
Faculty of Science

Faculty of Geosciences

Inverse theory in paleomagnetism

Bachelor Thesis

Annemarie Koop

Mathematics // Earth Sciences

Supervisors:

Dr. van Leeuwen
Mathematical Institute

Dr. de Groot
Department of Earth Sciences

June 10, 2018



Abstract

In the field of paleomagnetism, a technique called micromagnetic tomography is developed to determine
the magnetizations of individual particles in magnetic rock (A. Béguin, 2016 and de Groot et. al, 2018).
Micromagnetic tomography applies an inversion to a combined data set of information on the locations
and shapes of magnetic particles in a sample of magnetic rock and measurements of the magnetic flux
density at the surface of that sample. The result of the inversion is the magnetization per particle.
A. Béguin (2016) successfully inverted magnetizations of magnetic grains in a synthetic sample. Here,
inverse theory is explained and magnetizations of magnetic grains in a natural sample of lava are inverted.
About half of the magnetizations of the inversion result are unrealistically high, which seem to be the
small particles and particles which are overlapped vertically by other particles. The latter is backed up by
creating simple models in Matlab and examining the condition number and covariance matrix. It appears
the covariance matrix can be used to detect unreliable particles before inversion.
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1 INTRODUCTION 1

1 Introduction

”The geomagnetic field acts both as an umbrella, shielding us from cosmic radiation
and as a window, offering one of the few glimpses of the inner workings of the Earth.
Ancient records of the geomagnetic field can inform us about geodynamics of the early
Earth and changes in boundary conditions through time.”[12]

Research on the ancient records of the geomagnetic field is done in the field of paleomagnetism. In paleomag-
netic research, the magnetic properties of a magnetized rock such as lava are examined by measuring flux
of bulk samples. These measurements do not take into account that a wide variety of magnetic particles is
present in the rock sample. Some of those behave unreliably with respect to magnetization, contaminating
the measurements. In order to filter out unwanted particles, magnetizations of individual magnetic particles
need to be established. A new technique called micromagnetic tomography offers a solution for this [2].
With micromagnetic tomography, data on the locations, sizes and shapes of particles and data on the mag-
netic flux density of a rock sample are assembled, after which the magnetization vector per particle can be
determined with an inversion scheme. For a synthetic sample, this inversion successfully generated these
magnetizations [2]. The next step is to apply it on data of a natural sample of magnetic rock.

In this thesis, we start in chapter 2 with explaining the method that leads to the mathematical model
used for inversion. The model leads to a linear inverse problem, which is discussed in chapter 3: we examine
existence and uniqueness of solutions in inverse theory with Singular Value Decomposition, the pseudo-inverse
and the least squares solution. We look at a measurement error in our results and both the sensitivity of the
solution and the associations between magnetization-components. These are represented by the condition
number and covariance matrix respectively. With a Matlab-code, simple situations of magnetic particles
beneath a grid of sensors are modeled, exploring the condition number and covariance matrix. In chapter
4, we gather the necessary data for inversion of a natural sample of lava and use inversion to determine the
magnetizations of individual particles in the sample. Chapter 5 examines these results, looking for relations
and conclusions.
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2 Method

As discussed in the introduction, the aim is to determine the individual magnetizations of magnetic grains
in a sample of magnetic rock. This chapter describes the method used to gather the necessary data on the
magnetic flux of a magnetic particle. We start by describing how the flux of a magnetic cuboid is measured
and what information on the cuboid is needed for this. We expand with describing how the measurements
change when we have more cuboids contributing to the flux. Then, we elaborate on the case of multiple (not
cuboid-shaped) magnetic particles, which would be the situation with a natural sample of magnetic rock.
Also, we add multiple measurement points to that situation. In the end, we find a model with which we can
further the search for the individual magnetizations in chapter 3.
This chapter is based on the supporting materials of de Groot et al. (2018). In these materials, the scanner
used for flux measurements is a Superconducting Quantum Interference Device (SQUID) Microscope. The
description of the way the flux is measured in the following sections therefore applies to this scanning device.

2.1 Measuring flux of one magnetic cuboid

We consider a cuboid-shaped particle with magnetization M = (mx,my,mz) which we assume to be homo-
geneous. Its edges measure 2a, 2b and 2c and it has center ρ = (ξ, η, ζ), we call the total border of the cuboid
∂C. The cuboid is aligned with the coordinate system. We have a rectangular sensor ∂S in the x− y-plane,
with sides measuring 2∆x and 2∆y and center ρs = (ξs, ηs, ζs). See figure 1.

Figure 1: Setting of sensor and cuboid.

Now, let’s say we have the vector (x′′, y′′, 0) originating from the center of the sensor ρs. The location it

reaches within the sensor is r′′ =

x′′ + ξs
y′′ + ηs
ζs

. We have the vector (x′, y′, z′) originating from the center of

the cuboid ρ to the point r′ =

x′ + ξ
y′ + η
z′ + ζ

 on the border of C. The distance between r′′ and r′ is |r′′ − r′|.

See figure 2.
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Figure 2: Setting of sensor and cuboid with vectors to r′ and r′′.

The magnetization at any point r′ on ∂C creates a magnetic potential Φ(r′′) at point r′′ on the sensor.
Looking at the whole border of C (so at all possible locations of r′), we get the superposition integral for
potential [8]:

Φ(r′′) =
1

4π

∫
∂C

M · dS′

|r′′ − r′|
.

For the magnetic induction at r′′, we have

B(r′′) = −µ0∇Φ(r′′).

Now, in order to find the magnetic flux A measured by the sensor with center ρs we need this magnetic
induction for all possible locations of r′′ on the sensor, so for the whole sensor ∂S:

A(ρs) =

∫
∂S

B(r′′)dx′′dy′′

=

∫
∂S

−µ0∇Φ(r′′)dx′′dy′′

= −µ0

∫
∂S

∂

∂z′′
Φ(r′′)dx′′dy′′ (sensor measures flux in z-direction)

= −µ0

4π

∂

∂z′′

∫
∂S

∫
∂C

M · dS′

|r′′ − r′|
dx′′dy′′. (1)

We have just described how we can find the flux of a magnetic cuboid when we have information on the
dimension and location of both the cuboid and the sensor. In the next section, we will look at the situation
of multiple magnetic cuboids and thereafter multiple particles.

2.2 Measuring flux of multiple magnetic particles

First, we are going to rewrite formula 1. Let’s name two opposite faces of the cuboid in the x-direction X1

and X2 (figure 3) and look at face X1 first. On this face, x′ = a1 and for M · dS′ of formula 1 we have

1You can also choose x′ = −a and further on x′ = a, switching these will not make a difference in the end.
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M · dS′ =

mx

my

mz

 ·
dy′dz′0

0

 = mxdy
′dz′.

Figure 3: Faces X1 and X2 of the cuboid.

Now, for the flux of face X1 we get

AX1
(ρs) = −µ0

4π

∂

∂z′′

∫
∂S

∫
∂C

mx

|r′′ − r′|x′=a
dy′dz′dx′′dy′′.

For the other face X2 we have x′ = −a and

M · dS′ =

mx

my

mz

 ·
−dy′dz′0

0

 = −mxdy
′dz′,

so for the flux of face X2 we get

AX2
(ρs) = −µ0

4π

∂

∂z′′

∫
∂S

∫
∂C

−mx

|r′′ − r′|x′=−a
dy′dz′dx′′dy′′.

As we want the total flux, we need to add the fluxes of these faces:

AX(ρs) = AX1
(ρs) +AX2

(ρs)

= −µ0

4π

∂

∂z′′

∫
∂S

∫
∂C

mx

|r′′ − r′|x′=−a
dy′dz′dx′′dy′′ +−µ0

4π

∂

∂z′′

∫
∂S

∫
∂C

−mx

|r′′ − r′|x′=−a
dy′dz′dx′′dy′′

= −µ0mx

4π

∂

∂z′′

(∫
∂S

∫
∂C

1

|r′′ − r′|x′=a
dy′dz′dx′′dy′′ −

∫
∂S

∫
∂C

1

|r′′ − r′|x′=−a
dy′dz′dx′′dy′′

)
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= −µ0mx

4π

∂

∂z′′

∫
∂S

∫
∂C

1

|r′′ − r′|
dy′dz′dx′′dy′′

∣∣∣∣x′=a

x′=−a

=

(
−µ0

4π

∂

∂z′′

∫ ∆y

−∆y

∫ ∆x

−∆x

∫ c

−c

∫ b

−b

1

|r′′ − r′|
dy′dz′dx′′dy′′

∣∣∣∣x′=a

x′=−a

)
·mx

= WXmx.

In the same way, we can find alike formulas when looking at opposite faces in the y-direction and in the
z-direction:

AY (ρs) =

(
−µ0

4π

∂

∂z′′

∫ ∆y

−∆y

∫ ∆x

−∆x

∫ c

−c

∫ a

−a

1

|r′′ − r′|
dx′dz′dx′′dy′′

∣∣∣∣y′=b
y′=−b

)
·my

= WYmy,

and

AZ(ρs) =

(
−µ0

4π

∂

∂z′′

∫ ∆y

−∆y

∫ ∆x

−∆x

∫ b

−b

∫ a

−a

1

|r′′ − r′|
dx′dy′dx′′dy′′

∣∣∣∣z′=c
z′=−c

)
·mz

= WZmz.

Adding the fluxes of the three sets of opposing faces results in the flux of the total border of one cuboid, so
formula 1 becomes

A(ρs) = AX(ρs) +AY (ρs) +AZ(ρs)

= WXmx +WYmy +WZmz.

Let us now assume that we have K magnetic cuboids. For every cuboid we have different a, b, c, ρ and M
and so different WX ,WY ,WZ ,mx,my and mz. Now, the total flux measured by the sensor is the sum of the
fluxes of all K cuboids:

A(ρs) =

K∑
j=1

(
AXj (ρs) +AYj (ρs) +AZj (ρsi)

)

=

K∑
j=1

(
WXjmxj +WYjmyj +WZjmzj

)

=

K∑
j=1

WXjmxj +

K∑
j=1

WYjmyj +

K∑
j=1

WZjmzj . (2)

The K magnetic cuboids represent the natural situation of K magnetic particles. However, natural magnetic
particles are not cuboid-shaped: in a natural sample of magnetic rock we will encounter particles with
all different dimensions. For information on these dimensions, tomographic imaging can be used. After
determining dimensions and locations, every particle can be partitioned into non-overlapping cuboids (see
chapter 4). This means we have cuboids again and so our calculations still hold. Partitioning K magnetic
particles in N ≥ K cuboids changes formula 2 to

A(ρs) =

N∑
j=1

WXjmxj +

N∑
j=1

WYjmyj +

N∑
j=1

WZjmzj .

Up until now, we have assumed the scanner used to measure the magnetic flux has one sensor. However, the
SQUID scanner used contains a grid of multiple sensors. In the next section, we will look at the total flux of
all cuboids measured by all these sensors.
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2.3 Inverse model

We have a scanner with a grid of P sensors. For every sensor we have a different ρs and so again different
WX ,WY ,WZ (∆x,∆y are the same for all sensors). In matrix form, formula 2.2 for the total flux of all N
cuboids measured by sensor i with i = 1, ..., P is

A(ρsi) =
[
WXi1 · · · WXiN

] mx1

...
mxN

+
[
WYi1 · · · WYiN

] my1
...

myN

+
[
WZi1 · · · WZiN

] mz1
...

mzN

 .
The scanner gives us P measurement results φi = A(ρsi) and so the output φ of the scanner is

φ =

φ1

...
φP

 =

WX11
· · · WX1N

...
. . .

...
WXP1

· · · WXPN


mx1

...
mxN

+

WY11
· · · WY1N

...
. . .

...
WYP1

· · · WYPN


my1

...
myN

+

WZ11
· · · WZ1N

...
. . .

...
WZP1

· · · WZPN


mz1

...
mzN


= LX

mx1

...
mxN

+ LY

my1
...

myN

+ LZ

mz1
...

mzN


= LmN .

In this model φ = LmN , every cuboid is treated as a single magnetic item with its own magnetization.
However, we have not N but K ≤ N different magnetizations, so instead of mN , in the model we want to
have

m =
[
mx1

· · · mxK
my1 · · · myK mz1 · · · mzK

]T
.

We can get this by using a 3N × 3K-matrix B which multiplied on the right by m gives mN . For example,
let’s say we have N = 3 and K = 2 with cuboid 1 and 3 belonging to the same particle:

mN =



mx1

mx2

mx3

my1

my2

my3

mz1

mz2

mz3


, m =


mx1 = mx3

mx2

my1 = my3

my2

mz1 = mz3

mz2

 =


m̄x1

m̄x2

m̄y1

m̄y2

m̄z1

m̄z2

 .

Then, with matrix B we get

Bm =



1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 1 0




m̄x1

m̄x2

m̄y1

m̄y2

m̄z1

m̄z2

 =



mx1

mx2

mx3

my1

my2

my3

mz1

mz2

mz3


= mN .
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In general, B contains only elements 1 and 0 to make sure the elements of m are duplicated the right amount
of times in the right order to get mN .
Taking Q = LB, the model we have becomes

φ = LmN = LBm = Qm,

where Q is a P × 3K-matrix consisting of (summands of) WXij
,WYij

and WZij
with i = 1, ..., P and

j = 1, ..., N .

We have now found a way to express the flux measurements φ in two components Q and m, of which the
latter contains the desired magnetization per particle. In this model φ = Qm, the elements of the P × 3K-
matrix Q are linear 2, so what we have now is a linear inverse problem. In the next chapter, we will elaborate
on this and how m can be determined.

2For elaboration on the elements of Q, please refer to the supporting materials of de Groot et al. (2018).
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3 Inverse problem

In the previous chapter, we have found the model φ = Qm, from which we want to find m. If we knew Q was
invertible, this would be easily done. However, the chances are high that it is not (P � 3K, see chapter 5),
so we need to find another way to determine m. This is an inverse problem, which according to Hadamard
(1902 and 1932) is well-posed when a solution exists, this solution is unique and when change in the initial
conditions results in change of equal proportion in the solution. In this chapter, we will focus on general
inverse theory before applying it to our model in section 3.3. For the first two conditions of Hadamard,
we introduce Singular Value Decomposition in section 3.1. With this SVD, we then find out in section 3.2
whether and when these conditions are met for an inverse problem and we discover a pseudo-inverse, which
gives us a solution for this problem. In section 3.3, we explore another method to find a solution, which we
show is a special case of the pseudo-inverse. We apply this to our model from chapter 2. The third condition
of Hadamard will be examined in section 3.4, where we introduce the condition number to examine the
stability and thus reliability of our model. When there is a measurement error which is normally distributed,
we find a covariance matrix of the inversion result. This matrix allows us to assess the relationships between
the vector-components of the magnetizations of all magnetic particles. For both the condition number and
covariance matrix, we show examples of possible situations which are modeled with Matlab.

This chapter is largely based on chapter 4 and chapter 6 of the book A First Course in Numerical Methods
by U.M.Ascher and C.Greif (2011).

3.1 Singular Value Decomposition

Any m× n matrix M can be decomposed as follows:

M = UΣV T ,

where U , Σ and V are specific matrices. This is called the Singular Value Decomposition, or the SVD.

Σ is an m × n matrix which consists of the singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0 on (the first part
of) its main diagonal, with all other elements being zero:

Σ =



σ1

σ2

. . .

σr


.

The singular values σi with i = 0, ..., r of M are the square roots of the eigenvalues λi of MTM . r satisfies
r = rank(M) ≤ min(m,n).
V is an orthogonal n×n matrix whose columns are the eigenvectors of MTM , and U is an orthogonal m×m
matrix whose columns are the eigenvectors of MMT . This can be seen by using the SVD of M :

MTM = (UΣV T )TUΣV T MMT = UΣV T (UΣV T )T

= V ΣTUTUΣV T = UΣV TV ΣTUT

= V ΣTΣV T = UΣΣTUT , (orthogonality of U and V )

so

MTMV = V ΣTΣV TV MMTU = UΣΣTUTU

= V ΣTΣ = UΣΣT . (orthogonality of U and V )
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What we have now are two eigenvalue problems and so the columns of V and U are the eigenvectors of MTM
and MMT , respectively.

A visualization of the SVD looks as follows:

Bear in mind that although in this visualization it looks like m > n, this does not need to be the case.
While this is where the theory of U.M.Ascher and C.Greif (2011) ends, we would like to simplify the SVD.
We know that Σ has m − r rows and n − r columns which contain only zeros. This means that when U is
multiplied by Σ, we get an m× n matrix whose last n− r columns contain only zeros:

When this resulting matrix is then multiplied by V , we get an m × n matrix which by the definition of the
SVD equals M :

As can be seen, the elements of the last m − r columns of U do not occur in M . The same goes for the
elements of the last n − r rows of V T . We can take these columns and rows out of U and V T respectively,
which results in a simplified SVD
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M = UrΣrV
T
r ,

in which Ur is the m×r matrix consisting of the first r columns of U, Σr is the r×r matrix with the singular
values on its main diagonal and V Tr is the r × n matrix consisting of the first r rows of V T :

As Σ as opposed to Σr can not be inverted (unless Σ = Σr), it comes in handy to use this simplified version
of the SVD later on.

3.2 Pseudo-inverse

We consider the linear system of equations Ax = b with A ∈ Rm×n,x ∈ Rn and b ∈ Rm for which we want
to find x. The first two conditions of Hadamard for this inverse problem are that a solution needs to exist
and this solution needs to be unique. We examine both conditions in this section.

First, we want to know whether a solution exists.
When we assume we can not find an x which satisfies Ax = b, this means that b is not in the range of A. We
then want to find a solution for Ax = b̃ with b̃ ∈ range(A) as close to b as possible, to optimally approximate
the desired solution x. We use the orthogonal projection of b onto the range of A for this. From the previous
section we know Ur is the orthonormal basis of range(A), so we get [6]

b̃ = UrU
T
r b = Ax.

We know that we can decompose A to A = UrΣrV
T
r with Singular Value Decomposition, which now gives us

Ax = UrU
T
r b

UrΣrV
T
r x = UrU

T
r b

ΣrV
T
r x = UTr b

V Tr x = Σ−1
r UTr b. (3)

This system of equations guarantees solutions for x, satisfying the first condition of Hadamard.

We now want to find such a solution and determine whether it is unique.

When VrV
T
r = I, we find

VrV
T
r x = VrΣ

−1
r UTr b

x = VrΣ
−1
r UTr b.

When VrV
T
r 6= I, we can not do this and need to find another way to find a solution.

As Vr is an (orthonormal) basis in a subspace of Rn, Vrx̃ is in that subspace for any x̃ ∈ Rr. As (I−VrV Tr )y
is in the orthogonal complement of that subspace for any y ∈ Rn, a solution x ∈ Rn can be written as [6]
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x = Vrx̃+ (I − VrV Tr )y. (4)

As y can be chosen arbitrarily, it makes sense to choose y = 0 for sake of simplicity, which leaves us with
x = Vrx̃. We then have

Σ−1
r UT b = V Tr x = V Tr Vrx̃ = x̃. (recall equation 3)

Combining this with equation 4 (with y = 0), we get

x = VrΣ
−1
r UT b, (5)

which is the same solution as when VrV
T
r = I.

According to R. Penrose (1955), for every matrix A there exists a unique generalized inverse A†. We call this
the pseudo-inverse. We found this pseudo-inverse for any matrix A:

A† = VrΣ
−1
r UTr .

It follows that solution 5 is the unique solution for Ax = b.

The first two conditions of Hadamard are now met: a solution for the problem exists and this solution
is unique. The unique solution can also be found using Least Squares Approximation, which we explore in
the next section.

3.3 Least squares problem

Again, we consider the linear system of equations Ax = b with A ∈ Rm×n,x ∈ Rn and b ∈ Rm for which
we want to find x. If we knew A was invertible, we could easily multiply both the left and right side of the
model by A−1 to get the solution x = A−1b. Unfortunately, we do not know whether the inverse exists. We
are going to determine the best possible solution or the best-fitting x for this model. This is done by finding
the minimal difference between Ax and b, or

min
x
||b−Ax||2.

This is called the least squares problem. We rewrite this to

min
x

1

2
||b−Ax||22 = min

x
Ψ(x).

Squaring the norm and dividing it by 2 will yield the same solution, rewriting the least squares problem as
such will be more convenient as will be pointed out later on.
We have

Ψ(x) =
1

2
||b−Ax||22

=
1

2

[
(b1 − (a1,1x1 + ...+ a1,nxn))2 + (b2 − (a2,1x1 + ...+ a2,nxn))2 + ...+ (bm − (am,1x1 + ...+ am,nxn))2

]
=

1

2

m∑
i=1

(
bi −

n∑
j=1

ai,jxj

)2

.

We want to find the minimum of this function, so we want the solutions for ∇Ψ(x) = 0, or equivalently
∂
∂xk

Ψ(x) = 0 for k = 1, ..., n. We get (now it comes in handy that we rewrote the least squares problem):

∂

∂xk
Ψ(x) =

∂

∂xk

[
1

2

m∑
i=1

(
bi −

n∑
j=1

ai,jxj

)2
]

(for k = 1, ..., n)
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=

m∑
i=1

[(
bi −

n∑
j=1

ai,jxj

)
(−ai,k)

]
(for k = 1, ..., n)

=

m∑
i=1

(
− ai,kbi + ai,k

n∑
j=1

ai,jxj

)
(for k = 1, ..., n)

= −
m∑
i=1

ai,kbi +

m∑
i=1

(
ai,k

n∑
j=1

ai,jxj

)
= 0. (for k = 1, ..., n)

So,

m∑
i=1

ai,kbi =

m∑
i=1

(
ai,k

n∑
j=1

ai,jxj

)
, (for k = 1, ..., n)

which is in fact

AT b = ATAx. (6)

To see this more clearly, consider

m∑
i=1

ai,kbi = a1,kb1 + ...+ am,kbm (for k = 1, ..., n)

=
[
a1k · · · amk

]  b1...
bm

 (for k = 1, ..., n)

=

a11 · · · am1

...
. . .

...
a1n · · · amn


 b1...
bm


= AT b,

and

m∑
i=1

(
ai,k

n∑
j=1

ai,jxj

)
=

m∑
i=1

(
ai,k(ai,1x1 + ...+ ai,nxn)

)
(for k = 1, ..., n)

=

m∑
i=1

(
ai,k

[
ai1 · · · ain

] x1

...
xn

) (for k = 1, ..., n)

=
(
a1,k

[
a11 · · · a1n

]
+ ...+ am,k

[
am1 · · · amn

] )x1

...
xn

 (for k = 1, ..., n)

=
( [
a1ka11 · · · a1ka1n

]
+ ...+

[
amkam1 · · · amkamn

] )x1

...
xn

 (for k = 1, ..., n)

=
[
a1ka11 + ...+ amkam1 · · · a1ka1n + ...+ amkamn

] x1

...
xn

 (for k = 1, ..., n)
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=
[
a1k · · · amk

] a11 · · · a1n

...
. . .

...
am1 · · · amn


x1

...
xn

 (for k = 1, ..., n)

=

a11 · · · am1

...
. . .

...
a1n · · · amn


a11 · · · a1n

...
. . .

...
am1 · · · amn


x1

...
xn


= ATAx.

When rank(A) = n with m ≥ n (in other words A has full column rank), the n × n matrix ATA has full
column rank and so is invertible. Both sides of equation 6 can be multiplied on the left by (ATA)−1, yielding
the solution

(ATA)−1AT b = x. (7)

In the previous section, we found the unique solution x = A†b = VrΣ
−1
r UTr b, which then must be the same

as solution 7:

x = (ATA)−1AT b

=
[
(UrΣrVr

T )T (UrΣrVr
T )
]−1

(UrΣrVr
T )T b

=
[
VrΣr

TUr
TUrΣrVr

T
]−1

VrΣr
TUr

T b

= (VrΣr
TΣrVr

T )−1VrΣr
TUr

T b (orthogonality of U)

= (Vr
T )−1Σr

−1(Σr
T )−1Vr

−1VrΣr
TUr

T b

= VrΣr
−1(Σr

T )−1Σr
TUr

T b (orthogonality of V)

= VrΣr
−1Ur

T b

= A†b.

The Least Squares solution is a special case of the pseudo-inverse: it is only the solution when the linear
operator A in the linear system Ax = b has full column rank.

Returning to the model we are interested in, φ = Qm with φ ∈ RP , Q ∈ RP×3K and m ∈ R3K , we
now know that we can use the pseudo-inverse of Q to find m = Q†φ = VrΣr

−1Ur
Tφ. However, we assume Q

has full column rank 3, which means we can use the Least Squares solution to findm = Q†φ = (QTQ)−1QTφ.

In the next section we will look at the stability of our model to review the last condition of Hadamard.

3.4 Reliability

The last condition of Hadamard states that the solution of an inverse problem changes proportionally to
changes in the initial conditions. This section, we will discuss the condition number which expresses this
sensitivity. We also look at the covariance matrix in order to review the margin of error on the solution.

3.4.1 Condition number

In chapter 2 we have found the model φ = Qm, with which we can find m = Q†φ. However, there will be
some sort of noise ε = (ε1, ..., εP ) from the scanner used to measure φ, so in reality we have Qmε = φ + ε,
yielding mε = Q†(φ + ε). We assume ||ε|| is bounded, where with || · || (and any norm hereafter) we mean
the 2-norm.

3For elaboration, please refer to chapter 5
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For the difference between the optimal magnetization m = m0 and the magnetization with error mε we
get

||mε −m0|| = ||Q†(φ+ ε)−Q†φ||
= ||Q†ε||
≤ ||Q†|| ||ε||. (8)

With the ratio δ = ||(φ+ε)−φ||
||φ|| = ||ε||

||φ|| , we have

||ε|| = ||φ||δ
= ||Qm0||δ
≤ ||Q|| ||m0||δ, (9)

and so, combing inequalities 8 and 9 we find

||mε −m0|| ≤ ||Q†|| ||Q|| ||m0||δ.

As the spectral norm of Q and Q† is their largest singular value , we get ||Q|| = σ1 and ||Q†|| = 1
σr

(see
chapter 2) so

||mε −m0|| ≤
σ1

σr
||m0||δ,

which gives us

||mε −m0||
||m0||

≤ σ1

σr

||ε||
||φ||

. (10)

σ1

σr
is called the condition number of Q. Thus, formula 10 tells us that a small condition number means the

solution is not very sensitive to changes in the initial conditions (due to noise), whereas a large condition
number means high sensitivity. As σ1 > ... > σr, we have σ1

σr
≥ 1, so a condition number as close to 1 as

possible is ideal.

By determining the condition number, the extent to which the third condition of Hadamard on stability
of the solution is met can be found. With a model in Matlab by T. van Leeuwen (appendix A), we look at
the condition number with a simple example.

We model two cuboids A and B of equal size (5 × 5 × 5 µm) and a grid of 50 × 50 sensors with sides
measuring 0.5 µm. The middle points of the cuboids are located at (-5,0,8) and (5,0,8) respectively. Note
that these coordinates are based on the sensor grid and not on µm. We assign the cuboids magnetiza-
tions m1 = (1, 3,−2.6) and m2 = (−2,−1.8, 4) respectively. The total magnetization vector is therefore
m = (1, 3,−2.6,−2,−1.8, 4). The cuboids are positioned directly next to each other, see figure 4.
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Figure 4: Cuboid A (at (-5,0,8)) and B (at (5,0,8)) with magnetization vectors and sensor grid modeled with
Matlab. The left and right image give different views of the same setup.

We move the cuboids apart in the x-direction and let Matlab generate the condition number. The results
are in figure 5. As can be seen, the condition number is largest when the cuboids are located directly next
to each other. Moving the cuboids apart first results in a lower condition number, but as the distance grows
bigger than 15 µm (30 steps of 0.5 µm) the condition number starts increasing again. A reason for this may
be that the cuboids are getting too close to the outer edges of the sensor grid. In figure 5, it can be seen
clearly that the closer the cuboids get to each other, the greater the increase of the condition number. For
the y-direction we get these exact same results, as the movement is the same relative to the sensor grid. It
seems that in this case, having a distance of 15 µm in either the x- or y-direction between the magnetized
cuboids results in the least sensitive solution.

Figure 5: Condition number put against distance between the x-coordinates of the middle points of cuboids
A and B. The distance is expressed in grid steps of 0.5 µm.

We now place the cuboids on top of each other at (5,0,10) and (5,0,20) respectively and move them apart
in the z-direction. The depth of the model (figure 4) increases automatically when cuboids are located at
greater depth. We find condition numbers unlike the ones when moving in the x- and y-direction (figure 6).
These condition numbers are high and only increase when the cuboids are being moved apart. This suggests
that cuboids overlapping in the z-direction will give a more sensitive solution than when cuboids only overlap
in the x- and y-direction.
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Figure 6: Condition number for cuboids which have the same x, y-coordinates but move apart in the z-
direction. The distance is expressed in grid steps of 0.5 µm.

3.4.2 Covariance matrix

In the previous section, we assumed that we have an error ε caused by noise in our results: φ = Qm + ε,
where ε can be any vector in RP with bounded 2-norm. Now, we explore the model when assuming that the
elements of the error are normally distributed, or εi ∼ N(0, σ2) for every i = 1, ..., P . This means we have
E[εi] = 0 and E[ε2i ] = σ2. As εi and εj with i, j = 1, ..., P and i 6= j are independent random variables, we get

Cov(εi, εj) = E[(εi − E[εi])(εj − E[εj ])] = E[εiεj ] = 0.

When we have

E[εεT ] = Σ =

Cov(ε1, ε1) . . . Cov(ε1, εP )
...

. . .
...

Cov(εP , ε1) . . . Cov(εP , εP )

 =

E[ε21] ∅
. . .

∅ E[ε2P ]

 =

σ
2 ∅

. . .

∅ σ2

 = σ2IP ,

we say ε ∼ N(0,Σ), or the error ε is multivariate normally distributed with Σ being the covariance matrix
of ε [13].

We have noise-contaminated measurements φ = Qm+ ε, so for our by inversion generated magnetization m̂
we have

m̂ = Q†φ

= Q†(Qm+ ε)

= Q†Qm+Q†ε

= m+Q†ε.

For the variance of m̂, we now find

Var(m̂) = E
[
(m̂−m)(m̂−m)T

]
= E

[
(Q†ε)(Q†ε)T

]
= E[Q†εεT (Q†)T ]

= Q†E[εεT ]
(
(QTQ)−1QT

)T
= Q†σ2IPQ(QTQ)−1

= σ2(QTQ)−1. (Q†Q = VrΣ
−1
r UTr UrΣrV

T
r = I)

Recall that we assume Q has full column rank (section 3.3), which is why the inverse (QTQ)−1 exists. This
solution is the covariance matrix of m̂ [13]:



3 INVERSE PROBLEM 17

σ2(QTQ)−1 =

 Cov(m̂1, m̂1) · · · Cov(m̂1, m̂3K)
...

. . .
...

Cov(m̂3K , m̂1) · · · Cov(m̂3K , m̂3K)


=

 Var(m̂1) · · · Cov(m̂1, m̂3K)
...

. . .
...

Cov(m̂3K , m̂1) · · · Var(m̂3K)

 .
The matrix is symmetric, as Cov(m̂i, m̂j)=Cov(m̂j , m̂i). The values represent a certain degree of association
between the elements of m̂. In order to understand what these values actually mean, we look at the correlation
coefficient ρ [13]:

ρij =
Cov(m̂i, m̂j)√

Var(m̂i)Var(m̂j)
,

where i, j = 1, ..., 3K and −1 ≤ ρ ≤ 1. A negative correlation means that when m̂i increases in value, m̂j

decreases. A positive correlation means that when m̂i increases, m̂j increases as well. The closer ρ is to 0,
the weaker the relationship between m̂i and m̂j [10]. See figure 7.

Figure 7: Illustration of the correlation coefficient [10].

When determining magnetizations of particles, we want these magnetizations to be as independent as possible
from each other. Then, when one particle is somehow sensitive to magnetic changes in the environment and
other particles have a weak relationship to its magnetization, these other particles will roughly still contain
the desired original magnetization. So, a correlation as close to 0 as possible is optimal.

We review an example of the covariance matrix with the Matlab model (appendix A) and thereafter the cor-
relation coefficients. For the noise a normally distributed random variable with standard deviation 0.01||φ||
is generated and added to φ. See figure 8 to get an idea of what difference this noise makes in the flux
measurements.
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Figure 8: Images of the magnetic field without (left) and with (right) noise. The setup here is the same as
in figure 4.

We have two cuboids A and B of equal size (5×5×5 µm) located at (-5,0,8) and (5,0,8) with magnetizations
m1 = (1, 3,−2.6) and m2 = (−2,−1.8, 4) respectively and a grid of 50×50 sensors with sides of 0.5 µm (like
in the previous section). We get the covariance matrix

Var(m̂1) · · · Cov(m̂1, m̂3K)
. . .

...
Var(m̂3K)

 =


10 +0 −2 4 −0 5

8 −0 +0 −4 +0
6 −5 +0 −2

10 −0 2
8 −0

6

 · 10−3.

As the covariance matrix is symmetric, we only look at the upper triangle for the sake of readability. The
values have been rounded off to one significant figure. The zeros are signed to indicate a positive or negative
relation before roundoff. The division in the matrix represents

Var(m1) Cov(a, b), where
a ∈m1 and b ∈m2

Var(m2)


.

This division comes in handy when looking for specific information; for example information on covariances
of the magnetization of only one cuboid is already grouped in the upper left or lower right quarter of the
covariance matrix. When K is not 2 but 3, the matrix is divided in 9 by 9 areas, and so forth when K
increases.
We translate the covariance matrix into something more comprehensive with the correlation coefficient:

ρ11 ρ12 ρ13 ρ14 ρ15 ρ16

ρ22 ρ23 ρ24 ρ25 ρ26

ρ33 ρ34 ρ35 ρ36

ρ44 ρ45 ρ46

ρ55 ρ56

ρ66

 =


1 +0 −0.3 0.3 −0 0.6

1 −0 +0 −0.5 +0
1 −0.6 +0 −0.3

1 −0 0.3
1 −0

1

 .

As can be seen in the correlation-matrix, the correlations are either 1, in the range of ±0.3 to ±0.6 or
approximately 0 in this example. Of course, ρii = 1, as this represents the relationship of magnetization
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component m̂i with itself. With the correlation, we now know for example that when the z−component of
magnetization of cuboid A (m̂3) increases, the x-component of magnetization of cuboid B (m̂4) decreases
quite a lot but its y-component (m̂5) increases only slightly. Of course, it depends on the research when a
correlation is considered too high or too low.
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4 Application on data of basaltic rock

In the previous chapters, we have described how, in theory, we can determine the individual magnetizations
of magnetized particles in a rock sample. A. Béguin put this theory into practice with a synthetic sample
she created [2]. This synthetic sample has a low concentration of magnetic particles (132 grains) of which
the sizes are known. A. Béguin determined the magnetizations of 23 particles with the inverse model. With
a forward model, she could compare these magnetizations per particle with the actual magnetizations. This
project lead to the conclusion that the inversion works as desired. The next step is to do this inversion for a
natural sample of lava.

4.1 Sample

Here, we use a piece of basaltic rock from the 1907 lava flow on Hawaii (site 3 of de Groot et al. (2013)). Its
diameter is 3 mm and it has been polished to a sliver of 30 µm thick (thickness of a typical thin section).
Different from the synthetic sample of A. Béguin, is that this sample naturally contains much more magnetized
grains (about 70,000/mm3 [2]) and more different types of particles with a wide variation of properties. The
magnetized grains are titanomagnetite, Fe3−xTixO4 [12].

4.2 Information on the particles

A. Béguin and L.V. de Groot prepared the sample and executed the micro-CT scanning. As the magnetite
grains in the sample have the highest density of all the materials in the sample, the X-rays of the scanner
passing through those grains are most attenuated. This yields micro-CT images in which the lightest areas
represent the magnetized grains (figure 9a). As all the tomographic images made are stacked on top of
each other, a 3D visualization of the sample is created. The voxel-size (3D-pixels) with which this happens
is 0.675x0.675x0.675 µm. With the aid of Avizo, A. Béguin determined the boundaries of the magnetized
grains by choosing the gray-scale limit for which an area is considered a magnetized grain or not. Thereafter,
the exact locations, sizes and shapes of the grains are determined.
As the particles range in size from 2 to 50 µm in diameter and we work with a voxel-size of 0.675 µm, the
particles are represented by about 15 to 200,000 voxels per particle. From the method used (chapter 2), we
know that for the measurement of the flux all calculations need to be done for the border of every cuboid,
which in this case is every voxel. We need to decrease the amount of calculations, in order to preserve an
achievable computation time. For this, the approach of de Groot et al. (2018) is followed: every particle
is partitioned into voxel-built cuboids by consecutively generating the largest cuboid that fits in the (non-
partitioned) area of the particle. So, the smallest possible cuboids of a particle are the size of one voxel.
Now, for each particle we have a clustered group of cuboids representing its shape, size and location (figure
9b).
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(a) Tomographic image of the sample. The white areas are
the magnetized grains.

(b) Examples of particles partitioned into cuboids [4].

Figure 9: Information on the particles

4.3 Information on the flux

In chapter 2, we explained how the SQUID-scanner works. The magnetic flux density of this sample, however,
is measured with the Quantum Diamond Microscope (QDM) developed by Harvard University (USA) [5].
The QDM has the same resolution as the SQUID scanner and our explanation in chapter 2 regarding the way
the flux is being calculated still holds. The QDM is preferred over the SQUID-scanner, because as opposed
to the SQUID-scanner it is able to measure the flux at room temperature. Additional to the measurements
of the flux, the QDM provides us with a 1440x2400 µm LED image of the surface of the sample (figure 10).
After measuring the flux of the sample, an alternating field (AF) of 20 µT is applied, changing its magnetic
properties. The QDM scanning is repeated, in order to compare results to see how this alternating field
changes the magnetization of the particles.

Figure 10: LED image of the sample (before AF), the black areas are the magnetized grains. The Field of
View is 1200x2000 steps of 1.2 µm.
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4.4 Mapping

The data on the locations, sizes and shapes of the particles need to be mapped with the data on the magnetic
flux density of the sample both before and after the appliance of the alternating field. For this mapping, an
image of the grains from Avizo is put on top of the LED image and rotated and shifted until they overlap
best. With Mathematica, the new coordinates are determined for the LED image by choosing an anchor
grain, so that the grains and the magnetic field overlap in the same plane (figure 11).

Figure 11: The magnetic field before AF and the grains (black areas) overlapping after mapping, with areas
1 to 4 indicated.

A. Béguin determined 4 areas of interest (figure 11), for each of which the inversion is done. By zooming in on
the areas, she found an additional translation is needed to optimize the match between the field and grains.
The grains that are only partly within an area are deleted from the data and so not taken into account with
the inversion. We obtain areas 1 to 4 which contain 11, 42, 18 and 20 grains and 305, 1192, 388 and 555
cuboids respectively.

4.5 Inversion and results

Areas 1 to 4 are inverted with a Fortran-code written by K. Fabian. In total, the magnetization components
of 91 grains are generated, see figures 13 to 16. The magnetizations are the lengths of the magnetization

vectors, i.e.
√
m2
x +m2

y +m2
z.

The saturated magnetization of magnetite is 480 kA/m [12]; since the magnetizations of the grains are (nat-
ural) remanent magnetizations, we expect the magnetizations of the grains to be at maximum 10% of this
number. However, the magnetizations generated by the inversion for the original state of the sample range
from 184 to 19,876,070 A/m and after the appliance of the AF this range is 126 to 29,335,123 A/m. All
grains with a magnetization higher than 48,000 A/m (whether before or after the AF) are excluded from
the results (red in figures 13 to 16). We now have with 61 grains with a plausible magnetization. However,
magnetizations over 15,000 A/m (about 3% of the saturated magnetization, orange in figures 13 to 16) do
not occur very often and so we look at the results after additional exclusion of the grains with magnetization
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between 15,000 and 48,000 A/m. We now have 47 grains with a plausible magnetization.
In the tables, the depth is calculated by taking the average of the z-coordinates of the middle points of all
the cuboids which constitute the particle in question. Volume is for each particle calculated by adding the
volumes of all its cuboids. The change in the last column is calculated by taking the difference between the
magnetization before and after appliance of the alternating field, dividing this difference by the original mag-
netization and multiplying it by 100%. Thus, a change of 100% means the magnetization of that particle has
doubled with appliance of the alternating field. A change of -50% means the magnetization of that particle
has been halved. The negative percentage of change can not exceed -100%, as then a particle has completely
demagnetized.

Taking the average of the magnetizations, we see that overall the magnetizations of the grains become lower
after the alternating field is applied (figure 12), which is what we would expect as a demagnetization step
was performed. We can also see that including the 14 grains with magnetization between 15,000 and 48,000
A/m yields a much smaller average difference in magnetization than if they are excluded (left and right part
of figure 12 respectively). This shows how much influence only a couple of grains with high magnetizations
can have on the results.

Figure 12: The averages of the magnetizations.

Figure 13: Obtained magnetizations in A/m of Area 1 before (original) and after (AF 20µT) the appliance of
the alternating field. Red color indicates a grain with magnetization over 48,000 A/m, orange color indicates
a grain with magnetization between 15,000 and 48,000 A/m.
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Figure 14: Obtained magnetizations in A/m of Area 2 before (original) and after (AF 20µT) the appliance of
the alternating field. Red color indicates a grain with magnetization over 48,000 A/m, orange color indicates
a grain with magnetization between 15,000 and 48,000 A/m.
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Figure 15: Obtained magnetizations in A/m of Area 3 before (original) and after (AF 20µT) the appliance of
the alternating field. Red color indicates a grain with magnetization over 48,000 A/m, orange color indicates
a grain with magnetization between 15,000 and 48,000 A/m.

Figure 16: Obtained magnetizations in A/m of Area 4 before (original) and after (AF 20µT) the appliance of
the alternating field. Red color indicates a grain with magnetization over 48,000 A/m, orange color indicates
a grain with magnetization between 15,000 and 48,000 A/m.
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5 Discussion

5.1 Residue

With the inverse model, the magnetic moment per grain is determined based on the magnetic flux. Then, with
the forward model, the flux is determined based on the magnetic moment per grain. We call the difference
between the measured flux and the flux calculated by the forward model the residue, see figure 17 for an
example. As can be seen in the left image of this figure, there are 4 areas with relatively large residue in
the magnetic field: at locations (40, 160), (60, 120), (120, 150) and (210, 100). Looking at the image of the
particles in the right of figure 17, these areas of large residue seem to correlate with the locations of the 4
largest particles. An explanation for this can be that the larger particles are not dipoles (as is assumed in
the inversion scheme), but multi-domain. When a magnetic particle is multi-domain, it is divided into areas
(domains) which each have their own magnetization [12]. Such a particle will not create a smooth magnetic
field like a single-domain (dipole) particle. The residue seems to be an expression of multi-domain behavior
for which the inversion does not solve. This violates the dipole assumption made in our method.

Figure 17: The residue of area 2 (original state) and the locations of the magnetic particles.

5.2 Unreliable magnetizations

From the 91 grains of which the magnetic moment is determined, 44 have a magnetization which is unreliably
high (see chapter 4). We look at the locations of these unreliable particles, see figure 18.

As can be seen in figure 18, most of the smaller grains are encircled, only a few are not. It appears that
generally speaking the smaller grains are unreliable. Maybe the magnetizations of these particles are affected
by the (larger) particles with relatively high magnetization in their neighborhood in some way. The locations
of a few small particles which yield a magnetization of reliable magnitude back this up: the grain at (215,
25) in area 4 is reliable and not located near a particle with high magnetization, for example.
Besides the smaller grains being unreliable, it looks like particles which overlap in the z-direction also yield
an unreliably high magnetization (x and y coordinates roughly the same, with one grain located below the
other). For example overlapping particles at (235, 230) in area 2 are unreliable.

In the tables in chapter 4, it seems the unreliable particles are grouped in some way. The numbering of
the particles in the tables is done according to the y-location of the particles. With the results just discussed
regarding figure 18, we can now explain these groupings with the argument that particles close to each other
are likely to be unreliable. For example, in figure 14 particles 18 to 24 all have an unreliably high magne-
tization. Amongst those are the 5 in figure 18 encircled small particles of area 2 which are located close to
each other with respect to the y-direction.
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In future research, we would like to increase the amount of magnetizations determined (preferably of > 106

magnetic particles) to improve the accuracy of the results. As this will mean measuring thicker samples, the
unreliable high magnetizations caused by overlap can cause complications: a thicker sample increases the
chance on a high amount of overlapping grains.

Figure 18: Particles of area 1 to 4, the encircled ones have a magnetization higher than 15,000 A/m either
before or after AF and are therefore considered unreliable. A number next to a circle indicates an amount
of grouped small particles all with high magnetization or a number of (in z-direction) overlapping particles
all with high magnetization.

5.2.1 Vertical overlap: relationship between covariance matrix and inversion result

In chapter 3, we explained how the condition number of the inverse problem tells us something about the
stability of the solution: a high condition number means the solution is very sensitive to changes in the initial
conditions, whereas a low condition number (the lowest being 1) tells us the solution changes proportionally
to change in the initial conditions. In the simple Matlab-example in chapter 3, we saw that overlapping parti-
cles in the z-direction gives a relatively high condition number (compared to overlap in the x- or y-direction).
In chapter 3, we also explained how the covariance matrix of the solution tells us something about the degree
of association between (magnetizations of) particles with the correlation coefficient.
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In this chapter, we have just discussed how the inversion results lead us to believe that particles which overlap
in the z-direction are unreliable. With the Matlab-model created by T. van Leeuwen (appendix A), we look at
the relationship between the covariance matrix and the inversion result when particles overlap in z-direction.

We have cuboids A and B measuring 5×5×5 µm and a measurement grid of 50×50 sensors with sides of 0.5
µm. Noise is represented by a multivariate normally distributed measurement error ε with standard deviation
0.01||φ||. The cuboids are located at (5, 0, 10) and (5, 0, 20) and have magnetizations m1 = (1.0, 3.0,−2.6)
and m2 = (−2.0,−1.8, 4.0) respectively. See figure 19. The total magnetization vector is

m =
(
m1 m2

)
=
(

1.0 3.0 −2.6 −2.0 −1.8 4.0
)
.

With Matlab, for the inversion result we get

m̂ =
(

1.0 2.9 −2.6 −2.3 −1.5 4.2
)
.

We can see that the magnetization vectors of cuboid B (which is overlapped by cuboid A) in m̂ differ more
from the true magnetization than the magnetization vectors of cuboid A in m.
The covariance matrix is

σ2(QTQ)−1 =


5 0 0 −20 0 0

5 0 0 −20 0
3 0 0 −8

80 0 0
80 0

40

 · 10−3.

The only significant relations are the variances of all the magnetization-components and the relations between
the two x, y and z-components. The variances of the magnetization-components of cuboid B are way larger
than those of cuboid A.
For this situation, the condition number is 9.7. In chapter 3, we discussed how the condition number increases
as the cuboids move apart in the z-direction. Moving cuboid B to the deeper location (5, 0, 35), we get a
condition number of 20. In this situation, the inversion result is

m̂ =
(

1.0 3.0 −2.5 −1.4 −2.5 3.4
)
,

and the covariance matrix is

σ2(QTQ)−1 =


4 0 0 −20 0 0

4 0 0 −20 0
2 0 0 −8

500 0 0
500 0

200

 · 10−3.

The magnetization of cuboid A in m̂ still does not differ much from m. However, the magnetization of
cuboid B in m̂ differs even more from m. The variances of its magnetization-components have increased
significantly. The condition number tells us about the sensitivity of the solution, which in the second example
has increased with respect to the first situation. However, apparently that sensitivity may only be reflected
in a part of the solution, as this increase in sensitivity is only expressed in the magnetization of cuboid B.

If (QTQ)−1 can be retrieved from the Fortran-code used for our inverse model as in chapter 2, the co-
variance matrix can be assessed; a comparison can be made between the particles which give high variances
in the matrix and the particles which have unreliably high magnetizations as determined by inversion. It
would be interesting to see whether there indeed is a clear link between the two, as the simple examples
suggest. If so, the covariance matrix may be used in future research to determine which particles are better
left out of the inversion scheme. This would decrease computation time and increase the accuracy of results.
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Figure 19: Cuboid A (at (5,0,10)) and B (at (5,0,20)) with magnetization vectors and sensor grid modeled
with Matlab. The left and right image give different views of the same setup.

5.3 Particle size

From our results, we deduce that large particles can not be solved reliably due to their multi-domain behavior
and small particles can not be solved reliably due to their instability when in the neighborhood of particles
with relatively high magnetizations. This leads us to believe there might be a range of particle sizes which is
optimal for determining magnetizations by inversion. Excluding the largest and smallest particles in future
research may then result in mostly reliable magnetizations, while also decreasing computation time.

5.4 Alternating Field

5.4.1 Relationship change in magnetization and volume

With an alternating field (AF) we have, on average, performed a demagnetization step of the magnetic parti-
cles (chapter 4). We expect that larger particles are more sensitive to the alternating field and so demagnetize
more, because of their multi-domain magnetization [12]. In figure 20 we see that, overall, these expectations
are confirmed: as particle size increases, the decrease of AF magnetization increases in comparison to the
original magnetization.

Looking at the difference in A/m between the magnetizations before and after the appliance of the al-
ternating field against volume in figure 21, we see what we discovered in figure 20 confirmed: on average the
magnetizations have decreased and the larger the particle, the greater this decrease (notice the scale on the
horizontal axis for volume is logarithmic).
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Figure 20: The relationship between grain volume and magnetization indicated by trend lines: red for original
magnetization and blue for magnetization after appliance of the alternating field. Only the 47 reliable grains
are taken into account.

Figure 21: Relationship between the difference in magnetization due to appliance of the alternating field and
volume of the particles.
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5.4.2 Relationship change in magnetization and depth

In chapter 4, we discussed that 44 of 91 grains are considered unreliable, as their magnetizations determined
with the inversion are unrealistically high. In section 5.2 we found that grains which overlap in the z-direction
seem to have these high magnetizations and are therefore unreliable. We put the difference in magnetization
after appliance of the alternating field of all the grains (both reliable and unreliable) against depth in figure 22.

Notice that the depth in figure 22 exceeds the 30 µm of sample thickness we mentioned in chapter 4. As
polishing a sample on such a small scale may not result in the perfect desired thickness, we may assume this
explains why some particles are located slightly deeper than 30 µm. The scale for difference on the vertical
axis is logarithmic. The differences are absolute values, so this graph does not tell whether a particle has
either increased or decreased in magnetization due to the alternating field.

In figure 22, we see that most unreliable grains are located at relatively great depth of the sample. In
section 5.2 we discussed how the inversion results suggest that particles which overlap in z-direction yield
unreliable magnetizations. With the Matlab model, we considered two examples: one where two cuboids
are located directly on top of each other and one where the bottom cuboid is moved to greater depth (see
section 5.2 for specifics). The magnetization generated by inversion for both situations shows how the mag-
netization of cuboid A (the one closest to the surface) does not increase or decrease significantly between
the two situations while the magnetization of cuboid B does. This might indicate that only the particles
which are overlapped by another particle suffer from this overlap. The magnetization of the particle closer
to the surface seems to not be affected substantially by its down neighbor. This theory agrees with figure
22: particles located at greater depth in the sample have more chance of being overlapped by other particles
and therefore are more likely to yield unreliably high magnetizations.

The initial thought in section 5.2 is that overlapping grains yield unreliable magnetizations, where no dis-
tinction is made between the deeper and shallower ones. For future research, this can be problematic as in
that case none of the particles which have another particle located above or below it yield a reliable mag-
netization. Now, it seems that of the overlapping particles the shallower ones give a reliable magnetization
after all, reducing the complications for further research. As the grains between 25 and 35 µm in figure 22
are almost all unreliable, 25 to 30 µm may be the maximum depth at which the magnetizations of grains can
reliably be inverted.

Figure 22: The relationship between difference in magnetization due to appliance of the alternating field
and the depth of the particle in the sample. The red dots represented the 44 particles considered unreliable
because of unrealistically high magnetizations (chapter 4), the green dots represent the remaining 47 particles.
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We can see in figure 22 that the highest differences are also the unreliable ones. In chapter 4 we explained
that magnetizations over 15,000 A/m are considered too high to be realistic and thus these particles are
considered unreliable. So, only a small percentage of change (see percentages of change in figures 13 to 16 in
chapter 4) in the magnetization of an unreliable particle gives a relatively high difference in A/m compared
to this same percentage for a reliable particle, which has a lower magnetization. The fact that the unreliable
particles in figure 22 have the highest difference in magnetization is therefore logically explained.

5.5 Interpretations, choices and assumptions

In chapter 4, we explained that the boundaries of the grains are determined by choosing a gray-scale limit for
which an area in the visualization created by the CT-scanner is considered a grain or not. This is done with
Avizo by looking at the areas, changing the gray-scale and choosing for which scale the boundaries are best
represented. This technique is not foolproof as it depends on human interpretation rather than exact science,
so the chosen boundaries can be off by a few voxels. In chapter 2, we explained how the flux is calculated
with, among other things, information on the boundaries of the cuboids constituting the magnetic particles.
If the boundaries of a particle are off by a few voxels, then the boundaries of its cuboids are off and as a
result, m is less of a best-fit solution.

The mapping of the CT- and QDM-data is done by placing the Avizo-image of the CT-data on top of
the QDM LED-image, choosing an anchor grain en rotating and shifting the LED-image until the grains
overlap best with the magnetic field (chapter 4). Again, this technique depends on interpretation, which
means the mapping can probably be optimized by using a computer program for it.

Assumptions were made regarding the rank of Q and the distribution of the error ε. In chapter 3, we state
that it can be assumed Q has full column rank, which leads to the conclusion that we have φ = (QTQ)−1m,
which is what is used in the Fortran-code to determine m. With Q being full column rank, we can compute
the covariance matrix as σ2(QTQ)−1. In chapter 3, we also state that the measurement error ε caused by
noise is multivariate normally distributed. It is important to realize these assumptions could be false, in
which case corrections in the methods used should be made accordingly. However, the chance that P ≤ 3K
is very small, as can be seen with the following calculation:

The Field of View of the QDM is 1200 × 2000 (in steps of 1.2 µm) so for the amount
of measurement points we have P = 2, 400, 000. Our sample has been polished to a
typical thin section of 30 µm thickness and the Field of View measures 1440×2400 µm.
The total volume of lava for which the flux is measured is therefore 103, 600, 000 µm3.
As lava contains on average 7 magnetic particles per 100,000 µm3, we expect to have
about K = 7300 magnetic particles in the volume. Then, 3K = 22, 000 and so P � 3K

Even when a sample contains 10 times the amount of magnetic particles of an average sample, P is still
way larger than 3K. For Q to have full column rank, we must have, besides P > 3K, columns which are all
linearly independent. If they are not, a minimum norm solution can be found with the SVD to approximate
m [1].
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6 Conclusion

We understand how micromagnetic tomography works and have applied it to a natural sample of magnetic
rock. Discussing inverse theory and examining the results of inversion has lead to conclusions of which some
are backed up by modeling simple example situations.

A linear inverse model φ = Qm is found with data on both the particles in a rock sample (shapes, sizes,
locations) and on the sensors used for measuring the magnetic flux density (amount, sizes, locations). In
general, Singular Value Decomposition can be used to find the pseudo-inverse of the linear operator, yielding
a unique solution for an inverse model. For the inverse model in micromagnetic tomography, assuming we
have more measurement points than magnetic particles and the linear operator Q has full rank, a solution
for m is found with least squares approximation. This solution applies a special case of the pseudo-inverse
and is therefore unique.

Assuming noise will cause a measurement error, the condition number indicates the sensitivity of the solution
of the inverse model to this noise. Assuming the error is multivariate normally distributed, the covariance
matrix of the inverse result m̂ can be found with Q and the variance of the error. However, the variance of
the error is a scalar by which every element in the matrix is multiplied, so this variance is not necessary for
interpreting the relations between the magnetization-components. It seems a sensitive solution (high condi-
tion number) implies only some particles are sensitive; only the variances of the magnetization-components
of these particles are very high, as expressed in the covariance matrix. In future research, the covariance
matrix may be used to determine which particles are sensitive and therefore unreliable and unwanted, in
order to filter these out.

The inversion results from applying micromagnetic tomography to a natural sample of basaltic rock sug-
gest that particles which are located deep in the sample are unreliable. Also, both these results and a simple
Matlab-model suggest that particles which are overlapped vertically yield unreliable magnetizations. It seems
that at this stage, research with micromagnetic tomography can only be done using samples with a maximum
thickness of about 25-30 µm: increasing the thickness of the sample only increases the number of particles
which are highly likely to be overlapped by other particles, which does not significantly increase the amount
of reliable particles (but does increase computation time).

By applying an alternating field to the sample of lava and repeating the inversion with new flux mea-
surements, a relation between particle size and decrease in magnetization was found: the larger a particle,
the more decrease in magnetization due to appliance of the alternating field. In the inversion scheme, it is
assumed that particles are dipoles. However, the fact that larger particles demagnetize more suggests they
are multi-domain (which is generally the case for larger particles [12]). Also, the residue in the magnetic
field found with the forward model correlates with particle size, again confirming multi-domain behavior of
the larger particles. As in general small particles are unreliable, it seems there is a size range for which the
inversion works optimally.

Improving the accuracy of input data will improve the accuracy of the inversion result in future research.
Computer programs in stead of human interpretation may be used for determining boundaries of the grains
in the CT-data and for mapping the data sets on the particles and the flux measurements. This will probably
yield more accurate magnetizations generated by inversion.
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A Matlab code

Written by T. van Leeuwen.

1 function A = getMatrix(sensors, cuboids)
2 % Construct weight matrix for forward modelling of SQUID measurements, see
3 % [reference]
4 %
5 % use:
6 % A = getMatrix(sensors, cuboids)
7 %
8 % input:
9 % sensors - p x 5 array where each row [xs,ys,zs,dx,dy] describes a sensor

10 % cuboids - k x 6 array where each row [xc, yc, zc, a, b, c] describes a cuboid
11 %
12 % output:
13 % A - p x 3k matrix
14

15 % sizes
16 P = size(sensors,1);
17 K = size(cuboids,1);
18

19 % initialize matrix
20 A = zeros(P,3*K);
21

22 % fill matrix
23 for k = 1:P
24 % sensor parameters
25 xs = sensors(k,1); ys = sensors(k,2); zs = sensors(k,3); dx = sensors(k,4); dy = ...

sensors(k,5);
26

27 for l = 1:K
28 % cuboid parameters
29 x = cuboids(l,1); y = cuboids(l,2); z = cuboids(l,3); a = cuboids(l,4); b = ...

cuboids(l,5); c = cuboids(l,6);
30

31 % weight for Mx, equation (5) of supplementary material of [1]
32 A(k,3*(l-1) + 1) = Fx(x - xs, y - ys, z - zs, dx, dy, a, b, c);
33 % weight for My
34 A(k,3*(l-1) + 2) = Fy(x - xs, y - ys, z - zs, dx, dy, a, b, c);
35 % weight for Mz
36 A(k,3*(l-1) + 3) = Fz(x - xs, y - ys, z - zs, dx, dy, a, b, c);
37

38 end
39 end
40 end
41

42 function val = Fx(x, y, z, dx, dy, a, b, c)
43 f = @(xt,yt,zt,xtt,ytt) F120(x + xt - xtt, y + yt - ytt, z + zt);
44 val = integr(f,a,b,c,dx,dy);
45 end
46

47 function val = Fy(x, y, z, dx, dy, a, b, c)
48 f = @(xt,yt,zt,xtt,ytt) F210(x + xt - xtt, y + yt - ytt, z + zt);
49 val = integr(f,a,b,c,dx,dy);
50 end
51

52 function val = Fz(x, y, z, dx, dy, a, b, c)
53 f = @(xt,yt,zt,xtt,ytt) F211(x + xt - xtt, y + yt - ytt, z + zt);
54 val = integr(f,a,b,c,dx,dy);
55 end
56

57 function val = F120(x,y,z)
58 r = sqrt(x.ˆ2 + y.ˆ2 + z.ˆ2);
59 Az = atan((x.*y)./(z.*r));
60 Lx = log(x + r);
61 Ly = log(y + r);
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62

63 val = -0.5*r.*x - y.*z.*Az + x.*y.*Ly + 0.5*(y.ˆ2 - z.ˆ2).*Lx;
64 end
65

66 function f = F210(x,y,z)
67 r = sqrt(x.ˆ2 + y.ˆ2 + z.ˆ2);
68 Az = atan((x.*y)./(z.*r));
69 Lx = log(x + r);
70 Ly = log(y + r);
71

72 f = -0.5*r.*y - x.*z.*Az + x.*y.*Lx+ 0.5*(x.ˆ2 - z.ˆ2).*Ly;
73 end
74

75 function val = F211(x,y,z)
76 r = sqrt(x.ˆ2 + y.ˆ2 + z.ˆ2);
77 Az = atan((x.*y)./(z.*r));
78 Lx = log(x + r);
79 Ly = log(y + r);
80

81 val = -x.*y.*Az - x.*z.*Lx - y.*z.*Ly + z.*r + x.*y.*z.*(x./(x.ˆ2 + z.ˆ2) + y./(y.ˆ2 + ...
z.ˆ2));

82 end
83

84 function val = integr(f,a,b,c,dx,dy)
85 val = 0;
86 for i = [-1,1]
87 for j = [-1,1]
88 for k = [-1,1]
89 for l = [-1,1]
90 for m = [-1,1]
91 val = val + i*j*k*l*m*f(i*a, j*b, k*c, l*dx, m*dy);
92 end
93 end
94 end
95 end
96 end
97 end

1 function plotSetup(sensors,cuboids,magnetization)
2

3 % sizes
4 P = size(sensors,1);
5 K = size(cuboids,1);
6

7 plot magnetization = 0;
8 if nargin == 3
9 magnetization = reshape(magnetization,3,K);

10 plot magnetization = 1;
11 end
12

13

14 for k = 1:P
15 % sensor parameters
16 xs = sensors(k,1); ys = sensors(k,2); zs = sensors(k,3); dx = sensors(k,4); dy = ...

sensors(k,5);
17 draw square(xs,ys,-zs,dx,dy);
18

19 end
20

21 for l = 1:K
22 % cuboid parameters
23 x = cuboids(l,1); y = cuboids(l,2); z = cuboids(l,3); a = cuboids(l,4); b = ...

cuboids(l,5); c = cuboids(l,6);
24 draw cuboid(x,y,-z,a,b,c);
25

26 if plot magnetization
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27 hold on;quiver3(x,y,-z,magnetization(1,l),magnetization(2,l),magnetization(3,l));
28 end
29

30 end
31 %zt = get(gca, 'ZTick');
32 %set(gca, 'ZTick', zt, 'ZTickLabel', -zt)
33

34 function draw square(xs,ys,zs,dx,dy)
35 vert = [xs + dx ys + dy zs; xs + dx ys - dy zs; xs - dx ys - dy zs; xs - dx ys + dy zs];
36 faces = [1 2 3 4];
37

38 patch('Faces',faces,'Vertices',vert,'Facecolor','none');
39

40 end
41

42 function draw cuboid(xs,ys,zs,dx,dy,dz)
43 vert = [
44 xs - dx ys - dy zs - dz;
45 xs + dx ys - dy zs - dz;
46 xs + dx ys + dy zs - dz;
47 xs - dx ys + dy zs - dz;
48 xs - dx ys - dy zs + dz;
49 xs + dx ys - dy zs + dz;
50 xs + dx ys + dy zs + dz;
51 xs - dx ys + dy zs + dz];
52 fac = [1 2 6 5;2 3 7 6;3 4 8 7;4 1 5 8;1 2 3 4;5 6 7 8];
53 patch('Vertices',vert,'Faces',fac,'FaceColor','none')
54

55 end
56

57 end

1 % define sensor grid of 50 x 50 sensors of size dx = dy = 0.5 at z = 0
2 p = 50;
3 dx = 0.5;
4 dy = 0.5;
5 xs = linspace(-dx*(p-1),dx*(p-1),p);
6 ys = linspace(-dy*(p-1),dy*(p-1),p);
7 zs = 0;
8

9 [xxs, yys] = meshgrid(xs,ys);
10

11 sensors = [xxs(:), yys(:), zs*ones(pˆ2,1), dx*ones(pˆ2,1), dy*ones(pˆ2,1)];
12

13 % define two cuboids of size 5 x 5 x 5 centered at (-5,0,8) and (5, 0, 8)
14 cuboids = [-5,0,8,5,5,5; 5,0,8,5,5,5];
15

16 % get matrix, compute data
17 Q = getMatrix(sensors, cuboids);
18 m = [1;3;-2.6;-2;-1.8;4]; % [m1x,m1y,m1z,m2x,m2y,m2z]
19 phi = Q*m;
20 e = normrnd(0,0.01*norm(phi),size(phi));
21 phi = phi+e;
22

23 % invert (pseudo-inverse)
24 mest = lsqr(Q,phi);
25

26 % plot
27 figure(1)
28 plotSetup(sensors,cuboids,m);axis equal tight;view(3)
29 title('experimental setup')
30 xlabel('x')
31 ylabel('y')
32 zlabel('z')
33

34 figure(2)
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35 imagesc(reshape(phi,p,p)); axis xy
36 title('data')
37 xlabel('x')
38 ylabel('y')
39

40 figure(3)
41 plotSetup(sensors,cuboids,mest);axis equal tight;view(3)
42 title('reconstruction')
43 xlabel('x')
44 ylabel('y')
45 zlabel('z')
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