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Abstract

While both speech emotion recognition and music emotion recognition have been studied exten-
sively in di�erent communities, li�le research went into the recognition of emotion from mixed
audio sources, i.e. when both speech and music are present. However, many application scenarios
require models that are able to extract emotions from mixed audio sources, such as television con-
tent. We coined this recognition problem as MiSME recognition, Mixed Speech Music Emotion
recognition. �is master thesis studies how mixed audio a�ects both speech and music emotion
recognition using a random forest and deep neural network model, and investigates if blind source
separation of the mixed signal beforehand is bene�cial, along with a feature importance analysis.
We created a mixed audio dataset, with 25% speech-music overlap without contextual relationship
between the two.

�e speech and music emotion recognition experiments consisted of six experiments each,
where the models were trained and tested on di�erent combinations of the three audio types
available: single-source audio (speech-only / music-only), mixed audio or blind-source separated
audio. Deezer’s Spleeter tool was used to create the blind-source separated version of the dataset.

�e results showed that both speech and music emotion recognition are possible on mixed
audio far above chance-level, meaning that a functional MiSME system can indeed be created. �e
speech models performed best when blind-source separation was included as a preprocessing step,
but there remained a performance gap compared to speech-only audio, suggesting that lower levels
of speech emotion recognition performance should be expected on mixed audio. �e music models
were able to perform be�er on mixed audio, with and without blind-source separation depending
on the model, than on music-only audio. We a�ributed this to speech-presence forcing the models
to favor less ambiguous features during training, resulting in a be�er generalizing model. �e
results also showed that both speech and music models trained on single-source audio achieve
chance-level performance on mixed audio, rendering them incapable of MiSME recognition.

�e feature importance analysis produced many insights regarding which speech and music
features are (un)important for mixed audio. It showed that the optimal features were highly dis-
similar between audio types for both speech and music emotion recognition, which means that
the optimal features for each audio type are di�erent.

�is research thus not only shows that both speech and music emotion recognition are possible
far above chance-level on mixed audio, but also gives insight into the use of blind-source separation
and common speech and music features in a mixed audio scenario. �is is important knowledge
when estimating emotion from real-world data, where individual speech and music tracks are
o�en not available.
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Chapter 1

Introduction

1.1 Preface
�e rise of streaming and video-on-demand has caused disruptive change in the television en-
tertainment industry. Regular television viewership has been steadily declining every year as
consumers move to video-on-demand services like Net�ix or HBO. �is change can also be felt in
the Dutch market. Before video-on-demand Dutch broadcasting companies only had each other
as competitors, but they now share the market with global giants such as Net�ix and Youtube.
Disney and Apple have even entered the Dutch market in 2019 with their own services. �ese
media companies do not only compete for users through pricing and content anymore, which
has always been part of the industry, but now also through the provided services of the video-on-
demand so�ware. Not only is the quality of the so�ware itself important but also many supportive
features come into play. For example, strong recommendation systems entice viewers to use the
service more, always o�ering relevant content in such a way that the user never feels like the
service has become obsolete. Ensuring that the video-on-demand service meets the expectations
of their users, and o�ers satisfying features, is more important than ever. Any inconvenience or
annoyance might result in a loss of subscribers.

RTL �e Netherlands is one of the three main players in the Dutch television entertainment
market. �ey own two video-on-demand services, Videoland and RTL XL. �eir Data Science
department processes usage data to optimize the video-on-demand content while also developing
tools to create features that directly and indirectly support the video-on-demand platforms and
their users. In relation to this research, the department has been actively exploring if the emotion
present in their television content can be processed and used somehow to provide an even be�er
user experience for the users of their platforms. At the time of this research they have successfully
found ways to use the visual emotion information. However, audio is a strong complementary
carrier of emotion information in television content, speci�cally music and speech. �ey wish to
use the emotion information contained in the audio as well.

Before this emotion information can be used in any kind of system it must be extracted from
the raw audio. Here lies a non-trivial and scienti�cally relevant challenge for RTL �e Nether-
lands. In RTL �e Netherlands’s use case the audio is from movies, tv-shows, theater productions
and live tv-broadcasts. �e audio in these types of content contains both speech and music, o�en
being concurrently present (overlapping) and mixed in with other types of sounds. Both speech
emotion recognition (SER) and music emotion recognition (MER) are active �elds of research that
have produced many models that can computationally classify emotions on their respective types
of audio. However, scienti�c knowledge on how to handle emotion recognition when music and
speech occur concurrently is sparse to non-existent. �is masters thesis research explores this is-
sue, with the goal of gaining scienti�c insight into the problem itself, and showcasing that a simple
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CHAPTER 1. INTRODUCTION

• MiSME system - MIxed source Speech Music Emotion system. �is is the system produced in this research
that takes a mixed-source audio sample and predicts the speech and music emotion separately.

• MiSME recognition - Recognizing both the emotion of speech and the emotion of music in mixed audio.
• Television content - Term used for all types of entertainment content which can contain interesting emotion

information for RTL �e Netherlands. �is includes movies, tv-shows and more.
• Single-source - Audio with only one source, so either speech-only or music-only audio depending on the

context.
• Mixed audio - Audio with only both speech and music present.
• Blind-source separated audio - �e isolated approximation of either the original speech or music audio from

the mixed audio, produced by the blind-source separation component.
• Ampli�cation relationship - �e speci�c relationship between the music and speech that is sometimes

present in television content. Music is regularly used to convey cues about the emotion of speech or other
story elements (KUCHINKE1A et al., 2013).

• Dominant features - Features that are highly e�ective at allowing to model to predict emotions.

Figure 1.1: List of terms and abbreviations introduced throughout this thesis

yet functioning Mixed-source Speech Music Emotion (MiSME) recognition system can be created.
�e research was done in cooperation with RTL �e Netherlands’s Data Science department.

1.2 Terminology
�is research tackles a relatively unexplored problem which overlaps with many existing �elds of
study, meaning that many new problems and solutions are introduced throughout this research.
To improve ease of reading many terms have been abbreviated or simpli�ed. List 1.1 gives a quick
overview of the terms introduced and used throughout this paper.

1.3 Speech and music emotion recognition
It is important to get a solid understanding of the problem at hand before we delve deeper into
the research, especially since this is a relatively new type of emotion recognition problem. �e
previous section described that RTL �e Netherlands wants to extract separate speech and music
emotion information from mixed audio. �is means that they require a system capable of both
speech and music emotion recognition, producing separate emotion meta-data for the speech and
music present in the audio. Speech emotion recognition and music emotion recognition are both
expansive research �elds related to information retrieval. �ey share many similarities, but also
di�er on many aspects. �e literature review chapter covers their di�erences more clearly, but for
now it is important to note how they are similar and how a system capable of both can be created.

Both speech and music emotion recognition are done using computational models. �ese mod-
els learn a mapping between observable acoustic cues present in the audio and a set of expressible
emotions. �is is similar to how humans communicate emotion, where the ‘sender’ adds emotion
cues to the sound it produces to communicate emotion information, and the receiver tries to iden-
tify these cues and processes these to deduce the communicated emotion information. A simple
example would be that the ‘sender’ would speak much more loudly to communicate that he or
she is angry, along with other cues. �e ‘receiver’, either human or a computational model, must
identify that the ‘sender’ is speaking loudly and deduce that it tries to express anger by doing so.

�ese emotion cues are quanti�ed for the model by extracting descriptive features from the

C.A.J. Laugs 4



CHAPTER 1. INTRODUCTION

audio signal. �ese features describe various properties of the audio, for example the average
loudness or the minimum frequency present in the audio. Most features describe the audio on a
low level, o�en too abstract for non-experts to directly comprehend. �ese o�en involve trans-
forming the audio signal into a di�erent representation, binning them and computing complex
mathematical derivatives. A large set of features are used, sometimes even more than a thousand,
allowing to model to base its emotion prediction on a combination of many individual descrip-
tive features. �e computation models learn a mapping between these features and expressible
emotion during the training phase, a�er which they can be put to use.

Creating a MiSME recognition system thus requires at least one model capable of speech emo-
tion recognition and one capable of music emotion recognition. �is means that the MiSME system
consists of at least two components, a speech emotion recognition model and a music emotion recog-
nition model. However, these models require descriptive features as input. Feature extractors are
needed to extract these from any given audio segment. �is means that the MiSME system also
requires a speech feature extractor and a music feature extractor. Separate ones are needed because
SER and MER use di�erent features, which is covered broadly in the next chapter.

Model training is necessary for the MiSME system to function, as the models need to ‘know’ a
mapping from features to emotions. �is requires training and training data, similar to any other
machine learning problem. �e MiSME recognition problem at hand speci�cally focuses on mixed
audio, this is audio where the speech and music occur concurrently. �is means that we need
mixed audio samples with annotated speech and music emotion information, which can be used
for training and testing. A mixed speech-music dataset was created for this research, which is
broadly covered in the Methodology chapter.

By now a functioning MiSME system can be created, as we can train the speech emotion recog-
nition model using the created mixed audio dataset and its speech emotion annotations, and the
music emotion recognition model using the same dataset but with the music emotion annotations.
�e impact of mixed audio on speech and music emotion recognition can then be studied through
various performance tests and other experiments.

However, we believe that the inclusion of blind-source separation as a preprocessing step
might be bene�cial for the performance of both speech and music emotion recognition models
in a MiSME context. Blind-source separation is covered in more detail in the next chapter, but it
tries to ‘unmix’ a mixed audio signal, producing isolated estimates of the original sound sources.
While these estimates are o�en not perfect, it is not far fetched to assume that these isolate most
of the other sources, reducing the degree to which they a�ect the feature extraction of the other
modality. For example, music a�ects speech features less when blind-source separation isolates
most of the music in the mixed audio before speech feature extraction. Blind-source separation is
therefore included in some experiments as a preprocessing step.

We can create a MiSME system with these four or �ve components: the speech emotion recog-
nition model, the speech feature extractor, the music emotion recognition model, the music fea-
ture extractor and the optional blind-source separation component. We are essentially combining
a common speech emotion recognition pipeline, so a model and feature extractor, with a common
music emotion recognition pipeline into one system. �ese should be able to produce speech and
music emotion information from any type of mixed audio, and they can be trained on our hand-
cra�ed mixed-audio dataset. A blind-source separation component is optional. �e architecture
thus does not di�er much from common SER, MER and other machine learning models. A visual-
ization of the MiSME system architecture is depicted in Figure 1.2. �is should be enough for now
to get an idea of how the system functions and what is required to create a system capable of both
speech and music emotion recognition. �e Literature review and Methodology chapter cover the
MiSME system more in-depth.

C.A.J. Laugs 5



CHAPTER 1. INTRODUCTION

Figure 1.2: �e �ow of the MiSME system with blind-source separation

1.4 Problem de�nition
How a MiSME system can be created and how it functions on a basic level should be clear by now.
However, as was brie�y explained in the preface section, doing speech and music emotion recog-
nition on mixed audio is a non-trivial challenge because it is an fairly unstudied problem. To be
more speci�c, it is unknown how mixed audio a�ects both speech and music emotion recognition
in a general sense, and here lies the main problem. It could be the case that the presence of the
other audio source hardly a�ects the complexity of the emotion recognition tasks, meaning that
the model does not have to adapt much compared to single-source audio. However, it is a more
likely assumption that they negatively a�ect each other to at least some degree. �e presence of
mixed audio ‘distorts’ feature extraction, as the extracted speech and music features describe the
mixed audio signal, rather than just the audio source which must be classi�ed. �is makes those
features less descriptive compared to features extracted from ‘normal’ single-source audio. It is
not far fetched to assume that less descriptive features result in a more complex emotion recog-
nition task and therefore lower performance, but this requires proper research. If mixed audio
indeed results in worse performance compared to non-mixed audio, it also becomes interesting to
see how this loss in performance can be minimized.

Exploring this problem by a�empting to create a MiSME system, and study its di�erences
compared to non-mixed audio, is therefore of great scienti�c value for both speech and music
emotion recognition research. �e knowledge and insights from this research can aid others in
the future when tackling similar problems, including RTL �e Netherlands. �e contributions of
this research are covered in the next section.

In most MiSME use cases, possible even every, there is a contextual relationship present be-
tween the speech and music. Television content is a great example of this. Music is regularly
used to convey cues about the emotion of speech or other story elements (KUCHINKE1A et al.,
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CHAPTER 1. INTRODUCTION

2013). �e exact cues used are o�en even genre-speci�c. For example, the same combination of
speech and music emotion might mean di�erent things in a scene from a comedy movie than a
horror movie. �is context, found in the relationship between the speech and music, thus contains
valuable emotion information. In an optimal scenario for RTL �e Netherlands a MiSME system
would be produced that is optimized for their television content, which includes the contextual
relationship between speech and music. However, the insights gained from such a model might
not transfer to other use cases. We already stated that there is a lack of knowledge regarding how
mixed audio a�ects speech and music emotion recognition in a general sense. Finding a generic
solution for the MiSME problem, which is not context speci�c, would therefore be of greater scien-
ti�c contribution, as the results would be applicable to all kinds of MiSME recognition problems.
Because of this the decision was made to study MiSME recognition this way, purposely excluding
the contextual relationship between speech and music from the experiments. �is allows us to
produce scienti�cally valuable results, which can still be used by RTL �e Netherlands to develop
a system of their own, albeit without strong contextual optimization. During the development of
their own system they can focus on including this contextual relationship, if desired.

However, at the time of this research it was not known if even a service-ably functioning
MiSME recognition system could be created. While we already speculated how mixed audio might
a�ect speech and music emotion recognition, it could be the case that no models can be developed
that perform signi�cantly be�er than chance. While this is a unlikely assumption, there is no proof
that it is not the case. It is therefore of high importance to see if a functioning (generic) MiSME
recognition system can be created, proving that MiSME recognition is possible to at least some
degree regardless of context. We de�ne ‘functioning’ as signi�cantly above chance level, because
that would mean that the models perform be�er than random guessing. However, we expect to see
be�er performance than just ‘signi�cantly above chance-level’. �is leads to the following main
research question for this research:

Can a system be produced which can recognize both the emotion of speech and music in
mixed audio, where both are concurrently present, signi�cantly above chance level?

�is research focuses on answering this question, along with producing additional insight into
the MiSME recognition problem space.

An advantage of the generic approach taken, where we exclude the contextual relationship
between speech and music, is that it allows the MiSME system to be compared to generic but
established MER and SER models, and the knowledge surrounding them. �ese comparisons can
be used to gain more insight into the MiSME problem space and are seen as additional challenges.
For example, which speech or music features are robust against mixed audio and which are not?
What degree of performance decrease can we expect compared to non-mixed audio? Is there even
a decrease at all compared to single-source recognition? Exploring these questions alongside the
main hypothesis should produce enough knowledge to get a basic understanding of the MiSME
problem space.

1.5 Contribution
�e main contribution of this research is that it proves that MiSME recognition is possible far
above chance-level. However, its contributions are not limited to just that single observation. �is
thesis describes the development and evaluation of, and research and analysis done surrounding
the creation of the �rst MiSME recognition system. �is has produced many insights regarding
the MiSME recognition, which are valuable contributions for multiple stakeholders.

In this thesis we describe how models can be trained and evaluated on mixed audio, and which
models are most e�cient for either speech or music emotion recognition on mixed audio. It also
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CHAPTER 1. INTRODUCTION

showcases which levels of performance can be expected, and when the inclusion of blind-source
separation is bene�cial. �e feature importance analysis showcases which features are of high
importance in a mixed audio context, which can hopefully aid others during feature selection in
future work. �is research has produced enough knowledge that RTL �e Netherlands, and others,
should be able to make a MiSME system of their own, as they can copy the strengths of the created
system while solving, or preventing, its documented �aws.

�e thesis also contributes signi�cantly to the research �elds of both speech emotion recogni-
tion and music emotion recognition, as it shows how mixed audio a�ects both recognition tasks
on various aspects. �is is because all experiments and analyses were done on multiple audio
types, including single-source audio. By comparing the di�erence between the single-source au-
dio experiments and mixed audio experiments we gain a be�er understanding how mixed-source
emotion recognition di�ers from single-source emotion recognition on multiple levels. �is was
something which was li�le to nothing known about until now and is valuable knowledge.

We also hope that this thesis sparks enough interest to motivate others to study MiSME fur-
ther, allowing it to evolve into a �eld of research of its own. A MiSME dataset was created in this
research, showcasing how such a dataset could be created. Combine this with all other contribu-
tions already mentioned and there is more than enough knowledge and data available for future
work. �is research only scratches the surface of MiSME recognition, as it tackles to problem
without any context, and the insightful results raised many new and more complex questions that
are interesting to explore further.

1.6 Upcoming chapters
�e next chapter covers various relevant literature, providing the necessary background knowl-
edge to understand all aspects of the research. �e topics covered are: emotion theory for both
speech and music communication, speech emotion recognition, music emotion recognition and
blind-source separation.

�is is followed up by the Methodology chapter, which covers the design of the MiSME system,
the mixed audio dataset, the experiments and more. �is chapter provides enough knowledge to
understand how to MiSME system was created, and how the results from each experiment and
analysis should be interpreted.

�e next chapter, the Results, covers the results of all experiments. �e Discussion chapter
builds upon these results, discussing the implications of the results and combines them with the
feature importance analyses to deduce as much knowledge as possible from the experiments. A�er
that the main research question is answered, followed by a re�ection on the research itself.
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Chapter 2

Literature review

�e MiSME recognition task is an interdisciplinary challenge that spans many �elds such as ma-
chine learning, speech and music information retrieval, signal processing, psychology, vocology
and musicology. �is means that a large amount of existing research is relevant. In the following
section we discuss important basic theories and works of study of all relevant �elds, which should
be su�cient for understanding the MiSME recognition problem and the choices made in this re-
search. In addition we cover some state-of-the-art work to show where the �elds were at at the
time of this research. We will start with basic emotion theory (2.1), followed by speech emotion
recognition (2.2), music emotion recognition (2.3) and �nally blind-source separation (2.4).

2.1 Emotion theory
�e system of human emotion is complex and has many variables that de�ne which emotional
mental state is experienced. Creating a model that identi�es the emotions expressed in audio re-
quires a core understanding of human emotion. In this subsection we delve into the scienti�c
knowledge regarding human emotion. �e study of human emotion is called ‘A�ective science’
and there exists no consensus on a single correct way to classify or quantify human emotion.
Rather, there exist multiple acknowledged systems and emotion classi�cations. One of the domi-
nant con�icts within A�ective Science is whether emotions should be represented categorical or
dimensional. Both ways of describing emotion have a long list of literature advocating for and
against it, so there is no clear ‘best option’.

A categorical approach to emotion representation uses ‘labels’ to identify emotional men-
tal states of humans. �e concept is based on the theory that there exists a set of culturally-
independent primary emotions from which all secondary or other emotions can be derived (Ek-
man, 1992; Picard et al., 2001). �is thus implies that all human beings share at least those primary
emotions. In 1972 Ekman proposed the existence of six basic emotions: anger, fear, disgust, hap-
piness, sadness and surprise (Ekman et al., 2013). While other emotions exist according to Ekman,
they are nuanced instances of one of the six basic emotions. �e categorical emotions are o�en
called discrete emotions because they should be clearly distinguishable in human facial expression.
Ekman’s work was groundbreaking at the time and is still today o�en seen as the go-to theory
for categorical emotions. However, his theories have been criticized extensively, suggesting that
either an universal set of emotion does not exist or pu�ing the validity of Ekman’s proof that this
universal set exists into question (Barre�, 2006).

According to Yang and Chen (2012) there exists no consensus on the number of categorical
emotions or type of discrete emotion model that should be used with the �eld of music emotion
recognition (MER). �ere exists no clear ‘best’ emotion model. �ey also state that Ekman’s pri-
mary emotion set is too limited to fully capture the emotions perceived by humans in music. Using
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Figure 2.1: Russel’s circumplex model, displaying various discrete emotion labels in the valence-
arousal space (Seo and Huh, 2019)

a more expansive and complex emotion set is not the solution however as the problem lies in the
language used to describe emotions, which is inherently ambiguous and di�ers between persons
(Kim et al., 2010; Yang and Chen, 2012). It thus appears that there is no single ‘correct’ way to
model emotion in a discrete manner, meaning that emotion models should be selected based on
the context they are used in.

Complementary to the categorical representation of emotions there exists the dimensional
representation, of which also many de�nitions exist. One of the earliest dimensional emotion
model studies by Wundt and Judd (1897) suggested that emotion could be described using three
dimensions: Pleasurable vs. unpleasurable, arousing vs. subduing and straining vs relaxing. �is
dimensional model is based on the theory that one system can represent all emotions similar to
the human neuropsychological system that is responsible for all emotions.

Since then many dimensional emotion models have been proposed, but the most well known
dimensional model is the circumplex model of a�ect (Russell, 1980), which represents all emotions
using valence and arousal. Each emotion can be expressed as a combination of an arousal and
valence intensity, where arousal encapsulates the intensity of the emotion from low to high and
valence the degree of negativity-to-positivity of the emotion. An example of this two-dimensional
model with categorical emotion labels is visible in Figure 2.1. It was later expanded upon by Russell
and Barre� (1999).

Similar to the discussion around discrete emotion models there is also no consensus on which
dimensional model is ‘correct’. One of the more persuasive works (Fontaine et al., 2007) argues
that two dimensions, especially the ones used in Russel’s model, are not enough to encapsulate all
factors of emotion, arguing that a third or even fourth dimension is necessary.

�e question if either the discrete or dimensional representation is superior is open for debate.
According to Lazarus (1991), dimensional models, especially the valence-arousal model, blur im-
portant psychological distinctions and other aspects of the human emotion processing. Certain
emotions might lie very close to each other in the dimensional space but have very di�erent im-
plications for the human that experiences them. For example, ‘alarmed’ and ‘angry’ lie very close
yet can have very di�erent implications on the person experiencing the emotion. However, using
discrete emotions would force binning of more ambiguous or complex emotional states to simpler
single emotion labels. It becomes apparent that both types of representation have their own �aws.
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Figure 2.2: Source-�lter theory, the vocal tract (B) �lters the sound produced by the larynx (A) to
create a speech signal containing emotional state cues (C) (Tits et al., 2019)

Modeling human emotion is thus not an easy task. �ere exist many types of discrete and
dimensional models, but Ekman’s primary emotion model and Russel’s valence-arousal model are
generally speaking the most used. Both types of emotion representation have their advantages
and disadvantages, and these di�erences should be taken into account when deciding upon how
to represent emotion for a certain problem at hand, which will become relevant to our research
later on. While human emotion theory can be discussed in much more detail, this should su�ce
to be able to understand the human emotion aspect of both the SER and MER �eld, which are
covered in the next sections.

2.2 Speech emotion recognition
�e scienti�c �eld of speech emotion recognition (SER) focuses on creating computational models
that can detect emotion in speech audio. �is entire �eld is based on human speech emotion
communication, which is covered �rst. �is is followed by exploring the computational approach
taken, from feature usage to existing datasets and created SER models.

2.2.1 Speech emotion communication
Speech itself is one of the primary channels through which humans communicate and express
emotions. An emotional state is expressed by a human through speech by changing the sound
they produce using a internal muscle-controlled �lter, which adds speci�c acoustic cues to the
speech that convey the emotional state (Bachorowski, 1999). To be speci�c, the source of sound
energy produced by the larynx is modulated to convey emotion cues through the shape of the
vocal tract and results in changes in vocal pitch, ji�er and shimmer. See Figure 2.2 for a visual
example. �ere are also external �lters that a�ect the sound of speech, such as the mouth shape
due to facial expression, but these are not considered part of the source-�lter theory.

�rough studying source-�lter behavior various source-�lter cue pa�erns have been found.
Banse and Scherer (1996) showed that high arousal emotions (anger, fear, joy etc.) have a posi-
tive association with pitch and vocal intensity among other acoustic features, while low arousal
emotions (sad, calm etc.) were associated with lower mean pitch and pitch decrease over time.
For these emotions more nuanced pa�erns were also found, for example that the pitch decreases
over time for anger but increases for joy. It was also discovered that the experienced intensity of
the emotion a�ects the intensity to which acoustic cues are expressed, suggesting that lower emo-
tional intensity makes the source-�lter cue pa�erns less present or even disappear (Bachorowski
and Owren, 1995).

Perceiving and processing these vocal cues correctly is a hard and complex task for the listener.
�e human error rate in many studies are o�en high, which can be seen in the later section where
we discuss SER datasets. �e recognition rate on average hovers between forty to sixty percent
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depending on the complexity of the dataset, meaning that about half of instances the emotion
cues are interpreted wrong by the average listener in a controlled experimental se�ing. In real life
scenarios there are many other factors into play, so the human error rates reported on the datasets
might be optimistic. However, Bachorowski (1999) suggests a strong contributing factor for these
high error rates is that humans are far less accurate in emotion detection from voices they are not
familiar with compared to ones they are familiar with.

2.2.2 A computational approach
Compared to the human brain, computers are able to much more accurately observe and pro-
cess (digitized) acoustic information, but they lack the complex understanding of human emotion
communication and the learning abilities of us humans. �e goal of the SER �eld is to develop
computational models that can process these acoustic cues contained in the audio to obtain the
expressed emotion for various purposes. �ese models can then be used for speech emotion recog-
nition tasks unsuitable or uneconomic for humans, such as monitoring the emotion of customers
calling a help-desk or the creation of emotion meta-data.

�e acoustic cues used for emotion communication are quanti�ed for the model by extracting
features from various representations of the audio signal that describe various properties of the
audio. See Figure 2.3, which depicts multiple representations of the same audio sample from which
features can be extracted. During model training the model learns the relationship between the
features and emotions. Based on this learned mapping the model can recognize the emotion of
new speech audio through the extracted features. An example of simple speech features would be
the average loudness in decibel, or the minimum and maximum frequency of the audio.

Features can be extracted either locally or globally from the audio. Local features are extracted
from each frame of the signal, which are small windowed sections of o�en consistent length.
Global features are extracted from the full duration speech signal, assuming it contains only one
u�erance. Another strategy for feature extraction is phoneme-based segmentation, but it relies
much on the quality of the phoneme segmentations which is prone to errors. �ere exist four
types of commonly used speech feature types: continuous, qualitative, spectral and Teager-energy-
operator (TEO) features. �ese will be covered in the following subsections.

�ere are two excellent works which summarize the state of SER research. El Ayadi et al.
(2011) o�ers great insight into how the SER grew from its earliest works to 2011, while Khalil et al.
(2019) covers more recent progress, when deep learning became a popular approach. Below is a
simpli�ed combination of these works, along with other �ndings.

�ere are a couple of interesting observations made by El Ayadi et al. (2011) that de�ne the
�eld of SER. First o�, a universal set of dominant feature for speech emotion recognition does
not seem to exist. �is is mainly due to the acoustic variability caused by sentence di�erence,
speaking styles and other characteristics between speakers, which directly a�ect the most com-
mon speech features such as pitch and energy contours. Finding speaker-independent features is
an on-going challenge. Secondly, there is also no solid agreement within the �eld if there exist
any dominant acoustic features related to valence. Most dominant features when disregarding
acoustic variability (speaker-independence) can only distinguish emotions on the arousal plane
consistently, while their performance on valence is lacking. Finally, there appeared to be a con-
sensus that global features are superior compared to local features because they were signi�cantly
be�er at distinguishing between emotions that di�er in the arousal plane.

As stated earlier, there are four main types of features. Each is discussed below.

Continuous features Continuous features represent acoustic properties strongly related to
prosody and the �lter-theory, as shown in Figure 2.2. According to El Ayadi et al. (2011) the
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majority of the researchers believe that continuous features contain many cues to the emotional
content of an u�erance. �e most commonly used global features are pitch, energy, duration and
formants-based. Various functionals are used to describe these features such as the mean, devia-
tion, linear regression coe�cients and ratio of slope contours.

Voice quality features El Ayadi et al. (2011) summarizes a large number of researches related
to voice quality features. Voice quality properties lead to certain impressions of voice, for example
a harsh, tense or breathy voice. While there are works advocating the theory that the emotional
content of an u�erance is related to features of voice quality, the work by Gabrielsson and Juslin
(2003) showed that there was no one-to-one mapping between voice quality and a�ect. Even
though no one-to-one mapping could be found, voice quality features were still tested for their
SER capabilities, which we will cover later when we discuss produced SER models.

Determining voice quality from a signal and encapsulating that in features is di�cult. One
approach is the inverse-�ltering of the speech signal by removing the �ltering e�ect of the vocal
tract to obtain the glo�al signal (A. in Figure 2.2). However, this is di�cult as the technique is
based on an approximation of the vocal tract �lter. �is �ltering can be skipped but requires a
model to estimate the voice quality features. Known models can only do this with an accuracy
of 68.5% (Hansen and Bou-Ghazale, 1997), which is considered too inconsistent to produce usable
features. �erefore, voice quality features are o�en le� out or only used in combination with other,
more stable features.

Spectral features Spectral features are popular features to use for SER models (El Ayadi et al.,
2011). Many models use Mel-frequency cepstrum coe�cients (MFCC) features along with other
features for both categorical and continuous emotions recognition. Spectral features are obtained
by converting the time-based audio signal into the frequency domain using the Fourier-transform.
Spectral features are o�en used as local speech features because the distribution of spectral energy
across the speech range of frequency di�ers drastically over an u�erance. �e spectral features
operate in two di�erent formats, a linear and a cepstral-spectrum based one. �ere is no consensus
that one performs be�er than the other (Bou-Ghazale and Hansen, 2000), but in general spectral
features are e�ective at speech emotion recognition.

Teagar-energy-operator features �e Teagar-energy-operator features (Teagar and Teagar,
1990) are based on the theory that the muscle tension of a speaker a�ects the air �ow in the
vocal system and can be used for stress detection in speech. However, its performance on speech
recognition is outperformed by MFCC features, making TEO features only useful for speci�c stress
detection tasks.

Speech emotion datasets

�e goal of any SER model is to learn a mapping from the given speech features to the correct
emotion as best as possible. �is mapping is learned by training the model on a suitable dataset
of speech audio samples with known emotions. �e quality of the trained model depends on both
the suitability of the used model and features, along with the quality of the training dataset used.
Many aspects of the dataset being used de�ne how well a model can generalize to actual speech
emotion recognition tasks on unseen audio. �e quality of a dataset is de�ned by aspects such as
the size, speaker variation, language, emotions present, intensities and sentence length. Training
a model with a dataset in another language than on which it will be used, for example, can result
in lower performance. In this subsection we explore which datasets have been created for SER
training and how they di�er.
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Figure 2.3: Various representations of speech audio from which features can be extracted, created
using Librosa and a speech sample from our dataset. See the Librosa documentation for more
information about each representation (Brian McFee et al., 2015)

A SER dataset review by Swain et al. (2018) lists a total of 59 datasets, with likely more existing.
�ere is much variation between the datasets, mainly on emotions used, language and size. Some
datasets even cover speci�c scenario’s, such as child-adult communication or talking-while-eating.

Availability is a strongly present issue according to El Ayadi et al. (2011), at the time of their
research a large majority of the databases were not available for public use. Availability has been
improving since then as more recent datasets are publicly available, but many are still inaccessible.

We have selected �ve publicly available datasets to cover in more detail, selected from the large
pool of datasets listed by Swain et al. (2018) with the MiSME problem in mind. �ese are: Emo-db,
the INTERFACE dataset, GEMEP, RAVDESS and CREMA-D. Table 2.1 shows these �ve datasets in
an overview. Please note that all of these datasets use categorical emotions.

Before we cover them it is necessary to discuss human recognition rate. �is is the average ac-
curacy to which humans were able to recognize the correct emotion in the samples of that dataset.
A lower recognition rate implies that the samples are harder to recognize for humans. �is could
either be because some samples are hard but realistic, for example low intensity expression that
is hard to detect for humans in general. As stated earlier, the less intense the emotion, the more
subtle the acoustic cues become. However, it could also be that the captured emotion expres-
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Name Emotions Actors Intens. Utter. Samples Avg. annot. Lang.

Emo-db, 2005 Neutral, anger, fear, joy,
sadness, disgust and bore-
dom

10 1 10 300 20 German

INTERFACE, 2002 Neutral-slow, neutral-fast,
anger, fear, joy, sadness,
disgust and surprise

2 1 175 5520 0.16 Spanish

GEMEP, 2010 Neutral, joy, amusement,
pride, pleasure, relief, in-
terest, rage, panic fear, de-
spair, irritation, anxiety,
sadness, shame, surprise,
admiration, disgust, con-
tempt and tenderness

10 4 2+ 7300 10+ Gibberish,
French

RAVDESS, 2011 Neutral, angry, fear-
ful, happy, sad, disgust,
surprise and calm

24 2 2 4320 22 English

CREMA-D, 2014 Neutral, angry, fearful,
happy, sad, disgust

91 4 12 7442 30 English

Table 2.1: An overview of freely available scienti�c speech emotion datasets, showcasing the
di�erences in included emotions, actors, emotion intensities, unique u�erances, samples, language
and average emotion annotations per sample.

sion is ambiguous, meaning that it does not contain the correct cues for that emotion. Because
most datasets are acted recordings, where the speech captured is expressed by actors following
instructions, the ambiguity could be caused by bad acting for example. It is important to keep
this distinction in mind, a low human recognition rate does not mean that the dataset is of lower
quality, but it could be.

Emo-db Otherwise known as the Berlin emotional database (Burkhardt et al., 2005), Emo-db is
a SER database of German actors speaking u�erances in 7 di�erent emotions. It was one of the
earliest publicly available SER datasets and has been used in many SER research. It has remained
popular, albeit that it is used along side more modern datasets just to allow comparison to old
SER research. Compared to the other datasets Emo-db is quite small. However, it has a human
recognition rate of 80%, the highest of all datasets. �is means that it is an easy dataset to train
models on, which was bene�cial in the early days of SER.

INTERFACE �e INTERFACE dataset (Hozjan et al., 2002) was created before Emo-db, but only
became partially public available in 2011. It covers the same emotions as Emo-db but splits ‘neutral’
in a fast and slow variant. INTERFACE is a combination of an English, Spanish, Slovenian and
French dataset, with the Spanish dataset being the only one that is publicly available. Albeit that
the creators claim that it has a human recognition rate similar to Emo-db, it has an extremely low
amount of annotations, making that claim unreliable. However, it is almost twenty time as large
as Emo-db.

GEMEP �e Geneva Multimodal Emotion Portayal Corpus (Bänziger and Scherer, 2010) has the
largest emotion corpus of all �ve dataset, a grand total of 18 emotions. �e emotions are based on
a combination of primary and secondary emotions along with the valence and arousal emotion
model. Its speech is not in a language but rather gibberish with an western accent. �e idea behind
this is that models trained on this gibberish would generalize to many western languages because
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the model is not able to learn language-speci�c characteristics during training. GEMEP also dis-
tinguishes between four emotion intensities, covering a larger spectrum of emotion expression
than the other datasets. However, the human recognition rate is only 38%.

RAVDESS �e Ryerson Audio-Visual Database of Emotional Speech and Song (Livingstone and
Russo, 2018) contains both spoken and sung u�erances, of which speech is only relevant for this
research. It uses Ekman’s primary emotions along with ‘calm’ and ‘neutral’ for a total of eight
emotion labels. It di�erentiates between two intensity levels per emotion, compared to the four
of GEMEP. It has a human recognition rate of 62.5%.

CREMA-D �e CREMA-D dataset (Cao et al., 2014) has a much larger pool of actors compared
to the other dataset, a total of 91 actors. It uses only six emotions and di�erentiates between four
intensity levels. It is captured using audio and video. Audio-only experiments had an average
human recognition rate of 40.9%.

From just these �ve SER datasets it is noticeable that the human recognition rate can wildly
di�er, where more complex datasets using more emotions and intensities score lower. �ere ap-
pears to be a trade-o� between a guaranteed quality of the dataset and how expansive it is. It is
important to take this in consideration when selecting a SER dataset, which we will come back to
in the Methodology chapter.

Produced models and related studies

�e �eld reviews by Khalil et al. (2019) and El Ayadi et al. (2011) o�er a broad overview of most
SER research until 2019. �e most relevant of these works are discussed below, which should be
enough to ge�ing a basic understanding on how the �eld developed and how di�erent types of
models and features perform. Readers that are curious and wish to learn more about the �elds
should study these reviews.

Speech emotion recognition took o� in the early 2000s as �elds related to speech informa-
tion retrieval became more interesting due to the internet and media sharing. One of the �rst
SER break-throughs was the work by Nwe et al. (2003). Nwe produced a groundbreaking Hidden
Markov Model that was able to recognize the set of primary emotions with an average accuracy
of 77% using only Short Term Log Frequency Power Coe�cients features. While the used dataset
was simple compared to modern SER research, the model made a leap in performance compared
to earlier works. �ese earlier works achieved lower accuracy on more simple datasets (Dellaert
et al., 1996; McGilloway et al., 2000).

For a long time Hidden Markov Models were the dominant type of model for speech emotion
recognition (El Ayadi et al., 2011). �is changed around 2014 as the �eld of neural networks had
seen many major improvements, with new and strong performing neural network variants be-
ing discovered such as Recurrent Neural Networks and Long Short-Term Memory (LSTM) Neural
Networks. �is led to a majority of the more recent SER research using deep learning techniques
(Khalil et al., 2019).

Regarding top performing models, Seehapoch and Wongthanavasu (2013) combined common
speech features with a SVM-based classi�er and reached a recognition rate of 89.8% on Emo-db,
a 7-way classi�cation task. �is is signi�cantly above the human recognition rate, which means
that a model can outperform the average human. �is performance was improved upon by Guo
et al. (2018), achieving an accuracy of 91.3% using a Convolution Neural Network focusing on
amplitude and phase features. �is was again improved upon by Bhavan et al. (2019), achieving
92.45% using a bagged SVM model, going against the trend that deep learning was superior.

C.A.J. Laugs 16



CHAPTER 2. LITERATURE REVIEW

Wang et al. (2015) produced a model that used a combination of commonly used features
(MFCC) with Fourier transform features that correspond to �rst and second order harmony. �ese
features capture the voice quality of the speaker. �e inclusion of these voice quality features
improved the recognition rate on their dataset by more than 10%, suggesting that voice quality
features can be very e�ective when combined with other features.

Regarding features, Tian et al. (2015) showed that low level descriptors outperform u�erance-
level (global) features on acted speech. Even though low level descriptors are preferred over seg-
mental features (i.e. u�erance-level) by most researchers (Anagnostopoulos et al., 2015), a couple
segmental features such as MFCC and voice quality features are o�en included. For example, a
large number of published SER models include MFCC features (Bhavan et al., 2019; Hasan et al.,
2004; Kwon et al., 2003; Neiberg et al., 2006; Sato and Obuchi, 2007; Wang et al., 2015).

Finally, a di�erent approach to developing SER models has been gaining popularity the last
few years. Instead of manually selecting a pool of features, the extraction of useful features is
included in the learning task of the model. �is is called an ‘end-to-end’ approach. In an end-
to-end approach the model must learn to recognize the emotion from the raw or a transformed
version of the audio signal instead of a feature vector containing computed features.

Zheng et al. (2015) used principle component analysis (PCE) on a raw log-spectrogram rep-
resentation of the audio. �is produced a list of useful ‘raw audio features’, which were fed to
deep-neural network model. It only reached a recognition rate of 40% on the IEMOCAP database,
consisting of 5 di�erent discrete emotions. Trigeorgis et al. (2016) a�empted this approach as
well, using Long Short-Term Memory (LSTM) neural networks in combination with a Convolu-
tional neural network to create a model that can predict emotions from raw audio signals. Using
the RECOLA dataset it outperformed other models that used pre-de�ned feature-sets, suggesting
that there is potential.

To conclude, speech emotion recognition is a fairly developed �eld that keeps improving. �ere
exist a large number of datasets for SER training di�ering in language, complexity, emotions and
more. Many SER models have been produced, achieving performance above human recognition
levels. A deep learning and an end-to-end approach to SER have been gaining traction in recent
years and perform well, even though these models are o�en not top performers on their respective
datasets.

2.3 Music emotion recognition
In this section we explore the other emotion recognition task of the MiSME problem, the �eld of
music emotion recognition, or MER in short. �is �eld is noticeably younger, seeing its earliest
publications around 2003. �e advent of digital music platforms and recommendation systems
however led to an increased interest and growth of the �eld.

MER is based on music emotion communication theory, and focuses on developing computa-
tional models that are able to do music emotion recognition, similar to SER. We will �rst delve into
music emotion theory, followed up by exploring the computational approach taken, from feature
usage to existing datasets and created MER models.

2.3.1 Music emotion theory
�e main motivation for humans to create music is to express emotions (Eerola and Vuoskoski,
2013). �is coincides well with the fact that music is a strong communication channel for emotion.
How humans express and observe emotions through music has been studied by many, with the
earliest studies dating back to ancient Greece (Kramarz, 2017). Generally speaking there exist three
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main theories on how emotion is expressed through music. �e chapter ‘Emotional expression
in music’ of �e Handbook of A�ective Science (Gabrielsson and Juslin, 2003) provides a broad
overview of the many music emotion theories and studies published over time, including these
theories. While these theories are barely directly recognizable in modern music emotion models,
they served as a foundation for the �eld and covering them helps with creating an understanding
how music emotion can be modeled in di�erent ways.

In the handbook Juslin draws similarities between music emotion communication and
Brunswik’s lens model (Brunswik, 1956). In music emotion communication a performer encodes
a certain emotion in the performance using a set of probabilistic and redundant cues. �e listener
then tries to decode the performance using similar cues to judge the intended emotion. �e suc-
cess of communication depends on both the ability to encode and decode the signal using cues,
along with the degree of correspondence of both party’s probabilistic cues. �ere exist three main
theories how these cues take form in music, and why music is able to communicate emotions so
well.

�e �rst theory (Cooke, 1959) is that music has three separate expressive elements: An archi-
tectural aspect appealing to us because of the beauty of pure form, a pictorial aspect from imitation
of natural sounds and a literary aspect as music is a language of emotion and meaning, akin to
speech. �ese three elements can induce emotion (cues) alone or together according to Cooke.

Langer (1953, 2009) proposed a di�erent theory and suggested that the elements of which
music exists do not carry �xed lexical meaning like words in language do. Music elements are
rather open symbols where the meaning of various elements can be understood “only through
the meaning of the whole, through their relations within the total structure”. Langer argued that
the theory is supported by the idea that there is a mappable relationship between the structure of
feelings and structure of elements of the music. �is makes it di�erent compared to Cooke’s, as
Langer suggests that all elements are related and not separately expressive elements.

Finally, Clynes (1977) suggested a theory that humans have biologically preprogrammed
spatio-temporal pa�erns for communicating emotion. �ese pa�erns can use any channel (speech,
music, facial expression etc.) as long as the pa�ern is preserved. �ese pa�erns can be incorpo-
rated in music pieces to communicate the biologically shared pa�erns (cue) between humans.

Before we delve deeper into the cues used, and which music features can be used to observe
these cues, there is one thing that should be made clear. As Juslin and Laukka (2004) noted, there is
a di�erence between the emotions being expressed by the music and the emotions being induced
by the music. �e expressed emotions are the emotions which the composer or performer tries to
express, while the induced emotions are the emotions that the listeners experiences internally. �e
induced emotion is in�uenced by many contextual factors such as location and social presence,
along with personal factors such as the motivation for listening (Mehrabian and Russell, 1974),
and can thus be vastly di�erent or more nuanced than the original expressed emotion by the
artist. �is causes emotion to be much more ambiguous in music than in speech. �e experienced
(induced emotion) can di�er between individuals for the same music piece, making it a more
personal experience, while emotion in speech su�er much less from these personal factors as it
o�en comes down to the ability of deducing the cues to the correct emotion.

2.3.2 A computational approach
Music emotion recognition has also been tackled using computational models, training them on
music samples with known emotions with the goal of learning a correct mapping between features
and emotions. Many models, datasets, feature studies and more have been published since the
early 2000s. Several �eld reviews (Eerola and Vuoskoski, 2013; Kim et al., 2010; Yang et al., 2018;
Yang and Chen, 2012) along with the MER chapters in the works of Gabrielsson and Juslin (2003)
and Aljanaki (2016) provide a broad overview of the development of MER since its inception.
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• Timing
• Dynamics
• Articulation
• Timbre

• Pitch
• Interval
• Melody
• Harmony

• Tonality
• Rhythm
• Mode
• Loudness

• Musical form
• Vibrato

Figure 2.4: Musical elements that can be used to express emotion (Panda et al., 2015)

Music emotion features

Features can be computed from the music audio to quantify elements of the music. As the music
emotion theories posed, the cues used to communicate emotion are o�en found in speci�c ele-
ments of the music. �antifying these elements to features allows the model to learn a mapping
of those cues to emotions. Panda et al. (2015) created an overview of all musical elements which
correlate to emotions. �ese musical elements are listed in Figure 2.4. According to Yang and Chen
(2012) the dominant musical elements for emotion communication are: energy, rhythm, melody
and timbre. Energy is strongly related to loudness and dynamics from Panda’s list. We will cover
these four dominant musical elements and the features used to represent them brie�y below.

Energy features �ey correspond to the loudness of a music piece and are strongly correlated
with emotions on the arousal plane. High energy induces strong arousal, and low energy induces
lower arousal (Yang and Chen, 2012). Common energy-related features are the root mean-squared
loudness, speci�c loudness sensation coe�cients (SONE) and total loudness.

Rhythm features Rhythm is the time-structure of notes and their accompanying strength. It
can be described using tempo, meter and phrasing. Hevner (1936, 1937) observed that rhythm
strongly a�ects emotions related to the valence-plane. A ‘�owing’ rhythm results in higher va-
lence, while ‘�rm’ rhythm results in lower valence. However, the tempo of the rhythm is strongly
related to the arousal-plane instead of the valence-plane. A higher tempo correlates with higher
arousal. Common rhythm-related features are rhythm strength, regularity, clarity, average onset
frequency and average tempo.

Melody features Melody is created by a combination of pitch and rhythm, which causes mu-
sical tones to be perceived as single entities. Unlike the other dominant features melody does not
have any human music emotion research supporting it. Hevner (1936) even showed that melodic
direction had li�le to no e�ect on the perceived emotion. However, the inclusion of melodic fea-
tures has been bene�cial for many MER models (Panda et al., 2015). Common melody-related
features are vibrato rate and extent, pitch descriptors and contour typology features.

Timbre features Timbre is the perceived sound quality of a musical tone or sound. Timber is
related to emotions on both the valence and arousal plane (Yang and Chen, 2012). ‘Sharp’ timbre
positively a�ects valence and arousal, while ’dark’ timbre negatively a�ects both. Timbre is most
o�en quanti�ed using MFCC features.

Almost all music emotion cue knowledge appears to be in the dimensional emotion space
rather than the discrete emotion space. �is is because a dimensional approach be�er �ts music
emotion communication. As explained earlier, music emotion communication su�ers from ambi-
guity compared to speech emotion communication. Emotion in music is o�en the induced emo-
tion, which is in�uenced by a persons bias, their mood and more. Two persons might experience
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highly similar levels of valence and arousal because that is expressed in the music, but di�erent
categorical emotions due to personal interpretation. �e example mentioned earlier about anger
and fear being closely related in both the arousal and valence plane is a good example of this am-
biguity. If forced to use categorical emotions, one person might experience fear while the other
experiences anger due to personal interpretation on the same music piece, while their valence and
arousal estimates were highly similar.

�e bene�t of using a dimensional emotion space is that this ambiguity can be expressed. �e
emotion experienced is not forced into classes, but can be expressed using characteristics in a con-
tinuous space. Soleymani et al. (2013) showed that humans are be�er at judging expressed emotion
in music using a continuous space than categorical labels. �is is why dimensional emotion models
are highly favored within MER.

Music emotion datasets

A MER model must learn a mapping from features to emotions to be able to function. �is mapping
can be learned through training on music samples with known emotion values. Similar to speech,
there exist music emotion datasets to train MER models. Compared to SER, scienti�c MER datasets
are more scarce due to the �eld being newer and smaller. Licensing is also an issue when creating
MER datasets (Kim et al., 2010). Before 2010 there was a lack of freely available MER datasets, but
since then the situation has improved signi�cantly.

At the time of this research there was no publication, website or other source of information
which listed available MER datasets, meaning that all datasets were found through careful use
of search engines. By scouting the Internet a total of seven relevant MER datasets were found,
although more likely exist. Table 2.2 shows the seven di�erent datasets. �ere appears to be an
even split between dimensional and categorical datasets, even though MER reviews stated that
dimensional emotions were dominant within MER (Panda et al., 2015). Some of these categorical
datasets obtained their emotions through mining user-generated descriptive meta-data labels from
websites such as Last.fm, rather than conventional annotation gathering.

�is brings up an issue that must be mentioned. �e ground truth for music emotion datasets
are obtained di�erently than for speech emotion datasets. �e ground truth for a speech emotion
dataset is the emotion instructed to be expressed by the actor. �e quality and validity of those
expressions, and thus the dataset itself, are measured using the human recognition rate.

All MER datasets use existing songs of which the intended emotions by the artist are not
known. �is is solved by obtaining the emotion of music through a consensus of the induced
emotion experienced by many listeners. �is means that many annotators are required to obtain
a reliable ground truth. �e validity of the annotations strongly depends on the amount of anno-
tations, and how well the annotators are in-line with the general population regarding personal
interpretation bias. A low quality MER dataset can therefore have annotation values deviating
strongly from the actual general consensus, while a low quality SER dataset su�ers from ‘bad’
recording containing not enough usable cues for the listener. �is is an important distinction
between the two �elds and should always be taken into account.

1000 song and DEAM �ese datasets by Soleymani et al. (2013) and Aljanaki et al. (2017) were
created for ‘MediaEval’, a yearly hosted benchmarking initiative for various information retrieval
�elds including MIR. �e music was obtained from �e Free Music Archive, picking the top rated
songs of various genres. �e annotations were done by a strictly selected pool of participants.
DEAM is an expansion of the ‘1000 song’ dataset, meaning that DEAM contains all of the ‘1000
song’ samples along with more than a thousand new ones.
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Name Emotions Samples Avg anno. Genres Source

1000 Songs, 2013 Valence and arousal 1000 10 Various Free Music
Archive

DEAM, 2017 Valence and arousal 1802 10+ Various Free Music
Archive

AMG1608, 2015 Valence and arousal 1608 15 to 32 Contemp. pop Copyrighted,
various music
labels

Soundtrack, 2010 Valence and arousal + neu-
tral, happy, angry, sad, sur-
prised and disgust

110 58 Soundtrack Movie sound-
tracks, academic
use only

ISMIR, 2012 Happy, angry, sad and relax 2904 Unknown Various Creative com-
mons licenses

Emotify, 2015 9 induced emotions 400 16 to 42 Pop, electronic, rock
& classical

Magnatune
recording com-
pany

Jamedo, 2019 57 emotions and moods 55000 Unknown Various Creative com-
mons licenses

Table 2.2: An overview of the mentioned music emotion datasets, including the average emotion
annotations per sample.

AMG1608 Created by Chen et al. (2015b), the AMG dataset is the only dataset to use popular
contemporary Pop music instead of license-free music. Due to licensing the audio of the music
samples are not available, only the annotation values and meta-data. �e songs used were selected
using the mood descriptors of All Music Guide1

Soundtrack �is dataset by Eerola and Vuoskoski (2011) was created to test the correlation
between discrete and dimensional emotion annotation. �erefore it contains both valence and
arousal annotations, along with six categorical emotions. What also makes it unique is that is uses
samples from movie soundtracks, unlike the other datasets which use non-movie music. It also
boasts the highest annotation count, but the fewest samples of all other datasets.

ISMIR2012 �is dataset was created by Song et al. (2012) and includes four discrete emotions:
happy, angry, sad and relax. Samples were obtained through mining Last.fm tags that include
terms de�ned by the authors that relate to one of the four discrete emotions. �e samples are
available under a Creative Commons license and are mostly Pop songs. �e quality of the dataset
is hard to judge, as the annotations stem from user generated labels.

Emotify Created by Aljanaki et al. (2016), Emotify focuses speci�cally on induced emotions,
using a video game to collect annotations. It is relatively small compared to the other datasets as
it only contains 400 samples spread over nine categorical emotions.

Jamedo Bogdanov et al. (2019) created Jamedo, the largest dataset with a staggering 55.000 sam-
ples. It is 18 times larger than the second largest dataset. It also uses 57 categorical emotion and
mood labels obtained from Last.fm tags, similar to ISMIR2012. It served as a MER challenge dur-
ing MediaEval 2019. �e best performing model only reached a precision of 0.2 and recall of 0.4,
suggesting that this dataset is a challenging learning task for a MER model.

1h�ps://www.allmusic.com/
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Compared to the speech emotion datasets there appears to be much more variation regarding
size, genres of music, method of gathering the ground truth and of course the emotion space used.
While there appear to be numerous categorical datasets, which allow for classi�cation rather than
regression, the question is if those datasets allow for the creation of a generalizable MER model
due to the present ambiguity in music emotion recognition. �is is an important aspect to consider
when deciding on which MER dataset to use, which we will come back to later.

Produced models and related studies

�e �eld reviews by Kim et al. (2010), Eerola and Vuoskoski (2013) and Yang et al. (2018) o�er a
broad overview of research done with the �eld of music emotion recognition up until 2018. �e
contents of these reviews are summarized in this section, which should be enough to ge�ing a
basic understanding on how the �eld developed and how di�erent types of models and features
perform. Readers that are curious and wish to learn more about the �eld can �nd more interesting
information in the aforementioned reviews.

One of the earliest MER works was done by Li and Ogihara (2003), using a SVM-based model.
It was tasked to classify 30-second song excerpts spanning Ambient, Classical, Fusion and Jazz
music using 13 di�erent labels related to mood and emotion. It achieved an accuracy of 45%.

While more categorical MER models were developed a�er Li’s work, the vast majority of MER
research instead focused on the dimensional emotion space (Yang et al., 2018). �is shi� started
with the works of Schmidt et al. (2010) and Han et al. (2009), which used regression models to
predict valence and arousal, and then map those produced values to a categorical emotion space.
�ese models thus still produced categorical labels like earlier works, but they used a dimensional
approach with valence-arousal regression instead of direct classi�cation. Han reported an increase
from 33% to 95% accuracy on a 11-way classi�cation task with this new approach.

�ese results motivated other researchers to explore the MER problem completely dimensional.
One of the earliest models to do so was by Yang et al. (2008). A SVM was tasked to do valence-
arousal regression using the PsySound feature-set, along with spectral contrast and Daubechies
wavelets coe�cient histogram (DWCH) features. Its root mean squared error performance was
deemed impressive considering previous categorical approaches, even though directly comparing
them can be ambiguous.

�e suitability of dimensional emotions models was also established by Eerola and Vuoskoski
(2011). Eerola et al. showed that common categorical emotion labels and a three-dimensional
annotation model were strongly correlated, and that the dimensional annotations could be used
to predict the categorical emotions with high precision, but not the other way around.

Similar to speech, deep learning became a popular technique in the last few years. �e applica-
tion of a deep learning Gaussian Process (GP) has been explored for both regression (Markov and
Matsui, 2014) and regression-classi�cation (Chen et al., 2015a). �is technique resulted in a 20%
performance increase on valence prediction for regular regression, while arousal performance did
not change. For the regression-classi�cation task this technique led to an increase in accuracy of
71.3%, compared to the 63% achieved by non deep learning model.

�e e�ectiveness of various MER features has also been studied by many. According to Yang
and Chen (2012) no single type of feature (harmony, spectral, rhythm and dynamics) is able to
dominantly recognize emotions in music by itself, multiple types of features are necessary. We
also see that many MER works (Chen et al., 2015a; Markov and Matsui, 2014; Panda et al., 2015;
Schmidt and Kim, 2011; Song et al., 2012) use a large pool of various types of features and apply
feature selection to �lter that set, suggesting that various combinations of music features can
produce good results.

Panda et al. (2015) showed that melodic audio features are e�ective, both in combination with
more traditional features and by itself. Vibrato and pitch-related features were the most dominant
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melodic features. In contrast, Schmidt and Kim (2011) showed that feature selection over a large
pool of features only slightly outperformed a model using only MFCC-features. While more recent
models outperform the more complex feature set used by Schmidt, this research suggests that
MFCC features by itself are a good minimal set of feature to use for MER.

To conclude the music emotion recognition section, it is a younger and less developed �eld
than speech emotion recognition, but it has been developing rapidly in the recent years. �ere
are fewer MER datasets available compared to speech, as music licensing is o�en an issue when
creating such datasets. Luckily the situation has been improving and a handful of publicly available
categorical and dimensional MER datasets exist.

MER models use the emotion cues contained in the elements of a music piece, such as rhythm
or timbre, to recognize the emotion present. However, music emotion communication is ambigu-
ous in nature as the induced emotion can di�er between individuals due to interpretation, mood
and more. �is ambiguity does not lend itself well to the categorical emotion space, making di-
mensional emotion spaces strongly favored within the MER �eld.

Many MER models have been successfully developed, with a shi� to regression (dimensional
emotion space) as it appeared to be superior to classi�cation. Deep learning techniques have also
been applied to MER tasks, resulting in be�er performing models. However, it might be too early
to assume that they are superior to all non deep-learning models.

2.4 Blind source separation
In the MiSME recognition task the model is tasked with recognizing the speech and music emotion
separately from a mixed audio signal, which is an audio signal consisting of overlapping speech
audio and music audio. We have already covered speech and music emotion recognition. However,
emotion recognition from a mixed signal means that there is interference of another audio source.
�e model thus needs to learn how to distinguish which part of the audio signal, or rather the
extracted features, is related to the source it is supposed to process. �is adds another dimension
of complexity to the already complex task of emotion recognition.

Blind-source separation might lessen the complexity of this signal-distinguishing task for the
model, which we will delve into in the Methodology chapter. �is section covers the theory behind
blind-source separation, what it does, along with several examples of successful application and a
list of available blind-source separation tools.

2.4.1 �eory
Blind-source separation (BSS) is the act of approximating the original audio signals from a set
of observed mixtures of those signals at multiple sensors, without much knowledge about the
original source signals.

To phrase it more simple: BSS tries to recreate each original audio signal by learning how the
audio is mixed at every sensor, for example a microphone. An inversion of the learned mixture can
be applied on the audio captured at a sensor to obtain isolated versions of the audio of each source
captured at that sensor. An example: applying the inverse of the mixture on the audio captured
at microphone A produces isolated speech and isolated music audio versions of the mixed audio
captured at microphone A. Blind-source separation thus tries to ‘unmix’ the mixed audio at every
sensor. A�er unmixing the audio of all sensors, an original audio source can be recreated by com-
bining the isolated audio of all sensors. For example, the isolated speech captured at microphone
A and B a�er unmixing can be combined to recreate the original speech. A visual example of these
steps are depicted in Figure 2.5.
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Figure 2.5: A visual example of how blind-source separation works

�e quality of the reproduced audio through BSS is highly dependent on how accurate the
calculated mixture is to the actual mixture. Di�erences between the two results in either audio
data from the other source leaking into the isolated audio, or audio data from the correct source
being �ltered out.

�e di�culty of a blind-source separation task is de�ned by a couple of aspects. �e �rst is
that the problem can be over-determined, determined or underdetermined depending on the num-
ber of audio sources to sensors. Overdetermined is the easiest, as there are more sensors than
audio sources. �is means that there are more information sources about the audio (sensors) than
actual audio sources. Determined is when they are equal. Underdetermined is when there are less
sensors than audio sources, which is the hardest to solve. Speech-music separation is o�en seen
as underdetermined (Grais and Erdogan, 2011).

Another aspect de�ning the di�culty is if the mixing is instantaneous or convolutive. Convolu-
tive means that the mixture is a�ected by time. �is could be the case when audio is not captured
at the same time at each sensor, for example due to reverberation or strong di�erence in spatial
placement of the sensors. Convolutive BSS is harder to solve than instantaneous.

Finally, the last aspect that de�nes the di�culty is if it is time-variant or time-invariant. It is
time-variant if the mixture can change over time, for example if speakers move in the audio space.
�is is much harder to solve than time-invariant, where the mixture is static for the entire duration
of the audio.

2.4.2 Research on BSS
Many have studied blind-source separation problems (Demir et al., 2010, 2012; Grais and Erdogan,
2011; Grais et al., 2014; Jansson et al., 2017; Luo et al., 2017). Understanding these works requires
signi�cant technical expertise and are generally too complex to cover in this research. However,
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their results show that blind-source separation can be successfully applied to various scenarios.
For example, Xu et al. (2014) showed that BSS of the background music and the singing voice,
combined with late-fusion, improved the accuracy of their MER model from 37% to 53% on a 4-
emotion categorical classi�cation task.

Blind-source separation tools

�ere exist a handful of blind-source separation tools, which are generally easy to use. We iden-
ti�ed a total of six scienti�c BSS tools, excluding commercial tools.

Wave-U-Net Created by Stoller et al. (2018), Wave-U-Net is an end-to-end approach trained
BSS-tool that uses long temporal context by repeatedly down sampling and applying convolution
to the feature maps to combine high and low-level features at di�erent timescales. �e model is
trained for vocal separation in music tracks.

FASST FASST is a C++ based source separation toolbox created by Salaün et al. (2014). It includes
various BSS algorithms limited to the time-frequency domain. User scripts can be wri�en in Matlab
and Python. It can be used for various BSS tasks.

Untwist Untwist (Roma et al., 2016) is a Python-based source separation framework. Untwist
serves as a framework for the entire source separation pipeline, in which new algorithms can be
implemented easily. It supports algorithms that function in the Short Term Fourier Transformation
or �adratic ERB space.

Nussl Created by Manilow et al. (2018), Nussl is another Python-based source separation frame-
work, speci�cally focusing on underdetermined problems. Sixteen di�erent source separation al-
gorithms are included in Nussl, including ICA, RPCA, NMF with MFCC clustering, Deep clustering
and more.

Open-unmix Open-unmix (Stöter et al., 2019) was developed speci�cally to provide (unexpe-
rienced) researchers with an easy to understand framework that included state-of-the-art BSS
models, as other frameworks required in-depth knowledge to be used according to the authors. It
uses a bi-directional LSTM model based on the work of Uhlich et al. (2015), and its performance
on a instrument segmentation task was the highest of all open-source models at the time of its
publication, only beaten by one non open-source algorithm called TAK1.

Spleeter Spleeter (Hennequin et al., 2019) is the most recently published BSS toolkit. It was
presented at the ISMIR2019 and it is Deezer’s source separation library, which has been made
publicly available for use. It is a Python-based toolkit that uses Tensor�ow for its models. �e
model is a encoder/decoder CNN with skip connections. It was trained using Deezer’s private
music dataset, which consists of licensed music. �e creators claim that Spleeter slightly outper-
forms Open-unmix, while being signi�cantly faster to a degree where Spleeter could be run in
realtime.

To conclude the blind-source separation section: blind-source separation is the act of ‘unmix-
ing’ a mixed audio signal by applying an inversion of the calculated mixture at each sensor. �e
quality strongly depends on how accurate the calculated mixture is to the actual mixture. Blind-
source separation has been successfully applied to many scenarios. �ere also exist a handful of
BSS tools which are available for scienti�c research.
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Name Environment Algorithm description Notes

Librosa (Brian McFee
et al., 2015)

Python Spectral features (MFCC, ZTC, Chroma) +
Rhythm (Tempogram)

PsySound3 (Cabrera
et al., 2008)

Matlab Cepstrum, loudness, pitch, roughness, FFT spec-
trum

Praat (Boersma and
Weenink, 2007)

Standalone (C++) Spectograms, pitch, formant, intensity, ji�er,
shimmer, cochleagram, excitation

Speech focused

MIRtoolbox (Lartillot
et al., 2008)

Matlab Various dynamics, rhythm, timbre, pitch and
tonality based features.

openSMILE (Eyben
et al., 2013)

Standalone MFCC, voice quality, Chroma fetures, pitch, loud-
ness, energy, formants, LPC

High feature count

Audio Toolbox Matlab Various spectral features, MFCC and pitch Included in Matlab
Python-speech-
features

Python MFCC, F-bank, log-bank and spectral subband
centroid

Parselmouth (Jadoul
et al., 2018)

Python API None Python API for Praat

Essentia (Bogdanov
et al., 2013)

C++ Many spectral (MFCC, �ux, MelBands, Roll-o�)
and rythm features

High feature count

Table 2.3: An overview of feature extraction tools available for both speech and music feature
extraction

2.5 Background on tools, techniques and methods
In this section we will provide some background on the tools, techniques and methods used in
this research. �e goal is to familiarize readers with these tools and more, while the Methodology
chapter explains why they were chosen and how they were put to use.

2.5.1 Feature extraction tools
A large number of feature extraction tools exist that can be used for either speech or music emotion
recognition. We identi�ed nine in total, which are depicted in Table 2.3. Of these nine openSMILE
was used for speech feature extraction, and Essentia for music feature extraction. Section 3.4.1 and
3.5.1 cover these decisions in more detail.

OpenSMILE was used with the ‘emobase2010’ con�guration. �e ‘emobase2010’ con�guration
is a tweaked version of Paralinguistic Challenge feature set (Schuller et al., 2010), which itself
is also available as the ‘IS10’ con�guration. ‘emobase2010’ boasts a total of 1582 common SER
features, such as MFCC and Fundamental frequency-features. A list of all feature types included
in the con�guration can be found in Table 2.4. Only the types of features and their feature count
are shown, as this had to be extracted directly from the output �les. Each feature type can consist
of one or more feature classes, for example the same feature type but on di�erent scales. �ese
feature classes can have multiple derivatives, for example the average, the standard deviation, the
minimum value and more. Each derivative counts as a feature. Please see Eyben et al. (2013) for a
more detailed overview.

For music feature extraction Essentia was used, using the precompiled ‘essen-
tia streaming extractor music’ executable. Essentia includes a large amount of common
MER features, more than most toolkits. �e tool was speci�cally developed for music information
retrieval. �e executable that was used produces a total of 2651 common MER features per
sample. �e feature types, classes and total count per feature type of this feature set are shown in
Table 2.5.
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Feature type Features

Mel frequency cepstrum coe�cients 630
Log mel frequency band 336
Line spectral pair frequencies 336
Fundamental frequency 82
Ji�er 76
Loudness 42
Voicing 42
Shimmer 38

Table 2.4: All feature types included in openSMILE’s ‘emobase2010’ con�guration

2.5.2 Models
Four di�erent models were developed for both the speech and music emotion recognition exper-
iments. �ese are a Support Vector Machine (SVM), a Random Forest (RF), a Multilayer Perceptron
(MLP) and a Deep Neural Network (D-NN). For the speech emotion recognition experiments all
models take the form of a classi�er, which produce categorical emotion labels as output. For the
music emotion recognition experiments all models take the form of a two-value regressor instead,
producing two numerical outputs representing the valence and arousal.

�e �rst three models were built using ‘scikit-learn’, a popular Python-based machine learning
library. �e D-NN was built using ‘Keras’, a popular deep learning library also in Python. Some
background on each model is given below, explaining how they function and showcasing their
di�erences to readers unfamiliar with these types of models.

Support Vector Machine

A Support Vector Machine (SVM) uses hyperplanes in the feature vector space di�erently for
classi�cation and regression. For classi�cation it uses hyperplanes to split all data points (feature
vectors) into the possible classes. �ese hyperplanes serve as decision boundaries, de�ning if an
input vector belongs to one class or an other depending on which side of the hyperplane it lies.
�e linear split quality of a hyperplane for classi�cation is measured by summing the distance
of the closest sample of each class to the hyperplane itself, where a larger distance is be�er. For
regression it uses the hyperplanes as an function to estimate the regression value, where the goal
is to �nd a curve (dictated by the hyperplanes) that minimizes the deviation of all data points to
it. A lower deviation means that the regression functions lies closer to all data points on average,
meaning that the values produced by the function are more accurate.

By default these hyperplanes split the space linearly, but in most cases the data is not linearly
separable. �is is o�en solved by applying a kernel that maps all data points (features) non-linearly
to a new space. �e model then tries to �nd suitable hyperplanes in this non-linear space. A
visualization of mapping these hyperplanes of non-linear space back to linear space is depicted in
Figure 2.6.

Random Forest

Random Forest models are based on decision trees. In a decision tree the input is iteratively passed
to either the le� or right leaf based on if the input (features) meets a certain condition. A�er a
certain number of splits a dead-end is reached, which has a categorical label when the Random
Forest is a classi�er, or a numerical value when it is a regressor. An example of a simple decision
tree is depicted in Figure 2.7.
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Type Feature class

Loudness [1] average loudness
Complexity [1] dynamic complexity
Silence [27] silence rate 20dB, silence rate 30dB, silence rate 60dB
Spectral [252] spectral rms, spectral �ux, spectral centroid, spectral kurtosis, spectral spread, spec-

tral skewness, spectral rollo�, spectral decrease, spectral strongpeak, spectral energy, spec-
tral energyband low, spectral energyband middle low, spectral energyband middle high,
spectral energyband high, spectral entropy, spectral complexity, spectral contrast coe�s, spec-
tral contrast valleys

Barkbands[288] Barkbands, barkbands crest, barkbands �atness db, barkbands kurtosis, barkbands skewness,
barkbands spread

Melbands [405] Melbands, melbands128, melbands crest, melbands �atness db, melbands kurtosis, mel-
bands skewness, melbands spread

Erbbands [405] erbbands, erbbands crest, erbbands �atness db, erbbands kurtosis, erbbands skewness, erb-
bands spread

Other [720] mfcc, gfcc, dissonance, pitch salience
Rhythm [121] beats count, beats loudness. beats loudness band ratio, bpm histogram �rst peak bpm,

bpm histogram �rst peak spread, bpm histogram �rst peak weight,
bpm histogram second peak bpm, bpm histogram second peak spread,
bpm histogram second peak weight, onset rate, danceability

Tonal [413] hpcp, thpcp, hpcp entropy, hpcp crest, key temperley, key krumhansl, key edma,
chords strength, chords histogram, chords changes rate, chords number rate, chords key,
chords scale, tuning frequency, tuning diatonic strength, tuning equal tempered deviation,
tuning nontempered energy ratio

Table 2.5: A list of all features included in Essentia’s ‘essentia streaming extractor music.exe’
(Based on the output �le)

A Random Forest consists of a large number of decision trees that form an ensemble. All de-
cision trees in the ensemble make a prediction based on the same feature vector, and the most
predicted, or mean output becomes the prediction of the ensemble.

Multilayer perceptron

�e multilayer perceptron (MLP) is a type of deep arti�cial neural network. Similar to all other
neural networks, it consists of at least 3 layers: the input layer, one or more hidden layers and
the output layer. Each node in the hidden and output layers are perceptrons. �e perceptrons use
non-linear activiations functions, allowing the model to make non-linear separations because at
least two layers of the model always consist of perceptrons. �ese non-linear separations de�ne
to which class the given sample belongs when it is a classi�er, and to which numerical value it
belongs when it is a regressor. MLPs are always feed-forward, unlike other neural networks. �is
means that the output of one layer only a�ects layers deeper in the model, not earlier layers or
itself.

Each node (perceptron) in the hidden and output layer are linear classi�ers that multiply their
input x , in our case the feature vector, by a set of weights w and add a bias b. �e result is passed
through a nonlinear activation function φ to produce a single output. �e function of a single
perceptron can be wri�en as follows:

y = φ(
n∑
i=1

wixi + b) (2.1)
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Figure 2.6: State Vector Classi�er hyperplanes depicted in four di�erent spaces using the Iris
Flower dataset. Each of the four visualizations shows the use of a di�erent kernel, which map
the data points and the hyperplanes used for class segmentations into a di�erent space. (Scikit-
learn, 2007)

Deep neural network

A network is deep when it consists of more than one hidden layer. �is means that the MLP
can also be considered a D-NN if it has more than one hidden layer. �e advantage of a ‘deep’
model is that each hidden layer transforms the input in a more abstract format usable by the next
layer, allowing the model to perform di�erent levels of abstraction. �is can be bene�cial when
learning the correct mapping from input to prediction. Our D-NN uses multiple hidden layers, but
no special learning techniques. �e MLP uses a single hidden layer, as otherwise it would be too
similar to the D-NN model.

Deep neural networks can take many forms. A model can be supervised, semi-supervised or
unsupervised and there exist many learning architectures. Most of these aspects are too complex to

Figure 2.7: A simple decision tree (Victor, 2019)
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cover here. We recommend reading the work by LeCun et al. (2015) for more in-depth information.

2.5.3 Blind-source separation
Spleeter was used as the blind-source separation component of the MiSME system. We used the
pre-trained 2-stem model, which does vocal-accompaniment separation. �e accompaniment is
all other musical sources except vocals. �is lends itself well to speech-music separation.

�is concludes the literature review and background on tools, techniques and methods used. In
the next chapter we will go over how the MiSME system, the mixed-audio dataset, the experiments
were designed.
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Methodology

We established the goal of this research in Section 1.4, which is to see if a ‘functioning’ MiSME
system can be developed, along with additional goals exploring the MiSME problem space. �is
chapter covers how the MiSME system, the mixed audio dataset and all experiments were created.

�e methodology chapter is divided in six sections. First we explain how the MiSME system
works conceptually (Section 3.1). �is is followed by the datasets used and created (Section 3.2)
and the experiments used to test and study the MiSME system (Section 3.3). �e �nal three sections
each cover the speech, music and blind-source separation parts of the MiSME system (Section 3.4,
3.5 and 3.6).

3.1 MiSME system design
We adress the MiSME system o�en as a single entity. However, as explained in Section 1.3, the
system has to be capable of both speech and music emotion recognition. �is means that it should
consist of at least two models, a separate speech emotion recognition model and music emotion
recognition model. �ese two models together allow the MiSME system to produce the required
output. Creating one computational model which can do both is another non-trivial challenge
be�er le� for future research.

We identi�ed two di�erent approaches of developing the models of the MiSME system. �e
�rst option is by training them the traditional way, where both the speech and music model have
a feature extraction component. �is component extracts suitable features from the audio signal,
which are passed to the model to predict the emotion present.

�e other approach is to train the models in an ‘end-to-end’ fashion. Instead of relying on
extracted features, the models are given the raw audio signal and must learn to do emotion recog-
nition from the audio signal rather than descriptive features. �e model is o�en adapted in such
a way that it is capable of transforming the audio in various ways akin to feature extraction, but
it must learn how to do this during training. �is end-to-end approach adds more complexity to
the learning task, because the model must learn how to obtain useful features from the raw audio
alongside learning the mapping from the features to emotions.

�e decision was made to create the models using the traditional approach with separate fea-
ture extraction. While end-to-end models showed potential in the SER �eld (Trigeorgis et al.,
2016), they still underperform compared to the traditional approach. It is not worth it in our opin-
ion considering the fact that the end-to-end approach increases the complexity even further on
top of the mixed audio problem, and is therefore be�er explored in future work.

�is brings us to the design of our MiSME system. �e system consists at least of four compo-
nents: a speech feature extractor, a speech emotion recognition model, a music feature extractor and
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Figure 3.1: �e �ow of the MiSME system without blind-source separation

a music emotion recognition model. With these four components the MiSME system can output
separate speech and music emotions for any given audio signal. However, a ��h component is
added when blind-source separation is included in the MiSME system. �is ��h component is of
course the blind-source separation component.

Blind-source separation is included in some version of our MiSME system because we believe
that it might be bene�cial for the speech and music models. As explained in Section 1.3 and 2.4,
blind-source separation tries to ‘unmix’ a mixed signal, producing isolated approximations of each
original audio source seen in the mixed signal. While they are not perfectly accurate, the speech
and music models might perform be�er on these isolated approximations of the speech and music
than the mixed audio. Extracted features are (likely) less in�uenced by the other audio source in
these blind-source separated signals, making the features be�er represent the audio source which
the model must process. �is decreases the complexity of the recognition task compared to no
blind-source separation. Blind-source separation might drastically reduce the degree to which
features are a�ected, and thus it is not far fetched to assume that blind-source separation can be a
bene�cial preprocessing step.

A visualization of the MiSME system with and without blind-source separation are depicted in
Figure 3.1 and Figure 3.2. In the MiSME system without blind-source separation the mixed audio
is passed to both the speech and music feature extractor. �ese each produce a feature vector,
one containing all speech features and the other containing all music features extracted from the
mixed audio. �ese vectors are then passed to their respective emotion recognition model as
input. From these feature vectors the emotion recognition models produce the �nal output, an
emotion prediction. When blind-source separation is included in the MiSME system, the same
happens except that the mixed audio is split into isolated speech and music audio by the blind-
source separation component. �ese isolated audio segment are then fed to their respective feature
extractor, instead of the mixed audio.
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Figure 3.2: �e �ow of the MiSME system with blind-source separation

3.2 Data
Suitable data is required to properly train the speech and music emotion recognition models. As
already mentioned in Section 1.3, no scienti�c mixed speech-music audio dataset with emotion
annotations could be found at the time of this research. �is meant that one had to be created.

Recording and annotating a MiSME dataset from scratch was deemed infeasible for the scope
of this master thesis research. �is meant that the next best scienti�cally valid option was to create
such a dataset by blending samples of existing speech and music emotion recognition datasets. A
coinciding advantage of this is that a contextual relationship between the speech and music is
avoided because the speech and music are not related, as they stem from separate datasets. A
dataset produced this way thus adheres to our decision to exclude the contextual relationship
between speech and music from this research, as explained in Section 1.4.

For the speech emotion samples RAVDESS (Livingstone and Russo, 2018) was used. It contains
1440 samples spanning eight di�erent categorical emotions, two di�erent emotion intensities and
twenty-four actors. It is a middle ground regarding complexity and di�culty considering all of
the SER datasets mentioned in Section 2.2.2. RAVDESS has a human recognition rate of 62.5%.
State-of-the-art models achieve accuracy scores between 64% to 75%1 (Bhavan et al., 2019; Zeng
et al., 2019). Overall it is a robust and suitable dataset, o�ering enough samples and complexity
for our experiments without compromising on human recognition rate.

1�ese results were achieved in a speaker-dependent experiment se�ing
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RAVDESS uses a total of eight categorical emotions: neutral, calm, happy, sad, angry, fearful,
disgust and surprise. �ese are Ekman’s primary emotions in addition to ‘neutral’ and ‘calm’. All
emotions except neutral are expressed at two di�erent intensities within the dataset. �e fact
that RAVDESS uses categorical emotions means that the speech recognition task becomes a 8-
way classi�cation task. �e speech emotion model has to predict the correct emotion from eight
possible emotions.

For the music samples two music emotion recognition datasets were combined. �ese are
Soundtrack and DEAM (Aljanaki et al., 2017; Eerola and Vuoskoski, 2011). �ey were combined
to make it more similarly sized to RAVDESS. �is means that our music dataset contains music
created for various purposes, as DEAM consists of music from various genres and Soundtrack of
movie soundtracks.

Combining them was possible because both datasets are not only annotated in the same di-
mensional valence-arousal space, but they also use the same value range. �is means that the
music emotion recognition task becomes a 2-value regression task. �e music emotion recogni-
tion model must predict the valence and arousal values as accurately as possible, rather than a
single categorical emotion label.

It is important to note that a trimmed version of the DEAM dataset was used. Many samples
of DEAM contained vocals or human speech, which is fairly normal in music. However, the pres-
ence of vocals increases the complexity of both the blind-source separation and speech emotion
recognition task. Mixed audio samples will be created by mixing a music sample with a speech
sample, which we will cover later. If the music sample contains vocals, there are now multiple
speakers present in the mixed audio sample. �e blind-source separation component and the SER
model now need to distinguish between which vocal-sounds are related to the speech and which
are related to the music. We acknowledge that this can occur in certain MiSME use cases, but this
increases the complexity signi�cantly. Exploring this non-trivial problem is be�er le� for future
research.

To avoid this problem all samples containing vocals in the DEAM dataset were manually �l-
tered out. We de�ne vocals as singing, speech and human vocals being used as beat-samples
(hip-hop). A�er �ltering out all samples containing vocals, 948 of the 1802 DEAM samples were
deemed suitable for use. Combined with Soundtrack the music dataset has a total of 1058 samples.

3.2.1 Mixed sample creation
Mixed samples can be created by mixing a speech sample from RAVDESS with a music sample
from either DEAM or Soundtrack, producing a new audio sample containing both speech and
music. �ere might exist use cases in which one sound-source is mixed in (perceptually) louder
than the other, or where there is a di�erence in spacial or temporal mixture per sound-source.
We simplify it to a scenario where the speech and music are mixed in equally as loud over both
channels without any spacial or temporal di�erence. �is means that both the speech and music
are perceptually hear-able and centered.

Loudness normalization

�e original samples from the three datasets can not be used for mixed sample creation as is. Gen-
erally speaking the speech recordings are much lower in volume than the average music sample,
but there is also strong variation in perceptual loudness di�erence between the speech and music
samples themselves. Mixing speech and music samples equally will not su�ce in this situation as
this would lead to samples with extreme deviation in speech-to-music loudness di�erence.

To allow for equal mixing, all speech and music samples are normalized before mixing using the
EBU R128 standard (EBU-Recommendation, 2011). EBU R128 is the normalization standard used
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(a) Speech before normalization (b) Speech a�er normalization

(c) Music before normalization

(d) Music a�er normalization

Figure 3.3: A visual example of R128 normalization

by many EU broadcasting companies and it uses perceived loudness rather than actual loudness
(decibel). Applying the normalization makes each speech and music sample about as equally loud
for the average human ear. �is means that R128 normalization makes equal mixing possible,
because each speech and music sample are now almost equally as loud and the loudness di�erence
between the original samples is largely gone.

However, perceived loudness is seen as a strong predictor for arousal according to Olsen et al.
(2015). A small experiment was done beforehand to test if R128 normalization indeed negatively
a�ected emotion recognition due to loss of perceived loudness di�erence. �e use of R128 audio
was justi�ed based on the results, which can be found in Section 4.2.1 and 4.3.1. �e normalization
did not lead to signi�cantly worse performance on both speech and music emotion recognition.
To be precise, we saw a negligible decrease in performance on the SER task and an increase in
performance on the MER task.

R128 normalization was done using FFMPEG-normalize2. It includes a ‘dual-mono’ mode
which compensates for the increase of 3 LUFS (Loudness Unit Full Scale) when a single track
mono �le is played stereo. All RAVDESS samples are mono, while DEAM and Soundtrack samples
are stereo. �is ‘dual-mono’ mode was thus necessary when normalizing the RAVDESS samples,
because they become dual-channel mono a�er mixing. Also, the samples from RAVDESS were
resampled from 48khz to 44.1khz using SoX3 to make them consistent with the sample rate of the
music samples.

Mixing speech and music samples

While the R128 normalization solves the ‘equal-mixing’ problem, there is another issue that needs
to be adressed, namely the di�erence in duration of speech and music samples. �e speech record-
ings of RAVDESS are generally between three and four seconds in duration. However, each record-
ing starts with a short moment of silence, followed by the u�erance and another short moment
of silence. �e actual speech is only between one to one-and-a-half second long. �e music sam-
ples from Soundtrack range between 11 and 27 seconds in duration, and the samples from DEAM
between 44 seconds and almost 9 minutes. �e average duration over all music samples is 45.9
seconds. �ere is thus a large di�erence between the average length of actual speech in a speech
sample and the average length of a music sample.

2h�ps://github.com/slhck/�mpeg-normalize
3h�p://sox.sourceforge.net/Docs/Documentation
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(a) Pad the speech to 4.5 seconds

(b) Calculate how many times the padded speech sample can be placed in the music sample (three successful
placements)

(c) Blend the speech placements in the music sample

Figure 3.4: A visual example of how mixed samples are created

Creating a mixed sample by just mixing the speech sample into the music sample leads to
mixed samples where only a small portion of the audio is a�ected by actual mixed audio presence.
Based on the average duration of a speech and music sample it would mean that less than 2.5% of
the audio is actually a�ected by mixed audio presence. �is is such a small portion that it likely
does not stress the MiSME recognition ability of the system enough. �e music model might be
able to work around that small portion of a�ected audio, treating most of the audio as just plain
music audio instead of mixed audio.

A higher portion of mixed audio presence thus required to su�ciently study the MiSME recog-
nition task. To increase this portion the speech samples are mixed in the music samples at centered
4.5 second intervals, a slightly bigger window than the longest speech sample. A visual example
can be found in Figure 3.4. We see that a speech sample is �rst padded to 4.5 seconds in length,
a�er which the number of �ts within the music sample are calculated. In the example three of the
four placements fully �t, meaning that the speech is mixed in the music sample three times. �e
number of speech placements can easily be calculated using the following formula that uses just
one modulo operation:

P = Dm mod 4.5 (3.1)

where:

P = Number of speech placements
Dm =�e duration of the music sample in seconds

�is increases the portion of audio a�ected by mixed-source audio signi�cantly. On average
the portion of audio a�ected by speech-music overlap in a mixed sample now becomes around
25%, instead of 2.5%.
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Figure 3.5: A visual example of how k-fold cross validation works (Wikipedia, the free encyclope-
dia, 2019)

�is solution a�ects both the speech and music emotion recognition tasks. For music emotion
recognition the entire mixed sample can be used, extracting features from the entire mixed sample
with an average speech-music overlap of 25%. For the speech emotion recognition task one of the
speech placement windows is used. Which one of the possible N placements is decided randomly
to avoid bias towards certain sections of songs. �is means that speech features are extracted from
one 4.5 second snippet of the mixed sample. �e speech emotion model then uses these extracted
features to predict the speech emotion.

All mixed samples were created using a python package called ‘pydub’. Both the speech and
music sample were mixed unaltered, so no change to their volume or mixture of the le� and right
audio channel. �e mixed sample were saved in a .wav format at 44.1khz.

Dataset creation

We are now able to produce usable mixed sample thanks to R128 normalization and the repeated
placement of the speech sample. In an optimal scenario the mixed-audio dataset would contain a
mixed sample of all possible speech-music combinations. �is would result in a total of 1,523,520
samples. Producing, storing and using more than one-and-a-half million mixed samples in the
experiments is unfeasible for the scope and available resources of this research. A mixed audio
dataset of a smaller size is thus required.

Mixing every speech sample once with a random music sample is not a suitable solution, it is
prone to randomness and could result in an unbalanced dataset. �erefore a solution was applied
that falls between the two extremes. Each speech sample is mixed with �ve random music samples,
producing �ve mixed samples per speech sample for a total of 7200 mixed samples.

But there is one issue which must be adressed to prevent data-leakage. Cross validation is
common practice when developing emotion recognition models. �e dataset is split up into sev-
eral folds, where the model is trained on all folds except one, which is used for testing the per-
formance. �is is repeated until every fold has been used for testing once, meaning that every
possible train-test combination has been covered. �e performance metrics over all of these iter-
ations are averaged to obtain a be�er estimate of the models performance compared to no cross
validation.

�e decision was made to tackle the speech emotion recognition task in the MiSME problem as
speaker-independent. �is means that the model is not allowed to see samples of an actor during
training and testing, all samples of an actor may only appear in one of the two sets. Otherwise the
SER model becomes speaker-dependent, because it can adapt to the speech pa�ern of that actor
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Figure 3.6: A visual example of how the datasets are divided in six folds

and achieve possibly be�er performance due to that advantage.
Speaker-independent cross validation can easily be achieved by placing all samples of an actor

in the same fold. We chose for 6-fold cross validation, meaning that each fold contains all samples
from four unique actors. However, mixed samples are created by mixing each speech sample �ve
times with a randomly chosen music sample. Speaker-independence is assured by keeping the
mixed samples in the same fold as the speech sample fold, so all mixed samples of an actor appear
in the same fold. To also avoid the same dependence problem for music, the music samples are
also divided into six folds. By creating mixed samples from speech and music of the same fold,
and placing them in the same fold in the mixed dataset, both speaker-independence and music-
independence is ensured because each actor and music sample only appears in the same fold over
all datasets.

A visual example of these solutions are depicted in Figure 3.6, along with Figure 3.7 showing
that only mixed samples are created from the same folds. In Section 4.1 the resulting dataset and
its distribution in the valence-arousal space are shown, showcasing its validity.

�e mixed audio dataset can now be created. However, we not only test on mixed audio in
this research, but also blind-source separated audio as stated earlier. �e blind-source separated
audio dataset is an exact copy of the mixed audio dataset, only with the correct isolated audio
segment produced by the BSS algorithm, which is covered in Section 3.6, instead of the mixed
sample. So each full-length mixed sample used for music emotion recognition becomes the isolated
music version of the full-length mixed sample, and the speech sample becomes the isolated speech
version of the predetermined 4.5 second segment of the mixed audio sample. �is 4.5 second
segment is one of the speech placements, as explained earlier.

To summarize how all of the data was created for this research, mixed audio samples are created
by mixing a speech and a music sample equally regarding loudness and mixture. To ensure that
both sources are perceptually hear-able R128 loudness normalization is applied beforehand. To
increase the speech-music overlap from 2.5% to about 25%, the speech is mixed in the music using
4.5 second intervals. �e music emotion recognition task is done on the entire mixed audio sample,
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Figure 3.7: A visualization of how the folds are sampled to create the mixed audio dataset - Note:
only speech and music samples from the same fold are used

while speech emotion recognition is done using one of the speech placements, picked randomly.
To ensure proper speaker and music-independence, the speech and music samples are divided
into six folds before mixing. Mixed samples can only be created from speech and music samples
of the same fold. As a middle ground, each speech sample is mixed with �ve di�erent music
samples, resulting in a total of 7200 unique mixed audio samples. A blind-source separated copy is
made of this mixed audio dataset, where the samples are replaced by the isolated speech or music
approximations produced by the blind-source separation algorithm.

3.3 Experiment setup
As identi�ed in the previous section, the MiSME system consists of two emotion recognition sys-
tems, a speech emotion recognition system and music emotion recognition system. �ey each have
a feature extractor and emotion recognition model. �ese must be tested and evaluated separately.
Common practices from both �elds of study can be used to do this, albeit with some adaptation to
the MiSME problem space.

�e common practice we use is k-fold cross validation, where one part of the dataset is used
for testing and the rest for training. �is is repeated until every part has been the testing set once.
�e performance of all iterations is then averaged to obtain the actual performance of the model.
See Figure 3.5 for a visual example of cross validation.

As explained in the previous section, we have three version of the speech and music datasets:
a clean single-source version, a mixed-audio version and a blind-source separated version. �ey are
all divided in the same six folds, containing the same samples. Various scenarios can be created by
using di�erent audio copies of each fold for training and testing. For example, a cross-validation
experiment where the training is on speech-only audio, but the testing is on mixed audio. With
this method the MiSME recognition capabilities of the MiSME system are tested.

�ere are a total of six experiments that test the capabilities of the MiSME system, allowing us
to answer the main research question. �e speech and music variations of these six experiments
are strongly similar but there exist some minor di�erences, which are covered in their separate
subsections. Table 3.1 shows all six experiments for both the speech and music models of the
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Experiment Trained on Tested on

A. Speech-only Speech-only
B. Speech-only Mixed
C. Speech-only BSS-speech
D. Mixed Mixed
E. Mixed BSS-speech
F. BSS-speech BSS-speech

(a) Speech experiments

Experiment Trained on Tested on

A. Music-only Music-only
B. Music-only Mixed
C. Music-only BSS-music
D. Mixed Mixed
E. Mixed BSS-music
F. BSS-music BSS-music

(b) Music experiments

Table 3.1: �e audio types on which the models are trained and tested in the six main experiments

MiSME system. �ey are all possible combinations of training and testing on either single-source,
mixed or blind-source separated audio. We use the terms ‘BSS-speech’ and ‘BSS-music’ to ref-
erence which of the two outputs of the blind-source separation algorithm are used. ‘BSS-music’
is the output labeled as ‘accompaniment’ by Spleeter, and ‘BSS-speech’ is the output labeled as
‘vocals’.

Experiment A serves as a baseline scenario by training and testing the models on single-
source audio. �e performance in this scenario could be seen ‘optimal’ because it is speech or
music emotion recognition on a dataset that is not a�ected by mixed audio.

Experiment B and experiment C test the single-source trained models on either mixed or
BSS-audio. �is gives an indication how mixed-audio a�ects both speech and music emotion
recognition. How well does a speech-only/music-only trained model translate to MiSME recogni-
tion? Does mixed-audio cause a degradation in performance and if so, how much?

In experiment D and experiment F the models are trained and tested on either mixed au-
dio or blind-source separated audio. �ese experiments test how well MiSME-specialized models
perform. �e performance di�erence between these experiments and the three earlier experi-
ments allow us to put the performance of a MiSME system in perspective to a non-specialized
system. A logical assumption would be that these specialized models (D and F) outperform the
non-specialized models (B and C) because they can adapt to the MiSME problem during learning.
�e performance di�erence between experiment D and F also shows if blind-source separation is
bene�cial for MiSME recognition.

Experiment E was included to cover all possible train-test combination. Training on mixed
audio but testing on BSS-audio seems counterintuitive, but it might produce interesting results.

Speech experiments

�ere are some di�erences between the speech and music experiments. As mentioned in the Sec-
tion 3.2, the speech emotion recognition task is an 8-way classi�cation. �is is because RAVDESS
uses a total of 8 categorical emotions.

Measuring performance is fairly simple for classi�cation. A model can either produce the
correct label, or not. �is means that accuracy, the percentage of correctly produced labels, be-
comes the main performance metric for the speech experiments. A higher accuracy means a be�er
model generally speaking. However, the accuracy per emotion might be very di�erent. �erefore
the precision and recall per emotion are also reported.

Music experiments

�e music emotion recognition task however is a 2-value regression task. Both DEAM and Sound-
track annotate the emotion using a valence and arousal value. Measuring performance of a re-
gression task is harder as it is not a binary problem. Two models might produce di�erent arousal
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values than the actual arousal value, but one might be closer to the correct value than the other.
�erefore the di�erence between the models output and the actual value are o�en used, this is
called the error.

Common practice is to use the root mean squared error (RMSE), which we also use. �e RMSE
is the main performance metric for the music emotion recognition task, as it directly measures how
far o� the model is on average compared to the actual values. A lower RMSE generally means a
be�er model.

In addition to the RMSE metric, the R2 score and 2-tailed Pearson correlation (PCC) test are
also included. �is is because the RMSE is a more complex metric to understand than accuracy.
�ese extra metrics provide additional insight. �e RMSE, R2 and PCC are reported separately for
valence and arousal.

Additional experiments

While not a separate experiment by itself, feature importance is also calculated during all experi-
ments listed in Table 3.1 using permutation importance. Permutation importance outputs impor-
tance values for all speech or music features used. �ese values describe the impact of the features
on the predictions. �e importance thus describes how much the model relies on each feature. �is
is separate from the model’s actual performance. Permutation importance on a poorly performing
model describes how the bad performing model relies on its features to achieve that performance,
nothing else.

However, these feature importances can be used to study how two models di�er, possibly
explaining their performance di�erence. To be more speci�c to our use case, they give insight
into how the models di�er between experiment scenarios. Which features are important and
unimportant for certain audio types compared to others? �ese kinds of insights can be obtained
through the feature importance analysis.

To keep the scope limited without compromising too much, the feature importance analysis
is limited to experiment A, D and F. �ese are the three experiment where the models are trained
and tested on the same audio type. �is analysis will be covered in the Discussion chapter rather
than the Results chapter, as it is strongly speculative in nature.

An extra experiment is also included. Using the obtained feature importances, a feature im-
portance ranking can be made by ordering all features based on their importance value. Some
experiments are rerun using only limited amounts of the most important features, instead of the
entire feature set. �ese experiments give us insight into how much of the feature set is essential
for decent performance, and what levels of performance could be achieved with minimal feature
sets in a MiSME recognition task. �is could be useful in cases where computing power is limited
and only a few features can be used.

So to summarize, the speech and music models of the MiSME system are tested using six
nearly identical experiments where various audio types are used for training and testing. �ese
allow us to establish to what degree mixed audio a�ects speech and music emotion recognition,
and how well a MiSME specialized system can perform compared to generic speech and music
emotion recognition models. We also test the di�erence between non-BSS and BSS-audio. Speech
emotion recognition performance is measured using accuracy, while music emotion recognition is
measured using the root mean squared error. Finally, feature importance is calculated on all main
experiments using permutation importance. �is allows us to compare various models, showing
which features might be (un)important for certain audio types. �is can be used to explain possible
performance di�erences. �e feature importances are also used to rerun the models with only
limited sets of the most important features, showcasing how well they can perform with highly
limited feature sets.
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3.4 Speech emotion recognition pipeline
As explained earlier, the speech emotion recognition part of the MiSME system consists of a feature
extractor and a speech emotion recognition model. �is section describes both components.

3.4.1 Speech feature extractor
It is common practice to use a set of handpicked speech features for any SER task, o�en supported
by either acknowledged studies or good reasoning. However, it is not known how well existing
SER feature knowledge translates to mixed audio. �is makes using a large feature set that contains
many common SER features advantageous over handpicking a smaller feature set. A larger feature
set more likely contains suitable (e�ective) MiSME features, and it also produces more valuable
feature importance results, which we use to study how features perform di�erently on mixed audio
than on speech-only audio.

A handful of audio feature extraction toolkits exist (see Table 2.3). We used openSMILE (Eyben
et al., 2013). OpenSMILE is a feature extraction toolkit focused on speech. It can be run using
various ‘con�gurations’, resulting in di�erent feature sets. We used openSMILE’s ‘emobase2010’
con�guration, which contains a total of 1582 speech features. See Section 2.5.1 for a more de-
tailed description of the features included in this con�guration. All features are global (duration-
independent), and are suitable for any kind of SER problem according to the manual.

3.4.2 Speech emotion recognition model
�e speech emotion recognition task in our experiments is a 8-way classi�cation task as dictated
by RAVDESS’s annotations. �e output is always one of the eight possible emotion labels: neutral,
calm, happy, sad, angry, fearful, disgust and surprise. For this kind of emotion recognition task
a classi�er is needed. To keep the scope manageable and the results generalizable the decision
was made to implement four simple but di�erent classi�cation models. �e four models are: a
Multilayer Perceptron Classi�er (MLPC), Random Forest Classi�er (RFC), Support Vector Classi�er
(SVC) and a Deep Neural Network (D-NN).

�e �rst three models were built using ‘scikit-learn’, a popular python-based machine learning
library. �e D-NN was built using ‘Keras’, a popular deep learning library also in Python. A
background on each model can be found in Section 2.5.2.

All four models will be tested on the speech-only audio emotion recognition task to see which
models are �t for use (Experiment A in Table 3.1). One or two models will be selected based on
their performance, which will then be used for all of the other experiments listed in Table 3.1.

While already brie�y mentioned, we want to stress that we treat the speech emotion recog-
nition task in this research as speaker-independent. �is means that the model is not allowed to
see samples of an actor during training and testing. �is would allow the model to obtain bet-
ter performance because it is familiar with that actor’s voice. Published models that reported
performance on RAVDESS treated their experiments as speaker-dependent (Bhavan et al., 2019;
Zeng et al., 2019) . �e model-selection experiment will also include separately reported speaker-
dependent performance on RAVDESS, making it possible to compare our four simple models to
these publications.

3.5 Music emotion recognition pipeline
�e music emotion recognition pipeline consists of the music feature extractor and the music
emotion recognition model. �is section describes both.
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3.5.1 Music feature extractor
A large music feature set was preferred for the same reason as mentioned in Section 3.4.1, a
large feature set increases the chances of �nding suitable MiSME features and produces more
valuable feature importance results. For this reason Essentia (Bogdanov et al., 2013) was fa-
vored over openSMILE and the other toolkits (see Table 2.3), using the precompiled ‘essen-
tia streaming extractor music’ executable. We le� out all non-global (duration-dependent) fea-
tures, resulting in a feature set consisting of 2651 features in total. Many common MER features
are contained in this large feature set, see Table 2.5.

3.5.2 Music emotion recognition model
�e music emotion recognition task in our experiments is a two-value regression task. �e model
must predict the level of valence and arousal within a range of 1 to 9, as dictated by the emotion
annotations of DEAM and Soundtrack. �e same four types of models are used for the music
emotion recognition experiments, but now in regressor form. �ese are: a Multilayer Perceptron
Regressor (MLPR), Random Forest Regressor (RFR), State Vector Regressor (SVR) and Deep Neural
Network (D-NN). For a background on these models see Section 2.5.2, but keep in mind that the
regressors output numerical values instead of categorical labels.

�e music emotion recognition capabilities of all four models are tested on music-only audio
(see experiment A in Table 3.1), similar to the speech models. One or two models will be selected
based on their performance, these models will then be used for all of the other experiments listed
in Table 3.1.

Unfortunately we can not compare the performance of our models to any published models.
�e issue is not that we use a custom dataset (DEAM + Soundtrack), but rather that neither of
the two datasets has seen published results to which our models can be compared to. While there
exists various published models on DEAM, see Aljanaki et al. (2017), they all use the continuous
annotations instead of the static annotations used in this experiment. Continuous valence-arousal
predictions is a di�erent problem and thus those reported metrics are not comparable to our static
prediction metrics.

�ere is one more thing which needs to be adressed. �ere are two values which need to
be predicted per sample, the valence and the arousal. Not all models are able to output multiple
dependent values (valence and arousal) from the same set of independent variables (feature vector).
Only the MLPR and D-NN are able to do this. To compensate for this both the RFR and SVR will
have a separate valence and arousal model. �ey are trained identically, using the same parameters
and inputs. Only the ground truth values are di�erent.

3.6 Blind-source separation component
�e blind-source separation component is used to produce a blind-source separated copy of the
mixed-audio dataset. From all available tools mentioned in Section 2.4 Deezer’s Spleeter tool was
used (Hennequin et al., 2019). �e authors claim that it was the best performing BSS tool at the
time of publication, as it performed be�er than Open-Unmix, the top performing BSS tool before
Spleeter.

Spleeter is originally designed for music stem separation. �e tool o�ers various pre-trained
models for various stem combinations (piano, drums etc.). One of these pre-trained models is the
2-stem separator. It is trained for vocal-accompaniment separation. �e accompaniment is all
other musical sources except vocals.
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Test validity of R128 
normalization*

Create candidate MER 
models

Create candidate SER 
models

* = tested using features extracted from single-source version of the original RAVDESS / DEAM 
dataset

Phase 1: Preparation

Extract speech features 
using openSMILE

Extract music features 
using Essentia

Phase 2: Data creation

Create mixed audio 
dataset

Create BSS’ed copy 
using Spleeter

Create single-source 
copy

Phase 3: Main experiments

Test candidate SER 
models

Test candidate 
MER models

Select most 
suitable models

Main SER experiments 
(Fig. 3.1.A)

Main MER experiments 
(Fig. 3.1.B)

Performance 
results

Calculate permutation 
importance

Phase 4: Feature importance 
experiments

Rerun main MER 
experiments with 
[top n] features

Rerun main MER 
experiments with 
[top n] features

Feature importance results

Figure 3.8: An overview of all experiments and other actions that are part of this research, all
discussed in this chapter. It is divided into four phases, which read from top-le� to top-right,
bo�om-right and �nally bo�om-le�.

While speech is not exactly the same as singing, we expected that the model would be able to
do speech-accompaniment separation because speech is strongly similar to singing. Also, because
our music dataset is purely instrumental the music sample can be seen as accompaniment as they
do not contain vocals.

�e quality of the two-stem model was evaluated using various handpicked samples from our
own dataset. For most samples the isolated audio appeared to be nearly identical to the origi-
nal, based on perceptual evaluation. However, the isolated audio sounded like it was of lower
quality, and in some samples instruments leaked into the isolated speech. �ese instruments al-
ways sounded similar to speech, for example a violin. We still deemed Spleeter to be �t for use
regardless.

3.7 Summary
We have now covered all aspects of the research design and creation of the MiSME system. An
overview of how all experiments and other elements are related is depicted in Figure 3.8. �is
diagram helps with understanding the relationship between and ‘�ow’ of all experiments, of which
the results will be discussed in the next chapter.

To summarize this chapter: �e MiSME system consists of a separate SER and MER pipeline,
with both a feature extraction component and an emotion recognition model. Using prede�ned
feature extraction was favored over the ‘end-to-end’ learning approach due to uncertainties. Op-
tionally, a blind-source separation component is included in some versions of the MiSME system.

RAVDESS was selected as our speech dataset, and DEAM and Soundtrack are combined to
create our music dataset. All music samples with vocals were �ltered out, as they will likely
increase the complexity of the blind-source separation and speech emotion recognition tasks.

To properly create mixed samples all samples (RAVDESS, DEAM and Soundtrack) were nor-
malized using the R128 normalization standard. A mixed sample is created by mixing the speech
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sample repeatedly in the music sample at 4.5 second intervals. �is increases the speech-music
overlap from 2.5% to 25% on average. �e speech and music datasets are divided into six folds.
Mixed samples are created from speech and music samples of the same fold, ensuring that an ac-
tor or music piece is only seen during training or testing. Each speech sample is mixed with �ve
randomly chosen music samples, producing �ve mixed samples per speech sample. �is results in
a mixed audio dataset of 7200 unique samples.

Both the speech and music emotion recognition models are tested using six di�erent experi-
ments. �ese are all possible combinations of training and testing on one of the three available
audio types: single-source, mixed or blind-source separated audio. Comparing the performance
between these experiments should provide enough information to answer the main research ques-
tion. In addition a feature analysis is performed on the three experiments where the same audio
type is used for training and testing. �is is done using permutation importance and should pro-
vide valuable insight into which features are �t for MiSME recognition and how the models di�er
between experiments.

Four types of models are created for both the speech and music emotion recognition task.
�ese are a State Vector Machine (SVM), Random Forest (RF), Multilayer Perceptron (MLP) and
Deep Neural-Network (D-NN). Each model takes the form of a classi�er in the speech emotion
recognition task, and the form of a two-value regressor in the music emotion recognition task. �e
performance of these models are tested early on on the single-source emotion recognition task to
test their suitability. One or two models will be selected to be used for all other experiments to
avoid a bloated results section and an increasing scope.

Speech feature extraction is done using openSMILE with the ‘emobase2010’ con�guration. It
produces a total of 1582 speech features and contains a large number of common SER features. For
music feature extraction Essentia was used, using their precompiled feature extractor. It produces a
total of 2651 music features per sample and also contains a large amount of common MER features.

For blind-source separation Deezer’s Spleeter was used. At the time of the research it was
the best performing BSS tool. �e pretrained 2-stem model, which is originally trained for vocal-
accompaniment separation, lends itself well to speech-music separation.

�is concludes the Methodology chapter. �e next chapter covers the results from all experi-
ments, along with descriptive statistics of the datasets created in this research.
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Results

�is chapter is split into three sections: Section 4.1 covers the creation of the mixed audio dataset,
Section 4.2 covers the results of the speech emotion recognition experiments and Section 4.3 covers
the results of music emotion recognition experiments. �e analysis of the feature importances
obtained through permutation importance are not included in this chapter, they can be found in
Section 5.1.1 and 5.2.1.

4.1 Created datasets
RAVDESS, DEAM and Soundtrack were used to create the mixed audio datasets. Remember that
the music emotion recognition task is on the entire mixed audio sample, while the speech emotion
recognition task is done on one of the 4.5 second speech placements. In total three versions of
the speech and music datasets were created: a single-source, mixed and blind-source separated
version. While the single-source version is the original audio from RAVDESS/DEAM/Soundtrack,
the other two were created using mixing and blind-source separation as explained in Section 3.2.
�is section describes the created dataset, to show that they were �t for use, as many actions were
taken to create these datasets, such as dataset merging, random mixing between folds and R128
normalization.

Let us start with the combining of DEAM (Aljanaki et al., 2017) and Soundtrack (Eerola and
Vuoskoski, 2011). While they use the same range for their valence and arousal annotations, the
distribution of samples within that space is noticeably di�erent between datasets, as can be seen
in Figure 4.1. �is can be a�ributed to how the samples were gathered. Soundtrack consists of
a set of music samples selected by experts, where each sample should represent an extrema of
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Figure 4.1: Distribution of the music samples contained in DEAM and Soundtrack
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Figure 4.2: Distribution of music samples per split (blue = DEAM, red = Soundtrack)

certain categorical or dimensional emotions. For example high arousal or ‘sadness’. �is causes
Soundtrack samples to occupy speci�c areas in the valence-arousal space, as those represent those
extremes. DEAM on the other hand consist of music from various genres, not picked by experts
on their possible emotion representation but based on their popularity (number of plays) on Free
Music Archive. �is means that the distribution of samples in DEAM be�er represent an ‘average’
set of music pieces than Soundtrack.

Figure 4.1 shows that DEAM does not cover the ‘high-valence low-arousal’ and ‘low-valence
high-arousal’ corners well, if at all, while Soundtrack does. We speculate that this is because music
pieces with extreme opposite valence and arousal might clash with average music taste, making
them less popular, or that creating such pieces is hard to do. Whatever the cause might be, we can
see that they are not common. While the samples in Soundtrack might be less generalizable due
to the selection bias, it is only one-ninth of the size of DEAM. Combining both allows for be�er
coverage of the total valence-arousal space, while not skewing the distribution too far from what
the average music piece looks like due to dataset size di�erence.

Another thing that should be discussed is the creation of the folds. All datasets, including
their audio variations, are split into six folds that preserve speaker-independence and music-
independence during cross validation. During the initial split four actors were randomly assigned
to each fold, this randomization was seeded. �is means that the split can always be reproduced
using the same seed. Because all actors have the same number of samples, emotions, u�erances
etc. a visualization was deemed unnecessary. All folds had at least one female and male actor, so
we deemed the splits suitable as there was no severe gender-imbalance among the folds.

Regarding the spli�ing of music samples, they were assigned to each fold by randomly shu�ing
the order of samples and spli�ing them in six equal sized partitions. Because there are a total of
1057 music samples and six folds, fold 1 has 177 samples and the others 176 samples. �is shu�ing
was seeded. Figure 4.2 depicts the valence-arousal space coverage of each set. We spo�ed no
distressing di�erence between folds and deemed them �t for use.

Finally, the selection of mixing combinations of speech and music samples during the creation
of the mixed dataset was also done randomly, but seeded. When selecting the �ve music samples,
already selected music samples were taken out of the pool of candidate samples to prevent dupli-
cate mixed samples from occurring. A histogram depicting the frequency distribution of music
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Figure 4.3: Frequency distribution of music samples appearing in the mixed and blind-source sep-
arated datasets (blue = DEAM, red = Soundtrack)

samples occurring in the mixed samples is depicted in Figure 4.3. On average a music sample oc-
curs in 6.8 mixed samples. It is interesting to note that all music samples occurred at least once in
the mixed dataset, so no samples are lost due to random selection.

Overall we see no (severe) �aws in the created datasets that would make them un�t for use.
�e combining of DEAM and Soundtrack allows for be�er valence-arousal space coverage, while
keeping the distribution generalizable. �e creation of the six folds showed no imbalance and
during mixing all music samples occurred in at least one mixed sample, so none are lost. We
therefore deemed the datasets �t for use.

4.2 Speech emotion recognition experiments
All of the speech emotion recognition experiments can be divided into four groups: the R128
normalization test, candidate model selection, the main research question experiments (see Table
3.1) and the most important features experiments. �e results of each group of experiments is
reported in separate subsections.

For all experiments feature values were standardized to have zero-mean and unit variance be-
fore training. �is was done using the ‘StandardScaler’ function of Sklearn. Ground-truth labels
are a single integer, ranging between 1 and 8 representing an emotion label in the following or-
der: neutral, calm, happy, sad, angry, fearful, disgust and surprise. �e models were trained in a
speaker-independent se�ing using 6-fold cross validation during all experiments unless explicitly
stated otherwise.

4.2.1 Validity of R128 normalization
At an early stage a small scale experiment was performed to see if R128 normalization was valid
to use. As a refresher, R128 normalization would allow for mixed sample creation with equal
loudness. Without it there would be strong variation in perceivable loudness of the music and
speech sample, which we deemed problematic.

A state vector classi�er (SVC) using the default Sklearn se�ings was trained and tested on
both a normalized and a non-normalized version of RAVDESS, this is speech-only audio. �e ac-
curacy of the model dropped from 61% to 60.3% when applying R128 normalization on the 8-way
classi�cation task. While this is a decrease, we deem it not severe enough to make R128 normal-
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Model AccuracySD AccuracySI
D-NN 77.4% 61%
MLPC 76.5% 60.3%
Bagged ensemble SVM (Bhavan et al., 2019) 75.6% -
SVC 74.8% 57.4%
RFC 67.2% 55.1%
D-NN (Zeng et al., 2019) 65.5% -
Dummystrat 13.5% 13%
Dummymf 9.2% 13.3%

Table 4.1: �e speaker-dependent and -independent performance of all our candidate models and
other published models on RAVDESS

ization unsuitable for use within our research. �e statements by Olsen et al. (2015) suggested a
more severe loss of performance, as they state that perceptual loudness is a ‘strong predictor’ of
arousal.

4.2.2 Candidate model selection
As mentioned in Section 3.4.2, four candidate SER models were created: a State Vector Classi�er
(SVC), Multilayer Perceptron Classi�er (MLPC), Random Forest Classi�er (RFC) and Deep Neural
Network (D-NN). �eir implementations are discussed below.

SVC �e SVC used all default se�ings de�ned in Sklearn, so a radial basis function (RBF) kernel,
a regularization parameter of 1 and a kernel coe�cient of 1/(n f eatures ∗ X .var ).

RFC �e number of estimators (decision trees) of the RFC was set to 1000. We limited the max-
imum number of features to be considered per split to

√
N f eatures . �is is considered superior to

other options when training for classi�cation, but since it is the most aggressively trimming option
the number of estimators was increased from the default 100 to 1000 to compensate this aggressive
trimming.

MLPC �e MLPC consisted of one hidden layer with 512 perceptrons with a ‘logistic’ activation
function. �is is generally speaking the best activation function for classi�cation tasks. Only
one hidden layer was used because it would otherwise be too similar to the D-NN model. Early
stopping was turned on for the MLPC, with a maximum number of 5000 iterations (epochs), a
batch size of 256 and an adaptive learning rate.

D-NN �e D-NN consists of three hidden layers of 512 neurons each, with a dropout-rate of 0.5.
�e hidden layer neurons were set to use ‘ReLu’ activation, the output layer to ‘so�max’. Hidden
layer neuron bias was initialized as 0.01. �e number of epochs was set to 25 to avoid over��ing
on the test set, using the categorical cross-entropy loss and the ‘adam’ optimizer. An a�empt was
made to implement dynamic early-stopping but it did not function consistently and was therefore
dropped in favor of a static epoch parameter.

Each model was tested in both speaker-dependent and independent se�ing on the RAVDESS
dataset to get an idea of their speech emotion recognition abilities. �is is speech-only audio.
�e results are depicted in Table 4.1. In addition to the four candidate classi�ers two dummy
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models were added. �e performance of these dummy models are similar to chance-level and
serve as a baseline performance which we can compare our candidate models to. Dummymf always
outputs the most frequently occurring class, while Dummystrat picks a class randomly based on
the probability distribution over the entire training set.

Let us start with speaker-dependent performance, which is not the preferred se�ing, where we
can compare the candidate models to published models. All of our candidate models outperform
the model created by Bhavan et al. (2019) (65.5%), as seen in Table 4.1. �e MLPC (76.5%) and
D-NN (77.4%) also outperform the model by Zeng et al. (2019) (75.6%), while the SVC model comes
close (74.8%). �e RFC performs noticeably worse than the other three candidate models (67.2%).
Nevertheless, this shows that all four models are capable of speech emotion recognition close to,
or be�er than, ‘state-of-the-art’ models on RAVDESS.

When moving to the preferred speaker-independent se�ings we see a drop in accuracy for all
models, ranging between 12% to 17%. �is was expected as the models can not bene�t anymore
from samples of actors appearing in both the training and testing set. �is shows that speaker-
independent emotion recognition is a harder task than speaker-dependent emotion recognition on
RAVDESS. However, all models still perform far above chance level. Accuracy scores of 55% to 61%
on a 8-way classi�cation task is still impressive, especially considering that the human recognition
rate on RAVDESS is 62.5%(Livingstone and Russo, 2018). All candidate models thus seem suitable
for speaker-independent speech emotion recognition on RAVDESS.

�e decision was made to continue with the D-NN and RFC, using these two models for all
other speech experiments. �e D-NN was picked because it is the top performer on both the
speaker-dependent and independent experiment. Using the top performer could be advanta-
geous when MiSME recognition is not that di�erent from normal speech emotion recognition.
�e RFC was chosen because it is the only candidate model that can compute feature importance
through permutation importance, which is highly favored over regular feature importance inspec-
tion methods1. While it is the worst performer of all four, its architecture and learning-approach
is drastically di�erent from the D-NN, which could be advantageous.

4.2.3 Main experiments
Both the D-NN and RFC model were tested in six di�erent experiments (see Table 3.1). As a re-
fresher, the six experiments are all possible combinations of training and testing on either speech-
only, mixed or blind-source separated audio. �ese cover a wide range of scenarios. �e results
from these experiments are depicted in Table 4.2, Table 4.3a and Table 4.3b. �e �rst table shows
the accuracy of both models on all six experiments, while the other two depict the precision and
recall for the four most important experiments. Also, when we speak of ‘blind-source separated
audio’ in these experiments, we mean the produced speech output, not the accompaniment.

Experiment A In experiment A the models were trained and tested on speech-only audio, the
optimal speech emotion recognition scenario. �e performance achieved serve as the baseline
performance, showing what the models can achieve when there is no mixed-audio interference,
which was an accuracy of 55.1% (RFR) and 61% (D-NN).

Experiment B and C In experiment B the models were tested on mixed audio instead. �is
discrepancy between training the models on speech-only audio but tasking them to classify mixed
audio resulted in such a strong decrease in accuracy that both models perform only slightly be�er
than the dummy model (13%). �e accuracy of the RFC dropped from 55.1% to 14.8%, and the
D-NN from 61% to 14%. �e same happens in experiment C, where the models were tested on

1h�ps://scikit-learn.org/stable/modules/permutation importance.html
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Training Testing RFC D-NN Dummy-Strat

A Original Original 55.1% 61% 13%
B Original Mixed 14.8% 14% 13%
C Original BSS-speech 15.6% 17.1% 12.8%
D Mixed Mixed 30.1% 29% 12.8%
E Mixed BSS-speech 27.3% 21.4% 13.4
F BSS-speech BSS-speech 41.4% 43.1% 13.1%

Table 4.2: Accuracy scores of the RFC, D-NN and Dummy models on all six speech experiments

blind-source separated audio (15.6% and 17.1% respectively). �e performance thus appears to
drop to near chance-level when tasking a speech-only trained (non-specialized) model to classify
audio with speech-music overlap.

Experiment D In experiment D the models were trained and tested on mixed audio, so without
blind-source separation. Both models perform signi�cantly be�er compared to experiment B and
C, with the accuracy of both models more than doubling (30.1% and 29% respectively). However,
there is still a large accuracy di�erence compared to Experiment A (55.1% and 61%).

Experiment E Experiment E is included to cover all possible train-test combinations. �is only
shows that a mixed-audio trained model performs worse on blind-source separated audio than
non blind-source separated audio.

Experiment F In the �nal experiment, experiment F, the models were trained and tested on
blind-source separated audio. We see another jump in performance (41.4% and 43.1% respectively).
�ey now signi�cantly outperform their counterparts of experiment D (30.1% and 29%), with the
only di�erence being that blind-source separation was included. Not only is the best performance
on any form of mixed audio (experiment B to F) achieved using blind-source separation, the jump
in performance is very signi�cant as it increases the accuracy by 13.3% and 14.1% respectively.

However, there are a few interesting things to note regarding precision and recall (See Tables
4.3a and 4.3b). Recognizing the ‘neutral’ emotion appears to be challenging for the RFC on any
form of mixed audio, as the recall remains close to zero. While lower precision and recall make
sense due to accuracy di�erences between audio types, the precision and recall for the ‘Sad’ emo-
tion also stand out. �e precision and recall for ‘Sad’ see a stronger decrease compared to the
others. It thus appears that ‘Neutral’ and ‘Sad’ are harder to recognize for the RFC on mixed au-
dio. We also see that ‘Neutral’, ‘Happy’ and ‘Surprised’ score a zero on both precision and recall
on Experiment B. �is means a speech-only trained RFC is completely unable to identify those
emotions when classifying mixed audio.

Regarding the D-NN we see that it does not struggle as much with ‘Neutral’ and ‘Sad’ samples
as the RFR, as the precision and recall decrease more in-line with the di�erences in accuracy
on all experiments. Overall its performance is much more evenly distributed over all emotions,
suggesting that it is be�er capable at identifying all emotions.

To conclude, the best performance on both models was achieved with blind-source separation.
It resulted in signi�cantly higher performance than without blind-source separation, bringing it
closer to single-source classi�cation levels of performance than chance-level. However, there re-
mains a performance gap of around 14% to 18% compared to single-source classi�cation.
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Emotion S - S S - M M - M B - B

RFC
Neutral .376 .0 .25 .286
Calm .542 .153 .334 .444
Happy .493 .0 .257 .404
Sad .36 .131 .147 .249
Angry .644 .286 .373 .502
Fearful .656 .167 .233 .443
Disgust .52 .185 .301 .361
Surprised .66 .0 .289 .44

D-NN
Neutral .575 .2 .201 .237
Calm .632 .139 .399 .521
Happy .656 .154 .247 .365
Sad .436 .128 .194 .296
Angry .646 .163 .455 .571
Fearful .614 .131 .25 .354
Disgust .652 .176 .29 .447
Surprised .686 .15 .243 .554

(a) Precision

Emotion S - S S - M M - M B - B

RFC
Neutral .333 .0 .002 .05
Calm .812 .644 .654 .705
Happy .385 .0 .21 .257
Sad .26 .358 .09 .18
Angry .698 .008 .656 .549
Fearful .516 .039 .174 .354
Disgust .552 .057 .201 .43
Surprised .74 .0 .269 .606

D-NN
Neutral .521 .002 .069 .225
Calm .688 .892 .417 .579
Happy .438 .01 .239 .357
Sad .5 .049 .299 .277
Angry .771 .008 .453 .546
Fearful .604 .034 .149 .384
Disgust .625 .051 .325 .441
Surprised .693 .006 .258 .538

(b) Recall

Table 4.3: Precision and recall scores on the four most important train-test combinations. S =
Speech-only, M = Mixed, B = Blind-source separated speech

4.2.4 Most important features experiments
Feature importance was calculated for all of the above discussed RFC experiments using Sklearn’s
permutation importance. �e number of repeats was set to �ve. �e importance of a feature is
calculated by taking the mean over all six folds. �ere are in total 1582 features. �e resulting
feature importance values are covered in Section 5.1.1.

�e obtained feature importances were used to create a feature ranking, ordering the features
based on their importance from high to low. As explained in Section 3.3, an additional experiment
was done to see how well the models can perform with only limited sets of the most important
features. We limited this to the se�ing of experiment F, where the model is trained and tested
on blind-source separated audio as this lead to the best performance on any form of mixed audio
recognition.

�e number of most important features to be used were set at 20, 50, 100, 250 and 500 respec-
tively. �e accuracy scores of both models can be found in Table 4.4.

�e performance achieved using only the 20 most important features is impressive (38.8% and
37% respectively). �e accuracy di�erence between using all features and the twenty most im-

RFC D-NN

All features 41.4% 43.1%
Top 20 38.8% 37%
Top 50 42.6% 38.7%
Top 100 43.1% 41.8%
Top 250 43.6% 43.7%
Top 500 43.3% 43.4%

Table 4.4: Accuracy scores for various sets of top ranking features on blind-source separated audio
(Speech)
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portant is only 2.5% to 6%. What is even more interesting, is that the RFC outperforms its ‘all
features’ counterpart when using only the 50 most important features. �e D-NN is able to do
the same with the 250 most important features, at which point both models also achieve optimal
performance (43.6% and 43.7% respectively). �e performance for the D-NN in this case is only
slightly higher than using all features, but the RFC seems to bene�t more from the limited set of
features as it increases the accuracy by more than 2%.

It thus appears that both models can do MiSME recognition quite well using only a small
number of features and blind-source separation, but we need to keep in mind that the gain in per-
formance could be caused by the feature set over-��ing on the dataset. However, the performance
obtained using such a limited set of features suggest that the model can be e�ective with only a
few features, which is valuable when computing power is limited.

4.3 Music emotion recognition experiments
�e music emotion recognition experiments can be divided in the same four groups: the R128
normalization test, candidate model selection, main music experiments and the top features ex-
periments. Each group of experiments is reported in separate subsections.

Similar to the speech experiments all feature values were standardized to have zero-mean and
unit variance before training. �e valence and arousal target values were not standardized and
thus kept at their original range of 1 to 9. �e models were trained using 6-fold cross validation
unless explicitly stated otherwise.

4.3.1 Validity of R128 normalization
A similar small scale experiment was performed to see if R128 normalization negatively a�ected
music emotion recognition, the possibility of which was suggested by Olsen et al. (2015). A state
vector regressor (SVR) model using the default Sklearn se�ings was trained on both a normalized
and a non-normalized version of the DEAM dataset using 10-fold cross validation.

�is normalization caused a drop in root means squared error (RMSE) performance from .863
to .847 for valence and from .866 to .848 for arousal. �is is an increase in performance, as the
error decreased. Contrary to the statements by Olsen et al. (2015), the loss of perceived loudness
di�erence results in be�er music emotion recognition performance for our dataset. �is should
su�ce as proof that R128 normalization can be used.

4.3.2 Candidate model selection
Again, four candidate models were created and tested to see how suitable they are for music emo-
tion recognition. �ese four candidate models are: a State Vector Regressor (SVR), Multilayer
Perceptron Regressor (MLPR), Random Forest Regressor (RFR) and Deep Neural Network (D-NN).

SVR �e SVR is identical to the speech SVC regarding parameters. See Section 4.2.2 for more
information.

MLPR �e MLPR created consists of one hidden layer with 1024 perceptrons, twice the amount
of neurons compared to the MLPC. �is was done to compensate for the increased number of
features compared to speech. It uses the ‘logistic’ activation function. Again, we used only one
hidden layer to prevent the MLPR from being too similar to the D-NN. Early stopping was turned
on, limited to 1000 iteration using an adaptive learning rate and a batch size of 256.
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Valence Arousal
Model RMSE R2 (stdev.) PCC RMSE R2 (stdev.) PCC

RFR .921 .565 (.106) .709 .934 .595 (.078) .742
SVR .989 .421 (.149) .646 1.007 .452 (.088) .685
D-NN .978 .448 (.144) .667 1.024 .396 (.201) .682
MLPR 1.137 -.016 (.274) .58 1.163 .001 (.289) .619
Dummy 1.296 -.688 (.131) -.066 1.384 -.936 (.303) -.09

Table 4.5: Performance of all candidate models on music-only audio - RMSE = Root Mean Squared
Error, R2 = Coe�cient of Determination, PCC = Pearson correlation coe�cient

RFR For the RFR the number of estimators was set to 100 estimators, rather than the 1000 of
the RFC. �is is because the maximum number of features to be considered at each split was set
to 0.333. �is is less aggressive compared to using

√
N f eatures , resulting in larger trees and longer

training. �is is generally considered be�er for regression. All other se�ings were kept at default.

D-NN �e D-NN consists of three hidden layers with 512 neurons each and a dropout-rate of
0.5, similar to the speech D-NN. �e hidden layer neurons were set to use the ‘sigmoid’ activation
function and the output layer the ‘linear’ activation function. �e bias of each neuron in all hidden
layers was set to zero. �e bias of the output neurons was set to 5, the median value of the range
used for valence and arousal. �is speeds up training because all neurons start with the median
value of the total range. �e training parameters were set to 25 epochs using the ‘MSE’ (mean
squared error) loss function and the ‘adam’ optimizer. Early stopping could not be implemented
successfully, it behaved inconsistently.

In contrast to the speech models we are unable to compare the candidate models performance
to any existing models, as there are none on DEAM or Soundtrack (see Section 3.5.2). For this
reason the performance of all candidate models were evaluated using our own music dataset.
�e results are depicted in Table 4.5. A dummy regressor is included to simulate ‘chance-level’
performance. It uses the mean-strategy, always reporting the mean valence or arousal value of
the training set.

As explained earlier, we deem the root mean squared error (RMSE) the most important metric.
We judge the quality of the models using this metrics, but the Coe�cient of Determination (R2) and
Pearson correlation coe�cient (PCC) score are reported as well. All reported PCC scores except
for the dummy model had a 2-tailed p-value of less than 0.001.

�e RFR achieves the best performance on both the valence and arousal dimension (.921, .934),
closely followed by the SVR (.989, 1.007 ) and D-NN (.978, 1.024). �ese two models perform no-
ticeably worse on arousal than valence compared to the RFR. �e MLPR falls behind the other
three regarding performance on both dimensions (1.137, 1.163), but all four models outperform the
dummy model signi�cantly (1.296, 1.384).

�e decision was made to continue with both the RFR and D-NN and use them for all ex-
periments listed in Table 3.1. �e RFR was chosen because of its performance and permutation
importance capabilities. �e D-NN was included because it was also selected for speech, making
the models used for the speech and music experiment identical. As also explained earlier, the RFR
and D-NN di�er strongly regarding architecture and learning approach, which is another bene�t
of using these two models.

It is hard to judge if the achieved RMSE performance is actually ‘good’ regarding our dataset
and the valence-arousal space it covers, as there are no published models to compare them to. To
give an idea how close the predictions are to the actual values, hex-binned heat maps of the D-NN
and RFR are included in Appendix A.
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Experiment Valence Arousal
Training Testing RMSE R2 (stdev.) PCC RMSE R2 (stdev.) PCC

A Original Original .921 .565 (.106) .709 .934 .595 (.078) .742
B Original Mixed 1.048 .274 (.17) .632 1.087 .26 (.103) .7
C Original BSS-music .975 .455 (.116) .673 1.008 0.453 (.08) .7
D Mixed Mixed .942 .524 (.129) .69 .931 .601 (.078) .742
E Mixed BSS-music .965 .476 (.142) .674 1.043 .369 (.164) .674
F BSS-music BSS-music .909 .589 (.091) .717 .928 .602 (.086) .742

(a) Random Forest Regressor

Experiment Valence Arousal
Training Testing RMSE R2 (stdev.) PCC RMSE R2 (stdev.) PCC

A Original Original .978 .448 (.144) .667 1.024 .396 (.201) .682
B Original Mixed 1.387 -1.229 (.304) .291 1.538 -2.092 (1.139) .315
C Original BSS-music 1.097 .126 (.19) .565 1.132 .091 (.328) .614
D Mixed Mixed .947 .517 (.094) .688 0.96 .546 (.056) .723
E Mixed BSS-music 1.037 .304 (.106) .613 1.131 .101 (.318) .65
F BSS-music BSS-music .943 .523 (.111) .694 .979 .499 (.144) .713

(b) Deep Neural Network

Table 4.6: Performance metrics of the RFR and D-NN on all six music experiments

�e heat maps show that most predictions lie close to their actual values, with a large majority
of the prediction being within 1.0 di�erence of the actual valence and arousal for both the D-NN
and RFR. �is is fairly decent performance considering the total range of 1 to 9. �e di�erence
in heat maps also shows that the RFR outperforms the D-NN, as the sample count is higher in
the bins on and next to the diagonal line. However, they also show that the RFR struggles with
high-arousal recognition.

Based on the RMSE performance and these heat maps we deem the RFR and D-NN models
capable of music emotion recognition on our dataset, and thus suitable for further use.

4.3.3 Main experiments
�e RFR and D-NN were tested on the six experiments listed in Table 3.1. �ese cover all possible
combinations of training and testing on one of the three audio types: music-only, mixed and blind-
source separated audio. �e results of these experiments are reported in Table 4.6, showing their
RMSE, R2 and PCC on all six experiments. Heat maps of experiment A, D and F are also depicted
in Appendix A, which provide a more detailed overview on the performance di�erences between
experiments. Also, when we speak of ‘blind-source separated audio’ in this section, we mean the
accompaniment output, not the speech.

Experiment A In experiment A (see Appendix A.2) the models were trained and tested on
music-only audio, the optimal music emotion recognition scenario. �e RMSE performance on
this experiment serves as the baseline performance, showing what levels of performance can be
achieved when there is no speech-interference. �e RFR achieved a RMSE of .921 for valence and
.934 for arousal, and the D-NN .978 and 1.024 respectively.

Experiment B In Experiment B the models were tested on mixed audio instead. �is discrep-
ancy between training the models on music-only audio but tasking them to predict valence and
arousal on mixed audio resulted in a strong increase in RMSE. �e RFR increase to 1.048 and 1.087
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respectively, and the D-NN (1.387, 1.538) now performs signi�cantly worse than the dummy model
(1.296, 1.384).

Experiment C However, testing on blind-source separated audio, as seen in experiment C, re-
sults in a noticeable improvement over experiment B. �e performance of the D-NN now falls
in-between the dummy model and its experiment A counterpart, as it achieves a RMSE of 1.097
and 1.132 respectively. �e RFR (.975, 1.008) now performs more similar to itself in Experiment A,
and even be�er than the D-NN in experiment A. �e level of performance of the RFR is impressive
considering it never saw speech-interference during training.

Experiment D In Experiment D (see Appendix A.3) the models were trained and tested on
mixed audio. Something odd happened here. �e RFR (.942, .931) achieves a lower RMSE on arousal
than its experiment A counterpart (.921, .934), which is unexpected considering experiment A was
seen as ‘optimal’ as there was no speech-interference. Even more interesting is that the D-NN
signi�cantly outperforms its experiment A counterpart on both valence and arousal, as it achieves
a RMSE of .947 and .96 respectively compared to .978 and 1.024 in experiment A. How this could
have happened is broadly covered in the next chapter.

Experiment E Experiment E is not really relevant, but it shows that mixed-audio trained models
perform worse on blind-source separated audio.

Experiment F In �nal experiment, Experiment F (see Appendix A.4), the models are trained
and tested on blind-source separated audio. �e RFR sees an improvement in performance, as it
achieves a RMSE of .909 and .928 respectively. It now performs noticeably be�er on the valence
dimension and slightly be�er on the arousal dimension compared experiment D (.942, .931). How-
ever, the RFR now also outperforms its experiment A counterpart (.921, .934) on both valence and
arousal, the same thing that happened with the D-NN in experiment D. �is is another unexpected
occurrence, which is discussed in the next chapter.

�e D-NN sees a slight improvement regarding valence compared to experiment D, but a sig-
ni�cant decrease in performance on arousal as it achieves a RMSE of .943 and .979 respectively
compared to .947 and .96. �is means that the D-NN performs worse on blind-source separated
audio than raw mixed audio, and the other way around for the RFR.

�e results of the six main music emotion recognition experiments are thus quite interesting.
While the RFR appears to be consistently be�er than the D-NN model, the expected pa�ern of
improvement between experiments, as seen in the speech experiments (see Section 4.2.3), is not
present here. �e D-NN can outperform its single-source performance using raw mixed audio,
and the RFR can do the same with blind-source separated audio. It is unexpected that higher
performance is achieved when speech-interference is present. �ese events will be discussed in
the next chapter.

4.3.4 Most important features experiments
Again similar to the speech experiments, feature importance was calculated for all RFR experi-
ments using Sklearn’s permutation importance. �e number of repeats was set to �ve. �e impor-
tance of a feature is calculated by taking the mean over all six cross validation folds. �ere are in
total 2651 music features. �e resulting feature importance analysis is covered in Section 5.2.1.

Separate valence and arousal feature rankings were created by ordering all features from high
to low based on their importance value (feature importance was separately calculated for valence
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Number of features Valence Arousal

All features .909 .928
Top 20 .878 .876
Top 50 .84 .866
Top 100 .848 .857
Top 250 .858 .876
Top 500 .881 .884

Table 4.7: RMSE performance of the Random Forest model using only certain amounts of top
ranking features

and arousal). Experiment F was rerun using the RFR with the model only receiving only limited
portions of the most important valence and arousal features. �ese were set to the 20, 50, 100,
250 and 500 most important features respectively. �e valence and arousal RMSE for each run is
reported in Table 4.7.

With only the 20 most important features the RFR model can already outperform its experi-
ment F counterpart, which used all 2561 features, as it achieves a RMSE of .878 and .876 respec-
tively compared to experiment F (.909, .928). �e performance di�erence is quite signi�cant, which
is even more impressive considering it is done with less than 1% of the entire feature set. Optimal
performance is reached when using the 50 most important valence features and 100 most impor-
tant arousal features (.84, .857 ). �e RMSE improvement is large compared to experiment F, which
used all features. To put the performance di�erence into perspective, an heat map of the RFR using
only these features is depicted in Appendix A.1.

�e degree to which using these limited sets leads to an actual be�er model is hard to establish.
As said before, the increase might be due to the feature set being perfect for the dataset, meaning
that we are over-��ing the model. �en again, most of the importance assigned to features is
likely due to their MiSME recognition ability, with possibly only the top few being particularly
e�ective on our dataset and therefore being considered extra important.

Much be�er performance can already be achieved with using only the top 250 or 500, likely
because be�er decision trees can be made when only e�ective features have to been considered.
We think that using a limited set of the most important features will likely result in a be�er model,
making it bene�cial to do when creating the model. However, a slightly larger set than the optimal
amount should be favored to ensure be�er generalization.

4.4 Summary
�e results of each important set of experiments is summarized shortly below, to clearly state what
the results show.

R128 normalization �e preparatory experiments showed that R128 normalization did not
negatively a�ect speech and music emotion recognition. It even led to be�er performance for
the MER task.

Candidate model selection �e Random Forest and D-NN models were picked from the four
candidate models to be used in the main experiments, based on their single-source audio perfor-
mance and di�erences in architecture.

Main speech experiments �e models achieved an accuracy of 55.1% (RFR) and 61% (D-NN)
respectively on speech-only audio. When the same model was tasked to classify mixed or blind-
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source separated audio, its performance dropped to near chance-level (around 14%). Training the
models on mixed audio increased the performance to 29% and 30.1% respectively, which is sig-
ni�cantly above chance-level. �e inclusion of blind-source separation led to another signi�cant
increase in performance, increasing the accuracy to 41.4% and 43.1%. �is means that optimal
speech performance on mixed-audio was achieved using blind-source separation, but there re-
mains a noticeable performance di�erence compared to speech-only audio, suggesting that lower
performance should be expected in MiSME scenarios.

Main music experiments �e root mean squared error (RMSE) metric showed that models
trained on music-only audio performed noticeably worse on mixed and blind-source separated
audio, similar to the speech experiments. However, something unexpected happened when the
models were trained on mixed and blind-source separated audio. �e D-NN achieved a lower
RMSE when trained on mixed audio (.947, .96) compared to its music-only performance (.978, 1.024),
meaning that was able to predict valence and arousal more accurately on mixed audio than music-
only audio. �e same occurred with the RFR when blind-source separation was included, as it
achieved a RMSE of .909 and .928 respectively compared to music-only audio (.921, .934). �is was
unexpected, as the performance on music-only audio was considered the ‘upper ceiling’ as there is
no speech-interference. �is is something that will be discussed in detail in the next chapter. Still,
this means that both models are able to do MiSME recognition equal to, or be�er than, music-only
audio.

Using the most important features �e �nal experiments, where the models used certain
amounts of the most important features obtained from the permutation importance calculations,
showed that both speech and music emotion recognition can be done with high levels of perfor-
mance using only 1% of the entire feature set. Using only limited amounts of the most important
features actually led to signi�cant performance improvements on the MER task, as the optimal set
led to a RMSE of .84 and .857 respectively compared to using all 2561 features (.909, .928).

C.A.J. Laugs 58



Chapter 5

Discussion

In this chapter we will discuss the results presented in the previous chapter, along with a feature
importance analysis. Based on the results and this discussion we will answer the main research
question by the end of this chapter. To reiterate, the main research question is:

Can a system be produced which can recognize both the emotion of speech and music in
mixed audio, where both are concurrently present, signi�cantly above chance level?

�e speech and music experiments will be covered separately �rst, a�er which the main re-
search question will be answered in Section 5.3. To �nish the chapter Section 5.4 re�ects on how
this research went, discussing both positive and negative elements and possible future work.

5.1 Speech experiments
�e speech emotion recognition task in our experiments is a 8-way classi�cation task, as de�ned
by the number of categorical emotions included in the RAVDESS dataset. Chance level accuracy
is 13.5% considering the distribution of samples over the eight emotions, as there are only four
‘neutral’ samples per actor compared to eight samples for each other emotion. �is is due to
neutral only being expressed at one intensity.

We tested the speech emotion recognition capabilities of four di�erent models using the
speech-only audio version of our dataset. All four models outperformed the model by Bhavan et al.
(2019). Our deep neural network (D-NN) and multilayer perceptron classi�er (MLPC) advanced
state-of-the-art on RAVDESS, outperforming the model by Zeng et al. (2019). It is noteworthy that
we were able to achieve ‘state-of-the-art’ performance with such simple models. �is can likely be
a�ributed to the large feature set used compared to the published models. Still, this showed that
the models used in this research were highly capable of speech emotion recognition on RAVDESS
and therefore suitable models to use for this research.

Two of the four models were used for all speech experiments, the D-NN and Random Forest
Classi�er (RFC). A couple of interesting observations can be made from the results of the six speech
emotion recognition experiments, which were all possible combinations of training and testing on
di�erent audio types.

�e �rst thing we observed is that the speech-only trained models performed only slightly
be�er than chance-level on both mixed and blind-source separated audio (Experiment B and C).
�is shows that non-specialized models can not handle MiSME recognition and specialized models,
preferably with blind-source separation, must be developed to successfully do speech emotion
recognition on mixed audio.
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In addition, the fact that the speech-only trained models achieved ‘chance-level’ performance
on blind-source separated audio proves that the speech audio produced by the blind-source sep-
aration component is not similar (enough) to the original speech to allow the model to function
properly. �is is interesting because we perceptually evaluated many blind-source separated sam-
ples to judge the quality of Spleeter, and we deemed the isolated speech perceptually very similar
to their original samples. �is shows that while blind-source separation produces perceptually
similar audio for us humans, it is still a�ected too much by noise and inaccuracies to be process-
able by a speech-only trained model.

�e third and �nal thing we observed is that the best accuracy for both models on any ex-
periment with music-interference (Experiment B to F) was achieved when trained and tested on
blind-source separated audio (Experiment F). �e performance di�erence between using BSS and
not using it was quite signi�cant, as the accuracy jumped from 30.1% to 41.4% for the RFR and 29%
to 43.1% for the D-NN. We believe that this is solid proof that blind-source separating mixed audio
and training a model speci�cally for that type of audio is strongly superior to a raw mixed audio
specialized model. We thus deem blind-source separation strongly bene�cial for speech emotion
recognition in a MiSME recognition task, and it should always be included if possible.

�e results from the six main speech emotion recognition experiments thus showed us that
specialized models need to be created for speech emotion recognition in MiSME scenarios, where
the application of blind-source separation is strongly bene�cial.

5.1.1 Feature importance analysis
Feature importance was computed for all 1582 speech features using permutation importance on
all of the six experiments of the random forest model. �ese feature importances provide us with
insight how the model achieved its performance on each experiment, showing which features
had the biggest impact (importance) on the predictions made. Our goal is to compare the feature
importances of various models, exploring possible causes of the performance di�erence between
models while also showcasing which features are important for certain audio types. �is should
result in valuable knowledge for future MiSME research, as the feature importance analysis should
show which features are e�ective on mixed audio.

We limited the scope of this analysis to experiment A, D and F. �ese are the experiments
where the models were trained and tested on the same audio type. We deem these the three most
important experiments as they showcase the performance of specialized models on the audio type
which they were trained for. �e results from experiment B and C are enough to show that speech-
only trained models do not translate well to mixed or blind-source separated audio, a feature
analysis is not necessary to further explain this.

A total of two sets of �gures and one set of tables were created to visualize and analyze the
computed feature importances. �e �gures can be found in the Appendix and are discussed in the
following sections. �ese two sets of �gures describe the models on a ‘feature-level’. �e �rst set of
�gures, see Appendix B.1, shows the most important and unimportant features for each model on
all three experiments. �is was limited to the 20 most important features and 5 most unimportant
features. �ese �gures should show if there are any strongly dominant or problematic features for
certain audio types.

�e second set of �gures, see Appendix B.2, shows the ten features with the strongest posi-
tive and negative chance in importance between any of the three experiments. To allow for fair
comparison the feature importances were normalized to sum to one before calculating the abso-
lute di�erence. �ese �gures show if there are any individual features which massively change in
importance between audio types, indicating that they become highly (un)suitable for that audio
type.

Finally, Table 5.2 shows various feature importance statistics per feature type. �ese feature
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Top 20 Top 50 Top 100 Top 250

Speech only - Mixed 0 1 7 38
Mixed - BSS-speech 3 3 10 36
Speech only - BSS-speech 2 8 14 49
All three 0 0 0 8

Table 5.1: Shared features among the feature ranking of all audio types

types are de�ned by the openSMILE documentation. �is table is deemed most descriptive. Most
statistics are limited to the 250 most important features of the entire feature set. �is was done
because it provides a less skewed view of which features are important for the model, as the exper-
iments showed that the top 250 contained most features bene�cial to the model (see Section 4.2.4).
�is means that a large amount of the 1582 speech features are either suboptimal or negatively
a�ect the model. Calculating statistics over the entire feature set would skew the metrics due to
the dominance of suboptimal and negative features in the total features set.

�e feature importance analysis is split into multiple subsections, each covering one aspect or
observation. Let us start with the similarity of the most important features between audio types.

Feature similarity

Before we go into feature speci�c observations it is interesting to see how similar the most impor-
tant features are between experiments. Table 5.1 depicts the number of features appearing in the
N most important features for any two, or all three, experiments.

We see that there are almost no shared features between the speech-only model and mixed
audio model (experiment A and D) in the top 20, 50 or 100. When looking at the 250 most important
features of both models, we see that they share 38 features, so less than one-��h. �is suggests
that vastly di�erent features are used for mixed audio recognition. We suspect that many optimal
speech emotion recognition features are not robust against mixed audio and are ge�ing replaced
by suboptimal ones which are robust, as the accuracy di�erence between the mixed and speech-
only audio models ranges between 25% and 30%.

We also see the same pa�ern between the mixed audio model and blind-source separated audio
model (experiment D and F), and the speech-only model and blind-source separated audio model
(experiment A and F). While they share more features in the 20 to 100 range, a large majority is
di�erent, meaning that most features still get replaced by other features between audio types. We
a�ribute this again to di�erences in robustness of features on certain audio types.

However, the fact that there are so few shared between the mixed and blind-source separated
audio models likely means that blind-source separation allows the model to use more optimal
features, as signi�cantly be�er levels of performance were achieved when BSS was included in the
model. But we also see that the speech-only model and blind-source separated model (experiment
A and F) share only a few features. �is likely means that blind-source separation is not able to
reproduce the speech audio to such a degree that most optimal speech features remain usable, and
thus get replaced by suboptimal ones. �e performance di�erence between experiment A and F
could be a�ributed to this, that the best usable features from the blind-source separated signal are
just not as e�ective as the best features usable on speech-only audio.

If this would indeed be the case, which we strongly believe, it would mean that the quality of
the blind-source separation strongly a�ects the level of performance which can be achieved. More
accurate blind-source separation would mean that fewer optimal features need to be replaced by
suboptimal ones due to lack of robustness against the inaccuracies and noise introduced during
blind-source separation. While Spleeter is perceptually very impressive, this would mean that
there is still much room for further improvement, as the replacement of features due to inaccura-
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Feature type M.I. - All M.I. - Top 250 N in top 250 Contribution to total imp. of top 250

mfcc[630] .021 .135 74 (11.7%) 24.8%
logMelFreqBand [336] .042 .163 86 (25.6%) 34.6%
lspFreq [336] .018 .137 31 (9.2%) 10.5%
F0 [82] .094 .237 31 (37.8%) 18.2%
ji�er [76] .038 .181 13 (17.1%) 5.8%
loudness [42] .009 .116 3 (7.1%) 0.9%
voicing [42] .03 .25 5 (11.9%) 3.1%
shimmer [38] .03 .125 7 (18.4%) 2.2%

(A) Speech-only audio

Feature type M.I. - All M.I. - Top 250 N in top 250 Contribution to total imp. of top 250

mfcc [630] -.064 .027 102 (16.2%) 37.1%
logMelFreqBand [336] -.057 .044 53 (15.8%) 34.1%
lspFreq [336] -.065 .022 50 (14.9%) 16.3%
F0 [82] -.083 .013 12 (14.6%) 2.3%
ji�er [76] -.066 .017 13 (17.1%) 3.2%
loudness [42] -.072 .019 6 (14.3%) 1.7%
voicing [42] -.052 .029 7 (16.7%) 3.0%
shimmer [38] -.045 .02 7 (18.4%) 2.1%

(B) Mixed audio

Feature type M.I. - All M.I. - Top 250 N in top 250 Contribution to total imp. of top 250

mfcc [630] .007 .075 92 (14.6%) 31.7%
logMelFreqBand [336] .014 .01 55 (16.4%) 25.2%
lspFreq [336] .007 .071 49 (14.6%) 16.1%
F0 [82] .037 .164 21 (25.6%) 15.8%
ji�er [76] -.006 .097 6 (7.9%) 2.7%
loudness [42] .019 .068 15 (35.7%) 4.7%
voicing [42] .003 .073 7 (16.7%) 2.3 %
shimmer [38] .002 .063 5 (13.2%) 1.4%

(C) Blind-source separated audio

Table 5.2: Importance statistics per feature type. �e mean importance, relative contribution and
number of features are reported - Note: all importance values are reported in e−2

cies results in a performance gap of around 14% to 18%. However, perfect blind-source separation
might be impossible to achieve.

Fundamental Frequency features

Something interesting occurs regarding fundamental frequency (f0) features. We deemed the
speech-only audio model ‘optimal’ as it used audio which was not a�ected by music presence.
�is allowed it to achieve the best performance. �erefore the features used by this model can be
seen as the ‘optimal’ performing set for our dataset.

�e feature importance analysis shows that fundamental frequency features are important for
the ‘optimal’ speech-only model. It relies signi�cantly on these features, as seen in Figure B.1 and
B.2 and Table 5.2. Multiple fundamental frequency features are among the most important features
of the model, and fundamental frequency features have a noticeably high mean importance and
contribution to the total importance of the model.
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Fundamental frequency features appear to be of similar importance for the model using blind-
source separated audio. However, they lose almost all of their importance on mixed audio (exper-
iment D). No fundamental frequency features can be found among the most important features
depicted in B.1, and the feature type scores signi�cantly lower on all statistics in Table 5.2. �is
means that fundamental frequency features become almost useless on mixed audio, but they are
able to regain most of their lost importance when blind-source separation is applied.

�e fact that the lowest performance is achieved on the audio type which is unable to use fun-
damental frequency features is likely not coincidental. �e fundamental frequency is the lowest
dominant frequency found in the audio. Fundamental frequency features likely become useless
because the lowest frequency is related to the music rather than speech in the features extracted
from mixed audio. �is makes the features represent the music, and thus useless for speech emo-
tion recognition. �is means that many of the dominant fundamental frequency features can not
be used by the model anymore, resulting in lower performance.

Applying blind-source separation however results in both be�er performance and fundamental
frequency features regaining importance. We believe that this is related. Blind-source separation
is able to reproduce the speech with such accuracy that the fundamental frequency features are re-
lated to the speech again, making most features usable. �e usable fundamental frequency features
allow the model to be�er classify the emotion present, resulting in be�er performance.

MFCC, LMFB and LSPF features

�e three largest feature types in the openSMILE feature set are the Mel Frequency Cepstrum
Coe�cients (MFCC), Log Mel Frequency Band (LMFB) and Line Spectral Pair Frequencies features
(LSPF). �ey contain a total of 1302 features and make up more than four-��hs of the entire speech
feature set. Our feature importance analysis shows that they contain relatively many important
features regardless of audio type, judging by their importance contribution and number of features
in the top 250.

�eir importance thus appears to be consistent between audio types, but a few observations
can be made. When moving from speech-only audio to mixed audio, MFCC and LSPF features gain
importance almost equally to the importance loss of fundamental frequency features. �is means
that the model relies more on MFCC and LSPF features to compensate for the loss of fundamental
frequency features, but this still leads to lower performance.

However, when applying blind-source separation it is not the LSPF features that lose impor-
tance due to fundamental frequency features becoming important again, but mainly the LMFB
features and partially the MFCC features. �is suggests that LSPF features, and to a lesser degree
MFCC features, become more important when music is present in audio (mixed and BSS-audio).
Useful MFCC and LSPF features thus appear to be more robust against music presence than LMFB
features as they gain some importance at the cost of LMFB features. However, all three remain
contribute signi�cantly to the model regardless of audio type.

Other features

�ere are still four feature groups to discuss, these are: ji�er, loudness, voicing and shimmer fea-
tures. �ey are small compared to the other four feature groups and contribute signi�cantly less
to the model. However, they each contain multiple important features. While their contribution
is not comparable to the larger feature groups, the fact that they describe other characteristics
of the audio would suggest that they are not redundant and possibly allow to model to distin-
guish between samples that is not possible with solely the larger feature groups, but this is mere
speculation.
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5.1.2 Summary
So to conclude the analysis of the speech experiments: �e results showed that speech-only mod-
els can not handle mixed or blind-source separated audio, meaning that specialized models are
required for speech emotion recognition in a MiSME situation. However, creating a specialized
model that uses blind-source separation results in a signi�cant performance boost over no blind-
source separation, as seen in the results. We deem this improvement signi�cant enough to say
that blind-source separation should always be included in the speech model of a MiSME system.

�e feature importance analysis showed us that the most important features between all audio
types are highly dissimilar. We speculate that many optimal features, as used by the speech-
only model, are replaced by suboptimal features when classifying other audio types because most
optimal features are not robust against music presence or blind-source separation noise and inac-
curacies. We also saw that the features used by the blind-source separated audio model di�ered
strongly from the mixed audio model, suggesting that blind-source separation allows for more
optimal features to be usable. We speculate that the quality of blind-source separation plays an
important role in the degree to which features must be replaced, causing it to dictate the ‘upper
ceiling’ of what performance can be achieved compared to speech-only audio classi�cation.

Regarding feature type speci�c observations we saw that fundamental frequency features are
important for speech emotion recognition, but they can not be used by the model on mixed audio.
Luckily blind-source separation makes them usable again, resulting in be�er performance. We also
saw that MFCC, LMFB and LSPF features account for a large majority of the important features
for each model, along with fundamental frequency features. �e smaller feature types have a
signi�cantly lower contribution, but all types contain multiple dominant features and should not
be excluded.

5.2 Music experiments
In Section 4.3.3 we showed the di�erence in root mean squared error (RMSE) performance for
all experiments and made observations based on their di�erences. However, a proper test is re-
quired to know if the RMSE performance of any two experiments is signi�cantly di�erent. �e
Diebold-Mariano test (Diebold and Mariano, 2002) was used to test this, using the Python imple-
mentation by John Tsang1. All p-values obtained from these tests can be found in Appendix D.1.
(In)signi�cance will be reported using an italic font. Please keep in mind that the dataset consists
of a total of 7200 samples, so moderate di�erences in RMSE performance can already be signi�cant
due to its large size.

�e large di�erence in RMSE and heat maps observed in Section 4.3.3, and Appendix A, already
strongly hinted at signi�cant di�erences, which we pointed out. Many of the observations that
we made are discussed again, but now with the Diebold-Mariano scores to formally con�rm the
suspicion of (in)signi�cance. �e RMSE results from the six main music experiments can be found
in Table 5.3, which can be referenced while reading through this section.

Experiment A, B and C �e Diebold-Mariano tests (Appendix D.1) show that the di�erence in
RMSE performance is signi�cant between experiments A, B and C on both valence and arousal for
both models. �is means that the music-only trained models perform signi�cantly worse when
tasked to do regression on mixed and blind-source separated audio (experiment B and C) than
music-only audio (experiment A). �is also means that they perform signi�cantly be�er on blind-
source separated audio than mixed audio. �e Diebold-Mariano tests also show that the RFR

1h�ps://github.com/johntwk/Diebold-Mariano-Test
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Experiment Valence Arousal
Training Testing RMSE RMSE

A Original Original .921 .934
B Original Mixed 1.048 1.087
C Original BSS-music .975 1.008
D Mixed Mixed .942 .931
E Mixed BSS-music .965 1.043
F BSS-music BSS-music .909 .928

(a) Random Forest Regressor

Experiment Valence Arousal
Training Testing RMSE RMSE

A Original Original .978 1.024
B Original Mixed 1.387 1.538
C Original BSS-music 1.097 1.132
D Mixed Mixed .947 0.96
E Mixed BSS-music 1.037 1.131
F BSS-music BSS-music .943 .979

(b) Deep Neural Network

Table 5.3: A copy of Table 4.6 with only the RMSE performance

was signi�cantly be�er than the D-NN on all three experiments. �is was all as expected as the
di�erence in RMSE varied wildly in these experiments.

�e fact that the RMSE performance of the D-NN models is close to, or worse than, chance-level
in experiment B and C makes it clear that music-only trained D-NN’s are unsuitable for MiSME
recognition. However, the same can not be said for the RFR model. Its performance when tasked
to classify blind-source separated audio was deemed quite impressive by us, not only because it
was close to its baseline performance, but it was also be�er than the D-NN on music-only audio
(experiment A). While we already know that be�er performance can be achieved when creating
specialized models (experiment D and F), the fact that a non-specialized model can achieve this
level of performance is impressive. �is is di�erent than what we saw with the speech experiments,
where all non-specialized models achieved chance-level accuracy.

Experiment D Something unexpected occurred when we trained and tested the models on
mixed audio. �e D-NN achieved a lower RMSE on both valence and arousal compared to its
experiment A counterpart, which we expected to be the experiment where all models scored the
lowest RMSE. �e Diebold-Mariano test shows that the performance di�erence is signi�cant for
both valence and arousal. �is means that the D-NN is able to do valence and arousal prediction
signi�cantly be�er on audio a�ected by speech than audio not a�ected by speech.

At �rst this seems counterintuitive. It is a logical assumption that the presence of speech in the
audio should negatively a�ect music emotion recognition, similar to what we saw in the speech
emotion recognition experiments. However, we speculate that the D-NN is able to achieve be�er
performance due to the speech signal a�ecting certain music features which are ambiguous in
nature. �ese are music features that are useful for valence or arousal prediction on some samples,
contained in the training set, but negatively a�ect judgment for other samples, which likely can
be found in the test set. �ese ambiguous features coincidentally overlap with the speech in one
way or another, for example frequency-wise. �e presence of the speech in the audio thus makes
those ambiguous features much less reliant overall, forcing the D-NN to drop them in favor of
more stable and universal features which are not a�ected by the speech2. �is �nally results in a
be�er performing D-NN.

�is occurrence was limited to the D-NN in experiment D, but we saw the same happen to the
RFR in experiment F. �e reason why this only occurred to the D-NN in experiment D could be
due to the di�erences in model architecture. �e D-NN is a single model that uses all features to
learn a mapping during training, while the RFR consists of many decision trees which use random
subsets of the entire feature set during training. It is not far fetched to assume that the RFR model
was much less a�ected by these ambiguous features because many trees in the ensemble only

2We assume that useful features are a�ected by speech presence as well, but the performance gain from dropping
ambiguous features is higher
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see a few, or none, of these ambiguous features during training. Because judgment is based on
a majority vote of all trees, where most are not or only partially a�ected by ambiguous features,
the RFR is likely much less a�ected overall by the ambiguous features compared to the D-NN.
However, this remains speculation.

�e RFR model also achieved impressive levels of performance in experiment D. �e valence
and arousal RMSE is similar to experiment A, but the Diebold-Mariano test show that the di�erence
is only signi�cant for valence, on which the model performed worse. �is means that the RFR can
predict arousal equally as good on mixed audio as music-only audio. We therefore can not say
that it performs be�er than its baseline model, but the di�erence is not much. We also want to
point out that the RFR achieved a lower RMSE on both valence and arousal compared to the D-NN,
albeit that only the di�erence on arousal was signi�cant.

Overall it thus seems that the models can achieve impressive levels of valence and arousal
prediction on mixed audio. Be�er than expected even, as the D-NN signi�cantly outperforms its
experiment A counterpart on both valence and arousal prediction.

Experiment F We already mentioned that the RFR was able to outperform its experiment A
counterpart in experiment F, where the models were trained and tested on blind-source separated
audio. �e Diebold-Mariano tests show that the RFR performs signi�cantly be�er on the valence
dimension, and insigni�cantly be�er on arousal. �e RFR model in experiment F also scored the
lowest valence and arousal RMSE of all experiments, meaning that it is not only the best model
on any form of mixed audio, but it is also the best performing music model of all experiments.

As already mentioned earlier, we believe that the presence of speech forces the models to
drop ambiguous features. �e presence of speech also negatively a�ects useful features, but the
performance gain from dropping the ambiguous features compared to that was higher for the D-
NN in experiment D. However, we believe that the inclusion of blind-source separation drastically
decreases the degree to which useful features are a�ected negatively by speech, while keeping
the elimination of ambiguous features due to speech presence. �is combination allows the RFR
model to achieve be�er performance on blind-source separated audio than on music-only audio.
�at is our theory of how this could have occurred.

Regarding the D-NN on experiment F, it still performs signi�cantly be�er than its experiment
A counterpart on both dimensions. However, it performs insigni�cantly be�er on valence and
signi�cantly worse on arousal compared to experiment D. �e D-NN thus appears to perform
be�er on mixed audio than blind-source separated audio, which is unexpected.

So to summarize the observations made from the results and Diebold-Mariano tests: Experi-
ment A, B and C showed that music-only trained D-NN models are not suitable for music emotion
recognition on mixed or blind-source separated audio. While the same could be said for the RFR
models, its performance on blind-source separated audio is impressive.

We also observed that the D-NN was able to achieve be�er performance on both valence and
arousal prediction when trained and tested on mixed audio, compared to music-only audio. We
a�ributed this to the fact that the presence of speech forces the model to drop ambiguous features.
�e RFR was able to do the same on blind-source separated audio. We speculate that this is be-
cause the RFR is less susceptible to ambiguous features, and that blind-source separation limits
the degree to which useful features are a�ected by speech presence. �is �nally resulted in the
best performing model overall, even though experiment A was expected to be the best.

Keep in mind that this is speculation. Properly �nding the cause of this would require dedicated
research and is therefore outside of the scope of this research. While these results raise many
question, it does appear that functioning music models can be developed that perform similar, or
actually even be�er, in a MiSME scenario with around 25% speech-music overlap compared to
normal music emotion recognition.
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Top 20 Top 50 Top 100 Top 250

Music only - Mixed 6 23 42 92
Mixed - BSS-music 8 22 45 95
Music only - BSS-music 7 24 52 103
All three 4 14 29 62

Table 5.4: Shared music features among the valence feature ranking of all audio types

5.2.1 Feature importance analysis
Feature importance was calculated using permutation importance on all experiments using the
RFR model. �e same two sets of �gures and tables were produced as for the speech feature
importance analysis (see Section 5.1.1). However, feature importance was computed separately
on the valence prediction and arousal prediction tasks. �is means that there are separate sets of
tables for the valence and the arousal part of the model.

�e set of �gures found in Appendix C.1 depict the twenty most important and �ve most
unimportant features per audio type. �e other set, found in Appendix C.2, depicts the twenty
most strongly di�ering features in importance between various audio types. Table 5.5 and Table 5.7
show the importance statistics per global feature type, similar to the speech importance analysis.

Again, we limit our observations to experiment A, D and F. We also limited the statistics to
the 250 and 50 most important features, as the experiments have shown us that a majority of the
bene�cial feature lie within that range. �at means that a majority of the 2561 music features con-
tained in Essentia are suboptimal or negatively a�ect the model. Including these in most statistics
would skew them, making them harder to analyze.

Valence prediction

Similar to speech we will discuss the similarity between the most important features for all audio
types �rst, followed by feature type speci�c observations. We will start with valence, followed by
arousal.

Similarity Table 5.4 shows the number of features appearing in the N most important features
for any two, or all three, experiments. It is immediately noticeable that there is a higher degree
of similarity between the most important features for valence prediction on all three audio types
compared to speech emotion prediction. We see that around one-third is shared between any
two audio types when looking at only the 20 or 50 most important features. �is means that
quite some dominant valence features transfer from one audio type to another, which was not
the case for speech. However, the shared features among all three audio types is a bit lower, as
it drops to only fourteen features. Still, this means that there are dominant valence features that
perform consistently on all three audio type. �ese fourteen shared feature were spread over
multiple feature types, no one type of feature appeared to be overrepresented. �ey can be found
in Appendix E.1.

We also observed that the four most important features on all three audio types are the same
features, but they di�er in order per audio type (see Appendix C.1). �ey have a much higher
importance value than other features shown. �ese four features, two rhythm and two spectral-
based features, thus appear to be highly dominant and useful regardless of audio type.

It is interesting to see that at least some valence features exist that are dominant on all three
audio types, which was not the case for speech.
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Feature type M.I. - All N in Top 250 M.I. - Top 250 Contr. to Top 250 imp. N in top 50

tonal [413] 0.0095 58 (23.2%) 0.0626 12.8% 8
erbbands [405] 0.0035 23 (9.2%) 0.0615 5% 4
melbands [405] 0.0057 32 (12.8%) 0.0927 10.4% 9

gfcc [351] 0.0007 17 (6.8%) 0.0254 1.5% 0
mfcc [351] 0.0023 16 (6.4%) 0.0447 2.5% 1

barkbands [288] 0.0046 15 (6%) 0.0978 5.2% 4
spectral [252] 0.0555 77 (30.8%) 0.1807 48.9% 20
rhythm [121] 0.0299 8 (3.2%) 0.4463 12.5% 2
silence [27] 0.0004 0 NaN 0% 0

hfc [9] 0.0169 1 (0.4%) 0.1330 0.5% 1
pitch [9] -0.0056 1 (0.4%) 0.0316 0.1% 0

zerocrossingrate [9] 0.0158 1 (0.4%) 0.0658 0.2% 0
dissonance [9] 0.0028 0 NaN 0% 0

dynamic complexity [1] 0.0122 0 NaN 0% 0
average loudness [1] 0.1056 1 (0.4%) 0.1056 0.4% 1

(A) Music-only audio

Feature type M.I. - All N in Top 250 M.I. - Top 250 Contr. to Top 250 imp. N in top 50

tonal [413] 0.0101 76 (30.4%) 0.0583 16% 14
erbbands [405] 0.0008 25 (10%) 0.0409 3.7% 1
melbands [405] 0.0032 33 (13.2%) 0.0573 6.8% 3

gfcc [351] 0.0010 11 (4.4%) 0.0287 1.1% 1
mfcc [351] 0.0002 9 (3.6%) 0.0397 1.3% 1

barkbands [288] 0.0006 15 (6.0%) 0.0537 2.9% 3
spectral [252] 0.0321 68 (27.2%) 0.1230 30.2% 23
rhythm [121] 0.0816 8 (3.2%) 1.2385 35.8% 2
silence [27] 0.0008 0 NaN 0% 0

hfc [9] 0.0024 1 (0.4%) 0.0262 0.1% 0
pitch [9] 0.0076 1 (0.4% 0.0299 0.1% 0

zerocrossingrate [9] -0.0023 0 NaN 0% 0
dissonance [9] 0.0147 2 (0.8%) 0.0643 0.5% 1

dynamic complexity [1] 0.0090 0 NaN 0% 0
average loudness [1] 0.4057 1 (0.4%) 0.4057 1.5% 1

(B) Mixed audio

Feature type M.I. - All N in Top 250 M.I. - Top 250 Contr. to Top 250 imp. N in top 50

tonal [413] 0.0127 73 (29.2%) 0.0688 16.1% 13
erbbands [405] 0.0046 33 (13.2%) 0.0614 6.5% 5
melbands [405] 0.0080 36 (14.4%) 0.0839 9.7% 8

gfcc [351] 0.0006 1 (0.4%) 0.0235 0.1% 0
mfcc [351] 0.0011 4 (1.6%) 0.0299 0.4% 0

barkbands [288] 0.0037 28 (11.2%) 0.0381 3.4% 2
spectral [252] 0.0495 64 (25.6%) 0.1912 39.3% 17
rhythm [121] 0.0600 5 (2.0% 1.4387 23.1% 3
silence [27] 0.0007 0 NaN 0% 0

hfc [9] 0.0131 2 (0.8%) 0.0922 0.6% 1
pitch [9] 0.0036 0 NaN 0% 0

zerocrossingrate [9] -0.0393 1 (0.4%) 0.0302 0.1% 0
dissonance [9] 0.0141 2 (0.8%) 0.0893 0.6% 1

dynamic complexity [1] -0.0007 0 NaN 0% 0
average loudness [1] 0.0427 1 (0.4%) 0.0427 0.1% 0

(C) Blind-source separated audio

Table 5.5: Importance statistics for valence per feature type. �e mean importance, relative con-
tribution and number of features are reported. - Note: all importance values are reported in e−2
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Rhythm �e feature type importance statistics for valence (see Table 5.5) indicate that rhythm
features are highly important for the achieved levels of valence prediction on all three audio types.
�ey have the highest mean importance on all three audio types, and it is many times higher
than the second most important feature group, especially for mixed and blind-source separated
audio. �is indicates that, on average, the useful rhythm features have a very strong impact on
the achieved levels of valence prediction, see Table 5.3.

Rhythm features almost triple in contribution to the total importance when moving from
music-only audio to mixed audio. We already know that the RFR model achieved a slightly worse
RMSE on valence prediction on mixed audio (from .921 to .942), which the Diebold-Mariano test
proved to be signi�cant. �e fact that the performance decreased and the importance of rhythm
features almost tripled, means that the model became much more reliant on rhythm features when
it was tasked to predict valence on mixed audio. �is suggests that there are highly e�ective
rhythm features that can handle mixed audio well compared to the other available features. �is
could either be due to rhythm features becoming more e�ective when speech is present, or other
types of features becoming less e�ective. �e la�er makes more sense.

When moving from mixed audio to blind-source separated audio the importance contribution
of rhythm features decreases by a third, but it is still twice as high compared to music-only audio.
�is higher contribution compared to music-only audio is also achieved with fewer features. We
speculate that blind-source separation makes other types of features more reliant again, replacing
and outperforming certain rhythm features. However, there remain a couple of extremely domi-
nant rhythm features which the model can use for valence prediction, resulting in the high mean
importance.

Spectral Spectral features also appear to be important for valence prediction regardless of audio
type. Not only are they consistently the feature group with the second-highest mean importance,
they contribute the most to the models of all feature types. Spectral features account for almost
half of the total importance for music-only audio, almost a third for mixed audio and two-��h
for blind-source separated audio. �ey achieve such a high contribution, o�en higher than the
rhythm features, because there are many spectral features within the top 250, with a high average
importance.

However, spectral features seem to su�er on mixed audio. Compared to music-only audio, their
contribution on mixed audio is noticeably lower. We speculate that speech presence negatively
a�ects spectral features, making them less reliable for valence prediction. �ey regain most of the
lost contribution on blind-source separated audio. �is is likely because blind-source separation
lessen this e�ect, making them more reliable and thus more important again.

Overall spectral features appear to be of high importance for valence prediction regardless of
audio type, similar to the rhythm features.

Tonal, erbband and melband features Tonal, erbband and melband features are the three
largest feature groups in Essentia. �ey account for almost half of the entire feature set. Tonal
features appear to be relatively important for all audio types considering their importance con-
tribution. �eir mean importance is low compared to rhythm and spectral features, but this is
balanced out by the fact that many tonal features are among the 250 most important features.
Overall, tonal features appear to be useful for the model and a valuable inclusion, but they consist
mostly of many moderately important features, unlike the rhythm and spectral feature groups.
�e contribution of tonal features is also higher on mixed and blind-source separated audio than
music-only audio, suggesting that they are robust against speech presence and thus suitable fea-
tures for MiSME recognition.

Erbband and melband features appear to be moderately useful for all three audio types. �e
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Top 20 Top 50 Top 100 Top 250

Music only - Mixed 6 19 34 85
Mixed - BSS 9 18 37 91
Music only - BSS 6 18 32 86
All three 5 10 20 47

Table 5.6: Shared music features among the arousal feature ranking of all audio types

statistics however show that they are less useful on mixed audio compared to music-only and
blind-source separated audio. �is suggests that they are less robust against speech being present
in the signal, but blind-source separation reduces that e�ect. �ey also have a sizable number of
features among the top 50 most important features, suggesting that they contain dominant features
for valence prediction and should not be le� out.

GFCC, MFCC, silence, pitch, zerocrossingrate and dynamic complexity �ese feature
types seem to be less useful for valence prediction. Gammatone frequency cepstrum coe�cient
(GFCC) and Mel frequency cepstrum coe�cient (MFCC) features consist of 405 features each, but
are of minor importance for mixed audio, and almost no importance for blind-source separated au-
dio. Silence, pitch, zerocrossingrate and dynamic complexity features also seem to be unimportant
for either mixed or blind-source separated audio.

Arousal prediction

We will go over the arousal feature importance in the same format as before.

Similarity Table 5.6 shows the number of features appearing in the N most important arousal
features for any two, or all three experiments. We again see that the degree of shared features
between audio types is much higher than what we saw during the speech feature importance
analysis. �e degree of similarity is even a bit higher than what we saw for valence prediction
when comparing any two audio types, but it is a bit lower when comparing all three audio types.
Still, this means that there are a handful of dominant arousal prediction features that transfer
between audio types, but a large majority of dominant features gets replaced by other features.

�e ten dominant features shared across all audio types are this time not as uniformly dis-
tributed over all feature types. �e ten shared features can be found in Appendix E.2. Seven of the
ten features are spectral features, which means that there are seven dominant spectral features
which can be applied universally regardless of audio type.

Rhythm Rhythm appears to be a highly important feature type for arousal as well. Its impor-
tance contribution is relatively constant between audio types, and the mean importance lies closer
to the other feature groups compared to valence prediction, but it is still the highest on all three au-
dio types. Based on the fact that we do not see massive change in statistics between audio types,
and that there was no signi�cant di�erence in arousal performance for the RFR (see Table 5.3),
we suspect that rhythm features are not strongly negatively a�ected by the presence of speech.
However, the dominant rhythm features for each audio type are almost completely di�erent. �is
suggests that the set of rhythm features contains enough features to adapt to each audio type
without much loss in performance.

Spectral Spectral features are also of high importance for arousal prediction on all three audio
types, similar to valence prediction. �is means that rhythm and spectral features are the most

C.A.J. Laugs 70



CHAPTER 5. DISCUSSION

Feature type M.I. - All N in Top 250 M.I. - Top 250 Contr. to Top 250 imp. N in top 50

tonal [413] 0.0080 46 (18.4%) 0.0675 11.7% 9
erbbands [405] 0.0044 27 (10.8%) 0.0534 5.4% 3
melbands [405] 0.0054 36 (14.4%) 0.0576 7.8% 5

gfcc [351] 0.0036 27 (10.8%) 0.0363 3.7% 0
mfcc [351] 0.0023 12 (4.8%) 0.0351 1.6% 0

barkbands [288] 0.0049 21 (8.4%) 0.0737 5.8% 5
spectral [252] 0.0375 58 (23.2%) 0.1567 34.2% 18
rhythm [121] 0.0587 14 (5.6%) 0.4937 26% 6
silence [27] -0.0007 0 NaN 0% 0

hfc [9] 0.0040 1 (0.4%) 0.0391 0.1% 0
pitch [9] 0.0047 2 (0.8%) 0.0338 0.3% 0

zerocrossingrate [9] 0.0831 4 (1.6%) 0.1862 2.8% 3
dissonance [9] 0.0080 1 (0.4%) 0.0450 0.2% 0

dynamic complexity [1] -0.0185 0 NaN 0% 0
average loudness [1] 0.1461 1 0.1461 0.5% 1

(A) Music-only audio

Feature type M.I. - All N in Top 250 M.I. - Top 250 Contr. to Top 250 imp. N in top 50

tonal [413] 0.0084 58 (23.2%) 0.0603 13% 12
erbbands [405] 0.0081 37 (14.8%) 0.0947 13% 10
melbands [405] 0.0024 29 (11.6%) 0.0377 4.1% 3

gfcc [351] 0.0016 15 (6.0%) 0.0248 1.4% 0
mfcc [351] 0.0011 12 (4.8%) 0.0296 1.3% 0

barkbands [288] 0.0014 13 (5.2%) 0.0428 2.1% 2
spectral [252] 0.0380 66 (26.4%) 0.1449 35.6% 18
rhythm [121] 0.0625 12 (4.8%) 0.6206 27.7% 3
silence [27] -0.0023 0 NaN 0% 0

hfc [9] 0.0075 1 (0.4%) 0.0723 0.3% 0
pitch [9] 0.0035 2 (0.8%) 0.0235 0.2% 0

zerocrossingrate [9] -0.0006 0 NaN 0% 0
dissonance [9] 0.0241 3 (1.2%) 0.0621 0.7% 1

dynamic complexity [1] 0.0550 1 (0.4%) 0.0550 0.2% 0
average loudness [1] 0.1376 1 (0.4%) 0.1376 0.5% 1

(B) Mixed audio

Feature type M.I. - All N in Top 250 M.I. - Top 250 Contr. to Top 250 imp. N in top 50

tonal [413] 0.0048 54 (21.6%) 0.0411 8.9% 6
erbbands [405] 0.0031 37 (14.8%) 0.0503 7.5% 6
melbands [405] 0.0006 31 (12.4%) 0.0288 3.6% 2

gfcc [351] 0.0008 8 (3.2%) 0.0270 0.9% 0
mfcc [351] 0.0010 6 (2.4%) 0.0310 0.7% 1

barkbands [288] 0.0009 20 (8%) 0.0392 3.1% 1
spectral [252] 0.0445 69 (27.6%) 0.1653 45.7% 23
rhythm [121] 0.0504 12 (4.8%) 0.4999 24% 6
silence [27] 0.0024 2 (0.8%) 0.0280 0.2% 0

hfc [9] 0.0863 3 (1.2%) 0.2613 3.1% 3
pitch [9] 0.0082 2 (0.8%) 0.0183 0.1% 0

zerocrossingrate [9] 0.0378 3 (1.2%) 0.1101 1.3% 1
dissonance [9] 0.0180 3 (1.2%) 0.0573 0.7% 1

dynamic complexity [1] -0.0233 0 NaN 0% 0
average loudness [1] 0.0148 0 NaN 0% 0

(C) Blind-source separated audio

Table 5.7: Importance statistics for arousal per feature type. �e mean importance, relative con-
tribution and number of features are reported. - Note: all importance values are reported in e−2
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important feature groups for both valence and arousal prediction regardless of audio type.
However, spectral features seem to increase in importance on blind-source separated audio

compared to the other two. �e contribution of spectral features to the total importance increases
signi�cantly in this case, with almost half of the ��y most important features being spectral fea-
tures, while the RMSE decreased insigni�cantly from .931 to .928. �is seems to suggest that the
model becomes more reliant on spectral features for blind-source separated audio. Still, spectral
features appear to be highly e�ective for arousal prediction regardless of audio type.

Tonal, erbband, melband and barkband-features Tonal and erbband features are a step be-
low rhythm and spectral features regarding importance, but their contribution is still quite sig-
ni�cant. While their contribution to the total importance is only a fraction of that of rhythm and
spectral, several dominant tonal and erbband features can be found among the ��y most important
features for all audio types.

Melband and barkband features follow the same pa�ern but contribute less overall compared
to tonal and erbband features. �ey become slightly less important on mixed and blind-source
separated audio, meaning that they synergize less with speech presence than other feature types.
However, a couple of melband and barkband features are included among the ��y most important
features for all audio types. �is means that there are also dominant features for arousal prediction
among the melband and barkband feature-set, and are therefore bene�cial to include.

Other features �ere are some interesting things to note regarding these feature groups. It ap-
pears to GFCC features become less important for mixed and blind-source separated audio, sug-
gesting that speech-presence negatively a�ects its arousal prediction capabilities. Silence features
appear to be not important at all. However, we think that silence features should not be excluded if
MiSME recognition is done on audio with possible segments of silence, such as television content.

We also see that high-frequency coe�cient (HFC) features contain three dominant arousal
prediction features for the blind-source separated audio model, which achieved the best RMSE
performance. It is interesting to see that these features are only important for blind-source sepa-
rated audio model. It might be the case that HFC features are robust against noise and inaccuracies
introduced by blind-source separation, or that they can signal the presence of noise to the model
so that it can treat other features di�erently. Still, this shows that HFC features are important for
arousal prediction on blind-source separated audio.

5.2.2 Summary
�e results of the music experiments were not in-line with what we expected. We assumed that
the models would achieve the best performance on music-only audio, because there is no speech-
interference in that scenario. However, the D-NN was able to outperform its music-only perfor-
mance when trained and tested on mixed audio. �e same happened with the Random Forest
model when trained and tested on blind-source separated audio. �is means that both models are
able to more accurately predict valence and arousal on speech-a�ected audio than on music-only
audio.

We speculate that this is caused by the presence of speech forcing the model to drop more
ambiguous features during training in favor of more stable ones, resulting in a be�er general-
izing model. �e D-NN exhibits this bene�t earlier than the RFR due the di�erences in archi-
tecture, which made the D-NN more prone to ambiguous features in the baseline experiments.
�e presence of speech also negatively a�ects useful features, but blind-source separation appears
to decrease this e�ect while keeping the positive e�ect of isolating ambiguous features. �is �-
nally allows the RFR to achieve the best valence and arousal performance of all experiments when
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trained and tested on blind-source separated audio.
We also saw that the Random Forest model performed be�er than the D-NN on all experiments,

suggesting that it is the superior music model for valence-arousal prediction in a MiSME scenario.
However, we can not say for certain that blind-source separation is a bene�cial for valence and
arousal prediction, unlike what we saw for speech. Blind-source separation allowed the Random
Forest model to perform signi�cantly be�er on valence, but it caused the D-NN to perform sig-
ni�cantly worse on arousal. While blind-source separation does not consistently improve results,
it thus appears to be bene�cial for a Random Forest model. �e Random Forest model on blind-
source separated audio was also the best performing model overall, suggesting that blind-source
separation might be necessary to achieve optimal performance.

�e fact that the models were able to achieve such levels of accurate valence and arousal pre-
diction on speech-a�ected audio means that music emotion recognition is de�nitely achievable in
a MiSME scenario.

Regarding the feature importance analysis, many similarities were found between valence and
arousal prediction. First o�, we saw that less than one-��h of the 250 most important features
are shared between all audio types for both valence and arousal prediction. �is suggests that the
dominant features mostly di�er for each audio type, even though similar levels of performance
were achieved by the RFR. However, there did exist a handful of features which were dominant
on all three audio types, unlike what we saw for speech.

Rhythm and spectral features were by far the most important features types for both prediction
tasks, as they accounted for a majority of the dominant features. �is means that rhythm and
spectral features should always be included in the feature set. Tonal and erbband features were
also important for both valence and arousal prediction, but their importance was a step below
that of rhythm and spectral. Melband features were found to be of similar importance for valence
prediction, but not arousal prediction. Finally, among the many other feature groups we saw that
most had a relatively low importance, but they o�en contained at least one dominant features for
either valence or arousal prediction, meaning that they are not useless.

5.3 Answering the research question
We are now �nally able to answer the main research question. To reiterate, it goes as follows:

Can a system be produced which can recognize both the emotion of speech and music in
mixed audio, where both are concurrently present, signi�cantly above chance level?

�e speech emotion recognition experiments showed that performance far above chance-level
could be achieved on mixed audio, with the best performing model achieving an accuracy of 43.1%,
where chance-level was 13%. However, there remained a performance gap between the best mixed
audio model (43.1%) and that model on speech-only audio (61%).

Similarly, the music emotion recognition experiments showed that music emotion recognition
performance could be achieved far above chance-level on mixed audio. Not only were both models
able to signi�cantly outperform chance-level performance on both valence and arousal prediction
on mixed audio, but they also achieved a lower valence and arousal root mean squared error
(RMSE) on either mixed or blind-source separated audio than on music-only audio. �is proves
that a similar level of music emotion prediction can be achieved on mixed audio3 to music-only
audio.

Based on these results we can say that we have successfully created a MiSME system that
achieved above chance-level performance on both the speech and music emotion recognition task.

3with around 25% speech-music overlap
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However, audio-speci�c training was required to achieve these levels of performance. Hence, the
research question can be answered positively.

5.4 Re�ection and future work
�is research has produced various useful insights into MiSME recognition. It proves that both
speech and music emotion recognition models can be created that perform well on mixed audio.
It also showed that blind-source separation is strongly bene�cial for speech emotion recognition,
and to a lesser extent as well for music emotion recognition, along with which common features
are e�ective on mixed audio. Before we can conclude this research there are a couple of things
that should be re�ected upon.

�is research is the �rst to study the problem of recognizing both the emotion of speech and
music from a single mixed audio signal to the best of our knowledge, coined by us as MiSME
recognition. To be more speci�c, we focused on how mixed audio a�ects both recognition tasks
without context, assuming contextual-independence between the speech and music. �is allows
our results to be applicable to many MiSME use cases, as the results are obtained using experiments
where the models could not bene�t from a contextual relationship between speech and music.
However, we had to come up with many solutions for �rst time problems in this research. While
we observe that this research produces many valuable insights, it may be the case that some of the
problems and solutions used were suboptimal or have some implications regarding generalization.

Context-less approach Let us start with the aspect of this research which has the biggest im-
pact, the decision to study MiSME recognition in an environment where there is no relationship
present between the speech and music. In many, possible even every MiSME use case there is a re-
lationship between the music and speech. Television content would be a strong example of this, as
stated before. �is relationship between the two o�en contains valuable (contextual) information.
For a MiSME system to function e�ectively in a real use case it should be able to understand and
use this relationship. However, as stated before, how the relationship between speech and music
takes form is highly speci�c for each use case. We mentioned the example of di�erences between
movie genres.

MiSME recognition is a fairly unexplored problem. It was unknown how both speech and
music emotion recognition behave on mixed audio compared to single-source audio from a ‘low-
level’ perspective. How are dominant speech and music features a�ected? Are they still reliable
on mixed audio? If not, can the model use other features to achieve similar performance to single-
source audio? What kind of performance loss can we expect due to mixed audio? �ese were all
interesting questions which are not speci�c to a use case, and allowed us to gain a be�er under-
standing of MiSME recognition in general. Because of this lack of general knowledge the decision
was made to exclude a ‘context’ within our experiments, which allowed us to answer these ques-
tions.

However, we must stress that this strongly a�ects generalization. Our research shows how
speech and music emotion recognition models and features are a�ected by mixed audio in a general
sense. We think that it is very important to include the contextual relationship between speech
and music in a real-life application. We speculate that it would not only improve the e�ectiveness
of the models, but also produce more descriptive emotion information. We hope that the results
from our research aids others in building MiSME systems for real life application, allowing them to
build a system which performs ‘decently’ without using the context present. �e next step would
be to then develop the system further, ‘optimizing’ it on their context, allowing the model to learn
the relationship between the speech and music for their speci�c use case.

C.A.J. Laugs 74



CHAPTER 5. DISCUSSION

Dataset implications �e usage of RAVDESS, DEAM and Soundtrack also has several implica-
tions regarding the results obtained. �e language spoken in RAVDESS is English. �is means that
our models are optimized for English speech. While we think that similar levels of performance
should be achievable on di�erent languages, this can not be guaranteed. �e same goes for the fact
that RAVDESS only contains two di�erent u�erances4, both quite short and similar. It is unknown
how well our results and models generalize to speech of di�erent length, or with words not seen
in the dataset.

�ere are similar implications regarding the music emotion recognition results. While it is
bene�cial that DEAM consists of music of various genres and Soundtrack of movie soundtracks,
it is still unsure how well the results generalize to di�erent use cases. DEAM’s music stems from
the Free Music Archive, where mostly unknown artists publish their work for free. �is music
might be very di�erent than actual popular music from the same genres. �e same goes for the
movie soundtracks used. It is hard to establish how well the results generalize to various genres of
television content. �ese things should be taken into consideration when generalizing our results
to other use cases.

Speech-music overlap We had to create a mixed speech-music dataset ourselves as we were
unable to �nd a suitable one that excluded a contextual relationship between speech and music.
Mixed audio samples were created by mixing the same speech sample into the music sample with
a 4.5 second windowed interval. �e actual u�erance in the speech samples is between 0.8 and 1.5
second, based on perceptual evaluation. �is means that around 20% to 35% of the music signal is
a�ected by speech if the music duration �ts the windows perfectly. In reality this is not the case,
as the average duration of all music samples is 45.9 seconds, but there are some strong outliers. For
simplicity sake we estimated the average speech-music overlap to be about 25%, a conservative
guess.

While it is hard to say now, and even harder to know beforehand, but it could have been the
case that 25% speech-music overlap was not enough to push the adaptability of the models to
mixed audio to their limits, as similar or even be�er levels of valence and arousal prediction were
achieved on mixed audio. However, we saw that the dominant features used to predict valence
and arousal di�ered strongly between all three audio types. �is suggests that the model had to,
and was able to adapt to the speech presence.

Re�ecting back, a higher overlap rate might have been be�er, but we think that 25% is enough
to prove that music emotion recognition is possible in a MiSME scenario. Our results show that
the music models can adapt to mixed audio with up to 25% speech-music overlap without (much)
performance loss. We think that this amount of overlap is quite representative for many MiSME
scenarios, such as some genres of television content. However, it should not be assumed that the
results generalize to scenarios with higher levels of overlap.

Limited to speculation �is brings us to another aspect that we want to adress, the speculative
nature of some observations mentioned in Section 5.2. It is unclear how the music models were
able to outperform their single-source performance. It raised many questions, as we assumed
that the performance on music-only audio would have been optimal. While we speculate that
the presence of speech helps the models to distinguish between ambiguous and non-ambiguous
features, ultimately resulting in a be�er generalizing model, this remains only speculation. �is
occurrence was not foreseen and there was not enough time and resources le� to explore the cause.
However, we think that this can serve as a good starting point for future research.

4“Kids are talking by the door” and “Dogs are si�ing by the door”
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Feature analysis limitations �e �nal thing that we want to address is the limited scope of the
feature analysis, especially regarding that most observations could only be clari�ed through spec-
ulation. �is was due to time limitations. �ese observations would require signi�cant research
by someone with su�cient expertise to properly answer. Speculation allowed us to at least create
some ‘food for thought’, which hopefully motivates others to study these observations further.

Nevertheless, this research has successfully proven that a MiSME system can be created, with-
out the use of any contextual relationship between the speech and music. Not only has it done that,
which was the main motivation for this research, but we also produced additional insight into the
MiSME recognition problem through the use of multiple models, an in-depth feature importance
analysis, the use of blind-source separation and R128 loudness normalization, the creation of our
own mixed audio dataset and more.

In our opinion this research serves as a solid starting point for understanding the problem
of MiSME recognition. Our results and observations should be able to aid others, including RTL
�e Netherlands, in creating their own MiSME system. In addition to that this research has also
produced many potential topics for future work. How well do more complex neural networks
perform on various MiSME recognitions tasks? How is performance a�ected when there is a
contextual relationship present between the music and speech, for example when developing a
MiSME system for television content? Are models able to use this relationship for more accurate
predictions? And what causes the music models to achieve be�er performance when speech is
present? �ese are just some of the many interesting questions which remained unanswered.
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Conclusion

�is research studied the problem of separate speech and music emotion recognition on audio
where both appear concurrently, coined as MiSME recognition. �is research was done in collab-
oration with RTL �e Netherlands, as they desire to create such a system. �e goal was to not
only prove that a ‘functioning’ MiSME system can be created, but also to gain as much insight
as possible into MiSME recognition, laying a foundation for others to work with in the future.
�e MiSME system was deemed ‘functional’ if it could do both speech and music emotion recog-
nition signi�cantly above chance-level on any form of mixed audio. �e decision was to study
MiSME recognition from a general perspective by excluding any contextual relationship between
the speech and music. �is allowed us to gain insight into how speech and music emotion recog-
nition are a�ected by mixed audio regardless of context, making the results applicable to all kinds
of future use cases.

�e MiSME system consisted of separate speech and music emotion recognition models. A
blind-source separation component was included in some version of the MiSME system because we
believed it could aid the models with emotion recognition on mixed audio. �e speech and music
emotion recognition capabilities of the system were tested with a separate set of experiments.
�ese experiments were various combinations of training and testing on three di�erent audio
types: speech-only or music-only audio, mixed audio and blind-source separated audio. A mixed
speech-music dataset was created speci�cally for the experiments, with an average speech-music
overlap of 25%.

�e speech experiments showed that speech-only trained models were incapable of speech
emotion recognition on both mixed and blind-source separated audio, as accuracy degraded to
near chance level. Training models on mixed audio resulted in above chance-level performance.
However, the inclusion of blind-source separation appeared to be highly bene�cial, as the models
saw a signi�cant increase in accuracy when including it in their pipeline. �e results thus proved
that a functioning speech emotion recognition model for mixed audio can be created, but there
remained a performance gap compared to speech-only audio.

�e music experiments showed that music-only trained models were also incapable of music
emotion recognition on both mixed and blind-source separated audio, as performance was around
chance-level. However, something unexpected occurred when the models were trained and tested
on either mixed or blind-source separated audio. One model, the Deep Neural Network, was
able to achieve signi�cantly be�er performance on mixed audio than on music-only audio. �e
other model, a Random Forest model, was able to do the same when blind-source separation was
included. We assumed that the performance on music-only audio would have been ‘optimal’, as
it does not su�er from speech interference, but it appears that that is not the case. We speculated
that the presence of speech forces the music models to drop more ambiguous features in favor of
less ambiguous ones, resulting in a be�er generalizable model. Regardless of this occurrence the
results show that music emotion recognition can be done equal to, or even be�er than, music-only
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audio on mixed audio.
�e results thus show that both speech and music emotion recognition can be done far above

chance-level on mixed audio, proving that a ‘functioning’ MiSME system can be created.
In addition a speech and music feature importance analysis was performed, which included

many commonly used speech and music features. It showed that the dominant features for each
audio type di�ered almost completely, for both speech and music emotion recognition. �is means
that vastly di�erent speech and music features are optimal for MiSME recognition. We also iden-
ti�ed which type of speech and music features are of high importance for MiSME recognition, and
which are not.

To conclude this research: we have proven that a functioning MiSME system can be created,
as we were able to create one that performed far above chance-level on both the speech and music
emotion recognition task. �e knowledge produced in this research regarding MiSME recognition,
through the results, multiple feature analyses, the creation of the �rst MiSME dataset and more,
should allow others to create a MiSME system of their own, including RTL �e Netherlands. How-
ever, we have only explored the surface of the MiSME recognition problem space. We can only
hope that this research can serve as a starting point for future research, hopefully motivating oth-
ers to study more speci�c or complex problems and, of course, to create MiSME systems of their
own.
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Appendix A

Music experiments - Hexbin heatmaps

A set of six valence- and arousal heatmaps were produced that plot the predictions against the
actual ground truth values. �e heatmaps depict the Random Forest- and Deep Neural Network
model on experiment A, D and F (see Table 4.6) and the Random Forest model using the top 50
most important valence features and top 100 most important arousal features, the optimal feature
set.

�e bin-size was set to 0.25. �e color mapping was capped to 120 samples, but there are three
bins with outliers. Using the full range would reduce the readability of these heat-maps, as they
would make the lower bins less visually distinctive. �ese outliers are reported separately instead.
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Figure A.1: �e RFR using the 50 most important valence features and 100 most important arousal
features on BSS audio - RMSE: .84, .857
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(a) Random Forest Regressora - RMSE: .921, .934

a�e strong yellow bin at (5.5, 5.5) in the arousal heatmap has an value of 156 samples
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(b) Deep Neural Network - RMSE: .978, 1.024

Figure A.2: experiment A (Table 3.1)
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(a) Random Forest Regressor - RMSE: .942, .931
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(b) Deep Neural Network - RMSE: .947, .96

Figure A.3: experiment D (Table 3.1)
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(a) Random Forest Regressora - RMSE: .909, .928

a�e strong yellow bin in the valence heatmap (3.3, 4.2) has an value of 136 samples and the strong yellow bin in
the arousal heatmap (5.6, 5.6) has an value of 130 samples, both outliers
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(b) Deep Neural Network - RMSE: .943, .979

Figure A.4: experiment F (Table 3.1)
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Appendix B

Feature importance analysis - Speech

0.002 0.000 0.002 0.004 0.006
Permutation importance

1. logMelFreqBand_sma_de[5]_linregc1
2. F0final_sma_de_iqr1-3

3. F0final_sma_de_linregc1
4. F0final_sma_de_skewness

5. voicingFinalUnclipped_sma_upleveltime90
6. F0final_sma_de_quartile3
7. jitterLocal_sma_quartile2

8. logMelFreqBand_sma_de[6]_linregc1
9. F0finEnv_sma_de_skewness

10. jitterLocal_sma_quartile1
11. F0finEnv_sma_de_kurtosis

12. logMelFreqBand_sma[2]_stddev
13. F0final_sma_linregerrA

14. F0finEnv_sma_de_upleveltime90
15. pcm_fftMag_mfcc_sma[0]_percentile1.0

16. logMelFreqBand_sma[6]_linregerrA
17. F0final_sma_skewness

18. logMelFreqBand_sma[1]_kurtosis
19. lspFreq_sma[1]_quartile1

20. logMelFreqBand_sma_de[7]_linregc1
.......

1578. pcm_fftMag_mfcc_sma_de[0]_linregerrQ
1579. pcm_fftMag_mfcc_sma_de[13]_stddev

1580. lspFreq_sma[3]_percentile99.0
1581. logMelFreqBand_sma[2]_maxPos

1582. logMelFreqBand_sma[6]_quartile2

(a) Speech-only audio

0.002 0.000 0.002 0.004
Permutation importance

1. logMelFreqBand_sma[1]_maxPos
2. logMelFreqBand_sma[5]_percentile99.0

3. logMelFreqBand_sma[2]_maxPos
4. logMelFreqBand_sma[3]_percentile99.0

5. pcm_fftMag_mfcc_sma[14]_quartile3
6. pcm_fftMag_mfcc_sma_de[6]_skewness

7. pcm_fftMag_mfcc_sma[8]_linregc2
8. logMelFreqBand_sma_de[0]_skewness

9. voicingFinalUnclipped_sma_de_pctlrange0-1
10. shimmerLocal_sma_de_linregerrA

11. pcm_fftMag_mfcc_sma[1]_percentile99.0
12. lspFreq_sma[3]_kurtosis

13. pcm_fftMag_mfcc_sma[7]_upleveltime75
14. pcm_fftMag_mfcc_sma_de[7]_iqr1-2

15. pcm_fftMag_mfcc_sma[5]_linregerrQ
16. pcm_fftMag_mfcc_sma[3]_pctlrange0-1

17. pcm_fftMag_mfcc_sma_de[6]_stddev
18. logMelFreqBand_sma[5]_upleveltime90

19. lspFreq_sma_de[1]_quartile2
20. logMelFreqBand_sma_de[1]_quartile2

.......
1578. lspFreq_sma[3]_percentile99.0

1579. pcm_fftMag_mfcc_sma[4]_kurtosis
1580. pcm_fftMag_mfcc_sma_de[13]_percentile1.0

1581. logMelFreqBand_sma[3]_maxPos
1582. pcm_fftMag_mfcc_sma[6]_kurtosis

(b) Mixed audio

0.002 0.000 0.002 0.004 0.006
Permutation importance

1. F0final_sma_de_quartile2
2. logMelFreqBand_sma[5]_percentile99.0

3. F0final_sma_quartile1
4. logMelFreqBand_sma[1]_maxPos

5. logMelFreqBand_sma[6]_percentile99.0
6. F0final_sma_iqr1-3

7. logMelFreqBand_sma[4]_percentile99.0
8. F0final_sma_skewness

9. lspFreq_sma[3]_minPos
10. logMelFreqBand_sma[3]_percentile99.0

11. F0final_sma_kurtosis
12. F0final_sma_iqr2-3

13. pcm_fftMag_mfcc_sma_de[14]_percentile99.0
14. logMelFreqBand_sma[0]_percentile99.0

15. pcm_fftMag_mfcc_sma_de[14]_pctlrange0-1
16. F0final_sma_de_linregc2
17. F0final_sma_de_kurtosis

18. F0final_sma_de_iqr1-3
19. jitterDDP_sma_quartile1

20. pcm_fftMag_mfcc_sma_de[1]_maxPos
.......

1578. pcm_loudness_sma_amean
1579. logMelFreqBand_sma[6]_pctlrange0-1

1580. pcm_fftMag_mfcc_sma_de[7]_linregerrQ
1581. F0finEnv_sma_iqr1-2

1582. lspFreq_sma[0]_quartile1

(c) Blind-source separated speech audio

Figure B.1: �e most important speech features for the Random Forest Model on all three audio
types
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Figure B.2: �e most strongly di�ering speech features importance-wise between any two audio
types for the Random Forest model
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Appendix C

Feature importance analysis - Music
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(b) Music-only audio - Arousal
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Figure C.1: �e most important- and unimportant music features for valence- and arousal predic-
tion for the Random Forest Model on all three audio types
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Figure C.1: Continuation of Figure C.1

0.1 0.0 0.1 0.2
Difference in importance

rhythm.beats_count
rhythm.onset_rate

lowlevel.spectral_flux.min
tonal.key_scale

lowlevel.melbands.median.29
lowlevel.erbbands.min.0

lowlevel.average_loudness
lowlevel.spectral_contrast_valleys.dmean2.2

tonal.hpcp.median.33
lowlevel.spectral_entropy.median

.......
lowlevel.erbbands.median.25
lowlevel.spectral_rolloff.max

tonal.hpcp.dvar2.11
lowlevel.melbands.median.30
lowlevel.melbands.median.31
lowlevel.melbands.median.26

lowlevel.spectral_centroid.dmean
lowlevel.barkbands.median.26

lowlevel.spectral_complexity.dmean2
lowlevel.spectral_complexity.dmean

(a) Valence - Speech-only vs. Mixed
0.10 0.05 0.00 0.05

Difference in importance

rhythm.beats_count
lowlevel.spectral_entropy.median

lowlevel.spectral_flux.median
rhythm.onset_rate

lowlevel.spectral_contrast_valleys.median.4
lowlevel.erbbands.min.38
tonal.chords_number_rate

lowlevel.spectral_energy.min
lowlevel.erbbands.min.39
lowlevel.spectral_rms.min

.......
tonal.hpcp.min.21

lowlevel.zerocrossingrate.dvar2
lowlevel.barkbands.min.25

lowlevel.spectral_complexity.dmean2
rhythm.bpm_histogram_first_peak_weight.mean

rhythm.bpm_histogram_first_peak_weight.max
rhythm.bpm_histogram_first_peak_weight.min

rhythm.bpm_histogram_first_peak_weight.median
lowlevel.spectral_rolloff.max

lowlevel.spectral_complexity.dmean

(b) Arousal - Speech-only vs. Mixed

0.10 0.05 0.00 0.05
Difference in importance

lowlevel.spectral_complexity.dmean
lowlevel.melbands.median.30
lowlevel.erbbands.median.27

tonal.hpcp.dvar.11
tonal.hpcp.dvar2.11
rhythm.danceability

lowlevel.spectral_contrast_valleys.dvar2.1
lowlevel.spectral_contrast_coeffs.dmean.3

lowlevel.melbands.dmean2.23
lowlevel.erbbands.mean.22

.......
lowlevel.spectral_contrast_valleys.dmean.2

lowlevel.zerocrossingrate.dvar
lowlevel.melbands_flatness_db.min

tonal.key_scale
lowlevel.spectral_contrast_valleys.dmean.5

lowlevel.erbbands.min.0
lowlevel.average_loudness
lowlevel.spectral_flux.min

rhythm.onset_rate
rhythm.beats_count

(c) Valence - Mixed vs. BSS
0.05 0.00 0.05 0.10 0.15

Difference in importance

lowlevel.spectral_complexity.dmean
lowlevel.hfc.min

lowlevel.spectral_complexity.dmean2
rhythm.beats_count

lowlevel.spectral_rms.min
lowlevel.spectral_decrease.max

lowlevel.erbbands.min.39
lowlevel.spectral_entropy.mean

lowlevel.zerocrossingrate.dmean
lowlevel.barkbands.median.20

.......
tonal.hpcp.min.3

lowlevel.erbbands.min.36
lowlevel.erbbands.min.34
tonal.chords_number_rate
lowlevel.erbbands.min.35
lowlevel.erbbands.min.38

lowlevel.spectral_contrast_valleys.median.4
rhythm.onset_rate

lowlevel.spectral_entropy.median
lowlevel.spectral_flux.median

(d) Arousal - Mixed vs. BSS

Figure C.2: �e most strongly di�ering music features importance-wise between any two audio
types for the Random Forest model regarding valence- and arousal prediction
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Figure C.2: Continuation of Figure C.2
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Appendix D

Music experiments - Diebold Mariano
tests

Experiment A Experiment B P-value
Model Model Valence Arousal
RFR - SS (A) DNN - SS (A) 6.76e-14 1.58e-26
RFR - SS (A) RFR - SM (B) 1.19e-131 1.15e-142
DNN - SS (A) DNN - SM (B) 1.33e-197 7.05e-195
RFR - SS (A) RFR - SB (C) 7.44e-45 9.47e-76
RFR - SM (B) RFR - SB (C) 2.8-50 6.44e-45
DNN - SS (A) DNN - SB (B) 1.42e-32 1.91e-19
DNN - SM (B) DNN - SB (C) 1.51e-138 2.12e-147
RFR - SS (A) RFR - MM (D) 6.28e-07 0.475
DNN - SS (A) DNN - MM (D) 3.374e-12 1.429e-29
RFR - SS (A) RFR - BB (F) 0.001 0.142
RFR - MM (D) RFR - BB (F) 8.124e-14 0.467
DNN - SS (A) DNN - BB (F) 6.782e-15 3.231e-21
DNN - MM (D) D-NN - BB (F) 0.526 0.005

Table D.1: Diebold-Mariano tests done on the results obtained from the six main music exper-
iments, as described in Section 4.3.3. P-values < 0.005 are considered signi�cant, meaning that
the RMSE performance between the two compared experiments is signi�cantly di�erent from
each other considering the dataset used. Each experiment is notated using the following format:
<model type> <le�er indicating training audio type><le�er indicating testing audio type> (Ex-
periment from Table 3.1), for which the following le�ers are used: S = single-source, M = mixed
source, B = blind-source separated. E.g., RFR - SB (C) means the Random Forest model trained on
single-source audio, but tested on blind-source separated audio. �at would be experiment C, see
Table 3.1
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Appendix E

Music experiments - Shared features
between all three audio types

• lowlevel.melbands �atness db.median
• lowlevel.melbands �atness db.min
• lowlevel.melbands.median.29
• rhythm.onset rate
• rhythm.beats count
• lowlevel.barkbands �atness db.median
• lowlevel.spectral contrast valleys.dmean.2

• lowlevel.spectral contrast valleys.dmean.3
• lowlevel.spectral contrast valleys.dmean.1
• tonal.hpcp.dmean2.14
• tonal.hpcp.dvar.15
• tonal.hpcp.dmean2.11
• lowlevel.spectral complexity.dmean2
• lowlevel.spectral complexity.dmean

Figure E.1: �e fourteen shared features among the 50 most important features for valence pre-
diction on all audio types

• rhythm.beats count
• rhythm.onset rate
• tonal.chords number rate
• lowlevel.spectral complexity.dmean
• lowlevel.spectral entropy.mean

• lowlevel.spectral entropy.median
• lowlevel.spectral contrast valleys.dmean2.2
• lowlevel.spectral contrast valleys.dvar.1
• lowlevel.spectral contrast valleys.median.4
• lowlevel.spectral �ux.median

Figure E.2: �e ten shared features among the 50 most important features for arousal prediction
on all audio types
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