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Summary 

Information products that are based on remote sensing data are increasingly being used for operational and 

strategic water management in the Netherlands. The Dutch regional water authority Brabantse Delta 

(Waterschap Brabantse Delta) is interested in using data products that map the current state of soil moisture 

content based on remote sensing data. This study aimed to list the currently available soil moisture products 

for the Netherlands and make analyses on the reliability and the accuracy of those products for the study 

area in Noord-Brabant. Furthermore, it was analyzed what the relationships was between the amount of 

precipitation, soil moisture content, groundwater levels, and discharges, in order to find the most important 

factor in inundation risk assessment. The hypothesis was that such information products could possibly 

improve decision support systems for inundation risk assessment. In order to incorporate remote sensing 

soil moisture products in operational water management, there should be a clear understanding of how 

representative those products are. Two soil moisture data products have been analyzed in detail, the 

OWASIS product by HydroLogic and VanderSat soil moisture (by VanderSat), at 250m and 100m resolution 

per cell, respectively. In the reliability analyses, the products were statistically compared to in-situ 

measurements at 15-18 sites and at depths varying between 5 and 20 cm below surface level. This was 

done at various spatial scales of the data product: one cell, 3x3 cells and at the scale of the full Raam 

catchment. OWASIS showed a very weak Pearson correlation of R=0.29 (single cell site average), 0.31 (3x3-

grid of cells), 0.18 (catchment scale). It was found that OWASIS models the soil moisture in the rootzone 

rather than the full unsaturated zone. OWASIS does not report the (dynamic) depth of the rootzone, 

rendering the data unusable for inundation risk assessment. The VanderSat product showed a moderate to 

strong correlation with in-situ measurements: R=0.66 (single cell site average) and R=0.82 (catchment 

scale). The mean absolute error for VanderSat compared to in-situ measurements was 0.068 [m³/m³] 

(single cell) and 0.031 [m³/m³] (catchment scale). The spatial and temporal variability in soil moisture 

content among individual sites was much higher in-situ compared to the VanderSat product, the VanderSat 

product is particularly smooth in spatial distribution compared to the much more dynamic observations at 

the in-situ sites. The basic rainfall-runoff analysis showed a clear gradient from low to high discharge when 

transitioning from (relatively) deep to medium to shallow groundwater levels; while for the soil moisture 

content the transition from medium to wet conditions showed more of a mixed nature, i.e. some wet 

conditions showed medium discharges and some medium soil moisture conditions showed high discharge. 

This indicates that for precipitation events in the study area the discharge is generally stronger correlated 

to groundwater depth than to soil moisture content. Though, in more rare cases soil moisture conditions 

were more important than groundwater levels, as was shown by a small number of events in which the 

groundwater level was relatively close to the surface, while discharge remained low due to dry soil moisture 

conditions. The study concludes that the investigated soil moisture products that are based on remote 

sensing data are currently an unfeasible option to improve the assessment of near-future inundation risk for 

the province of Noord-Brabant, the Netherlands, because the available products are either unreliable or too 

smooth to provide accurate soil moisture content estimates at cell scale (100 - 250 m). The VanderSat 

product showed some potential to be used at catchment scale (approx. 100 km²), but it depends on the 

application whether this is sufficient for operational use. Due to the fact that soil moisture conditions were 

generally shown to be less important in (high) runoff generation than the level of the groundwater, it would 

be advisable to focus on other options than remote sensing soil moisture content for inundation risk 

assessment. 
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Samenvatting 

Informatieproducten die zijn gebaseerd op satellietgegevens worden in toenemende mate gebruikt voor 

operationeel en strategisch waterbeheer in Nederland. Waterschap Brabantse Delta is geïnteresseerd in het 

gebruik van dataproducten die op basis van satellietgegevens de actuele stand van het bodemvocht in kaart 

brengen. Het onderzoek had tot doel om de momenteel beschikbare bodemvochtproducten voor Nederland 

in kaart te brengen en analyses te doen op de betrouwbaarheid en nauwkeurigheid van die producten voor 

het studiegebied in Noord-Brabant. Verder is geanalyseerd wat de relaties zijn tussen hoeveelheid neerslag, 

bodemvochtgehalte, grondwaterstanden en afvoeren, om de belangrijkste factor bij de risicobeoordeling van 

inundatie (overstroming) te vinden. De hypothese was dat dergelijke informatieproducten mogelijk de 

besluitvormingsondersteunende systemen (BOS) voor de beoordeling van overstromingsrisico's zouden 

kunnen verbeteren. Om bodemvochtproducten o.b.v. satellietgegevens volledig te kunnen integreren in het 

operationele waterbeheer, moet er duidelijk inzicht zijn in hoe representatief die producten zijn. Twee 

dataproducten voor bodemvocht zijn in detail geanalyseerd, het OWASIS-product van HydroLogic en 

VanderSat soil moisture (van VanderSat), met respectievelijk resoluties van 250m en 100m per cel. In de 

betrouwbaarheidsanalyses werden de producten statistisch vergeleken met in-situ metingen op 15-18 

locaties en op dieptes variërend tussen 5 en 20 cm onder maaiveld. Dit gebeurde op verschillende ruimtelijke 

schalen van het dataproduct: één cel, 3x3 cellen en op de schaal van het volledige Raam-stroomgebied. 

OWASIS vertoonde een zwakke Pearson-correlatie van R = 0,29 (gemiddelde van één cel op meerdere 

locaties), 0,31 (3x3-raster van cellen, gemiddeld over de locaties), 0,18 (schaal van het stroomgebied). Het 

bleek dat OWASIS het bodemvocht in de wortelzone modelleert in plaats van de volledige onverzadigde 

zone. OWASIS rapporteert echter niet de (dynamische) diepte van de wortelzone, waardoor de gegevens 

onbruikbaar worden voor inundatierisicobeoordeling. Het VanderSat-product vertoonde een matige tot 

sterke correlatie met in-situ metingen: R = 0,66 (gemiddelde van één cel op meerdere locaties) en R = 0,82 

(schaal van het stroomgebied). De gemiddelde absolute fout (mean absolute error) voor VanderSat 

vergeleken met in-situ metingen was 0,068 [m³/m³] (één cel) en 0,031 [m³/m³] (stroomgebiedsschaal). 

De ruimtelijke en temporele variabiliteit in bodemvochtgehalte tussen individuele locaties was in-situ veel 

hoger in vergelijking met het VanderSat-product, het VanderSat-product is relatief homogeen in de 

ruimtelijke variabiliteit. De basale neerslag-afvoeranalyse liet een duidelijke gradiënt zien van lage naar 

hoge afvoer bij de overgang van (relatief) diepe naar gemiddelde naar ondiepe grondwaterstanden; terwijl 

voor het bodemvochtgehalte de overgang van gemiddelde naar natte condities een meer gemengd karakter 

vertoonde, dat wil zeggen dat sommige natte condities gemiddelde afvoeren opleverden en sommige 

gemiddelde bodemvocht condities een hoge afvoer. Dit geeft aan dat voor neerslaggebeurtenissen in het 

studiegebied de grondwaterdiepte in het algemeen meer invloed heeft op de afvoerproductie dan het 

bodemvochtgehalte. In zeldzamere gevallen waren de bodemvochtigheid echter belangrijker dan de 

grondwaterstand, zoals bleek uit een klein aantal gebeurtenissen waarbij de grondwaterstand relatief dicht 

bij het oppervlak lag, terwijl de afvoer laag bleef door het lage bodemvochtgehalte. De studie concludeert 

dat de onderzochte bodemvochtproducten die zijn gebaseerd op satellietgegevens momenteel een 

onwenselijke optie zijn om de beoordeling van het inundatierisico te verbeteren voor de provincie Noord-

Brabant. Dit omdat de beschikbare producten ofwel onbetrouwbaar ofwel te homogeen zijn om nauwkeurige 

schattingen van het bodemvochtgehalte op cel-schaal te geven (100 - 250 m). Het VanderSat-product 

vertoonde enig potentieel voor toepassing op stroomgebiedsschaal (ca. 100 km²), maar het hangt van de 

toepassing af of dit voldoende is voor operationeel gebruik. Omdat bovendien werd aangetoond dat in het 

algemeen bodemvochtgehalte minder belangrijk is bij het genereren van (hoge) afvoeren dan het niveau 

van het grondwater, is het raadzaam om voor inundatierisico's te focussen op andere opties dan satelliet-

verkregen bodemvochtgehalte.  
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1  
Introduction 

Information products that are based on remote sensing data are increasingly being used for operational and 

strategic water management in the Netherlands. Well-integrated examples are digital elevation models, 

land-use mapping, and precipitation forecasting. In recent years, water managing authorities have started 

experimenting with the use of other remote sensing products such as actual evaporation and soil moisture 

content. Certain products may also combine individual data sources into a more advanced product through 

data assimilation techniques. These soil moisture products are, however, not yet fully incorporated in 

operational water management. 

The Dutch regional water authority Brabantse Delta (Waterschap Brabantse Delta) is interested in using 

remote sensing products that map the current state of soil moisture content. Such maps may aid the water 

authority in managing water levels for the purpose of reducing the impacts of inundations or droughts. 

Inundations may occur due to heavy precipitation events. However, the state of the unsaturated zone in 

terms of soil moisture content and the thickness of the unsaturated zone may also play an important role; 

previously, some heavy precipitation events have caused no damage, while other events of similar intensity 

and duration do have caused significant inundation damage. 

In order to fully incorporate remote sensing soil moisture products in operational water management, there 

should be a clear understanding of how representative those products are for the actual soil moisture state. 

Furthermore, there is an interest at the water authority to research whether remote sensing soil moisture 

data can aid in inundation risk assessment, by improving rainfall-runoff models and decision support systems 

(DSS) (beslissingsondersteunende systemen). The relationships between (remote sensing) soil moisture 

content, groundwater levels, amount of precipitation, and historic records of discharge may provide useful 

insights for rainfall-runoff modeling and DSS to mitigate the effects of inundation and droughts. 

The current DSS at Brabantse Delta uses weather forecasts and simplified schematizations of the main 

system. It also uses precipitation data (radar), evaporation (KNMI), and water levels outside the Brabantse 

Delta system (measured and modeled). The DSS is used to estimate what is to come in the event of extreme 

discharge, and to support the deployment of various measures that can be taken in the water system. 

Remote sensing is currently only used in the form of precipitation data (radar), actual evapotranspiration 

(not used in any operational processes, but sometimes serves as input for rainfall-runoff models), and digital 

elevation models (AHN). There are currently no direct connections between models and remote sensing 

products, e.g. remote sensing soil moisture data is not used. 
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1.2 Previous research 
Validation of remotely sensed soil moisture data to in-situ data has been the topic of various studies. Albergel 

et al. (2012) evaluated and compared one analysis from the ECMWF1 numerical weather prediction system 

(SM-DAS-2) and two remote sensing soil moisture products, being ASCAT (Advanced Scatterometers) and 

SMOS (Soil Moisture Ocean Salinity), to in-situ soil moisture data of over 200 stations globally. Correlation 

with in-situ measurements were deemed “very satisfactory […] with averaged values of 0.70 for SM-DAS-

2, 0.53 for ASCAT and 0.54 for SMOS”. Wanders et al. (2012) determined the uncertainty of satellite soil 

moisture products over Spain using a deterministic, distributed unsaturated zone model (SWAP). Temporal 

dynamics were best captured by AMSR-E and ASCAT satellites with averaged correlation coefficients of 0.68 

and 0.71, respectively. SMOS showed the capability of capturing long-term trends, however on short 

timescales the soil moisture signal was not captured as well as by the other sensors, resulting in an averaged 

correlation coefficient of 0.42. Validation of SMAP (Soil Moisture Active Passive) passive-only satellite data 

to in-situ data (20 stations) was done for the region of Twente, the Netherlands (Velde et al., 2019). The 

best agreement with their in-situ references led to an unbiased Root-Mean-Squared-Error (uRMSE) of 

0.059 m3 m−3. Once filtered for frozen conditions and antecedent rainfall the uRMSE improved to 

0.043 m3 m−3. 

All soil moisture products mentioned in the previous paragraph vary in spatial resolution from 25 to 50 km 

per pixel, which is often not detailed enough for operational water management on a local to regional 

catchment scale. To illustrate this, the entire Brabantse Delta area would be covered by only 1 or 2 pixels. 

More recent satellite sensors such as the Synthetic Aperture Radar (SAR) onboard Sentinel-1 combined with 

optical data from Sentinel-2 make it possible to retrieve soil moisture at 1000 to 100 m resolution with a 

RMS error in volumetric moisture of 0.059 m³ m-3 (Gao et al., 2017). More and more often, methods using 

computer algorithms and data assimilation are being developed; these combine multiple data sources to 

improve the (relatively low) spatial resolution of remotely sensed data up to 250 m (OWASIS) (ESA, 2019) 

and 100 m (VanderSat, n.d.). 

 

1.3 Research aim and questions 
The scientific aim of this study was to gain (1) better knowledge on the quality of (remote sensing) soil 

moisture data products with respect to spatial and temporal variation between those products and in-situ 

measurements of the soil moisture content, as well as (2) improved knowledge on the impact of soil moisture 

conditions and groundwater levels on the conversion of precipitation into discharge, to assess near-future 

risks of inundation in the study area. Apart from the scientific relevance, this aim also has an embedded 

social relevance because the water authorities are responsible for flood and drought prevention 

management, mitigating negative effects of inundations and droughts. The research aims to provide insights 

to possibly improve models and decision support systems, which the water authorities use for operational 

management strategies. To achieve the aims, the following research question is formulated and divided into 

three sub-questions:  

 

Can soil moisture products that are based on remote sensing data improve the 

assessment of near-future inundation risk for the province of Noord-Brabant, the 

Netherlands? 

1. What soil moisture products that are based on remote sensing data are currently available for the 

Netherlands, what are their spatial and temporal resolutions, and what validation has been done 

with respect to these products? 

2. How reliable and accurate are the available soil moisture products for the study area? 

3. What information can the relation between precipitation, soil moisture state, groundwater depth and 

discharge add to inundation risk assessment? 

 

 

 

1 European Centre for Medium-Range Weather Forecasts 
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Figure 1.1   Diagram showing the connections and flow between the research questions.  

SM: soil moisture, NL: the Netherlands, GW: groundwater, P: precipitation, Q: discharge. 
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2 
Theory 

In this chapter the basics of soil moisture are presented, followed by a word on in-situ methods for soil 

moisture estimation. The latter part of this chapter describes remote sensing methods for soil moisture 

estimation, followed by data assimilation techniques and rainfall-runoff modeling. 

 

2.1 Soil Moisture 
After precipitation has fallen on the land surface, part is re-evaporated, part may directly flow to the surface 

water in the process of overland flow, and part will infiltrate into the soil. Between the land surface and the 

groundwater table, pores in the soil contain both air and water (Figure 2.1). This zone is known as the 

unsaturated zone. The water stored in this zone is called soil water or soil moisture (SM). Once soil water 

reaches the unsaturated zone, it may return to the surface vertically through evaporation, or horizontally 

through soil water flow into the surface water. Alternatively, soil water will percolate from the unsaturated 

zone into the deeper groundwater (Figure 2.2). Soil water is considered important in many processes. The 

relation between soil water, plants, and the atmosphere is key for agricultural practices and is important in 

relation to climate change effects. Soil water is also important for the recharge of groundwater reservoirs. 

Less noticeable, but nonetheless important for specific situations, soil water provides a first defense against 

groundwater pollution (Hendriks, 2010). 

 

 

Figure 2.1   [a-c] soil moisture in the vadose zone at various degrees of saturation. [d] phase diagram showing soil 

composition. V is for volume; M is for mass. Subscripts s, w, and a stand for soil, water, and air, respectively. 

Subscripts v and t stand for voids and total respectively (source: Sjhan81 / CC BY-SA). 

 

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Figure 2.2   Drainage basin hydrological system (simplified). Ovals represent input/output processes; lower-case labels 

represent hydrological processes; rectangles represent water storages; the blue background shows the major types of 

water storages (for average conditions) (adapted from: Hendriks, 2010, p. 269). 

 

The amount of soil moisture in the unsaturated zone is expressed on a gravimetric or volumetric basis 

(Bilskie, 2001). Gravimetric water content (θg) is defined as the mass of water per mass of dry soil. It is 

measured by weighing a soil sample before (mt) and after (ms) oven-drying and relating the obtained values 

[Eq. 2.1]. Volumetric water content (θ) of a soil is the volume fraction (0 < θ < 1) or volume percent (0 < 

θ < 100%) of water-filled pores (Vw) per volume of soil (Vt) [Eq. 2.2]. Volumetric soil moisture as a fraction 

is used in this paper, unless otherwise noted. 

 

θ𝑔 =
𝑚𝑤

𝑚𝑠
=

𝑚𝑡−𝑚𝑠

𝑚𝑠
      [Eq. 2.1] 

 

θ =
𝑉𝑤

𝑉𝑡
 (× 100%)     [Eq. 2.2] 

 

Interaction between soil water and soil depends on the type of soil. Due to the fact that the soil material 

and pore size distribution differs per soil and because different forces may be at work, the relation between 

suction and volumetric moisture content differs per soil type. Sand consists of grains and the forces at work 

in the pore are mainly the capillary forces. Clays have a laminated structure and negatively charged surfaces 

that attract cations, such as Na+ and Ca2+, in the soil. Electrostatic forces bind the cations to the clay sheets 

and as a consequence the soil water holding the cations is also bound to the clay (Hendriks, 2010, p.152). 

The relation between suction and the volumetric moisture content (θ) is described by a soil moisture 

retention curve or pF curve (Figure 2.3). 
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Figure 2.3   Example of water retention curves for sand, silt, clay, and peat soils. The horizontal and vertical axes 

denote the volumetric moisture content and the suction, respectively. 

 

 

2.2 In-situ methods for soil moisture estimation 
Various methods and devices exist to make soil moisture measurements, e.g. the feeling method, 

gravimetric method (by oven drying), tensiometers, electrical resistance blocks,  time domain 

reflectometers, frequency domain reflectometers, capacitance probes, neutron probes (Evans & Sneed, 

1991), or cosmic-ray scanners (Zreda et al., 2012). The gravimetric method is simple and reliable and is 

therefore often used for calibrating the other soil moisture sensing devices (Evans & Sneed, 1991).  

All sensors used during this thesis research are based on the dielectric constant method. Therefore, only 

that method will be further explained. 

Dielectric constant method 

The dielectric constant method measures the capacity of a non-conductor (in this case: soil) to transmit high 

frequency electromagnetic waves or pulses. By calibration, the obtained values are related to the soil 

moisture content. This method is based on the fact that dry soil has a low dielectric value (~2 to 5), compared 

to a very high value for water (80 to 90, measured between 30 MHz and 1GHz). As the water content in the 

water-soil mixture increases, the dielectric constant increases. An important limitation of the method is that 

the measured dielectric constant of the soil mixture drops considerably as water in the soil becomes ice (van 

der Velde et al., 2019) (Figure 2.4). One specific dielectric constant method (used during the research) is 

capacitance in which a sensor uses the soil as a capacitor element and uses the ‘soil charge-storing capacity’ 

to relate the measurement value to water content. Alternative dielectric constant methods are time-domain 

reflectometry and frequency-domain reflectometry. 

 

 

Figure 2.4   Typical dielectric constants (capacity to store charge)  

for common solids, liquids, and gases (METER Group, n.d.). 
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2.3 Remote sensing methods for soil moisture estimation 
A multitude of literature has shown that remote sensing data can be used to give estimates of environmental 

variables and fluxes (Moradkhani, 2008; Reichle, 2008; Ma et al., 2015; STOWA, 2016; Zhuo & Han, 2016; 

Sadeghi et al., 2018). The growing extent of high-resolution remote sensing soil moisture products has 

created possibilities for integrating soil moisture data in water management approaches (Entekhabi et al., 

2010; Petropoulos et al., 2015; Benninga et al., 2019). 

The sensors or instruments used in remote sensing practices may either use the sun as their source of 

energy (passive) or supply their own source of energy (active), measuring the amount of energy that is 

reflected (Figure 2.5). 

Technological progress in satellite remote sensing has shown that soil moisture can be measured by a variety 

of remote sensing techniques, including optical, thermal, passive- and active microwave measurements. 

Each method with its own strengths and weaknesses (Table 2.1). 

 

 
Figure 2.5 Diagram of a passive sensor versus an active sensor  

(Applied Remote Sensing Training, n.d.). 

 

Table 2.1   Summary of remote sensing techniques for near-surface soil moisture estimation (Wang & Qu, 2009). 

Spectrum domain Properties observed Advantages Limitations 

Optical Soil reflection Fine spatial resolution 

Broad coverage 

Limited surface penetration 

Cloud contamination 

Many other noise sources 

Thermal infrared Surface temperature Fine spatial resolution 

Broad coverage 

Physically well understood 

Limited surface penetration 

Cloud contamination 

Perturbed by meteorological 

conditions and vegetation 

Microwave Passive Brightness temperature 

Dielectric properties 

Soil temperature 

Low atmospheric noise 

Moderate surface penetration 

Physically well understood 

Low spatial resolution 

Perturbed by surface roughness 

and vegetation 

 Active Backscatter coefficient 

Dielectric properties 

Low atmospheric noise 

Moderate surface penetration 

High spatial resolution 

Physically well understood 

Limited swath width 

Perturbed by surface roughness 

and vegetation 

 

Microwave remote sensing for soil moisture estimation 

The microwave region of the electromagnetic spectrum ranges in wavelength (λ) from 1 mm to 100 cm. 

Microwave remote sensing allows for measurements under most weather conditions and at any time of the 

day. Depending on the wavelengths involved, microwave energy can penetrate through haze, light rain and 

snow, clouds, and smoke (Lillesand et al., 2000, p.638). 
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Radar (radio detection and ranging) is a form of active microwave sensing. Radar works by transmitting 

pulses of microwave energy in the direction of interest and recording the strength and origin of backscatter 

received from objects within the system's field-of-view (Lillesand et al., 2000, p.639). 

Two primary factors that influence the transmission characteristics of radar signals are the wavelength and 

the polarization of the energy pulse used (Lillesand et al., 2000, p.659). In soil moisture estimation C-band 

measurements (λ=3.75-7.5 cm, f=8-4 GHz) and L-band measurements (λ=15-30 cm, f=2-1 GHz) are 

common. Soil moisture and surface wetness conditions become particularly apparent at longer wavelengths 

(Lillesand et al., 2000, p.676). Table B.1 in Appendix_B shows a full list of common wavelength bands for 

radar. 

Depending on the wavelength and the surface roughness, a radar pulse may either backscatter or reflect 

(Figure 2.6). Reflected signals are not captured by the sensor. A modified Rayleigh criterion typifies the 

surface roughness based on the root-mean-squared surface height variation, the wavelength, and the local 

incidence angle (θ) (Equations 2.3 & 2.4) (Sabins, 1997). Generally, shorter wavelengths are more easily 

backscattered than longer wavelengths. For L-band measurements, a surface variation of >1.00-2.75 cm 

will generally be classified as intermediate and >5.68-15.6 cm will be classified as rough (i.e. good 

backscatter), depending on incidence angle (Table B.2 in Appendix_B). 

 

 

smooth: ℎ (𝑅𝑀𝑆) <
λ

4.4 cos θ
     [Eq. 2.3] 

rough:  ℎ (𝑅𝑀𝑆) >
λ

25 cos θ
      [Eq. 2.4] 

 

 

 

Figure 2.6   X-band and L-band radar reflection from surfaces of varying roughness  

(top-to-bottom: <0.10, 0.5, 1.5, >10.0 cm). (Lillesand et al., 2000, p.670). 
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Microwave soil moisture measurements rely on the large contrast between the dielectric properties of water 

(~80) and soil particles (<4). As moisture content increases, the dielectric constant of the soil-water mixture 

increases, and this change can be detected by microwave sensors (Njoku & Kong, 1977; Dobson et al, 

1985). Penetration of radar waves is normally limited to depths of a few centimeters, especially when soil 

moisture is present (Lillesand et al, 2000, p.676). It is generally believed that the penetration depth is about 

one-third of the wavelength (Schmugge, 1985), which is about 1-2 cm for the C-band and 6-7 cm for the L-

band. 

Freezing and thawing processes, and the presence of frozen ground or wet snow, may impact the microwave 

backscatter measurements. Therefore, they have a negative effect on remote sensing soil moisture retrieval 

(Zwieback et al., 2015). 

 

Passive microwave remote sensing 

Although operating in the same spectral region as radar, passive microwave systems do not supply their 

own source of illumination but measure the naturally present microwave energy within the field-of-view. 

Blackbody radiation theory is central to the concept of passive microwave sensing. Most passive microwave 

systems operate in the same spectral region as the shorter wavelength radar (λ ≤ 30 cm). This region is 

the low-energy tail of a 300 K blackbody radiation curve, typifying terrestrial features (Figure 2.7). In this 

spectral region, all objects or surfaces in the natural environment emit microwave radiation, but very faintly 

compared to the visible or infrared spectrum (Lillesand et al, 2000, p.720). The relatively low amount of 

microwave energy available to passive satellite sensors requires large fields-of-view to collect sufficient 

energy for a measurement. The amount of emitted radiation is related to the temperature and dielectric 

properties of the topsoil (Lopez-Baeza, 2012). 

 

 

Figure 2.7   Earth emitted energy. Right panel shows the (passive) microwave spectral region (adapted from Lopez-

Baeza, 2012). 

 

2.4 Soil moisture data products (data assimilation) 
A drawback of in-situ soil moisture measurements is that they are usually not representative for larger areas, 

because soil moisture can be highly variable at various spatial scales (Wang & Qu, 2009). Adequate in-situ 

sampling of larger areas is often unfeasible (for example due to high costs). To obtain the state of soil 

moisture on a larger scale, one could use either a model or remote sensing data. However, a modeled 

estimate is subject to errors originating from simplifications and assumptions. Model input uncertainties may 

also increase the uncertainty (e.g. imperfect forcing data and uncertain model parameters) (TU Delft, n.d.). 

Despite the advantages of remote sensing, such as high spatial coverage, it is also not ideal. Horizontal 

coverage may be high, but vertical distribution may be limited, e.g. only the top few centimeters are 

measured, while the interest is often in the rootzone or the full unsaturated zone. Furthermore, remote 

sensing observations may be indirect in the sense that the quantity of interest might not be directly 

measured but is rather the result of a conversion of for example the backscatter or brightness temperature 

that is recorded by the sensor.  
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To overcome the limitations of both individual methods, data assimilation is often used. This is a method in 

which models and (remote sensing) observations are combined, in order to obtain an estimate of soil 

moisture conditions that is better than the estimate as obtained from only the individual models or the 

observations. The soil moisture data products in this thesis are based on such assimilation methods. The 

exact structure differs per soil moisture product and is therefore described per product in Chapter 4.1. 

 

2.5 Rainfall-runoff models 
A rainfall-runoff model is a representation of the part of the water cycle that concerns the surface runoff of 

a hydrologic catchment area. Such models are generally used to understand runoff processes and to make 

discharge predictions for water management practices or to design hydraulic engineering measures for flood 

control. The complexity of runoff models varies broadly. The most basic models (e.g. metric models) 

estimate discharge based on observations, without characterizing the various hydrologic processes involved 

(Kokkonen & Jakeman, 2001). Conceptual models use (simplified) mathematical conceptualization of the 

system, usually by modelling a number of interconnected storages that represent the components of the 

hydrological process through recharge and depletion (Jaiswal et al, 2020). Conceptual models are usually 

lumped in nature, which means that the same parameter values are used for the full catchment, thus 

ignoring the spatial variability of parameters. Physical models are more complex and represent hydrological 

processes through mass, momentum, and energy conservation equations. Physical models account for the 

variability of land use, slope, soil, and climate to deal with the hydrological processes within the watershed 

(Jaiswal et al, 2020). Physical models usually require large amount of data and much computational power. 
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3 
Methods and data 

3.1 Study site description 
The research focused on the province of North Brabant (Noord-Brabant) in the Netherlands, more specifically 

the management areas of the water authorities Brabantse Delta and Aa en Maas (Figure 3.1). These areas 

were chosen because the research internship took place at Brabantse Delta, but there was a better historic 

data availability for the area of Aa en Maas, especially in terms of soil moisture data. 

Waterschap Brabantse Delta 

The management area of water authority Brabantse Delta (WSBD) comprises the part of the province of 

North Brabant that lies to the west of the line Waalwijk / Baarle-Nassau and to the south of the Hollandsch 

Diep, the Amer and the Bergsche Maas. This area covers ~1707 km². The surface level in the northern half 

of WSBD is generally within -1 to +1 m NAP (Amsterdam Ordnance Datum). The physical geography consists 

of marine clays in the north-west and fluvial clays in the north-east. In the southern half, below the line 

Bergen op Zoom – Breda, the terrain is made up of sandy high grounds varying between a couple of meters 

and 20-35 m +NAP. 

Waterschap Aa en Maas 

The management area of water authority Aa en Maas (WSAM) is located (north)east of Brabantse Delta, it 

covers ~1610 km². In the far north of WSAM the physical geography consists of a narrow band (<10 km 

horizontally) of fluvial clays and the surface level is generally below 10 m +NAP. The central and southern 

areas consist of sandy high grounds, with a surface level that varies between a couple of meters and 25-40 

m +NAP. 

 

 

Figure 3.1   Map of the Netherlands showing the regional water authorities. Brabantse Delta and  

Aa en Maas are outlined in red and orange, respectively (adapted from: Janwillemvanaalst / CC BY-SA). 

https://creativecommons.org/licenses/by-sa/4.0
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3.2 Available soil moisture data products for the Netherlands 
An overview of the operational (remote sensing) soil moisture data products for the Netherlands was made 

from literature research and existing knowledge of the cooperating water authorities Brabantse Delta and 

Aa en Maas. Literature research was done through search engines, using applicable keywords in English and 

Dutch (soil moisture, remote sensing, product, Netherlands // bodemvocht, satelliet, Nederland; etc.). In 

cases where company websites showed only a brief notice about a possible soil moisture data product, those 

companies were contacted for further clarification. 

The main interest was to find soil moisture data products that are ready for use by an end-user and that are 

also of high spatial resolution (preferably less than a few hundred meters per pixel, but at least less than a 

few kilometers). For completeness, the overview was supplemented with ‘source’ satellite products (e.g. 

SMAP, AMSR-E, Sentinel). Those are satellites which are often used as a source of input data for the end-

user products. 

The properties describing the products are given in Appendix_A. That includes the type of product (source 

or end-user product), origin of the source data (for end-user products), spatial resolution, spatial extent, 

temporal resolution, and sensing depth. These properties were obtained through search engines, product 

websites, digital product brochures, webinars, and personal communication. The end-user products of which 

the (output) data was available for the thesis research are further described in the results section, including 

previous validation results of the product to in-situ measurements. 

 

3.3 In-situ soil moisture measurements 
In-situ soil moisture measurements were obtained from field sensors that were pre-installed in at 18 sites 

throughout the province of Noord-Brabant, of which 2 are located in the WSBD area and 16 are located in 

the WSAM area (of which 15 in the Raam catchment (Benninga et al, 2018) and 1 at de Bult) (Table 3.1 & 

Figure 3.2). 

Time period 

In the WSBD area, measurements were available from 7-1-2020 till 22-4-2020. For de Bult area, 

measurements were available from 14-9-2017 to 8-5-2018. For the Raam catchment soil moisture 

measurements were available from 5-4-2016 till 5-04-2019. 

Sensor models 

The WSBD sensors were of the model METER® TEROS 10, the sensors used in the Raam catchment (WSAM) 

were of the model Decagon® 5TM, and the sensor at de Bult (WSAM) was a Decagon® EC5 (Table 3.2). 

Pre-processing of in-situ measurements 

The measurements varied between the water authorities (and catchments) in terms of time interval, 

measurement depths and the number of sensors per site. The timeseries were homogenized by converting 

to daily-average values of soil moisture. For WSBD, the sensors were installed as a doublet at each depth. 

The doublet measurements were averaged into a single soil moisture value. 
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Table 3.1   Overview of in-situ soil moisture sites, including coordinates, model, and time frame. 

ID x-coordinate 

(RD new) 

y-coordinate 

(RD new) 

Model Time frame 

WSBD_Bavel 115619 398494 METER TEROS 10 7-1-2020 – 22-4-2020 

WSBD_Rijsbergen 104197 392584 METER TEROS 10 7-1-2020 – 22-4-2020 

WSAM_Bult 186508 390081 Decagon EC5 14-9-2017 – 8-5-2018 

WSAM_Raam_01 178746 416080 Decagon 5TM 5-4-2016 – 5-4-2019 

WSAM_Raam_02 174576 410701 Decagon 5TM 5-4-2016 – 5-4-2019 

WSAM_Raam_03 177267 411515 Decagon 5TM 5-4-2016 – 5-4-2019 

WSAM_Raam_04 177863 413975 Decagon 5TM 5-4-2016 – 5-4-2019 

WSAM_Raam_05 174047 412930 Decagon 5TM 5-4-2016 – 5-4-2019 

WSAM_Raam_06 182348 414484 Decagon 5TM 9-5-2016 – 5-4-2019 

WSAM_Raam_07 188281 412613 Decagon 5TM 9-5-2016 – 5-4-2019 

WSAM_Raam_08 184089 396122 Decagon 5TM 9-5-2016 – 5-4-2019 

WSAM_Raam_09 181516 400101 Decagon 5TM 5-4-2016 – 31-1-2018 

WSAM_Raam_10 179978 405124 Decagon 5TM 5-4-2016 – 5-4-2019 

WSAM_Raam_11 189582 400334 Decagon 5TM 5-4-2016 – 5-4-2019 

WSAM_Raam_12 185453 405695 Decagon 5TM 5-4-2016 – 5-4-2019 

WSAM_Raam_13 189261 406406 Decagon 5TM 5-4-2016 – 5-4-2019 

WSAM_Raam_14 186824 409720 Decagon 5TM 5-4-2016 – 5-4-2019 

WSAM_Raam_15 182681 412176 Decagon 5TM 5-4-2016 – 5-4-2019 

 

 

 

Figure 3.2   Soil moisture sensor locations in the province of Noord-Brabant, the Netherlands.  
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Table 3.2   Soil moisture sensor technical specifications. Type: C = capacitance. 

Brand Model Type Operating 

frequency 

Range 

[m³/m³] 

Resolution 

[m³/m³] 

Accuracy 

Decagon 5TM C 70 MHz 0.00–

1.00 

0.0008 

(from 0 to 

50 VWC) 

• Using Topp equation: ±0.03 m³/m³ 

typical in mineral soils that have 

solution EC <10 dS/m.  

• Medium specific calibration: ±0.02 

m³/m³ in any porous medium. 

Decagon EC5 C 70 MHz 0.00–

1.00 

0.001 • Generic calibration: ±0.03 m³/m³ 

typical in mineral soils that have 

solution EC <8 dS/m. 

• Medium specific calibration: ±0.02 

m³/m³ in any porous medium. 

METER TEROS 10 C 70 MHz 0.00–

0.64 

0.001 • Mineral soil calibration: ±0.03 

m3/m3 typical in mineral soils that 

have solution EC <8 dS/m. 

• Medium specific calibration: ±0.01–

0.02 m3/m3 in any porous medium. 

 

 

3.4 Correlation of remote sensing products to in-situ measurements 
In order to compare the remote sensing products to the in-situ measurements, Pearson and Spearman 

correlations between the two were calculated. The correlation coefficient is a statistical measure for the 

strength of the link between two sets of data. In general, the result of the method can range from 1.0 (a 

perfect positive correlation) to -1.0 (a perfect negative correlation). A correlation of 0 indicates that there is 

no association between the two sets of data. A description of different correlation values is given in Table 

3.3. Due to the nature of all products used in this research, e.g. increasing value as soil moisture increases, 

only positive correlation values are assumed to be realistic. The Pearson correlation (denoted as R) 

measures a linear dependence between two variables, also known as a parametric correlation. The 

Spearman correlation (denoted as ρ (rho)) is a non-parametric measure of rank correlation (statistical 

dependence between the rankings of two variables). It assesses the relationship between two variables using 

a monotonic function, which is a function that is entirely increasing or entirely decreasing; this function can 

be linear or non-linear. 

For OWASIS the correlation was calculated for all sites, at an in-situ depth of 15-20 cm-surface (Raam: 20 

cm; de Bult and WSBD: 15 cm). Correlations between VanderSat and in-situ soil moisture were calculated 

only for the WSAM sites, at a depth of 5 cm below surface level. The VanderSat product was not available 

for the WSBD area. These depths were chosen because the VanderSat product measures the top 1-5 cm of 

the soil, while the OWASIS product models the rootzone (first tens of cm below surface level, depending on 

location). It was therefore assumed that the soil moisture measurements at 15-20 cm depth would better 

fit to OWASIS compared to the measurements at 5 cm depth. 

 

Table 3.3   The strength of a correlation. 

Value of coefficient  
(positive or negative) 

Description 

0.00 to 0.19 Very weak correlation 

0.20 to 0.39 Weak correlation 

0.40 to 0.69 Moderate correlation 

0.70 to 0.89 Strong correlation 

0.90 to 1.00 Very strong correlation 
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Correlation at single cell and at 3x3 grid 

The correlations were made at different spatial scales of the remote sensing products: a single raster cell, 

the spatial average of multiple cells, and the spatial average at catchment scale. The first may be regarded 

as a very local scale and the latter as a regional scale correlation. 

As a first indication of the correlation between in-situ measurements and the RS products, the timeseries of 

in-situ soil moisture measurements (15-20 cm depth) were compared to ‘point data’ (single cell) of the RS 

products. From the RS products the grid cell was used that contained the geographical location of the soil 

moisture sensor (Figure 3.3). 

In an attempt to mitigate adverse effects of sometimes large cell to cell variation in the OWASIS product 

(see Discussion), the single cell correlation was supplemented with a 3x3-grid version, in which the value of 

the OWASIS product was averaged over a 3x3 spatial grid (i.e. 9 cells) instead of just the single cell that 

contained the soil moisture sensor (Figure 3.3). This method was not applied to VanderSat data, because 

no unrealistic cell to cell variation was found for that product. 

The OWASIS product was also correlated to the in-situ measurements on a calendar month basis, i.e. all 

measurements of January (of available years) were grouped and correlated, all measurements of February, 

etc. For the WSBD sites this only includes the months January through April of the year 2020, as no further 

data was available. 

Furthermore, it was researched whether any differences in correlation between the soil moisture sites could 

be explained by the site characteristics, e.g. geographic location, soil type (BOFEK2012), land-use type 

(agricultural or non-agricultural). 

 

 

Figure 3.3   Example of a spatial grid indicating a soil moisture sensor location (yellow), the coinciding cell (blue) and a 

3x3 grid (green). 

 

 

Correlation at catchment scale 

The single cell and 3x3-grid correlations only provide information on a very local scale and may be subject 

to errors due to the high spatial variability of soil moisture. Regardless of the quality of those correlations, 

the quality may be very different when correlating soil moisture at the scale of a catchment. The RS products 

were averaged over the extent of the Raam catchment; an area of approximately 20 km by 20 km (~223 

km²) (Figure 3.4). The in-situ soil moisture measurements were averaged over all sites that were within the 

extent of the catchment (WSAM_Raam_01 through 07,10,12,13,14,15). 
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Figure 3.4   Map indicating the outlines of the Raam catchment and the soil moisture sites, groundwater and discharge 

measurement locations. 
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3.5 Relation between precipitation, soil moisture, groundwater level and 

discharge 
A simple rainfall-runoff analysis was used to investigate the extent to which the state of soil moisture can 

be used in inundation-risk assessment. The analysis was used to show how soil moisture state and 

groundwater level affect runoff generation in the study area. The analysis was based on observations only 

and disregarded the hydrological processes between precipitation and discharge (except for soil moisture 

and groundwater levels)2. Daily precipitation, soil moisture content, groundwater levels and discharge 

measurements of the Raam catchment were obtained for the period 15-02-2017 - 01-04-2019.  

Precipitation data was obtained from the ‘HydroNET Neerslagradar’ over the Raam catchment. Discharge 

was measured at the town of Grave (discharge measurement station ADM108, x=179545, y=418180) just 

before the Raam enters the river Meuse in the north of the catchment. The observed daily average discharges 

[in m³/s] were converted to [mm/day] by multiplying by the average number of seconds in a day (86,400) 

and dividing by the catchment area (approximately 121.3 km²). The soil moisture state was based on the 

Raam catchment average of the in-situ measurements (n=12 sites, shown within the blue outline in Figure 

3.4). Groundwater levels were measured approximately 2 km west of the discharge station, near the town 

of Velp (NITG-code: B45F0281001, x=177398, y=418155). The surface level at the groundwater monitoring 

well is situated at 8.4 m +NAP. 

The relationships between precipitation, soil moisture state, groundwater level and daily discharge were 

made clear by creating two scatterplots. On one axis the daily precipitation was plotted [mm/day], on the 

other axis the daily discharge [mm/day]. The observed precipitation-discharge pairs were grouped into three 

classes of color-coding: red for relatively dry conditions, blue for relatively wet conditions, and grey in 

between. In one plot the color coding indicates the state of the soil moisture. In another plot the color 

indicates the groundwater depth. Division of classes was done automatically as the minimum-maximum 

range of observed soil moisture (for the first plot) and groundwater depth (for the second plot) divided by 

the number of classes (n=3).  

  

 

2 The simple analysis was used as an alternative to a conceptual model which turned out inapplicable, as described in the 
Discussion (section 5.1). 
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4 
Results 

4.1 Available soil moisture data products for the Netherlands 
The soil moisture data products that are available for the Netherlands are categorized into source satellite 

products and end-user products. An overview of the properties of each product is provided in Appendix A. 

The source satellite products are not suitable for operational use at the water authorities, because they have 

to be further processed. Only the end-user products are elaborated in this chapter, which are OWASIS and 

VanderSat. 

 

4.1.1 OWASIS soil moisture product 
OWASIS offers information at 250 m resolution for the whole of the Netherlands about the historical, actual, 

and short-term forecasted soil storage capacity and water availability. OWASIS was developed by HydroLogic 

in cooperation with ESA, STOWA, WUR, eLEAF, and Rijkswaterstaat. The product became operational on 01-

01-2018. OWASIS combines various data sources into products of soil storage capacity and water availability 

(Figure 4.1). This is done by feeding the inputs into a water balance solver, which is the Landelijk 

Hydrologisch Model (Dutch National Hydrologic Model, LHM). The LHM is a set of models that compute the 

state of the unsaturated and saturated zones in a detailed way. The output consists of the available water 

storing capacity of the soil, the amount of soil moisture, and modeled groundwater levels. These outputs 

are made available through the HydroNET-platform (webportal and FTP) (van den Brink et al., 2019). 

The core of the LHM is the Modflow+MetaSWAP model, which is a coupled model of Modflow (saturated zone 

/ groundwater layering) and MetaSWAP (unsaturated zone) (Box 4.1). The main inputs are forcing data of 

precipitation and evapotranspiration, and the water levels in the main system (i.e. large rivers). Additional 

inputs consist of soil type, surface level, etc.). Although the model outputs on a daily basis, the water levels 

in the main water systems are updated into the model on a monthly basis. The up-to-date water levels are 

not always available, therefore the model may fall back on long-term averages, while still considering 

dry/wet years. For example, if the current year is a dry year, the historic long-term average of dry years is 

taken. The regional water systems in the model are fed with summer and winter levels under ‘normal 

management’. 

For historic dates, precipitation data is obtained from KNMI (Royal Dutch Meteorological Institute) radar 

data, but this radar data is then corrected based on KNMI rain gauges. This is done because radar is generally 

good in providing the spatial distribution, while rain gauges provide a better value for the actual amount of 

precipitation. 

Until 2020 the actual evapotranspiration was based on the eLEAF-service. As of 2020 it is based on 

VanderSat’s evapotranspiration service (note: this is not the VanderSat soil moisture product as described 

further on in the research). OWASIS itself is in essence only a model, but the actual evapotranspiration data 

(eLEAF / VanderSat) is the component that is based on remote sensing data. The LHM model was modified 

by HydroLogic to work with actual evapotranspiration data, because the standard LHM model 

(Modflow+MetaSWAP) uses reference crop evaporation and subsequently computes an estimation of the 

actual evapotranspiration. 

The operational OWASIS service also provides forecast data up to three days ahead. In that case, 

precipitation is based on forecasts of the ECMWF weather model. Actual evapotranspiration is not available 

as a forecast; therefore, Makkink reference evapotranspiration (Box 4.2) is calculated based on forecast 

temperature, cloud cover and incoming radiation. Forecast actual evapotranspiration is then estimated by 

scaling the reference by a factor that is based on the actual evapotranspiration of the previous few days. 
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Figure 4.1 Overview of the OWASIS service (Adapted from Hydrologic, 2018, p.7). 

 

 

 

 

Validation of OWASIS 

Soil moisture content and groundwater level forecasts from the LHM were validated over the year 2016, 

using soil moisture sensors at 15 locations in the province of North-Brabant (WSAM, Raam catchment) and 

67 locations with groundwater monitoring wells in the province of Utrecht. Three versions of the LHM were 

compared: standard LHM, LHM ETref, LHM ETact (HydroLogic, 2018) (Table 4.2). Precipitation input for the 

Box 4.1 Modflow+MetaSWAP. 

MetaSWAP is the model component in the LHM that describes the processes of the phreatic groundwater 

level, the unsaturated zone, and the exchange of the soil-plant-atmosphere system. The component is 

linked to MODFLOW, enabling metaSWAP to be used in a regional and national context (Toorn et al., 

2016). MetaSWAP simulates the processes from groundwater level to plant-atmosphere interactions. It 

is a so-called ‘metamodel’ of SWAP (Van Dam et al., 2008). The meta concept is based on a simplified 

solution of the non-linear partial differential equation for describing soil physical processes, the so-called 

Richards equation. This equation is replaced by two ‘ordinary’ differential equations, one for the process 

description and one for the water balance (Toorn et al., 2016). Upscaling to ‘aggregation layers’ is used 

in order to do so. Validation of the method is given in (van Walsum & Veldhuizen, 2011). 

Box 4.2 Makkink method for evapotranspiration. 

The Makkink method requires a measurement of the temperature and the global radiation to estimate 

evapotranspiration, according to the following formula: 

𝜆𝐸 = 0.65
𝑠

𝑠 + 𝛾
𝐾𝑖𝑛 

In which:  

λE  = latent heat flux (W m-2)  

s = derivative of esat at air temperature T (kPa K-1)  

γ = psychrometer constant (kPa K-1)  

Kin = daily sum of global radiation (W m-2) 

The assumptions for this method are that the soil heat flux can be neglected relative to the net radiation 

and that the net radiation is approximately half of the global radiation (Kin). Also, the impact of wind on 

evapotranspiration is assumed negligible. The first assumption is only valid for land areas and the second 

assumption is based on average summer conditions in the Netherlands (Feddes et al., 2003). 
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standard LHM is based on KNMI data, which is interpolated from 100-300 stations nationally, and 

evaporation data that is interpolated from 32 stations based on Makkink (Box 4.2). In the LHM ETref version, 

precipitation data is obtained from the HydroLogic precipitation product (HydroLogic, 2012), evaporation is 

(again) obtained from the KNMI. The LHM ETact version can be regarded as the current ‘OWASIS’ product. 

In this version, precipitation is obtained from the HydroLogic precipitation product, and evaporation is 

obtained from the eLEAF actual evaporation service (as of 2020: VanderSat), which are based on remote 

sensing data and the algorithms SEBAL (Bastiaanssen et al., 1998) and ET-Look (Pelgrum et al., 2010). 

These algorithms solve the energy balance at the Earth’s surface. 

HydroLogic concluded in their validation study (Figures 4.4, 4.5) that there were too few measurement 

locations, and too little variability in soil types, surface level height and groundwater depth (and possibly 

distance to surface water) to make good statements about the performance of the LHM with an imposed 

ETact. The in-situ soil moisture measurements had many missing timeseries, disputing the quality of the 

dataset. Overall, it was concluded that (on average) both the model fit (R²) and the error (RMSE) improved 

with an imposed ETact (HydroLogic, personal_communication). 

 

 Table 4.2   Variations of the LHM used in the validation of OWASIS (HydroLogic, 2018).  

Note: there are indications that the label R² should actually be R, as explained in the description of Figure 4.4. 

 

 Precipitation Evaporation R² 

RMSE 

(mm) 

 Standard 

LHM 

KNMI (RD1) daily sum based on 

300 stations 

KNMI (EV24) Makkink based on 32 stations 0.59 - 

 LHM ETref HydroLogic precipitation product KNMI (EV24) Makkink based on 32 stations 0.57 42 

 LHM ETact HydroLogic precipitation product eLEAF actual evaporation (remote sensing) 0.82 36 

 

 

Figure 4.4   Correlation (R²) of soil moisture in the rootzone: LHM vs in-situ, per location (source: HydroLogic).  

Note: there are negative values in this graph (RM_SM_03), which should never be the case as R is squared. HydroLogic 

could not explain this error, but it is possible that the graph represents R rather than R² (personal communication). 
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Figure 4.5   Root Mean Squared Error (RMSE) of soil moisture in the rootzone: LHM vs in-situ, per location (source: 

HydroLogic). 
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4.2.1 VanderSat L-band soil moisture product 
VanderSat is a Dutch provider of global satellite-observed water and temperature data products. The 

VanderSat service uses passive microwave satellites (e.g. AMSR-E, AMSR-2, SMAP) which measure naturally 

radiating microwave signals from the Earth’s surface. At the moment of writing, VanderSat uses nighttime 

observations during the satellites descending orbits (generally between 01:30 and 06:00 solar time). The 

measurements can be regarded as instantaneous and are representative for the time of overpass. Between 

200 and 330 observations are expected per satellite, per year, depending on geographic latitude. The 

measured signal originates from the top layer of the soil. This can generally be up to 10 cm depth, with the 

strongest contribution from the uppermost layer. Commonly a depth of 5 cm is assumed, but in reality the 

penetration depth varies with moisture content. The measured depth is deeper if the soil is drier (VanderSat, 

n.d.). The precision of the soil moisture data is ~0.001 [m³/m³]. The accuracy is approximately 0.03 

[m³/m³] (VanderSat, n.d.). 

The VanderSat algorithm is based on the Land Parameter Retrieval Model (LPRM) (Owe et al., 2008; De Jeu 

et al., 2014; Van der Schalie et al., 2017). In addition to this model VanderSat uses an algorithm to 

downscale the satellite-retrieved raw brightness temperature into a resulting soil moisture product of 

100x100 m resolution. This downscaling yields a significant improvement over the original resolution (e.g. 

AMSR-2 C-band, at 62x35 km) (Figure 4.6) (VanderSat, n.d.). This downscaling process is technically 

relatively complex, but was well described by Mulder (2018): “By considering a Gaussian distribution inside 

the satellite footprint, it can be assumed that the center of a single footprint contributes more to the observed 

brightness temperature signal than the edges of that footprint. By using this Gaussian distribution, also 

footprints at for example 25% and 75% signal-intensity can be established, which results in footprints of 

different resolutions. Finally, by combining these different footprints, the geographical area of interest is 

overlain by multiple ellipses, in which pixels inside small footprints have larger weights than pixels inside 

large footprints. A high detailed land cover map is used to distinguish between land cover and open water. 

For each footprint that is overlaying the geographical area of interest, the percentage of land and water 

inside that footprint is determined. By using the percentage of land and water cover, and by using fixed 

brightness temperature values for pixels covering water, the brightness temperature values for each high-

resolution land pixel can be calculated from the observed brightness temperature in the satellite footprint. 

The resulting high-resolution brightness temperature map is used as input in the Land Parameter Retrieval 

Model to calculate soil moisture […] at 100x100 m resolution. By downscaling the raw brightness 

temperature data instead of downscaling soil moisture, temperature and VOD, the method becomes more 

efficient, but also performs better around large water bodies such as lakes and along the coast (Figure 4.6).” 

 

 

Figure 4.6   Soil moisture maps of the Netherlands, based on SMAP level 3 data with a resolution of 36 km (left), and 

based on the downscaling algorithm of VanderSat, resulting in a resolution of 100 m (right) (Mulder, 2018). 
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The analyses in this thesis research were done using version 1.0 of the VanderSat L-band soil moisture 

product (SM-LN_V001_100), which was released in January 2019. The current version is 3.0, which was 

released in September 2019. The newer version was not used in the research, because it was not available 

at the water authorities. The differences between versions can be found in the VanderSat release notes, at 

https://docs.vandersat.com/VanderSat_Release_Notes.html. 

 

Validation of VanderSat 

De Jeu & de Nijs (2017) calculated the correlation of two variations of the VanderSat product to both soil 

moisture and (phreatic) groundwater levels. One variation was based on AMSR-2 C-band and the other on 

SMAP L-band observations. Daily average soil moisture (at 3 cm depth) and groundwater levels at the KNMI 

monitoring site Cabauw (near Lopik) were used as in-situ data. Correlation coefficients of Pearson and 

Spearman were calculated (Table 4.3, Figure 4.7). Correlation values of generally over 0.75 were found. 

The L-band observations of SMAP performed slightly better than the C-band observations of AMSR-2, which 

may be due to the fact that L-band frequency generally has a larger penetration depth through vegetation, 

into the soil (Mulder, 2018). There was also a relatively strong correlation of in-situ soil moisture to 

groundwater levels (R=0.61–0.72). 

Based on the results of Cabauw, the approach was upscaled to the full extent of the Netherlands by using 

the available groundwater level data from DINOloket. Focus was put on the Spearman correlation because 

the relationship between soil moisture and groundwater level was not always considered linear (de Jeu & de 

Nijs, 2017). Correlations of R ≥ 0.6 between remote sensing data and groundwater levels were found 

throughout the Netherlands, including the coastal areas and the Wadden islands. In total, 76% of all data 

pairs between soil moisture and groundwater level had a correlation >0.6 with SMAP and 54% with AMSR-

2. Low correlations were found in areas where the relationship between topsoil moisture and groundwater 

level is strongly decoupled (de Jeu & de Nijs, 2017). The decoupling of soil moisture to groundwater with 

increasing depth is shown in (Figure 4.8). 

 

Table 4.3   Statistics of the VanderSat products with respect to the soil moisture 

measurements at 3 cm and the measured groundwater levels at Cabauw. Statistics marked 

with an asterisk (*) are based on days for which all measurements were available between 

the period April 2015 and the end of March 2017 (adapted from: de Jeu & de Nijs, 2017). 

 N RPearson RSpearman Time period 

VanderSat (SMAP) vs SM 
262 

251* 

0.81 

0.81* 

0.85 

0.85* 
April 2015 – March 2017 

VanderSat (AMSR-2) vs SM 
1533 

251* 

0.78 

0.75* 

0.85 

0.81* 
July 2012 – March 2017 

     
VanderSat (SMAP) vs GW 

271 

251* 

0.75 

0.76* 

0.80 

0.81* 
April 2015 – March 2017 

VanderSat (AMSR-2) vs GW 
1569 

251* 

0.78 

0.75* 

0.79 

0.76* 
July 2012 – March 2017 

     
SM vs GW 

1654 

251* 

0.68 

0.61* 

0.74 

0.72* 
July 2012 – March 2017 

 

https://docs.vandersat.com/VanderSat_Release_Notes.html
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Figure 4.7   Timeseries of VanderSat (AMSR-2) [blue] versus in-situ soil moisture at 3 cm depth [red] and groundwater 

levels [green] at Cabauw (de Jeu & de Nijs, 2017). 

 

 

Figure 4.8   Grouped groundwater depths relative to the calculated (50th percentile) Spearman correlations between 

the groundwater level and the soil moisture products (de Jeu & de Nijs, 2017). 
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4.2 Correlation of remote sensing products to in-situ measurements 

4.2.1 OWASIS 

Single cell and 3x3-grid 

The results of the single cell correlation of OWASIS vs in-situ show that the Pearson correlation (R) ranges 

from -0.41 to 0.90 over the individual sites, with a mean of 0.32 and a standard deviation of 0.39 (Figure 

4.9, left). This means that the degree to which in-situ soil moisture can be ‘predicted’ by the OWASIS soil 

moisture product is highly varying from site to site. For the 3x3-grid correlation of OWASIS vs in-situ the 

Pearson correlation (R) ranges from -0.25 to 0.80, with a mean of 0.29 and a standard deviation of 0.34 

(Figure 4.9, right). The Spearman correlation (ρ) for OWASIS single cell ranges from -0.15 to 0.92, with a 

mean of 0.35 and a standard deviation of 0.33 (Figure 4.10, left). For the 3x3-grid comparison of OWASIS 

the Spearman correlation (ρ) ranges from -0.34 to 0.83, with a mean of 0.22 and a standard deviation of 

0.37 (Figure 4.10, right). 

If we compare the single cell version and the 3x3-grid version, it can be seen that the correlations (both 

Pearson and Spearman) increased for WSAM_Raam_05, WSBD_Bavel and WSBD_Rijsbergen. The 

correlations remained (almost) equal for WSAM_Raam_04, 10, 12 and 13. But for most sites the correlations 

decreased: WSAM_Bult, WSAM_Raam_01, 03, 06, 08, 09, 11, 14, 15. For WSAM_Raam_02 the Pearson 

correlation became less negative, but the Spearman correlation became more negative. For 

WSAM_Raam_07 the Pearson correlation changed from negative to slightly positive, but the Spearman 

correlation remained unchanged. 

If the correlations are averaged over all sites, the results show that the Pearson and Spearman correlations 

perform very similar (Table 4.4). 

 

 

Figure 4.9   Pearson correlation (R) of OWASIS vs in-situ (@ 15-20 cm depth). Single cell (left) and 3x3-grid (right). 

 

 
Figure 4.10   Spearman correlation (ρ) of OWASIS vs in-situ (@ 15-20 cm depth). Single cell (left) and 3x3-grid 

(right). 
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Table 4.4   Overall correlation coefficients for OWASIS vs in-situ (@15-20 cm depth). 

OWASIS vs in-situ Pearson corr. (R) Spearman corr. (ρ) 

 Mean Std Min Max Mean Std Min Max 

Single cell 0.32 0.39 -0.41 0.90 0.35 0.33 -0.15 0.92 

3x3-grid 0.29 0.34 -0.25 0.80 0.22 0.37 -0.34 0.83 

 

 

Correlation on a calendar month basis 

If the correlation results of OWASIS (3x3 grid) to in-situ are split out to a calendar month basis (Table 4.5) 

it can be seen that the values are distributed from as low as -0.6 and up to 0.98. 101 out of 170 (59%) of 

the individual monthly correlations are strong to very strong (0.7 ≤ R ≤ 1.00). This is also true when all 

sites are grouped together to produce monthly means (7 out of 12 months). The months June and July show 

the strongest correlation with 0.88 and 0.89, respectively. The month May shows particularly poor results; 

for 5 out of 9 sites the correlation was negative (for the other 9 sites a correlation could not be calculated 

due to a lack of in-situ data). These results show that the OWASIS product performs differently for each 

location and through time over the year, possibly indicating that the model input data or calculations vary 

per location and time of the year. In personal communication and in a webinar, HydroLogic noted that this 

is true because the modeled rootzone is dynamic, which is further explained in the Discussion chapter. 

 

Table 4.5   Correlation of OWASIS (3x3-grid) to in-situ measurements on a calender month basis. 

 

 

Catchment average 

Correlations between OWSIS and in-situ were also calculation for the Raam catchment as a whole. This was 

done at a 7-day moving average (Figure 4.11). Taking the catchment average could potentially mitigate the 

spatial mismatch in representative area between the soil moisture data product (OWASIS) and the in-situ 

soil moisture measurements. Because the multiple in-situ sensors are also averaged, any measurement 

errors (e.g. relatively poor installation, wrong readings) are smoothed out. Applying the 7-day moving 

average slightly smooths the temporal variation, thus reducing strong changes that occur on a short time 

scale (e.g. a short peak due to a wrong measurement). This potentially makes the series better comparable, 

while losing some detail.  

The found Pearson and Spearman correlations are very weak, with values of 0.18 and 0.16, respectively 

(Table 4.6); while the mean correlation of the individual sites was in the order of 0.32-0.35 (Table 4.4). The 

bias, mean absolute error (MAE) and root-mean-squared-error (RMSE) could not be calculated for OWASIS, 

because the units did not match with the in-situ measurements (mm and m³/m³, respectively). 
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January 0.89 0.80 0.84 0.65 0.84 0.86 0.79 0.86 0.65 0.65 0.80 0.78 0.97 0.87 0.86 0.48 0.95 0.71 0.79 0.12

February 0.96 0.98 0.72 0.86 0.52 0.91 0.35 0.80 0.79 0.45 0.95 0.55 0.98 0.37 0.80 0.86 0.64 0.73 0.21

March 0.92 0.46 0.84 0.93 0.82 0.93 0.46 0.71 0.89 0.77 0.97 0.36 0.34 0.78 0.89 0.74 0.21

April 0.71 0.80 0.78 0.45 0.55 0.25 0.63 0.70 0.26 0.28 0.43 0.43 0.36 0.68 0.38 0.63 0.46 0.52 0.18

May -0.58 -0.25 0.67 0.54 0.26 0.56 -0.41 -0.46 -0.60 -0.03 0.50

June 0.95 0.95 0.95 0.93 0.77 0.97 0.71 0.92 0.93 0.96 0.96 0.84 0.78 0.89 0.89 0.08

July 0.95 0.94 0.93 0.96 0.97 0.98 0.91 0.96 0.92 0.98 0.90 0.95 0.65 0.33 0.88 0.17

August 0.93 0.49 0.77 0.90 0.81 0.96 0.89 0.92 0.96 0.60 0.91 -0.27 0.74 0.34

September 0.69 0.43 0.58 0.84 0.86 0.92 0.53 0.49 0.66 0.92 0.40 0.68 -0.30 0.90 0.61 0.31

October 0.75 0.79 0.88 0.93 0.92 0.85 0.85 0.39 0.66 0.87 0.94 0.43 0.87 0.76 0.85 0.65 0.77 0.16

November 0.33 0.39 0.77 0.84 0.65 0.85 0.82 0.37 0.57 0.72 0.82 0.44 0.71 0.71 0.84 0.65 0.18

December 0.44 0.45 0.31 0.66 0.45 0.71 0.32 0.36 0.47 0.46 0.13

Mean 0.87 0.76 0.75 0.56 0.64 0.81 0.70 0.78 0.71 0.65 0.72 0.63 0.73 0.50 0.58 0.59 0.62 0.75



27 

 

 

Table 4.6   Metrics for the relation between OWASIS and in-situ 

soil moisture (Raam catchment average, 7-day moving average). 

 Number of paired observations 1038 

Pearson correlation (R) 0.18 

Spearman correlation (ρ) 0.16 

 

 

 

 

 

Figure 4.11   Timeseries of Raam catchment-averaged 7-day moving average in-situ and OWASIS soil moisture from 

April 2016 to April 2019. NB the two vertical axes represent different units, which may skew perceived trends. 
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4.2.2 VanderSat L-band 

Single cell 

The results of the single cell comparison of VanderSat (L-band) vs. in-situ soil moisture show that the 

Pearson correlation (R) ranges from 0.45 to 0.83, with a mean of 0.66 and a standard deviation of 0.11 

(Table 4.7 & Figure 4.12, left). This means that the degree to which in-situ soil moisture can be ‘predicted’ 

by the VanderSat soil moisture product in a linear way is 45-83%. The Spearman correlation (ρ) ranges 

from 0.51 to 0.82, with a mean of 0.69 and a standard deviation of 0.10 (Figure 4.12, right). Furthermore, 

the bias shows that for 10 out of 15 sites VanderSat slightly overestimates the soil moisture, compared to 

in-situ measurements. The site WSAM_Raam_09 shows the highest overestimation, with a difference of 

0.110 [m³/m³]. The highest underestimation is found at site WSAM_Raam_01, with a difference of -0.070 

[m³/m³]. The mean-absolute-error (MAE) of the VanderSat soil moisture product is 0.068 [m³/m³]. 

A 3x3-grid correlation was not made for the VanderSat product, because there was no large cell-to-cell 

variation in this product and thus this extended method was assumed obsolete. 

 

Table 4.7   Metrics for VanderSat vs in-situ (@ 5cm surface) (single cell). 

Location 

Number of 

observations Bias RMSE MAE 

Pearson 

R 

Spearman 

ρ 

WSAM_Bult - - - - - - 

WSAM_Raam_01 726 -0.070 0.092 0.078 0.61 0.61 

WSAM_Raam_02 672  0.026 0.047 0.038 0.83 0.82 

WSAM_Raam_03 720  0.089 0.112 0.092 0.59 0.55 

WSAM_Raam_04 727 -0.025 0.049 0.039 0.80 0.78 

WSAM_Raam_05 664  0.006 0.049 0.039 0.72 0.72 

WSAM_Raam_06 562 -0.033 0.090 0.078 0.53 0.70 

WSAM_Raam_07 702 -0.031 0.052 0.042 0.79 0.79 

WSAM_Raam_08 524  0.042 0.076 0.061 0.78 0.82 

WSAM_Raam_09 471  0.110 0.131 0.117 0.45 0.51 

WSAM_Raam_10 602  0.044 0.075 0.063 0.58 0.66 

WSAM_Raam_11 687  0.016 0.057 0.045 0.74 0.75 

WSAM_Raam_12 678  0.046 0.135 0.120 0.56 0.56 

WSAM_Raam_13 672  0.077 0.120 0.104 0.54 0.57 

WSAM_Raam_14 708  0.001 0.052 0.040 0.73 0.79 

WSAM_Raam_15 724 -0.017 0.072 0.058 0.70 0.73 

WSBD_Bavel - - - - - - 

WSBD_Rijsbergen - - - - - - 

       
Mean 656 -0.019 0.081 0.068 0.66 0.69 

Standard deviation 77  0.049 0.030 0.028 0.11 0.10 

Min 471 -0.110 0.047 0.038 0.45 0.51 

Max 727  0.070 0.135 0.120 0.83 0.82 
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Figure 4.12   [left] Pearson correlation (R) of VanderSat L-band vs in-situ (5 cm-surface). [right] Spearman 

correlation (ρ) of VanderSat L-band vs in-situ (5 cm-surface). 

 

 

Due to the more promising results compared to OWASIS, the VanderSat product was further analyzed in 

terms of spatial distribution. The Pearson correlations were geographically plotted on a map of the Raam 

catchment area (Figure 4.13). Some weak clusters of similar correlation are apparent (e.g. 

WSAM_Raam_09,10,12,13 and WSAM_Raam_07,14,15). Contrary, there are also clusters of mixed high and 

low correlations (e.g. WSAM_Raam_01 trough 06,15) Therefore, it may be assumed that there is no 

noticeable trend in the spatial distribution. 

Figure 4.14 shows the separate timeseries for the in-situ measurements (top panel) and the VanderSat soil 

moisture product (bottom panel). It can be seen that the in-situ measurements in the top panel have a very 

high spatial and temporal variation, when compared to the much more gradual and similar timeseries of 

VanderSat in the bottom panel). In the VanderSat panel, all 15 sites largely follow the same pattern, while 

the 15 sites show very different patterns amongst each for the in-situ measurements. This might partly be 

attributed to errors in the in-situ measurements because there are some sites that show soil moisture values 

less than 0.05 [m³/m³] and over 0.4 [m³/m³]. Such low values are not impossible but are rare due to the 

fact that some water will always be retained in the pores due to suction, and the high values are rare for 

sandy soils due to gravity draining the excess water (Figure 2.3). However, it seems more likely that the 

VanderSat product provides relatively smooth spatial estimates. Literature also indicates that soil moisture 

can show very high spatial variability (Wang & Qu, 2009), which is not found in the VanderSat product. 
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Figure 4.13   Spatial distribution of the Pearson correlation (R) of VanderSat vs in-situ (5 cm-surface) for the Raam 

sites. 
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Figure 4.14  [top] Timeseries of in-situ soil moisture measurements (5 cm-surface). [bottom] Timeseries of 

VanderSat L-band soil moisture measurements. Individual series are color-coded based on the Pearson correlation 

between in-situ and VanderSat for that site: red: R=0.45-0.55, orange: 0.55-0.65, light green: 0.65-0.75, dark green: 

0.75-0.85. i.e. red timeseries show sites with a relatively poor correlation, while green shows relatively good 

correlations.  
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Catchment average 

Similar to OWASIS, an analysis for the Raam catchment as a whole was made for VanderSat, at a 7-day 

moving average to mitigate the mismatch in representative area between VanderSat (100 m²) and in-situ 

data (<1 m²) (Figure 4.15). The obtained Pearson and Spearman correlations were 0.82 and 0.83, 

respectively (Table 4.8). Overall, the VanderSat L-band product slightly overestimated the in-situ soil 

moisture, with a bias of 0.008 m3 m-3, which is on the low end compared to the values found for the individual 

sites in Table 4.7 (between -0.110 and 0.070, with a mean of -0.019 [m³/m³]). The mean-absolute-error 

(MAE) for the catchment-average is 0.031 [m³/m³], which is also an improvement over the individual sites 

(which showed a mean of 0.068 [m³/m³]). In fact, the catchment-average MAE is even smaller than the 

best-performing individual site, which was WSAM_Raam_02 with a MAE of 0.038. 

When looking at the details of the time series (Figure 4.15), it can be seen that during the autumn and early 

winter of 2016-2017 the soil moisture was overestimated by the VanderSat product by approximately 0.05 

[m³/m³]. During the autumn of 2017 the VanderSat product also slightly overestimated the soil moisture, 

but less noticeable than the previous year.  There was no noticeable overestimation for the autumn of 2018. 

During spring 2018 there seems to be relatively much jitter in the VanderSat product, but no comparison 

could be made, because no in-situ data was available for that time period. Over the summer of 2018 soil 

moisture was somewhat underestimated by the VanderSat product. No underestimation was found for the 

summers of 2016 or 2017. These periods of over- and underestimation were compared to minimum 

temperatures at 10 cm above surface level, and to daily average temperatures, at KNMI station Volkel 

(Figure 4.16). Presence of frozen conditions could not explain the difference in measured soil moisture during 

the winter of 2016, because 2017 and 2018 had mostly similar temperature trends, and there was a freezing 

period in 2017 which lasted longer than that of 2016. 

 

Table 4.8   Metrics for the relation between VanderSat L-band and in-

situ soil moisture (Raam catchment average, 7-day moving average). 

 Number of paired observations 964 

Bias 0.008 [m3 m-3] 

RMSE 0.039 [m3 m-3] 

MAE 0.031 [m3 m-3] 

Pearson correlation (R) 0.82 

Spearman correlation (ρ) 0.83 

 

 

Figure 4.15   Timeseries of catchment-averaged 7-day moving average in-situ and VanderSat L-band soil moisture 

from April 2016 to April 2019. 
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Figure 4.16   Time series from April 2016 through April 2019 of daily mean temperature [red] and daily minimum 

temperature at 10 cm above surface level [blue] (at a 7-day moving average) for KNMI station Volkel (source: KNMI). 

 

 

4.2.3 Linking correlation to soil type, groundwater levels & land-use type 
Further explanation for the differences in the correlation between sites was sought in site properties such as 

soil type, groundwater depths and land-use type. A comparison was made between each site its Pearson 

correlation and the local soil type (BOFEK2012), groundwater level classification, and basic land-use type. 

Due to the relatively limited number of sites (between 15 and 18) in relation to the relatively large number 

of classes (9 soil types, 8 groundwater classes, 2 land-use types) the results turned out to be relatively 

weak. Therefore, the tables that show the soil type classification, groundwater classification, land-use type 

and corresponding correlations per site are only provided in Appendix C. The following paragraph is a 

generalized summary of those results. 

In terms of soil type, the classification was made based on the BOFEK2012 dataset. BOFEK2012 is a national 

map of soil type classifications in the Netherlands (Wosten et al., 2013). There was little variation between 

the sites, as all had a mainly sandy soil. Slight variations included loamy components (for many sites) or 

cultivated components (for a few sites). There were 5 very low correlations (< 0.4) for class 304 (loamy 

sand) for OWASIS. With 5 out of 18 sites, it would seem that the OWASIS product performs particularly 

poor for that soil type, but the fact is that 7 out of the 18 sites are of class 304. That class is therefore 

overrepresented in the dataset (in other words, the number of sites per soil unit is not equally distributed). 

The VanderSat product showed better correlations for that class (1 site between 0.4-0.5, 3 sites between 

0.5-0.6, 2 sites between 0.7-0.8), which may indicate that the poor correlations for OWASIS are more likely 

to be related to model performance, rather than the local soil type. 

Groundwater levels were classified based on the Dutch system of ‘grondwatertrappen’. That system has a 

number of classes that are expressed in Roman numerals and that represent specific ranges of the absolute 

groundwater level and its fluctuation. The classes are defined on the basis of the average highest 

groundwater level (GHG) and average lowest groundwater level (GLG). Most of the sites were classified as 

VI or VII, which coincides with a GHG of 40-80 cm or >80 cm, respectively, and a GLG of >120 cm in both 

classes. Classes III, IV, V (shallower GW) and VIII (deeper GW) each contained one site. For groundwater 

class VI most sites (7 out of 9) had a correlation ≤ 0.6. For class VII 4 out of 5 sites had a correlation ≤ 0.6. 

Again, the distribution of sites between classes is too poor to say that these two particular groundwater 

classes lead to poor correlations. 

Land-use type was classified as grassland or agricultural land. The sites were classified based on optical 

satellite imagery  from www.satellietdataportaal.nl over the years 2016-2019. For some sites no distinction 

could be made based on optical imagery (e.g. seasonal variation), those were marked as both grassland and 

agricultural. For the sites WSAM_Raam_02, 03, 05, 14, photographs were available from the time of sensor 

installation. These photographs were used to verify the land-use type for those sites. From these 

photographs it also became clear that for some fields the land-use was agricultural (based on satellite 

imagery), but the sensor was placed at the very edge, which consisted of a patch of grass(land). One should 

take this into account when judging the results. The results (Table 4.9) showed similar correlations for 
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agricultural land and grassland, for both OWASIS and VanderSat. Thus, likely because the sensors were all 

placed at the edges of fields (often in a patch of grass). 

 

 

Table 4.9   Averaged Pearson correlation (R) per land-use type. 

 Agricultural field Grassland 

OWASIS 3x3 grid 0.18 0.19 

VanderSat single cell 0.68 0.67 
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4.3 Relation between precipitation, soil moisture and discharge 
The relations between daily precipitation, soil moisture state, groundwater level and daily discharge are 

visually laid out as a scatterplot with three classes of color coding (Figure 4.17). The color indicates the 

states of the soil moisture (in panel a) and the groundwater depth (panel b): red for relatively dry conditions 

and blue for relatively wet conditions. 

 

Figure 4.17   Scatterplots of precipitation and discharge. [a] Color coding based on soil moisture state. [b] Color 

coding based on groundwater depth below surface level. 

 

 

The results show that most events are located in the bottom-left corner. These are common events of low 

precipitation intensity ~0-20 mm/day), resulting in low discharge (~0-1 mm/day). In panel (a) of Figure 

4.20, it can be seen that on days were soil moisture was relatively low (red markers), the coinciding 

discharge was also low (<1 mm/day), regardless of precipitation intensity. Even under rare events of 70-90 

mm of precipitation on a single day the discharge remained low, if soil moisture was low. On two other days 

were precipitation intensity was 60-80 mm/day the soil moisture states were medium and high, which 

resulted in higher discharges compared to the dry conditions. More extreme cases of high discharge under 

wet conditions can be found in the top-left of the plot. In those cases, precipitation of less than 20 [mm/day] 

resulted in discharges in excess of 6 mm/day. 

The far left of the plot shows many days without precipitation, while the discharge still varied between 0 and 

5 [mm/day]. This may possibly be due to baseflow, e.g. water originating from an area that was not 

considered in the analyses, or from delays, as it takes time for the water to drain through the soil and into 

the surface water after a precipitation event. Regardless, low soil moisture conditions generally still result 

in low discharges. The medium to high soil moisture conditions show a somewhat more mixed pattern, but 

generally the wet conditions results in higher discharges. 

Panel (b) of Figure 4.17 shows generally the same story as panel (a), in the sense that low groundwater 

levels (= dry conditions) result in low discharge, regardless of precipitation intensity. Different from the soil 

moisture conditions, almost all wet conditions in terms of groundwater levels (blue markers) now result in 

higher discharge than the average conditions (grey markers). In other words, the points are now clearly 

divided between dry, average, and wet conditions. The fact that the dry and average conditions show a 

somewhat mixed pattern in panel (a) and not in panel (b), indicate that the amount of discharge resulting 

from precipitation, mainly depends on the groundwater depth and to a lesser extent depend on soil moisture 

state. However, it can also be seen that this is not a rule written in stone, as examples are present that 

show the opposite. Two obvious outliers are present in panel (b): events of ~35-40 mm of precipitation on 

a single day with high groundwater levels, while still resulting in a low discharge of <1 mm/day (orange 

circle). This may be explained by the fact that, although groundwater levels were high, the soil moisture 

conditions were dry, as can be seen in panel (a). This shows that cases exist were the soil moisture content 

appears to be more important than only the groundwater depth. Worth noting is that the two outlier events 

were only 3 days apart, 29-05-2018 and 01-06-2018 (Table 4.10). Thus, they were strongly coupled in 
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terms of the hydrologic conditions, rather than being two completely different events. The current research 

provides no answer to what made these particular events different from the rest of the dataset. Extending 

the dataset with weir elevation data may help explain which part of the hydrologic conditions is due to 

natural processes and which part is due to water management. 

 

Table 4.10   Part of the P, Q, SM, GW dataset between 23-05-2018 and 08-06-2018. The 

events that are indicated with the orange circle in Figure 4.17 are shown here in yellow. 

Date Precipitation 
[mm/day] 

Discharge 
[mm/day] 

SM in-situ 
[m³/m³] 

Groundwater depth 
[cm surface] 

23-05-2018 13.4 0.5 0.221 -106.079 

24-05-2018 2.8 0.5 0.219 -106.45 

25-05-2018 0.0 0.5 0.22 -107.2 

26-05-2018 0 0.4 0.21 -108.3 

27-05-2018 18.3 0.4 0.21 -97.9 

28-05-2018 0.1 0.4 0.21 -78.1 

29-05-2018 42.6 0.4 0.21 -80.4 

30-05-2018 0.0 0.4 0.22 -76.3 

31-05-2018 0.4 0.5 0.22 -79.0 

01-06-2018 33.7 0.7 0.22 -83.8 

02-06-2018 0.1 0.8 0.22 -85.3 

03-06-2018 0 0.6 0.23 -89.0 

04-06-2018 0 0.4 0.24 -91.7 

05-06-2018 0 0.3 0.23 -94.0 

06-06-2018 0 0.4 0.23 -96.3 

07-06-2018 2.6 0.1 0.22 -98.2 

08-06-2018 83.3 1.1 0.25 -91.7 
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5 
Discussion 

Soil moisture content is a variable that is often not measured with high spatial coverage, this has also 

become clear in the research from the fact that the WSBD area has only two measurement sites, as of begin 

2020. Therefore, it was especially helpful that WSAM data from over 15 soil moisture sensors could be used, 

which was also relatively evenly distributed over a single catchment. Although 15 sites may still be low for 

very detailed analyses, it has offered much better results compared to only 2 sensors in the WSBD area. 

Furthermore, the WSAM data spanned multiple years (2016-2019), this helps to filter out biases that may 

be present during extremely dry or wet years. 

In the correlation analysis, moderate results were obtained for the VanderSat L-band soil moisture product 

at single cell scale (site-averaged R=0.66). Good results were obtained for this product at catchment scale 

(R=0.82). The mean absolute error for VanderSat compared to in-situ measurements was 0.068 [m³/m³] 

(single cell) and 0.031 [m³/m³] (at catchment scale). References for comparing the accuracy are not readily 

available, but we may compare to the target accuracies of soil moisture satellites (SMAP and AMSR2), which 

were set at 0.04 [m³/m³] (Ye et al, 2019). Those relate to the RMSE, which in the research were 0.081 

[m³/m³] (single cell) and 0.039 [m³/m³] (at catchment scale). The required release accuracy for AMSR2 

SMC products is ±0.1 [m³/ m³], while the desired goal accuracy is ±0.05 [m³/m³] (Wu et al, 2016). If these 

accuracies are used as a reference, this indicates that the performance of the VanderSat product is sufficient 

to accurately predict (top)soil moisture content at catchment-average scale but is likely insufficient at very 

local scale. For inundation risk assessment this may be considered sufficient, as this is generally done at 

(sub)catchment scale rather than at the scale of individual ditches or parcels. 

The results that were found for the WSAM area are considered generally applicable (or scalable) to the WSBD 

area as well, due to the largely similar conditions: The WSAM area is geographically not very far from WSBD, 

implying no major differences in meteorological forcing. The general soil type is comparable (sandy soil). 

The surface heights compared to N.A.P. may be up to a few meters higher at WSAM, but no exceptionally 

large differences are present. 

 

5.1 Quality of the research methods 
The accuracy of the results is subject to the quality of the used data and the applied methods of analysis. 

In-situ measurements 

All correlation analyses rely on the in-situ measurements. It should be kept in mind that, although used as 

a reference in this research, those measurements cannot be considered as 100% accurate. This is because 

any sensor instrument has limitations to its capabilities in terms of measurement accuracy and resolution. 

If we assume that installation was done properly, meaning good (undisturbed) soil contact around the 

sensor, the sensor accuracy would normally introduce a maximum error of ±0.02-0.03 m3/m3 (2-3%) (Table 

3.2; Benninga et al, 2018). Furthermore, an in-situ sensor represents a soil volume of <500 mL, which 

equals an area of only a few centimeters around the sensor and which may not be representative for the 

spatial scale at which remote sensing products operate. Remote sensing products are made up of area-

averaged data at hectometer scale. Soil properties can have strong variation due to local hydrological 

conditions, especially in the shallow subsurface, e.g. local macro pores that can strongly determine the soil 

water conditions. Due to this large variability in soil moisture, it is difficult to directly relate point 

measurements to remote sensing observations (Western and Blöschl, 1999). 

It should also be considered that estimation of soil moisture for the full unsaturated zone may be difficult 

based on near-surface soil moisture (as obtained from remote sensing). Mahmood and Hubbard (2007) 

noted that there is a tendency to equate near-surface soil moisture to the whole root zone (or unsaturated 

zone), however their results and other studies (Santanello and Carlson, 2001) showed that this assumption 

is not justified. This is important for the research in terms of inundation risk, because in that case the 
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estimated value from remote sensing does not relate to the full unsaturated zone. Making the conversion 

from near-surface to the full unsaturated zone would require a model calculation (with associated 

uncertainties). 

Difference in correlation between single cell, 3x3-grid, and catchment average 

Single cells in OWASIS have shown high variability to their neighboring cells in multiple cases, possibly 

explained by differences in rootzone depth or other input parameters. Regardless, if it were the case that 

(by error) the OWASIS cell does not match the in-situ sensor, the resulting correlation may be very different. 

Averaging over 3x3 cells in OWASIS shows different results. The results showed that for some sites the 

correlation improved, but for most it decreased or remained equal. This means that if the data of the single 

cell was poorly matching the in-situ sensor by error, then averaging over multiple cells could improve the 

correlation. But in the case that the single cell already correctly matched the in-situ sensor, the correlation 

would likely decrease due to the smoothing that occurs when adding extra cells. Therefore, if this method is 

applied (e.g. in future research), averaging should be considered per site, rather than doing it for all. 

Taking the catchment average (for the Raam) theoretically had good potential to minimize errors due to 

local variability. For the VanderSat product this worked relatively well, with a correlation of R=0.82 and a 

MAE in volumetric moisture content of 0.031 [m3 m-3]. However, for OWASIS the results turned out very 

poor, with a correlation of R=0.18. To further improve the accuracy of this method, one could increase the 

number of in-situ sensors (and spatially distribute these evenly over the catchment). This helps because the 

spatial catchment average of the remote sensing products is based on ~1000-2000 individual cells (for 

OWASIS) and ~10.000 cells (for VanderSat), while there were only ~12-15 in-situ sensors in the Raam 

catchment. If it were the case that multiple remote sensing cells were erroneous, the (remotely sensed) 

catchment-average soil moisture value would remain roughly equal. While, if only one sensor is erroneous, 

the in-situ average may shift considerably. 

Limitations in OWASIS 

From the beginning of 2016 until 31-12-2019, the OWASIS model used the eLEAF evaporation product as 

input. For the first half of 2020 the OWASIS model was undergoing a transition to a new evaporation data 

service. As a consequence, OWASIS temporarily used reference evapotranspiration, rather than the remote 

sensing actual evapotranspiration (HydroLogic, personal communication). This implies that data that was 

used for 2020 may not be representative for the OWASIS product as it should be (i.e. using remote sensing 

ETact). This problem only applies to the WSBD sites (7-1-2020 – 22-4-2020), because for all other sites data 

from 2020 was not included. 

Furthermore, from observations early in the research, it turned out that for multiple sites there was a 

relatively large spatial variation between neighboring cells, of up to one order of magnitude (e.g. ~50 mm 

of soil moisture in one cell and >150 mm in the next). Even though this can possibly be explained by the 

spatially variable nature of soil moisture, doubts arose whether this was caused by the OWASIS model. In 

addition, there were sometimes very strong jumps in soil moisture values (Figure 5.1), which seemed to 

coincide with the agricultural crop season. From personal communication with HydroLogic, it was identified 

that the OWASIS model provides the soil moisture value for the rootzone, rather than the full unsaturated 

zone. The extent of the rootzone could vary spatially and temporally, based on mapped soil type, vegetation 

type, and stage of the crop growth season. A HydroLogic validation report showed that the modelled rootzone 

varied between 0.25 m and 1 m throughout the Raam sites in 2016. However, for the current research it 

was not possible to retrieve the modelled rootzone depth over time and space. This has large consequences 

for the usability of the data, because not knowing the total depth of the rootzone, makes it impossible to 

convert the data to a volumetric fraction (e.g. m³/m³). In the current situation it is unclear what the data 

is representing through time and space. As a consequence, the values can actually not properly be compared 

to in-situ measurements. 
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Figure 5.1   OWASIS timeseries showing an example of large seasonal jumps in soil moisture value (source: 

HydroNet). 

 

Limitations in VanderSat 

Although the VanderSat product is supposed to be updated on a daily basis, roughly 3 out of every 10 days 

there was a missing value in the dataset. The primary cause seems to be the orbit of the (SMAP) satellite, 

e.g. no overpass on specific days, as there is a periodic trend in the data, where one cycle generally consists 

of two consecutive measurements followed by a missing value, then four measurements followed by a 

missing value. There were also cases of extra missing values, which were likely caused by one of the 

circumstances that VanderSat incorporates in their data flags (e.g. frozen soil, snow or severe rainfall, high 

vegetation, radio frequency interference, instrumental flaws or the value being out of the valid range). Under 

those conditions, the measurement is omitted. For the research, these missing values affected the 

calculation of the 7-day moving average. The applied calculation method ignored the missing values and 

used only the values that were present in the applicable time frame, e.g. only 6 out of 7 values.  

As could be seen in the timeseries of the individual sites (Figure 4.14, bottom panel), there is very little 

spatial variation in the VanderSat product. Sites that were up to 20 km apart showed virtually the same soil 

moisture values. The spatial variation among simultaneous in-situ data was much larger. This indicates that 

the VanderSat soil moisture does not correctly match the in-situ state. 

Time of measurement during the day 

The in-situ soil moisture and remote sensing soil moisture are both provided on a daily basis in the research. 

However, there is a fundamental difference between the two. The in-situ soil moisture measurements are 

the average value over the full 24 hours of a day, while the remote sensing measurements are instantaneous 

measurements at a single moment in time. One could expect that the average value over a full day is lower 

than at the moment during the night, due to the fact that soil moisture evaporation is greater during daytime. 

A review of the dataset indicated that at 5 cm depth there was generally a difference of ≤0.01 [m³/m³] 

between the soil moisture value at 02:00 h and the daily average, even during mid-summer (July-August). 

The difference declined with increasing depth. Therefore, it is assumed that this effect has not led to 

significant errors in the correlation between the in-situ and remote sensing products. 

Limitations in the rainfall-runoff analysis 

The rainfall-runoff analysis was relatively simplistic in nature, due to the fact that precipitation and discharge 

(as well as soil moisture conditions and groundwater depth) were directly related to each other without 

taking into account any (hydrological) processes that occur between the two. For example, 

evapotranspiration is not considered, thus it is assumed that all precipitation is converted into runoff. Also, 

storage processes in the subsoil are not considered, meaning that it is assumed that precipitation is 

instantaneously converted into runoff, while in reality part of the water that is added to the subsoil may 

reside there for longer periods. This means that from a single rainfall event not all water directly returns in 

the subsequent discharge peak, and also that a single discharge peak may contain water from earlier rainfall 

events.  

The initial idea for the rainfall-runoff study was to use the WALRUS (Wageningen Lowland Runoff Simulator) 

model which includes the processes between rainfall and runoff. However, the use of this model failed 

because the state of the soil moisture could only be input as an initial value and in terms of the storage 

deficit (i.e. the amount of water that can still be stored in the vadose zone). The subsequent course of the 
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soil moisture would then be calculated by the model based on water balance formulas. In order to properly 

do so, it would be required to also input accurate data of many other parameters, including groundwater 

levels, surface water levels, and catchment parameters (e.g. vadose zone relaxation time, groundwater 

reservoir capacity, channel depth, a stage-discharge relationship, etc.). This data was not readily available. 

An attempt was made to estimate some of the parameters by means of calibration and to use default values 

for less significant general parameters, but this did not lead to sufficient model performance for further 

research. 

 

5.2 Recommendations to the water authority 
In essence we (i.e. the water authority or in general) would like to use these products to up-scale in-situ 

measurements to catchment scale, but for that specific purpose these products currently give little 

confidence. This is because the OWASIS soil moisture product is not consistent with the depth of the root 

zone over time and space, rendering the data unusable for the intended purpose. OWASIS seems to be 

aimed at agricultural purposes, for which the root zone is very important, rather than water management 

purposes. The VanderSat product is more consistent because it measures a relatively constant depth of the 

top layer of the soil. Due to this exact same reason, the value may also not be representative for the entire 

unsaturated zone. Furthermore, the VanderSat product shows very little spatial variation in the measured 

values, as could be seen when comparing the 15 individual sites of the Raam catchment. These sites were 

approximately 1 to 20 km apart, yet the VanderSat product provided soil moisture values that were virtually 

the same at every site. Contrary, the in-situ data showed much more spatial variability. This smooth nature 

makes the product much less suitable for up-scaling field measurements to larger areas. 

This implies that (1) the OWASIS soil moisture product, as currently used in the research, is not reliable 

enough to draw good conclusions, there are too many unspecified and changing variables in the model for 

proper application. This may be improved by using OWASIS available storage capacity (not shown in this 

research), which models the remaining available water storing capacity of the full unsaturated zone, rather 

than available soil moisture in only the rootzone. (2) Based on the obtained correlations, the VanderSat L-

band soil moisture product seems reliable enough to be used at the scale of a small catchment (R=0.82), 

as complementary data to in-situ measurements. In that case, the error in estimated versus in-situ 

measured volumetric moisture content should be expected to be 0.031 - 0.039 m³/m³ (MAE – RMSE). If the 

product is used at less than catchment scale (e.g. single cell scale of 100 m), the correlation of VanderSat 

to in-situ is more variable; the lowest correlation found was R=0.45, while the highest was R=0.83. On 

average R was equal to 0.66. The minimum error was 0.038 – 0.047 m³/m³ (MAE – RMSE), while the 

maximum error was 0.120 – 0.135 m³/m³ (MAE – RMSE). In other words, even the lowest error at cell scale 

is higher than the error at catchment scale. Furthermore, high errors of for example >0.1 m³/m³ make the 

use at cell scale highly unreliable due to the fact that the (in-situ) soil moisture content in the study area 

generally only varies by ~0.3 m³/m³. Finally, the VanderSat product showed very little spatial variation 

between local sites, making it unuseful for interpolating field measurements. 

The rainfall-runoff analysis has shown that groundwater depth generally seems to be the most important 

factor that determines how precipitation is converted to discharge. High groundwater levels generally led to 

higher discharges. However, in uncommon cases the groundwater level was relatively high, but the soil 

moisture content in the top layer was low enough to still accommodate the precipitation, leading to lower 

discharge compared to the common cases. Thus, for most of the time, these soil moisture measurements 

may not add significant value to near-future inundation risk assessment, and the assessment can be largely 

based on groundwater levels. However, the water authority would have to consider whether gaining some 

additional information under uncommon cases is worth the investment in time and cost. 

 

5.3 Future research 
OWASIS available soil storage capacity 

In OWASIS there is also a product that estimates the available water storing capacity of the soil (OWASIS 

bodemberging). OWASIS bodemberging considers the full unsaturated zone, meaning it could potentially be 

used as an alternative to the OWASIS soil moisture product which suffers from the dynamic rootzone. The 

available storage capacity could be converted to soil moisture content if the extent of the unsaturated zone 

and the porosity are known. 
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Downscaling remote sensing data variability to in-situ scale 

The soil moisture variation of the sensors is likely greater than that of the remote sensing products, because 

the remote sensing data captures the average value over a larger surface area than an in-situ site. One 

could compensate for this by calculating the variability of the remote sensing product over an area that is 

representative for the in-situ measurements. This may be accomplished by calculating the variability over 

different surface areas (e.g. 1 grid cell, 9 grid cells and 25 grid cells). After plotting the obtained standard 

deviation for each case against representative surface area, it becomes possible to extrapolate to a smaller 

(indicative) surface area, representativity of an in-situ sensor (<1 m²) (Figure 5.2). This way we can 

approximate the theoretical variability of the satellite data for a surface that corresponds to the 

representative surface area of the in-situ sensors. For example, you could neutralize the scale effect that 

makes the comparison between the two measurement techniques more difficult. In the end, this may answer 

the question whether the variability is due to the scale effect or due to other factors that should be 

considered. 

 

Figure 5.2 Simplified example of the proposed downscaling method to approximate the variability at a smaller spatial 

scale. 
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6 
Conclusions 

The research showed that as of begin 2020 there is only a limited number of operational (remote sensing) 

data products that map soil moisture content across the Netherlands. The available products that were found 

during the research are OWASIS (by HydroLogic) and the VanderSat soil moisture product. OWASIS maps 

at 250m resolution and VanderSat maps at 100m resolution. Both products are updated on a daily basis 

where possible. 

The analyses that were done to assess the reliability and accuracy of the available products showed that the 

Pearson correlation with in-situ measurements at a depth of 5 cm (WSAM) to 20 cm (WSBD) below surface 

level was better for the VanderSat (L-band) product than for OWASIS: OWASIS showed a weak correlation 

to in-situ measurements, with Pearson correlations of R=0.29 (single cell site average), 0.31 (3x3-grid), 

0.18 (catchment scale). These low correlations are likely explained by the fact that OWASIS models the soil 

moisture content in the rootzone rather than the full unsaturated zone, in addition the extent of the modelled 

rootzone can vary over time and space. The product does not report the modeled depth of the rootzone, 

rendering the data unusable for inundation risk assessment. The VanderSat product showed a moderate to 

strong correlation with in-situ measurements: R=0.66 (single cell site average) and R=0.82 (catchment 

scale). The mean absolute error for VanderSat compared to in-situ measurements was 0.068 [m³/m³] 

(single cell) and 0.031 [m³/m³] (at catchment scale). The spatial and temporal variability in soil moisture 

content among individual sites was much higher in-situ compared to the VanderSat product; this might 

partly be explained by some (possibly) erroneous in-situ measurements that showed uncommon soil 

moisture values for sandy soils of <0.05  and >0.4 [m³/m³], but it is assumed more likely that the lack of 

variability is an inherent property of the VanderSat product. This is assumed because literature shows that 

soil moisture is generally highly variable. This means that the actual variability is much higher than what 

VanderSat shows.  

It was concluded that the number of in-situ sites was too low to find significant trends that could explain 

differences in correlation between sites, i.e. relating the correlations to specific soil type, groundwater levels 

or land-use types. 

The basic rainfall-runoff analysis showed that for precipitation events in the study area the groundwater 

depth generally has more influence on the discharge than the soil moisture content. This was shown by the 

fact that there was a clear gradient from low to high discharge when transitioning from (relatively) deep to 

medium to shallow groundwater levels; while for the soil moisture content the transition from medium to 

wet conditions showed more of a mixed pattern, i.e. some wet conditions showed medium discharges and 

some medium soil moisture conditions showed high discharge. Though, in certain cases the importance of 

groundwater levels on discharge generation is exceeded (or overruled) by the soil moisture conditions, as 

was shown by a small number of events in which the groundwater level was relatively close to the surface, 

while discharge remained low due to dry soil moisture conditions. 

Thus, it is likely that soil moisture products that are based on remote sensing data are currently an unfeasible 

option to improve the assessment of near-future inundation risk for the province of Noord-Brabant, the 

Netherlands, because the available products are either unreliable or too smooth to provide accurate soil 

moisture content estimates at cell scale (100 - 250 m resolution). The VanderSat product has some potential 

to be used at catchment scale (approx. 100 km² in the research), but it depends on the application whether 

this is sufficient for operational use. In addition, it was shown that soil moisture conditions are generally less 

important in (high) runoff generation than the level of the groundwater. Thus, for general near-future 

inundation risk assessment it would be advisable to focus on other options than remote sensing soil moisture 

content. Optionally, further research could be done to assess what factors determine conditions were soil 

moisture content is more important than (for example) groundwater, but it is only advisable to do so after 

the quality of remote sensing soil moisture products would improve. 
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Appendix A 
Soil moisture remote sensing products 

available for the Netherlands 

Table B1   End-user products for soil moisture monitoring in the Netherlands, as of Q2 2020. 

Product Available data Outputs Spatial 

resolution 

[m] 

Spatial 

extent 

Temporal 

resolution 

Sensing 

depth 

[cm] 

Rootzone 

options [cm] 

Notes 

OWASIS 

(HydroLogic) 

Jan 2016 - now  

(+2-day forecast) 

Soil moisture (mm), 

Available soil storage (mm), 

Groundwater level (mNAP) 

250 m Netherlands Daily - Location 

specific 

Based on water balance model (MODFLOW-

MetaSWAP), using precipitation (ground radar) 

and actual evapotranspiration (satellite). 

VanderSat soil 

moisutre 

June 2002 - now Soil moisture (m³/m³) 100 m Global Daily 0-5 cm 10, 20, 40 

cm 

Based on passive microwave radiometer 

satellites (e.g. AMSR-2, SMAP). 
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Table B2   Satellite products for soil moisture monitoring in the Netherlands, as of Q2 2020. 

Mission / Satellite / 
Sensor 

Launch / operational 
time 

Sensor type Spatial 
resolution [m] 

Temporal resolution [days] Notes 

Sentinel-1 (S1-A & S1-B) 
(ESA) 

S1-A: April 2014 - now 

S1-B: April 2016 - now 

C-band radar (SAR) 5, 20, 100 m 
(mode-
dependent) 

10 (S1-A or B) 

5 (S1-A+B) 

Available data products: 

level-0, level-1. 

The ESA Toolbox allows the user to derive level-2 

products 

Radarsat-2 2012 - 2016 (25m) 

2015 - now (5m) 

C-band radar 24 m 2.25 (mode-dependent) Commercial sensor. Images of the Netherlands 
are available free of charge through the 
Satellietdataportaal. 

SMAP (NASA) 2015 - now L-band radar & 
microwave radiometer 

10 km (active), 
40 km (passive) 

2-3 Specially developed for measuring soil moisture. 
Unfortunately, radar is no longer operational. 
Only radiometer still works. 

Available data products: 

level-1 (radiometer data) Level-2 to level-4 (soil 
moisture data) 

SMOS (ESA) 2009 - now L-band microwave 
radiometer 

30 km 2-3 

 

 

 

 

Specially developed for measuring soil moisture. 

Available data products via ESA: 

Level-1 brightness temperature 

Level-2 (soil moisture data) 

ASCAT (EUMETSAT) 
onboard Metop-A, B and 
C 

2006 - 2020 C-band scatterometer 
(radar) 

25/50 km 1-2 (Metop-A or Metop-B),  

<1 (Metop-A+B) 

ASCAT has been specifically developed for 
measuring wind above the sea. However, the 
derived soil moisture products are not inferior to 
SMOS and SMAP. 

Available Products: 

ASCAT-SSM (soil moisture top layer) 

ASCAT-SWI (soil moisture root zone) 

AMSR2 (JAXA) 2012 - now Microwave radiometer 10/25 km 1-2 Wide range of data and products available, 
ranging from level 1 to 3. 

 

An overview of satellite products of the Netherlands (not limited to soil moisture applications) that are available free of charge for Dutch users, can be found at: 

https://www.spaceoffice.nl/nl/satellietdataportaal/beschikbare-data/ (in Dutch). 

  

https://www.spaceoffice.nl/nl/satellietdataportaal/
https://www.spaceoffice.nl/nl/satellietdataportaal/beschikbare-data/


 

 
 

 

Appendix B 
Microwave remote sensing bands and 

surface roughness classification 

 

Table B.1   Radar band designations (Lillesand et al., 2000, p.659). 

Band designation Wavelength λ (cm) Frequency (GHz) 

Ka 0.75 – 1.1 40 – 26.5 

K 1.1 – 1.67 26.5 – 18 

Ku 1.67 – 2.4 18 – 12.5 

X 2.4 – 3.75 12.5 – 8 

C 3.75 – 7.5 8 – 4 

S 7.5 – 15 4 – 2 

L 15 – 30 2 – 1 

P 30 – 100 1 – 0.3 

 

 

Table B.2   Definition of Synthetic Aperture Radar Roughness.  

Categories for three local incident angles, based on the modified Rayleigh criterion (adapted from Sabins, 1997). 

Roughness 

Category 

Root-Mean-Squared Surface Height Variation (cm) 

Ka Band (λ = 0.86 cm) X Band (λ = 3.2 cm) L Band (λ = 23.5 cm) 

(a) Local indidence angle of 20°    

Smooth <0.04 <0.14 <1.00 

Intermediate 0.04-0.21 0.14-0.77 1.00-5.68 

Rough >0.21 >0.77 >5.68 

(b) Local incidence angle of 45°    

Smooth <0.05 <0.18 <1.33 

Intermediate 0.05-0.28 0.18-1.03 1.33-7.55 

Rough >0.28 >1.03 >7.55 

(c) Local incidence angle of 70°    

Smooth <0.10 <0.37 <2.75 

Intermediate 0.10-0.57 0.37-2.13 2.75-15.6 

Rough >0.57 >2.13 >15.6 

 

  



   

 

 

Appendix C 
Correlation by soil type, groundwater levels & 

land-use type 

C1 Correlation per soil type (BOFEK2012) 
BOFEK2012 is a national map of soil type classifications in the Netherlands (Wosten et al., 2013). Table C.1 

shows the BOFEK2012 unit (soil type) at each soil moisture site. Tables C.2a and C.2b show the BOFEK unit 

and corresponding Pearson correlations for the OWASIS 3x3-grid and VanderSat single cell data, 

respectively. 

 

Table C.1   BOFEK2012 soil type per site. 

ID BOFEK2012 Description (Dutch) 

WSBD_Bavel 310 Zwak lemige zandgronden met een matig dik cultuurdek 

WSBD_Rijsbergen 304 Zwak lemige (podzol-)gronden 

WSAM_Bult 205 Zanddek op moerige tussenlaag op zandondergrond 

WSAM_Raam_01 305 Zwak lemige zandgronden met grof zand in de ondergrond 

WSAM_Raam_02 305 Zwak lemige zandgronden met grof zand in de ondergrond 

WSAM_Raam_03 304 Zwak lemige (podzol-)gronden 

WSAM_Raam_04 305 Zwak lemige zandgronden met grof zand in de ondergrond 

WSAM_Raam_05 311 Zwak lemige zandgronden met een dik cultuurdek (enkeerdgronden) 

WSAM_Raam_06 409 Lichte zavel op zand (fluviatiel) 

WSAM_Raam_07 317 Lemige zandgronden met een dik cultuurdek (enkeerdgronden) 

WSAM_Raam_08 304 Zwak lemige (podzol-)gronden 

WSAM_Raam_09 304 Zwak lemige (podzol-)gronden 

WSAM_Raam_10 304 Zwak lemige (podzol-)gronden 

WSAM_Raam_11 304 Zwak lemige (podzol-)gronden 

WSAM_Raam_12 304 Zwak lemige (podzol-)gronden 

WSAM_Raam_13 309 Zwak lemige (beekeerd-)gronden deels met grof zand in de ondergrond 

WSAM_Raam_14 312 Lemige (podzol-)gronden 

WSAM_Raam_15 311 Zwak lemige zandgronden met een dik cultuurdek (enkeerdgronden) 

 

Table C.2a   BOFEK2012 soil types and Pearson correlation (OWASIS 3x3-grid) by number of sites. n=15 (18). 

Brackets indicate sites that were only present in the OWASIS dataset. 

 205 304 305 309 310 311 312 317 409 

≤ 0.29 (1) 4 2 1  1 1 1  

0.3 – 0.39  1        

0.4 – 0.49          

0.5 – 0.59  1    1    

0.6 – 0.69  (1)   (1)    1 

0.7 – 0.80   1       

 

  



   

 

 

Table C.2b   BOFEK2012 soil types and Pearson correlation (VanderSat single cell) by number of sites. n=15. 

 205 304 305 309 310 311 312 317 409 

0.3 – 0.39          

0.4 – 0.49  1        

0.5 – 0.59  3  1     1 

0.6 – 0.69   1       

0.7 – 0.80  2 2   2 1 1  

 

 

C2 Correlation per groundwater level classification (grondwatertrappen) 
In the Netherlands, groundwater depths are classified as ‘grondwatertrappen’, which give an indication of 

the absolute groundwater level and its fluctuation. The classes are defined on the basis of the average 

highest groundwater level (abbreviated as GHG) and average lowest groundwater level (GLG) (Table C.3). 

The groundwater classes are indicated with a Roman numeral (I – VIII), with a higher number indicating 

that the groundwater is predominantly deeper below surface level. Table C.4 shows the groundwater level 

classification at each soil moisture site. 

For the groundwater classifications a different dataset was used for WSBD compared to WSAM. The dataset 

for the WSBD area was created in 2010 and that of WSAM was created in 2005. It is expected that the 

groundwater classifications have not changed significantly from 2005 to 2010, because these classifications 

are generally calculated from long-term groundwater level measurements over a period of 30 years (Ritzema 

et al, 2012). 

 

 

Table C.3   Groundwater level classifications 

(Grondwatertrappen). (Simplified from: Knotters, 2018). 

Grondwatertrap GHG  

(cm-surface) 

GLG  

(cm-surface) 

I < 20 < 50 

II 25 – 50 50 – 80 

III < 40 80 – 120 

IV > 40 80 – 120 

V < 40 > 120 

VI 40 – 80 > 120 

VII > 80 - 

VIII > 140 - 

 

 

 

 

 

 

 

 

Table C.4   Groundwater level classification 

(grondwatertrap) at the soil moisture sites. 

ID Grondwatertrap 

WSBD_Bavel VII 

WSBD_Rijsbergen VI 

WSAM_Bult VI 

WSAM_Raam_01 IV 

WSAM_Raam_02 VII 

WSAM_Raam_03 III 

WSAM_Raam_04 VI 

WSAM_Raam_05 VIII 

WSAM_Raam_06 V 

WSAM_Raam_07 VII 

WSAM_Raam_08 VII 

WSAM_Raam_09 VI 

WSAM_Raam_10 VI 

WSAM_Raam_11 VI 

WSAM_Raam_12 VI 

WSAM_Raam_13 VI 

WSAM_Raam_14 VII 

WSAM_Raam_15 VI 

 

  



   

 

 

Table C.5a   Grondwatertrap and Pearson correlation (OWASIS 3x3) by number of sites. n=15 (18). 

 III IV V VI VII VIII 

≤ 0.29 1 1  5 3  

0.3 – 0.39       

0.4 – 0.49    1   

0.5 – 0.59    (1) 1 1 

0.6 – 0.69   1    

0.7 – 0.80    1 (2) (1)  

 

Table C.5b   Grondwatertrap and Pearson correlation (VanderSat single cell) by number of sites. 

n=15. 

 III IV V VI VII VIII 

0.3 – 0.39       

0.4 – 0.49    1   

0.5 – 0.59 1  1 3   

0.6 – 0.69  1     

0.7 – 0.80    3 4 1 

 

C3 Correlation per land-use type 
For the land-use classification only two classes (agricultural and grassland) were included. This two-class 

classification was done for simplicity, but even differentiating between the two turned out difficult as it was 

based on only one document from WSAM, complemented with optical satellite imagery. In some cases, the 

main field was agricultural, but the sensor was placed in a grassland strip at the edge of the field. The results 

showed that here was no difference in obtained correlation between agricultural field and grassland (Table 

C.6), but due to the fact that the classification is uncertain, the results are too unreliable to be used for firm 

conclusions. 

 

Table C.6   Land-use type and Pearson correlations per soil moisture site. Land-use is 

classified based on RGB satellite imagery (2016-2019) and documentation from 

Waterschap Aa en Maas (2016). In uncertain cases both classes are used.  
Agricultural 

field 

Grassland OWASIS  

3x3-grid 

Pearson (R) 

VanderSat 

single cell 

Pearson (R) 

WSAM_Raam_01 
 

x 0.19 0.61 

WSAM_Raam_02 x x -0.25 0.83 

WSAM_Raam_03 
 

x 0.20 0.59 

WSAM_Raam_04 
 

x 0.78 0.80 

WSAM_Raam_05 x 
 

0.54 0.72 

WSAM_Raam_06 
 

x 0.64 0.53 

WSAM_Raam_07 x 
 

0.09 0.79 

WSAM_Raam_08 x x 0.51 0.78 

WSAM_Raam_09 x 
 

0.46 0.45 

WSAM_Raam_10 
 

x -0.04 0.58 

WSAM_Raam_11 x 
 

0.21 0.74 

WSAM_Raam_1 x x -0.05 0.56 

WSAM_Raam_13 x 
 

-0.11 0.54 

WSAM_Raam_14 
 

x -0.11 0.73 

WSAM_Raam_15 
 

x 0.00 0.70 

 



   

 

 

Table C.7   Averaged Pearson correlation (R) per land-

use type. 

 Agricultural field Grassland 

OWASIS 3x3 grid 0.18 0.19 

VanderSat single cell 0.68 0.67 
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