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Abstract

This thesis explores the use of a domain-specific algebra as an input for a SAT-based workflow
synthesis system. With this algebra, I try to make the gap smaller from logic-based input to natural-
language-based input for the use of workflow synthesis systems in the Geoscience domain. The thesis
extends the Automatic Pipeline Explorer (APE) to use the Geospatial Analytical Transformation Algebra
(GATA) as an extra input. The goal is to let a user specify their intent using a GATA expression and APE
will find a correct workflow that recreates that input. This is possible because components of workflows
also can be represented by GATA. A workflow is correct if It represents the input GATA expression.

To accomplish this, GATA-adapted APE transforms the additional input and domain information into
CNF constraints so that APE can use this information. I use the structure of the expressions to define
constraints to use in APE. I use the clear order within a GATA expression to define sets of constraints.

This approach can only approximate the correct workflows. To ensure only correct workflows appear
in the result, a post-process step is added. It reconstructs the GATA expression of the workflow and
compares it to the workflow specification. If the specification expression cannot be recreated from a
workflow, the workflow is discarded. Only the correct workflows remain.

I tested GATA-adapted APE on four ArcGIS examples and compared it to the APE approach. The
new approach resulted in a smaller amount but more domain-specific workflows. This makes it easier for
a user to find a workflow if they provide a GATA expression. However, the time needed to generate the
constraints and to post-process the results increases drastically for more extended workflows.

The code related to this thesis can be found on the following repositories.
e https://github.com/sstuber/APE_Extension

e https://github.com/sstuber/APE


https://github.com/sstuber/APE_Extension
https://github.com/sstuber/APE
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1 Introduction

Science is becoming increasingly more involved with complex calculations. This forces scientists to use
computational programs to let a computer execute the calculations. A common use case in the geo-analytical
domain is combining geographical data to create more complex maps. One example is calculating the
livability index for elderly people [I9]. This can be calculated by combining geographical data regarding
noise levels (Figure [1)), population and facilities of the neighbourhoods, like the distance to a green area
(Figure . Calculating the livability index by hand is not a trivial task.

Usually, the calculation for a use case consists of a sequence of already available components, such
as computational components, or program functions. Such sequence of components is called a workflow
(Figure [3)). The scientific community has worked on solutions to assist scientists in creating these workflows.
Workflow management systems assist the user in developing workflows. Examples of such systems include
Apache Taverna [25], Kepler [3] and ArcGIS ModelBuilder [2]. These systems assist the user by creating
a clear overview of the workflow and assist the user in composing them. However, a user needs to have
knowledge of the available components of their domain to work effectively and efficiently.
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Figure 2: Livability map showing average distance to green areas in Amsterdam within PC4 areas
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Figure 3: Two example workflows regarding calculating the livability index. The top workflow calculates the
average distance to green areas, which the result can be found in Figure [2l The bottom workflow calculates
the noise variety, which uses Figure [1| as input. This figure is borrowed from [19]
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A new user might have an idea what they want to compute. To support the users with workflow
composition, these workflow management systems can be integrated with workflow synthesis systems. A
system like this takes user created constraints and generates a possible sequence of components, a workflow.
The synthesis process handles the selection of components and combining them into workflows. This way, a
user does not need full knowledge of all relevant tools.

Common input methods for workflow synthesis systems are natural language templates or visual models.
DECLARE [1€] is an example of visual modeling and PROPHETS [I4] is an example of natural language
templates. In these systems, the given templates and models represent some form of predetermined tempo-
ral formula reasoning over concrete or abstract tools. Examples of this are ”Use tooll” or ”If tooll is used
tool2 also has to be used”. Modeling systems have similar constraints represented by visual models. These
temporal constraints are then used to find workflows that satisfy them.

These current approaches of defining user intent abstract away from the direct implementations. This
makes it easier for the user to explain their goal to the system. However, the abstraction is based on function
and type descriptions. These descriptions use domain specific data types and operations. In some cases, it
would be easier for a user to describe their intent in a more semantically describing way. What if we can
abstract further from the the data types and operations?

The goal of this thesis is to explore the usage of such abstraction. I used the following research questions:
1. How can input semantically describe the goal?

2. How can this input be used in a workflow synthesis system?

3. How can it relate such input to concrete tools?

4. How can we translate the semantic input and domain knowledge into constraints for a SAT-based
system?

The thesis explores the use of Geo-Analytical Transformation Algebra (GATA) [I8] which is an algebra
currently being developed. It reasons over abstract core concepts [12] using relational algebra, as is often used
in Geoscience. The language describes relations over abstract concepts and not their direct implementation.
An expression in the languages describes the computation and its final product semantically. This allows the
user to write their intent in terms of the required calculations without the need to specify the domain-specific
tool abstractions. The same user intent specification can be used for different domains like ArcGIS or python.



This thesis is split into six sections. Section 2 discusses the work this thesis is built upon. Section 3
introduces the terminology that is used in the rest of the thesis. Section 4 discusses the approach used to
implement the research questions. Section 5 reviews the results of the mentioned approach and compares it
to the approach it is based upon. Finally, Section 6 concludes the thesis.

2 Related Work

Workflow synthesis is a subdomain of program synthesis. With program synthesis, the user defines the
required input and output and defines additional constraints on the behaviour of the program. An example
is Sketch [21I], which also reduces the problem to a set of fomulas that can be solved by a SAT solver.
The user creates a program with holes and creates constraints on the values. The synthesis algorithm then
translates this into a formula that is solvable by a SAT solver. This constraint-based approach is common
in program synthesis [I0]. However there are multiple approaches to the problems, user intent, search space
and search technique, of program synthesis [9].

The workflow synthesis system [I3], based on the minimal modal algorithm [22] is a similar approach.
They loosely specify the constraints on their domain using Semantic Linear Temporal Logic (SLTL) and a
type system. The SLTL constraints are then used to search the synthesis domain using the minimal modal
algorithm to find valid workflows. This algorithm has been implemented in the PROPHETS system [14].

The Automatic Pipeline Explorer (APE) works similar to this synthesis algorithm. It takes the semantic
domain knowledge and user intent as workflow specification and generates type correct workflows. APE
translates the problem into CNF and uses MiniSAT [7].

Both PROPHETS and APE use natural language templates as the input for the user intent. These
templates represent a formula in SLTL [22]. SLTL is an extension of Linear Temporal Logic (LTL) [g].
This extension allows to the use of abstract types and modules in the specification. SLTL allows express
constraints over a type correct sequence of tools therefore it is the user intent representation for APE. This
form of user intent reasons direct over tools or abstractions of tools.

Multiple case studies have shown the potential of workflow synthesis. For instance, a case study [I1] has
shown APE is effective in the domain of Geoscience. A different case study [15] has shown effectiveness with
PROPHETS within the domain of bioinformatics. Both papers show the usage of such workflow synthesis
systems. They make the usability of the respective domains easier by lowering the prerequisite knowledge
of all available tools.

There have been cases where natural language was used as input for program synthesis [6] [17] and where
workflow synthesis was automatised completely [26]. However, there has not been a case where an algebra
or program has been used as input for workflow synthesis. GATA expresses the required calculations based
on the core concepts semantically. The operations used in GATA are based in relational algebra [5]. This
too has not been used as a user intent specification.

3 Prerequisite Knowledge

This section introduces the required terminology. The first section introduces APE, the Automatic Pipeline
Explorer. The thesis expands on APE. The second section introduces the GATA language. The third
section introduces a formal notation of graphs. This notation is used to reason over GATA. The final section
discusses a set notation for the summation of formulas. This is used to define sets of constraints.

3.1 APE

APE is a tool that generates workflows from a workflow specification. Such specification contains the
workflow input, workflow output and the constraints. A specification determines what workflows APE
returns. To reason over tools, APE needs domain knowledge. This domain knowledge includes taxonomies
and tool annotations. An overview of the input and output of APE can be found in Figure
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Figure 4: This figure shows the general input-output flow of APE. APE takes the domain knowledge and the
workflow specification and generates workflows that adhere to the specification. A single workflow is shown
to display the structure.

3.1.1 Domain Knowledge

The domain knowledge consists of several taxonomies and tools annotated with types from those taxonomies.
A taxonomy describes the hierarchical structure of abstract things. In this case, it describes the abstract
hierarchy of the tool and the data types. Figure [5| shows the taxonomies for the tools, the types and the
formats of the ImageMagick example as found on the APE repository [I]. Usually the tool taxonomy only
shows the abstract tool descriptions, but in this figure the concrete tools are included. You can see that
each taxonomy has a strict hierarchy. For example, PNG is a subclass of Lossless. Lossless is a subclass of
ImageFormat which is a subclass of the most general class Format.

The data type taxonomies help combine the input and outputs of the tools. If a tool requires a Lossless
input, anything lower in the hierarchy will also fit, like PNG or BMP. If a tool has Lossless as output, it can
be used as anything higher in the hierarchy, like ImageFormat. This is also the case with the tool taxonomy.
If a user requests a Distort tool, any tool lower in the hierarchy will fit, like Sharpen or Blur.

The tool annotations make use of these taxonomies. Where the taxonomies describe the data and tool
hierarchy, the tool annotations relate the concrete tools to abstract tools. Each tool is annotated with a
taxonomy operation, input data types and output data types. This is the information APE uses to find tools
for a workflow. An example of a single annotation can be found in Table ]

Label Data
Id cut
Taxonomy operation Layers
Input Type: Image or Type: Filter
Output Type: Image and Format: PNG

Table 1: An example of an APE tool annotation
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Figure 5: This figure shows the taxonomies for the Image Magick example. At the top, you see the tool
taxonomy with ”"Tool” as the root. The white ovals represent the abstractions of tools and the blue squares
represent the concrete tools. The bottom two pictures represent the datatype taxonomies.

3.1.2 Workflow Specification

The workflow specification consists of input data types, output data types and constraints. The input and
output types need to be from the data types taxonomy. The constraints are additional information the user
can give APE. These constraints are represented using SLTL.

SLTL is interpreted as alternating sequences of types and tools (also called modules). SLTL extends the
LTL formalism to the BNF that can be found in Expression[I} These alternating sequences can be described
as tg, mi, t1, ma, to. Here my is the first tool in the sequence. These sequences can be simplified by leaving
out the types as the types are implicit. The previous example will then look like m1, ms. These sequences
of states are called paths. SLTL can be interpreted as potentially infinite paths.

®:= true |t. | P|PAD|OVD| <m.>D|GD|FP | PUD | (1)
e true is satisfied by all paths regardless of their elements.

e t. is satisfied by all paths where the first element satisfies the given t.. Within APE, all subtypes of ¢,
are also allowed.



e — and A are interpreted as their meaning in propositional logic. The V operator can be expressed as
—(—=® A =®) but is included to be complete.

e < m, > P is satisfied by paths were the second element (and thus the first tool element) satisfies m...
all sub paths must satisfy ¢.

o GO is satisfied by all paths where ® holds globally. There is no state where ® does not hold

e OUV is satisfied by all paths where ® holds until ¥ holds in the next state. This Strong until operator
guarantees that ¥ at some point will be satisfied.

e F is satisfied by all paths where ® becomes eventually true. It guarantees that ® happens at least
one time. This operator can be expressed in terms of U like true U .

The constraints in APE are described in SLTL. However, users themselves do not directly use the SLTL
to create their constraints. APE provides natural language templates that represent the given constraints.
This allows users from all domains to use APE. A relevant selection of the given constraints can be found
below.

Natural language template SLTL constraint

If Tool 1 is used, Tool 2 has to G(— < Tool-1 > true vV
be used subsequently XF < Tool-2 > true)
If Tool_1 is used, Tool_2 cannot G(— < Tool 1 > true V
be used subsequently XG— < Tool 2 > true)
If Tool_1 is used, Tool_2 must has G (= < Tool 1 > true vV
to be used next in the sequence X < Tool 2 > true)
Use tool Tool_1 in the solution F < Tool_1 > true

Do not use tool Tool_1 in the so- G- < Tool 1 > true
lution

Use Tool_1 as last tool in the so- F < Tool .1 > A

lution G(— < Tool 1 > true V -XX true)

Table 2: The natural language templates and their SLTL constraints as used by APE

To use these constraints in a SAT-based algorithm like APE, these constraints need to be translated into
a propositional formula. In this translation [4] the notion [f]f refers to the interpretation of the formula
f in the i-th state of a sequence of length n. Each proposition consists of two components, the name of
the proposition p and index ¢ of the module state in which the proposition holds m;. The resulting formula
consists of propositions like p(m;) to note which state a proposition should hold. For example reify(ms)
represents that reify should hold in module state 3. A composed expression like p(m;) can only be true or
false as a whole. The translation can be found below.
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The interpretation for a single type is left out as it is not necessary for the rest of the thesis. A simple
example of such translation can be found below.

[F < example_tool > true]y = example_tool(my) V example_tool (ms)

These translated propositional formulas can be transformed into CNF. This is the required input for the
SAT solver that APE uses.

3.2 GATA

Geo-analytical question-answering (QuAnGIS) [20] tries to find a solution for a domain-specific natural-
language-based question. In this area, GATA serves as a language that expresses the answer of a question.
GATA describes a calculation with the core concepts [12] as a basis. It is defined with a simplified relational
algebra as a formal basis. It reasons over relations with zero to two keys. Any of these relations are some
representation of a core concept. GATA consists of a set of functions that represent operations over these
relations. However, for this synthesis, the structure of the language is more important. If a reconstructed
GATA representation of a workflow is the same GATA representation of the workflow specification, they
represent the same operations. To determine whether two GATA expressions are the same, we need to look
at the structure of the expressions. The GATA grammar is described by the BNF shown in Formula[2] Here,
S is the start symbol of the grammar and id represents a string of the set of GATA functions when used as
a function or a name that represents some form of input value.

S u=id(S) | id(S, S) | id 2)

Figure 6: The parse tree representation of Expression [3 the simple example

reify (pi (interpol (input))) (3)



The language consists of function identifiers with one or more parameters and identifiers that represent
some form of input. An example of this would be Equation [3| with a graphical representation in Figure
[(l This expression is the easiest type of expressions you can build with the GATA grammar. In this easy
example, reify, pi and interpol are function identifiers that represent a data transformation.

A real example is given by Formula This is the GATA representation of one of the cases I use to
evaluate the approach. A figure of the parse tree can be found in Figure This example also shows full
usage of the earlier mentioned BNF.

sigmae

objectreagions_muni ‘ ‘ object_Utrect

Figure 7: The parse tree of the representative GATA expression from Formula []

rei fy(pil(sigmale(bowtie(revert(contour_noise),

dei fy(merge(pi2(sigmae(objectregions_muni, object_Utrecht))))),70))) (4)

Each function has a specific type signature. For instance, the function reify has as type signature
reify : L — SV where the input type L refers to a set of locations and the output type SV refers to a single
region. An expression is type correct when for every function, the input types that a function is given from
the output of another function or as available data are the same as the required types for that function.
Thus the output type of pi is the same as the input type of reify as can be seen in Expression [3]

For this thesis I assume the all GATA expressions that are used as specification are type correct as
expressions can be verified on type correctness by a parser. The goal is to find a workflow that has a
GATA representation that is the same as target expression. When the GATA expression in the workflow
specification is type correct and a workflow has a GATA expression representation that matches it, the
workflow will also be type correct with regards to GATA.

3.3 Graph Formalism

Using the BNF to parse GATA will create a parse tree. The earlier mentioned easy (Figure @ and real
(Figure[7)) show examples of such parse trees. The nodes in this tree are functions from the GATA language.
Except for the leaves at the bottom, these represent data. The parse tree is build from top to bottom while
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taking the most outer layer from the expression. However, the data flows from bottom to top. Each function
can only be applied when all its subtrees below are applied.

To be able to use this tree as a basis for defining constraints I use the formal definition of a graph [23].
A graph G counsists of a pair (V, E) where V is the set of vertices or nodes and E is the set of edges. Each
edge is a pair of nodes like (n1,7n2). When reasoning over GATA, the order of the functions matters. To
reason over a GATA tree, the edges go from root to the leaves in the direction the expression is parsed. This
means that the root of the tree does not appear as the second node in an edge and the leaves do not appear
as the first node in an edge. Using this notation the input graph I would be represented like Equations [f]

I'=(V.E)
V = {reify, pi,interpol, data}
E = {(reify,pi), (pi,interpol), (interpol, data)} (5)

Finally, nodes are considered unique. This holds even when different nodes represent the same function
and thus have the same name. Functions can occur multiple times in the same expression. The same name
appearing multiple times is not allowed in sets. However, this could be circumvented by giving all nodes an
id number and making the nodes a tuple of id and function name. This would increase the complexity of
the given definitions and thus will be omitted. Thus, when nodes are directly compared, for example (nl
equals n2), only the names of the nodes are evaluated instead of the whole nodes themselves.

3.4 Definitions

The first definition I introduce is the general set that contains all functions in the current domain, this set
is called F'. The tool specifications from the workflow specifications in APE also have a GATA annotation.
The set of these tool annotations is called A. This set A consists of pairs (¢,g) where t is the identifier of
the tool as in APE and g is the tree representation of a GATA expression. An example of this set can be
found in Expression [6] Each line represents one annotation. First you see the name of the tool, then the set
of the nodes in the related parse tree and finally the set of edges in the related parse tree.

Aexample = {(reifyTOOL ({reify}, {}))7
(combinedTool, ({pi, interpol}, {(pi, interpol)}))}

(6)

The next definition is the parse tree of the GATA expression in the workflow specification. This is referred
to as 7. The nodes of this tree are referred to as V; and the edges are referred to as E;.

The constraints are defined using set comprehensions. This definition is adapted from [24]. These
comprehensions define sets of SLTL formulas that represent certain constraints. The BNF represent the set
comprehensions can be found at Definition [7]

SLTL O u=true|t. | | PAD|[DOVD| <m.>D|GP|FP | OUD |

Basic elements E = @ | String | Int | Boolean | Func | T |

Tuples T .= (All ( All)")
S

Sets of formulas {®|FIGF)*} 0| SuS|SNS|wv

Formulas Fl:=-Fl|FINFI|FIVFI|E==E|EecS | Ee€ Func
All types All:=E | S
Function Func ::= Ident( param (,param)™) = All

11



The important thing to note here is the tuples of this BNF can also contain sets. This is necessary
to reason over the tool annotations. Another introduction is general use functions. Some constraints are
recursively created thus introduced the need for recursive functions. The ® in basic elements represents the
SLTL structures defined earlier. Furthermore, I use a function count that returns the amount of elements
in the set. These set comprehensions are used to reason over the GATA tree of the input and over the set
of GATA annotations to create sets of SLTL formulas.

4 Approach

This section addresses how I approached the problem. First, I explain the problem in more detail. A simple
example is used to give an idea what the result of the process should be. Then I show how I address the
problem using the simple example. This should give an idea how it is built up. The following two sections
expand on the simple example. I expand the simple example to an example that uses functions with multi-
ple parameters, then I discuss how tools that have no GATA representation are included. The final section
discusses a post-processing step that ensures only workflows match with the input are returned.

4.1 Problem Introduction

To use GATA expressions as constraints for APE, I evaluated how GATA relates to the Geoscience domain
used by APE. In this domain, GIS tools do calculations. These calculations can be described by a GATA
expression. When a tool is applied, all the operations in its GATA representation will be applied. Thus, a
workflow represents a sequence of GATA expressions. As the tools of a workflow are applied in sequence,
the expressions representing them are also applied in sequence. A workflow’s GATA representation is the
GATA expressions of its tools merged into a bigger expression. To be able to represent this we need to find
all the possible ways to break a large expression into different smaller expressions. This has to be done in
such a way that the original expression remains the same.

First, only one tool can be applied at the same time. Each time step or module state m; can only
contain one tool. A tool applies a complex GATA expression. Such expression consists of one or more GATA
functions that are applied in order. These functions need to be represented in some form in a propositional
formula.

I chose to represent the GATA expression by abstracting the tree representation. We view the GATA
expression as a set of its functions. This allows the use of the tool states already in APE and thus reusing
an already proven structure. This set then represents all the functions that are applied at the same time
as the tool. This approach reduces the amount of possible workflows but does allow tools with an incorrect
function order to be used. Therefore, it introduces the need for a post-process verification step.

With this chosen abstraction, I can now determine the possible ways to separate the GATA functions of
the workflow specification into different tool states that would still result in a valid workflow. Between these
states, the order of the GATA functions should represent the expression of the workflow specification. This
will be demonstrated using the easy example from earlier. The example is repeated in Expression [8] using
the parse tree of Figure

The tree is parsed and built from top to bottom, but data flows from bottom to top. This means before
reify can be applied, pi needs to be applied. However, a tool could exist that applies both reify and pi. This
tool can only be applied if the interpol has been applied. The leaves, like data in this example, represent
readily available input. We can ignore these data leaves when talking about the meaning of a graph as the
data leaves are irrelevant for the function order. These constrains results in the function separation in states
that can be found in Equations[0] In this representation, each state s; represent a tool being applied. Tools
are applied in order so sq is applied before s; and so on. Each row is a possible way to separate functions
in tool states such that a workflow with such representation of GATA functions is considered correct.

12



reify (pi (interpol (input))) (8)

Figure 8: The parse tree representation of Expression [8 the simple example

s0 ={interpol, pi,reify}

s0 ={interpol, pi} s1 ={reify}
s0 ={interpol} s1 ={pi,reify}
s0 ={interpol} s1 ={pi} s2 ={reify}

(9)

For this example, I introduce some mock-up tools to be part of the annotation set A¢zqmpie. These tools
are used to give a concise example of the constraints. The real examples are too verbose to easily show the
principle. However, they are discussed later. The tools used are shown at [[0] The annotation set example
can also be found below.

reifyTool = rei fy(data)
combinedTool = pi(interpol(data))
piTool = pi(data)
interpolTool = interpol(data)
unusedTool = revert(data)
(10)

Aczample = {(reifyTool, ({reify}, ),
(combinedTool, ({pi, interpol } {(pi,interpol)})),
(piTool, ({pi}, ),
(interpolTool, ({interpol } 1),
(unusedTool, ({revert}, {1}

(11)

Using this set of tools we can verify the possible workflows. There are only 2 possible workflows assuming
type constraints of the tools themselves are valid. These can be found at Equation Notice how both use
a different set of tools. When we replace the tools by the sets of functions the tools represents, the workflows
look like one of the state combinations found at [0

13



50 =combinedTool s1 =reifyTool
s0 =interpolTool s1 =piTool s2 =reifyTool
(12)

4.2 Constraints

APE takes its user input in the form of constraints. There are natural language templates that a user can fill
in that represent SLTL formulas. These are translated into propositional formulas for each workflow length.
When I want to add constraints to APE, I can define them in SLTL. Then translate these SLTL formulas
into propositional formulas and let APE translate them into the format for the SAT solver.

Thus, I have a GATA expression in the workflow specification and tools annotated with a GATA expres-
sion as in the domain knowledge. I use these to generate a set of SLTL expressions that generates workflows
as closely related to the described problem. These SLTL expressions have to ensure that the workflow can
recreate the original expression. To accomplish this for our example, one of the state expressions from For-
mula [J] should hold. The order of functions of the original graph should be maintained. For our example
input |3 this means one of the state equations @ should hold.

The first step is to add constraints that relate tools to functions and functions to tools. This ensures
neither can be present without the other. First I introduce the constraint that relates tools to functions.
When a tool is present in a state, all the functions in its GATA expression must be present. The set of
formulas that represent this is named TA (Tool Annotations). This set T'A is expressed by Equation

v
TA={F(<t>true — /\ <n>true) | (t,(V,E)) € A} (13)
neVv

T Aczample = {F(< reifyTool > true — < reify > true),
F(< combinedTool > true — < pi > true A < interpol > true),

(

(
F(< piTool > true — < pi > true),
F(< interpolTool > true — < interpol > true),
(

F(< unusedTool > true — < revert > true) }

The second constraint ensures functions are related to tools. When a function is present in a state, one
of the tools that represent is must be present. This is represented by the following constraint set TU (Tool
Usage) seen in Equation It uses helper function T'F that returns a set of tool names that have a specific
function in their annotation which can be found in Equation

TF(f)

TU ={F(< f>true > \/ <a>true)| feF} (14)
z€TF(f)

TE(f)=A{t| feV.(t(V,E)) € A} (15)

TUcrample = {F(< reify > true — < reifyTool > true),
F(< pi > true — < combinedTool > true V < piTool > true),
F(< interpol > true — < interpolTool > true),
F(< revert > true — < unusedTool > true) }
These constraints create the environment to reason over the functions. A function relates to a one of the

tools and a tool relates to a set of functions. This enforces tools to be used when functions are required to
be present.
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4.2.1 Input Constraints

As function and tool usage is enforced, the next constraints focus on the GATA expression of the workflow
specification. The third constraint is function usage (FU). All tools present in the input should appear in
the workflow. This is represented by the set FU as can be seen in Equation

FU=A{F(< f>true) | feV; } (16)

FUezample = {F(< Tefiy > true),
F(< pi > true),
F(< interpol > true) }

The fourth constraint is regarding function prevention. The meaning of a workflow would change if a
function is used that is not present in the original input. To realize this, I prevent functions not present in
the input to appear in the workflows. This constraint is shown by Equation [I7]

FP={G(—~< f>true)| f ¢V, feF} (17)

FP.ompie = {G(— < revert > true)}

The next set of constraints focus on the structure of the GATA expression. The fifth constraint ensures
the order of the graph. This concerns the edges of the graph. As shown in Figure[6] pi needs to be calculated
before or calculated with the same tool as reify. This holds for the whole graph so there is a relation for
each edge. This leads to the order constraints (ORD) described by Equation

ORD = {F((< e2 > true A < e1 > true) V (< ea > true AN X(< ey > true)) | (e1,e2) € E;} (18)

ORD.yompie = {F((< interpol > true A < pi > true) V (< interpol > true A X(< pi > true)),
F((< pi > true A < reify > true) V (< pi > true AN X(< reify > true)) }

We can limit the amount of results by enforcing the root of the input as the last function. Any workflow
where the root function is not the last function in the workflow would not satisfy the input. The sixth
constraint last function (LF) is shown by Equation

LF ={F(<r>true) ANG(— <r >true V(X X(true))) | r # ea, r € V;, (e1,e2) € E;} (19)

LFezampie = {F(< reify > true) NG(— <reify > true V(X X(true)))}

The next constraints concerns the number of times a function can appear in a workflow. The seventh
constraint enforces a function is used in exactly as many different tools as it appears in the input. This
constraint is based on domain knowledge of Geoscience and on the tool examples. A tool uses a specific
function only at most once. Therefore, when a function appears twice, tools that represent it should appear
twice. for each function, the constraint depends on how often it appears in the graph. The constraint
function count (FC) is shown by Equation The helper function generateF'C recursively generates the
SLTL constraint for any length.
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FC = {generateF'C(countF'n(f1), f1) | f1 € Vi} (20)

countFn(f1) =count({fz | fa = f1, f2 € Vi})
generateFC(0, f) = true

generateFC(i, f) = F(< f > true A X generateFC(i — 1, f))

However, a drawback of this constraint is that it ignores some solutions. If a workflow specification needs
a function to appear three times and two of those are in the same function, it would be excluded by this
constraint. If a function is required three times it has to appear in the annotation of 3 different tool usages
instances. Even with this drawback, I can still use this constraint. In the given tool set, there are no tools
that have a function appear more than once. But if such a tool appears in the future this constraint needs
to be adapted.

The final and eighth constraint also regards the amount of times a function can appear. This constraint
limits the amount of time a function can appear. A function should not appear more times than it appears
in the graph. This leads to the function limiting constraint (FL) that is shown by Equation It reuses
the generateF’C function. It prevents any combination of functions longer the amount of times it appears in
the input.

FL = {G(—generate FC(countFn(f1) + 1, f1)) | f1 € Vi} (21)

This constraint also has a drawback. If a workflow specification has a function that appears three times,
one of those times can be a tool where the function is represented more then once. This can result in a
solution that has three different instances of tools that represent that function but one in one of those tools
the function appears more than once. Thus, allowing a solution with four appearances of a function.

These eighth constraints are generated from the GATA expression of the workflow specification and the
additional tool annotations. The complete Gata Constraint Set (GCS) would look like Equation

GCS = {TA,TU, FU,FP,ORD, LF, FC,FL} (22)

The main goal of these constraints is to reduce the amount of possible solutions. It succeeds for our
simple example rei fy(pi(interpol(input))). However it does not yet capture functions that have more than
one parameter.

4.2.2 Multiple Parameter Functions

The set of constraints from Equation [22] covers the GATA expressions that only have single parameter
functions. However, functions are able to have more than a single parameter. Examples of this are the
functions lotopo and sigma. This multiple parameter example can be seen in Equation 23] and Figure [9]

Before the function lotopo can be applied, both pi and sigma need to be applied. However, these functions
are not dependent on each other. They are different parameters to the same instance of lotopo and thus
different parts of the graph. Because of this, the order in which pi and sigma are applied does not matter.
However, they have to be applied before or at the same time as lotopo. This behaviour changes the way the
functions can be divided over states as can be seen in Equations

lotopo(pi(interpol(datal)), sigma(data2, data3)) (23)
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VARV

‘ interpol ‘ ‘ data2 ‘ ‘ data3 ‘

Figure 9: Graphical representation of the graph of Expression the multiple parameter example

s0 ={sigma, interpol, pi,lotopo}

s0 ={interpol, pi} s1 ={sigma,lotopo}

s0 ={sigma} s1 ={interpol, pi, lotopo}

s0 ={sigma} s1 ={interpol} s2 ={pi, lotopo}

s0 ={sigma} s1 ={interpol,pi} $2 ={lotopo}

s0 ={interpol, pi} s1 ={sigma} s2 ={lotopo}

s0 ={sigma} s1 ={interpol} s2 ={pi} s3 ={lotopo}
s0 ={interpol} sl ={pi} s2 ={sigma} $3 ={lotopo}

(24)

The original order constraint is not sufficient to capture this behaviour. For functions that have multiple
parameters, there is no strict ordering. To loosen the strictness of this ordering, I revise the original constraint
to look like equation ORD.,..,, which can be found in Equation

ORD, ey = {{F((< e2 > true A < ey > true)V
(< ex > true AX(< ey > true)) | e2 = e3, (e1,e3) € E;, (e1,e2) € E;},
{F(< ex > true ANF(< ey > true)) | e2 # es, (e1,e3) € E;, (e1,e2) € E;}}
(25)

ORD.yampie2 = {F(< pi > true AF < lotopo > true),
F(< sigma > true ANF < lotopo > true),
F((< interpol > true N < pi > true) V (< interpol > true A X(< pi > true))}

The usage of F captures the both the order and looseness required by multiple parameter functions. Both
pi and sigma can be used at the same time as lotopo. If lotopo is not used at the same time, it has to
appear somewhere after. However with this solution, a workflow would still be valid when lotopo is applied
before either pi or sigma and it is applied again afterwards. This is not a problem. It is solved by either the
maximum usage of the function constraint or the filtering of the solutions afterwards. The constraint does
lower the amount solutions while preserving the new situations. This leads to changing the constraint set to
Equation [26]

GCSpey ={TA,TU,FU,FP,ORD,.,, LF, FC,FL} (26)
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4.3 Conversion Tools

So far, I have talked about how to handle tools that do calculations. These tools have a representation in
GATA. Using formulas to link the GATA representation to tools allowed to reason over the gata functions
instead. This section discusses how to handle tools without GATA annotation. These tools do not do Geo-
science relevant calculations. They handle data transformation instead. An example would transforming
in a .csv file into a geographical data type or transforming one data type to another without changing the
actual data. These tools do not directly impact the meaning of the workflow and the GATA structure, but
including these tools will help a user find a workflow for their current situation. A user might not have the
data in a format required for a strict workflow. In this case, a user will be able to pick an extended workflow
that could handle the necessary transformation. I discuss the implementation using the GATA constraint
set from Equation

Now that I have discussed the relevance of conversion tools, I can discuss how to include them in the
environment. A conversion tool needs to have a normal APE tool annotation. This way, APE includes it in
the normal tool constraints. It will make sure its usage will be type correct, just like it would with any other
tool. For simple inclusion, it is required that it does not have a GATA annotation. Without an annotation,
the tool is not prevented from usage by the FP constraint and usage is not forced by the FU constraint.
Thus, without GATA annotation, a tool is not forced in a workflow by the GATA constraints, but it can
always be added. This freedom allows APE to add conversion tools if the types require it.

This is enough for the first use case of a tool, where a tool read a file and load a GIS data structure.
In this case, a tool needs to be put in front of a branch of the GATA structure. If we give such a tool the
special function conversion, we can see how it would fit in the tree. Figures[L0]and [L1|show examples where
data needs conversion before a function.

In these figures, you can see the original graph is still the same. There is an empty node added but the
original edges are untouched. The ORD,.., constraint does not need to change to allow this behaviour as
the edges are unchanged. Thus a tool that needs to be applied before the first tool of a branch of the input
does not cause conflicts with the current constraints.

lotopo

N
VAR

’ interpol ‘ ’ data2 ‘ ’ data3 ‘

Figure 11: Graphical representation of the graph
Figure 10: Graphical representation of the graph of the multiple parameter example. A conversion
of the multiple parameter example. A conversion tool is used to convert data2 to input of sigma
tool is used to convert datal to input of interpol

i

’ interpol H conversion ‘ ’ data3 ‘

The last use case is when a tool converts data types in between other functions. Figures [12] andI3] are
examples of this case. Here, the edges of the original graph are changed. In Figure [12|the edge (pi, interpol)
is broken into 2 different edges with conversion in between. This also occurs in Figure [I3] where the edge
(lotopo,sigma) is broken in 2 edges. These examples represent edges broken up from both single and multi
parameter functions. Both cases are represented differently in ORD,.., and should be taken into account
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differently.

conversion ‘

™

’ conversion ‘ ‘ data2 ‘ ‘ data3 ‘ / l
‘ interpol ‘ ‘ sigma ‘
‘ datal ‘ ‘ data2 ‘ ‘ data3 ‘

Figure 13: Graphical representation of the graph
Figure 12: Graphical representation of the graph of the multiple parameter example. A conversion
of the multiple parameter example. A conversion tool is used to convert data2 to input of sigma
tool is used to convert datal to input of interpol

The single parameter function is represented by Figure [[2] To allow this behaviour, we need to look at
the constraint of the constraint of the edge. For the specific edge of (pi,interpol) the constraint looks like
F((< interpol > true A < pi > true) V (< interpol > true A X(< pi > true)). This constraint enforces
pi and interpol in the same state or interpol in one state and pi in state directly after it. However, if
we want to allow a conversion tool in between these tools we also need to allow the specific case that s0
constains interpol, that sl contains a conversion tool and that s2 containts pi. If we take this into account
the constraint for this specific edge looks like F((< interpol > true A < pi > true)V
(< interpol > true ANX(< pi > true))V (< interpol > true AX (< conversion > true AX X(< pi > true)))).
This can be generalised and be used to revise the ORD,..,, constraint. The new constraint ORD,,, can be
found in Equation

ORD ony = {{F((< e2 > true A < eq > true)V
(< ex >true NX(< e > true)) V
(< e > true A X(< conversion > true A
X(< e > true)))) | e2 =es3, (e1,€3) € E;i, (e1,€2) € E; },
{F(< ez > true ANF < ey > true) | e2 # e3, (e1,e3) € E;, (e1,e2) € E;}}
(27)

However, for this constraint to be able to work, conversion tools need to be annotated with a special
tag. Otherwise I can’t enforce that only conversion tools can be allowed using the ORD oy, constraint.
This conversion tag needs to be included with the T'A and T'U constraints. Otherwise conversion can be
true without a conversion tool being used. Furthermore, the conversion tag can’t be included in the F'P
constraint. As conversion is never in the input, it would always be excluded. Thus, F'P needs to be adapted
to FP.,pn, which can be found in Equation

FP.onw = {G(=(< f > true)) | f # conversion, f ¢ V;, f € F} (28)

The multiple parameter function is represented by Figure Like with the single parameter function,
I need to look at the edge and how it is represented in the constraint. For the edge of (lotopo, sigma),
the constraint looks like F(< sigma > true A F(< lotopo > true)). This constraint already includes the
additional case of allowing the conversion tool. Thus, for the multiple parameter functions we do not need
to revise constraints.

As T have shown, with minimal changes to the constraints I can allow conversion tools. Workflows will
include these tools if the types of the tools in the workflow allow it.
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4.4 Graph Comparing and filtering

Using the GATA input to generate these constraints reduces the amount of possible workflows APE is able
to generate. However the constraints are not exactly compliant with the workflow specification. There might
be some workflows in the resulting solutions that do not represent the input correctly. There is also the issue
that in the tool annotation, the ordering of the functions is discarded. This might lead to incorrect tools
appearing in the resulting workflow. An of such tools example would be tools where the correct functions
are present but are in the wrong order. Thus those tools represent a different GATA expression. This is an
inherent property of the chosen abstraction and it forces us to verify the solutions APE returns.

To filter solutions we need to be able to recreate a complex GATA expression from a workflow and to
be able to compare the tree structure of two expressions. Comparing two trees is a relatively trivial task.
You take the root of both trees and traverse to both of them in lockstep, then compare the nodes from both
trees. When one pair does not match, the trees are not equivalent. When comparing nodes, only the nodes
that hold function names should be considered. The names of the data leaves are not required to be the
same. These hold just a name for the relevant data.

To recreate a complex expression we need to look at a workflow. The root of the expression is always
applied by the last tool in the workflow. A function can only be applied when its parameters are applied.
Thus, if we try to recreate the expression I can start from the root, the first function and the last tool.

I use Equation 29| from the simple example to demonstrate this principle. The GATA expression used
as input is rei fy(pi(interpol(input))) and the domain is the tool annotations from Equation It shows a
simple workflow of two tools, first it shows the use of combinedTool then use reifyTool.

50 =combinedTool s1 =reifyTool (29)

combinedTool

Figure 14: Visualisation of the example workflow from Equation

To recreate the original parse tree we need to start at the outer most function. In a workflow, this is
always the last tool. In this case that is reifyTool. Then take the representation of the second to last tool
(child tree) and combine this with the representation of the last tool (parent tree). To combine these trees,
I take one leaf of the parent tree and replace this with the root of the child tree. The result of this operation
can be seen in Figure [I5]

A 4

o
COIanIleS to
interpol

Figure 15: Application of one tool representation to another to create the more complex expression
rei fy(pi(interpol(data)))

This is a simple example that only consists of two tools that have single parameter GATA representations.
Usually, workflows consist of more than two tools. In this case, I repeat this process from the last tool to the
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first tool in the workflows, adding each new GATA representation to the accumulated graph. This creates
a combined expression that represents the workflow. When this expression is equivalent to the specification
expression, the workflow is a valid workflow for that specification.

However, The process is more complex when GATA expressions consist of multi parameter expressions.
This increases the amount of possible combinations. If there is a function with 2 parameters, all subsequent
functions have 2 possible leaves to substitute. In a situation where in a workflow of 3 tools the last tool has
2 parameters, the amount of possible solutions for this example is 22. This is the amount of parameters to
the power of the amount of subsequent tools left.

Each of these solutions needs to be verified until a matching solution has been found. If no matching
solution can be found, the workflow is invalid and should not be considered a solution. Thus multi param-
eter functions exponentially increase the amount of solutions needed to be verified. However, this method
guarantees only valid workflows are returned as solutions.

5 Comparison Between APE and GATA-adapted APE

This section compares using the constraints available in APE to the constraints generated by a GATA input.
First the used examples are explained followed by a metric evaluation discussion of both approaches. Finally
both approaches are compared conceptually.

5.1 Examples

For the evaluation, I use four different examples. These examples have been prepared by Simon Scheider. The
examples are increasingly complex. I give an explanation, the GATA representation and the APE constraints
of each example. For each example an example GATA expression and workflow have been prepared.

5.1.1 Example 1: Noise Portion

This is the first and most simple example. This example represents the question ”Where in Amsterdam is
noise more intense than 70 dB?”. The target workflow consists of 5 tools and can be seen in Figure The
given GATA expression can be seen below. The tools relevant to this example can be seen in Table

reify (
pil (
sigmale(
bowtie(
revert(contour_noise),
deify(
merge(
pi2(

sigmae(objectregions_muni, object_utrect)
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ContourToFieldRaster

SelectLayerByAttributeObjects — ClipField2ObjectExtend

\—» LocalMapAlgebraSubOrder

¥

RegionFromRasterExtent

Figure 16: The given workflow for the noise portion example

Tool name

GATA expression

ContourToFieldRaster

revert(contour_x)

SelectLayerByAttributeObjects

sigmae(objectregions_x, object_y)

ClipField20bjectExtent

bowtie( field_x, deify(merge(pi2(objectregions_z))))

LocalMapAlgebraSubOrder

sigmale( field_x, ordinal y)

RegionFromRasterExtent

reify(pil(fieldx))

Table 3: Tools required for the noise portion example

5.1.2 Example 2: Noise Proportion

The second example has the longest resulting workflows. All the solutions have 7 tools in their workflow.
Figure [17]is an example of this. The question this example tries to solve is ”What is the proportion of the
region where noise is greater than 70 dB in Amsterdam?”.
be seen below. The tools relevant can be found in Table [d] A possible workflow can be seen in Figure
The GATA expression branches high in the parse tree. This allows for a lot of variation when a part of the

expression is represented in the workflow.

The GATA expression that calculates this can

bowtie_ratio (

groupby _size (
sigmae (
lotopo (
pil (
sigmale(revert(contour_noise), 70)
);

sigmae(objectregions_muni, object_Amsterdam)

);

in

)
)7
groupby _size (
sigmae (
lotopo (
deify (
merge (
pi2 (objectregions_muni)
)
),

sigmae(objectregions_muni, object_Amsterdam)

);
in)))
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SelectLayerByAttributeObjects ContourToFieldRaster —>| LocalMapAlgebraSubOrder

ZonalStatisticsSize

.

SelectLayerByAfttributeObjects —‘

AddArea

¥

CalculateRatio

Figure 17: The given workflow for the noise proportion example

Tool name GATA expression

ContourToFieldRaster revert(contour_x)

SelectLayerByAttributeObjects sigmae(objectregions_x, object_y)

LocalMapAlgebraSubOrder sigmale( field_x, ordinal y)

ZonalStatisticsSize groupby_size(sigmae(lotopo(pil( field_x), objectregions_y),in))

AddArea groupby_size(sigmae(lotopo(dei fy(merge(pi2(objectregions_x))),
objectregions_x),in))

CalculateRatio bowtie_ratio(objects_x, objects_y)

Table 4: Tools required for the noise proportion example

5.1.3 Example 3: Object Amount and Distribution

The third example has the shortest workflow. The GATA expression is relatively complex for solutions with
only 3 tools as can be seen in Figure The question this example tries to solve is ”What is the number
of people for each neighborhood in Utrecht?”. The GATA expression that calculates this can be seen below.
The tools required can be found in Table [5].

groupby_sum (
bowtie* (
sigmae (
otopo (

objectregions_households,

bowtie (

objectregions_neighbourhoods,

pil (

sigmae (

otopo (
objectregions_neighbourhoods,
sigmae (objectregions_muni, object_utrecht)

),

in
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objectcount_households

SelectLayerByAttributeObjects

—> SelectLayerByLocationObjects ——{ SpatialJoinSumTessCount

Figure 18: The given workflow for the object amount and distribution example

Tool name

GATA expression

SelectLayerBy AttributeObjects

sigmae(objectregions_x, object_y)

SelectLayerByLocationObjects

bowtie(objectregions_x, pil(sigmae(otopo(objectregions_x,
objectregions_y),in)))

SpatialJoinSumTessCount

groupby_sum(bowtie * (sigmae(otopo(objectregions_z,
objectregions_y),in), objectcounts_z))

Table 5: Tools required for the object amount and distribution example

5.1.4 Example 4: Field Amount and Distribution

The final example has the most interesting dynamics. The question this examples tries to solve is ”What is
the average temperature for each neighborhood in Utrecht” The GATA expression that calculates this can

be seen below. The tools required c

an be found in Table [§] This example includes a conversion tool. The

conversion tool is a necessity in concrete workflows. However, it bloats the amount of possible workflows
by repeated appeared as it is not bound by constraints. But including it is a necessity as it is required in

concrete workflows. The example a

Iso shows that tools with the same GATA representation can be used

interchangeably. Figures (1920) show both example workflows.

groupby_avg (
bowtie* (
sigmae (
lotopo (
pil (field x),
bowtie (
objectregions_x,
pil (
sigmae (

otopo (

),

objectregions_x,
sigmae (objectregions_x, object_y)
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in

in

)

interpol (
pointmeasures_x,

deify (merge (pi2 (objectregions_y)))

MakePointMeasuresFromTable —» IDWinterval —> SelectLayersByAttributeObjectsW
\—» SelectLayerByLocationObjects ——| ZonalStatisticsMeanlinterverval

Figure 19: One of the given workflow for the Object field and distribution example

MakePointMeasuresFromTable —» Kriginginterval > SelectLayersByAttributeDbjects—‘
\—» SelectLayerByLocationObjects ——| ZonalStatisticsMeanInterverval

Figure 20: One of the given workflow for the Object field and distribution example

Tool name GATA expression

MakePointMeasuresFromTable conversion

SelectLayerBy AttributeObjects sigmae(objectregions_x, object_y)

SelectLayerByLocationObjects bowtie(objectregions_x, pil(sigmae(otopo(objectregions_z,
objectregions_y),in)))

IDWInterval interpol (pointmeasures_x, dei fy(merge(pi2(objectregions_y))))

KrigingInterval interpol(pointmeasures_x, dei fy(merge(pi2(objectregions_y))))

ZonalStatisticsMeanInterval groupby_avg(bowtie x (sigmae(lotopo(pil( field_x),

objectregions_y),in), field_x))

Table 6: Tools required for the Field amount and distribution example

5.2 Metric evaluation

This section evaluates the results of running APE with the GATA constraints. First, I discuss the GATA-
adapted APE results and later compare these to the runs with APE. These tests are done on a Lenovo
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Y50 laptop with an Intel i7-4710HQ 8 core processor that runs at 2.5GHz. It has 8 GB of RAM and runs
Windows 10 64bits. The data in the run time graphs is average of 5 runs.

The evaluation runs use APE configuration files with same the relevant parameters. The maximum
amount of solutions that we allow is set to 1000. It takes a lot of effort for a user to already compare 1000
solutions and pick the best one. Thus generating more than 1000 would not be relevant. Usually the best
solutions are among the shortest solutions. From testing, Generating 1000 solutions is enough to find all
solutions for the shortest two solution lengths for a specific use case. For the maximum solution length, I
use a max length of 9. This length is longer than the given solutions. I compare the run time for length 9
to the run time of length 10 separately.

5.2.1 Amount of Solutions

In this section, I evaluate the amount of solutions each method generate per solution length. This tells us
how easy it will be for the user to pick a solution to use. The amount of solutions generated using the GATA
constraints are the amount after the graph filtering. For each example I have prepared graphs showing only
the GATA solutions and graph showing GATA and APE in the same graph.

Amount solutions GATA Noise portion

[}

(5]

Amount of solutions
=]

solution length

Figure 21: The amount of solutions for each workflow length for Example 1, the noise portion example
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Figure 22: A comparison between the amount of solutions GATA and APE constraints generate for each
workflow length for Example 1, the noise portion example

Amount solutions GATA Noise Proportion

m

Amount of solutions

solution length

Figure 23: The amount of solutions for each workflow length for Example 2, the noise proportion example
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Figure 24: A comparison between the amount of solutions GATA and APE constraints generate for each
workflow length for Example 2, the noise proportion example
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Figure 25: The amount of solutions for each workflow length for Example 3, the object amount example
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Figure 26: A comparison between the amount of solutions GATA and APE constraints generate for each
workflow length for Example 3, the object amount example
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Figure 27: The amount of solutions for each workflow length for Example 4, the field amount example
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Figure 28: A comparison between the amount of solutions GATA and APE constraints generate for each
workflow length for Example 4, the field amount example

The first thing that is remarkable, is that the amount of solutions for GATA is quite low. Example 1,
the noise portion example, shows only one results. The noise portion example has a small GATA expression
with specific tools in the domain. This shows, that with the GATA constraints, it finds the specific workflow
that the user would be looking for.

Example 2, the noise proportion example, has 13 solutions. This example has more solutions as the GATA
branches early in the parse tree. This means two entirely separate calculations need to be done before the
final tool. The order only needs to be taking into account for each branch of the GATA expression. This
means interleaving of the tools of these branches can happen and result in multiple correct workflows. This
example shows this by having 13 solutions.

Example 3, the object amount example, also only has one solution. This example has a complex GATA
but yields a solution that contain three tools. This shows the GATA constraints also can yield simple
workflows when the domain allows it. But as the workflow contains a small amount of tools, there is no
variation allowed in the solution.

Example 4, the field amount example, has workflows of all lengths of four and longer. This happens as
the types of the tools of the required workflow allow for a conversion tool to be included. This explains the
variation in solution length. At length four, the tool is not included. At every subsequent length, the tool is
included one or more times. Another thing to note is that for the length of 4 is there are 6 solutions. But
for either example workflow of Figure [I9] or Figure [20] there are only 3 ways to keep the tool order as the
GATA expression. This shows that both examples are found in the results.

When comparing the Solutions from APE and GATA, we make a two of observations. The first observa-
tion is that the APE runs always reach the maximum of 1000 results before reaching the maximum solution
length. The second is that the APE runs always have solutions in multiple solution lengths. This shows that
GATA constraints are more domain-specific in comparison to APE.

5.2.2 Run Time Evaluation

Next I evaluate the run time. In this section, I compare the APE synthesis run time of both approaches.
The graph filtering will be evaluated next section.
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Figure 29: An overview of the run time for the synthesis portion of both approaches. Compared per example

An overview of the synthesis run time per example can be found in Figure [29] The first thing I notice
is that the run time for Example 2 ,the noise proportion example, is a couple times longer longer than the
other run times. The run time for the GATA examples is mostly determined by the time it takes to convert
the GATA expressions into constraints specific for each solution length. This is the reason there is such a
big of a difference between run times of examples.

The APE run times are all closer to each other. The limiting factor for APE is the amount of solutions
the synthesis will generate. The APE constraints used are much less restrictive for these examples. Thus
the synthesis algorithm generates the maximum amount of solutions.

The constraint conversion into CNF is the biggest bottleneck for the GATA approach. The longer the
solutions are, the longer the translation time into CNF. This is especially evident when comparing the
problem set up time for the solution length of 9 and 10. This can be seen in Figure [30]

The problem setup for GATA per example
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Figure 30: An overview of the problem set using the GATA constraints for solution length 9 and 10

31



5.2.3 Graph Filter Evaluation

In this section, I evaluate the graph filtering part of the GATA constraint part. This post-process step
ensures that all solutions comply with the specification expression. As a trade-off, there is some time spent
recreating and comparing the graphs, but the amount of solutions it reduces is quite significant. This can
be seen in Figure

Amount of solutions before and after graph filtering
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Figure 31: The amount of solutions before and after the graph filter portion of the GATA constraints.

The impact on Example 1 and Example 3 is minimal as the amount of solutions was already small. For
the other examples, it reduces the amount of solutions by about half. Example 2, The noise proportion
example, has some tool orders that do not comply as the solution length is quite long. Example 4 ,the
field amount example, has the most solutions removed as it also has the most solutions generated. In these
examples the filtering definitely has an impact. as it removes a lot of solutions that do not comply with the
specification.

For the time efficiency, we need to look at the run time for the graph filtering. This can be found in
Figure For most examples the run time is below half a second. These are times that would not impact
the general run time much. However, the run time for Example 2, the noise proportion example, is more
than 5 seconds. This is quite long. It is not unacceptable for the guarantee that the resulting solutions
comply with the specification. The naive approach to the verification of solutions shows in the run time of
this example.
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Figure 32: The run time for the graph filter portion of the GATA constraints displayed for each example.

5.3 Time Complexity And Correctness

In this section, I briefly touch on the time complexity and correctness of this approach. The correctness
regards the constraints and the post-process step individually. The time complexity discussion touches on
the transformation from SLTL to a propositional formula and the graph recreation algorithm .

The constraints are based on abstracted versions of GATA expressions. The GATA expressions that
annotate the tools are abstracted. Thus the constraints cannot guarantee a perfect representation. The
constraints try to approach the GATA expression of the workflow specification. This allows solutions that
have a different GATA representation than the workflow specification to be in the solution set. The post-
process step guarantees the solutions are correct and filters the incorrect solutions.

The post-process step recreates a GATA expression of a workflow and compares it to the GATA expres-
sion of the workflow specification. The recreation algorithm creates the expression representing the workflow
by combining the expressions of tools. It starts by the last expression and adds the previous expression on
one of the leaves of the parse tree of that expression. This results in multiple bigger GATA expressions that
a workflow can represent. Then each of these expression is compared against the specification expression.
The parse trees of a candidate expression and the specification expression are walked together in lock step.
If a match cannot be found, the candidate expression is discarded and if there is a match, the workflow
matches the specification. By verifying all expressions of a workflow, a match with the original expression
will be found if it exists and thus it suggests correctness.

The time complexity of generating the constraints depends on how the SLTL formula’s are translated to
propositional formulas. It depends on how many G and F operators are in a formula and on the solution
length. Each of these operators increase the amount of propositions in the resulting formula exponential.
The amount of these operators in a formula is called p and the solution length n. Then the generation of
the propositional formulas has a time complexity of O(n?). This complexity stems forth from the conversion
method from SLTL to propositional formula. The F and G operators list all possible situations from state
0 to state n. This shows that SLTL formulas with long F and G chains are inefficient. However there are
two constraints that do use these operators chained together, but these limit the possible workflows so much
that it is reasonable to use these constraints.
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The graph filter algorithm of the post-process step uses the most naive process to recreate the graph. It
creates all possible combinations. In the easiest case all tools have no function in their representation that
have multiple parameters. In this case there is only one solution. However, most tools have one or more
functions in their representation with two parameters. Each such function adds a possible way to combine
two tools. Thus, if a representation has k functions with two parameters, it adds k possible ways to combine
two tools. If two tools have k functions, it adds k2 possible solutions. Then if a solution has n tools with
k functions for each GATA representation, there are (n — 1)* solutions. This leads to a worst possible time
complexity of O(n*). This can be seen in the graph filter run time in Figure Example 2, the noise
proportion example, has many more functions with two parameters and that drastically increases the time
to post-process this example.

However, for the other use cases, the naive approach was not a problem as either their solutions where
short or their GATA expressions contained few repeating function and few multiple parameter functions.
Repeating functions create long sequences of F and G operators and Short solutions and few parameter
functions reduce the amount of possible graph combinations.

5.4 Approach Comparison

This section compares both approaches semantically. The approaches try to accomplish the same goal but
in different ways. The GATA constraints build upon APE, the way the domain knowledge is handled is the
same. This GATA-adapted APE relies on the property of APE to combine tools in a correct way. Only the
way the user constraints encoded is different.

A user of APE specifies the input and output of their workflows. In addition to this, the user specifies
some constraints. These either reason over a specific tool or an abstract tool. By using abstract tools the
user can loosely specify what kind of behaviour they seek. However, these constraints are domain dependent.
A user can only reuse their constraints and taxonomies if these are designed in a general abstract way. If
these are not designed as such, a user might have to respecify their constraints.

This is in contrast to using GATA as constraints. This generality is inherent to the use of GATA as
constraints. A GATA expression precisely specifies the required operations. This expression is used to find
workflows that explicitly match that GATA expression of the workflow specification. The user expresses
their intent using an independent language instead of the domain directly.

However, an important difference with these approaches, is that all the solutions APE returns adhere
exactly to the constraints of the workflow specification. The GATA-based approach translates the GATA
expression of the workflow specification to a set of constraints that approximate the required solutions. With-
out the post-process step that compares solutions to the specification, there would be incorrect solutions in
the final list.

In addition to these general differences there are also some differences in the solutions each approach
generates. As seen in the previous section, the GATA-based approach generates less solutions in general. It
is more restricted in the solutions it can generate. Especially for solutions longer than the minimum length
that generates solutions. APE has a lot of possibilities for repeating tools.

The GATA approach limits this by having a maximum amount of times a function can appear in a
solution. This constraint is based on the assumption that tools only have a function at most once in their
annotation. If a tool is introduced that uses a function more than once this constraint needs to be loos-
ened and the amount of resulting solutions will increase. The amount of solutions is also limited with the
GATA approach because the tool set used for testing is relatively small. Thus, there is not a lot of room for
tools having overlapping GATA expressions. An overview of general differences can be found below in Table[7]

As can be seen in the overview, GATA-adapted APE is a more specialized version of APE. It allows users

to express their intent on a higher level and receive a smaller more relevant set of solutions. However, it
comes with the loss of generality of APE.
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Property [ APE GATA-adapted APE

Requires workflow specification yes yes

and domain knowledge

Workflow specification is defined Within domain Independent using GATA
Can be used for what kind of Any Only Geoscience related
domains

Needs additional domain No Tools need a GATA annotation
knowledge

Needs post-process step No Yes

Inherently generates a small and No Yes

focused set of solutions

Table 7: An overview of the similarities and differences between APE and GATA-adapted APE

6 Conclusion

In this thesis I showed that the usage of a semantic language as an input for a workflow system is possible.
I used four research questions as a basis for this thesis.

1. How can input semantically describe the goal?
2. How can this input be used in a workflow synthesis system?
3. How can it relate such input to concrete tools?

4. How can we translate the semantic input and domain knowledge into constraints for a SAT-based
system?

GATA expresses the required calculations semantically which answers Research Question 1 (RQ1). I trans-
lated GATA expressions from the workflow specification and the additionally annotated tools from the
domain knowledge into constraints that are usable by the synthesis algorithm of APE which answers RQ2.
These constraints reduce the space of possible workflows that have the GATA specification as their repre-
sentation. This was only possible as the tools also have a semantic representation in GATA which answers
RQ3. However, not all solutions in the result represent the GATA expression of the workflow specification. A
post-process step where I recreated the original expression from a workflow made sure only correct workflows
are returned. The whole process allows a user to express their intent in GATA and thus independent from
the domain which answers RQA4.

I showed that using GATA as a workflow specification is able to achieve results. However, for solutions
longer than a length of 9, the generations of the CNF formulas for the SAT solver can easily take over 10
seconds. The same holds for the post process verification. This process takes longer than a couple of seconds
on graphs with many multiple parameter functions. This greatly impacts the usage when it is run many
times in succession for making small edits to the workflow specification. The graph reconstruction algorithm
I used is naive and creates all possible graphs before starting to compare them. Due time constraints, I was
not able to improve on it further. There is a lot of room for improvement and it is worth it to try to explore
this approach, especially with eye on full automation in QuAnGIS. The guarantee that the workflows comply
with the input is required for a user to be able to trust the system.

6.1 Relevance in Al

In general there is a gap between natural language and machine code. We try to close this gap from either
side. From the machine code, we abstract and create programming languages and from the natural language
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side we try to automatically generate programs from descriptions. To automatically generate workflow from
a natural language description we need to close the gap from natural language to the logical constraints for
a synthesis algorithm.

In this thesis, I closed the gap from a little by automating the translation from GATA to logical constraints
for the workflow synthesis API, APE. GATA serves as an algebra that captures the calculation necessary to
solve a Geoscience problem. Thus this thesis contributed to the automation of generating workflows from a
Geoscience problem.

6.2 Future Work

The translation from SLTL to CNF can take upwards of 10 seconds for certain solution lengths. A big part
of this is the translation from the propositional formula to the CNF. The prototype used a specific library to
handle the propositional formulas and the transformation to CNF. There is no guarantee that it translates
in the most efficient way possible. There might be a method that is more efficient than this library.

Another way to reduce transformation time is to research the impact of the SLTL formulas used. I defined
the set of constraints before experimenting with the post-process step. The removal of certain constraints
can reduce the problem set up time with minimal increases in amount of incorrect solutions. Graph filtering
can offset this change and ensure correctness.

The graph filter algorithm can also be improved. It uses a naive approach of creating all possible graph
combinations. It only compares at the end when all graphs have been created. This can be improved by
partial comparing. After combining the expressions of two graphs already compare the partial graph to the
original input. This can greatly reduce the amount of generated graphs in exchange for comparing more
often.

Another way to improve the graph filter algorithm is to take into account the data types of GATA. GATA
expressions are typed and so its inputs. Thus, not all expressions can fit on all the data leaves of another
expression. This check will take barely any time and will reduce the amount of graphs to compare. But
the algorithm needs to be made aware of the types in GATA. I had not enough time to develop it, but it is
worth to investigate this in the future.

This thesis focused on using GATA as constraints for ArcGIS. It would be worth while to annotate tools
in a different domain with GATA and compare this to the results of ArcGIS tools. One of the goals of GATA
is using it as a single input for workflows in multiple domains. This thesis has shown it works for ArcGIS
tools. Investigation is necessary to show that GATA can be used this way.

Another improvement is the test set. The set of tools and examples used to test are relatively small
compared to the actual tool set available in ArcGIS. It is enough to prove it is worth investigating further,
but the tool set is not representative for actual usage.

Finally, it would be interesting to test if geoscientists would like to use GATA as workflow specification.
User studies should make clear if the language is easy to use or if it is just use full as part of QuAnGIS.
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