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Abstract

In search of the most accurate and stable predictors, machine-learning algo-
rithms have been introduced that are so difficult to interpret that we metaphori-
cally call them ‘black boxes’. Their lack of interpretability hinders their applica-
bility in relevant domains, where it is often desired or even required to explain
decisions. Recent work proposes case-based argumentation as a tool for justify-
ing the predictions of black-box models. Case-based argumentation is a form of
reasoning that draws analogies between new and previous cases. It fits naturally
with machine learning, as input data can directly be used as cases. In this study,
we bring the proposed justification system into practice. Based on the evaluation,
we suggest a new argumentation framework. Besides justification, we examine
the possibilities for replacing or monitoring black-box prediction models using
case-based argumentation systems. The results of a user experiment hint at the
suitability of a monitor approach.
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1. Introduction

In recent years, machine learning has become one of the main promises of Arti-
ficial Intelligence. Although the field is by no means new, greater availability of
data and improved computing power allowed for impressive recent results.

Machine learning works fundamentally different than rule-based systems. In-
stead of prescribing rules on how to act, programmers prescribe machine learn-
ing algorithms rules on how to learn, and provide them with learning experi-
ences. Although we are technically still in control - we decide on how and from
what the system learns - the resulting systems can learn such complex relations
that we lose track of their inner workings. Algorithms such as Deep Neural Net-
works and Support Vector Machines have reached a level of complexity that
makes them so difficult to interpret that we metaphorically call them ‘black
boxes’.

At the same time, machine learning applications are waiting to be applied in rele-
vant domains such as healthcare and criminal justice, where they can make high-
stake decisions in increasingly autonomous roles. In many of these domains,
it can be desired or even required to explain the output of an algorithm. As a
result, research towards the automated generation of explanations of machine-
learning algorithms has recently attracted a lot of interest (Adadi and Berrada
2018; Guidotti et al. 2019; Robeer 2018).

1.1 Approach

In this research, we will investigate to which extent machine-learning models
can be ‘unboxed’ using case-based argumentation. Case-based argumentation is
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a form of reasoning that draws analogies between new and previous cases. This
is a form of reasoning humans can easily relate to (Cunningham, Doyle, and
Loughrey 2003; Gentner, Loewenstein, and Thompson 2003). Moreover, it fits
naturally with machine learning, as input data can directly be used as cases.

As our starting point, we will implement and evaluate the proposal of Prakken
(2020) to use case-based argumentation for explaining the predictions of black-
box models. Based on this analysis, we will try to come up with suggestions
for improvement. These suggestions will be implemented and tested using both
computer- and user experimentation.

The research will be carried out within the Artificial Intelligence group at the
Analytics and Cognitive (A&C) service of Deloitte in Amsterdam. At A&C, they
help customers with modernizing their data and analytics environments and ap-
plying artificial intelligence. As complex machine-learning models have become
one of their main tools to work with, they experience the growing demand for
interpretability up close.

1.2 Structure

Before diving into the method investigated in this research, we will cover a brief
overview of the field of explainable machine learning in Chapter 2, followed by
a description of case-based reasoning in Chapter 3. In Chapter 4, we will zoom-
in to the field of case-based argumentation and discuss existing work related
to machine learning. At the end of this chapter, we will formulate our research
questions.

The second part of the thesis starts with the evaluation of the proposal of Prakken
(2020) in Chapter 5. In Chapter 6, a new argumentation framework is proposed.
In addition, three directions for applying case-based argumentation are sug-
gested: justifying, classifying and monitoring black boxes. Chapter 7 further
investigates the classification possibilities. The justification- and monitor ap-
proach are tested with a user experiment, which is the topic of Chapter 8. We
conclude with answering the research questions and making suggestions for
future work in Chapter 9.
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2. Explainable machine learning

2.1 What is machine learning?

Machine learning is a set of methods used by computers to make and improve
predictions or behaviours based on data (Molnar 2019). It works fundamentally
different than rule-based methods, in which all the instructions are given explic-
itly to the computer. In his book The Discipline of Machine Learning Mitchell
(2006) provides a short formalism of what it means for a machine to learn:

"A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its perfor-
mance at tasks in T, as measured by P, improves with experience
E."

The flexibility of machine learning allows us to use the defined experience and
performance measure to train all kinds of algorithms on the task and stick with
the one that performs best.

In this work, we will focus on supervised models. These models have the task
to learn some function f : X -> Y , which maps input (X) to labels (Y ). The expe-
rience of the model is supervised, meaning that the data the model learns from
- the training data - consists of labelled examples {x,y} in which x is the input
and y the realized outcome. More specifically, we will focus on binary prediction
models. These models have only two possible prediction outcomes and are also
called classifiers.

As our running example, we will consider a Churn prediction model for a Telecom-
munication company. The task of this model is to predict whether customers of
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the company intend to continue their membership, or churn: cancel it. These
predictions can help the service provider adapt its strategy to prevent customers
from leaving. We will specify the Churn model in terms of the definition of
Mitchell:

Task: The task of the model is to learn a function f : customeri -> decisioni,
which can, given some customer, make a binary prediction about its decisions to
stay or churn.

Experience: The experience of the model consists of pairs of data {xi, yi}, in-
cluding information about a previous customer (xi), and the decision - stay or
churn - that customer made (yi).

Performance measure: The performance of the model is measured by testing
the model on new customers - the test data - and calculating the prediction ac-
curacy: the number of correct predictions divided by the total number of predic-
tions.

2.2 Why is there a need to explain?

A downside to machine-learning methods is that the insights gained about the
data and the task they solve are usually hidden in complex models. Understand-
ing how a model came to a decision is often an impossible task, even for the
developers of the model. Models that are this opaque or that are proprietary
are metaphorically called ‘black boxes’. However, if we know that a machine-
learning model performs well, can we not just ignore the ‘why-question’?

There are algorithms for which we can. Suppose we have a model that recog-
nizes handwriting on postcards with about perfect accuracy. The only informa-
tion we need from the model is the postcode itself. Given the relatively small
consequences of a mistake, we can trust it for this task based on its accuracy.
Like in the example, explanations can be unnecessary when either the conse-
quences of wrong results are insignificant or when we trust the decision process
and do not need to know more than the outcome (Molnar 2019).

For other problems or tasks, the prediction alone may not be sufficient to apply a
model or make optimal use of it. As Doshi-Velez and Kim (2017) describe, the
need for interpretability arises from incompleteness in the problem formalization.
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By that, they mean that to solve the problem, it is not sufficient to just obtain the
prediction, the system must also be able to provide information about the context
of the prediction.

Consider the classifier for the Churn prediction task. When this model is pre-
sented with a new customer, it would output either ‘churn’ or ‘stay’. This answer,
although relevant, is unsatisfactory. It demands full trust in the workings of the
model, as it offers no insight into the grounds on which the decision is based.
Moreover, it does not provide any starting points for improving the situation in
case the model predicts the customer to churn. The prediction alone is an incom-
plete solution to the problem. Below five important motivators that drive the
demand for interpretability will be discussed.

2.2.1 Building trust

An essential ingredient for the adaption of artificial intelligence by companies,
individuals and society as a whole is trust. As long as users do not find the expla-
nations of an AI system acceptable, they will either not use the system or refuse
to comply with the decisions made (Guidotti et al. 2019).

People tend to attribute human traits to objects (Heider and Simmel 1944; Mol-
nar 2019). Just like humans can receive our acceptance when we come to under-
stand their reasoning or intentions, a machine-learning application will find more
acceptance when it can explain itself.

2.2.2 Managing social interactions

Somewhat related to the goal of building trust, explanations can be used to man-
age social interactions. Both the impression of the explainee - the receiver of an
explanation - of the performed behaviour and any future actions the explainer
and explainee might perform together, could be managed through creating
shared meanings of certain concepts (Malle 2006). Establishing shared mean-
ings can be essential to enable a machine to interact with us or to achieve their
intended goal (Molnar 2019).
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2.2.3 Learning from the model

A model can contain valuable information that is not transferable through its
outputs (Z. C. Lipton 2018). Explanations could help to transfer such knowl-
edge from the model to humans. For example, when a black-box model is used
in research, potential new scientific findings would remain hidden when all the
information we receive from the model is a prediction. Using explanations, we
could increase our scientific understanding and potentially detect causal relation-
ships (Robeer 2018).

A related motivator for interpretable systems is the desire of humans to ‘find
meaning in the world’. We want to harmonize any contradictions or inconsis-
tencies between elements of our knowledge structure that might appear when a
machine-learning algorithm comes up with an unexpected prediction (Molnar
2019).

2.2.4 Debugging and safety measures

A machine-learning model is optimized to a specific objective, while there may
be other criteria the model has to adhere to, such as objectivity. Molnar (2019)
describes an example of a model trained for automatic approval or rejection of
credit applications. Not to discriminate in this decision based on specific demo-
graphics is a constraint that may be part of the problem formalization. However,
the loss function for which the machine-learning model was optimized does not
cover it. Any biases that exist in the training data will be picked up by the model.
Increased interpretability is crucial to detect those biases.

Explanations can also help provide insight into the risk profile of a model (Mol-
nar 2019). Information about which features are most important for a given
prediction can help detect cases in which the machine-learning model might fail.
More directly, an explanation of a wrong prediction can help us understand what
caused the error.

2.2.5 Ethics & regulation

Machine-learning algorithms are increasingly being used in applications where
their decisions can have a severe impact on human lives. Whether someone is
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allowed to receive a credit card or buy a house may be decided based on a black-
box system, answering ‘yes’ or ‘no’.

The concept of influencing human lives with opaque decision systems has re-
ceived much criticism. The lack of transparency raises ethical concerns regard-
ing the grounds on which the system bases its decisions. In many data sets, corre-
lations which we do not wish to be used by the prediction model exist (Edwards
and Veale 2017). For example, correlations related to ‘protected characteristics’,
such as race or gender, are often unwanted and may not be allowed to be used in
a decision-making process directly (Edwards and Veale 2017).

The General Data Protection Regulation (GDPR) includes clauses in order to
protect people against the consequences of unfair automated decision-making.
It allocates citizens, to some extent, the right to an explanation of the logic in-
volved in an automated decision that impacts them (Guidotti et al. 2019). While
this directive is not exceptionless, the law may reflect the future direction of
legislation in this area (Rathi 2019).

2.3 Structure and key terminology

Different methods for generating explanations to machine-learning models exist.
Figure 2.1 shows a structure in which we can classify these different methods.
The alternative to explaining a black-box model is to replace the model by one
that is interpretable by nature - a white box. An example of such a model is a
linear regression model, which prediction is a weighted sum of the feature inputs
(Molnar 2019).

The other option is to continue using a black-box model and try to explain it.
This approach can also be divided into two directions. Model-specific expla-
nation models are built for a specific model class and usually assume to have
access to the inner working of the AI model. Model-agnostic explanation models
generate an explanation without such access and can, therefore, be applied to
different kinds of models. These methods have, by definition, no information
about the decision process inside the model and usually base their explanations
on analyzing input-output pairs (Molnar 2019).

The main aim of all of the methods is to increase the interpretability of the
model. Interpretability can be defined as the degree to which a human can under-
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Figure 2.1: Overview of the methods to create interpretable Machine Learning

stand the reasons behind a decision (Miller 2019). The research field concerned
with making machine-learning systems interpretable is sometimes called Ex-
plainable AI. An explanation can be used to pursue interpretability. Miller (2019)
defines an explanation as the answer to a why-question.

An answer to the question of why a model in general works the way it does
can be provided by a global explanation. Global explanations are generated to
provide insight into the workings of a model as a whole. Local explanations, on
the other hand, are used to explain a particular decision of the algorithm. They
form an answer to the type of question ‘Why did the model predict x in case y?’.

In this work, we will adopt a broad definition of explanation. We will consider
any form of supplement to the prediction of a black box that can prove insightful
to a user an explanation.



CHAPTER 2. EXPLAINABLE MACHINE LEARNING 9

2.4 Design choices

As explained above, multiple approaches to pursuing interpretable AI are pos-
sible and have been tried. This section will elaborate on the choice between the
different approaches.

2.4.1 Replacing or explaining

A fair question before starting to explain black boxes is whether those opaque
models are necessary in the first place. Whereas some researchers seem to as-
sume an insurmountable loss in accuracy when replacing a complex model with
one that is interpretable, others argue this to be a misconception. One of the pro-
tagonists of interpretable models is Rudin (2019). She argues that for problems
that have structured data with meaningful features, there is often no significant
difference between the performance of black-box classifiers and much simpler
models. Besides, according to Rudin, there are some good reasons to refrain
from explaining AI.

To begin with, "explanations must be wrong" (Rudin 2019). Would the explana-
tion be completely faithful to the computations of the original model, then the
explanation model would be an interpretable model with which we can replace
the original. This insurmountable fallibility can make it hard to trust an expla-
nation, as there could be something wrong with the prediction, the explanation
or both. Besides, currently used explanations of black boxes often do not make
sense or lack the amount of information needed to understand the model truly.
Furthermore, black-box models with explanations can have such complicated
decision pathways that they are ripe for human error.

Using a model-agnostic approach may be forced in situations in which there is
no access to the model, for example, when the model is proprietary. There can
also be other motivations to refrain from opening the black box itself. Ribeiro,
Singh, and Guestrin (2016) make a case for model-agnostic interpretability,
as opposed to using interpretable models. Separating interpretability from the
model creates the freedom to make the model as flexible as necessary for the
tasks, enabling the use of sophisticated machine-learning approaches. Another
advantage of a model-agnostic approach is that one can easily switch between
models, which is not an uncommon operation in machine-learning pipelines
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(Ribeiro, Singh, and Guestrin 2016). Furthermore, a model-agnostic approach
enables the same techniques and representations to be used to explain different
models; using the same explanation system makes it easy to compare them.

Interesting recent research investigated the trade-off between predictive accu-
racy and interpretability using Automated Machine Learning (Freitas 2019).
Automated-Machine-Learning methods try to find the best fitting classification
algorithm and the best configuration for a given data set (Yao et al. 2018). As
Freitas (2019) describes, there is currently a strong focus on predictive accuracy
in this area, which is often used as the only criterion to evaluate a classification
model. He chose a different approach and compared black, grey (partly inter-
pretable) and white boxes. With a 20-hour runtime limit, a white box model
appeared to be most accurate for 7 of the 16 data sets. Furthermore, if we would
accept a loss of 1% accuracy to use a white box, the white box would be a good
fit for 10 of the 16 data sets. This finding supports the view that investigating the
possibility to create an interpretable model, ideally by including such options
in Automated-Machine-Learning methods, is worth trying and may for some
applications even become a mandatory step to take.

Whether, in which cases, and to which extent a trade-off exists between accuracy
and interpretability needs to be further investigated. The main criticism of Rudin
seems to concern the practice of developers to simply assume that interpretabil-
ity means a loss of accuracy. As supported by the research of Freitas (2019), this
seems a premature assumption to make. On the other hand, black-box models
offer advantages in flexibility and reach on specific tasks performances of which
it is unclear whether an interpretable model will ever reach them. Therefore, it
does not seem desirable to ban such methods, neither to stop finding solutions to
create more insight into black-box models. This work will consider the suitabil-
ity of CBA for both approaches. We will investigate the possibility of explaining
black-box models, but also consider the potential of CBA to function as an inde-
pendent white-box classifier.

2.4.2 Model-specific or model-agnostic

To keep the advantages of flexibility that come with a black-box, an explanation
model should be model-agnostic. As model-agnostic methods do not look at the
inner workings of a model, they are highly portable, meaning they can be applied
to all kinds of AI models (Molnar 2019). The ignorance of the inner workings
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also has the advantageous property that generating the explanation becomes
independent of the complexity of the underlying system. Moreover, possibly
sensitive information about the inner workings of a model does not need to be
revealed.

A model-agnostic approach has zero-translucency, meaning that it does not rely
at all on looking into the machine-learning model (Molnar 2019). It is, therefore,
by definition, impossible to know the actual decision process of the model it tries
to explain. Concretely, we will only assume to have access to:

1. The data the model is trained upon
2. The predictions of the model given input data

Further research must reveal whether that is enough information to provide high-
quality explanations, and this work will try to contribute to that process.

2.4.3 Local or global

This research will focus on generating local explanations. A practical reason for
this decision is that a global explanation of the workings of a black-box model
can be too complicated, whereas ‘zooming in’ on the level of individual pre-
dictions can make the explanation task feasible (Ribeiro, Singh, and Guestrin
2018).

Furthermore, considering the motivational purposes for explaining AI, local
explanations seem the most relevant. Research has shown that trust in AI ap-
plications is lost when users cannot understand traces of observed behaviour or
decisions (Miller 2019). In such cases, a general description of the behaviour of
the model does not seem suitable to either restore this trust or detect a mistake,
whereas a local explanation would be helpful. Another example is the research
of Wachter, Mittelstadt, and Russell (2017), which concluded that local, counter-
factual explanations aptly suit the ‘right to explanation’ of the GDPR.

2.5 A good explanation

An essential question for our purposes is ‘What constitutes a good explanation?’.
Fortunately, this is not a new question; researchers in the fields of philosophy,
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psychology and cognitive science have worked on the topic of explanation in the
last decades. Miller (2019) provided an extensive review of papers from those
fields to help the field of Explainable AI build on this existing research.

Explanations are meant for users; human beings with finite mental capacity and,
most likely, limited time. Therefore, adjusting the explanation to human capa-
bilities and preferences is desirable. Miller (2019) distinguishes four significant
findings of the way humans explain that he argues should be taken into account
in Explainable-AI models:

2.5.1 Explanations are contrastive

People do not explain the reasons for an event on their own; they explain them
relative to some other event that did not occur (Miller 2019). In other words,
when someone asks the question ‘Why P?’, what is usually meant by that person
is ‘Why P rather than Q?’. P. Lipton (1990) refers to P as the fact. Q represents
a counterfactual contrast case that did not occur and is called the foil (P. Lipton
1990).

When one asks ‘why will this customer leave our company?’, the person is prob-
ably not interested in the complete causal chain that caused the customer to
churn. Instead, the question he or she is presumably interested in is ‘why will
this customer leave our company instead of stay?’, or ‘why will this customer
leave our company rather than that (similar) customer?’. An answer that distin-
guishes between cases is called a contrastive explanation. A counterfactual is
the change in the input data necessary for the decision to change from fact to foil
(Robeer 2018).

The finding that a human-friendly explanation should be contrastive forms both
a challenge and an opportunity for the field of Explainable AI (Miller 2019). A
challenge lies in the fact that the foil is usually unknown and needs to be deter-
mined. On the positive side, generating a contrastive explanation can be easier
and less computationally extensive than providing a full causal attribution (P.
Lipton 1990).

The suitability of contrastive explanations for users has stimulated some re-
searchers to explore methods that try to adhere to this criterion. Rathi (2019)
designed a model-agnostic method to create contrastive and counterfactual ex-
planations by using SHAP. A limitation of their approach is that they process a



CHAPTER 2. EXPLAINABLE MACHINE LEARNING 13

contrastive question, ‘Why P instead of Q?’, by splitting it into the two segments
‘Why P?’ and ‘Why not Q?’. By doing this, part of the meaning of the original
question is lost, as the answer no longer focuses on the relevant difference that
made the fact and the foil result in a different outcome.

An interesting work of Robeer (2018) does address the foil relative to the fact.
Using ‘Foil Trees’, a set of rules is detected that caused the prediction to be the
actual outcome, instead of the foil. The research provides supporting evidence
that contrastive explanations align better with the decision process of the user
and are perceived as more understandable (Robeer 2018).

2.5.2 Explanations are selected

Humans are rarely looking for an explanation that consist of an actual and com-
plete cause of an event. Presenting that much information can cause the less
relevant parts of the chain to dilute those parts that are crucial to the particular
question asked (Tetlock and Boettger 1989). Instead, humans prefer short expla-
nations concerning one or two causes (Miller 2019).

A challenge here is to create an explanation that is both human-friendly and
truthful. The world is often more complicated than humans can comprehend, so
it seems a better approach to make them understand the general intuition than to
dilute them with all the available information. In order to stay truthful, it seems
essential to be transparent about what the explanation system presents to the
user.

2.5.3 Explanations are social

An explanation can be seen as part of a conversation or interaction between
the explainer and the explainee. The social context and previous knowledge of
the explainee influence what the appropriate content of the explanation looks
like. An explanation for the programmer of a model will look different than an
explanation for the end user.
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2.5.4 Probabilities are not as important as causal links

It is more effective to refer to causes, than to probabilities or statistical relation-
ships. (Miller 2019). The conclusion Miller (2019) draws in his survey is that
statistical generalizations are unsatisfying to explain why events occur unless
they can be accompanied by an underlying causal explanation for the generaliza-
tion itself.

Where possible, we will try to incorporate these insights into our approach. In
the end, we will reflect on the extent to which we succeeded in designing our
methods in accordance with these principles.

2.6 Related approaches

In this section, an overview of related work - approaches in which a model-
agnostic local explanation is generated - is presented. An overview of the entire
field of interpretable machine learning is beyond the scope of this work. More-
over, an excellent overview, consisting of 84 interpretable machine-learning
methods, is recently published by Robeer (2018).

The existing methods can be differentiated according to their outputs (Mol-
nar 2019). Some methods, including the method that will be used in this work,
can be assigned to multiple of these result categories. Results of local, model-
agnostic approaches can consist of: feature summary statistics, feature summary
visualizations or data points. We will shortly discuss all of them.

2.6.1 Feature summary statistic

Many of the interpretation methods focus on explanation through presenting
information about the importance of features (Molnar 2019). Typically this is
done by calculating weights representing the importance per feature. In case of a
regression model, feature importance is a direct representation of how the model
operates; the predictions of the model are made by summing all weights. In the
past years, multiple methods have been developed that try to establish which im-
portance a black box model assigns to features. These methods calculate weights
based on how the prediction model behaves given a variety of input combina-
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tions. Lundberg and Lee (2017) recently showed that there are equivalences
among the techniques used for obtaining explanations by feature summary statis-
tics. In an attempt to unify the approaches, they introduced Shapley Additive
Explanations (SHAP). SHAP is based on the game-theoretical concept of the
Shapley Value and comes with theoretical guarantees, such as a fair distribution
of the average prediction over the features.

2.6.2 Feature summary visualization

For most of the summary statistics, visualizations are used to present the in-
formation to users. For example, SHAP output, as shown in 2.2, can be easily
communicated through visualization of the feature contributions.

Figure 2.2: Example of SHAP output on a single prediction. The size of a feature
represents the strength of the contribution, the colour represents the direction.

There are also feature summary methods that are only meaningful when pre-
sented visually. An example of such a method is the creation of a partial depen-
dence plot (PDP). In a PDP, the marginal effect that one or two features have
on the predicted outcome is shown (Friedman 2001). The information of this
method can be communicated much more effectively by drawing a curve than by
printing coordinates (Molnar 2019).

2.6.3 Data point

Another approach to increase the interpretability of a model is by returning ei-
ther existing or newly created data points (Molnar 2019). The results of those
methods are called example-based explanations (Adadi and Berrada 2018). A
system taking this approach could, for example, show the data points that are
most similar to the instance of interest. There are also methods that make a dif-
ferent selection of data points. Prototypes and criticism is an example-based
method in which a collection of the most representative and the most exceptional
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instances from the data is selected (Kim, Khanna, and Koyejo 2016). Another ap-
proach using data points is to look for counterfactual examples. A counterfactual
explanation describes what the minimum conditions are that need to be met to
change the outcome (Wachter, Mittelstadt, and Russell 2017).

2.6.4 Combining methods

Feature summaries - either textual or visualized - and example-based method
both have different, complementary functions. Feature summaries provide in-
sights into which aspects of an instance are of main importance. Example-based
methods provide a context around individual instances. This context can help an-
swer questions like: ‘Which outcomes did similar instances receive?’. Moreover,
example-based methods could be used to answer contrastive questions, such as:
‘Why did this customer leave our company rather than that customer?’

A prerequisite for the interpretability of example-based approaches is that it is
possible to interpret a single instance (Molnar 2019). This can be challenging for
tabular data consisting of many features. To compare and visualize the instances
in a meaningful way, we will combine an example-based approach with the us-
age of feature summaries. Considering the differences and similarities between
the features of examples, we can reason about what an appropriate outcome of a
new instance would be. The concept of using examples from the past to reason
about new problems is known as Case-Based Reasoning. In the next chapter, we
will further introduce this field of research.
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3. Case-Based Reasoning

Case-based reasoning (CBR) means using experiences from the past to under-
stand and solve new challenges (Kolodner 1992). The applications of the method
can include adapting old solutions to meet new demands, using past cases to
explain or interpret new situations or using past cases to criticize or justify new
solutions (Kolodner 1992).

3.1 The potential of CBR for explanation

A CBR approach is a natural way to explain supervised machine-learning appli-
cations, as the input data can directly be used as cases (Prakken 2020). Every
instance of the training data constitutes a single decided case, consisting of sev-
eral properties - the input features - and an outcome. Together they make up the
so-called case base: the collection of cases for which the results are known. New
incoming instances are handled as undecided cases, for which one can reason
about an appropriate outcome based on the knowledge in the case base.

Apart from the convenient technical fit, CBR seems a way of reasoning that is
natural to humans. Explanation by analogy is shown to be a form of explanation
to which people can easily relate (Cunningham, Doyle, and Loughrey 2003; Gen-
tner, Loewenstein, and Thompson 2003). Cunningham, Doyle, and Loughrey
(2003) empirically evaluated the usefulness of case-based explanation. They
found that simply displaying a similar case along with the solution significantly
improved the confidence the user had in the solution compared to showing just
the solution or displaying a rule that was used to find the solution. A case-based
approach also seems to offer a fruitful basis for taking into account some of the
major social insights Miller (2019) found in his extensive review. CBR seems
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especially suitable to create contrastive explanations, as it can be used to ex-
plain the case of interest relative to similar other cases that resulted in a different
outcome.

Another advantage of CBR is that the method behind it has quite a transparent
appearance. It is easy to comprehend the concept of searching for a similar case
to solve the current problem (Sørmo, Cassens, and Aamodt 2005). The fact that
the method is making use of ‘real evidence’, the items from the training data,
promotes transparency.

3.2 Selecting cases

The usefulness of CBR is dependent on the ability of the user to understand the
cases and to confirm the similarity assessment (Sørmo, Cassens, and Aamodt
2005). Adhering to those criteria becomes difficult when the structure of the
cases is involved, or the similarity between the cases is far-fetched. A central
topic within research on CBR concerns the issue of how to select an appropriate
case.

Displaying the most similar case is the traditionally dominant form of explana-
tion in CBR (Sørmo, Cassens, and Aamodt 2005). This practice was challenged
by Doyle et al. (2004), who argued that the most similar case is not necessarily
the most convincing case to display. Instead, they suggest selecting a case that is
between the decision boundary and the case of focus. When trying to explain to
a user that a customer will churn, it is more convincing to show an example of a
customer who had a more favourable profile to the company and churned, even
if a customer with a more negative profile is the closest match. Prakken (2020)
takes a similar standpoint and distinguishes between relevant differences and
other differences.

Independent of the decision to select the most similar or the arguably most con-
vincing case, a second challenge remains in deciding which function to use to
calculate the distance. A simple way to do this would be to determine the sim-
ilarity between cases based on the number of features they have in common.
However, when there is a wide variety in the contributions of different features to
the outcome, this may lead to undesired results. A case that has a lot of relatively
insignificant features in common with the case of focus may be considered less
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similar to it than one that has few corresponding features that do have a substan-
tial influence on the prediction.

As shown by Cunningham, Doyle, and Loughrey (2003), adding a similar case
to the presentation of a solution already makes the user more accepting towards
the solution. However, this approach seems somewhat limited (Karacapilidis,
Trousse, and Papadias 1997). The user does not receive any help by comparing
the relevant aspects of the cases. Besides, there is no possibility to adapt the ex-
planation to the user or to let the user interact with the explanation system. Some
researchers have tried to take CBR explanations to the next level by using argu-
mentation for reasoning about the relevant similarities and differences between
the cases.

3.3 Case-based argumentation

Case-based argumentation (CBA) is a sub-field within CBR, which originates
from AI & law research on argumentation with cases. The research models how
lawyers can refer to cases in the past and discuss their relevant similarities and
differences. Case-based argumentation methods can be applied to a broader
scope of problems. They are in particular suitable for problems that are not
decided by a clear rule, but by weighting sets of relevant factors pro and con
(Prakken 2020).

There is a small amount of existing work on using CBA to explain machine-
learning algorithms. Cyras, Satoh, and Toni (2016) generated an explainable
classifier using CBA. This system can make predictions for new cases and ex-
plain its own reasoning. Later, Čyras et al. (2019) reused this approach to use
CBA for a related purpose; explaining outputs that were determined by humans.
Prakken (2020) recently proposed a method which aims to generate explanations
to the predictions of black-box prediction models. All these studies apply CBA
to generate argumentative interpretations of predictions through a dialogue - an
exchange of conflicting arguments - between two parties. In the next chapter, we
will give an introduction to the formal argumentation theory they applied and
discuss the two approaches.



20

4. Case-Based Argumentation

4.1 The one who laughs last laughs best

The approaches of Čyras et al. (2019) and Prakken (2020) rely on abstract ar-
gumentation frameworks, as introduced by Dung (1995). Dung was inspired by
the observation that human argumentation relies on a simple principle: the one
with the last word wins the argument. In the same way, a statement is considered
believable when it can be successfully defended against any attacking arguments.

4.2 Formalization

Dung tried to formalize this notion into an abstract framework. An AA frame-
work (AAF) is a pair AAF = 〈A,attack〉, where A is a set of arguments and
attack is a binary relation on A. Argumentation frameworks are usually pre-
sented in the form of a graph, in which the nodes represent the arguments, and
the edges represent the attack relations between them. An argument A is treated
as an abstract entity; the role of the argument is determined by its relation to
other arguments, without considering the internal structure of the arguments.

For the sets of arguments X ,X ′ ⊆ A and the arguments a, b ∈ A, we say that:

• a one-way attacks b if a attacks b and b does not attack a
• X attacks b if there is an element a ∈ X which attacks b
• X attacks X ′ if there is an element b ∈ X ′ which is attacked by X
• X is conflict-free if X does not attack itself
• X defends a if for all b that attack a it holds that X attacks b
• X is admissible if X is conflict-free and X defends all elements in X .
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The theory of Dung identifies different forms of admissible sets, called exten-
sions. Čyras et al. (2019) and Prakken (2020) focus on the grounded extension.
We call an extension grounded when it is admissible, contains all arguments it
defends and is subset-minimal for those conditions. The grounded extension
always exists, may be empty and is unique. It can be built incrementally by iter-
ating over the following steps until no more changes to the argument graph can
be made:

1. Adding all arguments that are not attacked to the grounded extension
2. Removing all arguments that are attacked by an argument in the grounded

extension from the graph and returning to step 1

Figure 4.1: AAF first example Figure 4.2: AAF second example

In Figure 4.1, we see an AAF with four arguments, represented as nodes. An
outgoing arrow from x to y, represents that argument x attacks argument y. In
our example, argument a and b are not attacked, so must be part of the grounded
extension. As this set attacks the only attacker of d - argument c - d must be
included in the grounded extension as well.

Another way to verify whether an argument is part of the grounded extension
is to use an argument game (Modgil and Caminada 2009). An argument game
is a formal dialogue between two players: a proponent and an opponent. The
proponent begins the game by proposing an argument. Then the players take
turns after each argument, in which:

• The opponent must attack the last argument of the proponent
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• The proponent must one-way attack the last argument of the opponent

In correspondence with the principle derived from human argumentation - "the
one who laughs last laughs best" - a player wins an argument game if its coun-
terparty can no longer move. In our example in Figure 4.1, the proponent could
start the game by playing argument d. The opponent has only one response: to
attack d with c. After that, the proponent can win the game by either playing a or
b, leaving the opponent out of moves. In Figure 4.2, we see an AAF that could
lead to a different result. Instead of playing c, the opponent could now respond
to d by playing e. Since e has no attackers, this would leave the proponent out of
moves.

A way for a player to play against all possible moves of the opponent is called
a strategy. We say that a strategy for a player is winning if that strategy makes
the player win independently of what its opponent does. If the proponent has a
winning strategy in a game for the proposed argument, the argument is called
justified in the grounded extension. This makes argument d to be justified in 4.1
and unjustified in 4.2.

4.3 AA-CBR

Cyras, Satoh, and Toni (2016) proposed a method combining AA and CBR
called AA-CBR. They aimed at generating an explainable classification system,
which can establish outcomes for new cases independently. The method was
later used in ANNA (Cocarascu, Cyras, and Toni 2018) and formed the basis of
the approach of Čyras et al. (2019) to explain outcomes determined by humans.

In their method, they create an AAF to determine which binary outcome should
be attributed to a new case, which we will call the focus case. They assume that
there is a default outcome, d, which should be assigned to a case if there is no
counter-evidence. Every case - a set of features together with an outcome - in
the case base, the focus case and the default outcome make up the arguments in
the AAF. Within the framework, an argument A attacks B if the following three
conditions are met:

• A and B have different outcomes
• A is more specific than B; f eatures(B)⊂ f eatures(A)
• A is as close as possible to B; there is no C such that f eatures(B)⊂ f eatures(C)⊂
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f eatures(A)

Furthermore, the new case N attacks any case Y that has an element which is not
in N; Y 6⊆ N. Since N does not have an outcome yet, it cannot be attacked by
other cases. The prediction for the new case is dependent on the default outcome.
When the default outcome is part of the grounded extension, the new case is as-
signed this outcome. We can say that the default outcome is sceptically justified;
the non-default outcome can only be reached if there is some justified counterar-
gument against the default outcome. When the default outcome is unjustified in
the argument graph, the system predicts the opposite outcome.

To illustrate this, and the next approach, we will consider a Churn scenario. In
this scenario, we consider four binary features, which are presented in Figure
4.3.

whether the
customer received

a gift from the
company (yes/no)

whether the
customer is in a

high-cost category
(yes/no)

whether the
customer was

present at the last
event (yes/no)

whether the
customer has a
profile on the

website (yes/no)

Figure 4.3: Features Churn example

Furthermore, we have a small data set with information about four previous cus-
tomers (Table 6.1). The label - or outcome variable - ‘churn’ tells us whether the
customer decided to leave the company or stayed. As our default outcome, we
will assume a customer to stay. In the other four columns, a value of 0 represents
that a feature was absent; a value of 1 that a feature was present for a customer.

We can transform the data set and default outcome into an AAF, as represented
in Figure 4.4. Within the framework, there are four attack relations. Nash and
Dong attack the default outcome, as they have different outcomes, are more
specific and are as close as possible to the default case; there is no case which
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customer gift high-cost present website churn
Miss Hill 1 0 0 1 0
Mister Nash 1 1 1 0 1
Mister Wang 0 0 1 1 0
Miss Dong 0 0 0 1 1

Table 4.1: Churn example data set

features are both a proper superset of the attackee (the default case) and a proper
subset of the features of Nash or Dong. For the same reasons, Hill and Wang
attack Dong.

Figure 4.4: The data set of the Churn example represented as an AAF

Suppose that we have some new customer, Miss Jale (Table 6.2). Miss Jale is
our focus case: we don’t know her decision yet, and so she is the focus of our
prediction task.

customer gift high-cost present website churn
Miss Jale 0 0 1 1 ?

Table 4.2: Churn example focus customer

To obtain the prediction for Jale, we add her case to the AAF. As figure 4.5
shows, Jale attacks both Hill and Nash. This is because both customers have
a feature which Jale is missing. Now that Nash is defeated, the default outcome
becomes part of the grounded extension. Therefore, the system predicts Jale will
stay.
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Figure 4.5: Arguments AAF - Churn example AA-CBR

To explain a prediction to a user, the authors use an argument game. As the
outcome of the focus case is dependent on the status of the default outcome, the
proponent starts the dialogue with this argument. When the default outcome is
justified, any admissible dialogue tree of d can serve as the explanation. Figure
4.6 shows an example of what an admissible tree for Miss Jale could look like.

When the non-default outcome prevails, no admissible dialogue trees exist. In
those cases, the authors deploy a maximal dialogue tree, a tree in which no oppo-
nent nodes can be attacked, for this purpose.

4.4 AF-CBA

Building on AA-CBR, Prakken (2020) proposed a new approach, which we will
call A Fortiori Case-Based Argumentation (AF-CBA). AF-CBA is designed
to explain predictions of other classifiers in a model-agnostic way. Instead of
determining an outcome by itself - as AA-CBR does - it takes the prediction of
another classifier as the starting point.

Prakken (2020) introduces in the second part of his article an explanation method
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Figure 4.6: Possible explanation tree for customer Jale - Churn example AA-CBR

which can process multi-valued features. We will only consider this method and,
therefore, slightly adjust our running example. We transform the binary feature
‘website’ into a multi-valued feature: instead of representing whether the cus-
tomer has an account on the website, it now represents the number of times the
customer logged into the website (0 - ∞). Table 4.3 shows our renewed data set.

customer gift high-cost present website churn
Miss Hill 1 0 0 5 0
Mister Nash 1 1 1 3 1
Mister Wang 0 0 1 6 0
Miss Dong 0 0 0 1 1

Table 4.3: Churn example data set

AF-CBA is based on Horty’s factor- and dimension-based result models of prece-
dential constraint (Horty 2011; Horty 2019). In these models, Horty uses a for-
tiori reasoning to reason about new cases. According to this way of reasoning, a
new case must adopt the outcome of another case if all their differences make the
new case even stronger for that outcome.

In order to speak about one case being stronger for an outcome than another, we
must first introduce some definitions and notation. All definitions are adopted
from Prakken (2020), although sometimes with small notational differences.
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Prakken (2020) refers to features as dimensions. Given a dimension d, he de-
fines a value assignment as a pair (d,v), where v represents the value. A list of
value assignments is called a fact situation. A case is then defined as a pair c =
(F,outcome(c)), where F is a fact situation, and outcome(c) ∈ {o, o}, where o
and o represent the two available outcome values. Miss Hill can be represented
as the following case: ([(gift, 1), (high-cost, 0), (present, 0), (website, 5)], Stay).

A case base is a set of cases relative to a set D of dimensions; all cases assign
values to a dimension d if and only if d ∈ D. Like Prakken (2020), we will use
F(c) to denote the fact situation of case c, and v(d,c) to denote the value of
dimension d in case c.

Given two value assignments (d,x) and (d,y), we write:

x≤o y

to denote that value y for d favors outcome o at least as strongly as value x for d.
For example, for the dimension ‘website’, we could state that a value of 1, favors
the outcome Churn at least as strongly as the value 3, written: 3 ≤Churn 1. Note
that the ordering does not tell us whether the values 1 or 3 favor outcome Churn;
all we know is that value 1 promotes churning at least as strong as value 3.

The expression x ≤o y is equal to y ≥o x. Prakken (2020) defines a dimension
as a tuple d = (V , ≤o, ≤o), where V is the set of values and ≤o and ≤o are two
partial orders on V such that v ≤o v′ iff v′ ≤o v. Now we can introduce Horty’s
preference relation on fact situations as:

Definition 1. [Preference relation on fact situations.] Let F and F ′ be two fact
situation with the same set of dimensions. Then F ′ is at least as strong as F for
outcome o , written F ≤o F ′, if and only if, for all (d,v) ∈ F and all (d,v′) ∈ F ′ it
holds that v(d)≤o v′(d).

In other words, a fact situation F is at least as strong for outcome o as fact situ-
ation F ′ when the value of F is at least as strong for outcome o as the value of
F ′ on every dimension. We say that a case base is inconsistent if and only if it
includes factor sets X and Y , such that for some new fact situation F we could
have X ≤o F and Y ≤o F . A case base that is not inconsistent is consistent.

Given the preference relation on fact situations, the a fortiori rule of Horty ap-
plied to cases is defined as:



CHAPTER 4. CASE-BASED ARGUMENTATION 28

Definition 2. [A fortiori rule.] Let CB be a case base and F a fact situation given a
set of dimensions D. Then, given CB, assigning outcome o to F is forced if and
only if there exists a case c = (F ′,s) ∈CB such that F ′ ≤o F .

In other words, we must assign the outcome of case c to fact situation F when F
is at least as strong for outcome(c) as fact situation F ′ of case c. Assigning both
outcome o and o to F can only be forced if the case base is inconsistent.

Before we can apply a fortiori reasoning to our example, we must establish the
tendencies of the features to favor outcomes. For this strength ordering, Prakken
(2020) argues that it is inadequate to represent factors - binary features - in the
same way as other dimensions. He states that for some factors we want to avoid
regarding one value as favoring outcome o, written pro−o, and the other value
as discouraging outcome o, denoted as con−o. Take for example the factor ‘gift’.
The presence of this factor seems a factor pro-Stay. However, not receiving a gift
does not seem to be a con-Stay factor, but rather a neutral outcome. He, there-
fore, decides to treat factors as a different type of dimensions. Each factor comes
with a partial function td: V -> o, o′ that assigns to zero, one or both values of the
dimension (v and v) an outcome, such that:

1. if td(v) = o then td(v) = o or td(v) is undefined
2. if td(v) = o then (v)<o v

From now on, we will refer to two-valued dimensions as factors and to multi-
valued dimensions as dimensions.

For our running example, we will make some assumptions about the tendencies
of the features to favor outcomes. Prakken (2020) does not specify a way to
determine these tendencies but assumes this information to be available. We will
assume that td(v) = Stay for factors ‘gift’ and ‘present’ with value 1, and call
these factors pro-Stay. Next, we assume that td(v) = Churn for ‘high-cost’ with
value 1, and call this a pro-Churn factor. We will leave the other values of the
factors undefined. For our multi-valued dimension - ‘website’ - we assume that
the higher a value on this dimension is, the stronger the value becomes for the
outcome Stay: v(d) >Stay v′(d) and v(d) <Churn v′(d) if and only if v > v′. In
other words, the more often a customer logs into the website, the more likely we
assume the customer to stay.

When all differences between a case c and fact situation F , make F at least as
strong for outcome(c) as c, we say that c has no relevant differences with F .
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Prakken (2020) formally defines these differences as:

Definition 3. [ Relevant differences between cases ] Let c = (F(c),outcome(c))
and f = (F( f ),outcome( f )) be two cases. The set D(c, f ) of relevant differences
between c and f is defined as follows:

1. If outcome(c) = outcome( f ) = o then D(c, f ) = {(d,v) ∈ F(c) | v(d,c)>o
v(d, f )}

2. If outcome(c) 6= outcome( f ) where outcome(c) = o then D(c, f ) = {(d,v)∈
F(c) | v(d,c)<o v(d, f ).

As proven in Prakken (2019), a simple criterion can be used to determine whether
a case is forced:

Proposition 1. Let CB be a case base and f a case with with fact situation F .
Then deciding f for o is forced given CB if and only if there exists a case c with
outcome o in CB such that D(c, f ) = /0.

This allows us to start reasoning about the outcomes of new cases. Given a case
base consisting of our example customers Hill, Nash, Wang and Dong, consider
first a fact situation F: [(gift, 0), (high-cost, 0), (present, 1), (website, 8)]. Be-
cause each value assignment of F is at least as strong for outcome Stay as that of
Wang, F would be forced to obtain outcome(Wang).

Now suppose that we would have the following focus customer, Miss Jale (Table
6.2). We represent her fact situation as: Jale = [(gift, 0), (high-cost, 0), (present,
1), (website, 5)].

customer gift high-cost present website churn
Miss Jale 0 0 1 5 ?

Table 4.4: Churn example focus customer

In this scenario, Jale has relevant differences with all cases in the case base.
Therefore, neither assigning outcome Stay, nor Churn is forced. To handle these
situations, Prakken (2020) introduces a top-level model of case-based expla-
nation dialogues. Like in AA-CBR, dialogues are formalized as the grounded
game of an AAF. We will informally sketch the dynamics of the explanation
dialogues; for the formalization and further details, we refer to the article of
Prakken (2020).
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In the game, the proponent tries to justify the prediction of the classifier. To
justify the prediction, the proponent cites an example case - which we will call
precedent - from the case base that received an outcome equal to the prediction.
The opponent than tries to distinguish the focus case from the precedent, while
the proponent aims to explain away all of their differences.

When the cited precedent has no relevant differences with the focus case, this
leads directly to a fortiori justification of the prediction. When there are relevant
differences between the two cases, the opponent comes into play. The opponent
can distinguish the precedent on its relevant differences with the focus case or
cite a counterexample. After that, the proponent has the opportunity to defend
against those attacks, showing the differences can be compensated or do not
matter.

There is a fixed structure of the dialogue tree, which only allows branches to
have a maximum length of three moves. A visualization of the high-level struc-
ture of the dialogue is presented in Figure 4.7.

Figure 4.7: The high-level structure of the dialogue game tree

We will explain the different moves in some more detail, after which we will
apply the approach to our example.

For the game, we will assume that there is some classification model that pre-
dicts for any focus case f an outcome prediction( f ) ∈ {o,o}. The proponent
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starts the dialogue of a focus case by citing a best precedent. A best precedent
for focus case f and prediction( f ), is defined as any case c ∈CB that meets the
following two conditions:

1. outcome(c) = prediction( f )
2. There is no case c′ ∈CB with outcome(c′) = prediction( f ) and D(c′, f )⊂

D(c, f )

The second condition entails that a best precedent must have a minimal subset of
relevant differences among the cases with that outcome.

The opponent has two approaches to reply to the citation. We will first consider
the distinguishing moves. A distinguishing move points out any relevant differ-
ences between the focus case and the cited precedent. Prakken (2020) defines
two types of distinguishing moves for factors:

MissingPro(c,x): the focus case lacks pro-factors x of precedent c
NewCon(c,x): the focus case contains con-factors x that are not in prece-
dent c

and one for dimensions:

Worse(c,x): the focus case has less favorable values on dimensions x than
precedent c

To defend against those attacks, the proponent can apply downplaying moves. A
downplaying move can be used to neutralize a distinguishing move the opponent
played. Downplaying is then used as a way to argue why an attack does not
undermine the representativeness of the selected case. Two concepts constitute
the basis of the downplaying moves for factors:

Substitution: factors can substitute each other, removing the difference on
which the cases were distinguished
Cancellation: factors can cancel out each others effect, removing the
difference on which the cases were distinguished

and one the basis for downplaying dimensions:

Compensation: more favorable values on some dimensions, can compen-
sate for less favorable values on other dimensions

The input for the downplaying moves can be found in the differences between
the focus case and precedent that are not part of the ‘relevant differences’. Prakken
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(2020) does not link any conditions to the application of downplaying moves
himself - the moves are even allowed to be empty. His approach leaves the spec-
ifications of such conditions to top-level knowledge; he assumes an unspecified
set sc of rules to prescribe which downplaying moves can be applied.

The second way the opponent can respond to the citation is by citing a counterex-
ample. For focus case f , prediction( f ) and cited precedent p, any case c ∈CB
that meets the following two conditions is allowed to be used as a counterexam-
ple, attacking p:

1. outcome(c) 6= prediction( f )
2. D(p, f ) 6⊂ D(c, f )

The second condition entails that the set of relevant differences of the precedent
may not be a proper subset of the relevant differences of the counterexample.

The proponent can defend against a counterexample by using the same concepts
used for the downplaying moves. These concepts are applied to transform the
own cited precedent into a case that has no relevant differences with the focus
case. By demonstrating that the precedent can be transformed in a case without
relevant differences, the proponent defeats the counterexample.

We will now apply the dialogue game to the running example, considering Miss
Jale as our focus case. Her fact situation looks like this:

Jale = [(gift, 0), (high-cost, 0), (present, 1), (website, 5)]

Our case base consists of the four customer from the data set, transformed into
cases:

Hill = ([(gift, 1), (high-cost, 0), (present, 0), (website, 5)], Stay)
Nash = ([(gift, 1), (high-cost, 1), (present, 1), (website, 3)], Churn)
Wang = ([(gift, 0), (high-cost, 0), (present, 1), (website, 6)], Stay)
Dong = ([(gift, 0), (high-cost, 0), (present, 0), (website, 1)], Churn)

We will suppose some black-box classifier predicted Jale to stay. The proponent
now starts the game by citing a best precedent. In our case base, we have two
cases with an outcome equal to the prediction Stay: Hill and Wang. The relevant
differences of these cases with Jale are:

D(Hill,Jale) = {(gift, 1)} and D(Wang,Jale) = {(website, 6)}
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As none of the sets is a proper subset of the other, Hill and Wang could both be
cited by the proponent. In this example, we will suppose the proponent cites case
Hill. As Hill has relevant differences with Jale, the opponent can distinguish the
precedent on its differences with the focus case. Specifically, the opponent can
play MissingPro(Hill, gift) pointing out the fact that Jale lacks the pro-factor gift
of precedent Hill.

In addition, the opponent can play a counterexample. A counterexample must
be a case with the opposite outcome, so either Nash or Dong. As D(Hill,Jale)
is no proper subset of D(Nash,Jale), nor D(Dong,Jale), both cases could be
applied as counterexamples. For the course of the game, it never matters which
counterexample is chosen, as the response of the proponent is independent of the
properties of the counterexample.

In response to the attacks of the opponent, the proponent will look for downplay-
ing possibilities. Apart from the ‘relevant differences’, Jale and Hill also differ
on the factor ‘present’. Jale was present at the last customer event, whereas Hill
was not. This pro-factor can be used to downplay MissingPro(Hill, gift) with
pSubstitutes(present, gift, Hill) stating that the missing pro-factor ‘gift’ is in a
sense still in Jale, as it can be substituted by the extra pro-factor ‘present’.

Finally, the extra pro-factor can also be used to reply to the counterexample. The
proponent can transform Hill into a new case Hill′ = ([(gift, 0), (high-cost, 0),
(present, 1), (website, 5)], Stay) making use of the move pSubstitutes(present,
gift, Hill). The new case Hill′ is identical to Jale, so cannot have any relevant
differences.. Using this transformed case, the proponent replies Trans f ormed(Hill,Hill′)
to attack the counterexample. The dialogue game tree of the example is visual-
ized in Figure 4.8.

Using the information generated with the dialogue, Prakken (2020) proposes that
AF-CBA should at least present to the explainee:

1. Whether the focus case is forced, meaning the prediction follows from the
a fortiori rule.

2. If the focus case is forced
every precedent with no relevant differences can be used as the expla-
nation

Else,
the sequence of downplaying moves derived from the winning strat-
egy is shown. This sequence explains what needs to be accepted to
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Figure 4.8: Example dialogue game tree

make the prediction forced.

4.5 Research approach

In this research, we aim to further investigate the possibilities of CBA in relation
to the challenges we face with black-box algorithms. We will take the proposal
of Prakken (2020) as our starting point. This approach has not been tested yet
and deviates in two interesting ways from AA-CBR. Instead of functioning
as a classifier itself, AF-CBA is designed to explain the predictions of a black
box. Secondly, the method allows the inclusion of multi-valued input features,
broadening the scope of application. By bringing the proposed method into
practice, the research aims to contribute to answering the following research
question:

RQ) To what extent is CBA applicable for making machine learning more inter-
pretable?
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The approach taken in this research is a form of Design science. Within this
field of science, researchers try to improve a problem context and to answer
knowledge questions by designing and investigating artefacts (Wieringa 2014).

Five sub-questions will be addressed to answer the main question. These ques-
tions arise at different levels of the research process. The first questions focus on
AF-CBA specifically. Later, we will take a broader perspective and consider the
general possibilities of applying CBA to obtain interpretable machine learning.

When applying AF-CBA, information about the impact of different features on
the prediction should be collected. This is necessary to establish the tendencies
of the features and to enable reasoning about the differences between cases. How
this information can be generated is the focus of the first sub-question.

S1) What kind of method is applicable for generating feature information to be
used in AF-CBA?

Prakken (2020) proposes that feature information could be generated by con-
sulting an expert to provide a factor hierarchy manually. Due to the practical
constraints coming along with that, this research will experiment with generating
information about the input features automatically. Using a feature importance
estimator the direction and strength of the impact of a feature on a particular out-
come will be calculated. Those scores can then be applied to compare cases and
decide which features can be used to compensate for others.

As previously discussed, deciding on the way cases are being selected poses a
challenge to every CBR system. The second sub-question is dedicated to that
topic.

S2) Which cases should be selected to be used in AF-CBA?

Answering this question includes looking for a suitable distance function, as well
as defining the search algorithms for ‘best precedents’ and ‘counterexamples’.
There is another challenge regarding the number of cases that will be selected.
In the dialogue tree of AF-CBA, only a single precedent and counterexample
are used. This number of examples would seem reasonable in the ideal scenario
in which a case base only consists of instances for which the ‘ground truth’, or
at least some well-established outcome, is known. For example, when lawyers
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draw analogies to past cases or discuss their relevant similarities and differences,
they can, in principle, rely on the decisions made in a single case.

In the case of a model that is trained based on statistical relations, the relations
between the input-features and the outcome in the training data are usually far
from being ‘ground truths’. Although we aim features to cover the complete
causal picture, in practice, this is rarely the case. The training data of a churn
prediction model could contain two customers with precisely the same input-
features, of which one stayed at the company and one churned. Alternatively -
more extreme - there could be a customer for which all the input-features pre-
dicted green light, who due to some unknown reason left the company.

This seems to make the approach suggested by Prakken (2020) problematic
when applied to a machine-learning model trained on statistical data in which the
features are not covering the complete causal picture. When there is an extreme
case in the data, one for which the outcome is unexpected based on the features,
that case could be selected as best precedent or counterexample for cases for
which we would not want to find supporting evidence. A potential solution could
be to refer to multiple cases or statistics of cases, instead of to a single case.

After the single case or multiple cases have been selected, they can be attacked
in the argument game. An attacking move distinguishes the selected case from
the focus case on relevant criteria. The application algorithm of the downplaying
moves will be the focus of the third sub-question.

S3) How to apply downplaying moves in AF-CBA?

The topics of investigation in this section will be the order in which downplay-
ing moves should be applied and the criteria to which features must adhere to
compensate for each other.

A considerable disadvantage of the model-agnostic approach, as mentioned
by Rudin (2019), is the fact that the explanation method is usually not entirely
faithful to the black-box model. This problem applies to AF-CBA, which ex-
planations are generated almost completely independently from the prediction
model. In this section, we consider the possibilities for removing this separation
between the explanation system and the prediction model.

S4) What are the possibilities for closing the gap between AF-CBA and the pre-
diction model?
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We will approach this question with two sub-questions. First, we will investi-
gate whether we can enable the CBA-system to generate acceptable predictions
itself, making the black-box model superfluous. Replacing the black box by the
explanation system would eliminate the problems attached to a model-agnostic
approach.

S4.1) Have interpretable CBA-systems potential for taking over black-box mod-
els?

In order to answer that question, we will transform AF-CBA into a new system
which is able to make predictions by itself. After that, the accuracy of the model
in predicting new outcomes can be measured. Results will be compared with
AA-CBR and other (black-box) classifiers. Based on the difference in accuracy
and interpretability between the CBA-systems and black-box models, there will
be reasoned about whether there is still independent value to the black box.

When there is independent value to a black box, we might want to hold on to
it. In the second part, we will investigate whether it is possible to incorporate
further information about a black-box model in the CBA-system, while still
holding on to a model-agnostic approach.

S4.2) Are there model-agnostic possibilities to incorporate further information
about the black-box model in CBA?

Based on the work of Weerts, Ipenburg, and Pechenizkiy (2019), we will elab-
orate on an alternative approach. In this approach, we collect new information
about the black box by measuring its predictions for the instances in the training
data.

In the last subsection will be evaluated to what extent machine-learning explana-
tions created with CBA are suitable for human users.

S5) To what extent are explanations generated by CBA-systems suitable for
users?

To test the suitability of the systems for users, we will build user interfaces for
two different types of CBA explanation systems. We then test these systems by
conducting a user experiment.
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5. Evaluation of AF-CBA

In this chapter, we will run experiments to evaluate AF-CBA, the explanation
method proposed by Prakken (2020). We will first introduce the three data sets
that were used for the experiments. After that, we discuss how the data instances
were transformed into cases, making up the case bases. We will then conduct the
experiments and evaluate the method based on the results.

5.1 About the data sets

For the experiments, we used three publicly available data sets: Churn (Telco
Customer Churn 2018), Mushroom (Dua and Graff 2019) and Graduate Admis-
sion (Acharya, Armaan, and Antony 2019). All data sets are tabular, consisting
of several features, together with an outcome variable. The Churn data set con-
tains information about customers of a telecom service. The outcome variable
Churn represents whether a customer continued using a company’s telecom ser-
vices or churned (cancelled the subscription). The Mushroom set consists of
descriptions of hypothetical samples corresponding to species of mushrooms in
the Agaricus and Lepiota Family. All features of this set are categorical, and the
outcome variable represents whether the mushroom is either definitely edible
or (possibly) poisonous. Čyras et al. (2019) also applied the Mushroom data set
to test ANNA, which will allow us to compare our results. The Admission set
consists of features - such as exam scores - with which a prediction can be made
about whether an applicant will be admitted to a Master Program.

We made a heterogeneous selection of data sets in terms of consistency. The
Churn data set is of a highly statistical nature; on average, we can tell which
profiles are likely to stay or churn based on the features, but there are lots of
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exceptions.

Figure 5.1: A Principal Component Analysis of the Churn (left) and Mushroom (right)
data sets.

In the Mushroom data set, on the other hand, the features do seem to possess
enough information to consider the outcome variables some ‘truth’; cases with
the same features must have the same outcome. Figure 5.1 shows the different
structures of the Churn and Mushroom data sets, as visualized with a Principal
Component Analysis, transforming the data points into two dimensions. The
Admission data set forms a middle ground between the statistical Churn and
consistent Mushroom data set. Further details about the data sets can be found in
Table 5.1.

Mushroom Churn Admission
number of instances 8124 7032 500
distribution outcome 48% poisonous 27% churned 7.8% refused
number of features 22 21 7
number of categorical features 22 18 1
number of continuous features 0 3 6

Table 5.1: Data set statistics

5.1.1 Implementation

To prepare the data for AF-CBA, we made a couple of modifications. The out-
come values of the Graduate Admission data set were transformed into binary
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values by replacing every value below 0.5 with 0, and other values with 1. We
removed one feature from the Mushroom data set - ‘veil-type’ - for which all
instances have the same value assignment.

We used an automatic approach to establish the tendencies of features to promote
outcomes. All Mushroom and part of the Churn features consist of categorical
values. To simplify these assignments, those features were transformed into bi-
nary features. This was done by creating one binary feature for every categorical
value. This left us with data sets that consist only of binary and continuous fea-
tures plus a binary outcome. For every feature, we measured its correlation with
the two outcome values in the data set. When a feature has a positive correlation
with outcome value s, we assumed that td(v) = s for value 1. In all other cases,
we left td(v) undefined. For dimensions - the continuous features - we used a
similar approach. When a dimension has a positive correlation with outcome s,
we assumed every value v that is greater than value v′ to be more favorable for
outcome s.

Every row of data was transformed into a case. The feature values of an instance
were represented as a fact situation: a list of pairs, (F,v), where F is the feature
and v the value for that instance. A case is then a pair Case(F,o), where F is the
fact situation, and o the outcome value for that instance. Per data set, we created
one case base - a list of cases - consisting of all instances.

5.1.2 Consistency

Before applying AF-CBA, we measured the consistency of the three case bases.
We say that a case base is inconsistent if and only if it includes cases X and Y
with outcome(X) = s and outcome(Y ) = s, such that X <s Y ; Y is at least as good
for outcome s as X . In other words, there is a case which received outcome s,
while its features are more favorable for the opposite outcome, outcome s, than
those of a case with outcome s. In that scenario, a new case F with the same
features as Y would be forced to receive both outcomes s and s according to the
model of precedential constraints. A case base is consistent if and only if it is not
inconsistent.

For our implementation, the Mushroom case base appeared to be consistent.
This was different for the other case bases; for 20% of the Admission cases
and 45% of the Churn cases, a case that is more favorable for that outcome but
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received the opposite outcome could be found. This inconsistency seems caused
by a couple of ‘exceptional’ cases. As Table 5.2 shows, removing respectively
3.4% and 11.1% of the most inconsistent cases, results in consistent Admission
and Churn case bases.

Mushroom Churn Admission
percentage consistent cases 100% 55% 80%
n removals for consistent CB 0 (0%) 780 (11.1%) 17 (3.4%)

Table 5.2: Consistency statistics

5.2 Experiments

In this section, we will present the results of the conducted computer experi-
ments. Further interpretation and discussion of the results will be the topic of the
next section. Unless stated otherwise, the experiments use for every data set a
case base consisting of 500 randomly selected cases. For a single experiment, ev-
ery case in the case base is used once as the focus case, while the 499 remaining
cases are used as candidate precedents.

5.2.1 Selection of precedents

The first step to explaining a focus case for AF-CBA is to cite a best precedent.
In this experiment, we will take a look at this selection process. Prakken (2020)
defines a best precedent as a case in the case base that:

1. received the same outcome as the focus case
2. has a minimal set of relevant differences with the focus case compared to

other cases in the case base

Multiple cases can meet both criteria. Table 5.3 shows the average and standard
deviation of the number of best precedents that can be found.

When there are no relevant differences between a case and a precedent, the pro-
ponent has a trivial winning strategy in the argument game. In case of a trivial
winning strategy, the opponent can not distinguish the focus case from the prece-
dent. Technically, the opponent might be able to respond with a counterexample
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that has no relevant differences either. However, this move could simply be de-
feated by citing the precedent again; a transformation is not needed as the prece-
dent already has no relevant differences. The structure of the argument games
will, therefore, be the same for every best precedent. As shown by Figure 5.2, a
substantial percentage of focus cases has a trivial winning strategy, especially in
the Admission case base.

Mushroom Churn Admission
all cases 26.27 (29.20 9.16 (9.07) 105.92 (116.38) )
non-trivial cases 39.55 (28.53) 14.05 (9.44) 6.22 (5.18)

Table 5.3: Average and standard deviation of the number of best precedents

Figure 5.2: Percentage of focus cases with a trivial winning strategy per data set

The structure of the argument game can differ between best precedents that do
have relevant differences with the focus case. A simple measure with which
best precedents can be compared is whether any empty downplaying moves are
needed to defend against attacks on the citation. An empty downplaying move is
a way of saying that the differences between the focus case and precedent cannot
be downplayed by other features, but still do not matter. This could be seen as
the weakest form of attack.

To obtain an idea of whether there exist relevant differences between the best
precedents that are selected for a focus case, we divided selections of best prece-
dents into three groups: selections in which none, a part of or all of the prece-
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dents need empty downplaying moves. In Table 5.4, the distribution over these
three groups is shown for all focus cases with a non-trivial winning strategy.

Mushroom Churn Admission
no precedents need empty downplay 75.6% 42.8% 65.0%
some precedents need empty downplay 24.4% 56.7% 35.0%
all precedents need empty downplay 0.0% 0.5% 0.0%

Table 5.4: Percentages of focus cases with a non-trivial winning strategy for which none,
some or all of the best precedents need empty downplay

In only a single case of the Churn case base, was it necessary to use empty down-
playing moves to defend any of the best precedents. In other cases, the system
could at least defend part of the best precedents against the distinguishing moves
by pointing to compensating features.

5.2.2 Resulting outcomes

The resulting explanations should express to the user whether the focus case
is forced and if not, under which assumptions the outcome would be forced
(Prakken 2020). The necessary assumptions are expressed in the argument game
in the form of downplaying moves. If all downplaying moves are considered
valid; either because they are part of definitions added as top-level information
or because the user finds them acceptable, the citation is said to be justified,
meaning that the focus case can rightfully adopt the outcome of the precedent.

For the Admission case base, a typical explanation of this form could look like
the one below. In the explanation, dimension D (x/y) denotes that on dimensions
D, the focus case has value x and the precedent value y.

Outcome ‘Admitted’ is forced if: Compensates {University Rating
(0.25/0.0), SOP (0.38/0.25), LOR (0.5/0.25), CGPA (0.27/0.14)}, can
downplay Worse{GRE Score (0.1/0.24)}

Given this explanation, the user can decide whether the amount with which
the student scored better on University Rating, SOP, LOR and CGPA offers
sufficient compensation for the lower score on GRE.
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The Mushroom case base provides us with less compact results, such as the
following example (feature values are abbreviated for reasons of space):

Outcome ‘Poisonous’ is forced if: pSubstitutes{spore-print-color: w,
cap-surface: y, odor: y, ring-type: e, habitat: p, stalk-root: ?, bruises: f,
stalk-surface-below-ring: k, stalk-color-above-ring: p, gill-color: b, ring-
number: o, gill-size: n} & cCancels{ring-type: p, bruises: t, ring-number:
t, stalk-color-above-ring: w, cap-shape: b, habitat: m, stalk-surface-below-
ring: s, gill-size: b, odor: n}, can downplay: MissingPro{stalk-shape: e,
gill-color: r, cap-surface: s, cap-color: p, spore-print-color: r, stalk-root:
b} and cSubstitutes{ring-type: p, bruises: t, ring-number: t, stalk-color-
above-ring: w, cap-shape: b, habitat: m, stalk-surface-below-ring: s, gill-
size: b, odor: n} & pCancels{spore-print-color: w, cap-surface: y, odor: y,
ring-type: e, habitat: p, stalk-root: ?, bruises: f, stalk-surface-below-ring:
k, stalk-color-above-ring: p, gill-color: b, ring-number: o, gill-size: n},
can downplay: NewCon{cap-shape: x, cap-color: n, stalk-shape: t}

5.2.3 Playing devil’s advocate

Even more interesting than explanations of correct predictions, may be to see
what the explanation system tells us in case of an incorrect prediction. For this
experiment, we used every case of the case bases again once as a focus case, but
now we switched its outcome to the opposite - the incorrect outcome. As Figure
5.3 shows, the number of focus cases for which a trivial winning strategy exists
is far lower when the outcome is incorrect. For a consistent case base, such as
the Mushroom case base, this number is zero.

For the cases without a trivial winning strategy, we investigated whether there
was a difference in the argument games when the outcome was incorrect com-
pared to correct. Figure 5.4 shows what percentage of the total number of differ-
ences that were pointed at in a game consists of defense features: features that
support the downplaying moves. A percentage of 50% would mean that on aver-
age every feature in a distinguishing attack by the opponent, can be downplayed
by one defensive feature.

As the bar-plot shows, the relative number of defense features is lower for the in-
correct outcomes for all three case bases. For the Churn case base this difference
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Figure 5.3: Percentage of focus cases with a trivial winning strategy per data set for
correct and incorrect outcomes

is less than 10%, while the percentage of defense features decreases for the other
two case bases with more than 50%.

5.2.4 Adding top-level information

An interesting property of AF-CBA is that it allows the addition of top-level
information to the explanation system. The system can incorporate this informa-
tion in the downplaying moves.

An eye for an eye

A simple rule that we could add is that all features are of equal importance. This
would mean that for every feature that causes a relevant difference, one compen-
sating feature needs to be presented to downplay the attack.

As in the previous paragraph, we wanted to measure how the system handled
correct, as well as incorrect inputs. Therefore, we generated one argument game
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Figure 5.4: Average percentage defense features of all differences in a game for correct
and incorrect outcomes

for the actual outcome, and one for the opposite (incorrect) outcome of every
focus case. For an argument game, a precedent was randomly selected from the
selection of best precedents.

For this experiment, we did not allow for empty downplaying moves - an eye
must be compensated by an eye - and only considered a downplaying move suc-
cessful if it contained at least the number of compensating features as the attack.
Figure 5.5 shows the percentage of outcomes that was considered justified in this
experiment, meaning the cited precedent could be defended against all attacks
and was thus part of the grounded extension.

For all case bases, more than 80% of the correct outcomes was considered jus-
tified with this eye-for-an-eye rule. Incorrect outcomes were accepted less fre-
quently, though for the Admission and Churn case base still more than 30% of
the time.

Differences in the importance of features seem to form a problem for this ap-
proach. A feature that has a negligible positive correlation with the outcome is
treated in the same way as a pro-feature that correlates strongly.
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Figure 5.5: Percentage justified outcomes for the correct and incorrect outcomes using
the one-one rule

Correlation game

In an attempt to address this problem, we set up a new experiment making use
of some sort of correlation game. The set up was identical to the previous ex-
periment, except the measurement of successful downplay. The success of a
downplaying move was this time dependent on whether the collective impact of
its features - measured as their summed absolute correlation - was at least equal
to the collective impact of the features used in the distinguishing move. If the
collective impact appeared to be less, the downplaying move was considered
invalid, making the outcome of the focus case to be considered unjustified.

As Figure 5.6 shows, the correlation game did not result in a substantial improve-
ment compared to the eye-for-an-eye approach. The percentages of justified
outcomes are nearly identical.
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Figure 5.6: Percentage justified outcomes for the correct and incorrect outcomes using
the correlation game

5.2.5 Using actual predictions

In the experiments so far, we have considered the output of AF-CBA when pre-
sented with only correct or only incorrect predictions as input. In an actual ap-
plication, however, the system would receive the predictions of another machine-
learning model as input. It would be interesting to see whether the system re-
sponds differently to the specific instances that another model predicts incor-
rectly. In this final experiment, we will compare the percentage of focus cases
for which a trivial winning strategy exists given correct and incorrect predictions
of another classifier.

We first made a selection of classifiers to test which models perform best on our
data sets. We selected three classifiers which are currently most popular in practi-
cal applications: DecisionTree, Support Vector Machine and Naive Bayes (Das
and Behera 2017). We also added a popular meta-algorithm used in combination
with a DecisionTree, named AdaBoost. Finally, we added a white-box classifier,
in the form of a Logistic Regression. We used built-in classifiers from the Python
sklearn library. Details about the models can be found in Appendix B.
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Per data set, every model was trained on a random selection of 80% of all data
and tested on the remaining 20%. We measured the accuracy of a model by
dividing the number of correct predictions by the total number of predictions. To
improve the reliability of the results, averages over ten runs on random selections
of the data were used.

The analysis made clear that there exist multiple models that reach 100% pre-
diction accuracy on the Mushroom data set. Testing AF-CBA with the inputs
of such as model, would result in the exact same experiment we conducted be-
fore (Table 5.3). We, therefore, only continued this experiment with the Churn
and Admission data set. On the Churn data set, AdaBoost performed with an
accuracy of 80.2% best. The logistic regression model was most accurate on
the Admission data set, prediction 92.9% of the instances correctly. The perfor-
mances of all models can be found in Table 7.2 in Chapter 7.

For this experiment, we used - again - 500 instances per data set. As we wanted
to measure the predictions of the classifiers on unseen data, we applied 5-fold
cross-validation. This means that we split the set into five test sets of 100 in-
stances. Per set, the 400 remaining instances constituted the case base and were
used for training the classifier. In this way, we measured the predictions of the
classifier and corresponding output of AF-CBA for all 500 instances.

Figure 5.7 shows the percentages of focus cases with a trivial winning strategy
for correct and incorrect predictions. As we can see, this percentage is substan-
tially higher for correct predictions on both data sets.

When we compare Figure 5.7 with Figure 5.3, we see that the percentage of
trivial winning strategies is higher for incorrect predictions than for incorrect
outcomes. This could be explained by the fact that an instance for which the out-
come is difficult to predict for another classifier, will likely be more challenging
to judge correctly for AF-CBA as well.

5.3 Discussion

Implementing the approach of Prakken (2020) offered a couple of interesting
results. First of all, we found that for a substantial part of the focus cases, a
trivial winning strategy existed for the correct outcome. When there was no
trivial winning strategy available, almost every case could still be defended with
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Figure 5.7: Percentage of focus cases with a trivial winning strategy per data set for
correct and incorrect predictions of the classifier. Adaboost was used for the churn

predictions, a logistic regression for the admission predictions.

a non-empty downplaying move. The system was clearly less positive in case
of incorrect outcomes. For the incorrect outcomes, a far lower number of trivial
winning strategies existed, and the relative number of defense features was lower.
For the Churn and Admission set, we saw that the percentage of trivial winning
strategies also appeared to be lower for incorrect predictions. Although lower,
AF-CBA could still find a trivial winning strategy for about 40% of all incorrect
predictions.

The ‘raw presentation’ of the outcomes of the explanation system in the Ad-
mission case base seemed comprehensible for a human user. With many more
features, however, such as in the Mushroom case base, this was no longer the
case.

After adding a simple rule as top-level knowledge, the system considered cor-
rect outcomes more often justified than incorrect outcomes. There seemed to be
no relevant difference between using the eye-for-an-eye or correlation rule. Al-
though the system clearly showed sensitivity for the correctness of the outcomes,
the percentages still leave room for improvement.
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In the following sections, five technical limitations of the current approach are
discussed. In the final section, we will discuss a more fundamental challenge for
AF-CBA.

5.3.1 Best and better precedents

The definition of a best precedent defined by Prakken (2020) allows many cases
to qualify (Table 5.3). The simplest solution to pick one of those for the argu-
ment game would be to use random selection, as was done in some of the experi-
ments. However, there might be differences between the best precedents which
make certain citations to be preferred above others. This can especially be rel-
evant when there is no trivial winning strategy. When there is a trivial winning
strategy, all of the best precedents have no relevant differences with the focus
case at all, leaving the opponent without relevant possibilities to attack the cita-
tion. For those focus cases, it does not make a difference for the structure of the
argument tree which of the best precedents is selected.

As became clear (Table 5.4), a substantial part of the focus cases with non-trivial
strategies has a selection of best precedents of which some are in need of empty
downplaying moves in the argument game, while others are not. This gives the
impression that it could be valuable to sharpen the definition of a ‘best prece-
dent’.

5.3.2 Separation of factors and dimensions

Prakken (2020) makes a distinction between factors and dimensions. Factors
are defined as features with boolean values, such as yes/no or male/female. Di-
mensions are all features that can take more than two values, such as age. He
acknowledges that, at first sight, it seems that factors are simply a special case of
dimensions with only two values 0 and 1 where 0 < s 1 and 1 < s′ 0.

After that, he rejects this idea, arguing that we do not always want to regard
one value of a factor as pro-s, and the other as con-s. As an example, he uses
the factor bribed. Suppose that the presence of this factor in a lawsuit would
mean that the defendant made others do something for him or her by giving
them money. The presence of this factor (represented as outcome 1), would be a
pro-factor for the plaintiff. However, the absence of the factor bribed (outcome
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0), does not seem to count as a factor con the plaintiff; it seems neutral with
respect to that outcome. Prakken (2020), therefore, concludes to treat factors and
dimensions differently.

This ‘neutral state’ of a value does not seem unique to factors. Suppose we
would have the feature bribed, but this time as a dimension representing the
amount of money that was paid to bribe others. In that case, a high amount
would clearly favor the plaintiff, whereas an amount of 0 seems neutral with
respect to that outcome.

Both of these scenarios, however, do not seem to pose problems for the expla-
nation system given the way Horty (2019) treats dimensions. Using his strength
ordering, we do not need to indicate whether a value favors a particular side. All
we need to know is how the impact of the value relates to that of the other pos-
sible values. This is clear in both examples; the higher the number, the stronger
the case for the plaintiff.

Separating factors from dimensions, on the other hand, does seem to have unde-
sired consequences. In the argument game, factors and dimensions cannot help
each other by defending against distinguishing moves. The effect of this is very
clear in the Admission case base, which exists of six dimensions and a single fac-
tor. Whenever the factor is used in a distinguishing move, the proponent needs
to answer with an empty downplay move, independent of how well the dimen-
sion values could compensate for this. An example of such a situation is shown
below.

Outcome ‘Not admitted’ is forced if: cSubstitutes{} & pCancels{}, can
downplay: NewCon{Research}

In such scenarios, the distinction between factors and dimensions seems prob-
lematic. A user would like to know whether any of the other features can com-
pensate for the difference, independent of whether that compensation comes
from factors or dimensional features.
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5.3.3 Added value of the counterexample

A citation of a precedent can not only be attacked by pointing out any differ-
ences, but also by citing a counterexample (Prakken 2020). A counterexample is
a case from the case base with the opposite outcome of the focus case and prece-
dent. This seems an interesting addition, as humans tend to prefer contrastive
explanations (Miller 2019); explanations that tell you not just why P, but why P
instead of Q.

In AF-CBA, the proponent can attack a counterexample by transforming the
precedent into a case with no relevant differences with the focus case using
downplaying moves. This handling of counterexamples, unfortunately, does not
give the user information about how the precedent and counterexample relate to
each other, nor how the counterexample relates to the focus case. Moreover, the
transformation into a case with no relevant differences using the downplaying
moves does not add information that was not in the game already. All relevant
differences are pointed out by the MissingPro, NewCon and Worse attacks, after
which the downplaying moves show whether the precedent can be defended
or not. The questions whether the distinguishing moves can be downplayed
and whether the counterexample can be downplayed, will always receive the
same answer. This gives the impression that counterexamples should be applied
differently.

5.3.4 Feature overload

As stated by Molnar (2019), the interpretability of example-based methods
stands or falls by the comprehensibility of a single instance in the data set. To en-
able users to comprehend an instance, the features must not only be meaningful
but also limited in number.

In the ‘raw’ example outputs, we observed a substantial difference in compre-
hensibility between the output for the admission set - consisting of just seven fea-
tures - and the mushroom set, which is rich in features. Possibly the implemen-
tation could be improved by using a partial ordering on the categorical features,
instead of transforming them into binary ones. However, also in that scenario,
every case consists of 22 features. It seems necessary to look for possibilities to
decrease the number of features used in the method or presented to the user.
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5.3.5 Inconsistencies

When transforming the data sets into case bases, we found that both the Churn-
and the Admission data set were inconsistent for our implementation. This
means that while using the case base, focus cases exist for which AF-CBA
would find a trivial winning strategy for both outcomes.

This seems to be problematic. The existence of a trivial winning strategy is the
highest form of confidence in the prediction the system can express. A system
that confidently supports prediction p, as well as p, will and should not consti-
tute much trust.

A possible solution could be to restrict the usage of AF-CBA to consistent data
sets. However, for our only consistent case base - the Mushroom set - we found
that classifiers could learn to predict instances with 100 % accuracy. This gives
the impression that the class of data sets that are relevant for our purposes but
also consistent may be limited. Therefore, we will suggest a different solution in
the next chapter.

5.3.6 Explaining or comparing?

Apart from the technical challenges that this concrete implementation of AF-
CBA faces, there seems to be a more fundamental challenge as well. Instead
of explaining how a black-box model comes to a prediction, AF-CBA explains
whether a different, more interpretable model would justify the prediction made.
As a result, the explanation can fully deviate from the way the prediction model
works; it is almost like we are comparing the predictions of two different mod-
els.

As this type of explanation system is more concerned with justifying the black
box than with explaining it, we will from now call this approach a justification
system. There seem to be a couple of disadvantages to applying justification
systems. First of all, the construction we obtain feels artificial and may confuse
end users. A model we do not know about is in the lead, while some other model
is explaining its own reasoning - who to trust? Many of the reasons why we want
an explanation - such as building trust, learning from the prediction model and
debugging - may continue to exist in this construction.

Moreover, the explanation system must be worse than the prediction model.
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Otherwise - as Rudin (2019) lined out - the explanation system would make the
prediction model redundant. Given that the explanation system is worse, the
system might distract the user from following correct predictions of the black-
box.

Although the system does not explain the inner workings of the black box, it
does present extra information to the user, which may lead to new insights. For
example, when ‘grey zone’ decisions need to be made, a user could consider the
information from the argumentation model to make a better-informed decision.
Besides, we cannot claim that the explanation system is just a separate classifier,
as AF-CBA takes the prediction of the black box as the starting point.

All in all, we can conclude that the added value of the current justification is
not self-evident and needs further experimentation. In the next chapter, we will
investigate whether we can improve the justification system by searching for
solutions to the technical limitations found. In addition, we will explore two new
directions which diverge from the justification approach taken in AF-CBA.
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6. A new argument framework

In this chapter, we will build on Prakken (2020) and try to come up with solu-
tions for the limitations found. In the first three sections, we will suggest adjust-
ments to the original justification system and propose a new abstract framework
of argumentation. The changes in approach will be motivated per topic. After
that, we will investigate two new directions that aim to close the gap between the
CBA-system and the prediction model.

6.1 Combining factors and dimensions

In the previous chapter, we argued that a sharp distinction between factors
and dimensions is problematic. When factors and dimensions play in ‘differ-
ent leagues’ within the argument game, it is impossible to compensate a worse
dimension with a factor, and visa versa. In this proposal, we eliminate this dif-
ference and treat factors and dimensions equally. All value assignments are still
represented as pairs of the form (d,v), where d is the dimension and v the value
for that instance. In case of a factor - a binary feature - v can only take two possi-
ble values: 0 (absence) and 1 (presence).

As the running example, we will reuse part of our Churn scenario. In this sce-
nario, we have a small data set with information about three previous customers
(Table 6.1).

We also assume knowledge of the tendencies of the features to promote out-
comes. We define a dimension as a pair d( f , t), where f is the name of the
feature and t ∈ {o,o} its tendency. When t is equal to outcome o, d is called
a pro− o dimension: the higher the value on feature d, the more outcome o is
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customer gift high-cost present website churn
Miss Hill 1 0 0 5 0
Mister Nash 1 1 1 3 1
Mister Wang 0 0 1 6 0

Table 6.1: Churn example data set

promoted. As before, we assume that gift, present and website are pro-Stay;
High-cost is assumed to be pro-Churn.

We transform every instance of the training data into a case, a pair (F,o), where
F denotes the fact situation and o the outcome. We can represent the case for
Miss Hill as:

Hill = ([(gift, 1), (high-cost, 0), (present, 0), (website, 5)], Stay)

To refer to elements of cases, we will introduce some extra notation. We say
OutcomeC to denote the outcome of case C. For case C, we define ProC as a
list of all feature names f for dimensions ( f , t) in which OutcomeC is equal to
t. ConC denotes the list of all feature names f for dimensions ( f , t) in which
OutcomeC is unequal to t. For dimension d and case C, ValueC(d) refers to the
value of C for d.

Suppose that we have some new customer, Miss Jale (Table 6.2). Miss Jale is
our focus case: we do not know her decision yet, and so she is the focus of our
prediction task.

customer gift high-cost present website churn
Miss Jale 0 0 1 3 ?

Table 6.2: Churn example focus customer

As we do not know the outcome yet, we represent the focus case simply as a fact
situation:

Jale = [(gift, 0), (high-cost, 0), (present, 1), (website, 3)].

To reason about the outcome of the focus case, we need a way to compare the
focus case to other cases. For this purpose, we define two types of differences be-
tween the focus case and the precedents: negative differences (ND) and positive
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differences (PD). ND are equal to the relevant differences in AF-CBA and repre-
sent differences which make the focus case less likely to imitate the outcome of
the precedent.

Definition 4. [Negative differences (ND)] Let F be a focus case and P a precedent.
The set ND(F,P) of negative differences between F and P is defined as follows.

ND(F,P) = { f ∈ ProP |ValueP( f ) > ValueF( f )}∪{ f ∈ ConP |ValueP( f ) <
ValueF( f )}}.

The negative differences between our focus case Jale and Hill, ND(Jale,Hill),
are: {gift, website}. Both are features in ProHill for which the value of Hill is
higher than that of Jale - making Jale less likely to imitate Hills decision to stay.

PD are the opposite differences and describe the differences which make the
focus case stronger for the outcome.

Definition 5. [Positive differences (PD)] Let F and P be two cases. The set
PD(F,P) of positive differences between F and P is defined as follows.

PD(F,P) = {{ f ∈ ProP |ValueP( f ) < ValueF( f )}∪{ f ∈ConP |ValueP( f ) >
ValueF( f )}.

There is one positive difference between Jale and Hill: present. Hill was not
present at the latest customer event, while Jale was. We call this a positive differ-
ence as it makes Jale more likely to imitate the decision of Hill to stay.

The forms of attack towards the citation of a precedent, as shown in Figure 6.1,
will be similar to but simpler than those of Prakken (2020). As we no longer
apply different rules for factors, two of the possible distinguishing moves - Miss-
ingPro and NewCon - no longer apply.

A precedent can still be attacked by a Worse move, pointing out any negative
differences. The proponent can defend against this attack by playing a Compen-
sates move, stating that the positive differences can compensate for the negative
differences. As in Prakken (2020), a Compensates move may be empty, while
Worse has to include at least a single feature.

So far, our approach can be seen as a special case of AF-CBA in which we apply
factors as dimensions. However, in AF-CBA, counterexamples can also attack
precedents. Counterexamples will play a different role in our argument game, as
will be explained in the next section,



CHAPTER 6. A NEW ARGUMENT FRAMEWORK 59

Figure 6.1: Structure of the attack and defense of the citation in the argument game

6.2 Promoted counterexamples and winning
precedents

In the previous section, we omitted the counterexample as a possible attack on
the precedent. In this proposal, counterexamples will have a different position
within the argumentation framework. Instead of treating them as abstract entities,
we will enable the properties of the counterexamples to influence their roles in
the argument framework. To achieve this, we promote the counterexamples; they
will be treated equally to the precedents. Any case - independent of whether
its outcome matches the prediction of the focus case - can be used as the first
citation of the proponent.

We now have as many precedents as the case-base size and need a method to
find the best, or winning, examples. An intuitive approach is to select the cases
that are most similar to the focus case for this purpose. In machine learning, this
approach is known as a k-nearest neighbors model. Such a model bases a new
prediction on the k nearest neighbors of the case in the feature space.

Interestingly, the selection of precedents in Prakken (2020) can be seen as a vari-
ation on the nearest neighbors algorithm in which a distinction is made between
relevant differences (negative differences) and other differences (positive dif-
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ferences). His definition of a best precedent attempts to minimize the distance
in feature space for negative differences while ignoring the feature differences
that make the new case even more likely to obtain the precedent’s outcome. This
refined notion of distance from Prakken (2020) seems promising; it enables us to
find examples that would be overlooked in a nearest neighbors approach - they
would be too far away in absolute feature space.

As was shown in the previous chapter, important differences can exist between
cases within the selection of best precedents as defined in Prakken (2020). His
definition allows every case with a minimal set of relevant differences with the
focus case to be selected as precedent. We want to sharpen this definition in such
a way that only the best examples from these precedents remain.

It seems difficult to improve the definition without having extra information
about the importance of features. We could, for example, choose the best prece-
dent with the minimal number of differences with the focus case. Although this
might be better than random selection, it is not completely satisfying. There can
be multiple cases with the same number of differences that are not equally strong
precedents. Besides, a lower number of differences does not guarantee the case
to be a better example; two small differences can be less important than a single
big difference.

We, therefore, suggest an approach which takes an estimation of the importance
of every feature into consideration. The method that is used for these estimations
is unspecified; expert opinions, automatic feature importance extractions or other
methods can be used. The only requirement is that the estimations assign to
every feature a real, non-negative number - the weight (w) - which meets the
following two conditions:

1. the importance of a feature f for instance i can be calculated as:

Importancei( f ) = n(Valuei( f ))∗w( f ) (6.1)

where n(Valuei( f )) represents the normalized value - such that all feature
values fall between 0 and 1 - of x for feature f .

2. if Importancei(x) equals Importancei(y) ∗ n, then x is estimated to be n
times as important as y

Using this information, we will quantify the differences between cases. The
importance of a difference on feature f between case i and j can be calculated
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as:

ImportanceD(i, j)( f ) = abs(Importancei( f )− Importance j( f )) (6.2)

In other words, the importance of a difference is calculated as the absolute dif-
ference in the importance of the feature values for those cases. By summing
up these values of importance, we can calculate for every precedent the total
importance of the negative- and the positive differences with the focus case.

ImportanceND(i, j) =
length(ND)

∑
i=1

importanceD(i, j)(NDi) (6.3)

ImportancePD(i, j) =
length(PD)

∑
i=1

importanceD(i, j)(PDi) (6.4)

This results in one value representing the strength of the Worse attack, and one
value representing its compensating strength.

Coming back to our example, we assume the four features to have the following
weights (Table 6.3):

gift high-cost present website
0.2 0.9 0.7 0.15

Table 6.3: Weights of the features

To calculate the difference in feature importance between Jale and Hill, we first
have to normalize their feature values. We determine the minimum (MIN) and
maximum (MAX) value for that feature from all cases in the case base. We then
calculate the normalized value as:

n(v) =
v−MIN

MAX−MIN
(6.5)

The results of this calculation are shown in the first two rows of Table 6.4.

Now we can calculate the importance of the feature values for Jale and Hill by
multiplying the normalized values with the corresponding weights. As a final
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step, we take the absolute difference between the values of Jale and Hill to
obtain the importance of their differences. Table 6.4 shows the results of these
calculations.

category gift high-cost present website
n(ValueJale) 0 0 1 0
n(ValueHill) 1 0 0 0.75
ImportanceJale 0 0 0.7 0
ImportanceHill 0.2 0 0 0.11
ImportanceD(Jale,Hill) 0.2 0 0.7 0.11

Table 6.4: Normalized feature values, feature importance and difference importance for
Jale and Hill

We define the balance of a Compensates attack to be the importance of the
Worse attack subtracted from the importance of the Compensates attack. The
higher the value of this balance, the better the precedent can compensate for
the negative differences with positive ones. In the case of Jale and Hill, the
ImportanceND(Jale,Hill) is 0.2 + 0.11 = 0.31. As the importance of the posi-
tive differences, ImportancePD(Jale,Hill), is 0.7, the balance of Hills compen-
sating move is positive: 0.7 - 0.31 = 0.39. We say that compensating move A is
stronger than compensating move B, when the balance value of A is higher than
that of B.

With these new definitions, we can set up the argument framework in such a
way that it can distinguish between the precedents. More specifically, we want
the framework to make a selection of winning precedents, which consists of all
precedents that are part of the grounded extension.

First, we add the following rule to our argument framework - enabling us to
distinguish between compensating moves:

A attacks B if A and B are compensating moves and A is a stronger
compensating move than B

This rule causes the precedents with weaker compensating moves to be excluded
from the grounded extension. Note that the application of this rule is not re-
stricted to compensating moves that defend the same precedent, a compensating
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move defending precedent P, can attack any weaker compensating move defend-
ing precedent P′.

There may also be cases that do not even need a compensating move because
they lack any negative differences. Then we can apply the a fortori rule of Horty
(2011). To prioritize these cases, we also add the following rule:

A attacks B if A is a precedent with no negative differences with the
focus case and B is a compensating move

This rule causes precedents that don’t have any negative differences to elimi-
nate all precedents that have such differences, by attacking their compensating
defenses.

Figure 6.2: Final argument framework of the Churn example. Green arguments are part
of the grounded extension.
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Applying these rules to the example, we obtain the argument framework pre-
sented in Figure 6.2. Hill is the only winning precedent as her compensating
move is stronger than those of the other two customers. Given a finite case base,
there must always be at least one winning precedent.

Proposition 2. Let CB be a non-empty, finite case base and F a focus case. Then
the set of winning precedents cannot be empty.

Proof. Suppose that there are no winning precedents. Then all precedents must
be attacked by arguments that are in the grounded extension. The only argument
that can attack a precedent is a Worse move, so all precedents must be attacked
by a Worse move. As a Compensates move may be empty, it can always attack a
Worse move. Thus, every Worse move will be attacked by a Compensates move,
defending the precedent. These Compensates moves must all be attacked; other-
wise, the precedents will be in the grounded extension, which is in contradiction
with the supposition that there are no winning precedents. There are two ways in
which a Compensates move can be attacked:

1. A Compensates move can be attacked by a stronger Compensates move
2. A Compensates move can be attacked by a precedent with no negative

differences with the focus case

With attack 1) the Compensates move that attacks another Compensates move,
must be strictly stronger. This means that there must be at least one Compen-
sates move that is not attacked by any other Compensates moves, as it is the
strongest. When a Compensates move is unattacked, the corresponding prece-
dent must be part of the grounded extension as well, because the only argument
attacking it (Worse) is successfully defeated. This would mean that the set of
winning precedents is not empty. In case of attack 2) the precedent that attacks
the Compensates move must be a winning precedent; it has no negative differ-
ences so is not attacked by any arguments. Both scenarios contradict the suppo-
sition that there is no winning precedent, so we conclude that the set of winning
precedents cannot be empty for finite case bases.

When all winning precedents have the same outcome, this outcome will be the
justified prediction for the focus case. Later, we will explain what the system
will do when there are multiple winning precedents with different outcomes.
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6.3 Dealing with inconsistencies

Suppose that we add a new customer to the example case base, Mister Trent
(Table 6.5).

customer gift high-cost present website churn
Mister Trent 1 0 1 7 1

Table 6.5: Churn example extra customer

Mister Trent received a gift, was present on the latest customer event and is
not part of a high-cost category. He also logged in to the website seven times.
Based on our information about the tendencies of features, Trent seems a clear
candidate to stay. However, Trent decided to churn. As Figure 5.1 from the
previous chapter shows, divergent customers such as Mister Trent also exist in
the actual Churn Telecom data set.

Cases that received a surprising outcome, like customer Trent, can be problem-
atic for our approach. Even though Trent decided to churn, we don’t want our
model to predict for similar customers that they will churn; we have all reason
to believe a similar customer would stay. Unfortunately, these surprising cases
tend to have a big impact on the argument game. Suppose that we would gen-
erate an argument game for Jale after Trent is added to the case base. We can
see that all differences between Trent and Jale are positive; they make Jale even
more likely to churn. Trent would be the only winning precedent, attacking all
compensating moves.

To deal with this problem, we transform our case base into a consistent one. As
defined in previous chapters, we call a case base consistent if and only if there
are no cases X and Y with outcome(X)= s and outcome(Y )= s, such that X < sY ;
Y is at least as good for outcome s as X .

In our example, the addition of Mister Trent causes inconsistency in the case
base. Both Hill and Wang stayed, while Trent, who churned, has a profile that
is at least as good as theirs for the outcome Stay. To achieve a consistent case
base, we iteratively remove the most inconsistent cases until we are left with a
consistent case base. The inconsistency of a case is measured as the number of
times the case can be used to show an inconsistency with another case. For Trent
this would be the largest number (2), so his case would be removed from the
case base. The process ends there, as we are left with a consistent case base.
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The algorithm we use to check the consistency and count the number of inconsis-
tencies per case is shown in pseudo code below:

consistent = True
inconsistent_dict = {}
for case in CB do

for other_case in CB with outcome(case) 6= outcome(other_case) do
if other_case is at least as good for outcome(case) as case then

consistent = False
inconsistent_dict[other_case] += 1

end if
end for

end for
return consistent, inconsistent_dict

The function returns a binary variable ‘consistent’ stating whether the current
case base is consistent. As long as this variable is False, we iteratively remove
the most inconsistent case from the inconsistent_dictionary. Note that this algo-
rithm is not deterministic; when multiple cases have the same number of incon-
sistencies, one of those cases is randomly chosen to be removed.

Now that we have introduced the final concept of the Argument Game, we can
give a formal account of the argumentation framework.

Definition 6. Given a finite, consistent case base CB and a focus case f /∈CB, our
abstract argumentation framework AAF is a pair 〈A,attack〉 where:

• A =CB∪M, where M =
{Worse(c,x) | x 6= /0 and x = ND(c, f )} ∪
{Compensates(c,y,x,b) | y=PD(c, f ), x=ND(c, f ) and b=Balance(c, f )}
• A attacks B if and only if:

– B ∈CB and A is of the form Worse(B,x), or
– B is of the form Worse(c,x) and A is of the form Compensates(c,y,x,b),

or
– A is of the form Compensates(c,y,x,b) and B is of the form

Compensates(c′,y′,x′,b′) and b > b′, or
– A ∈ CB and B is of the form Compensates(c,y,x,b) and A has no

negative differences with the focus case: ND(A, f ) = /0.
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6.4 Feature selection

Large numbers of features form another challenge for the approach. In our run-
ning example, we considered only four features, making the comparisons com-
prehensible for humans. For real machine learning applications, the number of
features in the data can be ten, or even a hundred times as much. Problems that
absolutely need large numbers of features seem unsuitable for our approach.
For other problems, we might be able to reduce the number of features to an
acceptable level.

In this work, we will use an automatic approach to feature selection. The idea
of this approach is to eliminate as many features as we can without deteriorat-
ing the predictive model. We put this into practice by removing one by one the
features that have the least importance, measured by the absolute weights of a
logistic regression. We continue this process until the accuracy of the prediction
model starts decreasing. The process is illustrated in the pseudo code below:

old-accuracy, new-accuracy = 0, 0
while old accuracy <= new accuracy do

old-accuracy = new-accuracy
new-accuracy = the model’s current accuracy
if new-accuracy ≥ old-accuracy then

best features = current features
end if
measure the importance of the current features
select the feature f with the least importance
remove feature f from the data set

end while
return best features

In the algorithm above the elimination of features stops as soon as the accu-
racy decreases. In certain applications, increased comprehensibility of the cases
might outweigh a small drop in accuracy. The designers of the system could then
play around with the number of features and prediction accuracy to find the best
balance.
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6.5 Presenting justifications

In this section, we will discuss how the formal framework can be used to present
justifications to a user. Concretely, we will design an interface in which the
system justifies predictions for the Churn data set. We apply this interface in a
user experiment, which is the topic of Chapter 8.

The generated argumentation framework for a focus case represents an exten-
sive overview of the interaction between all cases in the case base. This large
framework could be applied to enable the user to cite an example case by itself,
creating an interactive system in which the user can ask contrastive questions,
such as ‘Why did customer C receive outcome o, whereas customer C′ received
outcome o‘?’. We will leave this to future work and continue with a simpler pre-
sentation. Aiming to disclose the most relevant information to the user, we will
only allow cases to be presented when they are best performing precedents for
that outcome in the game. Given a precedent P = (F,o), P is a best performing
precedent for F if it would be a winning precedent in an argument game for F
in which only precedents with outcome o are allowed. In other words, P is the
strongest precedent for its outcome.

Using a case base consisting of only best performing precedents, we can gen-
erate a grounded game in a similar fashion as AF-CBA does. The proponent
begins by citing a precedent P that received the same outcome as the prediction
for focus case F . Then there are two possibilities: either the precedent P has
no negative differences with the focus case. This would make it a trivial win-
ning strategy; the opponent is directly out of moves. We call a precedent with no
negative difference with the focus case forced.

Alternatively, the proponent can point out the negative differences between P
and F by playing a Worse move. The proponent has one way of replying to this
move: with a Compensates attack. This move is always available, as it is allowed
to be empty. Now, there are two ways in which the opponent could attack the
Compensates move. Either by citing a precedent with no negative differences
with the focus case or by attacking the Compensates move with a stronger one.
In both cases, the opponent wins the game, declaring the prediction to be unjus-
tified. When both options are not available to the opponent, the citation of the
proponent is justified. In that case, the counterexample is unjustified, unless its
Compensates move is exactly as strong as that of P. The counterexample cannot
both have no negative differences and be unable to attack P with the focus case,
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as we work with a consistent case base.

The size of the difference between the best examples from both outcomes varies;
sometimes it is a close call, and as we saw, there is even a scenario possible in
which cases for both sides are winning precedents. To nuance the judgment of
the justification system, we can make it non-binary. In our work, we used four
output options of the system: convincing, somewhat convincing, somewhat
unconvincing and unconvincing. Given two non-forced best-performing prece-
dents same and counter, where same has an outcome equal to the prediction and
counter unequal, we would say the prediction is somewhat convincing if either:

Balancesame = Balancecounter

or both:

a) Balancesame > Balancecounter
b) ImportanceND(same) > ImportanceND(counter) or ImportancePD(same) <

ImportancePD(counter)

In the last scenario, same has a greater balance but more negative differences
or less positive differences with the focus case than counter. Symmetrically,
the system would output ‘somewhat unconvincing’ when we replace a) with
Balancesame < Balancecounter.

Together with one of the four judgments, we present a textual explanation to
communicate the reasoning used by the system. These explanations are gen-
erated with templates. All templates can be found in Appendix A. Figure 6.3
shows what the output of the system looks like for customer Sanders.

Along with the specified output, we support the judgment by presenting the cases
and comparison - the positive- and negative differences - using visualizations.
The weights allow us to present the importance of the features by means of fea-
ture summary visualizations. Bars represent the direction and the strengths of
the impact of a feature. The width of the bar of feature f for case c is established
relative to Importancec( f ). The color represents whether a higher value on this
dimension favors the outcome Churn (red) or Stay (green). The original feature
names were transformed into little phrases. Figure 6.4 shows what the presenta-
tion of Mister Sanders looks like.

Finally, we represent comparisons in similar fashion as cases, using small tem-
plates for the text. The bar color represents whether the difference makes the fo-
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Figure 6.3: Judgment and explanation for example customer Sanders

Figure 6.4: Example presentation of a case

cus case more likely to Churn (red) or Stay (green) than the precedent. The size
for a difference between case c and p is established relative to abs(Importancec( f )−
Importancep( f )). Figure 6.5 shows the comparison with the winning precedent
for our example customer.

For reasons of space and in an attempt to prevent information overload, only
one precedent together with its comparison is shown in the interface at the same
time. The user can switch between the two precedents - same and other - using a
button. The complete structure of the screen in the interface is shown in Figure
6.6.
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Figure 6.5: Positive and negative differences between focus case Sanders and precedent
Green. In this example, Sanders has only positive differences with Green

6.6 Two alternative directions

In the previous chapter, we have discussed the disadvantages that come with the
fact that the justification system operates - to a large extent - independently from
the black-box model. In this section, we will propose two ideas that aim to close
the gap between the predictive model and the explanation system. The clean-
est solution would be to replace the black-box model by an interpretable CBA-
system. The first section will discuss this option. In the second section, we will
discuss a possibility inspired by the work of Weerts, Ipenburg, and Pechenizkiy
(2019). In this approach, we hold on to the black box but make an attempt to
monitor what is going on inside of it.

6.6.1 Classifying independently

Instead of using our proposed CBA-system to explain predictions of some
machine-learning model, we can also apply the system as an independent classi-
fier. Like a k-nearest neighbors algorithm, the method searches for examples in
the training data. Instead of using some distance function to find nearest neigh-
bors, our system creates an Abstract Argumentation Framework to select the
most suitable, winning, precedents. In contrast to AF-CBA, our new proposal
does not need a prediction from another model as input. It can independently
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Figure 6.6: User interface justification system. Top left, the focus case is presented.
Below, the prediction of the black-box model and the output of the justification system.
On the right side, the precedent and its comparison with the focus case are shown. The
button in the left button corner enables the user to switch between the two precedents.

make predictions of the outcome for new cases by selecting the most common
outcome among the winning precedents.

When the explanation system takes over the role of the classifier, the explana-
tions become faithful to what is actually going on in the classifier. This would
be an ideal solution in terms of transparency but might affect the accuracy in a
negative way. In the next chapter, we will investigate how well this explainable
classifier can perform on the Churn, Mushroom and Admission data sets.

6.6.2 Monitoring the black box

According to our current state of knowledge, not every black box can be re-
placed by an interpretable system without diminishing the performance. In this
section, we will discuss whether we can gain further insights into black boxes
while still using a model-agnostic approach.

Prakken (2020) assumed two forms of access to the black box: access to its train-
ing data and access to predictions of the model, given input instances. Weerts,
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Ipenburg, and Pechenizkiy (2019) interestingly combined these two; they col-
lected the predictions of the black box for the instances in the training data. With
this information, a new dimension can be added to our argumentation; we now
know the outcomes of similar instances ánd whether the model predicted these
outcomes correctly. This allows us to focus our reasoning on the question: ‘Is
the prediction reliable?’ instead of ’Does our system justify the prediction?’

To display the outcomes and predictions for cases in the neighborhood of the
focus case, Weerts, Ipenburg, and Pechenizkiy (2019) used a two dimensional
scatter plot. In their plot, the distance between two cases roughly represents
the distance in feature space according to some distance function. We adopted
their approach to a large extent, and applied a two-dimensional scatter plot to
visualize the neighborhood of the focus case. As our distance function, we used
the importance of features weighted by the logistic regression. To transform
the weighted feature values into two dimensions, a forced-directed graph was
created, using the Python forcelayout library. This method applies a physical
model of attraction and repulsion (Gibson, Faith, and Vickers 2013) to reduce
dimensions. It aims to lay out a two-dimensional graph optimally, representing
the actual spacing in multi-dimensional feature space.

We decided to include the five nearest neighbors in weighted feature space in
the plot. These neighbors were selected from the complete case base. We con-
sciously did not use the consistent case base, as this undermines the goal of the
system to present the reliability of the model in the neighborhood. The number
of cases to display was chosen arbitrarily, attempting to find a balance between
completeness and selectivity. Experimentation with different numbers is left for
further research.

We used colors to represent the outcome of the neighbors and the correctness
of the model’s prediction. The color of the border of the square represented
whether the customer stayed (green) or churned (red). The color inside the
square represented whether the outcome was correctly (white) or incorrectly
(black) predicted by the black box. Figure 6.7 shows an example of the plot for
customer Sanders.

To enable the user to compare the neighbors, we made the presentation interac-
tive. The neighbours were presented as buttons. Pressing a button, enabled the
user to view the details of the neighbor and its positive and negative differences
with the focus case. This information, as well as the focus case and prediction of
the model, were presented in the exact same way as in the justification system.
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Figure 6.7: Example monitor presentation for a customer from the Churn set

The monitor system did not output an explicit argumentation, nor suggest a con-
clusion. It was left to the user to apply its own argumentation on the information.
It would be interesting to investigate the possibilities of formalizing argumenta-
tion based on this information in future research.

We ended this chapter with three directions of applying CBA for the challenges
we face regarding black boxes. In Chapter 7, we will further investigate the
possibility of creating a CBA-classifier. Chapter 8 presents the results of a small
user experiment we conducted, comparing the justification- and monitor method.
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7. Evaluation of classifiers

In this chapter, we will investigate the potential of an explainable classifier,
which builds on the concepts found in Prakken (2020). In addition, we aim to
establish the impact of feature selection and filtering the case base. We will take
a broad perspective on CBA and move away from the formal frameworks of ar-
gumentation we have discussed so far. In this way, we hope to test the suitability
of the concepts applied in the argumentation frameworks.

For the experiments, the Mushroom, Churn and Admission data sets are reused.
In the first section, we compare the classification performances of different vari-
ations on the algorithm presented in the previous chapter. These tests will be
performed with a case base consisting of all the training data, as well as with a
consistent case base. After that, we select the best performing algorithms and use
those to investigate whether feature selection can help improve the outcomes.

7.1 Comparing algorithms

The algorithm introduced in the previous chapter adopts three concepts from the
approach of Prakken (2020):

C1) A precedent without any negative differences is always preferred over a
precedent with negative differences

C2) Negative differences make a precedent less suitable than positive differ-
ences

C3) Negative differences can be compensated by positive differences

Although these concepts apply intuitively within a law context, it is unclear
whether these rules are suitable for reasoning about different kinds of machine-
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learning problems. All three concepts rely strongly on the idea that we can make
a successful distinction between negative and positive differences, which may
not be the case for every data set.

To obtain a better understanding of their suitability, we will define variations
on the algorithm in which we drop one or multiple of these concepts. After the
name of every algorithm, we list which concepts are applied. Let us first summa-
rize the original algorithm, which we will call priority + balance.

Algorithm 1) priority + balance (C1, C2 and C3)

1. If there are precedents with no negative differences with the focus case
(a) Predict the most common outcome among these precedents

2. Else
(a) Select all precedents with a maximal weighted balance (positive

differences - negative differences) with the focus case
(b) Predict the most common outcome among these precedents

We would like to test whether C1, assigning priority to precedents with no neg-
ative differences, improves performance. Therefore, we define the algorithm
balance, which leaves out the priority rule:

Algorithm 2) balance (C2, C3)

1. Select all precedents with a maximal weighted balance (positive differ-
ences - negative differences) with the focus case

2. Predict the most common outcome among these precedents

We are also interested in testing whether C3, to compensate for negative dif-
ferences with positive ones, improves performance. We define an alternative
algorithm, which ignores the positive differences and only tries to minimize
negative differences:

Algorithm 3) minimize negative (C1, C2)

1. select all precedents with minimal weighted negative differences with the
focus case

2. predict the most common outcome among these precedents

Finally, we would like to test the performance when we drop the concept of
positive and negative differences. For this purpose, we define the following
nearest neighbors approach:
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Algorithm 4) nearest neighbor ()

1. select all precedents with minimal weighted differences with the focus
case

2. predict the most common outcome among these precedents

To compare the performance of the different algorithms, we measured their per-
formance on the complete Mushroom (8124 instances), Churn (7032 instances)
and Admission (500 instances) set. The data sets are divided into a random se-
lection of 80% training data and 20% test data. The training set is used to run a
logistic regression to determine the weights of the features. Using these weights,
the tendency of features is determined and all training instances are turned into
cases, making up the case base. The performance of an algorithm is then mea-
sured on the test set using either the entire case base or a consistent subset - the
result after running the consistency algorithm. The performance is measured
as the accuracy, calculated as the numbers of correct predictions divided by the
total number of predictions. To obtain a more stable evaluation, we repeat this
whole process ten times and report the average outcomes. Table 7.1 shows the
results of the experiment.

Algorithm Mush Churn Admission
Priority + balance (all) 1.000 (0.00) 0.716 (0.03) 0.907 (0.03)
Balance (all) 1.000 (0.00) 0.691 (0.03) 0.888 (0.03)
Minimize negative (all) 1.000 (0.00) 0.733 (0.03) 0.907 (0.03)
Nearest neighbor (all) 1.000 (0.00) 0.717 (0.02) 0.917 (0.03)
Priority + balance (consistent) 1.000 (0.00) 0.738 (0.04) 0.903 (0.03)
Balance (consistent) 1.000 (0.00) 0.727 (0.04) 0.884 (0.03)
Minimize negative (consistent) 1.000 (0.00) 0.756 (0.03) 0.902 (0.03)
Nearest neighbor (consistent) 1.000 (0.00) 0.746 (0.02) 0.913 (0.02)

Table 7.1: Mean and standard deviation of the accuracy of the different algorithm. The
Mushroom and Churn data set were run 10 times. Due to the small size, the Admission

set was run 100 times. Per run 80% training - and 20% test instances are selected
randomly

All of the algorithms reached a 100% accuracy when trained on 80% of the
Mushroom data set. Note that this set is already consistent, so the consistency
algorithm did not change the case base in any way. Minimize negative - which
minimizes negative differences while ignoring positives - appeared to score
best on the Churn set. Nearest neighbor performed best on the Admission set.
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The Balance algorithm - which minimizes negative and maximizes positive
differences - was least successful.

The consistency algorithm appeared to pay off for the Churn set; all case-based
methods performed better using a consistent case base. Interestingly, the algo-
rithms slightly worse with a consistent case base on the Admission set.

7.1.1 Comparison with non case-based classifiers

All the algorithms in the previous experiment used some form of case-based
reasoning. To compare their performances, we measured the accuracy of the
five different classifiers introduced in Chapter 5 using the same set-up. Table 7.2
shows their results.

Logistic Regression 1.000 (0.00) 0.798 (0.01) 0.929 (0.02)
Decision Tree 1.000 (0.00) 0.728 (0.01) 0.898 (0.03)
Naive Bayes 0.958 (0.01) 0.726 (0.01) 0.859 (0.03)
Support Vector Machine 1.000 (0.00) 0.796 (0.01) 0.922 (0.02)
Adaboost 1.000 (0.00) 0.802 (0.01) 0.916 (0.02)

Table 7.2: Mean and standard deviation of the accuracy on the five alternative
classifiers. The Mushroom and Churn data set were run 10 times; the Admission set 100

times. Per run 80% training - and 20% test instances are selected randomly.

Compared to the best alternative classifiers in the selection, the case-based mod-
els reached a lower accuracy on the Churn set (4.6% less), a slightly lower accu-
racy on the Admission set (1.2% less) and an equal accuracy on the Mushroom
set.

7.2 Feature selection

In the previous section, we only considered performance in terms of accuracy.
As we aim to create an explainable system, comprehensibility is as important.
One way to improve the comprehensibility is to limit the number of features
used in the model. Decreasing the number of features does not have to lead to
a sacrifice in performance. In fact, feature selection is a known tool to improve
classification performance (Dash and Liu 1997).
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7.2.1 The selection algorithm

The subject of feature selection is a field of study in itself; extensive experimen-
tation falls beyond the scope of this research. In this work, we will only consider
the effects of using a simple algorithm introduced in the previous chapter.

When we applied the feature selection algorithm, we noticed that the algorithm
sometimes terminates at a local maximum, which is not the global maximum. In
that case, the accuracy decreases when the least important feature is removed,
so the selection algorithm stops. However, when even more features would be
removed, the accuracy would increase again. To deal with this problem, we re-
laxed the condition for continuing searching for the best set of features. Instead
of terminating searching as soon as there is some drop in accuracy, we slightly
changed the algorithm to:

old accuracy, new accuracy, best accuracy = 0, 0, 0
relaxation = 0.05
while old accuracy <= new accuracy + relaxation do

old-accuracy = new-accuracy
new-accuracy = the model’s current accuracy
if new accuracy ≥ best accuracy then

best accuracy = new accuracy
best features = current features

end if
measure the importance of the current features
select the feature f with the least importance
remove feature f from the data set
(make the case base consistent)

end while
return best features

The relaxation value allows the algorithm to continue, even though the previous
feature removal resulted in a small drop in accuracy. Note that the algorithm still
returns a set of best-performing features; the if-statement makes sure the return
variable is only updated when the performance is at least as good.

The relaxation value of 0.05 was chosen arbitrarily. A low value can minimize
computing power by forcing the algorithm to stop when continuing seems un-
likely to result in any improvement. When this is of no concern, a higher value
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could be used, allowing the algorithm to consider every number of features.

A second short-cut we applied to save computing power, is to drop a bunch of
features whose importance falls below a certain threshold. This was especially
useful in the Mushroom data set, consisting of 116 binary features. Of these fea-
tures, 58 appeared to be at least ten times less important than the most important
feature, and these did not contribute to the performance. We removed these all
together, before starting the selection algorithm.

We must note that removing features can cause inconsistencies in the case base.
This can be illustrated by the fact that removing all features, would cause an
inconsistency for every two cases with a different outcome; their features are
then at least as good for the outcome of the other case. When we want to use the
feature selection algorithm with a consistent case base, the consistency algorithm
must be applied after every feature removal.

7.2.2 Applying feature selection

For the feature selection process, we used the combination of the case-based
classifier and consistency setting that performed best as the prediction model:
we used Nearest neighbor on the complete Mushroom- and Admission set and
Minimize negative on a consistent Churn case base. For the selection algorithm,
we used all 500 instances of the Admission set, and a random selection of 1000
instances from the Churn and Mushroom set.

Mushroom Churn Admission
Number of features before 116 30 7
Best accuracy before 1.000 (0.00) 0.756 (0.03) 0.917 (0.03)
Number of features after 17 8 4
Best accuracy after 1.000 (0.00) 0.792 (0.01) 0.933 (0.02)

Table 7.3: Number of features and accuracy on the best algorithm (Nearest neighbor for
Mushroom and Admission, Minimize negative for Churn) before and after feature

selection

Table 7.3 shows the number of features and accuracy on the best algorithm be-
fore and after the selection. A substantial decrease in features was possible for
all three data sets. The performance on the Mushroom set stayed the same, while
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the feature selection benefited the performance of the Churn (+ 3.6%) and Ad-
mission (+ 1.6%) classifiers.

Classifier Mushroom Churn Admission
Priority + balance (all) 1.000 (0.00) 0.751 (0.01) 0.909 (0.03)
Balance (all) 1.000 (0.00) 0.612 (0.01) 0.875 (0.04)
Minimize negative (all) 1.000 (0.00) 0.751 (0.01) 0.912 (0.03)
Nearest neighbor (all) 1.000 (0.00) 0.753 (0.01) 0.913 (0.02)
Priority + balance (consistent) 1.000 (0.00) 0.790 (0.01) 0.933 (0.02)
Balance (consistent) 1.000 (0.00) 0.743 (0.01) 0.929 (0.02)
Minimize negative (consistent) 1.000 (0.00) 0.792 (0.01) 0.930 (0.03)
Nearest neighbor (consistent) 1.000 (0.00) 0.790 (0.01) 0.932 (0.02)
Logistic Regression 0.999 (0.00) 0.786 (0.01) 0.926 (0.02)
Decision Tree 1.000 (0.00) 0.759 (0.01) 0.899 (0.03)
Naive Bayes 0.990 (0.00) 0.709 (0.01) 0.876 (0.03)
Support Vector Machine 1.000 (0.00) 0.782 (0.01) 0.921 (0.02)
Adaboost 1.000 (0.00) 0.793 (0.01) 0.912 (0.02)

Table 7.4: Mean and standard deviation of the accuracy on the complete data sets after
feature selection using the four case-based methods, with all data and with a consistent
CB, and five different classifiers. The Mushroom and Churn data set were run 10 times;
the Admission set 100 times. Per run 80% training - and 20% test instances are selected

randomly

Finally, Table 7.4 shows the performances of all models after feature selection.
After feature selection, both the Churn and Admission set performed best with
a consistent case base. Interestingly, the feature selection did not benefit the
non-case-based classifiers; their performances slightly diminished.

7.3 Discussion

In this chapter, we experimented with different algorithms applying none, some
or all of the three concepts derived from AF-CBA. The performance of the dif-
ferent algorithms appeared to be relatively similar. Balance performed worst. In
contrast to Priority + balance and Minimize negative, this algorithm does not pri-
oritize minimizing negative differences; it simply tries to maximize the weighted
balance (positive differences minus negative differences). This seems to suggest
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that minimizing negative differences is more important than maximizing positive
ones.

Feature selection appeared to be highly effective. It caused the data instances to
become substantially more comprehensible. In the Mushroom data set more than
85% of all features could be removed. Moreover, feature selection also helped
to improve the accuracy on the Churn and Admission set. Creating a consistent
case base appeared to be a successful approach as well. After feature selection,
both the Churn and Admission set performed better on all case-based algorithms
using a consistent case base.

The Mushroom data set appeared not too suitable for comparing the systems;
all algorithms performed perfectly. A motivation for selecting this data set was
to compare AF-CBA to the approach of Čyras et al. (2019), called AA-CBR.
We implemented AA-CBR and found that, after feature selection, the system
reached 100% accuracy as well. Further analysis revealed that the Mushroom
data set consists - after our feature selection - of only 38 unique cases. There-
fore, for every focus case, there can be found multiple exact copies in the case
base; every case-based algorithm should be well suited to find those. As AA-
CBR only works with binary features, the other data sets are unsuitable for the
comparison. It would be interesting to compare the two approaches in future
research.

In this chapter, we only considered predictive performance in terms of accuracy.
Admittedly, this is a limited representation of the performance of the models. It
would be interesting to consider other metrics - such as recall and precision - and
information about the precedents the algorithms base their analysis around. Po-
tentially this could lead to further insights about the applicability of the different
concepts.

Another limitation of the experiment was the usage of data sets. On all three
data sets, a logistic regression performs fairly well. Replacing this classifier is
not our goal; it seems unlikely that a case-based system can be considered more
interpretable than a logistic regression. Further research must reveal whether
case-based classifiers could also replace black boxes when other white boxes fail
to do so.



83

8. User experiment

8.1 Introduction

An online user experiment was conducted to gain an understanding of the inter-
action between users and the systems. Concretely, we wanted to investigate two
questions:

1. How do users perceive the Case-Based Argumentation explanation sys-
tems in terms of convenience, trust and insight?

2. How do the Case-Based Argumentation explanation systems influence the
response of users towards the model’s predictions?

In the experiment, two types of Case-Based Argumentation systems were used: a
justification- and a monitor system. To compare these systems, we also applied
two other ways of presenting the predictions: with absence of an explanation
(the control condition) and with an explanation in the form of feature impor-
tance.

In this chapter, we will first introduce the experimental case. After that, we will
formulate our research hypotheses, describe the method used and present the
results. In the final section, we will discuss the implications of the results and the
validity of the experiment.

8.2 Experimental Case

In the experiment, the participants played the role of a telecommunication em-
ployee. Their company aimed to retain as many customers as possible while
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minimizing their cost. To achieve this, the company wanted to offer a special dis-
count to the customers who were most likely to churn: cancel their subscription.
During the experiment, the participants were in the first stage of this process;
their task was to estimate the likelihood of customers to churn.

The participants were assisted by a predictive model that made a binary predic-
tion (stay or churn) for every customer. In the control condition, the participants
only saw the customer profile and the prediction of the model. In the three other
conditions, the CBA-systems or feature-importance method provided them with
extra information that could help them make their estimation.

8.3 Hypotheses

The nature of the experimental research is exploratory, as the two CBA-systems
have - to the best of our knowledge - not previously been tested on users. To
investigate whether there seem to be differences between the presentation meth-
ods in the interactions with users, we will first assume that all methods lead to
the same results. By testing these null-hypotheses, we aim to detect potential
differences.

We formulate four hypotheses concerning the first research question to estab-
lish whether the users perceive the ways of presenting predictions differently.
First, we articulate three null-hypotheses, stating that all forms of presenting are
perceived equally:

Hypothesis 1. The users will consider the four forms of presenting the predic-
tions equally convenient.

Hypothesis 2. The users will perceive predictions of the model in the four forms
of presenting the predictions as equally trustworthy.

Hypothesis 3. The users will consider the four forms of presenting the predic-
tions as equally insightful.

We would also like to investigate whether the level of familiarity with machine
learning of the user is related to the way the different systems are perceived.
Therefore, we articulate the following null-hypothesis:

Hypothesis 4. Users who are unfamiliar with machine learning will rate the



CHAPTER 8. USER EXPERIMENT 85

presentation systems in the same way as users who are familiar with machine
learning.

In addition to the way the users perceive the methods, we are also interested in
the way the methods influence their estimations. What we would like to know
is whether the estimates of the users are better when using certain explanation
methods. However, it is nontrivial what being a better estimation on a scale from
0 to 100 entails. Even though we do know that a customer stayed, this does not
mean that 0 (will very likely stay) is the most reasonable estimation for that
customer. It may be that 30%, or even 80%, of the customers with the same
profile would, in fact, churn. If we knew what the best estimation would be, the
role of a user would arguably be superfluous.

Instead of defining ‘best estimations’, we can base our analysis on the way the
estimations relate to the predictions of the black-box model. During every task,
the participants receive a binary prediction of the model: Stay or Churn. Using
the prediction and the information presented by the presentation method, the
participants make their own estimation on a scale. A user who would strictly
follow the binary prediction of the model would estimate 0 in case of the predic-
tion ‘Stay’ and 100 in case of ‘Churn’. Any points on the scale removed from
these ends could be seen as an expression of doubt towards the prediction. Using
this notion, we could say that a user can add value to the predictions of a model
by expressing doubt in cases of incorrect predictions while supporting correct
predictions.

First, we will analyze whether the general amount of doubt expressed towards
the predictions is equal among the presentation methods:

Hypothesis 5. The users will express the same amount of doubt towards the
predictions of the model for the four ways of presenting the predictions.

After that, we will take a look at the difference in doubt between correct and
incorrect predictions. We call the extra doubt that is expressed in cases of incor-
rect predictions the added doubt. We will test whether the added doubt is equal
among the presentation methods with the following null-hypothesis:

Hypothesis 6. The users will express the same amount of added doubt towards
incorrect predictions of the model for the four ways of presenting the predic-
tions.

For the two CBA-systems, we would also like to establish whether the content
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of the information the system shows influences the amount of doubt the users
have towards the predictions of the model. We formulate the following null-
hypotheses, stating there is no difference in doubt:

Hypothesis 7. The users will have the same amount of doubt towards predic-
tions when the justification system supports the prediction, as when it does not.

Hypothesis 8. The users will have the same amount of doubt towards predic-
tions when the monitor system shows supporting evidence for the prediction, as
when it does not.

8.4 Method

Participants A total of 20 persons participated in the experiment; 10 of them
identified themselves as a woman, 9 as a man, and one preferred not to indicate
gender. Their ages ranged between 22 and 57, with an average age of 28. The
sample was high-educated; 17 of the participants completed a Bachelor’s Degree,
7 also a Master’s Degree, and 1 finished a PhD. Nearly all participants, 19, were
at least a little bit familiar with machine learning; 16 participants were at least
a little bit familiar with explaining machine learning. Table 8.1 shows their self-
reported familiarity.

Familiarity with
machine learning explaining machine learning

Not at all 1 4
A little bit 7 6
Somewhat 4 7
Very 8 3

Table 8.1: Frequencies of self-reported familiarity with (explaining) machine learning in
the sample

Participants were recruited via the social circle of the researchers. They did not
receive any remuneration for their participation.

Materials Informed consents were used containing the time the experiment
would take - approximately 40 minutes - and the rights of the participants: confi-
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dential and anonymous processing of their information, and the right to quit the
experiment at any point. The informed consent can be found in Appendix A.

During the experiment, two types of questions were asked: estimation- and re-
view questions. Estimation questions were asked to complete one task and read:
‘How likely does it seem to you that name will churn?’. After every condition,
consisting of one practice, and four actual tasks, the participants were asked the
following three review questions:

• How convenient did you find your task during this section?
• How trustworthy did you consider the predictions to be during this sec-

tion?
• How insightful was the information you received during this section to

you?

Responses to these questions were collected on a visual analogue scale; partic-
ipants specified their response by indicating a position along a continuous line
between two endpoints. Figure 8.1 shows an example of such a scale. The sub-
mitted position on the scale results in a number between 0 (Not likely at all) and
100 (Very likely).

Figure 8.1: Example of the estimation task for the customer Mister Sanders

Visual analogue scales have been found to be preferred over categorical scales
(Funke and Reips 2012). They do not restrict answers to a small number of re-
sponse options, which enables us to detect little differences. Moreover, the con-
tinuous data collected with scales can be used for a greater number of statistical
tests (Gerich 2007).

The explanation systems were implemented in Jupyter Notebooks using Python.
A supporting user interface was built using the tkinter library. For the Churn
case scenario, we used the Telco Churn data set Telco Customer Churn (2018),
which was introduced in Chapter 5. In the previous chapter, we saw that the
AdaBoost model appeared to be most accurate on this data set. This model was
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applied as the black-box predictive model, using the sklearn library. The same
16 customers were used for all estimation tasks. These customers were classified
into four groups of four. Within these groups, three customers received a correct
prediction of the black-box model and one an incorrect.

The justification- and monitor systems were presented to the user in the inter-
active interface, as described in Chapter 6. The feature importance condition
contained only part of this information: all information regarding the focus cus-
tomer. Figure 8.2 shows what the information in this condition looks like for
the example customer. In the presentation form in which an explanation was
absent, the feature importance information - represented as colored bars - was
left out as well. Table 8.2 presents an overview of the properties of the different
presentation methods.

Figure 8.2: Example of the information presented in the feature importance condition

Presentation method Customer
profile

Model
prediction

Feature
importance

Comparisons
with previous
customers

No explanation X X
Feature importance X X X
Justification X X X X
Monitor X X X X

Table 8.2: Properties of the presentation methods. A cross (X) represents that a property
is present within the method

After the experiment, participants completed a short survey. The survey mea-
sured their age, gender, level of education, level of familiarity with machine
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learning and level of familiarity with explaining machine learning. The survey
can be found in Appendix A.

Skype, Teams or Zoom - depending on the participant’s preferences - was used
to connect with the participants during the experiment.

Procedure The experiments were conducted via online video calls. During
these calls, the participants could perform the experiment by taking over the
control of the laptop of the researcher. The participants were allowed to ask
questions or give comments at any point of the experiment.

The general procedure of the experiment is visualized in Figure 8.3. First, the
participants were asked for their agreement to participate in the research with
an informed consent. After that, the experimental case and general set-up of the
experiment were introduced. All text used for explanation of the experiment to
the user can be found in Appendix A.

Figure 8.3: General procedure

Next, the experimental conditions started. There were four conditions; one for
every presentation method. Every participant took part in all of them. The pro-
cedure within these conditions, as visualized in Figure 8.4, was the same for
every condition. The participant first received an explanation of the condition.
After that, the participant practiced the task with one example customer. The
example customer used for the practice task was the same for all participants in
all conditions. After the example, the participants were prompted to express any
remaining questions. When they were ready, they started with the actual task, in
which they estimated the likelihood of churning for four customers.

The structure of a single estimation task is presented in Figure 8.5. The infor-
mation page showed the prediction from the black-box model, the profile of the
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Figure 8.4: Procedure experimental conditions

customer and possibly - depending on the condition - extra information. The
question page only consisted of the estimation question, as shown in the example
in Figure 8.1. Participants could switch between the information-page and the
question-page until they submitted an answer to the question.

Figure 8.5: Structure single estimation

The order in which the conditions were presented was randomly distributed over
all participants. The customer groups and conditions were randomly paired, such
that each customer group appeared equally often together with every condition in
the research.

8.5 Results

We analyzed the data using SPSS statistics version 25. The first section concerns
the analysis of the review scores (hypotheses 1-4). In the second section, the
churn estimations are analyzed (hypotheses 5-8).
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8.5.1 Reported convenience, trust and insight

Three one-way repeated measures analyses of variance (ANOVA’s) were used
to compare reported convenience, trust and insight of the four different explana-
tion methods. Figure 8.6 shows the average review scores from the sample per
method.

Figure 8.6: Average reported convenience, trust and insight per method. Error bars
show the 95% confidence interval.

Given the small sample size (20), a Shapiro-Wilk test was used to check for
a possible violation of the normality assumption. The Shapiro-Wilk statistics
indicated that the assumption of normality was supported for most distributions.
However, the assumption of normality was violated for reported trust using the
monitor method (p = .011), and insight using the monitor (p = .022) and feature
importance method (p = .037). Therefore, a more conservative p-value of .01
instead of .05 was used to conduct significance tests for these distributions.

The FMAX for the convenience- (1.47), trust- (1.59) and insight (2.58) test demon-
strated homogeneity of variances. Mauchly’s test indicated that the assumptions
of sphericity were not violated for the convenience and insight test, but was vio-
lated for the trust test. Therefore, the degrees of freedom for this ANOVA were
adjusted by multiplying them by the Huynh-Feldt Epsilon.
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The ANOVA results of the convenience test show that the sample reported some
methods to be more convenient than others, F(3, 57) = 4.84, p < .001, η2 =
.203, rejecting hypothesis 1. Pairwise comparisons revealed that the feature
importance method (M = 68.5, SD = 21.0) was reported to be significantly more
convenient than no explanation (M = 43.3, SD = 23.0).

The second hypothesis was also rejected, as the trust test-results show that the
sample reported predictions to be more trustworthy using some methods than
others, F(2.50, 47,46) = 7.42, p = .001, η2 = .281. Pairwise comparisons
further revealed that using the feature importance method (M = 57.2, SD = 24.5)
or the monitor method (M = 70.8, SD = 19.5) predictions were reported to
be significantly more trustworthy than during absence of an explanation (M =
44.5, SD = 22.9).

Finally, the insight test-results show that the sample reported some methods
to be more insightful than others, F(3, 57) = 16.68, p < .001, η2 = .467,
rejecting hypothesis 3. Pairwise comparisons revealed that the absence of an
explanation (M = 36.6, SD = 22.3) was reported to be significantly less insight-
ful than the presence of any of the three explanation methods: feature impor-
tance (M = 60.2, SD = 23.8), justification (M = 61.4, SD = 14.8) and monitor
(M = 75.0, SD = 14.8). Due to the conservative alpha value used, the monitor
method was not shown to be significantly more insightful than the justification
method (p = .023).

We also wanted to establish whether the methods were perceived differently
among participants with a different level of familiarity with machine learning.
Participants rated their familiarity on a scale of four: not at all, a little bit, some-
what or very familiar with machine learning. We used this scores to split the
sample into two: one group that is (relatively) unfamiliar with machine learn-
ing - members answered ‘not at all’ or ‘a little bit’ - and a group that is familiar -
members answered ‘somewhat’ or ‘very’. The unfamiliar group contained 8 par-
ticipants, the familiar group 12. Figure 8.7 shows the average cumulative scores
of convenience, trust and insight per method for the two groups.

Independent samples t tests were used to compare the cumulative scores of re-
ported convenience, trust and insight for the four methods from participants that
are unfamiliar with machine learning to those of participants that are familiar.
None of the t-tests was statistically significant, so we cannot reject hypothesis 4,
stating that methods are perceived equally among the two groups.
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Figure 8.7: Average cumulative score of convenience, trust and insight per method for
participants that are unfamiliar or familiar with machine learning. Error bars show the

95% confidence interval.

To sum up, the ANOVA results showed that:

1. The feature importance method was considered more convenient than the
absence of an explanation

2. The predictions of the model were considered more trustworthy when
using the feature importance or monitor method than in case of absence of
an explanation

3. The three explanation methods were considered more insightful than the
absence of an explanation

A t-test comparing the cumulative scores of participants that are unfamiliar with
machine-learning to the scores of familiar participants found no significant differ-
ences between the groups.
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8.5.2 Churn estimations

The second part of the analysis concerns the estimations the participants made
during the tasks. We transformed their estimates into variables representing the
amount of doubt participants expressed towards the predictions of the Black
Box. A participant that would have no doubt at all, was assumed to follow the
predictions of the model 100%. We call this response no_doubt, and define it as:

no_doubt(prediction) =
{

0, when prediction == ‘Stay’
100, when prediction == ‘Churn’

}
Now we can calculate the doubt towards a prediction for participant p as:

doubtp(prediction) = abs(no_doubt(prediction) – estimationp(prediction))

We used an ANOVA to test whether there is a general difference between the
explanation methods in the amount of doubt the sample expresses towards the
predictions. Table 8.3 shows the average amount of expressed doubt in the pre-
dictions per method, as measured within the sample.

no explanation feature importance justification monitor
M (SD) 28.8 (12.7) 25.3 (11.6) 31.5 (10.8) 26.7 (7.3)

Table 8.3: Mean and standard deviation of the amount of doubt per method

Boxplots and Shapiro-Wilk statistics indicated that the assumption of normality
was supported; Fmax was 3.049, demonstrating homogeneity of variances; and
Mauchly’s test indicated that the assumption of sphericity was not violated. The
ANOVA results did not give reason to reject null-hypothesis 5, stating that there
is no difference in the overall amount of doubt the sample expresses towards the
predictions throughout the different methods, F(3, 57) = 2.11, p = .109.

The previous test gave some insight into the general tendency to follow the pre-
dictions of the black box model per method. In an ideal scenario, the doubt
towards the prediction model would be high in cases of an incorrect prediction,
and low in cases of a correct one. To test whether we observe this behaviour, we
calculated the average doubt on correct and incorrect predictions separately for
each method. Then we calculated the added doubt for incorrect predictions as:

added doubt incorrect = average doubt incorrect - average doubt correct
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The higher the added doubt for incorrect predictions, the better the sample could
distinguish between correct and incorrect predictions of the black-box model.
Table 8.4 shows the average added amount of doubt for incorrect predictions per
method.

no explanation feature importance justification monitor
M (SD) 11.1 (4.3) 13.2 (4.1) 9.8 (5.2) 22.3 (4.4)

Table 8.4: Mean and standard deviation of the added amount of doubt for incorrect
predictions per method

We used an ANOVA to test whether the distributions in added doubt for incorrect
predictions differed significantly per method. All assumptions of normality,
homogeneity of variances and sphericity were met. The ANOVA results show
that null-hypothesis 6, stating that there is no difference in added amount of
doubt for incorrect predictions cannot be rejected, F(3, 57) = 1.43, p = .242.

Finally, we wanted to establish how the information presented by the CBA-
systems relates to the doubt users express towards the predictions. Our exper-
imental design makes the analysis of these questions challenging. We refrained
from manipulating the outputs of the CBA-systems, which resulted in uneven
numbers of data points per output category. Within a condition - consisting
of four customers - participants received certain outputs multiple times while
missing out on other possible outputs of the system. These disparities make the
structure of the data unsuitable for most statistical tests. Instead, we will base
our analysis on scatter plots, displaying all relevant data points, and confidence
intervals of the mean per output category.

The justification system provided three types of judgments towards the predic-
tion of the black box: ‘convincing’ (in 60 data points), ‘somewhat convincing’
(10 data points), or ‘unconvincing’ (10 data points). The fourth type of judg-
ment, ‘somewhat unconvincing’, did not occur within the selection of customers.
Figure 8.8 shows all doubt-scores measured per judgment of the system.

Optically, a trend seems to exists in the expressed doubt; the less convincing the
CBA-system judges the predictions, the higher the doubt. Table 8.5 shows the av-
erages and 97.5% confidence intervals per judgment. We can declare the amount
of doubt expressed presented with a ‘convincing’- and ‘unconvincing’ judgment
to differ significantly using an alpha of 0.05; their 97.5% confidence intervals do
not overlap. Hypothesis 7, assuming an equal amount of doubt towards predic-
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Figure 8.8: The amount of doubt expressed towards the predictions per judgment of the
justification system. The scatter-plot shows all 80 data points measured in this condition

during the experiment.

tions when the justification system supports the prediction as to when it does not,
must be rejected.

convincing somewhat convincing unconvincing
M (SD) 27.52 (18.1) 39.00 (14.38) 48.20 (17.4)
97.5% CI 22.15 - 32.89 26.79 - 51.21 33.41 - 62.99

Table 8.5: Mean, standard deviation and 97.5% confidence interval of the doubt
expressed per judgment of the justification system

The monitor system has less clear categories of output; the system does not make
any judgments but presents information about the five nearest neighbors to the
focus case. We chose to simplify the output into two percentages: the percentage
of neighbors which made the same decision as is predicted for the focus case,
and the percentage of neighbors for which the model predicted that decision
correctly. The higher both percentages, the more reassuring we would expect
the outcome to be for the model’s prediction. We multiplied the two percentages
to obtain one variable, representing how reassuring the output was. A 50% cut-
off point was used to classify the outputs as reassuring (above 50% or higher)
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or alarming (below 50%). The classification resulted in 35 reassuring and 45
alarming data points, presented in a scatter plot in Figure 8.9.

Figure 8.9: The amount of doubt expressed towards the predictions for reassuring and
alarming outputs of the monitor system. The scatter-plot shows all 80 data points

measured in this condition during the experiment.

When presented a reassuring output, all participants expressed a doubt below
50% towards the prediction. For alarming outputs, the doubt ranged up to 78%.
Table 8.6 shows the averages and 97.5% confidence intervals per category. With
a substantial difference - larger than ten doubt-scores - between the two confi-
dence intervals, we reject the final hypothesis and declare the amount of doubt to
differ significantly between reassuring and alarming outputs.

reassuring alarming
M (SD) 14.77 (9.65) 35.89 (19.85)
97.5% CI 10.95 - 18.60 29.02 - 42.76

Table 8.6: Mean, standard deviation and 97.5% confidence interval of the doubt
expressed with reassuring and alarming output of the monitor system
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8.6 Discussion

In this section, we will discuss the experimental results. We will complement
these results with comments participants made during and after the experiment.
After that, we will discuss the validity of the research.

8.6.1 Experimental findings

In this Churn experiment, we collected two types of information: review scores
and task data in the form of estimations. The review scores can give us insight
into how the users experienced the different systems. Within the sample, the
presentation of feature importance was considered most convenient. This re-
sult may be related to the fact that multiple participants remarked that the large
amount of information presented by the CBA-systems made it hard to process.
Though the time used per condition was not measured, the tasks using the CBA-
systems seemed to take substantially longer. It would be interesting to investi-
gate whether the information presented by the CBA-systems could be reduced or
be presented in a more convenient way.

The sample reviewed the predictions with all forms of explanations more trust-
worthy than without. Feature importance and monitor system were shown to
significantly increase the trust in the black box predictions. Within the sample,
the monitor system increased the trust the most. Some participants remarked that
the justification system did not feel trustworthy. Two reasons were mentioned for
this:

1. The example customers differ a lot from the focus case
2. It is unconvincing to base the judgment on only two examples

The justification system tried to minimize the negative differences while max-
imizing positive ones. This strategy made the system select examples of cus-
tomers who had almost no similarities with the focus case, but many positive
differences. This way of reasoning appeared unintuitive to some. As stated by
Sørmo, Cassens, and Aamodt (2005), the usefulness of CBR is dependent on
the ability of users to confirm the similarity assessment. Possibly, the trustwor-
thiness could have been increased by explaining the reasoning of the system in
more detail.
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Further explanation of the system might have also helped with regard to the
second reason. During the experiment, it was unknown to the users that the
examples came from a consistent subset of the case base, which information
might have increased their trust. Still, it may be the case that for some users,
reasoning with a small number of examples does not constitute trust.

Participants rated all three methods significantly more insightful than the ab-
sence of an explanation. The monitor system was rated most insightful. Com-
paring the scores of the CBA-systems, we see that the sample rated the monitor
system somewhat more positive on all three measures.

We found no significant differences between users familiar and unfamiliar with
machine learning. Though, the mean scores, as shown in Figure 8.7, seem to
suggest that a difference might be found with a larger sample. Unfamiliar partici-
pants rated the feature importance method highest, whereas the monitor system
was the favorite for familiar participants. This stresses the importance of testing
the explanation methods with potential users; plots might suit machine-learning
experts, but be less appropriate for other types of users.

The average amount of doubt expressed towards the estimations was similar for
the four methods. An ideal system would increase doubt in case of incorrect
predictions while supporting trust in correct ones. In this experiment, the added
doubt in case of incorrect predictions was largest when using the monitor system,
but no significant difference compared to the other methods was found. Further
experimentation using more test items or a larger sample is required to establish
their impact.

Within the sample, alarming sounds from the CBA-systems went along with
higher expressions of doubt towards the predictions. When the justification sys-
tem judged a prediction unconvincing, users expressed on average a doubt of
about 50%, choosing the middle ground between the two disagreeing systems.
This gives the indication that the model’s predictions and judgments of the justifi-
cation system were treated as equally important.

8.6.2 Validity of the experimental research

With the experiment, we obtained some insights into the suitability of the differ-
ent methods and uncovered points of attention for further development. Admit-
tedly, the experiment was small; both in sample size and in the number of tasks
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per system. The size of the experiment especially fell short for measuring the im-
pact of the systems on the task performance. Given the unpredictable behaviour
that sometimes occurs in the churn set, many estimations would be needed to
draw hard conclusions about the performance of the users. With a small selec-
tion, unfounded predictions might be rewarded by unexpected decisions. More
experimentation is needed to answer questions related to performance.

The brief exposure of the participants to the presentation methods might threaten
external validity. Only one practice example and four actual tasks were used per
condition. Besides, the participants did not receive guidelines on how to interpret
the information. The briefness of the exposure and lack of training might have
disadvantaged the systems consisting of larger amounts of information. More
extensive exposure to the systems could enable improved generalizations to the
long-term usage of the systems.
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9. Conclusion

This thesis aimed to investigate the applicability of CBA for the goal of making
machine learning more interpretable. In this final chapter, we will try to answer
the questions we posed in the beginning. Before we come to the main research
question, we will formulate an answer to all of the sub-questions. We end the
chapter with suggestions for future research.

9.1 Conclusions of the research

S1) What kind of method is applicable to generate feature information to be used
in AF-CBA?

In this work, we combined AF-CBA with the automatic generation of feature
information. Specifically, we used weights that were generated by a logistic
regression. The structure of the information created with the logistic regression
- assigning features a positive or negative weight - can easily be incorporated
in a CBA system. Furthermore, this approach is fast and does not require any
expertise on the problem.

This final benefit is, at the same time, a vulnerability of the approach. All fea-
tures are represented as numbers; we ignore their special properties and the rela-
tions they might have with other features. This simplification of the content may
lead to limitations in the reasoning of the system. We, for example, assumed that
the importance of a dimension has a linear relation with its value. This may be
an assumption you do not want to make. Furthermore, with our current approach,
we did not find much evidence for compensating negative differences by posi-
tive ones. It may be that an approach which specifies particular feature relations
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could support this idea. The method of Prakken (2020) allowed for the addition
of top-level (expert) information. In our current approach, expert knowledge
could be used to adjust the weights. It would be interesting to investigate the
possibilities for allowing more complicated forms of top-level information, such
as rules, as well.

All in all, using an automatic approach to generating feature information seems
applicable to AF-CBA. With this approach, a basis of quantitative information
about all features is efficiently generated. For some problems, this information
may be sufficient; for other problems, it could be a useful first step. A logistic
regression was found to be a suitable method for this, but other approaches could
be interesting to try out as well.

S2) Which cases should be selected to be used in AF-CBA?

Given all training data, we have to determine which instances to include in the
case base. The right selection of cases is dependent on the goal of the applica-
tion.

The goal of AF-CBA is to answer the question: is the prediction justified? In
order to answer this question, the system aims to base the argumentation on the
best examples that can be found in the training data. When such a system relies
on individual examples, it is hindered by the appearance of unexpected outcomes
within the training data. We see two possibilities to tackle this problem:

1. Filter the case base
2. Require the system to use multiple cases as evidence

In this work, we investigated the first option by applying an algorithm that au-
tomatically filtered the case base. The algorithm removes the most inconsistent
cases from the case base until all inconsistencies are removed. The first results
with this approach seem promising; the final performances on the Churn and
Admission data sets improved for all case-based classifiers.

S3) How to apply downplaying moves in AF-CBA?

In the argument game of Prakken (2020), downplaying moves are ways of ar-
guing that the differences between a focus case and precedent do not matter or
can be compensated. He distinguishes between different types of downplaying
moves: four for factors and one for dimensions. His formalization allows for
multiple orders of applying downplaying moves, possibly leading to different
results.
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Instead of tackling the problem of order, we changed the structure of argumen-
tation. The main reason for that was that the distinction between factors and
dimensions appeared unnecessary and caused problems in the reasoning. We
decided to treat factors equal to dimensions, which left us with only a single
downplaying move - removing the problem of order.

In addition, we argue that the success of defending a precedent should depend
on its relative strength compared to other available precedents, counterexamples
included. We used the automatically generated feature information to weight
the strength of downplaying moves. Using this strength ordering, we enabled
stronger downplaying moves to attack others. In this way, only the strongest
downplaying moves in the game can become part of the grounded extension.

In later experiments, we moved away from the formal structure of argumentation
frameworks. While we no longer used argumentation frameworks, the idea of
downplaying moves remained relevant; (how) can cases compensate for their
shortcomings as examples?

In our experiments, we did not find much evidence for the success of the con-
cept of compensation. The Nearest neighbor and Minimize negative algorithms,
which do not apply the concept of compensation, performed best. As stated at
the first sub-question, our method did not take any relations between the features
into account; all positive differences were assumed to be able to compensate
for all sorts of negative differences. Another approach that specifies specific
compensation relations between features might work out differently.

S4) What are the possibilities for closing the gap between AF-CBA and the pre-
diction model?

We distinguished between two approaches for eliminating this gap: removing
(S4.1) or monitoring (S4.2) the black box.

S4.1) Have interpretable CBA-systems potential for taking over black-box mod-
els?

Whenever possible in terms of accuracy, it is a cleaner solution to replace a black
box, then to explain it. When the explanation system and classifier become one,
the complete process becomes more transparent.

In our experiments, we saw that the CBA-systems performed comparably in
terms of accuracy to mainstream classifiers. We can, therefore, conclude that
black boxes could well be replaced by CBA-systems. However, on our data
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sets, other interpretable systems were also able to perform well. The potential
of case-based classifiers to replace black boxes on more complex problems can,
therefore, not be assessed based on our research. This also applies to the poten-
tial of AA-CBR, as the Mushroom data set did not appear to be a suitable test for
the system.

S4.2) Are there model-agnostic possibilities to incorporate further information
about the black-box model in CBA?

The work of Weerts, Ipenburg, and Pechenizkiy (2019) inspired us to include
a new source of information in the system: the predictions of the black box on
the training data. Using this information, the reasoning of the CBA-system can
be directed towards the black box. Displaying this information to users in a two-
dimensional plot was received well in the user experiment. The incorporation of
this information in the argumentation of the explanation system is left to further
research.

S5) To what extent are the explanations generated by the model suitable for
users?

In terms of the criteria specified by Miller (2019), the suitability for users can
be improved. The explanations do have a contrastive set-up, but the user can-
not pose contrastive questions itself. In addition, the systems do not adjust the
displayed information to the knowledge of the user. Lastly, the user experiment
made clear that the large amount of information presented by the CBA-systems
was difficult to process fully; this gives the impression that the explanations
should be more selective.

The user experiment showed that the justification- and monitor system were con-
sidered more insightful than the absence of an explanation. The sample rated the
monitor system higher on the scales of convenience, trust and insight than the
justification system. Conversations with the users made clear that the justifica-
tion system was considered unintuitive by some. The system minimized negative
differences while maximizing positive ones. This allowed the system to select
examples with few similarities with the focus case, as long as their differences
were positive. The dissimilarity between the focus- and example case evoked
distrust by some users.

With the small number of tasks - four per presentation system - no difference
could be demonstrated between the task performance using the explanation
systems. The results seem to hint at a better performance using the monitor
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system, but further research must reveal whether that is the case.

RQ) To what extent is CBA applicable for making machine learning more inter-
pretable?

CBA offers broad possibilities to machine-learning interpretability. In this work,
we moved from testing the concrete formal approach of Prakken (2020) to taking
a broader perspective on the possibilities of CBA. We distinguished between two
roles for CBA-systems: justifying or monitoring the predictions of a classifier.

The justification approach comes with some challenges. When it is applied as an
explanation system for a black box, the construction feels artificial; the predic-
tions of the black box are explained by presenting how an alternative, white-box
classifier would come to the same - or different - conclusion. The added value
of such a design does not speak for itself and needs further experimentation. A
cleaner solution would be to use the justification system as a classifier, justifying
its own predictions to the user. Further research could investigate whether there
are problems for which CBA approaches proof more suitable than the usage of
other white-box classifiers.

The monitor system - inspired by the work of Weerts, Ipenburg, and Pechenizkiy
(2019) - proved to be an interesting alternative. This system enables the user to
analyze the trustworthiness of predictions of the black box based on the local
feature space. Instead of functioning as a separate classifier, it tries to uncover
the strengths and vulnerabilities of the black box. The system could be valu-
able in assisting human judgment in high-stake decisions, exposing potential
weaknesses of the prediction model.

9.2 Future work

Many suggestions for future work have been made already. In relation to the
justification- and classification system, our first recommendation would be to
further investigate the suitability of concepts underlying the reasoning about
differences and similarities between data instances. Possibly, the addition of
extra information about the features could prove useful.

For the monitor system, we would recommend experimenting with presenting
different numbers of cases. This could be done in an interactive manner, allow-
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ing the user to ask for specific information. Besides, it would be interesting to
establish whether some explicit form of reasoning could be generated that can as-
sist the user. Finally, further user experimentation can identify the consequences
of the system on human decision making.
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A. Details user experiment

A.1 Informed Consent

You are invited to participate in a research project about Explainable Artificial
Intelligence. This experiment should take about 40 minutes to complete. Re-
sponses will be kept confidential and will be processed anonymously. Participa-
tion is voluntary and you have the option to quit the experiment at any point. If
you have any questions about the research, please contact the researcher Rosa
Ratsma (mail address).

A.2 Explanation experiment

In this experiment, you play the role of a telecommunication employee. Your
task in the company is to decrease the number of customers that churns: cancels
their subscription. To achieve this, you can offer customers a special discount.
However, giving discounts to every customer is too costly for your company.
To maximize your client retention, while minimizing your costs, you want to
estimate which clients have the highest risk of churning next month. These are
the clients you want to contact to offer the discount.

During this experiment, you are in the first stage of this process: you want to
estimate which of the customers is at high risk of churning. Profiles of customers
will be presented to you, after which you can indicate on a scale how likely it
seems to you that these customers will churn.

You are not on your own. There is a prediction model that will assist you during
this task. This model has learned from data about previous customers. It can
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predict outcomes for new customers, and these predictions are correct about 80%
of the time.

The experiment consists of four sections. The sections differ in the kind, and the
amount of information that you can use to make your estimation. After every
section, you will be asked to indicate how convenient you experienced your task
during that section and how insightful and trustworthy the information was to
you.

A.3 Explanations of the experimental condi-
tions

Condition 1: No explanation

In this section, you will only get two sources of information: a profile of a cus-
tomer and the prediction of the model for this customer.

Condition 2: Feature importance

In this section, you will be shown the profiles of the customers together with
colored lines indicating the impact that the properties seem to have on customers
decisions.

Condition 3: Justification system

In this section, another system will try to assist you by comparing the current
customer with previous customers whose decision we already know. The system
will select two previous customers: one that stayed and one that churned. Based
on the comparison between the current customer and the previous customers,
the system will try to help you judge whether the prediction of the model seems
convincing.
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Condition 4: Monitor system

In this section, we will show you comparisons with previous customers whose
decision we already know. You will not only see whether these previous cus-
tomers churned or stayed, but also whether the model could predict their deci-
sion correctly.

The five customers that are most similar to the current customer will be visual-
ized in a plot. The distance between customers in the plot represents the similar-
ity; the closer the more similar. If you click on a customer in the plot, the com-
parison with the current customer will be shown in the right part of the screen.

Text used after every condition explanation

You can switch between the information-page and question-page with the left
and right arrow of your keyboard. Let’s first practice with one example.

A.4 Templates justification system

Below the templates used by the justification system in the user experiment. The
bold text specifies the scenario in which the template is applied. The nouns in
italics are replaced by the names, outcomes and pronouns of the specific cases,
when the explanation is presented to a user.

Both have differences, winner more positive, less negative: We looked up two
previous customers as examples for focus: one who churned, one who stayed.
The comparison of focus with these customers, seems to suggest that it is more
likely that he/she will make the same decision as winner and winner-outcome.

Although focus has differences with both customers that make him/her less likely
to imitate their decisions, these differences seem less important and can better be
compensated by other properties in the comparison with winner.

Both have differences, winner more positive and more negative: We looked
up two previous customers as examples for focus: one who churned, one who
stayed. The comparison of focus with these customers, seems to suggest that it
is somewhat more likely that he/she will make the same decision as winner and
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winner-outcome.

Although focus has differences with both customers that make him/her less likely
to imitate their decisions, these differences can best be compensated by other
properties in the comparison with winner.

Both have differences, winner less positive and less negative: We looked up
two previous customers as examples for focus: one who churned, one who
stayed. The comparison of focus with these customers, seems to suggest that
it is somewhat more likely that he/she will make the same decision as winner
and winner-outcome.

Although focus has differences with both customers that make him/her less
likely to imitate their decisions, these differences seem less important in the
comparison with winner.

Winner is equal to focus: We looked up two previous customers as examples
for focus: one who churned, one who stayed. The comparison of focus with
these customers, seems to suggest that it is most likely that he/she will make
the same decision as winner and winner-outcome. winner has exactly the same
profile as focus.

loser, on the other hand, has differences with focus that make focus less likely to
imitate the decision of loser to loser-outcome.

Winner has positive and no negative differences: We looked up two previous
customers as examples for focus: one who churned, one who stayed. The com-
parison of focus with these customers, seems to suggest that it is most likely
that he/she will make the same decision as winner and winner-outcome. All
differences between focus and winner make focus even more likely to winner-
outcome.

loser, on the other hand, has properties which make him/her more likely to loser-
outcome than focus.

A.5 Survey questions
1. What is your age?
2. What gender do you identify as?

(a) Female
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(b) Male
(c) Prefer not so say
(d) Other ...

3. What is the highest degree or level of education that you have completed?
(a) Primary school
(b) High school
(c) Bachelor’s Degree
(d) Master’s Degree
(e) PhD or higher
(f) Prefer not to say
(g) Other ...

4. How familiar are you with machine learning?
(a) Not at all
(b) A little bit
(c) Somewhat
(d) Very

5. How familiar are you with explaining machine learning?
(a) Not at all
(b) A little bit
(c) Somewhat
(d) Very
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B. Details computer experiments

B.1 Classifiers

The following classifiers from the Python sklearn library were used:

1. DecisionTreeClassifier()
2. SVC(kernel=’linear’)
3. GaussianNB()
4. LogisticRegression(solver = ’lbfgs’)
5. AdaBoostClassifier()

B.2 Feature selection

Below the resulting selection of features after running the feature selection algo-
rithm are presented per data set.

Mushroom

odor_a, odor_c, odor_f, odor_l, odor_n, odor_p, gill-size_b, gill-size_n, gill-
color_b, stalk-surface-above-ring_k, stalk-surface-below-ring_y, ring-type_f,
spore-print-color_k, spore-print-color_n, spore-print-color_r, spore-print-color_u,
population_c



APPENDIX B. DETAILS COMPUTER EXPERIMENTS 117

Churn

tenure, MonthlyCharges, InternetService_Fiber optic, Contract_Month-to-month

Admission

GRE Score, TOEFL Score, LOR , CGPA

B.3 Digital Appendix

Data sets and Python files can be found on Dropbox using the following link:
https://www.dropbox.com/sh/ghw9qjpvw7collc/AAB5Nb-9j_6vJFWSUHa8VSz1a?dl=0
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