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Abstract

The experimental realization of a Bose-Einstein condensate of photons, first achieved in
2010 at Bonn University, allowed for new ways to probe the properties of condensates. For
thermal light in free space the chemical potential is zero and condensation is not possible.
By confining light to a microcavity, the transverse degrees of freedom behave as massive
bosons which can have nonzero chemical potential. The gas of thermal photons can be
brought to thermalize with a fluorescent dye though absorption and emission cycles. By
pumping the dye molecules with a laser, the chemical potential can be increased and the
photons will condense.

We have built a setup with which we can spatially and spectrally resolve the photon distri-
bution in such a dye-filled microcavity. This allows us to study the shape and occupation of
the low energy transverse modes of the cavity. We use this to investigate the thermalization
process of the photon gas. A rate equation model is presented and qualitatively compared
to experimental data. We find that the photon gas is not in thermal equilibrium.

We also investigate effective photon-photon interactions by measuring the spatial extent
of the condensate. We find an effective interaction in the form of thermal lensing. As
the thermal lensing depends on the interaction between the photon gas and the dye, we
find that the model used for thermalization can also make good predictions about effective
photon-photon interactions.
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1
Introduction

Shortly after the development of boson statistics by Bose in 1924 [1], Einstein applied these
statistics to atomic gases [2]. He found that at high phase space densities bosons would con-
dense into a macroscopic occupation of the ground state. This phenomenon is now known
as Bose-Einstein condensation. Reaching sufficiently high phase space densities requires ex-
tremely low temperatures and/or high densities. Because of these experimental challenges it
took until 1995 for the first Bose-Einstein condensates, consisting of 5× 105 sodium atoms,
to be created in a laboratory [3]. The realization of Bose Einstein condensation allowed the
study of quantum mechanical effects on a macroscopic scale.

In the years since the first Bose-Einstein condensate many more types of bosons have been
condensed. Isotopes of various atoms, molecules and quasiparticles like magnons [4] or
polaritons [5]. In all of these systems, the system has to thermalize and particles are lost
over time. When the thermalization time is much shorter than the lifetime, the system can
be accurately described by considering it to be in thermal equilibrium. For atoms confined
in magnetic traps the lifetimes are far larger than the thermalization time and thermal
equilibrium can be assumed. For quasiparticles with short lifetimes, such as the polariton,
particles need to be continuously added to maintain the densities necessary for condensation.
These are thus driven-dissipative systems, better described using a master equation than a
Hamiltonian. Condensates of photons, the subject of this thesis, are somewhere in between
these two regimes.

To achieve Bose-Einstein condensation of light, one has to start with a thermal gas of
photons. For thermal light in free space the number of photons is not conserved. Lowering
the temperature reduces the number of photons, making condensation impossible. An
alternative was found by Chiao et al [6], who confined light to a microcavity. By fixing
the longitudinal wavenumber the photons behave as massive particles in 2 dimensions. The
group of Martin Weitz expanded on this by adding a fluorescent dye to which the photon
gas would thermalize [7] and achieved condensation in 2010 [8]. Similar setups were built
in London in 2014 and in our group in Utrecht in 2015.
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Chapter 1. Introduction

Outline

Chapter 2 covers the basic concepts necessary for photon condensation in dye filled cavities.
Chapter 3 explains the setup with which we condense light and some of the methods which
we use to analyse the light leaking out of the cavity. Chapter 4 discusses theory on how the
dye-photon interaction thermalizes the photon gas and compares a rate equation model to
some experimental results. Chapter 5 presents measurements of the effective photon-photon
interactions and compares them to previous experiments. We then interpret the results
using concepts from our treatment of the thermalization. Chapter 6 gives suggestions for
future research. Appendix A is a glossary of the symbols and constants used in this thesis,
with numerical values given where possible. Appendix B gives details on the data presented
in this thesis and how each dataset was processed.
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2
Bose-Einstein Condensation of

Photons

This chapter covers the basics of photon condensation in microcavities. First we will show
how confinement in the cavity gives the photons an effective rest mass by removing one
degree of freedom and how the curvature of the mirrors leads to a harmonic trap in 2
dimensions. The thermalization mechanism of the photons will then be described, and
Bose-Einstein condensation in 2D will be treated. Finally we will see how these come
together in an experimental realization of photon condensation and recast some of the
formulas in terms of measurable quantities.

2.1 Trapped massive photons

A cavity can be used to trap photons with a fixed wavenumber along the cavity axis. The
dispersion relation for the remaining degrees of freedom is approximately that of a massive
free particle moving in 2 dimensions. If the mirrors are curved the particles feel an effective
potential as well. To see this, consider the energy of a photon with wavenumber kz along
the cavity axis and wavenumber k⊥ perpendicular to it

Eph =
~c
n0

√
k2
z + k2

⊥. (2.1)

By setting Dirichlet boundary conditions such that the electromagnetic field vanishes on
the surface of the mirrors we fix the longitudinal wave number

kz(r) =
qπ

D(r)
, (2.2)

where q is a positive integer known as the mode number and D(r) is the cavity length at
position r, which in the case of perfectly aligned spherical mirrors with a radius of curvature
R is given by

D(r) = D0 − 2(R−
√
R2 − r2). (2.3)

Using the paraxial approximation kz � k⊥ and R� |r| we can expand the energy as

Eph(r) ≈ mph

(
c

n0

)2

+
(~k⊥)2

2mph
+

1

2
mphΩ2r2, (2.4)

where n0 is the refractive index inside the cavity and the effective photon mass is

mph =
n0~
c
kz(0) =

n~
c

qπ

D0
(2.5)

and the trap frequency is

Ω =
c

n0

√
2

D0R
. (2.6)
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Thermalization of light

The photons thus behave like massive bosons in a 2 dimensional harmonic trap. By seper-
ating it into two 1 dimensional harmonic oscillators with quantum numbers m = (mx, xy)
we find that the eigenenergies are given by Em = ~Ω(mx +my + 1) and the corresponding
eigenstates are

ψm(r) =
Hmx( x

lHO
)Hmy( y

lHO
)e
−x2+y2

2l2HO)

l2HO
√
π2mx+mymx!my!

, (2.7)

where lHO =
√

~/mphΩ is known as the harmonic oscillator length. For a fixed mode
number q there are no states below the ground state ωc = (mph/~)(c/n0)2 + Ω, which is
therefore referred to as the cutoff frequency. This is the frequency where the condensate
will form and, as we will see in Chapter 4, its value will affect the thermalization of the
photon gas.

2.2 Thermalization of light

To thermalize the two dimensional photon gas the cavity is filled with a solution of Rho-
damine 6G, a fluorescent dye. The spectrum of this dye is plotted in Fig. 2.1a. The energy
levels of this molecule can be modeled as a two level system with the ground and excited
states split into bands due to the rovibrational modes of the molecule. These bands are
commonly referred to as S0 and S1 respectively. When a dye molecule is excited by the ab-
sorption of a photon it thermalizes inside the upper band on a subpicosecond timescale due
to dye-solvent collisions. (see Fig. 2.1b) Due to this thermalization the Einstein coefficients
for absorption B12(ω) and emission B21(ω) obey the Kennard-Stepanov relation [9] [10] [11]

B21(ω)/B12(ω) ∝ e−β~(ω−ωZPL), (2.8)

where β = (kBT )−1 and ωZPL is the zero-phonon line, the frequency of the transition
between the ground and excited states of the molecule in absence of rovibrational modes.
To see how this leads to a thermal photon gas, consider the rate R(m → m’) of a photon
going from state m to m’. This rate is proportional to B21(ωm)B12(ωm’), so the ratio of
the rates going to m’ from m and vice versa is:

R(m→m’)
R(m’→m)

=
B21(ωm)B12(ωm’)

B21(ωm’)B12(ωm)
= e−β~(ωm−ωm’). (2.9)

Given enough time the flow of particles between different states will balance out, leading to
the probability to find the photon in state m given by P (ωm) = e−β~(ωm−ωc). The photons
thus settle into a thermal distribution.
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(a) The normalized absorption and emission
spectra of Rhodamine 6G [12]

{S1

{S0
(b) Diagram showing the process of photon

thermalization.
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Condensation in the ideal Bose gas

2.3 Condensation in the ideal Bose gas

Now that we have established that we can thermalize quasiparticles inside a cavity, we can
see how Bose-Einstein condensation occurs for bosons in 2D. In a system with temperature
T and chemical potential µ, the thermal expectation value for the occupation of a bosonic
state with energy ε is given by the Bose-Einstein distribution

f(ε) =
1

eβ(ε−µ) − 1
. (2.10)

Condensation occurs when the chemical potential approaches the energy ε0 of the ground
state and f(ε0) diverges. The chemical potential can be increased by adding particles while
holding the temperature fixed. To see how many particles we need to add, we can compute
the total number of particles at ε0 − µ = 0. This number can be found by summing the
expectation values of every state. In the limit where the spacing between energy levels is
much smaller than kBT , the sum over the excited states can be approximated by an integral

Nex =

∫ ∞
0

f(ε)D(ε)dε. (2.11)

where D(ε) is the density of states. We can take the density of states to be D(ε) = Dεp−1.
Then the number of particles in the excited states is

Nex = D

∫ ∞
0

εp−1

eβ(ε−µ) − 1
dε = Dζ(p)Γ(p), (2.12)

where ζ(p) is the Riemann zeta function, and Γ(p) is the Gamma function, which are defined
as

ζ(p) =
∞∑
k=1

1

kp
, Γ(p) =

∫ ∞
0

dxxp−1e−x. (2.13)

When p > 1, Nex is a finite positive number, and thus condensation is possible.

For the uniform bose gas in 2D we find that p = 1, so condensation is not possible. The
harmonic trapping due to the curvature of the mirrors changes the density of states to

D(ε) = NS
ε

(~Ω)2
. (2.14)

with NS being the number of spin degrees of freedom. In this case condensation is possible
and occurs above the critical photon number

NC = NS
π2

6

(
kBT

~Ω

)2

. (2.15)

Because it is not possible to add more particles to the excited states by increasing the total
number of particles, the thermal cloud is said to be saturated. The number of particles in
the ground state is then

N0 = Ntot −NC . (2.16)
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Experimental realization and terminology
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Figure 2.2: Occupations of the first few energy levels as a function of the total number of particles, with
NS = 1.

At energies much smaller than kBT , the Bose-Einstein distribution can be approximated
by the Rayleigh-Jeans law

f(ε) ≈ kBT

ε− µ
. (2.17)

As the degeneracy of energy level Em = ~Ω(m+ 1) is gm = m+ 1, the expected number of
particles with this energy can then be written as

N(Em) ≈ NS
kBTgm
Em − µ

= NS
kBT

~Ω

m+ 1

(m+ 1)− µ/~Ω
. (2.18)

Fig. 2.2 shows how the occupations of the energy levels behave around the condensation
threshold. When µ is negative, nm > nm′ if m > m′. At µ = 0 the levels are equally
occupied. As µ approaches E0 = ~Ω, the occupation of the ground state diverges and the
occupations of the excited states become fixed at nm = NS

kBT
~Ω

m+1
m , which again shows the

saturation of the excited states.

2.4 Experimental realization and terminology

The above derivations are all based on simplifying assumptions. In experiments there are a
number of things complicating things. Photons are lost due to nonradiative decays of due
molecules and transmission though the mirrors. Therefore, to maintain high enough photon
numbers for condensation, more photons must be continuously added. This is achieved by
exciting the dye molecules using a pump laser. The light leaking through the mirrors can
however be used to study the intracavity photon distribution. This means that, in contrast
to most experiments on atomic BECs, one does not have to further disturb the photon BEC
to do measurements.
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3
Setup and Methods
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Figure 3.1: Schematic setup, some mirrors have been omitted and distances are not to scale
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Experimental setup

3.1 Experimental setup

Fig. 3.1 shows a schematic depiction of our setup. The elements of the setup can be grouped
into the following categories: the dye cavity, the pump laser and the imaging system. There
is also a setup for measuring the polarization of the photon distribution [13], which was not
used for the work presented here.

3.1.1 The microcavity

The microcavity consists of two high reflectivity mirrors (CRD Optics, 901-0010-0550) with
a radius of curvature of 1 meter. One of the mirrors is ground down to a cone topped with
a small mirror of diameter of 1.5 mm. The cavity length can be varied by hand using a
translation stage. The small mirror is mounted on piezo actuators allowing for fine control
of the cavity length and transverse displacement. In between the two mirror is a droplet of
Rhodamine 6G dissolved in ethylene glycol, which is held in place by capillary forces. Before
starting experiments, the cavity is opened and the mirrors are cleaned with First Contact
Polymer. A new droplet of dye solution is then added. To maintain a constant cavity length
during experiments, a feedback mechanism is used. This cavity locking utilizes a Helium
neon (HeNe) laser at 632.8 nm. The light from this laser passes through the cavity only at
the positions where the cavity length is a multiple of the HeNe light wavelength. This leads
to circular patterns known as Newton rings. The HeNe light is split off using a dichroic
mirror and imaged onto a CCD camera (Point Grey Flea FL3-U3-13Y3M). The radius of
the innermost Newton ring is determined by a fast fitting procedure. The radius is kept
constant by applying a feedback signal to the piezos, thus stabilizing the cavity length.

3.1.2 Pump laser

The dye inside the cavity is pumped using pulses from a 532 nm CW laser (Laser Quantum
Gem 532). The laser beam is passed through three acousto-optical modulators (AOMs),
which chop the beam into pulses with a duration of approximately 500 ns. The first AOM is
used to control the pulse power and the second and third are used to improve the extinction
ratio.

The pump beam is aligned such that it enters the cavity at an angle of 65 degrees to
maximize transmission. This causes the horizontal width of the pump spot to be enlarged
by a factor of 1/ cos(65◦) = 2.36. To compensate for this, the beam is expanded in the
vertical direction using an anamorphic prism pair. A lens positioned in a zoom housing
creates a focus that can be moved to change the size of the pump beam at the cavity.
Following the lens, the beam goes through a glass plate mounted in a mirror mount. By
rotating the glass plate the beam can be displaced by small distances, allowing for fine
control over the pump spot position. A beam sampler then splits off a few percent of the
beam to be used to image the pump spot before the rest of beam enters the cavity.

9



Experimental setup

3.1.3 Imaging

Imaging is done using a Zyla 5.5 sCMOS camera. The integration time is set to 200 µs. A
measurement produces two images, one containing the image of the cavity light during the
pump pulse and one image of background light which is subtracted from the first image. To
not waste storage space, we only read out a part of the chip 800 pixels high. This region is
divided into four regions, each containing a different image. An example of a measurement
can be seen in Fig. 3.2.

The light leaking from the large mirror is split into two paths. Thirty percent is used to
directly image the cavity with a magnification of ML = 10 (Fig. 3.2b). The other seventy
percent is used to make a spectrally resolved image with a magnification of MS = 5 using
an echelle grating with a groove density of 79 lines/mm and a blaze angle of 63 degrees (Fig.
3.2a). Light exiting through the small mirror is imaged on the Zyla with a magnification
of MS = 10 (Fig. 3.2c). Because the beam sampler is the last element the pump pulse
goes through before entering the cavity, the split off signal contains full information about
the pump spot, e.g. location, size, intensity. The split off part of the pump laser is imaged
onto the Zyla with a magnification of MP = 400/150 = 2.67 with respect to the pump spot
size at the cavity (Fig. 3.2d). Note that the image of the pump spot does not undergo the
anamorphic magnification caused by the 65 degree angle of incidence.

(a)

(b) (c) (d)

Figure 3.2: An example of a measurement with the background subtracted. The four images are normalized so
that the signal is visible. They are: (a) the spectrum, (b) the image coming through the large mirror, (c) the

image coming through the small mirror and (d) the image of the pump spot.
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Data analysis

3.1.4 Calibration

When doing theory it is convenient to use the cutoff wavelength, but in experiments we work
with the cutoff wavelength λc = 2πc

ωc
. Note that this is the wavelength in air corresponding

to the cutoff frequency, not the longitudinal wavelength of the modes inside the cavity. The
cutoff wavelength can be measured by redirecting the light leaking from the large mirror into
a fiber spectrometer (Ocean Optics, HR2000CG-UV-NIR) using a flip mirror. The Newton
rings used for cavity locking can be imaged by removing the notch filter in the imaging
path for the small mirror. By measuring the radius of the inner ring and the corresponding
cutoff wavelength at two different points we can determine the mode number q using

D(r1)−D(r2) ≈ r2
2 − r2

1

R
=
q

2

λ1 − λ2

n0
. (3.1)

Because the angle of incidence onto the echelle grating is not the same as the angle of
reflection the collimated beam will be slightly wider after passing the grating. This leads
to a narrowing in the image. This narrowing only occurs in the plane of incidence, so the
spectrally resolved images will end up with an anamorphic magnification. To determine
the anamorphic magnification we measure the aspect ratio of the Newton rings for the two
diffraction orders of HeNe light surrounding the diffraction order of the condensate light
and take the average to be the anamorphic magnification. It was found to be 0.908±0.013.
Whilst the imaging systems of the small mirror and the large mirror are both 4f systems,
the imaging system for the spectrum is not. To characterize possible aberrations in the
magnification resulting from this we compare the size of the Newton rings in the spectrally
resolved image and the normal images. Assuming the magnification of the image of the
large mirror to be exactly 10, we find that the magnification for the spectrally resolved
image is 4.971± 0.05.

3.2 Data analysis

When processing a dataset we determine for every image:

• The run and frame.

• The total number of counts in the images of the pump spot and the large and small
mirrors.

• The best fit parameters acquired by fitting the probability distribution of the harmonic
oscillator ground state to the image of the ground state in the spectrum.

• The total number of counts in the area where the fitting procedure determined the
ground state to be.

• The total number of counts in an area slightly to the left of the ground state, which
corresponds to a wavelength below the cutoff wavelength.

The most important of these is the fit to the ground state, which has to deal with low
signal to noise when fitting images of the photon distribution below threshold. Once these
quantities are determined, measurements with failed fits are filtered out. In Appendix B
details can be found about each dataset, including the filtering criteria.
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Data analysis

3.2.1 Fitting the ground state

The fit to the ground state is very sensitive to the initial values, as higher order modes also
have a roughly Gaussian shape which will lead to a local minimum for a least squares fitting
procedure. It is therefore important to determine accurately where in the image the image of
the ground state is. The cavity locking method we use does not stabilize the cutoff frequency
to within the splitting Ω between the ground state and the first excited states, which means
that the position of the ground state has to be determined for each measurement. The
experiments presented in this thesis consist of 20000 or more measurements, so finding the
ground state can not be done by hand. We therefore apply the following procedure, visually
represented in Fig. 3.3, to find the ground state for each measurement:

a. Take the part of the image that contains the spectrum.

b. Apply a Gaussian blur with a kernel of 5 pixels to smoothen out noise.

c. Sum over the y-axis in a range in which the condensate can be found (usually about
20 pixels high) and find peaks in the resulting 1D array using scipy’s find_peaks_cwt.

d. Take the position of the left most peak as xfit and find the y coordinate such that
I(xfit, y) is maximal. Take this as yfit Crop the image to a square with (xfit, yfit) as
its center.

e. Fit the ground state distribution to this cropped image. The crop significantly reduces
computation time and prevents higher order modes from affecting the fit to the ground
state.

(a)

(b)

0 50 100 150 200 250 300

(c)

(d)

(e)

Figure 3.3: Images of the steps in the fitting procedure.
Subfigure (a) shows the data we want to fit. Subfigure (b) shows the data after a Gaussian blur is applied. The
final square used for fitting is also marked. Subfigure (c) is the vertically binned data, with peaks marked by

red lines. Subfigure (d) is the cropped square to which we fit the ground state distribution. Subfigure (e) is the
best fit.
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Data analysis

Fitting errors

When the signal to noise of the images is low, there will be systematic errors in the best
fit parameters. To examine possible photon-photon interactions we need to accurately
determine the size of the condensate. To eliminate the possibility that we identify a fitting
error as a physical process, we have examined this error numerically.

First, images are generated that simulate experimental data. A total of 10000 images are
produced. The starting point is an image of 50 by 50 pixels with all values set to 200
counts, which represents background light. A 2D Gaussian distribution is then added, with
the center being at (25 + dx, 25 + dy), where dx, dy are random numbers in the interval
[0, 1]. The widths are fixed at 7 pixels in the x-direction and 6 pixels in the y-direction.
The sum over the Gaussian is set to be equal to the number of the generate image, e.g. the
sum over picture 200 is equal to 200. This distribution is then subjected to Poisson noise,
and a background image with Poisson noise is subtracted. The generated images are fitted
using the same fitting procedure as for experimental data. The data is binned according to
the number of counts and the weighted average of the width for each bin is computed.

Fig. 3.4 shows the errors in the best fit widths as a function of the total number of counts.
As one decreases the total counts the fit deteriorates because peaks in the noise become
more significant than the signal. The relative errors mark the smallest change in width that
can be seen as significant, i.e. resulting from physical phenomena rather than numerical
ones in our analysis.
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Figure 3.4: Best fit widths. The top graphs show the weighted averages and the bottom graphs show the
absolute error expressed in terms of the real width of the distribution.
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4
Photon thermalization and
multimode condensation

4.1 Introduction

The observation of photon condensation drew comparisons to polariton condensates. It was
necessary to establish a distinction between lasing and condensation through thermalization.
This distinction was made in two papers by Peter Kirton and John Keeling [14] [15], where
they examined the thermalization and condensation of the photon gas in a nonequilibrium
model. Experimental observations of pump dependent effects and multimode condensa-
tion [16] [17] prompted an extension of the model with a dye excitation field depending on
position [18]. We will here compare the predictions of this model with some experimental
results, in particular the spectrum of the photon gas. We will first present the rate equation
model and see what kind of predictions it makes. We will then look at some experimental
results and interpret them using the concepts from the model.

4.2 Theory: the rate equation model

Kirton and Keeling first performed an adiabatic elimination of the rovibrational states so
that that the dye could be treated as a two level system [14]. From the master equation
they then reduced the problem to a set of rate equations by assuming coherence between
different modes to be negligible. This assumption is not strictly correct, as emission into
wave packets has been observed experimentally [17], but it reduces the amount of equations
significantly. This makes it possible to examine steady state solutions in some cases and to
solve the problem numerically. The rate equations are a set of coupled equations relating
time evolution of the mode occupations Nm = 〈a†mam〉 and the local excitation density
f(r), which is the local fraction of excited dye molecules.

∂tNm =− κNm + ρ0fmΓ
(m)
↓ (Nm + 1)− ρ0(1− fm)Γ

(m)
↑ Nm, (4.1)

∂tf(r) =− Γtot
↓ ({Nm}, r)f(r) + Γtot

↑ (1− f(r)), (4.2)

Γtot
↓ ({Nm}, r) = Γ↓ + Σm|ψm(r)|2Γ

(m)
↓ (Nm + 1), (4.3)

Γtot
↑ ({Nm}, r) = Γ↑(r) + Σm|ψm(r)|2Γ

(m)
↑ Nm. (4.4)

Eq. 4.1 governs the mode occupations Nm, with the first term on the right hand side
accounting for cavity losses at a rate κ and the second and third terms representing emission
and absorption respectively. Here, ρ0 is the number density of dye molecules, Γ

(m)
↓ is the

14



Theory: the rate equation model

emission rate for mode m and Γ
(m)
↑ is the absorption rate for mode m. The number fm

is defined as the overlap between mode m and f(r) i.e. fm =
∫
d2rf(r)|ψm(r)|2. We can

thus interpret ρ0fm as the sun over all excited dye molecules weighted by their coupling to
mode m. The time evolution of the excitation density f(r) is governed by Eq. 4.2, with the
excitation density being increased by the excitation rate Γtot

↑ ({Nm}, r) and decreased by
the decay rate Γtot

↓ ({Nm}, r). The excitation rate Eq. 4.4 is the sum of absorption of pump
light Γ↑(r) and absorption of cavity photons. The decay rate Eq. 4.3 is a sum of non-cavity
emission Γ↓ and emission into the cavity modes. In this notation the Kennard-Stepanov
relation can takes the form Γ

(m)
↑ = Γ

(m)
↓ eβ~δm , where δm = ωm−ωZPL is the detuning from

the zero-phonon line.

These rate equations can be solved numerically and give insight into the way the pho-
ton distribution deviates from a thermal distribution. An extension of the model which
added proper treatment of polarization states to the model [19] found that when the pump
is linearly polarized, the polarization component orthogonal to the pump does not fully
thermalize. Hesten et al [20] computed a phase diagram depending on a thermalization pa-
rameter and pump power, distinguishing regions of Bose-Einstein condensation, multi-mode
condensation and lasing.

We will look at the steady state solutions of this model and see how they differ from the
equilibrium situation presented in Section 2.3.

Steady state occupations and the condensation threshold

If we fix fm we can find a steady state solution for Nm,

Nm =
fmΓ

(m)
↓

κ/ρ0 + Γ
(m)
↑ − fm(Γ

(m)
↓ + Γ

(m)
↑ )

. (4.5)

It is convenient to define a thermalization coefficient θm, which is a measure of how likely
it is that a photon exits the cavity before being reabsorbed.

θm =
κ

ρ0Γ
(m)
↑

. (4.6)

This is the inverse of the thermalization coefficient defined in [20]. We have chosen this
definition to simplify notation. When θm � 1 reabsorption is very likely, and we would
expect the photon gas to thermalize to the dye. We can use this thermalization coefficient
and the Kennard-Stepanov relation Γ

(m)
↑ = Γ

(m)
↓ eβ~δm to rewrite Eq. 4.5 as

Nm =
1

eβ~δm
(
θm+1
fm
− 1

)
− 1

≈ 1

eβ(~ωm−µm)(θm + 1)− 1
, (4.7)

where we introduce the effective chemical potential for mode m

µm = ~ωZPL + kBT log fm, (4.8)

which can be interpreted as the local chemical potential of the dye excitations across the
mode m. Thus, when θm <� 1 the cavity modes are in equilibrium with the dye. If
in addition to this, f(r) is approximately constant over several oscillator lengths Eq. 4.7
reduces to the Bose-Einstein distribution and the photon gas will behave as described in
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Theory: the rate equation model

Section 2.3. Otherwise the chemical potential at which the ground state condenses shifts
to µcrit0 = ~ω0 + kBT log(θ0 + 1), which corresponds to a critical excitation density of

f crit0 ≈ eβ(µcrit
0 −~ωZPL) = eβδ0(θ0 + 1) (4.9)

Because the thermalization coefficient of the ground state θ0 is inversely proportional to the
absorption rate, thermalization will improve when the cutoff frequency is increased. The
dependence of the thermalization parameter on wavelength is plotted in Fig. 4.1a.
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(a) Thermalization coefficient versus frequency for a
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zero-phonon line. Plotted with spectral data from [12].
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The steady state excitation profile and gain clamping

The steady state solution of Eq. 4.2 is

f(r) =
Γtot
↑ ({Nm}, r)

Γtot
↑ ({Nm}, r) + Γtot

↓ ({Nm}, r)
. (4.10)

At low densities and/or large cutoff wavelengths the contribution of the cavity modes to
the emission and absorption rates can be neglected. The excitation density can then be
approximated by

f(r) ≈
Γ↑(r)

Γ↑(r) + Γ↓
≈

Γ↑(r)
Γ↓

. (4.11)

This condition is met for high energy modes, which will have an occupation of

Nm = e−β~δm
fm

θm + 1
=

1

Γ↓

e−β~δm

θm + 1

∫
d2r|ψm(r)|2Γ↑(r), (4.12)

Thus the occupation of high energy modes depends on three things: the temperature T , the
pump Γ↑(r) and the thermalization coefficient θm. For atomic condensates it is customary
to determine the temperature by fitting to the thermal cloud. Eq. 4.12 shows that this
method is not reliable unless the thermalization coefficient is very small and the excitation
density is uniform over the area where the temperature is fitted. The thermal cloud will
shrink as the pump spot is made smaller, thus making it look like the thermal cloud is
becoming colder. This explains why fits to experimental data tend to find temperatures far
below room temperature [21].
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Theory: the rate equation model

Above threshold the contribution of condensed modes can be significant. Suppose the
ground state has condensed and dominates emission and absorption. Then the excitation
density in the center of the cavity can be approximated by

f(0) ≈
|ψ0(0)|2Γ0

↑N0

|ψ0(0)|2(Γ0
↑ + Γ0

↓)N0
≈ 1

e−βδ0 + 1
, (4.13)

where we again made use of the Kennard-Stepanov relation. The chemical potential of the
dye excitations thus locks to the energy of the ground state ~ω0. This is also known as gain
clamping in laser physics. The result is a dip in the excitation profile, as can be seen in Fig.
4.1b. The purple line is the excitation density, the blue dashed line is the excitation density
without emission to and absorption from the cavity modes (Eq. 4.11) and the grey dashed
line is the excitation density at maximal gain clamping (Eq. 4.13). Increasing the total
pump rate further will push the fringes of the dip up through the critical excitation density
of the modes located on the fringes. These modes will then also condense. Fig. 4.2 shows
such multimode condensation. The effect of gain clamping becomes more pronounced when
the cutoff frequency is increased, because the absorption and emission rates are larger. But
as we saw before, thermalization is better for larger cutoff frequencies. As κ/ρ0 is limited
by the quality of the mirrors and by quenching at high concentrations fixed, one has find a
balance between good thermalization and single mode condensation.

Figure 4.2: Example of multimode condensation, the photon distribution is shown on the left, and the
corresponding spectrum on the right.

4.2.1 Imperfections of the dye

There are a properties of the Rhodamine 6G dye which one should keep in mind when doing
experiments. First there is photoblinking. This is the decay of excited dye molecules to
an excited triplet state for which decay to the ground state singlet is forbidden. The dye
molecule can then no longer fluoresce until it returns to the excited state singlet via thermal
activation. The typical timescale for this process is around 4 µs [22]. As the integration
time of our camera is 200 µs, emission from molecules that have been in the triplet state
could affect our measurements. The magnitude of this signal is however very small due to
the slow rate of decay to the triplet state.

The second effect is photobleaching, which is an irreversible modification of the molecule
mediated by photon absorption. Bleaching slowly reduces the density of the dye ρ0 after
many pulses.

The third effect is that at high concentrations, self-quenching can lead to dissipation rather
than emission. The close proximity between dye molecules allows the formation of queching
complexes which have fast radiationless decay channels. For Rhodamine 6G in methanol,
the concentration at which quenching processes become relevant was found to be about 5
mM [23]. These radiationless decays decrease the quantum yield, the ratio between the
number of emitted and absorbed photons, which in the absence of quenching is typically
0.95 [24].
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Experiments

4.3 Experiments

We have performed a number of experiments to look at the behavior around threshold and
at multimode condensation. To look at the influence of the dye concentration and cutoff
wavelength separately, we perform four experiments: 1.5 mM at 590 nm, 1.5 mM at 576
nm, 6.0 mM at 593 nm and 6.0 mM at 576 nm. These wavelengths were chosen to be within
a few nanometers of the efficiency maxima of our echelle grating. At dye concentration 1.5
mM there was not enough laser power available to condense at wavelengths above 590 nm.

Each experiment consists of 200 runs of 100 frames. The cavity is aligned to minimize
multimode condensation, keeping the condensation single mode for the majority of the
pump power range. During each run, the pump power is scanned across threshold using an
interleaved power ramp. The ground state is fitted using the procedure detailed in Section
3.2.1. The data points are sorted by the total number of counts in the image coming from
the large mirror and are binned into 100 equally sized bins. The image of the large mirror
and the spectrum are averaged across each bin. We use the averaged large mirror images to
compute the total number of counts and average radial profiles of the photon distribution.
We fit the number of counts in each of the energy levels to the averaged spectra. As the
light is split unevenly across the two images (see Fig. 3.1), we correct for this by dividing
by the fraction of light being used to make each image. When we refer to ’counts’ below, it
thus means the following: the number of photons that leaves the cavity through the large
mirror multiplied by their detection efficiency.
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Experiments

4.3.1 Cutoff wavelength 590 nm, 1.5 mM
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(a) Images of the spectrum at maximal pump intensity.
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(c) Condensate counts as a function of total counts.
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(d) Counts per energy level as a function of total
counts. The first five energy levels are labeled.

Figure 4.3: Condensation at cutoff wavelength 590 nm, dye concentration 1.5 mM, dataset 2018-05-09a
Fig. 4.3 shows the analysis for the experiment at a dye concentration of 1.5 mM and a
cutoff wavelength of 590 nm. Fig. 4.3a shows images of the spectrum at maximal pump
intensity from the start, middle and end of the experiment. The condensation of higher
order modes is clearly visible. Many modes, such as the (mx,my) = (0, 7) mode, can be
easily identified. In the top image one can see the anisotropy displayed in the fact that
the (mx,my) = (5, 0) and (mx,my) = (0, 5) modes are not aligned. The change in which
modes condense is likely due to slow drift of the alignment during the experiment. Fig.
4.3b shows averaged radial profiles for increasing total counts. Condensation is visible in
the center of the trap. At first only the ground state condenses, but afterwards a bump
at roughly 20 µm appears. Note that the intensity far from the center continues to grow
after threshold, meaning that the excited states are not saturated. Fig. 4.3c shows the
number of counts from the ground state as a function of the total number of counts. Just
above threshold the relationship between the two is linear. The coefficient of this line is
the product between the efficiency of the spectral imaging path and dN0/dNtot. For a
thermalized system, we would expect that this dN0/dNtot = 1 (see Eq. 2.16). However,
the coefficient is 0.035, roughly a factor of 20 smaller than the estimated spectral imaging
path efficiency, which is around 0.7. This is another sign that the excited states do not
become saturated. Fig. 4.3d shows the occupations of the first 14 energy levels. Multimode
condensation is visible in the third, fourth and fifth energy levels. The second and third
energy levels show no condensation, but they also do not show the crossing at zero chemical
potential or saturation above threshold that would occur at good thermalization.
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4.3.2 Cutoff wavelength 576 nm, 1.5 mM
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(a) Images of the spectrum at maximal pump intensity.
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(b) Average radial profiles for rising total counts.
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(c) Condensation occupation as a function of total
counts
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(d) Counts per energy level as a function of total
counts. The first five energy levels are labeled.

Figure 4.4: Condensation at cutoff wavelength 576 nm, dye concentration 1.5 mM, dataset 2018-05-24b

Fig. 4.4 shows the analysis for the experiment at a dye concentration of 1.5 mM and
a cutoff wavelength of 576 nm. Fig. 4.4a shows the multimode condensation occurring
at maximal pump intensity. Fig. 4.4b shows the averaged radial profiles for increasing
total counts. Multimode condensation occurs rather quickly, and is more significant than
for cutoff wavelength 590 nm. Again the intensity far from the center of the cavity is
not saturated above threshold. Fig. 4.4c shows the occupation of the ground state as a
function of the total number of counts. The deviation from the initial linear relationship
occurs rather quickly. Fig. 4.4d shows the occupations of the first 14 energy levels. The
point where the occupation of the ground state crosses that of the first excited states is
unfortunately just outside the range of the experiment. Multimode condensation can be
seen to set in quickly, with some energy levels surpassing the ground state in counts. The
second and third energy level occupations seem to level off far above threshold, but it is
unclear whether this can be considered saturation or a consequence of gain clamping caused
by overlapping condensed modes.
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4.3.3 Cutoff wavelength 593 nm, 6.0 mM

0 1 2 3 4 5 6 7

run 203

run 302

run 402

(a) Images of the spectrum at maximal pump intensity.
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(b) Average radial profiles for rising total counts.
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(c) Condensation occupation as a function of total
counts
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(d) Counts per energy level as a function of total
counts. The first five energy levels are labeled.

Figure 4.5: Condensation at cutoff wavelength 593 nm, dye concentration 6.0 mM, dataset 2018-05-25b

Fig. 4.5 shows the analysis for the experiment at a dye concentration of 6 mM and a cutoff
wavelength of 593 nm. Fig. 4.5a shows the spectrum at maximal pump intensity. No
clear multimode condensation is visible. During the experiment the absorbed pump power
decreases because the dye bleaches faster than for a concentration of 1.5 mM. The result
is that the chemical potential associated with a certain pump power decreases over time.
The third image is only just above threshold. Fig. 4.5b shows the averaged radial profiles
for increasing total counts. Again the intensity far from the center of the cavity is not
saturated above threshold, but the growth is slower than at the lower concentration. Fig.
4.5c shows the occupation of the ground state as a function of the total number of counts.
No deviation from the linear relationship to the total number of counts can be seen, but
the coefficient is still small, so again we see that no saturation has occurred. The critical
number of photons is larger than in Fig. 4.3c. Fig. 4.5d shows the occupations of the first
14 energy levels. No multimode condensation can be seen, but at high pump powers some
of the excited states start to cross.
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4.3.4 6.0 mM 576 nm
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(a) Images of the spectrum at maximal pump intensity.

0 20 40 60 80 100 120 140 160
R ( m)

100

101

102

I (
co

un
ts

)
(b) Average radial profiles for rising total counts.
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(c) Condensation occupation as a function of total
counts. The range of the x axis is the same as Fig.

4.4c for easy comparison.
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(d) Counts per energy level as a function of total
counts. The first five energy levels are labeled.

Figure 4.6: Condensation at cutoff wavelength 576 nm, dye concentration 6.0 mM, dataset 2018-05-25c

Fig. 4.6 shows the analysis for the experiment at a dye concentration of 6 mM and a cutoff
wavelength of 576 nm. Fig. 4.6a shows the spectrum at maximal pump intensity. Weak
multimode condensation can be seen in the second, third and fourth energy levels, and
the effect of dye bleaching is again visible. Fig. 4.6b shows the averaged radial profiles for
increasing total counts. There is no clear sign of multimode condensation until the widening
of the peak at high total counts. Again the intensity far from the center of the cavity is not
saturated above threshold, but the growth is slightly slower than at the lower concentration.
Fig. 4.6c shows the occupation of the ground state as a function of the total number of
counts. Compared to the data for 1.5 mM in 4.4c, multimode condensation occurs at higher
condensate counts and the slope has increased. Fig. 4.6d shows the occupations of the first
14 energy levels. The averaged spectra contain a background signal, which has led to bad
fits at low intensities. At high intensities some multimode condensation can be seen, and
there is again no saturation of the excited states.
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4.4 Conclusion and Discussion

Our results show that with current experiment parameters, the photon gas cannot be con-
sidered to be in thermal equilibrium. This is evident in the fact that the thermal cloud
does not saturate above threshold, and that none of the experiments showed a point where
all low energy levels were equally occupied.

The observations of the effects of wavelength on multimode condensation agree qualitatively
with the predictions of the rate equation model. A shorter cutoff wavelength leads to more
significant gain clamping, which causes multimode condensation. We also observe that a
higher dye concentration affects multimode condensation. This is not immediately apparent
from Eq. 4.10, as the dye density does not appear in it. A possible explanation lies in the
quenching that occurs at higher concentrations (see Section 4.2.1). This increases the non-
cavity decay rate Γ↓, and the pump rate Γ↑(r) must thus also be increased to still reach
condensation. Spontaneous emission and absorption are thus a smaller fraction of the total
decay and excitation of dye molecules respectively.

When looking at the images of multimode condensation at 1.5 mM, Fig. 4.3a and Fig. 4.4a,
one notices that no condensation occurs for the modes in the m = 1 and m = 2 levels. This
seems to contradict the explanation of gain clamping in Section 4.2, which would result
in condensation starting at the center of the trap and moving outward, condensing lower
energy modes first. This discrepancy may be a result of our experimental procedure. As
explained at the start of Section 4.3, before the experiments the cavity mirrors were aligned
to minimize multimode condensation. There must therefore be something in the alignment
of the mirrors that affects the condensation threshold (Eq. 4.9) of the modes by changing
their thermalization coefficient. The alignment procedure shifts the mirrors a few hundred
micrometers at the most, while the curvature of the mirrors is 1 m. The alignment thus
does not have a large effect on the trap frequency, so the absorption rate is unaffected.
This is thus not the origin of the change in thermalization coefficients. Another possibility
is that the reflectivity of the mirrors is inhomogeneous, and that the alignment procedure
leads to a cavity where the center of the trap is a local reflectivity maximum. This would
lead to a local minimum for the loss rate κ and a thermalization coefficient for the ground
state that is lower than that for the states in the m = 1 and m = 2 levels. The critical
excitation density, Eq. 4.9 for these modes is increased, and they will not condense. Once
multimode condensation starts for modes with m > 2, gain clamping from these higher
order modes maintains the excitation density below the critical point for the m = 1 and
m = 2 modes.

The hypothesis that the inhomogeneity of the mirrors has a significant effect on which
modes can condense is supported by the observation (as for example in Fig. 4.4a) that not
all modes in an energy level condense. The ones that do condense can change over time as
the alignment drifts.

Further study into the rate equation model and how we can relate its predictions to the
experiment could yield valuable diagnostic methods. For example, if we are able to in-
crease the size of the pump spot significantly such that the excitation density is flat over
several oscillator lengths and measure the spectrum far below threshold, Eq. 4.7 reduces
to a Boltzmann factor divided by θm + 1, giving us a way to measure the thermalization
parameters. Because this measurement is far below threshold, pump powers can be kept
low. Because of the low occupations of the modes, we either have to increase the pulse
duration or sum the images over multiple pulses. In both cases the stability of the cavity
length is the limiting factor. If the cavity length changes too much the image is blurred
and we can no longer distinguish the energy levels.
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5
Effective photon-photon interactions

5.1 Introduction

The strong interparticle interactions in, for example, polariton condensates, allow for the
study of interesting physics, notably superfluid behavior such as quantized vortices [25]. A
connection can even be made to gravitational physics by creating a black hole analogue for
sound waves in the condensate, which has been done in atomic BECs [26]. A section of the
paper reporting the first photon condensate by Klaers et al [8] showed that the condensate
appeared to grow in size with increasing condensate fraction (see Fig. 5.1a), which suggested
that there were significant repulsive interactions between the photons. Previous work in
our group [27] observed condensate growth similar to that of Klaers et al. These results
can be seen in Fig. 5.1b. The possibility of multimode condensation being the origin of
the observed growth has made these results difficult to interpret without doing additional
experiments, as their determination of the condensate size depends on the assumption of
thermal equilibrium and single mode condensation. To get around this difficulty, we can
use the current setup to image the ground state directly.

We will first look at some theory about the two kinds of interactions that we would expect.
Then we will apply the old and new analysis methods to experimental data and compare
the results. Finally we will examine the changes that occur at different wavelengths and
dye concentrations.
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Theory

5.2 Theory

Optical nonlinearities occur when the refractive index of a material depends on the intensity
of the light passing through it. To see how these nonlinearities will look when put into our
effective harmonic oscillator Hamiltonian, we need to go back to the expression for the
energy of the photon

Eph(r) ≈ mph

(
c

n

)2

+
(~k⊥)2

2mph
+

1

2
mphΩ2r2. (5.1)

When the refractive index changes, it results in a change to the rest energy belonging to
the longitudinal part of the wave

∆Eph = −mph

(
c

n0

)2 ∆n

n0
. (5.2)

If this change in refractive index is dependent on position, it can be seen as an additional
effective potential. If it is also dependent on the photon density, it can be considered a
nonlinearity. We can separate the change in refractive index into two parts having different
physical origins. The first is an instantaneous Kerr effect. The second is a slow response
due to heating of the solvent by dissipation.

5.2.1 Instanteous interactions

The simplest of these nonlinearities is the Kerr effect, a dependence of the refractive index
on the intensity of light ∆nKerr(r) = n2I(r). We can model this as an instantaneous contact
interaction with an interaction strength we denote by g. The Hamiltonian is then

H =

∫
d2r
[
− ψ̂†(r) ~2

2m
∇2ψ̂(r) +

1

2
mphΩ2r2ψ̂†(r)ψ̂(r) +

g

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)

]
(5.3)

To simplify notation, we can make this dimensionless by expressing distances in units of
the harmonic oscillator length lHO and energies in terms of ~Ω and rewrite the Hamiltonian
as

H =
1

2

∫
d2r
[
ψ̂†(r)

(
−∇2 + r2

)
ψ̂(x) + g̃ψ̂†(r)ψ̂†(r)ψ̂(xr)ψ̂(r)

]
. (5.4)

Here g̃ = mg/~2 is known as the dimensionless interaction strength. The field can be
decomposed into harmonic oscillator eigenstates

ψ̂(r) =
∑
m
ψm(r)âm. (5.5)

Which leads to the following equation for the ground state wavefunction ψ0(r) in the
Hartree-Fock approximation [28]{

−∇2 + r2 + g̃[n0(r) + 2nex(r)]
}
ψ0(r) = ε0ψ0(r) (5.6)

where the density of condensate photons is n0(r) = 〈â†0â0〉|ψ0(r)|2 and the density of
photons in the excited states is nex(r) =

∑
m6=0 |ψm(r)|2〈â†mâm〉. The condensate thus

feels an additional effective potential of the form

VKerr(r) ∝ g̃[n0(r) + 2nex(r)]. (5.7)

For g̃ > 0, the interactions are repulsive, and the condensate will grow in size when the
occupation increases. Previously reported values of g̃ have been g̃ ∼ 7 × 10−4 [8] and
g̃ ∼ 10× 10−2 [27].
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5.2.2 Thermal lensing

The second kind of nonlinear effect is a change in the refractive index due to heating,
known as thermal lensing. This can be modeled using a field ∆T , the local temperature
modification as in [29]. The equations for the temperature field ∆T and the ground state
wavefunction ψ0 are then

∂∆T (r, t)
∂t

=
K

Cv
∇2∆T (r, t) + S(r, t) (5.8)

i~
∂ψ0(r, t)

∂t
=

{
− ~2

2mph
∇2 +

1

2
mphΩ2r2 −mph

(
c

n0

)2 η∆T (r, t)
n0

}
ψ0(x), (5.9)

where S(r, t) is some heat source, and K, Cv and η = ∂n/∂T are the thermal conductivity,
volume heat capacity and thermo-optic coefficient of ethylene glycol respectively. As η is
negative, a temperature maximum in the center of the cavity will reduce the curvature of
the trap.

Theoretical work on interactions through thermal lensing has used the condensate intensity
as a source term [29]. We will here instead apply the rate equation model presented in
chapter 4 to .

Heat diffusion is a slow process, which can be neglected for 500 ns pulses. We can thus
approximate that the effective potential from thermal lensing is

VTh(r, t) ∝
∫
dtS(r, t). (5.10)

There are two sources of heat in the cavity. The first source is the energy dissipated by
excited dye molecules as they thermalize with the solvent. This source depends only on the
pump spot, and not on the occupation of the cavity modes, so it cannot be considered a
nonlinearity. It leads to an effective potential of

VTh,pump(r, t) ∝ t× Γ↑(r). (5.11)

The second source of heat is non-radiative decays of excited dye molecules. This source
is proportional to the excitation density f(r) We thus expect that, assuming steady state
conditions for f(r), the effective potential due to nonradiative decays will be

VTh,dis(r, t) ∝ t× ρ0f(r). (5.12)

The condensate size will change over time in response to the effective potential. The effects
are small and the heating takes place over the course of 500 ns, so the process is expected to
be adiabatic. As the source from nonradiative decays depends on the excitation density, it
can be affected by the photon density through gain clamping. High intensities will reduce
the amount of dissipation. This leads to effective attractive interactions, as the effective
potential is stronger where the intensity is lower.
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5.2.3 Interpreting experimental results

The intensity of the condensate light on our camera has the form of a Gaussian function
with position (x0, y0) on the camera chip and widths lx and, ly. Because the light passes
over a diffraction grating before being imaged, the position of the image along some axis
depends on the wavelength of the light. We will take this to be the x-axis. Now suppose
that we start our measurement and the wavelength of the light changes. Then the position
of the image changes as well. With the camera, we can only measure the image integrated
over the duration of the pulse. This means that if the wavelength of the condensate changes,
e.g. by heating of the solvent, the image will be smeared out along the x-axis.

We can therefore interpret the widths of the final distribution as follows: the width along the
y-axis Ry is the average width of the condensate during the pulse, which tells us about the
curvature of the effective potential. The width along the x-axis Rx is a linear combination
between the average width of the condensate and the shift of the condensate wavelength,
so it tells us about the change over time of the potential at the center of the cavity, i.e. the
change in the cutoff wavelength.

5.3 Experiments

5.3.1 Comparison with previous work

We first compare the previous analysis method [27] [13] to the new analysis method. The
analysis method used previously consisted of taking the radial profile of the photon distri-
bution and fitting a density distribution to it. This density distribution is based on the
assumption that the photon gas is in thermal equilibrium and corrects for the imperfect
imaging of the density far from the cavity center due to clipping in the imaging system [21].
The radius of the ground state is left as a fitting parameter, but the excited states are
taken to be the harmonic oscillator eigenstates with thermal occupations corresponding to
a certain temperature and chemical potential, which are also fit parameters.

The analysis of the spectral data consists of fitting the condensate as described in Section
3.2.1 and sorting the results into bins according to the number of counts in the condensate.
For each bin the weighted average of the condensate sizes along the x-axis and the y-axis
are computed. These are then plotted against the average number of counts for that bin.

We use a dye concentration of 1.5 mM, which was found to have the largest g̃ in [27]. We
lock the cavity to the cutoff wavelength of 590 nm at mode number q = 8. The experiment
consists of 200 runs. Each run in turn consists of 100 frames, with the pump power being
varied in an interleaved power ramp. The interleaved power ramp keeps the total power of
two consecutive pulses constant, to minimize the effect of cumulative heating. The range
of pump powers is set to also contain images of the photon distribution below threshold,
which is necessary for the old analysis method to establish the number of photons.

The results for the two analysis methods can be seen in Fig. 5.2. For the old analysis
method the width is plotted as a function of the number of photons in the condensate
N0, which was calibrated using the assumption of thermal equilibrium. As we do cannot
make this assumption, we instead plot the width as a function of the total number of
condensate counts. The significant interactions found using the old analysis method are not
present in the spectral analysis. The harmonic oscillator length expected for the parameters
used is also plotted. The old analysis method consistently underestimates the size of the
condensate. The spectral analysis barely shows any growth. Note that the condensate size
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is significantly larger than the oscillator length, which is probably a consequence of thermal
lensing caused by the pump.
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Figure 5.2: Comparison between the new (left) and old (right) analysis methods for dataset 2018-05-09a.

We can look more closely at the spectral analysis to see that there is in fact some growth
occurring. Fig. 5.3 shows the fitted widths along the two axes in micrometers and in
harmonic oscillator lengths versus the total number of counts in the condensate C0. Whilst
the condensate size does grow with increasing C0, we cannot yet conclude that this is due
to interaction. This is because the number of condensate counts is necessarily correlated
with the total pump power, which in turn is correlated with thermal lensing effects that
may be present.

Recall that the expected harmonic oscillator length is smaller along the x-axis due to the
anamorphic magnification caused by the grating. The increase with respect to the har-
monic oscillator length is much larger along the x-axis, suggesting that slow heating due to
dissipation from the pump has shifted the ground state energy during the pump pulse. The
graph for the width along the x-axis has an additional feature at low condensate counts.
The width decreases at first, and then starts growing again. This could be a sign of gain
clamping reducing dissipation.
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Figure 5.3: Fitted condensate widths for dataset 2018-05-09a. Condensate widths are expressed in
micrometers and in harmonic oscillator lengths.
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5.3.2 Increasing dye concentration

The effects of gain clamping can be more clearly seen when the nonradiative decay rate in-
creases. Therefore we increase the dye concentration to 6.0 mM, where quenching decreases
the quantum yield. Fig.5.4 shows the fitted widths for this concentration. The width along
the x-axis can be seen to vary significantly, confirming that significant heating is taking
place. The initial decrease in the width is again present and more pronounced. This sup-
ports our hypothesis that the origin of the nonlinearity is the combination of nonradiative
decays and gain clamping.
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Figure 5.4: Fitted condensate widths for dataset 2018-06-01b. Condensate widths are expressed in
micrometers and in harmonic oscillator lengths.

5.3.3 Varying the cutoff wavelength

By decreasing the cutoff wavelength, we can increase the effect of gain clamping (see Section
4.2). We therefore perform experiments at different cutoff wavelengths. Fig.5.5 shows the
results for 1.5 mM. The size of the condensate at 592 nm behaves differently than what we
saw at 590 nm in Fig. 5.2. It grows at first, and later shrinks again. The relative flatness of
the condensate width and wavelength shift suggest that the thermal lensing due to pump
dissipation is roughly constant across the range of pump powers we used. This means that
the growth observed at wavelengths 586 nm and 576 nm are due to nonlinearities. In each
graph there appears to again be a dip at low condensate counts, with the depth increasing
as the cutoff wavelength becomes shorter. At 576 nm the initial downturn is not visible, but
this is to be expected because, as we saw in Subsection 4.3.2, the region below threshold is
not currently experimentally accessible at this wavelength.
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Figure 5.5: Experiments at 1.5 mM. Datasets from left to right: 2018-05-24a, 2018-05-24c and 2018-05-24b
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Figure 5.6: Experiments at 6.0 mM. Datasets from left to right: 2018-05-25b, dat:2018-05-25d and
2018-05-25c

Fig. 5.6 shows the results for a concentration of 6.0 mM. For large wavelength the conden-
sate size behaves the same as for low concentrations, but there is a difference at 576 nm.
Something happens at roughly 0.4 × 105 counts. The condensate width becomes constant
and there is a kink in wavelength shift. If we look at the mode occupations for this dataset,
Fig. 4.6d, we see that this point corresponds with the onset of multimode condensation.
With gain clamping occuring not only in the area of the condensate but also around it,
the effective potential due to thermal lensing flattens out in the center of the trap and the
condensate size remains constant. To see why this happens at a concentration of 6.0 mM
but not at 1.5 mM we can look back to the modes that condense for these two cases. Fig.
4.4c shows that at 1.5 mM, the modes in m = 2 and m = 3 levels do not condense, but in
Fig. 4.6c we see that at 6.0 mM they do condense. Therefore, the effective potential at the
center of the trap does not flatten out in the results for 1.5 mM because of the lack of gain
clamping in the region around the condensate.
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5.4 Conclusion and discussion

We can conclude that there are thermal lensing effects in our cavity. The condensate has
an effect on this thermal lensing through its interaction with the dye, leading to an effective
nonlinearity in the photon field which is time dependent. This nonlinearity is attractive,
because high photon densities reduce the dissipation caused by nonradiative decays, which
leads to a local minimum in the temperature, and thus a local minimum in the effective
potential. No conclusions can yet be drawn about the presence of a Kerr interaction. If it
is present the interaction strength is too small to distinguish it from thermal lensing effects.

One feature of the experimental results that is not yet well understood is why the wavelength
shifts start increasing again after the initial decrease in Fig. 5.6, as increased condensate
occupation should reduce the dissipation even more. A possible explanation for this is that
the shift of the ground state energy reduces the condensate occupation during the pulse
because the critical excitation density (Eq. 4.9) of the ground state goes up. This leads to a
positive feedback loop where a reduction of the condensate occupation increases dissipation,
which in turn increases the cutoff wavelength and thus reduces the condensate occupation.
If this is the case then there is no steady state solution for the condensate occupation at
this concentration. Future experiments on thermalization at high concentrations should
keep this in mind.
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Outlook

Although the rate equation model and our experimental results agree qualitatively, we have
limited access to data we can compare quantitatively to theory. There are a number of
things that can be done to improve this.

Improved cavity locking

The limited stability of the current cavity locking system makes it difficult to measure
the spectrum far below threshold. If the cutoff frequency is stabilized to within the split-
ting between the levels Ω we have experimental access to the mode occupations far below
threshold, where gain clamping can be ignored.

The standard approach for stabilizing a cavity is the Pound-Drever-Hall technique, where
a Gaussian laser beam is matched to the one of the Gaussian resonances of the cavity. The
laser light is phase modulated to give it two sidebands. The intensity of the light reflected
from the cavity can be measured with a fast photodetector to produce a feedback signal
that can be used to stabilize the cavity. The drawback of this technique is that it restricts
our choices of cutoff wavelengths and mode numbers. We need our cutoff wavelength to
be in the range between 570 and 600 nm, and our mode number must be lower than 10
to keep the longitudinal component of our photon gas single mode. If we want to lock the
cavity to our HeNe laser, the only options would be to lock the cavity to the q = 10 or
q = 11 resonances of the HeNe laser light, which would give us cutoff wavelengths of 574.5
and 579.3 nm respectively. Ideally an alternative can be found which does not restrict our
cavity length to discrete values.

Better pump spot shape and control

The imaging system for the pump spot revealed a significant astigmatism in the pump
beam. Fixing this astigmatism would enable us to keep the pump spot roughly circular and
change its size. By varying the pump spot size we could study thermal lensing due to pump
spot dissipation. A focused spot could be used to condense specific modes by pumping their
antinodes.

The anisotropy in the potential observed in Chapter 4 may be the result of thermal lensing
with from a noncircular pump spot. If this is the case, we can eliminate this anisotropy by
making the pump spot circular. Fitting to the spectrum would then be much easier, as we
can take the Laguerre-Gauss modes as our fitting functions.

Further experiments and theory on the thermalization of the photon gas is necessary to esti-
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mate the magnitude of the thermalization coefficient in our setup. One option is to measure
the threshold pump power as a function of cutoff wavelength and relate the threshold pump
power to the critical excitation density Eq. 4.9 through simulations or theory. Over the
past few months, our group has written code to numerically solve the rate equations. This
could prove useful in improving our understanding of the thermalization process.

Controlling pump pulse length

The current method of chopping the laser beam into pulses uses three AOMs in series.
This leads to slow rise and fall times and fluctuations in intensity. To more accurately
compare experiment with steady state theory, we want to switch the light on and off in
a few nanoseconds, and keep the intensity in between constant. To achieve this we are
working on replacing one of the AOMs with a Pockels cell. An additional advantage of
the use of a Pockels cell is better control over pulse duration. We can then vary the pulse
duration along with the intensity such that the total integrated pulse power is the same
over each pulse. The potential coming from pump dissipation (Eq. 5.11) is then constant.
Any growth of the condensate size must then be due to nonlinearities.
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Appendix A: Glossary

This is a list of the symbols used in this thesis in alphabetical order. Some symbols which
appear in only one section are not listed. Numerical values relevant to our experimental
setup are given where possible.

Symbol Defined as in Value Units Description
β (kBT )−1 Sec. 2.2 ∼ 2.4× 10−20 J−1

D(r) D0 − 2(R−
√
R2 − r2) Eq. 2.3 ∼ 1.7× 10−6 m distance between the mirrors

at position r
δm ωm − ωZPL Sec. 4.2 - Hz detuning of mode m from the

zero-phonon line
kz Sec. 2.1 - m−1 longitudal wavenumber of

the photon gas
f(r) Sec. 4.2 - 1 excitation density
fm

∫
drf(r)|ψm(r|2 Sec. 4.2 - 1 overlap between excitation

density and mode m
g̃ mg/~2 Sec. 5.2.1 - 1 dimensionless interaction strength
Γ↓ Sec. 4.2 - s−1 nonradiative decay rate
Γ
(m)
↓ Sec. 4.2 - s−1m2 emission rate to mode m

Γ
(m)
↑ Sec. 4.2 - s−1m2 absorption rate of mode m

Γ↑(r) Sec. 4.2 - s−1 pump rate at position r
κ Sec. 4.2 - s−1 cavity loss rate
lHO

√
~/mphΩ Sec. 2.1 ∼ 7.7× 10−6 m harmonic oscillator length

λc
2πc
ωc

Sec. 3.1.4 590× 10−9 m cutoff wavelength
mph ~kz(0)/c Eq. 2.5 ∼ 7.7× 10−36 kg effective photon mass
µ Sec. 2.3 - J chemical potential
µm ~ωZPL + kBT log fm Eq. 4.8 J effective chemical potential

of mode m
n0 Sec. 2.1 1.43 1 refractive index of ethylene glycol

at room temperature
Nm 1 occupation of mode m
Ω Eq. 2.6 ∼ 2.3× 1011 Hz effective harmonic trap frequency
ωc Sec. 2.1 - Hz cutoff frequency
ωZPL Sec. 2.2 3.456× 1015 Hz zero phonon line of rhodamine 6G
q Sec. 2.1 8 1 longitudinal mode number

of the photon gas
R Sec. 2.1 1 m radius of curvature of the mirrors
ρ0 Sec. 4.2 1− 6× 1018 m−2 number density of dye molecules
θm κ/ρ0Γ

(m)
↑ Eq. 4.6 1 thermalization coefficient

of mode m
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Appendix B: Datasets

The fit parameters we use to filter are:

• the position along the x axis x0, which corresponds to cutoff wavelength,

• the position along the y axis y0,

• the number of counts C0,

• the uncertainty on the number of counts σC0,

• the uncertainty on the widths σRx, σRy

2018-05-09a

run 002-201
cutoff standard deviation 44.5 px
filter conditions C0 > 0, σC0 < C0/2, σRx < 1px , σRy < 1px

number of images left after filtering 11703 of 20000

2018-05-24a

run 001-200
cutoff standard deviation 118.1 px
filter conditions C0 > 0, σC0 < C0/2, σRx < 1px , σRy < 1px,

150 < x0 < 700

number of images left after filtering 11287 of 20000

2018-05-24b

run 202-401
cutoff standard deviation 88.0 px
filter conditions C0 > 0, σC0 < C0/2, σRx < 1px , σRy < 1px

250 < x0 < 700 ,80 < y0 < 115

number of images left after filtering 14353 of 20000

2018-05-24c

run 408-607
cutoff standard deviation 107.6 px
filter conditions C0 > 0, σC0 < C0/2, σRx < 1px , σRy < 1px

number of images left after filtering 14742 of 20000
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2018-05-25b

run 203-402
cutoff standard deviation 48.2 px
filter conditions C0 > 0, σC0 < C0/2, σRx < 1px , σRy < 1px

number of images left after filtering 10636 of 20000

2018-05-25c

run 406-605
cutoff standard deviation 37.6 px
filter conditions C0 > 0, σC0 < C0/2, σRx < 1px , σRy < 1px

number of images left after filtering 15553 of 20000

2018-05-25d

run 610-809
cutoff standard deviation 43.0 px
filter conditions C0 > 0, σC0 < C0/2, σRx < 1px , σRy < 1px

number of images left after filtering 19400 of 20000

2018-06-01b

run 313-612
cutoff standard deviation 105.2 px
filter conditions C0 > 0, σC0 < C0/2, σRx < 1px , σRy < 1px

number of images left after filtering 27074 of 30000
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