: they include for example a step regarding the consideration of
intercausal interactions, a feature that was hardly touched upon in the BNs that
we studied. The case study however involved speculation, as we could not be
sure of the modelling choices when these were not motivated in the articles.

Additionally we had hoped to uncover parallels between BN graphs and
forensic hypotheses, but this was not the case. In other words, if characteristics
specific to BN graphs with activity-level forensic hypotheses were discovered,
the guidelines could have been specified further. Unfortunately we could not
detect such similarities.
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13 Conclusion

In current literature few forms of guidance exist on handcrafting the BN graph
for a problem with help of a domain expert. The few guiding approaches that
exist are either generally applicable but not very hands-on, or detailed but highly
domain-specific. Practical guidelines that are not domain-specific are lacking,
and their existence would be useful to increase the construction and use of BNs
to tackle problems from any domain. We addressed this gap by making it the
purpose of this thesis: we aimed to provide guidance in construction of a BN
graph by hand with help of a domain expert.

To do so, we first gathered information by reviewing the guidance from
the current literature in Part I. In Part II we used the obtained knowledge
from the literature to examine what characteristics BN graphs should possess
ideally (Section 7). In Section 8 we related these properties to a method for
BN graph construction from Part I. The goal here was to investigate how the
BN graphs resulting from this method performed with respect to the newly
formed characteristics, as the method seemed a good source of inspiration for
our guidelines thanks to its practical approach. In Section 9 we proposed a new
set of guidelines for the manual BN graph construction for cases from data-poor
domains. Furthermore we devised a set of comparison measures to compare BN
structures for the same case on in Section 10. Finally in Part III we evaluated
the guidelines and measures by relating them to a case study. The ‘case’ here
was both the forensic and legal domains, whose BNs were assessed on whether
or not they roughly followed the steps from our guidelines. We found that
they generally do, but these BNs do not draw separate nodes for each forensic
hypothesis, but rather incorporate a single node for the pair of them.

In concluding this thesis we revisit our research questions.

1. What are desirable characteristics for manually constructed BN graphs
for problems from data-poor domains and why are these desirable?

Our efforts in extending the applicability of Timmer’s properties to BN graphs
from any domain resulted in a new list of advantageous properties (Section 7.1).
These properties are desirable because they either optimize the computational
efficiency of the BN graph, or increase the potential of the BN graph as a visual
tool. The motivations for using the BN determine when adhering to a property
is beneficial: when the BN is merely as a tool for calculating the probability of
interest in the most efficient way, other properties are desired than when the
BN graph also functions as a communicative tool. All in all, the new properties
helped in determining what constitutes a good BN graph.

2. How can these insights be combined to formulate:

(a) a set of practical guidelines for the manual BN graph construction
with help of domain experts for a problem from any domain, and

(b) a set of comparison measures for analysing different BN graphs for
the same problem and establishing which graph is the most suitable
in a specific situation?
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In Section 9 we proposed our set of guidelines. In developing them we incorpo-
rated the general approaches discussed in the literature study. Additionally, the
newly drafted properties served as a goal towards which our guidelines should
work to: the steps in our guidelines were developed in such a way that the BNs
emerging from them would incorporate these properties. Our guidelines for ex-
ample call for including explicit and separate nodes for hypotheses, evidence
and causes, and promote arc direction as stated in property P7.

Furthermore, we aspired to ensure a practical applicability by designing the
steps with the practical method from Taylor and colleagues in mind. As we
examined how the BNs from this method scored on the new properties, we
knew how to implement elements from this template and what steps to avoid.
To illustrate, in assessing the relationships we start with those between the
hypothesis node(s) and evidence nodes, mirroring the template. On the other
hand, the template does not explicitly allude to the possibility of explaining
away or any type of intercausal interaction. Because we feel this is a powerful
characteristic of BNs, we incorporated it in our guidelines.

We proposed our comparison measures in Section 10. We argued that these
provide some assistance in the determining which BN is preferred in particular
situations, but not as much as we had hoped. It proved challenging to draft
a more concrete set of measures due to the difficulties in quantifying subjec-
tive intricacies of BN graphs. To give an example, separate nodes for example
generally improve the visual interpretability of a network structure, but demote
it if there are too many. We formulated the comparison measures on a more
abstract level and provided guidance in choosing the most suitable graph for
two specific motivations for modelling the BN graph.

3. How do the guidelines and comparison measures from research question
2 relate to actual manually constructed BN graphs from the forensic and
legal domains?

We evaluated the guidelines by examining whether BN graphs from the forensic
and legal domains displayed the directions from the guidelines. The BN graphs
are largely in line with what the guidelines prescribe, with the main exceptions
of the inclusion of a single node for the forensic hypotheses and little focus
on intercausal interactions. The measures were more difficult to evaluate, as
the literature provided few examples of multiple BN structures for the same
case. We argue that based on the overall level of detail of the BN graphs,
computational complexity is often not yet an issue for these domains and the
focus is on the representational value of the graph.

For future research, we suggest it would be valuable to apply the guidelines
and comparison measures to an actual case. When putting them to use, any
gaps or inconsistencies can be identified and adjusted. It could also lead to
fine-tuning of the steps: more concrete modelling techniques, such as (leaky)
noisy-OR and OOBN modelling, could be incorporated. Further proto-typical
examples explaining how to handle particular situations would also be useful.
Lastly, we suggest the performing a similar assessment of the guidelines for other
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data-poor domains as a case study, such as the one we did for the forensic and
legal domains. The guidelines could be adapted or extended to provide the best
instructions for BN graph design for these specific domains.
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Appendices

A Figures of BNs

This appendix includes several figures from the database of BNs from forensic
and legal domains (the complete list of articles included in the database can be
found in 4 in Appendix B). We limit the description of the BNs to only that
information about the BN to illustrate ideas and substantiate the claims we
make in this thesis. For a full description we refer the reader to the article from
which the BN originates.

Figure 22: BN for detected residual flammable liquid (taken from [2, p. 53]

The BN in Figure 22 is used to compute the probability of different causes of fire
incidents given the presence of flammable liquid in a trace. The nodes signify
the following (all are binary unless stated otherwise):

H: Cause of fire, with values {natural, technical, human action}

M: Sampling point lies within area of original fire

D: Presence of spilled gasoline at sampling point

B: Background presence of gasoline at sampling point

G: Presence of gasoline before start of fire

A: Presence of gasoline after fire

S: Presence of gasoline in sample at time of analysis

E: Gasoline detected
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Nodes ‘A’ and ‘S’, the authors state, can be left out to reduce the number of
nodes (hence parameters to estimate), but enhances the transparency of the BN
graph.

Figure 23: BN for detected terpenes, taken from [3, p. 60]

The BN in Figure 23 is similar to that in Figure 22, but models a more detailed
case: the probability of a particular cause of a fire can be computed given the
presence of terpenes in a sample taken from the wooden floor (matrix) identified
as area of fire origin. The nodes signify the following (all are binary unless stated
otherwise):

D: Spill of combustible liquid that contains terpenes

B: Background presence of terpenes at sampling point

L: Presence of terpenes that do not come from the matrix

X: The matrix contains terpenes

T: Presence of terpenes at sampling point

E: Detection of terpenes in fire debris sample

Explaining away can occur between nodes ‘L’ and ‘X’.
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Figure 24: BN for the transfer and persistence of non-self DNA, taken from [44,
p. 86]

The BN in Figure 24 models the breaking and entering into the home of two
victims ‘V’, involving suspects ‘F’ and ‘S’. The two victims are grouped together
under ‘V’.

The activity-level forensic hypotheses are:

Hp F was present in the house during the attack and held the didgeridoo.

Hd F was not present in the house during the attack and someone else held
the didgeridoo.
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Figure 25: The BN taken from [47, p. 141].

The case modelled in Figure 25 involves an alleged assault of ‘D’ on ‘C’. This
BN graph was constructed using the template by the same authors. The nodes
are coloured to show which type of node they are: black for hypothesis node,
blue for activity, yellow for transfer and persistence, red for findings, and grey
for root nodes.

The activity-level forensic hypotheses identified in this case are:

Hp D has bitten C on the vagina, over her underwear.

Hd C has been staying at D’s home, but no biting occurred.
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Figure 26: BN for the evaluation of fingermarks at activity level, taken from
[42, p. 12]

The BN in Figure 26 models a burglary case with fingermark evidence. Taylor
and colleagues’ method [47] was used in creating this BN.

The question in this case is what activity has led to the deposition of the
fingermarks. The forensic hypotheses (at activity level) are:

Hp ‘S’ climbed the balcony and did not lean on the railing.

Hd ‘S’ leaned on the railing and did not climb the balcony.

78



Figure 27: BN for the interpretation of single source biological traces on adhesive
tape (taken from [55, p. 3])

This activity-level BN can be used to compute the probability of a suspect
having taped an object given a human biological trace on a piece of adhesive
tape.

The forensic hypotheses are:

Hp The suspect taped the object.

Hd An unknown person taped the object.
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Figure 28: Simple paternity network, taken from [11, p. 580].

In the BN in Figure 28, there are nodes for each individual’s genotype and
paternal and maternal genes. For example, nodes ‘cpg’ and ‘cmg’ stand for the
child’s paternal and maternal gene, leading to the child’s genotype in ‘cgt’. The
arcs reflect a definitional relationship.

Figure 29: BN for evaluating the source of a biological trace (taken from [46,
p. 56]

The BN in Figure 29 can be used to compute the probability of a victim being
the donor of DNA recovered from a suspect’s clothing. Two tests are carried out
sequentially, a HemaStix and a HemaTrace test, and the arc from the former to
the latter reflects the temporal relationship.

The source-level forensic hypotheses identified in this case are:

Hp The victim is the source of the DNA.

Hd SE (someone else) unrelated to the victim is the source of the DNA.
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Figure 30: BN for saliva test results (taken from [57, p.328]

The BN in Figure 30 models the question of whether a forensic biology trace
contains saliva or any other possible cause for the test results that is not saliva.
The arc between nodes 7 and 8 was initially drawn during the manual construc-
tion, but subsequent checking gainst data revealed the influence of these nodes
on each other was not as significant as the BN engineers thought.

Figure 31: BN for evaluating gunshot residue (GSR) particle evidence, taken
from [4, p. 30]

Node ‘D: condition of the stub’ in Figure 31 leads to ‘A: number of GSR par-
ticles present on lifting device prior to sampling’ and in this way includes the
uncertainty due to a contaminated sampling device.
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Figure 32: First attempt at modelling an unknown number of contributors for
a mixture of DNA, taken from [34, p. 197]. Depending on the number of values
established for the ‘mix’ node, its CPT contains at least 124416 entries.

Figure 33: Second attempt at modelling an unknown number of contributors
for a mixture of DNA, taken from [34, p. 198]
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Figure 34: This BN models the murder case from the Simonshaven Woods, also
known as the Simonshaven case, taken from [18, p. 11]

.
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Figure 35: The dashed node represents the mediating AND-node capturing
opportunity and motive from the Simonshaven BN. This node is hidden “un-
derneath” dotted arcs in Figure 34. Taken from [18, p. 10]

Figure 36: The ‘constraint’ node to enforce mutual exclusivity between the two
hypothesis nodes in Fenton and colleagues Simonshaven BN from Figure 34,
with its CPT. The constraint node is always set to ‘True’. This node is, like the
mediating AND-node, hidden in the full BN. Taken from [18, p. 10]
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Figure 37: BN modelling the probability of a pathological or toxicological cause
of death (taken from [31, p. 7]
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Figure 38: Burglar case, taken from [51, p. 9]. The BN includes a constraint
node to ensure that mutually exclusive hypotheses cannot be true at the same
time.
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Figure 39: A BN for the evaluation of cross-transfer DNA evidence, taken from
[1, p. 184]
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B List of articles for the database of forensic
and legal BNs

Author(s) and year Forensic or legal Level in hierarchy Number of BNs

(if any) collected from article

Aitken, Taroni, & Garbolino (2003) Legal Offence 1

Biedermann et al. (2005) Forensic Unspecified 1

Biedermann et al. (2005) Forensic Unspecified 2

Biedermann, Bozza & Taroni (2009) Forensic Unspecified 6

Dawid et al. (2002) Forensic Unspecified 5

Dawid (2003) Forensic Unspecified 1

Dawid, Mortera, & Vicard (2007) Forensic Unspecified 4

Evett et al. (2001) Legal & Forensic Activity & Offence 2

Fenton, Neil & Lagnado (2012) Legal Offence 1

Fenton et al. (2019) Legal Offence 1

Haraksim et al. (2013) Forensic Source 2

Holický, Marková, & Sýkora (2013) Forensic Unspecified 1

Juchli, Biedermann & Taroni (2012) Legal Offence 1

Kokshoorn et al. (2017) Forensic Activity 4

Korb & Nicholson (2010) Forensic Unspecified 4

Kwan et al. (2008) Forensic Unspecified 1

Lagnado (2011) Legal Offence 1

Langford et al. (2015) Forensic Unspecified 1

McDermott & Aitken (2017) Legal Unspecified 1

Mortera et al. (2003) Forensic Unspecified 9

Oosterman et al. (2015) Forensic Source 1

De Ronde et al. (2019) Forensic Activity 3

Sironi et al. (2016) Forensic Unspecified 1

Smit et al. (2016) Forensic Source 1

Szkuta et al. (2018) Forensic Activity 3

Taylor et al. (2016) Forensic Source 3

Taylor et al. (2018) Forensic Activity 3

Vlek et al. (2013) Legal Unspecified 1

Wieten et al. (2015) Forensic Activity 1

De Wolff et al. (2015) Forensic Source 1

Zadora (2009) Forensic Source 1

De Zoete et al. (2016) Forensic Source 1

Table 4: List of articles from which forensic and legal BNs were collected to
create a database. The full references can be found in the bibliography below.
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Interview with forensic scientist

On June 19, 2020, we conducted a semi-structured interview with Bas Kok-
shoorn, a forensic DNA scientist at the Netherlands Forensic Institute (NFI).
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The reasons behind interviewing this particular scientist were because he can be
regarded both a BN engineer and domain expert, and because of his experience
with manual BN construction. The main purpose of the interview was to gain
insight from a BN engineer into the construction process of BNs at this depart-
ment, in particular with respect to the BN graph. More specifically, we wanted
to know what methods are used at this department at the NFI for BN (graph)
construction, what motivations lie behind modelling choices and what aspects
are considered in evaluating the graph. The interview took place online (via
Skype) in the presence of the daily supervisor and lasted a little over two hours.
Several days prior to the meeting, the interviewee was sent a brief summary of
the literature discussed in Part I.

In this section we provide an outline of the interview in the form of a list of
a summary of the main topics that were discussed:

• Background information The department of forensic biology/DNA traces
at the NFI make daily use of BNs. These are constructed for forensic cases
by order of the examining judge. In many cases BNs form the basis for the
forensic scientists in formulating the LRs, which are reported to the trier
of fact. For simple cases no BNs are built, and the LR is simply computed
from the formula (see [45]). The NFI provides an internal training on
BN construction to its employees, and additional external courses can be
taken at other forensic institutes.

• BN graph construction method: For construction of the graph, the foren-
sic scientists at the department for forensic DNA investigation recently
adopted the template by Taylor and colleagues (see Section 4). The steps
from the method are not always explicitly carried out, but the rationale
from the template is mainly followed: this method promotes the capacity
of the graph to explain every possible route of transfer of DNA that is
considered in the modelled case. Every activity is included in the BN,
even non-disputed ones. The use of the same method across institutes en-
sures a degree of uniformity within the field and advances communication
amongst BN engineers and domain experts.

In other departments BNs feature less strongly as a tool to assist the
forensic practitioner, but with the recent increasing interest in BNs efforts
are being made to develop a similar template. For other micro-traces
the template might closely resemble Taylor and colleagues’ template, but
the template might not be so easily translated to other areas of forensic
investigation. It does not provide any guidance on how to deal with other
types of forensic traces that might involve more complex dependencies.

The idioms by Neil and colleagues (Section 3.2.3) are not explicitly used.
Some parts of the BN graphs, such as the transfer of DNA for particu-
lar actions, always look the same. These could be viewed as ‘idioms’ or
network fragments, but these are not documented as such. These ‘idioms’
are reused across different networks, sometimes with adjustments to the
values (for example by switching from values representing absolute quan-
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tities of DNA to relative quantities, or simply to the presence or absence
of DNA).

Other techniques such as OOBNs are not used. Networks are generally
not incorporated in other networks: a network for the evaluation of fin-
germarks, for instance, is not combined with one for DNA. The lack of
data on the combination of variables from the networks prevents this, as
no reliable probability estimations can be given.

• Hierarchy of forensic hypotheses: The hierarchy of forensic hypotheses
(see Section 4.1) is used to evaluate the forensic biological evidence. In
the early days the forensic hypotheses were often formed at source or
sub-source level. With the advances in DNA technologies the source of a
DNA trace is seldomly challenged, and the question shifted from source
to activity.

For cases from departments other than human biology traces it can be
difficult to establish the level from the hierarchy for the forensic hypothe-
ses. These departments cannot benefit from the assistance the hierarchy
provides in formulating the forensic hypotheses. In pathology for example,
the main hypothesis mostly concerns the cause of death. A willing reader
can view this as a source-level question, but this can also be seen as a
matter of activities that resulted in death.

There is no difference in approach to BN construction for cases with foren-
sic hypotheses at different levels. The vast majority of cases involves
activity-level forensic hypotheses.

• Desirable properties, adapted from Timmer: In this part of the interview
we asked about the concepts from the properties from Timmer (Section
5)20 and whether the interviewee focused on these areas.

2 The explaining-away effect is not explicitly incorporated in the struc-
ture, or when determining the probability distributions (see [40]). For
the field of DNA explaining-away is not always desired due to the fact
that DNA can accumulate. To illustrate, one activity explaining the
presence of a DNA trace does not automatically mean that another
activity did not also happen. Other types of intercausal interactions
are not considered either.

3-4 The computational feasibility of BNs is not an issue at the moment,
as the structures are quite simplistic (even with the inclusion of ev-
ery possible route of potential DNA transfer, i.e. inclusion of more
nodes). Often additional nodes are included to provide insight into
the considered transfer-routes and to ease the process of estimating
probabilities, which means there are more parameters than strictly
necessary. Divorcing is not used often, but occasionally mediating
nodes (“summary nodes“) are included. Their function is rather to
provide a summary

20At the time of this interview, the new properties were not fully formed yet.
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5 The translation of ‘premises’ and ‘conclusions’ to the forensic do-
main is not straightforward. A conversion of premises to ‘effects’ and
conclusions to ‘causes’ is roughly what happens for the type of argu-
mentation schemes considered by Timmer. Complications arise when
considering ‘premises’ and ‘conclusions’ in this way for the pathol-
ogy department for example, where the observed evidence are usually
causes (of death). This property is not easily generalised.

6 Very occasionally BNs are used in case assessments to reason what
direction to take in the forensic investigation. In this phase possible
relevant scenarios are considered and BNs can be used to gain insight
in the role of the evidence in differentiating these scenarios. Every
once in a while a scenario, action, or piece of evidence is considered
that is not connected to the hypothesis node and hence does not
include an active chain between these nodes.

7 The direction of arcs as specified in property 7 (i.e. causally and
temporally) follows implicitly from the template. The interviewee
points out that this facilitates the parameter estimation. Ironically
the reasoning in legal cases is the other way around, i.e. diagnostic:
specific evidence is found, on the basis of which conclusions are drawn
on the possible causes of this evidence.

• Evaluation of the graph: There is no readily available ‘checklist’ to eval-
uate the graphical characteristics of the BN. When a BN is used in the
evaluation of evidence, the BN is always assessed by a second forensic
scientist.

Constructional checks are done to ensure that the BN exhibits the desired
behaviour. For two mutually exclusive nodes, the probabilities must be
coordinated such that if one is true, the other must be false. Any arcs
representing a conditional dependence which turns out to be non-existence
upon evaluation of the parameters are removed. Doubts on the represen-
tation of conditional dependencies and independencies or the grouping of
pieces of evidence are discussed with other colleagues within the depart-
ment.

Initial BN graphs might be more complex in terms of the number of nodes
and arcs than final versions. Sensitivity analyses help determining which
nodes do not have a significant influence, such as background nodes in
some cases.

• Motivation behind modelling choices: When starting out with the use of
BNs at the NFI, their function was more a convenient way to organise the
thoughts of the forensic scientist. Nowadays they are used to compute the
LRs. Thanks to the fact that the structure of BNs in this field is still rela-
tively simple, the computational complexity is not an issue yet. With the
increase in data on the probabilities of DNA transfer in particular situa-
tions, keeping the computational feasibility in check might be of relevance
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in the future. The focus at the moment is ensuring the transparency of the
graph with respect to communicating all possible manners of deposition
of DNA. In other words, the emphasis is on the representational value of
the graph.

No significant efforts are made to ensure mutual exclusivity between two
mutually exclusive nodes (such as the ones described in the paragraph on
property P1 in Section 7).
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Author(s)

Year Group (if 

applicable)

Topic Specific BN 

(page nr)

Number of 

nodes

Number of 

arcs

Max(inc 

arcs)

Multiply 

connected

?

Nr h-t-h 

nodes

h-t-h/node 

ratio

Level in Hierarchy (Cook) States Reusable?

Aitken et al
2003 Lausanne cross-transfer evidence 184 14 16 3 yes 4 29% Offence: `S committed crime (or 

didn't)', note: mentioned that 

cross-transfer = activity

binary yes; for cases with a single perp, a single suspect, a 

single victim and a single stain

Biedermann

2005a Lausanne Fire incidents pt I 53 8 7 2 No 2 25% Unclear, cause of fire {natural, 

technical, human action} = 

proposition of interest. 

Unspecified

binary, except H (ternary) Yes, this BN is kind of a basic network for fire 

incidents and can be adjusted to specific cases (see 

Biedermann 2005b)

Biedermann
2005b Lausanne Fire incidents pt II 60-terpenes 8 7 2 no 3 38% Unspecified binary, except H (ternary) case-specific

Biedermann 2005b Lausanne Fire incidents pt II 65-HPD 6 5 2 No 2 33% Unspecified non-binary, except M case-specific

Biedermann

2009a Lausanne GSR simple 26 4 3 3 No 1 25% Unspecified binary, T and Y non-binary Yes, basic structure that can be extended on

Biedermann
2009a Lausanne GSR alternative 27 3 2 2 No 1 33% Unspecified H binary, lambda and Y non-

binary

Yes, basic structure that can be extended on, 

lambda can be defined according to needs of user

Biedermann
2009a Lausanne GSR + background 28 7 6 3 No 2 29% Unspecified all but T and S non-binary! Yes, but is already an extension of previous

Biedermann
2009a Lausanne GSR + background + 

observed count

30 11 10 3 no 4 36% Unspecified all but T and S non-binary! Yes, but is already an extension of previous

Biedermann
2009a Lausanne GSR + background + 

obs count + 

contamination

30 14 13 3 No 5 36% Unspecified all but T, D and S non-

binary

Yes, but is already an extension of previous

Biedermann
2009a Lausanne GSR + background + 

obs count + conta + 

case preassessm

31 15 14 3 No 5 33% Unspecified all but T, D and S non-

binary

Yes, but is already an extension of previous

Dawid

2002 QMUL Forensic identification 

from DNA

280-simple 12 14 2 yes 7 58% Unspecified binary, ternary yes

Dawid
2002 QMUL Forensic identification 

from DNA

284-missing 18 22 2 yes 11 61% Unspecified binary, ternary case-specific

Dawid
2002 QMUL Forensic identification 

from DNA

285-missing 27 36 2 yes 18 67% Unspecified binary, ternary case-specific

Dawid
2002 QMUL Forensic identification 

from DNA

286- mutation 

simple

14 16 2 yes 7 50% Unspecified binary, ternary yes

Dawid
2002 QMUL Forensic identification 

from DNA

290-murder 43 56 2 yes 22 51% Unspecified binary, ternary case-specific

De Ronde

2019 NFI Fingermarks (activity 

lvl)

12-disp 

activity

12 14 2 yes 3 25% Activity uncertain case-specific

De Ronde
2019 NFI Fingermarks (activity 

lvl)

19-disp actor 17 27 4 yes 5 29% Activity uncertain case-specific

De Ronde
2019 NFI Fingermarks (activity 

lvl)

25->1 prints 34 66 5 yes 14 41% Activity uncertain case-specific

de Wolff

2015 NFI saliva 328 25 26 8 yes 4 16% explicit activity, but maybe more 

source: what is the prob of 

human saliva being present 

(determine cell type, not whos or 

how)

binary, non-binary yes

de Zoete 
2016 NFI cell type determination 2 (adapted 

from 

Oosterman)

15 17 4 yes 2 13% source binary, non-binary yes

Evett
2002 - DNA 523-burglary 

cigarette

5 4 4 No 1 20% Activity binary, except outcome (4) case-specific

Evett 2002 - DNA 527-watch 12 13 3 yes 3 25% Offence binary, 4 case-specific

Fenton 2012 QMUL Legal 94 21 24 3 yes 8 38% Offence mostly binary case-specific



Fenton

2019 QMUL Simonshaven case 11 32 37 3 yes 10 31% Offence mostly binary, except 

number of people in wood

highly case-specific

Haraksim
2013 NFI Fingermarks (source) 103-finger lvl 4 3 2 No 1 25% Source non-binary yes

Haraksim
2013 NFI Fingermarks (source) 106-person lvl 6 7 4 yes 1 17% Source non-binary Yes

Holický
2013 - Bridge collapse 5 19 18 6 no 5 26% Unspecified binary case-specific

Juchli
2012 Lausanne finger & footwear mark 71 9 9 3 yes 3 33% Offence Mostly binary case-specific

Kokshoorn
2017 NFI Activity level DNA 

evidence evaluation

11 5 6 4 yes 1 20% activity binary, except DNA result 

(4)

yes! Illustration of BN structures for specific sets 

of activity level propositions

Kokshoorn
2017 NFI Activity level DNA 

evidence evaluation

13 5 5 4 yes 1 20% activity binary, except DNA result 

(4)

^^

Kokshoorn
2019 NFI Activity level DNA 

evidence evaluation

15 5 4 4 No 0 0% activity binary, except DNA result 

(4)

^^

Kokshoorn
2019 NFI Activity level DNA 

evidence evaluation

16 5 5 4 yes 1 20% activity binary, except DNA result 

(4)

^^

Korb
2010 Australia Missing car 349-1 5 4 2 No 1 20% activity? binary case-specific

Korb 2010 Australia Missing car 349-2 5 5 2 yes 1 20% activity? binary case-specific

Korb 2010 Australia Missing car 349-3 4 3 1 No 0 0% activity? binary, ternary case-specific

Korb 2010 Australia Missing car 349-4 utility 6 5 2 No 1 17% activity? binary, ternary case-specific

Kwan 2008 - BitTorrent 285 24 28 3 yes 3 13% Activity (could be offence) ternary (y,n,uncertain) case-specific

Kwan 2009 - Yahoo! 249 (part) 5 4 1 no 0 0% Activity ternary (y,n,uncertain) case-specific

Kwan, Overill 2011 - Yahoo! 237 (full) 21 20 1 no 0 0% Activity ternary (y,n,uncertain) case-specific

Lagnado 2011 QMUL Legal case (Vole) 93 15 17 3 yes 5 33% Offence binary case-specific

Langford 2015 - Fatality (drugs) 7 10 9 8! No 1 10% Unspecified binary case-specific

McDermott 2017 - criminal trials 14 7 11 2 yes 5 71% Unspecified binary

Mortera
2003 QMUL, mix DNA mixture 194-simple 16 20 2 yes 10 63% Sub-source binary, ternary yes

Mortera
2003 QMUL, mix DNA mixture 197-more 

contributors

24 30 3 yes 14 58% Sub-source binary, ternary case-specific

Mortera
2003 QMUL, mix DNA mixture 197-unknown 

n contribs (1)

18 21 7 yes 7 39% Sub-source binary, ternary Yes

Mortera
2003 QMUL, mix DNA mixture 198-unknown 

n contribs (2)

46 72 3 yes 35 76% Sub-source binary, ternary Yes

Mortera
2003 QMUL, mix DNA mixture 199-part 7 8 2 yes 4 57% Sub-source binary, ternary Yes

Mortera
2003 QMUL, mix DNA mixture 202-mixture + 

missing

22 28 2 yes 14 64% Sub-source binary, ternary case-specific

Mortera
2003 QMUL, mix DNA mixture 203-OJ simps. 

+ silent

57 94 3 yes 46 81% Sub-source binary, ternary case-specific

Mortera

2003 QMUL, mix DNA mixture 204-mixture + 

missing+silent

25 31 2 yes 13 52% Sub-source binary, ternary case-specific

Oosterman

2015 NFI biological trace e591 9 9 2 yes 2 22% Source uncertain Yes, possibly extendable to more than 2 

contributors, useable on its own as well as in 

another BN

Sironi 2015 Lausanne Age estimation 479 3 2 1 No 0 0% Unspecified binanry, non-binary Yes

Smit
2016 QMUL New evidence appeal 

case

6 7 8 2 yes 2 29% source binary case-specific

Szkuta
2018 NFI, mix secondary transfer of 

DNA

86 13 19 4 yes 6 46% Activity mostly binary case-specific

Szkuta
2018 NFI, mix secondary transfer of 

DNA + potential events

90 15 21 4 yes 6 40% Activity mostly binary case-specific

Szkuta
2018 NFI, mix secondary transfer of 

DNA + potential events 

+ absence DNA

91 15 22 4 yes 7 47% Activity mostly binary case-specific



Taylor

2016 Lausanne presence of blood 56 6 7 2 yes 2 33% Source mostly binary, nature of 

stain {5, can be extended}

yes

Taylor
2016 Lausanne include source of blood 

(single source)

60 8 9 2 yes 2 25% Source ^^ yes

Taylor
2016 Lausanne include mixture + lab 

error possibility

63 23 29 2 yes 9 39% Source ^^ yes

Taylor

2018 Lausanne DNA 141 12 13 3 yes 3 25% Activity mostly binary case-specific

Taylor
2018 Lausanne DNA: Alt Offender 144 20 24 4 yes 6 30% Activity mostly binary case-specific

Vicard 2008 Mix Mutation rates 13 8 9 3 yes 3 38% Sub-source binary, non-binary Yes

Vlek 2013 UU Burglary window 9 40 65 6 yes 25 63% Activity mostly binary case-specific

Wieten
2015 NFI biological traces on 

adhesive tapes

3 21 20 4 No 5 24% Activity binary, non-binary yes

Wieten thesis
2014 NFI biological traces on 

adhesive tapes

91 24 23 4 No 5 21% Activity binary, non-binary yes

Wieten thesis
2014 NFI biological traces on 

adhesive tapes: 2 single 

source traces

71 33 38 4 yes 11 33% Activity binary, non-binary yes

Zadora 2009 - Glass fragments 281 4 3 1 No 0 0% binary, non-binary yes

Zadora 2009 - Glass fragments 284 10 12 3 yes 3 30% binary, non-binary yes



Author(s)

Year

Aitken et al
2003

Biedermann

2005a

Biedermann
2005b

Biedermann 2005b

Biedermann

2009a

Biedermann
2009a

Biedermann
2009a

Biedermann
2009a

Biedermann
2009a

Biedermann
2009a

Dawid

2002

Dawid
2002

Dawid
2002

Dawid
2002

Dawid
2002

De Ronde

2019

De Ronde
2019

De Ronde
2019

de Wolff

2015

de Zoete 
2016

Evett
2002

Evett 2002

Fenton 2012

motivation Other remarks

-

-

examine applicability of BNs to formal evidence analysis

examine applicability of BNs to formal evidence analysis

BN can handle events which would count as difficulties that complicate other computational 

procedures such as likelihood ratio formula: if one wished to incorporate other important factors 

such as suspect’s activities during interval, this can be handled in graphical approach (esp. BN) where 

specifying variables and controlling additional variables is supported. 

^^ * Addition of network fragments to original model! Background presence

* Size of P's CPT = large, 34221 entries! Filled with help of software

transfer+persistence = now 1 node

Node R is continuous but discretised

* Node A may be defined as a root node with probabilities of there being a = 0, 1, … GSR particles, 

or alternatively as standard probab distribution (e.g. Poisson)

* fragment D --> A is analogous to C --> B
``no claim of general applicability of any of models, mere purpose was emphasising flexibility and 

capacity of method’’. 

method can handle specific complications of forensic identification (on the basis of DNA), such as 

missing data on one or more individuals (samples from individuals of interest are not readily 

available and only indirectly relevant information is present), and genetic mutation (aka can handle 

uncertainty). 

query node can be left out but preferred to be explicitly modelled due to simpler interpretation and 

direct access to the probability of interest

aimed to reduce the computational burden by structuring the network at the most disaggregated lvl 

possible

BNs in paper could function as basic networks for evaluation of fingermarks, extending/modifying to 

specific cases is possible, or function as building blocks. Makes process of evaluation of findings 

explicit, using network as tool for discussion of variables and dependencies

Explore possibilities * arc introduced 7 --> 8: a positive result for 7 might predict a positive result for 8, but could also 

waste the sample: either way a dependency

* later veriefied by data: suggests the dependency between 7 and 8 is not as strong as anticipated; 

arc may be obsolete (could be removed and then node 9 removed as well) --> however 7 + 8 remain 

to have an active chain, so no direct dependency but possibly not independent!)

present BN that can assist in associating donors and cell types (e.g. skin cells, semen, saliva)

Activity > X / SE is the person who smoked the cigarette 

Sub-source > DNA recoverd from cigarette end came from suspect / unknown



Fenton

2019

Haraksim
2013

Haraksim
2013

Holický
2013

Juchli
2012

Kokshoorn
2017

Kokshoorn
2017

Kokshoorn
2019

Kokshoorn
2019

Korb
2010

Korb 2010

Korb 2010

Korb 2010

Kwan 2008

Kwan 2009

Kwan, Overill 2011

Lagnado 2011

Langford 2015

McDermott 2017

Mortera
2003

Mortera
2003

Mortera
2003

Mortera
2003

Mortera
2003

Mortera
2003

Mortera
2003

Mortera

2003

Oosterman

2015

Sironi 2015

Smit
2016

Szkuta
2018

Szkuta
2018

Szkuta
2018

This approach is one in a series of analyses of the Simonshaven case; BN approach chosen to 

determine whether it was possible to construct one 'quickly' with a small group of people. 

used building blocks (Fenton)

opportunity, motive and intent != modelled explicitly, only relevant propositions are modelled

Built with the idiom-based approach, idioms used: 

-	evidence accuracy 

-	cause-consequence 

-	opportunity & motive

* Question regarding arc police credibility --> effective police handling, shouldn't it be police 

credibility --> police found man in bushes? In other 'testimonies' credibility node is linked directly

* veracity, objectivity and competence are combined for simplicity into credibility

take into account descriptions of expert judgments, illustrate variables and relationships, break 

down complex task into smaller sub-tasks for individual analysis, assess relative significance of 

individual causes

insufficiencies well documented by photographs, eyewitnesses, inspections, etc. --> this evidence 

not modelled (maybe not useful)

illustration run into problem: P(cm|cs, sb): cs and sb = mutually exclusive events! 2 solutions: 2. And 3.

illustration

illustration

illustration, decision node

1 BN including 6 sub-hypotheses

used BN to quantify evidentiary strengths of hypotheses and to reason about evidence

used BN to quantify evidentiary strengths of hypotheses and to reason about evidence

assist interpretation of post-mortem drug concentrations

max 2 unknown contributors (states total_# = {0, 1, 2}

+ graphical representation = simple, intuitive

- computationally inefficient!!!

reformulation of subgraph of previous: allow use of simple arithmetic expressions to avoid tedious 

construction of states and CPTs for nodes

BN can assist  forensic practitioner in forming an opinion on cellular material (what) that sample is 

composed of and on attribution of donor (who) to cell type. Also: probabilistic approach can help 

improve quality of report (currently (dit was 2015..) no weight of evidence is given in report) and 

transparency of reasoning (association donor-cell type = complex, can lead to fallacies when 

reasoning)

how forensic evidence should be presented in court



Taylor

2016

Taylor
2016

Taylor
2016

Taylor

2018

Taylor
2018

Vicard 2008

Vlek 2013

Wieten
2015

Wieten thesis
2014

Wieten thesis
2014

Zadora 2009

Zadora 2009

* node `blood present' is not necessary to include, but serves as a summary (criterion 5)

also positive. Could have been drawn other way around, but now temporal (mirrors testing in 

laboratory). 
* 2 additional nodes are added to include sub-source info; Hp/Hd node has sub-source 

intermediate association propositions
* sub-sub-source propositions included (POI = source of major component of mixed DNA profile, 

etc.)
Paper aims to provide a method for constructing a BN on activity level propositions in biological trace 

cases

* Different choices in main proposition node formulation (disputed activity or disputed actor) will 

result in different BNs (vgl. Kokshoorn)

* include undisputed activities (i.e. true in both Hp and Hd)

 - results in more dense BN

 + added complexity = necessary to properly account for non-disputed activities that may impact 

For the previous BN ^ there was no need to consider background DNA on underwear as its 

pre/absence had no influence on P(E|H). Must now be included! 
BN handles cases with incomplete information well

BN to aid forensic practioners in interpretation of factors contributing to traces on adhesive tape

BN to aid forensic practioners in interpretation of factors contributing to traces on adhesive tape


