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Abstract Crystal growth is ubiquitous in natural and anthropogenic systems. Comprehension of
the effects of solution stoichiometry on crystal growth is very limited. Barite is chosen as a model
crystal due to its relevance in the hydrocarbon and geothermal industry and the effects of solution

stoichiometry (raq = {Ba2+}
{SO2−

4 }
) varying between raq = 0.01 and raq = 100 on crystal nucleation are

researched. The development is explored at different supersaturations. Supersaturation is defined
as Ω = IAP/KSP where IAP is the ion activity product and KSP the solubility product. Ω = 100
and Ω = 500 in regards to barite are measured. A synergistic approach of dynamic light scattering
(DLS), scanning electron microscopy (SEM) and small angle X-ray scattering (SAXS) is used to
determine the size of stable populations at different stoichiometries, the critical nucleus size and
crystal shape. The dominant crystal size is 400nm (equivalent sphere) at all stoichiometries and
supersaturation. At Ω = 100, the largest crystals are observed at raq > 1 and at Ω = 500 at
raq = 1. Barium desolvation seems to be a limiting step in crystal growth. Critical nucleus size
generally slightly decreases with increasing barium activity. There is a strong stoichiometric effect
on crystal morphology, with a high shape variation at Ω = 500 and raq = 0.1 and raq = 10 and very
limited effects at other measured stoichiometries. Varying stoichiometry is a promising solution
to scale formation in geo-industry by inhibiting crystal nucleation through application of extreme
stoichiometries modifying growing and nucleation behaviour.
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1

Introduction

Crystal formation in aqueous environments plays a critical role in a wide variety of natural and
anthropogenic systems. Understanding the effects of stoichiometry on crystal nucleation is imme-
diately applicable to a variety of industries such as the oil-and-gas industry (Delshad et al. (2003)),
hydro-geothermal (Wittenberger and Šofranko (2015)). In these industries, barite scaling is a ma-
jor issue due to its very low solubility (Yuan and Wood (2018)), its resistance to chemical and acid
removal (Christy and Putnis (1993); Dove and Czank (1995)) and its hardness (Mavredaki et al.
(2011)). These characteristics do make sedimentary barite a suitable proxy to study the history
of biogeochemical cycles on earth (Table 1.1). Scaling minerals are formed through a reaction of
oppositely charged ions. There is extensive research on the growth and dissolution rates of crystals
and crystal surface deposition under charge and non-charge balanced ion ratios ((Crabtree et al.,
1999); (Kitamura, 2002); (Dyer and Graham, 2002); (Yu et al., 2004); (Peyvandi et al., 2012);
(Wolthers et al., 2012)). Yet many systems deviate from our expectations regarding crystal nu-
cleation and growth rate. This is due to most studies being conducted using ideal solutions with
charge-balanced ionic ratios (raq = 1) or using titration set-ups, whereas these systems have widely
diverging ratios and are more similar to batch experiments. The dependency of nucleation on the
stoichiometry has not been thoroughly researched.

This disconnect between our expectations and observations illustrates a gap in our understand-
ing of stoichiometric effects on the rate of crystal formation. This study aims to provide insights
into the effects of widely diverging ionic ratios on the nucleation rate of barite and to provide
experimental data to compare with previously published research on calcite nucleation under the
same conditions (Seepma et al., in prep).

The driver of barite scale formation in the hydrocarbon industry is the mixing of incompatible
waters during enhanced oil recovery. For instance, to maintain high pressure and thus production
during later stages of oil or gas production in the offshore industry and to sweep the oil towards
production sites, seawater is often injected into the reservoir. This seawater is naturally high
in sulfate (Forchhammer (1865)) whereas formation water is generally rich in dissolved barium
(Merdhah and Yassin (2007); BinMerdhah et al. (2010)). Upon mixing, barite quickly precipitates
from these concomitant waters, lowering permeability and porosity in the reservoir (Yuan et al.
(1994)), clogging the wellbore and strongly reducing the integrity of components such as the
subsurface control valve and hydraulic actuators(Vazirian et al. (2016)). After the initial deposition
of barite in the reservoir, the water reaches equilibrium at reservoir conditions, as pressure and
temperature decrease, the water becomes supersaturated in regards to barite and precipitation
occurs (BinMerdhah et al. (2010)). This leads to lower production efficiency and incurs major costs
for the industry (Collins (2005)). Adhesion of pre-precipitated crystal is specifically problematic
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at ground level (Vazirian et al. (2016)) and mediating this through the prevention of nucleation
under specific ionic ratios would increase efficiency. Tests have been performed with de-sulphated
seawater to prevent the aforementioned problems, but this is however not economically viable
(Jordan et al. (2001)). Understanding the initial stages of barite nucleation could potentially
provide a cost effective and environmental friendly way to prevent these problems. More examples
of the importance of barite in both industry and research are provided in Table 1.1

Table 1.1: Applications and problems of natural and industrial barite

Subject Field Source

Prevention of barite scaling in oil, gas
and geothermal wells

Energy industry Delshad et al. (2003); Tom-
son et al. (2004a); Collins
(2005); Zhang et al. (2017)

Low toxic and non-magnetic weighting
agent for drilling mud

Energy/Water Ex-
traction

Rabia (1985); Mitchell et al.
(2006)

Measuring paleo-productivity and cli-
mate through a marine barite proxy

Paleo-
reconstruction

Paytan et al. (1993); Paytan
et al. (1996); Stroobants et al.
(1991); Hanor (2000)

Producing barium meal for Upper Gas-
trointestinal Endoscopy

Medical industry DOOLEY et al. (1984)

Barite inclusion into x-ray shielding Nuclear industry Akkurt et al. (2010); Akkurt
and El-Khayatt (2013)

1.1 Historical perspective barite research

Historically, research on barite formation has focused strongly on mineral properties, mining and
scaling prevention methods as these were the main concerns of the petroleum (Read et al. (1982);
Corsi (1986)) and mining industry (Stuckey and Davis (1933); Fritts (1962); Raghu (2001)). Sub-
sequently, it was found to be a suitable proxy for paleo-environmental analysis (Jewell and Stallard
(1991); Gingele and Dahmke (1994); Ahsan and Mallick (1999); Eagle et al. (2003); Gillikin et al.
(2006); Arndt et al. (2009)). With the advent of dynamic light scattering (DLS) (Stetefeld et al.
(2016)) and Small-angle X-ray scattering (SAXS) (Guinier (1939)), real time measurements of 3D-
nucleation became possible. Recent technological advances like atomic force microscopy in 1985
(Rugar and Hansma (1990)), which offered resolution on the order of fractions of a nanometers,
enabled highly detailed research into the growth of minerals. This resulted in influential research
on crystal growth processes in general (Hillner et al. (1992); Zhang and Nancollas (1998)) and
investigations specifically focussed on barite surface growth and 2D-nucleation (Pina et al. (1998);
Kowacz and Putnis (2008)).

1.2 Thesis Outline

The aim of this research is to experimentally investigate the dependency of barite nucleation on
stoichiometry (raq = {Ba2+}/{SO2−

4 }). Specifically focusing on timing, aggregation behaviour and
size and shape. This is done at different supersaturation degrees (Ω = IAP/KSP , IAP being the
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ion activity product and KSP the solubility product). This research aims to answer three specific
research questions.

1. Does stoichiometry affect crystal populations at constant supersaturation?
2. Does critical nucleus size depend on the stoichiometry?
3. Is crystal shape dependent on stoichiometry?

Understanding these dependencies is part of the larger Crystal Clear project (Wolthers et al.
(2012)). The results are also evaluated to determine different growth modes (subcritical particle
aggregation vs ion addition). To understand the experimental data and substantiate the cho-
sen physico-chemical parameters, relevant aspects to barite nucleation are described, background
theory is provided and previously published literature and its specific relevance to this project is
discussed. Additionally, the physics background of DLS, scanning electron microscopy (SEM) and
SAXS measurement technique are elaborated on (Section 2.2). Subsequently, the theoretical cal-
culations, experimental set-up and research method are described, with a specific focus on validity,
reliability and suitability. Additionally, justification for the chosen research method is provided
and potential pitfalls of the method are identified (Section 3). Afterwards, collected experimental
data is presented, precision and accuracy are included to facilitate the reader to create their own
line of thinking (Section 4). Section 5 discusses the potential answers to the research questions
above, discusses the individual results, synthesizes the experimental results and relates them to
previous literature, explores and debates alternative explanations, provides the societal relevance
and addresses the limitations of the research. Lastly, the most important conclusions (Section 6)
are presented, the research questions are answered and implications for the larger field of crystal
nucleation are provided with the arguments for the exclusion of rivaling explanations.
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2

Theoretical Background

The following chapter will discuss the nucleation process from a thermodynamic and kinetic point
of view. Provide the principles of the dynamic light scattering, small-angle X-ray scattering and
the scanning electron microscope.

2.1 Theoretical background of nucleation

Homogeneous nucleation follows several consecutive steps. The initial step entails the formation
of an unstructured aggregate of ions, the growth to a critical nucleus, restructuring into a distinct
crystal shape and the subsequent addition of growth units (Figure 2.1). This paragraph discusses
these steps and the theoretical considerations behind them.

The first theoretical framework for crystal nucleation, classical nucleation theory (CNT) was
developed 150 years ago by Josiah Willard Gibbs (Gibbs (1878)). It describes the nucleation
based on the tendency of a system to equilibrate at the lowest possible Gibbs free energy. The
original nucleation theory was based on cloud condensation, but it is widely utilized to describe the
formation of a solid phase from an aqueous phase. The following paragraphs will discuss individual
parameters essential for nucleation.

Figure 2.1: Generalized scheme of crystal formation (Adapted from Dalmolen, J.2005)

2.1.1 Supersaturation

Supersaturation is a state where the product concentration of the relevant crystal building ions is
higher than the solubility of the relevant crystal phase. As a general rule, temperature decreases
result in saturation state increases (Figure 2.2), notable examples include calcite (CaCO3). The
lowered solubility is a direct consequence of the changing thermodynamic circumstances. In un-
dersaturated state (1), no crystal nucleation occurs and any pre-existing crystal structures are
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thermodynamically unstable and likely to dissolve. At lower temperatures or higher ion concen-
trations, metastable state (2) is reached. This state will be discussed in the subsequent paragraph.
In a state of supersaturation, also known as labile, a phase change is likely to occur at minimal
disturbance triggering nucleation (Figure 2.2). These crystals will subsequently grow until equilib-
rium at the present conditions is reached. This nucleation and growth can be either endothermic
or exothermic, consequently the progress of the precipitation reaction can result in increases or
decreases in temperature. Mathematically, the saturation index is defined according to Equation
2.1

SI =
(IAP )

Ksp
(2.1)

Where SI is the saturation index, IAP the ion activity product and Ksp their solubility product of
the mineral. SI > 0 indicates supersaturation and precipitation of the mineral will occur. SI < 0
indicates undersaturation, and if the mineral is present, dissolution occurs (Stanton (1996)).

Figure 2.2: Effects of ion concentration and temperature on the state of supersaturation of most minerals
(Adapted from Reklaitis et al. (2017)),

2.1.2 The Metastable state

When the parent phase (the pre-nucleation phase) is metastable, nucleation can occur (Figure
2.2). This metastable state represents a local minimum in Gibbs free energy. This state is stable
to minor changes in the thermodynamic variables but will evolve into a state where it is at a global
minimum of free energy (bulk solid) when t→∞. The critical nucleus size controls the probability
of a nucleus to form and thus the timescale on which a crystal will start to form. To achieve this
transformation, the system needs to overcome a local maximum of free energy. This maximum is
an unstable equilibrium state or transition state, where minor fluctuations in the thermodynamics
of the systems cause the formation of a stable new phase (Figure 2.3).

12



Figure 2.3: A sketch of the energy barrier that the metastable state A (supersaturated liquid) needs to
overcome in order to reach the stable state B (bulk solid) adapted from (Adapted from Classical Nucleation
Theory by Kalikmanov (2013))

2.1.3 Critical nuclei formation

Three dominant theories for the formation of critically sized nuclei exist. Classical nucleation
theory states that growth towards a critical size occurs due to ion addition to subcritical particles
(Cölfen and Mann (2003)). The second theory states that subcritical particles aggregate and
coalesce, almost instantaneously transforming from multiple subcritical particles to a supercritical
particle (Ogino et al. (1987); Gebauer et al. (2008)) (Figure 2.4). The third theory explains cluster
and subsequent crystal formation through a two-step process, where the first step is the formation
of a dense cloud of ions, which exists as a microemulsion of liquid-like particles. The second step is
the rearrangement of the dense cloud of particles into a crystal structure (2.5). These mechanisms
are not necessarily exclusive and will potentially contribute to different extents under different
physio-chemical parameters. These parameters will be further explored in the coming chapter.
Many details of these theories stay ambiguous (Meldrum and Sear (2008); Cölfen (2010)), but it is
clear that their effect on the nucleation time and rate will be different as will be the particle size
distribution during nucleation and growth.

Figure 2.4: left: Single ion or building block addition, critical nuclei growth according to classical nucle-
ation theory. Right: Coalesence of multiple pre-critical nuclei to form a supercritical nucleus.

13



Figure 2.5: Original classical nucleation theory for cluster formation and modern two-step approach

Classical nucleation theory limitations and alternative

In order for classical nucleation theory to be valid, a number of assumptions have to be made.
Predictions made with CNT do not generally align with measurements and observations. Even
for the most simple systems, single-component fluids or condensation of water droplets from a
cloud, CNT predicts nucleation rates that are one to two orders of magnitudes higher than the
experimentally defined rates (Sharaf and Dobbins (1982)). This discrepancy is most presumably
the result of major assumptions. Firstly, uniform density throughout the newly formed cluster
is assumed, implying strong ordering, akin to that of the fully grown crystal. This is not the
case according to the two-step model. Secondly, the surface tension is assumed to be temperature
and curvature (size) independent (Fokin and Zanotto (2000)), meaning that the effects of surface
curvature are not critical nucleus size dependent, which they are (Fokin and Zanotto (2000)), and
is equivalent to the respective interfacial tension if the phases would coexist in a stable manner
at a planar interface (Laaksonen and Napari (2001)). Essentially, this means that the crystal is
ordered in the same manner at the critical nucleus size as when it is fully grown. This results
in identical surface tensions (De Yoreo and Vekilov (2003)). This is known as the capillarity
approximation. Thirdly, all clusters are assumed to be at rest, no translational, vibrational or
rotational motion exists and all non-ion-addition interactions are ignored. Fourthly, all processes
are described in terms of steady-state kinetics and all subcritical clusters are present immediately
after supersaturation is established.

The two-step nucleation model

The two-step model (Figure 2.5) fits experimental observations of nucleation for organics and
colloids much better (Georgalis et al. (1997); Pontoni et al. (2004)) and is supported by a numerical
simulation of homogeneous crystal nucleation (ten Wolde and Frenkel (2016)) which predicts the
much higher observed nucleation rates due to a strong reduction in free-energy barrier (Figure
2.3) for protein synthesis in the two-step model. Besides experimental and computational support
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for the two-step model, theoretical studies have also provided evidence for a two-step process
(Talanquer and Oxtoby (1998)). This subdivision of nucleation into two steps also divides the
thermodynamic energy barrier into two parts. The first, low energy, barrier is for the formation
of the dense ion cloud, the second for the ordering of the pre-nucleus. This second step is the rate
determining step (Filobelo et al. (2005)) due to its higher energy barrier. The energy barrier for this
step is however lower than for CNT and as a result, the nucleation rate is higher. The theory also
introduces an area in the vicinity of the dense cloud or pre-nucleus which has a higher concentration
of ions. Consequently, the sharp boundary between nucleus and solvent, as proposed by CNT,
does not exist (Haas and Drenth (2000)) and is more accurately described as a concentration
gradient. Although most studies regard protein nucleation, its findings are relevant to ion-crystal
nucleation as well, because both processes are underlain by the same fundamental driving forces
and limitations. For this research, the exact pathway of cluster formation is not the research
target. It is assumed that a mix of processes occurs and in order to foster understanding, the
thermodynamic and kinetic considerations are expatiated from the viewpoint of CNT.

2.1.4 Thermodynamics

The driving force of a phase change is the exceedance of Gibbs free energy of the aqueous phase
compared to the energy of a potential new solid phase (Hohenberg and Halperin (1977); Chaikin
et al. (1995)). The bulk of the potential new phase has a lower Gibbs free energy compared to the
surrounding phase (Sun and Seider (1995)). At the interface between the two phases, a certain
degree of disruption of intermolecular bonds occurs. This disruption is known as interfacial free
energy and the surfaces are intrinsically less energetically favourable than the bulk of the material
(Li and Ishigaki (2002)). In nanoparticles, the ratio between bulk and surface is small, making
the newly formed phase unstable and prone to dissolution (Liu et al. (2007)). As the particle
increases in size, the ratio between the bulk phase and the surface of the new phase becomes more
energetically favourable. A cluster Nc contains sufficient molecules to overcome the critical energy
barrier and is known as the critical nucleus. When the amount of molecules in an aggregate is
smaller than Nc (N < Nc), the particle will on average dissociate, whereas N > Nc will promote
growth of the aggregate (Figure 2.6). It has surpassed the CNT free energy barrier, also called the
nucleation barrier. Nc is not a set amount of molecules, but depends on local variables, which vary
and fluctuate throughout the bulk liquid. Therefor it’s preferable to discuss a critical size region
instead of a critical size. The formation of small solid clusters of ions and molecules is a continuous

Figure 2.6: Critical nucleus size illustrated

process, only stable new phases are referred to as a nucleus. The Gibbs free energy of these clusters
is divided into ∆Gv (Free energy of the bulk phase) and ∆Gs (Interfacial energy), The clusters
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that have a net negative Gibbs Free Energy (∆Gr < 0) grow (2.3)(N > Nc). All other preliminary
clusters on average dissolve again into individual ions(N < Nc). This critical size is strongly
dependent on physico-chemical conditions and can vary between 1 and 10nm, but under extreme
conditions can be as large as 100nm (De Yoreo and Vekilov (2003)). At this critical size, the Gibbs
free energy continuously decreases with growth. Consequently, the nucleus remains stable and
likely grows as long as the medium is supersaturated with respect to the growing mineral. During
this growth, additional new nuclei form in the solution (3D-nucleation) and 2D-nucleation occurs
simultaneously on the crystal surface. Particles with a size in the range of the critical nucleus
size are expected to be the most prominent in an emerging system, due to the diffusion limitation
on further growth (Chernov (1961); Zettlemoyer (1969)). Very small particles are limited only by
transition state (Petsev et al. (2003)) The change in free energy during the formation of a critical
nucleus (∆Gr) can be expressed by the following relationships (Porter et al. (2009))

∆Gr = ∆Gv + interfacearea ∗ γ + Strainenergy (2.2)

where Gv is the free energy of the bulk and γ the surface Gibbs energy per unit area (surface
tension) or ∆Gs. Note that Gv is negative. For liquid to solid transition, an increase in strain
energy can be disregarded (Kalyanaraman (2008)) and by assuming the critical nucleus is round,
which minimizes the free energy of the interface, the following equations can be derived (Kashchiev
(2000)):

∆Gv = −4πr3

3a3
∆µ (2.3)

where r is the cluster size, a is the size of individual growth units and ∆µ is the chemical potential
difference between the growth units (µsol) in solution and in the nucleus (µnuc) and defined as
follows:

∆µ = µsol − µnuc = kT ln(
c

c0

) (2.4)

where c is the concentration of growth units in the solution and c0 the equilibrium concentration
of growth units in the solution in a saturated solution. This directly relates to the degree of
supersaturation Ω = c

c0
. The interfacial energy term (∆Gs) is positive and can be calculated for

the specific nucleus surface area by:

∆Gs =
4πr2

a2
γ (2.5)

When these equations are combined, the overall energy change due to nucleus formation can be
calculated:

∆Gr = −
∆µ(4

3
)πr3

a3
+ γ

4πr2

a2
(2.6)

∆Gv becomes increasingly negative (cubically) as cluster size (r) increases. ∆Gs increases quadrat-
ically with increasing cluster size. Below r = 1, the lower power dominates and above the higher
power. Resulting in a maximum in the ∆G vs r plot. This maximum can be found by d∆G/dr = 0,
This gives equation (Nehrke (2007)):

rcrit =
2γa

∆µ
=

2γa

kT ln( c
c0

)
(2.7)

The activation energy of the formation of a critical nucleus naturally follows from by inserting this
equation into Equation 2.6.

∆Gr∗ =
16πγ3

3[KbT ln(Ω)]2
(2.8)
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This is the energy barrier to nucleation. It becomes clear that this barrier decreases with increasing
supersaturation (Ω). From Equation 2.3, the aforementioned continuous growth of a critically
sized nucleus becomes immediately apparent, growth being energetically more favourable than
stagnation as long as the relative supersaturation remains sufficiently high (∆Gr remains negative).

The relationship between these energies is shown in the following graph 2.7. This is a thermo-

Figure 2.7: Interfacial free energy (∆Gs) and bulk free energy (∆Gv) of an emerging nucleus. rcrit is the
critical nucleus size, at which the nucleus becomes stable adapted from Sunagawa (2007). This critical
nucleus size becomes smaller as supersaturation increases

dynamic description of homogeneous nucleation in CNT, dependent on supersaturation but not
on solution stoichiometry.

2.1.5 Kinetics

Classical nucleation theory states that increasing the supersaturation and/or reducing the interfa-
cial tension increases the nucleation rate by lowering the nucleation barrier.

The free energy of formation can be related, according to CNT, to the rate at which nuclei are
formed (J) through the following relationship (Nielsen (1964); Abraham (1974) Strey et al. (1994);
Wyslouzil and Wölk (2016)):

J = k ∗ e(−∆G∗/KbT ) (2.9)

Where J is the rate of nucleation [number m−3 s−1] (Volmer and Weber (1926)), k is the kinetic
pre-exponential factor (provided by Farkas (1927)) and T is the temperature [K].

Experiments have shown that under identical conditions, except the type of background elec-
trolyte, the kinetic pre-exponential factor (k) varies. The kinetic barrier (k) can be the rate limiting
factor in crystal nucleation. The kinetic barrier is “proportional to the diffusion constant” (Kowacz
et al. (2010)). In order to form ion-pairs and eventually aggregates, effective ion contact needs to
occur. Ion association is facilitated by water exchange between the solvation shell and the bulk
fluid (f(H2O)) (Lee and Rasaiah (1994); Chong and Hirata (1997); Lynden-Bell et al. (2001)).
f(H2O) is a balance between the tendency of ions to order the water molecules in their solvation
shell and the preservation of the hydrogen-bond-network of water (Hribar et al. (2002)). Due
to different background electrolytes in the solvent, ion-water affinity can increase or water-water
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Figure 2.8: Schematic overview of the effects of electrolytes on solvation shell stability

affinity can decrease. Both increase the residence time of water in the solvation shell, making k less
favourable while simultaneously decreasing interfacial tension, respectively decreasing and increas-
ing nucleation rate (Kowacz et al. (2007)). These effects have also been documented in molecular
simulation studies (Piana et al. (2006); Jones et al. (2008)) on 2D-nucelation. 3D-nucleation in
a multicomponent electrolyte solution is also strongly affected, because the starting point of any
nucleation event of an ionic crystal, is the contact between a cation and anion with dehydrated
solvation shells. All these individual factors are summarised in k and can be used to calculate J .
The rate-limiting step of nucleation is different depending on parent-phase properties. Providing
more favourable conditions for nucleation will not increase the rate except if the speed of the
rate-limiting step is increased.

Electrolyte solution and ionic strength

The residence time is defined as ti/t0, the ratio between the time of a molecule of water in the
closest possible location to the ion and the time in the bulk solvent. At higher ionic strengths, the
position of the water molecule in the solvation shell is stabilized.

Anions are naturally more proximal to cations than cations to cations due to electrostatic inter-
actions. The partial charge of the dipole moment of water (u), is affected by both the charge of the
cation (Ba2+) and the anion (NO−3 ) (Figure 2.8). These ions move as one complex, reducing the
water exchange rate in their respective solvation shells by lowering their potential energy. Some
anion-cation interactions exist however, where the exchange rate increases due to the addition of
the background electrolyte, notably the Mg2+/Br− system (Di Tommaso and De Leeuw (2010)).
The effects of the electrolyte solution on the water exchange rate can be influenced by different
characteristics of the background electrolytes. At low ionic strengths (I < 0.05), electrostatic inter-
actions are dominant. Consequently, background electrolyte pairs are formed, strongly decreasing
their effect on the hydration shells of the barite forming ions and, thus their hydration character-
istics. Background electrolyte pair formation is directly related to the respective solubility of the
electrolytes. More soluble ions retard barite nucleation rates to a higher degree than less soluble
background electrolytes (Kowacz et al. (2010)). At relatively high ionic strengths (I > 0.05), the
individual charge distribution within the ion pairs is of minor importance due to the suppression
of electrostatic interactions and the overlap of ion hydration shells (Kowacz et al. (2010)). There
is a distinct switch to long range electrostatic interactions at these high ionic strengths. These
long range interactions consist of two components and the relative importance of these compo-
nents dependents on the characteristics of the background ion, predominantly their affinity to
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water (Kowacz et al. (2010)). Ions with a strong affinity compete with the crystal building ions
and increase the water frequency exchange rate(f(H2O)). Whereas in electrolytes with a lower
water affinity, the structure created in the water in their direct vicinity (Koneshan et al. (1998))
decreases f(H2O) due to decreased water mobility. At very high ionic strengths (I > 0.1), ion
concentrations are sufficiently high that bulk water is structured (Kowacz et al. (2010)). The main
kinetic barrier for nucleation can be the water exchange frequency and the likelihood of effective
(dehydrated) contact between two crystal building ions and is directly related to water solvent
dynamics and the amount of reactive material in the system.

Regarding growth and particle size, it is worth noting that in general higher I leads to retar-
dation of crystal growth, due to the electrostatic stabilization of the bulk water (Kowacz et al.
(2010)). The effect of increasing supersaturation (Ω) depends on the hydration characteristics
(positive versus negative) of the background electrolyte due to the difference of kinetic barriers for
growth and nucleation (Kowacz and Putnis (2008)). Positively hydrated ions predominantly in-
crease nucleation rates and negatively hydrated ions mainly increase particle growth at increasing
supersaturation (Matynia et al. (2004)).

That the kinetic barrier can be dominated by water exchange kinetics, is further substantiated
by experimental observations of increased nucleation rates of barite in solvents with added methanol
(Tomson et al. (2004b)). This addition decreases solvent structure and lowers the barrier of cation
desolvation. This is in contrast with the effect of the background electrolytes on the nucleation
barrier. The effects of the ionic strength on zetapotential and on the Debeye length will be
discussed in Section (2.3.2)

pH control on nucleation

Physico-chemical parameters at ambient conditions that affect nucleation rates and mechanisms
(Ω, I and pH) are interconnected. The effects of pH on crystal nucleation are most strongly forced
by its effect on the interfacial tension during the initial stages of nucleation and the disruption
of existing solvent structure by OH− ions. There are ongoing debates about the exact value for
the decrease in interfacial tension (Söhnel (1982); Fernandez-Diaz et al. (1990); Ruiz-Agudo et al.
(2015)), but they agree that increasing pH lowers the interfacial tension. Conducted conductivity
experiments show that pH barely affects nucleation rates between pH 3 and 9 (Figure 2.10). In
strongly alkaline (pH > 10) and in acidic solutions (pH < 2) induction time decreased (Ruiz-Agudo
et al. (2015)). Induction time is inversely proportional to nucleation rate. The predominance of
effects at a very high/low pH, points towards an interpretation of these results akin to the effects
of background electrolytes, with H+ and OH− modifying the solvent structure and, as previously
mentioned, the kinetic barrier. Nucleation is limited by the desolvation of the hydrogen shell
of the barium ion (Kowacz et al. (2007)), so the structure of water in the vicinity of barium
is the most relevant for the nucleation rate. Due to electrostatic interactions, this vicinity is
dominated by oppositely charged ions (Kowacz and Putnis (2008)) and is either unpopulated
(low pH) or densely populated with OH− (high pH). Additionally, the effect of H+ and OH−

ions on the solvent structure is different. Protons in solution rapidly associate with the oxygen
molecule of the solvent (water) to form H3O

+. Due to the integration of H3O
+ into the hydrogen

bond network, the solvent structure is not significantly disturbed. This is in contrast with the
local ordering of water caused by the OH− ion. OH− is a kosmotrope ion, which orientates the
water molecules in its hydration shell due to its high charge density (Tuckerman et al. (1995)).
This reorientation disturbs the local hydrogen bond network. The increase in desolvation rate,
and thus nucleation rates in strongly alkaline solutions, due to the abundance of OH−, can be

19



Figure 2.9: pH plotted versus island spreading rate
on the [001] surface of an existing barite crystal,
subsequent to growth solution injection. Measured
after 250s (Ruiz-Agudo et al. (2015))

Figure 2.10: Slope in conductivity plotted versus
pH. The slope is directly related to precipitation
rates, increasing pH leads to increased precipitation
rates (Ruiz-Agudo et al. (2015))

understood through competition for water molecules. This is analogous to competition for water
molecules by background electrolyte ions (Ruiz-Agudo et al. (2015)). The mobility of water is
relatively decreased around the hydroxyl ion, due to its kosmotropic character, and leads to a
relative increase around Ba2+ and SO2−

4 (Ruiz-Agudo et al. (2015)). Higher exchange rate of
water molecules, as discussed in Section 2.1.5, leads to a higher probability of a desolvated barium
and sulphate ion colliding forming a pre-nucleus or causing ion addition to an existing nucleus
(ion addition growth, CNT). This higher nucleation rate combined with lower interfacial tension
at high pH leads to smaller sized critical nuclei (Ruiz-Agudo et al. (2015))

Stochiometric effects on crystal growth and formation

Deviating from a perfect stoichiometric ratio has been shown to modify growth of certain crystals
(Kowacz et al. (2007) Nehrke et al. (2007)). Due to limited research into 3D-nucleation under
varying stoichiometry, a potential analogue for the effects can maybe be found in crystal growth
kinetics (2D-nucleation). For simple ionic compounds such as gypsum (Witkamp et al. (1990))
and calcite (Bracco et al. (2012)) the 1950’s BurtonCabreraFrank (BCF) model holds; for a
detailed explanation of what the BCF model entails see Burton et al. (1951). However, extensive
limitation of this model have been documented (Teng et al. (2000); Chernov (2004)). This led to the
development of more mechanistic models by Zhang and Nancollas (Zhang and Nancollas (1998))
(ZN98) and Wolthers et al. (2012) (W12). The experimental data for an AB-type crystal such as
calcite (Perdikouri et al. (2009); Larsen et al. (2010); Wolthers et al. (2012) and Van Der Weijden
and Van Der Weijden (2014)), barite (Kowacz et al. (2007)) gypsum,(Zhang and Nancollas (1992))
Mg- and Ca-oxalate,(Chernov et al. (2006)) and AgCl (Davies and Jones (1949)), show an optimum
in growth rate at or near an activity ratio of 1. This was accounted for by the ZN98 model, but
further research revealed multiple observations that could not be explained by ZN98 (Larsen et al.
(2010)). This led to the creation of W12 (Wolthers et al. (2012)), which, besides accounting for
step-by-step addition of either A or B ions, incorporated the idea of surface speciation and pH
dependency of attachment and detachment kinetics of potential growth units. It was created
through a synthesis of the surface structure model, referred to as Wolthers 2008 (Wolthers et al.
(2008)) and the ZN98 model. The W12 is one of the current state of the art model for crystal growth
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under different stoichiometric circumstances and its validity and effectiveness for nucleation will be
evaluated. For barite, non-stoichiometric solutions, with excess barite (raq > 1) show an increase
in 2D-nucleation and kinkstep attachment rate (Kowacz et al. (2007)). This rate increase is likely
related to the aforementioned kinetic limitation (Section 2.1.5) on nucleation due to the desolvation
of barium ions and is supported by the fact that addition of 5% methanol increases barite growth
rates (Tomson et al. (2004b)). Barite growth rates were enhanced by this addition, presumably
due to improved desolvation kinetics. One should however be careful when comparing the impact
of solution stoichiometry on crystal growth kinetics with the impact on crystal nucleation kinetics.
Growth kinetics are strongly affected by surface kink density, 2D-nucleation, surface charge effects,
destructive step-edge interaction and specific equilibrium conditions on the crystal surface. This is
different for incumbent nucleation, with a nascent surface. 2D-nucleation under non-stochiometric
conditions does not provide a suitable analog, due to the strong influence of the surface on the
electro-chemical parameters in its vicinity. This further illuminates a gap in our knowledge, as
research into the stoichiometric effects on 3D-nucleation is limited.

2.1.6 Desolvation and growth

Crystals grow along distinct axes and on distinct faces. These are illustrated in Figure 2.11. Barite
crystals generally have a tabular {001} side ranging from thin to thick. This face is bound by {210}
and sometimes {101}, {011}, {010} and {100}. The growth might vary with varying stoichiometry
due to desolvation kinetics

The anion tends to traverse the diffuse double layer more easily than the cation (Nielsen (1984);
Piana et al. (2006)) The activation energy of surface adsorption of barium is higher than of sulfate
(Piana et al. (2007)), making barium desolvation a possible rate limiting step. The water exchange
frequency around barium can be aided by the presence of anions by their destabilizing effect on
the water structure. At the (010) surface, the desolvation of barium is aided by the presence of
sulphate in some experiments (e.g. Piana et al. (2006)), this lowers the activation energy and
increases barium attachment frequency. The energy barrier of 10-20 kJ mol1 remains at the (100)
and (210) surface. Molecular dynamics studies suggest that at step edges, regardless of the crystal
face, the desolvation of barium is aided by the presence of sulphate (Stack et al. (2012)). The
energy barrier for attaching a barium ion to the sulphate ion present at the step edge is relatively
low, the attachment seems to be limited by the bond created with the second sulphate ion present
at the surface.

Research by Koskamp et al. (2019) suggests that in calcium growth, the dehydration of the
cation (Ca2+) is not rate limiting, contrary to earlier research by Nielsen (1984). This research
was not performed directly for barite growth but indicates that more uncertainty exists regarding
the desolvation of the cation as the rate limiting step then previously thought. There is also an
inherent assumption to the conclusion that desolvation of an ion is the rate limiting step. Mainly
that the ions arrive simultaneous at the crystal surface (Zhang and Nancollas (1998)). Research
does however suggest that surface diffusion can be more significant (Hellevang et al. (2016)). Their
statistical model indicated that barite has a low probability of ion complexation. Ion complexation
ensures that ions arrive simultaneously and are transported across the surface more easily because
they are neutral. This low level of complexation is most likely due to the low electro-negativity of
the barium ion (Kresse et al. (2000)). Consequently, it is not completely clear if barium desolvation
is actually limiting as the process might be limited by surface diffusion.

If surface diffusion is limiting, Hopper crystal structures might be encountered (Garćıa-Ruiz
and Otálora (2015)). This means that the desolvation of barium is most likely not the limiting
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Figure 2.11: The crystallogrpahic indices of a schematic barite crystal with the separate crystal planes
indicated. From Sosa et al. (2019).

step. Crystal twinning could also occur as a crystal lattice changes due to the substitution of ions.
At very extreme stoichiometries (e.g. raq = 0.01 and raq = 100), intuitively we expect a higher
chance of inclusion of non-fitting ions such as Na+ and NO−3 . This would occur due to a shortage
of respectively Ba2+ or SO2−

4 . When these ions are replaced at a later moment in time, twinning
can occur at this surface due to the possible deformation (Klassen-Neklyudova (2012)).

2.2 Theoretical principles of measuring techniques

The primary measuring technique utilized for this study was DLS to determine particle size and
development. Complementary SEM and SAXS experiments were performed. In this chapter,
first, the principles of DLS are elucidated, for its application in particle size measurements and
zeta potential. This is done through an introduction into particle movement, light scattering and
model independent and dependent results. Subsequently the principles of SAXS and SEM are
explained.

Brownian motion

The basis of DLS is utilizing intensity variation due to Brownian motion to calculate the size of
individual particles. Brownian motion is the erratic movement of particles caused by constant, ran-
dom collision with solvent molecules and their inherent thermodynamic movement above absolute
zero (Karatzas and Shreve (1998)). Collisions with solvent molecules cause a transfer of kinetic
energy and constantly change the velocity and direction of particles in solution. Smaller particles
are more strongly affected by these collisions due to lower inertia than their larger counterparts
(Karatzas and Shreve (1998)). The velocity of particles due to Brownian motion is defined as the
translational diffusion coefficient (Dtrans). The translation from translational diffusion coefficient
directly to particle size is not possible. The hydrodynamic diameter of the equivalent sphere of
the particle can however be calculated through the use of the Stokes-Einstein equation (Einstein
et al. (1905))

d(H) =
KbT

3πηDtrans

(2.10)

where d(H) is the hydrodynamic diameter [m], Kb is Boltzmann’s constant [m2 kg s−2 K−1], T
is the absolute temperature in Kelvin [K], η is the viscosity of the dispersant [kg s−1 m−1] and
Dtrans is the translational diffusion coefficient [m2 s−1]
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To accurately calculate the hydrodynamic diameter, it is essential that the temperature and
viscosity of the system are known at the time of measurement and stay constant as these parameters
directly affect the movement of the particles in the solvent. Changes in the temperature will
affect the resulting hydrodynamic diameter in three distinct ways: firstly, affecting Dtrans by
creating internal convection currents, introducing non-Brownian motion into the system; secondly
by affecting Dtrans by changing the viscosity of the solvent and thirdly by directly affecting d(H)
as it is a separate parameter in the Stokes-Einstein equation (Equation 2.10).

Hydrodynamic diameter

The result of the Stokes-Einstein (Equation 2.10) should be understood as the way the particle
diffuses within the solvent. The diameter calculated is that of an equivalent sphere with the same
translational diffusion coefficient as that of the measured particle. Besides the size of the particle,
Dtrans is influenced by all factors that influence the diffusion speed, such as ionic strength and
surface structure. Additionally, there is an inherent problem measuring the size of non-spherical
particles and will be further expanded on in Section 2.2 (Non-Spherical) (Hackley and Clogston
(2007)).

Modification by Ionic strength The particle diffusion velocity is partly influenced by the
thickness of the electric double layer (Debye length) of any particle in solution. The thickness of
this layer is modified by the ionic strength of the medium, as high ionic strength restricts the size
of this layer (through high concentrations or higher valence of counterions), increasing the diffusion
velocity, while at low ionic strengths, the diffusive speed is retarded by an extended double layer.
If measurements are conducted at a higher ionic strength, the results will be closer to the size of
the crystal nucleus (Hosse and Wilkinson (2001)).

Non-Spherical particles The size of any non-spherical particle measured will be equal to that
of the size of the hydrodynamic diameter of a spherical particle with the same translational diffusive
speed. The only measurable changes in size of a non-spherical particle are the increases or decreases
in size that affect the translational diffusive speed. Addition of building units to a rod-shaped
particle will for example only be visible in the length axis, whereas increases in the rod’s diameter
will not modify the diffusive speed to any noticeable effect (Pecora (2000)).

2.2.1 Light scattering

Light scatters differently depending on the ratio between the laser wavelength and the particle size.
It can be subdivided into 3 categories: Rayleigh scattering, Mie scattering and geometric/optical
scattering. At particle sizes much smaller than the wavelength (a << 1), the light scatters accord-
ing to Rayleigh scattering, at a ≈ 1, Mie scattering occurs and with particles much larger than the
wavelength, geometric scattering is sufficient to describe the scattering patterns (Bhattacharjee
(2016)), the exact reasoning behind this falls outside the scope of this work, but excellent and
detailed descriptions are available (Yguerabide and Yguerabide (1998); Uemura et al. (1978)). a
is defined as:

a =
2πr

λ
(2.11)

where 2πr is the circumference of a circle [m] and λ the laser wavelength [m]
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Rayleigh and Mie scattering are parametric processes and thus non-invasive (Reintjes (2012)).
Both these scattering regimes are considered to be elastic scattering processes. In elastic scattering,
the energy of the wave does not substantially change and thus the wavelength and frequency
stay the same (Hübschen et al. (2016)). The scattering results from the electric polarizability
of the nanoparticle, the oscillation of the electric field of the wave causes the charges of the
particle to move at the same frequency. This transforms the particle into a radiating dipole,
whose radiation can be measured (Murthy (2013)). At particle sizes approximately up to λ/10,
light scatters indiscriminately, from an experimental point of view, and its intensity follows the
Rayleigh approximation (2.12) (Murthy (2013); Seinfeld and Pandis (2016))

I = Io
(1 + cos2(Θ)

(2R2)
∗ 2π

λ

4

∗ (n2 − 1)

(n2 + 2)

2

∗ d
2

6

(2.12)

Where I is the intensity of scattered light [W/m2], I0 is the intensity of the unpolarized laser
[W/m2], Θ is the scattering angle, R is the distance of the light source to the intersection of the
scattering object [m], λ is the wavelength of the laser [m], n the contrast in refractive index between
the particle and the medium (npar

nsol
) and d is the particle diameter [m]. In Rayleigh scattering, light

scatters almost equally in all directions (Hallett (1999)). At 90◦, the scattering is 1
2

that of the
forward and backward direction due to the cos2(Θ) angle dependency in the first term of Equation
2.12.

Following from Equation (2.12), a six orders of magnitude dependency of intensity on the
particle diameter becomes apparent (d6). A tenfold increase in particle size results in a million-
fold increase in light intensity. This imposes limitations on the measurement possibilities of DLS
(Section 2.3.2). The relationship between intensity and particle diameter in Equation 2.12 is
additionally used when calculating the number of particles from the amount of scattered light by
the particle populations of a specific size (Section 2.3 and 2.12). Using the Maxwell’s equations,
the relative volume and number of particles can be calculated. Assuming two particles that differ
in size by one order of magnitude, the larger particle will have a thousand times the volume and
its intensity will by a million times bigger compared to the smaller particle (Figure 2.12).

Mie Scattering occurs as the diameter of the particle approaches the wavelength of the in-
coming light (Deshler (2015)). For DLS purposes, it relates the volume of a particle to intensity
according to the Maxwell’s electromagnetic field equation (Born and Wolf (2013)). The essential
difference between Rayleigh and Mie scattering arises from the fact that Mie scattering has a strong
preferential forward scattering direction (Deshler (2015)) (Figure 2.13). The scattering intensity
of all particles within the measurement range is predicted under a set of assumptions (Hulst and
van de Hulst (1981)). These assumptions are that all particles are spherical, light is only scattered
once, the optical properties of both the particles and the medium is known and constant and the
particles are completely homogeneous. The difference between refractive index of the particles and
the surrounding medium is used to calculate the intensity of scattered light. This theory is also
utilized to predict how the absorption affects the transmitted light and the quantify absorption
versus refraction. The translational diffusive coefficient (the raw data) is measured irrespective
of the difference in refractive index. It becomes relevant during the translation to particle size.
(Kuipers (2020b)).
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Figure 2.12: Transformation of intensity to number of particles over diameter of a bimodal mixture of 5
and 50 nm lattices present in equal numbers. Clearly displaying the power of 6 and power of 3 dependency
of respectively intensity and volume (Source: Adapted from Dynamic light scattering: an introduction in
30 minutes by M. Instruments, 2012)

Figure 2.13: Schematic overview Rayleigh, Mie and geometric light scattering. Note the preferential
forward scattering of the larger particles compared to the smallest particle, adapted from Alkholidi (2014).
A cosinus term in the Mie

The impact of choice of scattering angle

In theory, the scattered light can be measured under any angle. Resulting in the measurement of
variation in scattering intensity with measurement angle such as illustrated in Figure 2.13. Many
technical solutions rely on a combination of small angle, forward scattering, side scattering and
large angle back scattering. In principle, these angles should yield the same results but some
distinct differences in their results exist. These differences arise from changes in measured volume
and angle of the scattered light (Kuipers (2020b)). The assumption made in the Mie theory,
that each photon is only scattered once needs to be true to make any inferences on particle size.
It follows logically that, in order to minimize multiple scattering events, it can be beneficial to
decrease the volume through which the laser travels in a concentrated sample. This can be achieved
by the application of Non-Invasive BackScatter (NIBS). In NIBS, the focus of the laser can be
adjusted to either increase or decrease the volume traversed, depending on the concentration
of particles and turbidity of the sample. Relying on NIBS comes with additional advantages,
mainly, that larger particles scatter more strongly in the forward direction. This means that
noise coming from possible contaminants such as dust and the scattering by larger populations
in a polydisperse sample preferentially scatter in the forward direction, consequently very small
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Figure 2.14: Scattering intensity of particles of a specific size over scattering angle. Note how the small
particle does not have a strong preferential scattering direction, akin to Figure 2.13. The angle dependency
of larger particles becomes clear, with local minima and maxima (Kuipers (2020b))

particles can be measured, even in the presence of larger particles, using NIBS. However, reducing
secondary scattering events can lead to significant influence from lens flare. Lens flare is caused by
the scattering of photons by the cuvette wall. This decreases the signal to noise ratio, especially for
weakly scattering samples. For samples with low concentrations or very small particles, traditional
side-scatter circumvents the lens flare problem. Sidescatter suffers from smaller scattering volume
and consequently has more particle size fluctuation at higher concentrations. With a strongly
disperse sample, forward scattering provides a solution. Due to the longer path length, increased
secondary scattering becomes a greater concern, but it increases the chance of measuring individual
larger aggregates or larger particles that are of concern. The angular dependence on the scattering
behaviour of certain particles means that the same solution can produce different size distributions
under different measurement angles. Preliminary knowledge of expected particle sizes is thus very
beneficial as the correct scattering angle can be chosen to highlight desired parts of a polydisperse
sample.

Multi-Angle Dynamic Light Scattering provides the possibility to create a completely
angular-independent particle size measurement. It aims to provide a complete picture of all pop-
ulations present in the sample by combining measurements at multiple measuring angles. This
ensures that particles that scatter weakly in one direction (large particles in backscatter for ex-
ample (Figure 2.14)) are measured in a different angle, forwardscatter in this example. PSD is
derived from multiple autocorrelation functions of individual detection angles. These are treated
as simultaneous, parallel functions and a single PSD, accounting for all different measuring angles
(Cummins and Staples (1987); Bryant and Thomas (1995)).g1(Θ1, τ)

g1(Θ2, τ)
g1(Θ3, τ)

 =

K(Θ1, τ, d)x(d)
K(Θ2, τ, d)x(d)
K(Θ3, τ, d)x(d)

x(d) (2.13)

26



where Θ signifies the different scattering angles. Solving this equation is not straightforward, as
inherent weighting of PSD for each separate measuring angle needs to be accounted for. This
is achieved through multiple steps: Firstly, weighting, using the computed scattering intensity,
is applied through the Mie function. Secondly. from the concatenated autocorrelation function,
the residual is calculated between the predicted autocorrelation function and the measured func-
tion and is minimized through application of least squares (similar to single angle measurements).
Lastly the PSD is extracted. The separate angular contributions to the residuals are calculated
in order to account for different degrees of uncertainty at different measurement angles. This pro-
cess produces a result which can be, in essence, seen as a angular-independent measurement. In
order to apply the Mie Theory, optical properties of the dispersant and measured material need
to be known. Approximations can be made through Fraunhofer Diffraction Theory (de Boer et al.
(1987)) if the material is unknown, very diverse or has different scattering angles on different faces
(Weiner (1971)). MADLS becomes specifically relevant if populations are larger than 50 nm. In
this size-range, particles can scatter non-isotropically, resulting in different size measurements at
different measurement angles. However, even in isotropically scattering size ranges, improvements
in data quality (for some applications), through use of MADLS, can be theoretically substanti-
ated. The multi-variate information constrains the solution so that only common components
(signal), represented in all autocorrelation functions, are incorperated in the result, while single
measurements get rejected (noise). This improves the signal to noise ratio. This is specifically use-
ful for low concentration, non-disperse samples. The true improvement compared to single angle
measurements comes however, from the possibility to analyse mixtures in which particles scatter
at different intensities under different detection angles and the improved statistics of the results.
A clear drawback is the loss of information on very large particles that are only recorded in the
forward scattering angle.

2.3 Size information

2.3.1 The correlation function

Information about particle size is extracted from the correlation function. This function is an
exponential decay, which is a measure of similarity between random variables. For the DLS, the
correlation function is used to describe the intensity change of the scattered light for a chosen time
domain. In that time domain, it is used to establish coherence between fluctuating signals. It has
been mathematically defined as the following equation (Kuipers (2020a))

Gint(τ) ≡ 〈I(t)I(t+ τ)〉 (2.14)

When sampling at discrete time intervals τ and ni ∝ I(t) the equation becomes

G2(j ·∆τ) = lim
N→∞

1

N

N∑
i=1

ni · ni−j (2.15)

where i is the sample time period and j the memory channel. This means that ni is the intensity at
a specific time step and ni−j is the intensity of previous time steps. This calculation is performed
for a large variety of τ simultaneously. Shorter time shifts are used for the high range of exponential
decay whereas longer time shifts provide high resolution information on the lower part of the decay.
This decay can be mathematically described (Kuipers (2020c)):

Gint =′ contrast′e2Dtransk2τ (2.16)
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with the magnitude of the scattering vector being defined as q by:

q =
4πnmedium

λvac
sin

Θscat

2
(2.17)

where nmedium is the refractive index of the medium, λvac is the wavelength of the laser and ’q’
the reciprocal vector length.

’Contrast’ refers to the intercept with the normalized y-axis of the autocorrelation function
Figure 2.15. Running parallel memory channels, where the autocorrelation function is calculated
over a large range of τ , providing the possibility to simultaneously measure small and large particles.
The x-axis of the correlation function (τ) is plotted on a logarithmic scale to display large spread
in τ and the y-axis is normalized to ≈1, by division with average intensity 〈I(t)〉2 (base line value).
This normalization leads to (Kuipers (2020a)):

G2(τ) = 〈I(t)〉2 · C0e
−2Dtk2τ + 〈I(t)〉2 (2.18)

where C0 is the contrast factor and as τ ⇒ ∞,

G2(∞) = 〈I(t)〉2

and as τ ⇒ 0,
G2(0) = 〈I(t)2〉

From statistical mechanics, it can be deduced that

〈I(t)2〉 = 2 · 〈I(t)〉2

Examining the autocorrelation function is of vital importance, since it can illuminate many po-
tential errors in the measurement. If the ’contrast’ (C0) of the function is below 0.8, the result of
the low amplitude of the intensity fluctuation, the data should be examined critically for one of
the following problems: Bad optics (a badly focussed laser), bad signal-to-noise ratio (low particle
concentrations are low degree of scattering), multiple scattering events or heterodyne detection.

Problems in the optics can not be solved internally, but require professional repairs. Bad signal-
to-noise ratio can also be the origin of low contrast and can be improved by either increasing the
concentration of the sample, increasing the difference between the refractive index between the
particle and the solvent (by changing the solvent) or increasing the number of sub-runs for the
measurement. Multiple scattering events can be detected by creating a concentration range and
see if the apparent particle size decreases with increasing concentrations. If this is the case, a
simple dilution of the sample will improve the measurement dramatically. Additionally, a different
solvent can be chosen with a refractive index closer to the target particles. Heterodyne detection
means that not all measured particles are moving and a different definition of the decay function
needs to be employed, particles could, for example, attach to the cuvette wall, interfering with
the laser. In this modified decay function, the multiplication by 2 is removed in the e−Dtk2τ -term,
compared to the original function (2.18) to account for only half of the particles moving.

G2(τ) = 〈I(t)〉2 · C0e
−Dtk2τ + 〈I(t)〉2 (2.19)

Additional understanding can be gained from the shape of the autcorrelation function, irrespective
of C0. A superimposed sinusoidal on the autocorrelation function indicates a measure of lateral
movement in the sample. For known flow conditions, this can be mathematically subtracted to a
certain level. In batch measurement however, it is an indicator for thermal convection. Thermal
convection occurs when the laser heats up the particles or the solvent. Larger particles are measured
on longer timescales and deviations from the expected autocorrelation function at very large τ are
evidence of sedimentation in the sample. Both can be seen in Figure 2.15
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Figure 2.15: Example of the effects of linear velocity and sedimentation on the shape of the autocorrelation
function. Additionally, the contrast factor (C0) is indicated (Kuipers (2020a))

2.3.2 Size information, polydisperse samples and model-independent
analysis

To deduce size information from the correlation function, multiple model dependent and indepen-
dent approaches are available. The model dependent solutions are much simpler, but have fallen
out of favour (Kuipers (2020c)). The cumulants analysis is the most basic method of analysing a
correlation function. It consists of fitting a single exponential to the correlation function, yielding
the average diameter and providing an estimate width of the distribution (PDI). As the Taylor
expansion underlying this method is only valid for mono-disperse samples, it is not applicable.
The model independent inversion methods, namely, Contin (Provencher (1982)), General Purpose,
Multiple Narrow Modes (MNM) (Kuipers (2020c)) will be discussed. Plots generated from these
methods are intensity over particle size. To achieve this, the sphere approximation is made. This
facilitates the transfer from translational diffusion coefficient to particle size.

The example autocorrelation function (Figure 2.15) is of a monodisperse sample. For poly-
disperse samples however, multiple exponential decay function are fused. Its scattering intensity
cannot be described in the same way as for a monodisperse sample but by (Kuipers (2020c)):

Iscat(q) =

∫ ∞
0

I(q, r)N(r)dr (2.20)

where I(q, r) is the weight factor and N(r) the particle size distribution. To solve this problem,
an approximation is made:

Iscat(qm) = const

N∑
j=1

I(qm, rj)nj (2.21)

with m = 1, ....M (M being the scattering angles) for N radii and r is the radius. This is very
similar to the monodisperse system, except a weight factor is added to each individual population.
Contin, General Purpose and Multiple Narrow Method all employ Non-Negative Least Squares
method (NNLS) (Lawson and Hanson (1995)), but employ different degrees of regularization.
Regularization is an additional term in the NNLS, which smooths the function. It is useful to filter
random noise peaks and creates a Gaussian distribution of particles. In a monomodal system, the
difference between higher or lower degrees of regularization is limited but in multimodal systems, as
is expected in our research, the difference can be determining for the interpretation. A higher degree
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of smoothing (General Purpose) will group different populations under the same size distribution
peak, whereas a lower degree of regularization, Contin or MNM will display separate populations.
The latter are however more prone to noise.

DLS limitations

DLS measurement devices have multiple limitations on absolute size that can be measured and
the polydispersity of measured particles. It is essential that all particle motion is the sole result
of Brownian motion in order to obtain accurate measurements. If a particle settles is dependent
on the Stokes law and the Brownian motion, and thus density and temperature dependent. Very
small particles < 0.1µm almost never settle (Haranas et al. (2012)), unless they are extremely
dense. When particles start to settle is not completely clear, but up to particle sizes of 1 ∗ 103nm,
the measurements are relatively unaffected Ruseva et al. (2018)). The size of any settling particle
is automatically underestimated due to its increased velocity. Larger particles can also overex-
pose the sensor to light, which makes measurements impossible (Equation 2.12). By attenuating
the laser, it is possible to overcome this issue to a certain extent. This option has the definitive
drawback of completely obscuring the smaller particles. The lower limit of DLS is defined by the
signal-to-noise ratio. As particles become excessively small, the intensity of Rayleigh scatter, due
to their presence becomes so small that it is indistinguishable from background noise (≈ 1nm).
This is observed during the measurement if photon countrates of 10 kcps or less are measured.
10.000 photons per second are expected to reach the sensor, unrelated to scattering by the sample
(Kuipers (2020c)). Meaning, samples which do not scatter sufficiently to reach ≈20kcps can not
be accurately measured due to a low signal to noise ratio (Kuipers (2020c)). Additionally, a large
spread of particle sizes also has an inherent problem, as the intensity of scattered light has a power
6 dependency on particle size (Equation 2.12), consequently large particles can obscure the signal
of smaller particles, limiting the applicability to systems with many populations. DLS is a sta-
tistical method, each extractable measurement consists of many sub-measurements. Any sub-run
which is not repeated is removed automatically, resulting in only statistically valid measurements.
Consequently, particles which are very rare and are only measured once or twice are not repre-
sented in the final measurement. Due to recent computing improvements, DLS equipment has
significantly improved run retention. For trustworthy results, this retention should be between 80
and 100 %.

Zeta Potential

In essence, zetapotential (ZP) (electrokinetic potential) reflects the effectiveness of the double
layer to counteract the surface charge density (Hunter (2013)). Counterions accumulate close to
the particle (Stern Layer), whereas co-ions are depleted in the particle vicinity, following the Boltz-
mann distribution. The ZP is dependent on surface and dispersant properties and is essential for
understanding the stability of systems, regarding flocculation, coagulation and colloidal particles
(Hunter (1993)). Due to brownian motion (Section 2.2), particles randomly approach other parti-
cles, this leads to attractive Van der Waals forces (Klimchitskaya and Mostepanenko (2015)) and
a potential electric double layer repulsive force (Gruen and Marčelja (1983)). The strength of
the repulsive force of the diffusive double layer is either sufficient to prevent flocculation and the
particles stay in suspension as small particles or sufficient force is applied and the particles stick
together (Albers and Overbeek (1959); Letterman et al. (1999)). This leads to increasingly large
particles, potentially undergoing sedimentation or creaming, depending on their relative density
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to the dispersant (Albers and Overbeek (1959)). Under low ionic strength conditions, this coagu-
lation is relatively permanent. When ZP is surpressed however, an energy minimum occurs which
leads to unstable flocs. Brownian motion does not suffice to deflocculate the system, but external
agitation of the system will break these flocs up. The repulsive force is proportional to the square
of the zetapotential, electrostratic stability is thus greatly enhanced or decreased by incremental
changes in zetapotential. Repulsive force VR is calculated through the following equation (Fairhurst
(2012)).

VR = D ∗ a ∗ ξ2e−KH (2.22)

Where D is a constant related to the dielectric constant of the material [F/m], a is the radius of the
particle [m], ξ the surface potential of the particle [V], K is the conductivity of the medium [w/K],
H is a measure of separation betweeen particle surfaces [m]. K (conductivity) is proportional to
ionic strength. It follows from Equation 2.22 that at very high ionic strengths (I →∞), the effects
of the ZP are completely suppressed.

Figure 2.16: Schematic representation of the different layers around a ion in solution, the slippin plane
indicates the boundary between ZP and the larger diffusive double layer. Additionally the energy curve
[mV] over distance from the particle surface is displayed.

ZP is different from the potential at the outside (solution side) of the diffusive double layer
and is divided from it by a slipping plane. The ZP is the potential at the slipping plane, which
can be seen as enveloping the layer close to the surface where the ions are staying with the
charged particle if it were to be moved through the liquid rapidly, whereas everything outside the
slipping plane (but still within the diffuse double layer) would stay behind (Lin et al. (2003)).
This is illustrated in Figure 2.16. ZP is not inherent to a particle, such as thermodynamic charge.
It fundamentally originates from the conditions of the surface sites, mainly quantity and type,
and is strongly influenced by solution parameters (Hunter (2013)). Ionisation of surface groups,
by the dissociation of acidic groups, will produce a negative surface charge. Uptake of protons
by dissociated surface sites leads to a positively charged surface (Liao et al. (2009)). Besides
changes within attached surface groups, differential removal or addition of ions from/to the crystal
surface also results in a charged crystal lattice, as for example shown for calcite (Cicerone et al.
(1992) Wolthers et al. (2008)). Pre-existing impurities or adsorped charged species can also lead
to a change in the surface charge (Fuerstenau et al. (1992) Hang et al. (2007)). The pH and
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the electrolyte concentration of the dispersant determine the ultimate sign and magnitude of the
effective double slip layer (Hunter (2013)). A particle with a positive ZP will become neutral due
to alkali addition and will become increasingly positive by acid addition. The circumstances where
the zetapotential is zero, is called the isoelectric point (Salgin et al. (2012)). Particles at their
isoelectric point are at a minimum in terms of solubility (Whitaker (1993)). When an electrical
field is applied, these particles will remain stationary. It is useful to make the distinction from a
point of zero-charge, which can, besides referencing to a balanced charge, also refer to particles
with no surface charge. These particles will not have a ZP under any conditions and are not
electrochemically active. Consequently, a figure for ZP, without knowledge of the exact solution
conditions holds no information on the actual particle. ZP can not be measured directly, but is an
inferred characteristic (Fairhurst (2012)).

The goal within this research is not to measure the zetapotential, but to understand the charge
at the particle surface. This can be achieved through Graham’s approximation (Equation 2.23)

ζ =
ξ ∗ k−1

ε
(2.23)

where ζ is the measured Zeta potential [V], k−1 is the inverse debey-length = 0.304√
I

[m] and ε the

permitivity of the medium [F/m]

2.3.3 Theoratical basis of zeta potential measurement

Zetapotential measurements are based on electrokinetic effects, in other words, the interaction of
charged particles with an electric field (Kumar and Dixit (2017)). Two interactions are relevant for
understanding zetapotential measurements. Electrophoresis (Zschörnig et al. (2003)) and electro-
osmosis (Li] et al. (2013)), respectively the relative movement of a charged particle compared to
the surrounding liquid and the movement of a liquid relative to a stationary charged surface under
an applied electric field. Due to the opposite attraction (Figure 2.17) experienced by the diffuse
double layer and the particle, a good measurement cannot be taken without understanding the
ratio between them. Generally, the particle is much larger than its diffuse double layer and the
Smoluchowski model (Sze et al. (2003); Somasundaran (2006)) can be applied. The theoretical
basis of this model is that the movement of the diffuse double layer is negligible compared to the
movement of the particle. The other option is that the diffuse double layer is comparatively large.
In that case, the diffuse double layer moves in the opposite direction relative to the particle under
the electric field. Thereby increasing the apparent velocity of the particle, introducing an error
into the ZP measurement. In that case, Hückel’s model applies (Somasundaran (2006)), which
takes this relative movement into account. The particles elecrophoretic velocity is described by
the following relationship (Piatt (2016)):

υel = E(µel ∗ µeo)D (2.24)

where υel is the particle elecrophoretic velocity [m2/s], E is the applied electric field strength
[V/m], µel is the electrophoretic mobility [m ∗m/(V ∗ s)] and µeo is the electro-osmotic Mobility
[s/m] and D is the diffusion [m2/s]

For a particle with a relatively small diffusive double layer, the electroosmotic contribution to
the total measured particle velocity can be considered negligible (Besra and Liu (2007); Hanaor
et al. (2011)). Due to the strength of the applied field, the contribution of the diffusion of the
particle is also irrelevant. Through Henry’s Equation (Equation 2.25), it is possible to relate the
measured velocity to ZP.
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Figure 2.17: Schematic view of electrophoretic mobility, note the difference between a collapsed or expended
diffuse double layer. The application of an electric field results in attraction of the particle, suspended in
electrolyte. The immediate surrounding ions experience the opposite pull in case of an expanded diffuse
double layer and only very limited interaction with the electric field in a collapsed double layer (Hunter
(1993))

Mathematically, electrophoretic mobility is related to particle velocity in the following manner
(Besra and Liu (2007); Hanaor et al. (2011))

µel =
2εζf(ka)

3η
(2.25)

Where ε represents the permitivity of the medium [-], ζ is the zeta potential [V], f(ka) is Henry’s
function where k is inverse Debey length [m−1] & a is the particle radius [m] and η representing
the viscosity of the medium [m2/s].

2.3.4 Limitations of measuring Zetapotential

Only the limitations relevant in light of nucleation experiments will be discussed here. A limitation
arises from the strong dependence of zetapotential measurements on accurate knowledge of particle
sizes. Strongly disperse samples or particles, which change size over the course of the measurement,
are extremely difficult to measure accurately. Such samples create very broad ZP distribution
curves. Polydisperse samples suffer additionally from stronger Brownian motion effects on the
smaller particles, broadening the ZP distribution even more. The signal of larger particles or
agglomerates will also be unproportionally large, further complicating accurate measurements
of the different populations (Domingos et al. (2009); Doane et al. (2012)). The evolution of
multiple populations is expected to suffer from both these problem. However, this broadening
can often be counteracted to some degree by repeat measurements under different angles (Xu
(2001); Xu (2008)). This provides a clearer picture of the sizes of the particle populations and
which populations are present. For this to be a suitable method, it is important that the process
is repeatable. Changing ionic strengths introduces another problem when measuring the ZP, as
the diffusive double layer thickness will change when ionic strength changes. Due to crystal and
ionic compound formation, ionic strength will decrease during the measurement. Consequently,
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the diffusive double layer will expand. A potential solution is measuring at high ionic strength,
so the influence of crystal formation on ionic strength is limited. Another potential problem
is sedimentation of the largest particles, which reduces the size of the measured particles, even
though the particles are in reality still growing. This sedimentation also negatively affects the
signal-to-noise ratio and introduces additional movement into the system. It is possible to track
sedimentation by tracking scattered light intensity and observing the autocorrelation function
of additional DLS measurements. From thermodynamic considerations, material dissolution can
often be disregarded. This means that a reduction of scattered light intensity is directly related
to removal of material from the measured volume through sedimentation. The choice of model
for the calculation is also not always straightforward and must be based on information regarding
metal uptake/release, size distribution, agglomeration behaviour and ionic strength.

2.4 Small Angle X-ray Scattering

In many fields of science, high powered microscopes no longer suffice for the high demands in
terms of resolution, low concentration measurements or specific time distribution of reactions. This
development led to the emergence of highly specialised facilities, producing synchrotron radiation
for experimental goals. Any electromagnetic wave passing through a material experiences some
degree of scattering besides the expected absorbance. This property is utilized, comparable to
the way it is in DLS, by the synchrotron. In the following chapter the principles of synchrotron
radiation and a synchrotron are expounded, the relevant parameters explained and an introduction
to the correction and analysis of the obtained synchrotron data is provided.

2.4.1 SAXS vs Microscopy

Microscopy is the traditional candidate to observe extremely small particles. It allows for visu-
alisation of particles to near-atomic resolution. When considering microscopy in the context of
observing continuous reactions, two problems emerge. Firstly, the sample preparation is cumber-
some due to the rapidly evolving sample and creating statistically relevant data is nearly impossible,
because only a small fraction of your sample can be observed at a given time. It is thus necessary
to create many samples and observe different parts of them at the same time to understand the
system under investigation. In the context of nucleation, this would require an enormous amount
of samples, all observed at the crucial moments of nucleation. It is possible to circumvent this
problem by employing a different measuring technique. With SAXS, it is possible to observe the
sample through time with snap shots. The transition from the aqueous phase to the solid phase
can be observed in a simple capillary cell and probed during its evolution. Another added benefit
is that the photon beam probes the complete volume it transverses, significantly increasing the
amount of data collected per experiment.

2.4.2 The synchrotron

A synchrotron essentially consists of six parts. An electron source, booster ring (inner-ring), storage
ring (Outer ring), a radiofrequency cavities, optical hutches and experimental hutches. The inner
ring increases the velocity to near light-speed levels. The electrons are subsequently transferred
to the outer ring. This ring is not perfectly circular, but consists of straight sections, punctuated
by bends. The electrons are, similar to other particle accelerators, kept in orbit by quadruple
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and sextuple magnets. Due to the high speed of the electrons in the beam, the magnetic force
term exceeds the electric term in the Lorentz force. Consequently, magnetic deflection exceeds the
effects of electrostatic deflection. Due to this phenomenon, focussing the beam on the horizontal
and vertical plane simultaneously becomes impossible. Placing magnets, with adequate spacing,
in series solves this problem. Adjacent quadruples are subjected to Earshaw’s theorem (Earnshaw
(1842)), meaning that the electron can not be focussed in two direction simultaneously and the
effects of the magnets would thus cancel out without spacing. Focussing the electron beam through
quadruples introduces chromatic aberrations. These are corrected by the sextuples (Shenoy (2003);
Balerna and Mobilio (2015); Willmott (2019)). Every bend can theoretically be connected to an
optical hutch and, subsequently an experimental hutch. Radiation is released at the bends and
this radiation slowly disperses electron groups and slowly but consistently, power is lost from the
outer ring. Some synchrotrons circumvent this problem through the aptly named “Top-up” mode
(Tanaka et al. (2006); Boland et al. (2007); Pont et al. (2014)). In this setup, batches of high
speed electrons from the inner ring are injected into the outer ring at regular intervals. This
gives a saw-tooth shaped fluctuation in intensity, compared to the continuous decrease in intensity
which occurs in single injection mode. This relative and high constant power output provides more
accurate data (Boland et al. (2007)). Nonetheless, a correction needs to be performed on the data
in order to remove the saw-tooth pattern from it. The radiation produced by the electron, leaves
the orbit tangentially and enters the optic hutch. This optic hutch provides the ability to tune the
wavelength of the emitted energy. The emittance of electromagnetic waves causes a loss of energy
from the electrons. If this loss is not compensated, it would be impossible to keep the electrons in
a stable orbit within the storage ring. The electrons are accelerated by an electrical field in phase
with the passage of the electrons.

2.4.3 Synchrotron radiation

Synchrotron radiation, also known as magnetobrehmsstrahlung (Ginzburg and Syrovatskii (1965)),
is the aforementioned electromagnetic wave that is used to produce semi-characteristic scattering
patterns. This radiation is released by the radial acceleration of relatively charged particles (e.g.
electrons). When a highspeed electron is deflected by a charged surface, it loses kinetic energy
which is transformed into electromagnetic radiation. Through this transformation, the law of
conservation of energy is satisfied. At relativistic speeds, the produced radiation energy is folded
forward into a narrow cone. When moving at low speed, electrons do not show this behaviour,
instead producing emissions covering a broader angular range (emitting roughly in a cone of cos2Θ,
akin to a radio antenna).

In the magnetic field of a bending magnet, electrons continuously emit radiation, and thus lose
energy. To maintain relativistic velocities, energy is supplied to the electrons through radiofre-
quency cavities (RF cavity). This energy transfer occurs through an oscillating field. Consequently,
the effect the oscillating field has on a passing electrons is intimately linked to the arrival time
of the electrons. They are either unaffected, accelerated or decelerated. In this manner, electrons
form neat rows of finite length, punctuated by vacuum. These electron rows are called bunches. As
these bunches travel through the straight sections of the storage ring, they can be modulated by
insertion devices (Shenoy (2003); Balerna and Mobilio (2015); Willmott (2019)). These insertion
devices supply periodic magnetic fields to improve certain features of the beam, such as brightness
or flux. There are two main types of insertion devices, a wiggler and an undulator (Motz (1951);
Winick et al. (1981); Koch (2010)). The wiggler, as the name suggests, forces the electron to pe-
riodically divert from its path by producing a multipole magnetic field. The Lorentz force causes
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the transverse movement. Since the wiggler, unlike the bending magnet, does not play a role in
maintaining the correct trajectory of the electron, the magnetic field strength can be varied to
create the desired emission peak. Additionally, it does not create a single radiation burst akin to
the bending method, but a series of bursts, coinciding with the frequency of the induced wiggle.
This wiggle can also be superimposed on a curve forced by a bending magnet, thereby increasing
the total radial acceleration and thus the amount of synchrotron radiation. Enhancing the flux and
the brilliance of the beam (Duke (2009)). An undulator follows the same principle as a wiggler,
but the goal is to produce a pseudo-monochromatic beam by producing very small scale transverse
oscillations. This avoids a continuous spectrum and instead creates a line spectrum (Winick et al.
(1981)).

2.4.4 Scattering in the Synchrotron

X-ray radiation is described by elastic Thomson scattering (Glenzer and Redmer (2009)) and
refers to the scattering of an unbound, unpolarizable particle (a free electron), whereas Rayleigh
is the scattering of a polarizable entity through the creation of a dipole moment (Changizi et al.
(2007)). In both Rayleigh and Thomson scattering, oscillation in electrons is induced with the
same frequency as the incoming radiation Changizi et al. (2007)). This means that all electrons
oscillate at the same frequency and they produce coherent waves (Schnablegger and Singh (2011)).
Interference patterns between these waves carries the structural information of the particles.

Structure The aforementioned interference patterns can be constructive (in phase) or destruc-
tive (out of phase). Scattering at the atomic scale happens radially and is synchronized to the
incident beam. The measured interference is thus only dependent on the location and orientation
of the atoms relative to the other atoms in the structure. All distances within the sample are
measured relative to the wavelength of the incident X-ray beam. The unit of measurement ’q’
(the length of the scattering vector) will later (Section 2.4.8) be explained in order to remove
the wavelength dependency, by putting distance in reciprocal space (1/distance) in contrast with
particles, which are in real space with unites of length

2.4.5 The synchrotron detector

The detector is located behind the flight tube in the experimental hutch.

The sample also absorbs a part of the radiation (Paragraph 2.4.7 (The degree of extinction).
A temperature increase due to this absorption is assumed to be negligible due to the results of the
transmission correction. It is essential to correct for the degree of extinction and this needs to be
individually determined for each sample. This is done by comparing the current supplied with the
measurements taken by the beamstop-mounted diode. The factor between these is the transmission
factor (Ttm). The absorption by the background electrolytes is separately quantified from the total
absorption by blank measurements to follow the evolution of the absorption by formed particles.
As the photon beam travels through a larger volume, it encounters more particles and thus is
absorbed to a larger extent. This is corrected by normalizing to the thickness of the sample (Pauw
(2013)).
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Figure 2.18: Schematic overview of the scattering pattern on the detector with the beamstop in the top right
corner. The scattering pattern can be radially symmetric, meaning a larger q-range can be achieved by
measuring only one quadrant. The gradient in the square is a measure of the amount of detector capacity
dedicated to a specific size range. The detector has the highest accuracy for intermediate q-values.The
advantages of focussing on one quadrant become self-evident, a clearly extended q-range.

2.4.6 The synchrotron detector

In order to produce countrates or intensity patterns, the production of free electrons due to on-
coming x-ray radiation is used. Multiplications and amplifications turn these free electrons into
electric pulses which are counted (Pauw (2011b)).

2.4.7 Inherent issues with scattering patterns and corrections

A perfect measurement is not possible. A dataset which has been perfectly postprocessed, has
a hypothetical perfect background scatter pattern, with the correct uncertainties for every data
point and the correct angular region, that can be subtracted. The detector is flawless in this
hypothetical scenario and every experiment went perfectly. Interpreting the resulting curves is still
not straightforward. Similarly to DLS, there is a loss of particle shape and problems originating
from polydispersity. It is possible to retrieve this information with complementary techniques.
If the particle shape is known, polydispersity can be found and vice versa. The perfect detector
does not exist and tradeoffs are made. This introduces distortions regarding either intensity or
geometry. In other words, the amount of measured intensity deviates from the real intensity or
the location of the detected intensity is not accurate.

Intensity distortions Most detectors measure on a relative but proportional scale (Pauw (2011a)).
The difference in measured intensity is proportional to the counted photons, but the actual photon
count is not recorded. This introduces a loss of raw data which has implications for understanding
errors in the data. The intensity is also distorted by the limited intensity window (Pauw (2011a)).
If more or less photons than this detection limit reach the detector, they are respectively no longer
accurately counted or the signal-to-noise ratio becomes exceedingly bad. Both these problems are,
to some extent, alleviated by the use of a direct photon counting detector. An additional source of
noise affecting any detector is the relatively constant background electronic floor noise. A control
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Figure 2.19: Illustration of the solid angle correction necessary for the SAXS-detector (Pauw (2011b))

on this noise is created by running a darkcurrent measurement. This entails a measurement of
the detector signal without any X-rays (Barna et al. (1999)). In recent years, the development of
new detectors (Eikenberry et al. (2003)) limit the aforementioned problems and state-of-the-art
facilities ensure that any remaining issues are solved.

Transmission corrections Every sample absorbs a part of the radiation. This energy is trans-
formed into an array of different forms of energy (e.g. fluorescence radiation or heat). Fluorescence
radiation is the result of the dislodging of an electron by the incoming radiation, absorbing the
photon and the subsequent rearranging of electrons to restore its original configuration (Lakowicz
(2013)). This rearrangement releases energy in a different wavelength than the incident radia-
tion. X-ray absorption is omnipresent, but is more efficient at the aptly named “absorption edges”
(Kvick (1999)). These occur when the energy of the incoming photon approaches the energy of
an electron in the outermost shell. This is dependent on the atomic species of the sample and
its temperature. A calibration sample provides a solution to many of the aforementioned issues
(Dreiss et al. (2006)). An intensity correction can be performed by measuring a sample from
which the scattering in absolute intensities is known. This comparison yields, through a least-
squares fit or linear regression, a calibration factor for the used detector and is used for subsequent
measurements.

Angle corrections The detector itself is a flat surface with uniform pixels counting photons.
Due to the measurement of data over a solid angle of an imagined sphere, not every pixels collects
data over the same solid angle of this sphere. The amount of pixels covered by one unit angle
differs depending on the distance from the point of normal incidence (Bösecke and Diat (1997)) As
illustrated in Figure 2.19). A geometric correction is necessary for the different number of pixels
covered by a single unit angle. (Bösecke and Diat (1997)). This and other geometric distortions
has been largely solved by the PILATUS SAXS (Eikenberry et al. (2003)).
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2.4.8 Reciprocal space ’q’

Scattering angle needs to be defined in an adequate way to conceptualize a synchrotron experiment
and to process the data. This is done in reciprocal space, identical to DLS. SAXS data reduction is
only possible with a definition of small angle scattering angle (q) that is independent of wavelength
(Pauw (2011b)).

Figure 2.20: Bragg’s law displaying the relationship between distance d and incoming radiation. Note that
Bragg’s law is using scalars, whereas X-rays should be represented by vectors

q =
4π sin Θ

λ
(2.26)

λ = 2d sin Θ (2.27)

q =
2π

d
→| q |=| kj − ki | (2.28)

It is preferable to work in reciprocal space, as this removes the assumption that that the atoms
are in in parallel planes, for further reading see the Laue method (Amorós (2012)). Consequently,
Θ is half the scattering angle (originating from diffraction defining the full scattering angle as 2Θ)
and divided by the wavelength (λ) of the beam. This gives ’q’ the unit of x−1, where ’x’ is the
chosen length unit. The chosen ’q’ is a direct result of the particle size that is targeted. This
is a remnant of the fact that the SAXS detector can only measure in a limited angular region.
Targeted particle size (r) needs to be decided beforehand, covering a maximum of two orders of
magnitude. This can be transferred to q-space by (q∆) by (Pauw (2011b)):

q∆ =
π

R
(2.29)

A spherical particle with radius r gives a scattering pattern with a specific oscillation (∆q). To
understand this, imagine that the target is a hypothetical particle with a size of 1 nm. The
periodicity of the scattering oscillations is then q∆ = π

1∗10−7 . As previously stated, SAXS has a
range of two orders of magnitude. This yields a q range of π ∗ 10−6 ≤ q ≤ π ∗ 10−8. If the sample
is polydisperse, ’q’ should be skewed towards the larger particles (Pauw (2011a)).

39



2.4.9 Determining wavelength

The chosen wavelength has far reaching consequences for the quality of the data collected. The
wavelength affects the penetration depth, sample to detector distance and the tolerance of colli-
mation (Pauw (2011a)). Higher wavelengths, being lower energy, have reduced penetration depth,
high detector efficiency, shorter sample-to-detector distance and higher collimation tolerance. The
reduced penetration depth can be an issue, especially in samples with high concentrations or a
strong absorption coefficient. In general, absorption should be less than 30% of the incoming radi-
ation to ensure a good signal-to-noise ratio. This is the upper boundary for the chosen wavelength.
The lower limit of the wavelength is often defined by limitations in detector-to-sample distance,
leading to longer collimation, increasing the amount of parallel beams and thus photon loss (Pauw
(2011b)).

2.4.10 Interpreting the Data

Figure 2.21: Three distinct regions of a SAXS profile with indication of the information that can be
extracted, taken from (Boldon, Lauren et al 2015)

The Guinier, Fourier and Porod regions can respectively be used to extract information on the
gyration radius, the form factor or particle size and on the surface to volume ratio (Figure 2.21).
Within this study, a strong focus exists on the Guinier region.

When particle shape is assumed, scattering amplitude difference can be defined by the following
Fourier transform:

A(q) = −r0

∫ ∫ ∫
V

ρ(r)exp(iqr)dV (2.30)

where A(q) are the individual waves scattered by the electrons, r0 is the Thompson scattering
length, V is the measured volume, r is the location of the scattering centre, i is the intensity and ρ
is the continuously changing electron cloud density. Note that A(q) is the sum of all rays scattered
by electrons, but due to the continuously changing electron cloud density, a Fourier transform
needs to be applied (Pauw (2011a)). The measured intensity is equal to the squared absolute
value of the amplitude A(q). This results in a square dependency of intensity on the volume of
the particles in the measured volume (Pauw (2011a)).
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2.4.11 Data post processing

The phase data of the Fourier transformation is lost, as only intensity is measured. The molecular
mass can however be extracted from the invariant through the following generalized equation:

Qinv =

∫ ∞
0

q2I(q)dq (2.31)

The invariant is unchanged by the transformation and is calculated over the q-range. Further data
processing was performed in a parallel Crystal Clear project (A. Baken et al., in prep.).

2.5 Scanning Electron Microscope

2.5.1 Theoretical basis

Visual information is gathered by the SEM through a focused beam of electrons interacting with a
conductive layer on the sample. The interaction between the sample and the beam causes repeated
random scattering (elastic and inelastic) and absorption. This leads to a large loss in energy from
the original beam. This lost energy is transferred to high-energy electrons by elastic scattering
(keeping the energy of the original electron beam) and to low energy electrons by inelastic scattering
and electromagnetic radiation. These can all be harnessed to gather information on the sample.
The most conventional technique is measuring the low-energy secondary electrons (Energy < 50
eV). Due to their low energy, a focussing and accelerating stage is needed in order to excite the
sensor. Interactions between angles and the incoming beam cause higher amounts of secondary
electrons to escape at the edges of 3D-shapes making them appear brighter. This causes them to
appear brighter than flat surfaces, creating well defined objects in a 3D-space. The probing depth
of the beam depends on the energy of the incoming beam, the atomic number of the specimen and
its density.
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3

Materials and Method

This section is subdivided into 3 separate parts. First, the chosen salts are introduced and the
theoretical calculations are explained, including the substantiation for the chosen chemical param-
eters. A section is dedicated to explaining the automation efforts for deriving the correct growth
solution in Python. Secondly, the experimental setup and procedure is expounded. Lastly, a
section is dedicated to the used method of the SEM and the Synchrotron experiments.

3.1 The salts and stock solutions

The stock solutions used to synthesise the growth solutions were produced from five different salts.
Barium nitrate (Ba(NO3)2), sodium sulphate (Na2SO4), sodium nitrate (NaNO3), Hydrochloric
acid (HCl) and sodium hydroxide (NaOH) (Table 3.1; 3.1). The stock solutions were created by
dissolving the appropriate amount of salt in 1 litre to create stock solutions between 0.25M and
1M which were subsequently diluted 10 and 100 times to create a range of stock solutions in order
to ensure large volumes could be pipetted to increase accuracy. The stock solution were unfiltered,
they were only filtered before injection into the cuvettes.

Salts Weight dissolved (g) Stock solution (M) Diluted stock Solution (M)
NaNO3 42.498 0.5 0.05
Ba(NO3)2 65.336 0.25 0.025
Na2SO4 71.023 0.5 0.05

Acid and Base Concentration (M) Stock solution (M) Diluted stock Solution (M)
HCl 10.172 0.5 -
NaOH 4 0.5 0.010

3.1.1 Theoretical considerations

For the synthesis of growth solutions, theoretical calculations were made in Visual MINTEQ Soft-
ware – a free equilibrium speciation model - version 3.1 (Gustafsson (2006)). These calculations
were done to obtain the desired ionic strength, pH, saturation index and stoichiometry in a solution
that could be practically achieved with stock solutions. (Table: 3.1, 3.2, 3.3 and 3.4).
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Chemical parameters

Ionic strength All experiments were performed at an ionic strength of 0.2. This specific ionic
strength was chosen due to four main arguments. The most important being to keep ionic strength
constant throughout the batch experiment by limiting the effects of formation or dissolution of
barite. Secondly, earlier experiments affiliated with the Crystal Clear project were also performed
at this ionic strength (Sergej et al., in prep). Additionally, other earlier experiments involved with
quantifying nucleation kinetics were also conducted under comparable circumstances (Ogino et al.
(1987)). Thirdly, it facilitated the use of the Davies equation (Davies (1938)) to calculate ionic
activity. Lastly, it suppressed the electric double layer and made the size measurements more
accurate (Section 2.2).

Ionic strength is calculated through Davies equation:

log(a) = A ∗ Z1 ∗ Z2 ∗ (

√
I

1 +
√
I
− 0.30I) (3.1)

where a is the molal activity of the coefficient of the ion [-], A is 1.82 ∗ 106 ∗ (εT )
−3
2 [M−0.5], Z1 &

Z2 are the charges of the electrolytes [-], ε is the relative permittivity of the medium with respect
to space [-] and T is the absolute temperature [K]
The term 0.30I approaches 0 as ionic strength drops, reducing the equation to the original Debye-
Hückel (Davies et al. (1962)). Limitation for this equation arose when electrolytes had charges
different from +1 and -1 or when the formation of ion pairs occured. The Davies equation had a
strong precedent in hydrochemistry, partly due to its wide applicability to natural systems and its
mathematical simplicity (Eriksson (1985))

Atmosphere and temperature All experiments were done in contact with the atmosphere,
with a constant atmospheric pressure (pCO2) of 0.00038 atm and a temperature of 20 ◦C. As
this research was performed partly to better understand surface water chemistry, these parameters
where chosen, as they were easily translatable to natural systems. The exothermic effects of the
barite growth process (Pina et al. (1998); Kowacz et al. (2010)) were counteracted by externally
controlling the temperature with the Malvern Zetasizer Ultra.

pH The effects of pH on barite nucleation were limited by choosing pH 7 (Ruiz-Agudo et al.
(2015)). pH 7 has the least effect on nucleation and structuring of the solvent by hydrogen and
hydroxide ions was limited.

Obtaining the correct saturation index and proving reproducibility

The time frame of barite nucleation under the specified experimental conditions was underexam-
ined. In order to perform sufficient experiments within the given time frame, bulk measurements
(raq=1) were performed for a wide range of supersaturations, ranging from Ω = 30 to Ω = 1000.
The aim was to find saturation indices with verifiable nucleation in 4 hours. This was done in
conjuncture with additional measurements done in the lab for barite nucleation with NaCl as
a background electrolyte. Each of these measurements was repeated three times to qualify the
stochastic nature of the nucleation process and show the reliability of the measurements. A su-
persaturation of Ω = 100 and Ω = 500 were chosen as most suitable. Additional experiments were
also performed for Ω = 1000 and Ω = 5000 to visualize the nucleation.
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3.1.2 Automation efforts

As additional research into nucleation of different minerals was expected in the Crystal Clear
project. Considerable efforts were made to automatise the theoretical calculations with Python
in conjuncture with Sergio Ruiz-Hernandez and Janou Koskamp (Code A). It allowed to user to
input chemical boundary conditions (IS, Raq, Ω and pH), with a allowed margin of error and it
automatically calculated the ion concentrations necessary.

3.1.3 Experimental Set-up

Particle sizes were measured were done using the Zetasizer Ultra (DLS) and the chemical param-
eters of the batch-experiments were measured using a pH (SensoLyt 900-P) and an ec-electrode
(TetraCon 925-P). Measurements with a barium electrode (DX337-Ba ISE half-cell electrode) were
attempted, but it proved to be unreliable due to the background electrolyte interference with the
barium electrode.

Figure 3.1: Set-up for the electrode measurements, desirable for future DLS measurements at lower ionic
strength

Figure 3.2: Schematic overview of the Malvern Zetasizer Ultra sample preparation workflow

For all growth solutions, ultra pure water (18 M Ohm) was the solvent. Growth solution
one (GS1) always contained solely the dissolved Ba(NO3)2. Growth solution (GS2) consisted of
NaNO3, Na2SO4 and NaOH (Table: 3.1, 3.2, 3.3 and 3.4).

GS1 was always pipetted into the cuvette first and GS2 was pipetted into the middle of the
cuvette from 1 cm elevation. This was done meticulously in order to keep the effect of local very
high supersaturation as constant as possible between different runs and samples. The samples
were flipped 3 times to achieve a homogeneous sample and subsequently transported upright and
quickly into the Zetaziser to prevent any potential additional shaking (introducing random kinetic
energy) and additional nucleation outside the measuring window. Syringes were reused, but were
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specific to one growth solution. They were washed three times after use with deionised water
and another three times prior to reuse. Filters, 0.2 µm, (As described in step 1 Figure 3.2) were
singular use, as were the cuvettes.

Measuring angle The measurements were performed under three distinct angles. Non-Invasive
Backscatter (NIBS 17◦), sidescatter (90◦) and forward scatter (13◦) (Figure 3.3). A theoretical
explanation can be found in Section 2.2. All three angles, plus MADLS were used. This was due to
the exploratory nature of the research. Suitability of all three angles and the MADLS algorithm was
tested for potentially quickly evolving systems. Subsequently, rapid forwardscatter measurements
were done (Appendices A.11 and A.12), because this provided a higher time resolution. Forward
scatter was chosen, because larger particles were more strongly expressed and the multi-angle
measurements revealed that back-and-side scatter showed mostly random patterns in the sub-
10nm sizerange, not providing any information on potential growth of the larger size fraction.
Heterodyne detection was not considered due to the low amount of material produced and the
highest supersaturation occurring the middle of the cuvette, Equation 2.18 was employed.

Suitability of a sample for MADLS

MADLS was the most accurate DLS method available. Due to the low solubility (0.0002448 g/100
mL at 20◦) of barite, supersaturation became very high even at low concentrations of barium and
sulphate. This caused potential problems due to the small quantity of material made, 30 sub-
runs were of 1.68 seconds were performed to improve statistical validity at low concentrations..
This was not true for measurements of an evolving system such as forming and growing barite
crystals. MADLS was chosen to due its ability to simultaneously record the developments of
different populations in the sample and greatly improving the statistics of a very dilute system.

Figure 3.3: Schematic view of different scattering angles available with the Malvern Zetasizer Ultra. Laser
is HeNe with λ = 632.8

Inversion method As a consequence of the arguments provided in 2.3.2, general purpose mode
was chosen as inversion method for the calculation of particle sizes.
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3.2 SEM

3.2.1 Sample preparation

The samples for the SEM were produced identically to the solutions for the DLS, except that the
growth solutions were not filtered beforehand. The volume prepared was 50ml and it was incubated
at 21.4 C◦ for 3 hours. After incubation, it was filtered through a 0.2 µm (Merck Millipore) filter
and the water was driven out with isopropanol (90%) (Merck Millipore). The filters were dried
for five days at room conditions and protected from dust influences by their protective cover. The
filters were cut to the size of the stubs(Microtonano, SEM pin stub Ø12.7 diameter top, standard
pin, aluminium) and were stuck on a double-sided conductive carbon sticker (Microtonano, EM-Tec
CT12). Because of the non-conductive nature of the target barite crystals, a conductive palladium
layer (8nm) was sputtered on top of the sample. An electron beam at 15 KeV was used and the
size measurements were done directly in the SEM software.

3.3 Synchrotron

The Synchrotron experiments were performed together with the University of Grenoble and all
growth solutions were prepared there beforehand. The initial (t=0) situation was 50mL x 1M
KCl in the 150mL teflon reactor. Subsequently, potassium sulfate (K2SO4) and barium chloride
(BaCL2) were added in varying concentrations during multiple experiments to continuously in-
crease oversaturation (Ω) in the reactor. The 905 metronohm was used as the titrando and was
controlled with Tiamo software. The reactant was continuously stirred at a constant rate of 500
rpm. The titration set-up additionally had an 856 Conductivity Module and two 807 Dosing Units
of 20 mL. A Metrohm optrode and electrode were placed in the reactor vessel. A thermo-stated
liquid cell was used in combination with a peristaltic pump, the sample was kept at 20◦. Tub-
ing was silicon and connections were made with epoxy glue. This sample was irradiated by the
x-ray originating from the optics hutch. This setup ensured that it was possible to follow the
development of particle size distribution and reaction progress simultaneously.

NCD-SWEET beamline The employed beamline had a wavelength range of 0.62 - 1.90 , the
photon energy range was 12 keV, the spot size 100x100 Micrometers x Micrometers (FWHM)
Horizontal x Vertical, the q-range in nm−1 0.02 to 2 nm−1 The flux at the sample position was >
1.51012 ph/s and the bandpass (∆E

E
) 2.710−4 at 10.0 keV.

3.3.1 Potential 2D-nucleation sites and solutions

The potential problem sites for 2D-nucleation were ubiquitous. 2D-nucleation potentially caused
a decrease in Gibbs free energy, which was not thermodynamically involved in the formation of
3D-nuclei. Additionally, it potentially transferred crystals or seeds between experiments. The two
expected problem sites were the stirring bars, due to their hydrodynamic and kinetic environ-
ment, both promoting nucleation and subsequent detachment of crystals and the diameter changes
within the tubing, which provided ample surface irregularities for attachment. Due to increasing
evidence that at high supersaturations with respect to the mineral of interest, homogeneous nucle-
ation becomes dominant (Kügler et al. (2016)), these potential issues were accepted. During the
experiments, great care was taken to avoid cross-contamination between experiments. Therefore
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all reactor vessels, stirring magnets and tubing were cleaned with 10% EDTA for 24 hours before
reuse. They were extensively flushed with UPW water before the subsequent experiment.

3.3.2 Data post processing

The phase data of the Fourier transformation (Glatter (1980)) was lost during the experiments,
as only intensity was measured. The invariant was related to the molecular mass of scattering
particles through the following relationship:

Qinv =

∫ ∞
0

q2I(q)dq (3.2)

For this study, the invariant was calculated over the complete q-range targeted, from lowest to
highest. Induction time of nucleation was measured with the optrode and validated with the
invariant becoming nonzero. Quantitatively, this meant that the data was fitted with a sigmoid
curve and induction time was defined as the time until the curve deviated 1.5% from its starting
value due to density contrast. Averaging multiple time steps was attempted in order to improve
the statistical validity of the data, but was eventually disregarded due to the loss of significant
features in the data. In order to calculate particle size, spherical particles were assumed and
the data was fitted in Python, according to Equation 3.3. Incorporating the sphere form factor
(Guinier et al. (1955)), with the q-range chosen so that the form factor was dependent on intensity
and the structure factor was disregarded as the particles were assumed to be arranged completely
randomly.

I(q, r) = (
4

3
πr3)2 (ρ1 − ρ2)2 3(

sin qr − qr cos qr

(qr)3
)2 (3.3)

where I(q, r) is the intensity, ρ1− ρ2 is the density difference between the particles and the solute,
r is the radius of the assumed spheres. By integrating this formula and multiplying it with a
lognormal distribution of sphere radius r (Deschamps and De Geuser (2011)), the fitting formula
was obtained (Equation 3.4). Lognormal radii distribution is the general case for crystal nucle-
ation (Bergmann and Bill (2008)). Lognormal distribution was normalized to one (Equation 3.5),
resulting the area to be equal to N (particle number density). In Equation 3.5, µ is the mean of the
logarithmic values and s is related to the polydispersity, representing the width of the distribution.

I(q) =

∫ ∞
0

I(q, R)Lognorm(R)dR (3.4)

where:

Lognorm(R) = NR−pexp(−(lnR− lnµ)2

2s2
) (3.5)

In python, Equation 3.4 was applied as an incremental summation over an arbitrary range of r and a
defined range of q. q was defined by the experimental set-up. The equation was subsequently solved
through non-linear least squares. This provided a potential solution for the equation parameters.
Special care was taken, as non linear least squares was heavily biased by the ’initial guessed set of
parameter values’, resulting in a local minimum, which was potentially not the optimal solution
for the fit. The detector had higher accuracy at intermediate q-values then at the extreme values
due to the larger detector area available. Only one dataset was analysed (raq = 10 with a titration
velocity of speed of 0.6 mL/s), due to the large difference between the experimental set-up of the
SAXS experiment and the performed DLS and SEM experiments.
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Figure 3.4: Schematic overview of the experimental setup for the Synchrotron (ALBA) in Cerdanyola del
Vallès

3.4 Substantiation of the chosen methodology

The synergistic approach of DLS, SEM and SAXS was used to create a more complete picture of
barite nucleation and it provided detailed results which allowed for subsequent comparison with
models. Through this, hypothesized mechanisms could be checked. MADLS was the most optimal
technique available which allowed for in-situ measurements of particle sizes during incubation
with adequate statistical validity. Single angle DLS measurements did not suffice due to the high
polydispersity of the sample. Each of these individual DLS runs consisted of 30 subruns that had
been averaged to obtain the data for one time step. The averaging of five individual runs resulted
in minimalization of noise and more accurate results. The SEM allowed for the visualisation of
particles outside the analytical window and insight into the effects of stoichiometry on crystal
shape. This allowed for better interpretation of the size measurements and trends. The SAXS
measurements provided the possibility to track the particle size evolution and to provide a control
on the DLS measurements. The inception of the SAXS experiment was done in conjuction with the
Univeristy of Grenoble and deviating methods (Background ion, experimental set-up, evolution of
supersaturation) led to lowered applicability in this research.
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4

Results

The results presented here were obtained using SEM and DLS batch experiments at Ω = 100 and
Ω = 500 at stoichiometries of raq = 0.01, 0.1, 1, 10 and 100, an ionic strength of 0.2M and pH
6.7 +- 0.2. SAXS experiments were titration experiments performed in flow at 20◦ at the same
stoichiometries, pH and ionic strength. Results are subdivided in four parts. First, an overview
of the formed particles is given through SEM images and size measurements obtained from the
measured SEM particles (Appendix A.1). Secondly, crystal size measurements, taken from MADLS
of the first and last timestep of the incubation. Thirdly, MADLS-intensity evolution through time,
forward-scatter number of particles evolution through time and particle size evolution of sub-10nm
particles. Lastly, SAXS data is provided for raq = 10.

4.1 SEM Results

4.1.1 Particle shape and size variation with varying stoichiometry

Crystal shapes at Ω = 500 The shapes of the crystals formed at Ω = 500 vary with stoichiom-
etry (Figure 4.1 second column). Table 4.1 describes the crystal shapes that were identified. At
raq = 0.01 (Figure 4.1 D) the crystals were all orthorombic with rounded edges and were euhedral.
Crystal A-E on the righthand side of the image had an appendage on its long side. At raq = 0.1
(Figure 4.1 E) the shape variation was higher with orthorombic (A), cubic (B), rhombus (C) and
oval shaped (G) crystals. With 36 % of the crystals euhedral and the rest subhedral. Orthorombic
(A) and cubic (B) crystals were the most abundant (72% of all crystals) and they were euhedral.
The crystals were less elongated than at raq = 0.01 (Figure 4.1 D). With a stoichiometry of raq = 1
(Figure 4.1 F), the crystals were all orthorombic (A). At raq = 10 (Figure 4.1 G), polyhedrons (I)
were the most common crystal shape assemblage (30 %) and they were generally anhedral. The
variety at raq = 10 was higher than at other stoichiometries with 22 unique shapes, many qualified
as undefined (E) (Figure 4.1 G). At raq = 100 (Figure 4.1 H), the crystals were all orthorombic (A)
with small deviations and were euhedral. Due to the portrusion on the Z-axis, the whole crystal
had a pillowshape.

Crystal shapes at Ω = 100 Strong variation in crystal shape was observed at Ω = 100 (Figure
4.1) between different stoichiometries. At raq = 0.1, no collections of crystals were present, only
singular euhedral crystals with an elongated hexagonal shape (D). At raq = 1, the shape diversity
was much higher (14 unique shapes), both euhedral and subhedral crystals were present. The
most dominant shapes were orthorombic (A), rhombus (C) and polyhedrons (I) (Figure 4.1). At
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raq = 10, the crystals were euhedral and were elongated. The assemblage consisted mostly of
needle shaped (F) crystals and orthorombic (A) crystals. More crystals were present at raq = 10
than at raq = 0.1, but less than at raq = 1.

Crystal faces At Ω = 100 and raq = 0.1 (Figure 4.1 A) the (001) surface was clearly visible.
The length of the crystal, along the b-axis was 3.2 µm and along the a-axis it was 1.8, leading to a
ratio of 1.8. The (100) surface was 1um and (210) surface was 1.2µm long. At raq = 1 (Figure 4.1
B) the (210) surface was not visible in many crystals. The (001) surface was visible, bound by the
(100) surface. The ratio between the surface area of these faces was variable at this stoichiometry.
In Figure 4.1 C, the (100) or the (210) surface was often not expressed or could not be identified
in the images, the crystals were either rhomboidal or elongated rods. At Ω = 500 and raq = 0.01,
Figure 4.1 D, the crystal faces were unrecognizable. The crystals were longer in the b-axis then
a-axis (Figure in introduction). At raq = 0.1 (Figure 4.1 E), the (100) surface was not observed
in most crystals. This differs from raq = 1, where the (210) surface is not visible and the (001)
surface is bound by the (100) surface. At raq = 10, the crystal faces are not clearly definable, but
the (001) surface was bound more often by the (210) surface then the (100) surface. At raq = 100,
a line is visible along the middle of the crystals. The (210) surface was not observed in the SEM
imagery. At the sides of the crystal, a depression occurs in the middle.

Size information Different (average) sizes were observed at different stoichiometries. At raq = 1
and Ω = 500 the crystals were much larger than at raq 6= 1 (Figure 4.2). At raq = 0.1 the crystals
were smallest (318666 nm2, at raq = 0.01 they were approximately twice as large (762300 nm2).
Increasing the deviation from raq = 1 did not lead to increasingly small crystals. At Ω = 100, the
largest particles were observed at raq = 10 (Figure 4.2). They were still significantly smaller than
the largest particles at Ω = 500 (40% smaller). At raq = 1 and Ω = 100, the particles were smaller
than at the same stoichiometry at Ω = 500 (30x smaller).

Table 4.1: Shape specification of crystals

Shapes
Orthorombic: A Fig:4.1 H Cubic: B Fig:4.1 B Rhombus: C Fig:4.1 B

Elongated Hexagon: D Fig:4.1 A Undefined: E Fig:4.1 E Needle shaped: F Fig:4.1 C
Oval: G Fig:4.1 E Polyhedron : I Fig:4.1 G
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Figure 4.1: SEM results of Omega = 100 and 500 over the complete measured raq range
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Figure 4.2: Average sizes of crystal size measurements based on Figure A.1

4.2 DLS results

All presented graphs are an average of five individual runs. The standard deviation, assuming a
Gaussian distribution, is given in Appendix A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10.

4.2.1 Crystal population over time

Limited size differences in the most dominantly scattering particles were observed between the first
measurement and the last measurement of the incubation (Figure 4.3). All size measurements were
between 375 and 425nm of equivalent sphere at all stoichiometries except raq = 10 at timestep 1.
At this stoichiometry the initial measurement was of particles of 225 nm.

4.2.2 MADLS Results for Ω = 500

A distinct intensity peak between 370 and 430 nm was observed at all stoichiometries (Figure 4.4 K-
O). This peak was continuously observed throughout the whole incubation. Varying stoichiometry
did no affect its width or decrease its continuity except at raq = 100, where particles of this sizeclass
were less frequently observed. When stoichiometry deviated from raq = 1, the relative intensity
decreased, on average, of light scattered by particles in this size range throughout the incubation
period. This effect was most pronounced at both raq = 0.01 and raq = 100 (Figure 4.4 K and O).
The intensity of these peaks fluctuated between 10% and 35% of total scattered intensity at all
stoichiometries. Particles between 214 and 300 nm were very rare at all stoichiometries and between
10 and 200 nm, particles were present at all stoichiometries and times during the experiments. The
scattering intensity was largest between 1 and 10 nm at all stoichiometries. The largest scattering
intensity was measured between 2 and 5nm in the sub-10nm range. The scattering intensity of
particles in the ≤ 10nm was higher at raq = 100 (Figure 4.4 O) than at the other stoichiometries
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Figure 4.3: Crystal size with the highest scattering intensity in the MADLs measurement at the beginning
and end of the incubation period. Where TS1 is the initial measurement and End the final measurement
of the incubation.

(Figure 4.4 K-N). Particles larger than 10nm, excluding 370 - 430 nm, scattered less light than
particles within the 2-5 nm range. Some particles below 1nm were present at all stoichiometries
(Figure 4.4 K-O), they were measured at random intervals. Sometimes particles larger than 430
nm were observed. In general, these particles varied in size with time and stoichiometry. After
4500 seconds (75 minutes), there was an increase of particles between 4000 and 5000 nm at all
stoichiometries. At both raq = 0.1 (Figure 4.4 L) and raq = 10 (Figure 4.4 N) the largest size
fraction was between 2000 and 2300 nm. At raq = 0.01 and raq = 100 (Figure 4.4 A and E), this
population also existed, but to a lesser extent. The standard deviation (Figure A.3, A.4) was very
large in all runs and encompassed all observed trends.

4.2.3 Forward Scatter Results Ω = 500

Measurements taken in the forward scattering angle are part of the MADLS results but are also
presented separately here (Figure 4.4 P-T). A conversion to percentage of number of particles
was performed in contrast to the MADLS plots (Figure 4.4 P-T), where intensity was plotted. A
continuous population of particle sizes was visible between 30 and 100 nm at all stochiometries.
Higher numbers of particles with this size range was observed at raq = 1 (Figure 4.4 R) than at
other raq values. When deviating from raq = 1 (Figure 4.4 P,Q,S and T), the scattered intensity
and therefore number of particles of this size, relative to other particles, decreased, especially
at raq > 1 (Figure 4.4 S and T). At these stoichiometries, there was an increased number of
measurements where this size fraction was not observed. At all stoichiometries a second size
fraction was observed besides 30-100 nm that was relatively constant. At raq = 0.01 (Figure 4.4
P), between 0 and 4500 seconds (0 and 75 minutes), a size fraction between 300 and 600 nm was
observed. This population had a slightly lower relative number of particles than the population
between 30 and 100 nm. After 4500 seconds (75 minutes) this fraction slowly increased in size up to
1000 nm. Sporadically, particles of around 8000 nm were measured; these occurred more towards
the end of the incubation period. The size increase of the 300 to 600 nm population was unique for
raq = 0.01 at Ω = 500 (Figure 4.4 P). At raq = 0.1 (Figure 4.4 Q) this population was around 800
nm at the first measurement (Time 0) and slightly increased in size until 4500 seconds. After 6000
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seconds, this population was temporarily underrepresented. The largest fraction, around 8000
nm, was present more than at raq = 0.01 (Figure 4.4 P). At raq = 1 (Figure 4.4 R), a population
centered around 800 nm was also present at the start of the experiment and existed throughout the
incubation period. During the incubation, its size slowly decreased to 200 nm. After 3500 seconds
(58 minutes), larger particles of around 8000nm were measured. This was very similar to raq = 10
(Figure 4.4 S). At raq = 100, the population between 100-1000nm (Figure 4.4 T) was very stable
and increased from 400 nm to 800 nm. At all measured stoichiometries, except raq = 100 (Figure
4.4 T), there was a population between 0.55 and 0.74 nm. This population was represented more
strongly at more extreme stoichiometries. All compound graphs had a large standard deviation
(Figure A.5, A.6), enclosing all described data.

4.2.4 MADLS Results Ω = 100

At all stochiometries except raq = 100 (Figure 4.4 A-E), there was a clear population centered
around 400nm (380 - 420 nm). This population changed very little through time at all tested sto-
ichiometries. Most scattering occurred due to particles between 1 and 10nm at all stoichiometries
with the highest scattering intensity produced by particles between 3 and 6 nm. Above 10nm
till 150nm, the relative scattering intensity of particles decreased the larger particles were. The
scattering intensity between 150 and 300 nm was very limited at all stoichiometries. A second, less
abundant population between 2100 and 2300 nm was present in all samples. It was most abundant
at raq = 1 (Figure 4.4 C) and raq = 10 (Figure 4.4 D). At raq = 0.1 (Figure 4.4 B) and raq = 10
(Figure 4.4 D), even larger particles were sporadically present, between 4300 and 4900 nm. These
were absent at other stoichiometries, except for two instances at raq = 0.01 (Figure 4.4 E). The
difference between individual runs was very high (Figure A.7, A.8).

4.2.5 Forward scatter results Ω = 100

The scattering patterns at stoichiometries raq = 0.01 and raq = 0.1 were very similar (Figure 4.4 F
and J), both having the largest percentage of particles around 60nm and a second group at 4000nm.
Additionally, sub-nanometer particles were measured at both stochiometries. The size variety was
largest at raq = 0.01 (Figure 4.4 F) during the first 1500 seconds (25 minutes) of development and
between 7500 and 10000 seconds (125 - 167 minutes). The largest size fraction appeared after 1000
seconds (17 minutes). At raq = 0.1 (Figure 4.4 G), particles between 100 and 1000 nm appeared and
disappear throughout the measured time period. The 60 nm population increased in size diversity
and absolute size after 7300 seconds (122 minutes). The largest population was continuously
present throughout the experiment. At raq = 1 (Figure 4.4 H) a similar population was observed
with a size of 60 nm in the initial stages of the experiment, until 3500 seconds (58 minutes).
Subsequently, the diversity and absolute size was generally increasing. There was a strong signal
of sub-nm particles. Sporadically, a population of particles centered around 5500nm was observed.
At raq = 10 (Figure 4.4 I), the largest diversity in particles sizes was measured. Its main population
was centered around 380 nm. The size fractions present at the other stoichiometries were observed
at raq = 10 as well. The largest size fraction, however, covered a larger size range than at the
other stoichiometries. The fraction between 60 and 90 nm was most abundant between 3000 and
7500 seconds (50 - 125 minutes), besides being present at the beginning of the incubation. The
sub-100 nm fraction was measured throughout most of the sample. At raq = 100 (Figure 4.4 J),
the scattering was dominated by the largest size fraction, between 3500 and 6300 nm, skewed
towards the upper end of the fraction. Particles with a size between 300 and 450 nm became
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more abundant and smaller throughout the experiment. Occasionally, particles of approximately
60 nm were measured. Particles of sub-nanometer were measured, similar to the measurement at
other stoichiometries. The missing data after 9000 seconds (Figure 4.4 A, B, C, N and O) was
the result of excessively large time differences between the measuring moments of individual runs.
By integrating the time steps of the individual measurements, a gap was created. All experiments
had a large spread of data points and large variability between runs (Figure A.9, A.10).
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Figure 4.4: Compound MADLS results of Ω = 100 and Ω = 500 over the full measured raq range
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4.2.6 Sub-10nm particles

Figure 4.5 A-J and Figure 4.6 A-J show the development of the 2 smallest populations during the
first 3000 seconds (50 minutes) at different stoichiometries. A linear regression is given in red and
the confidence interval of this regression in green. The smallest size fraction at raq = 0.01 (Figure
4.5 A and Figure 4.6 A) decreased in size over the course of the experiment at both stoichiometries.
In terms of absolute size it was bigger at Ω = 100. The larger size fraction decreased in size at
Ω = 100 (Figure 4.5 F) and increased in size at Ω = 500 (Figure 4.6 F). It was smaller (between 1.5
and 2nm) than at Ω = 100. The small size fraction at a stoichiometry of raq = 0.1 (Figure 4.5 B
and Figure 4.6 B) showed a decreasing linear trend at both stoichiometries. The linear regression
did however not fit the data very well, it displayed a large margin of error. In terms of absolute
size, the particles at Ω = 500 were slightly larger (0.6nm larger). The larger size fraction at this
stoichiometry showed very similar behaviour for both Ω′s (Figure 4.5 G and Figure 4.6 G). Both
slightly increased in size (0.3 nm and 0.6nm respectively). The particles were slightly larger at
Ω = 500 (0.4nm). At raq = 1, there was a slight downward trend at Ω = 100 (Figure 4.5 C) and
a clear downward trend at Ω = 500 (Figure 4.6 C). After 3000 seconds (60 minutes) the particles
were approximately the same size (1.5nm). At the start of the incubation, the particles at Ω = 500
were larger (0.76nm). The larger size fraction at raq = 1 did also decrease in size over time at
both Ω′s. 0.25nm at Ω = 100 (Figure 4.5 H) and 2nm at Ω = 500 (Figure 4.6 H). The larger
size fraction was 2.65nm bigger at the start of the incubation (5nm versus 2.35nm). The smaller
size fraction at raq = 10 was very similar in size at both Ω′s (1.5nm) (Figure 4.5 D and Figure
4.6 D) and did not show a clear increase or decrease in size. The spread in sizes was also similar.
The larger sizes fraction did grow at both stoichiometries (Figure 4.5 I and Figure 4.6 I) and was
more pronounced at Ω = 500. With an increase in size of 2nm over 3000 seconds and 0.25 nm
at Ω = 100. The size of this this fraction was very similar at both Ω′s (2.3 nm). At Ω = 100
and raq = 100 (Figure 4.5 E), the spread of particle sizes was very large and no clear trend was
discernible. The particles were slightly smaller than at Ω = 500 (Figure 4.6 E) (0.15nm). At
Ω = 500 the particle size evolution did not show a clear trend and the particles were between 1.05
and 2.12 nm large. The larger size fraction at raq = 100 (Figure 4.5 J and Figure 4.6 J), there was
no clear linear trend. The particles were, on average, larger (1.1 nm) at Ω = 500 than at Ω = 100.
The smaller and larger size fraction were generally bigger at Ω = 500, with the notable exception
of raq = 0.01, where it was inverse for the larger fraction and raq = 10. Where the smaller size
fraction was equally sized at both Ω′s. At both Ω′s, increasing concentrations of barium led to,
on average, smaller particles in both size fractions. The effect was however more strongly present
in the smaller fraction.
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Figure 4.5: Evolution of sub-10nm particles over time at Ω = 100 and all measured stoichiometries
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Figure 4.6: Evolution of sub-10nm particles over time at Ω = 500 and all measured stoichiometries
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4.3 SAXS data

The data of the raq = 10 titration SAXS experiment is presented here. The rest of the data can
be accessed in Baken (2020). The data presented here is subdivided into 3 separate parts. Firstly,
Figure 4.8 A, a Guinier plot (I(q) vs q−1), with all the processed time steps. Secondly, the invariant
curve for this dataset is plotted in Figure 4.8 B, validated with SAXS and optrode data. Lastly,
Figure 4.8 C-F are the curves fitted through measured data for a limited q-range (I(q) vs q−1

graphs). The fitted time steps were chosen to coincide with a deviation of 1.5% of the invariant
in regard to its background value. This value was reached after 66 minutes and coincides with the
first measured frames (Figure 4.8 C).

(a) Multiplot of SAXS experiment raq = 10 (b) Invariant of SAXS experiment raq = 10

Figure 4.8: NLLS fitted SAXS data of timestep 66 till 72 at raq = 10 and a titration speed of 0.6 ml/s, dt
= 2 min
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The particle number density N was relatively stable between frame 66 and 68 (5.04 to 5.37) and
rapidly decreasing after, reaching a value of 0.33. The mean of the logarithmic values µ steadily
decreased through time (59.7 to 39). The width of the size distribution s increased with time and
the electron scattering length (η) increased.
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5

Discussion

The discussion is subdivided into five segments. The first section describes how the data can
be viewed in order to be relevant for the research questions. These research questions will be
subsequently discussed in order, exploring the processes causing variation in particle size due to
stoichiometry, the relationship between critical nucleus size and stoichiometry and the change
in crystal morphology due to varying stoichiometry . Subsequently, recommendations for future
research into crystal nucleation are given and the societal relevance of the research is provided.
Lastly, a section is dedicated to the limitations of the study.

5.1 Reducing the DLS data

To distill useful and factual information from the DLS graphs, a number of data points need to
be discussed first. The sub-nm particles are not the goal of this research. This population is most
likely a combination of different ion-pairs. This derives from the fact that it is present in every
experiment when no other particles are measured and we know that these pairs form and dissolve
continuously (Denisov et al. (2003)). Proper differentiation can not be made with high confidence
between any kind of ion pair at the sub-nm scale due to the large mix and the rapidly changing
ion-pair combinations. Additionally, they are close to the minimum size detection limit of the
Zetasizer Ultra. The effect of different stoichiometry on particle size evolution can not be seen
separately from the effects of different amounts of background salts at the sub-nm scale. With
stoichiometry, the total concentrations of background salts varies, and this will be part of the
variability seen in peak intensity at the sub-nm level. More importantly, since the critical nucleus
size is generally above 1 nm (De Yoreo and Vekilov (2003)), the population observed below 1 nm
can be disregarded in further discussion.
It is vital to note that the MADLS plots are all relative intensity plots whereas the forward scatter
plots are number of particles. When larger particles appear or become more numerous, this will
decrease the relative intensity of the peaks created by smaller particles, while they may not be
decreasing in numbers. So discussing variability in intensity in the MADLS plots should not be
disconnected from changes in the other peaks in the same MADLS plot. Evaluating both the
MADLS data and the forward scattering data is done in order to highlight different populations.
The MADLS plots are used to gain insight into the smaller size populations whereas the forward
scatter plots highlight the larger populations. The calculation to number was made in order to
show the full range of particle sizes in the forward scattering plots (otherwise, the high scattering
intensity of the largest particles obscures the other particles). Caution should be exercised when
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discussing particle sizes that are measured infrequently. Due to the stochastic nature of the mea-
sured particles (Section 5.7.1) and the complex behaviour of relative scattering intensity over the
particle size range investigated, it is impossible to differentiate between particles that have recently
formed and particles that are there continuously or for longer periods, but in too low numbers to
result in detectable scattering. For the same reason, the fact that they are not measured at a
different stoichiometry does not ensure their absence: they might simply not be measured due
to their low abundance.Therefore, only particle sizes that are measured consistently for at least
12 minutes (3 timesteps for MADLS) and trends within them can be discussed adequately and
compared between measurements.
The effects of shape on the size measurement (Section 2.2) is a concern for the DLS measurements.
Growth or dissolution on needle shaped crystals (Figure 4.1 C), is not recorded accurately. Growth
in the crystals preferred direction, along the length of the needle, will increase the measured size
as this influences the translational diffusion coefficient (Equation 2.10). An increase in width, due
to for example 2D-nucleation or growth on the (100) surface, will not be recorded equally because
the effect on the translational diffusion coefficient is very limited. At raq > 1 and Ω = 100 (Figure
4.1 C), particles are more elongated than at Ω = 500. Making comparisons between sizes and
growth rates more inaccurate. Due to this, a population calculated to have an equivalent sphere
radius of 380nm belongs to the same populations as another particle measured at 430 nm. They
are likely similar in terms of volume.

5.2 Processes causing variations in particle size

At Ω = 100 and Ω = 500 (MADLS) the dominant crystal size is centered around 400nm for all
stoichiometries, except at raq = 100 at Ω = 100. At extreme stoichiometries, depletion of one
specific ion is more likely as the concentration of one ion will be very low. Over the course of the
experiment, the concentration of the limited ion will continue to decrease. Potentially even more
rapidly than the abundant ion, due to the abundance of open attachment sites for the depleted ion.
The depletion of this ion also decreases the supersaturation more rapidly than the decrease in the
abundant ion. The 400-nm population exists at Ω = 100 and raq = 100 but is it significantly less
abundant than at Ω = 500. A possible explanation is a method related problem. In the forward
scatter measurements (Figure 4.4 J), the relative intensity of the larger particles is bigger than at
other stoichiometries at Ω = 100. This decreases the relative measured intensity of the smaller size
fractions. This would also explain the difference with Ω = 500 (Figure 4.4 O), as this large size
fraction is not visible in Figure 4.4 T and consequently does not lower the relative intensity of the
400nm populations. Another potential, process related, explanation is the depletion of sulphate
ions at Ω = 100 and raq = 100. Lower barium concentration, Ω = 100 and raq = 0.01, does not
have the same effect. Sulphate does not preferentially form other ion-pairs compared to barite
(Appendix A.13), making it curious that this effect is not similar at both extreme stoichiometries.
The underlying reason could be that the water exchange kinetics (Section 2.1.5) is more rapid for
sulphate than for barium (Kowacz et al. (2007)). This means that effective contact between ions is
more likely and the sulphate is removed from the system more rapidly than barium at the inverse
stoichiometry. If sulphate is incorporated more easily, and sedimentation removes material from
the system, then the higher water exchange frequency around sulphate would explain the more
rapid depletion. Sedimentation at Ω = 100 could happen more quickly than at Ω = 500 because
at higher supersaturation (Ω = 500), 3D-nucleation is favoured, because the energy barrier in
Equation 2.3 is quickly surpassed throughout the solution. This, almost instantaneously, creates a
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large and relatively homogeneous populations, rapidly reducing the material available for growth.
These particles do not settle and thus, do not remove the sulphate from the system. This could
be tested by modifying the pH; lowering the pH at raq = 0.01 should increase the water exchange
frequency around barium (Tomson et al. (2004b)) and, consequently, result in similar populations
as at a stoichiometry of raq = 100 at raq = 0.01 (Kowacz and Putnis (2008)). An alternative
explanation would be that the surface conditions of the sub-100nm particles are more favourable
for larger aggregates at this stoichiometry. Preventing a stable population of 400nm particles by
rapidly forming areas of increased density or true aggregates of a much larger size. This idea is
substantiated by the forward scatter results, which clearly show a much higher relative presence of
very large particles (> 1000nm) at Ω = 100 and raq = 100 than for the other stochiometries and
Ω′s. This preference can most likely not be explained by ZP, as the ionic strength of the solution
is high enough to suppress the ZP to a large degree, and thus limit its effect on the stability of the
system. The most likely explanation for the difference in presence of large particles is a dependency
of growth on solution stoichiometry (Kowacz et al. (2007) Hellevang et al. (2014) Hellevang et al.
(2016)). As the SEM images show increasing size with increasing barium concentrations (Figure
4.1 C).

The largest, in terms of size, population at all stoichiometries, mostly visible in the forward
scattering angle, shows some disparity in size. Quantitative statements regarding the variability in
populations with the largest size at different experimental conditions is difficult for various reasons.
Firstly, the subdivisions of size classes becomes larger towards the higher sizes, decreasing the
accuracy of the measurement. Secondly, sedimentation of larger particles can not be discounted.
In the exemplary correlation diagram (Appendix A.14), signs of sedimentation are observed as
shown in (Figure 2.15). Under the SEM, particles of sufficient size for sedimentation are observed.
It is however clear that at Ω = 100 (Figure 4.4 F-J), the largest particles are much more strongly
represented and larger than at Ω = 500 (Figure 4.4 P-T). This seems counter intuitive, as more
material is available at Ω = 500 than at Ω = 100, thus, more material is technically available
for larger and more large particles. Yet, there is a multitude of possible explanations for this
observation. The occasional appearance of very large particles at Ω = 500 (Figure 4.4 P-T) and
it being likely sedimentation occurs, could mean that at Ω = 500, the largest population rapidly
increases to a size outside the measuring window. This is supported by the SEM images, which show
particles significantly too large to be measured in the DLS (Figure 4.1 H). Consequently, it seems
like the formation of larger particles is inhibited, whereas it potentially increased. As mentioned
previously, the potential preference for 3D-nucleation of a strongly oversaturated solution could
also lead to a rapid loss in crystal building ions. Significantly limiting the potential to grow crystals
near the upper limit of the DLS, as they are either too small or have coalesced into large particles
which sediment.

Deviating from raq = 1 at Ω = 500 makes the measurements of large particles more common
except at the most extreme stoichiometries in the DLS measurements(Figure 4.4 P-T). Previous
work has shown that a stoichiometry where barium activity (Ba2+) exceeds sulphate activity
(SO2−

4 ) leads to increased growth rates (Kowacz et al. (2007)). At higher Ω′s, increasing amounts
of barium are needed for maximum growthrate. This work is however, performed at significantly
lower Ω. The trend that more barium is needed at higher stoichiometries seems to continue in
our data at Ω = 100 with the largest particles measured at raq = 100. At Ω = 500 there could
be a break with this trend, the increased Ω could cause more 3D-nucleation in favour of 2D-
nucleation, preexisting cleavage step advancement and ion-addition growth, as the energy barrier
for 3D-nucleation is surpassed. Making a stoichiometry of raq = 10 more suitable than raq = 100
for crystal growth. The desolvation of specific surface sites can be aided by anion (SO2−

4 ) adhesion

66



(Piana et al. (2006)). This potentially makes the barium (Ba2+) that is present more likely to
grow than form new nucleii. Leading to larger particles. This hypothesis is further supported by
the large size fraction of Figure 4.5 I and Figure 4.6 I. Where raq = 10 has the highest growth
rate. It could also be, that due to the aided desolvation of the surface (Piana et al. (2006)), larger
aggregates are formed. These aggregates can not be recognized on the SEM, as the resolution is
too small but can form an important part of crystal growth (Penn and Soltis (2014)). The SEM
imagery shows the largest particles at raq = 1 (Figure 4.1 F), followed by raq = 100 (Figure 4.1 H)
and raq = 10 (Figure 4.1 G). This disconnect can be explained, as these particles fall outside the
measurement range of the DLS. It could be that the abundance of sulphate leads to preexisting
cleavage step advancement and ion-addition growth whereas abundant barium leads to coalesence
of particles, rapidly exceeding the measurement window.

The forward scattering angle reveals a second population at all stoichiometries between 60 and
100 nm. This population is not as visible in the MADLS plot as its scattering is surpressed by other
populations at different scattering angles. This population is very stable at raq = 1 for Ω = 500,
but slowly increases in size at Ω = 100 and raq = 1. It is interesting to note that the increase in
size seems to be linear on a logarithmic scale under these conditions. This indicates increasingly
rapid growth. During the incubation, the supersaturation, Ω in Equation 2.4 decreases. This
makes 2D-nucleation more prominent while decreasing the amount of 3D-nucleation, as the free
energy barrier for 3D-nucleation is larger than for 2D-nucleation. This growth is also visible to
some extent in raq = 0.01 and raq = 0.1, not clearly in raq = 10 and potentially in raq = 100. At
raq = 100, it can not be decisively stated due to the low number of measurements. That the switch
from 3D-nucleation to 2D-nucleation plays a role is supported by the fact that growth is more
strongly represented at Ω = 100 than at Ω = 500, as the free energy barrier for 3D-nucleation is
less likely to be reached.

Figure 4.3 shows deviating behaviour for the first size measurement at Ω = 100 and raq = 10.
Observing Figure 4.4 N shows that this difference with the other measured parameters is only a
single deviating measurement and does not seem to indicate anything related to different behaviour.

Higher sulphate activity seems to result in preexisting cleavage step advancement and ion-
addition growth, slowly increasing the size of populations (Figure 2.4), whereas higher barium
activity leads to more distinct population sizes with very few occurrences between these distinct
size classes. This means that multiple particles potentially coalesce into a larger particle. This
coalescing is made more likely by the previous mentioned surpression of the ZP. If this is the
case, there is a stoichiometric dependency of growth mode. This is supported by the fact that
the dominant size class is centered around 400 nm at all stoichiometries in MADLS but more
large particles are observed at raq > 1 than at raq < 1 in the forward scatter. Pointing towards
coalesence of particles at Ω = 100 (Hellevang et al. (2014); Hellevang et al. (2016)). The same
effect can be observed to some extent at Ω = 500, with the highest growth rate at raq = 10 (Figure
4.4 S). The effect can be observed much clearer at Ω = 100. The SEM imaging does not provide
sufficient resolution to reject this hypothesis.

5.2.1 Inferences from SAXS

The SAXS data set is not extensive enough to make any quantative statements. Very clear trends
can however be seen for the individual parameters (Figure 4.8). Particle number density stayed
stable around the nucleation and subsequently rapidly decreased after nucleation started occuring,
this may be explained by the formation of a large population of nucleii and subsequent coalescing.
This hypothesis is supported by an increase in size width distribution (s) (Figure 4.8). At the
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moment of nucleation (4.8 C), the particles should all be approximately the same size (critical nu-
cleus size) and consequently have a low (s). Subsequent increase in (s) over all time frames points,
as hypothesised in Section 5.3, to near random coalescing between differently sized particles com-
bined with growth. The electron scattering (η) length arises from the electron density, the increase
observed here is related to an increase in scattering power of the volume. Ordered crystals scatter
more strongly than unordered precursors or higher ion density regions, as proposed in Figure 2.5.
It is expected that after nucleation occurred, surface fractal structures increase (Chattopadhyay
et al. (2005)), pushing X-ray scattering to increasingly small values, outside the q-range of this ex-
periment and thus becoming invisible. This has been documented before for aggregates (Bale and
Schmidt (1984); Keefer and Schaefer (1986)), due to an aggregate being a self repeating structure
formed by a near-random process. The effects of background electrolytes on nucleation has been
extensively documented (Piana et al. (2006); Kowacz et al. (2007);Jones et al. (2008)) hindering
comparisons with the DLS and SEM datasets. Limitations of the SAXS data set additionally arise
from the fact that no comparison can be made between different stoichiometries due to the limited
amount of processed data and the aformentioned difference in background electrolyte (NaNO3 in
the DLS and KCl in the SAXS experiments). Additionally, no standard deviation can be calcu-
lated because only one experiment was explored. Despite the preliminary nature of the presented
SAXS data, it is interesting to see that coalesence of particles likely occurs at raq = 10. This is in
line with the observations made it in the DLS and further supports the hypothesis that growth is
dominated by aggregation and potentially 2D-nucleation at higher stoichiometry (raq > 1). The
SAXS fits are however not completely satisfactory as the fitting was performed with non-linear
least squares instead of the more appropriate Monte Carlo fit.

5.3 Relationship between critical nucleus size and stoi-

chiometry

Although the sub-100nm particles are very polydisperse at all stoichiometries. There is a predom-
inance of particles between 1 and 10nm (Figure 4.4). The two most dominant size fractions within
this sizerange are plotted in Figure 4.5 and 4.6. It is likely that the smallest stable population is
the critical nucleus size. As this is the first almost continuously existing population. As previously
discussed, the critical nucleus size is the smallest size at which it is thermodynamically favourable
to form a new phase. Prior research indicates that generally critical nucleus size falls between 1
and 10 nm (De Yoreo and Vekilov (2003)), which is in line with our findings. Ω is identified as
the main driver of variation in critical nucleus size at constant temperature, pressure and medium.
With higher supersaturation leading to smaller particles. This holds only for r = 0.01 in the
performed experiments. At higher stoichiometries, the critical nucleus size is either higher (Figure
4.6 B) or similar (Figure 4.6 C, D and E). A possible explanation is that the critical nucleus size
at Ω = 500 lies under 1nm and falls outside the analysed size range. These measurements were
however disregarded, as it is impossible to differentiate from ion aggregates. Another alternative
is that the small size fraction at Ω = 100 is still sub-critical. This is supported by the fact that the
size measurements fluctuate strongly, the particles are occasionally not present at all and that the
particle size seems to decrease in some measurements (4.5 A, B and C). During the experiment,
supersaturation decreases and consequently, critical nucleus size should increase. This trend in
particle size might be explained by dissolution of small particles in favour of larger particles, which
are even more thermodynamically stable as their ratio between phase boundary and bulk material
is more beneficial (Equation 2.6).
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The average particle size of the smaller size fraction decreases at higher stoichiometries (Higher
Ba2+). This leads to a very similar pattern as identified in Kowacz et al. (2007), with higher
barium activity provides more favourable conditions for crystal growth. This data indicates that
it also makes the conditions for nucleation more favourable. This could again be a consequence
of the slower water exchange kinetics around barium (Kowacz et al. (2007)). They hypothesize
that the energy barrier for 2D-nucleation can not only be overcome thermodynamically but also
kinetically. These observations suggest that the energy barrier for 3D-nucleation can also be
overcome kinetically.

At Ω = 100 and raq = 0.1 has a smaller average particle size than raq = 1 and raq = 10 for
the small size fraction. This goes against the earlier described trend, of higher barium activity
creating smaller critical nucleii and creating more favourable conditions for growth. A possible
process related explanation is that the supersaturation at Ω = 100 and raq = 0.1 is slightly higher
(Table 3.1). The effect of supersaturation seems to be limited however, as the smaller size fraction
is not smaller at Ω = 500 than at Ω = 100. The size measurements are highly diverse at raq = 0.1
(Figure 4.5 B), and the trend falls withing the margin of error. So the trend may not be invalidated
by this measurement.

The high variety and discontinuity of the particles above the 1-10 nm range can explained by
the random, continuous coagulation of critical particles, with other (sub)critical particles of all
sizes. This also explains the high standard deviation in this size range (Appendix Figures A.7,
A.8, A.3 and A.4), because the combinations of particles are made is different in every run. Short
term coagulation is very likely due to the suppression of the ZP by the high ionic strength (Section
2.3.2).

5.4 Crystal morphology and size in relation to stoichiom-

etry

The main objective of the SEM imagery is to identify the deviation from the equivalent sphere,
to understand how many of these very large particles have formed and to measure the size of the
largest particles in the solution. Due to the low resolution of the images, it is hard to differentiate
precisely between the different crystal faces. There is difference in crystal morphology as a result
of varying stoichiometry. At Ω = 100 and raq = 0.1 (Figure 4.1 A) the length/width ratio is 1.8,
which is close to the ratio of a barite crystal (1.627) (Klein and Hurlbut (1985)). The ratio is
very diverse at raq = 1 (Figure 4.1 B) and the (001) surface is bound by a well developed (100)
surface and a poorly developed (210) face in most crystals. When the (210) face is expressed, see
rhomboidal crystals, the plane angles are on average 104.73, closely following Klein and Hurlbut
(1985). The same effects can be seen at raq = 10. The crystals identified as C (Rhombus) have
a completely suppressed (100) surface and the (001) surface is only bound by the (210) face.
When the (210) face is expressed, the angles vary between 95.6◦ and 105.3◦, approximating the
values cited in literature (Klein and Hurlbut (1985)). The other extreme is also observed, the
elongated crystals (F) (Figure 4.1 C) have grown more strongly along the [010] (b-axis in Figure
2.11), with potential growth on {210} faces bound by {100} surfaces, leading to a ratio of b

a

(Figure 2.11) of 4.8 in the most extreme case, deviating from the expected 1.627 ratio. These
differences in crystals shape are to be expected as it has been extensively reported that differences
in background electrolyte concentration can change growth rates of different crystal planes due
to specific interaction between surface sites and background electrolyte (Risthaus et al. (2001)),
that ions in solution can affect desolvation kinetics of crystal building ions (Kowacz and Putnis
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(2008)) and that growth rates on specific surfaces are modified by the ions in solution Godinho
and Stack (2015)). At Ω = 500, there is no clear expression of the (210) surface at raq = 0.01. The
crystals are elongated along the [010] (b-axis in Figure 2.11). The resolution is very low, but they
seem to be tapered crystals. At raq = 0.1, the (100) face is not observed in most crystals. This
is in contrast with the observations at raq = 1, where the (210) side is often absent. Growth is
mostly expressed along the [010] direction and some growth along the [100] direction. The shape
variety at raq = 10 is much higher. The crystals strongly diverge from an standard barite crystal
(Figure 2.11). At a stoichiometry of raq = 100, there is evidence of twinning along the middle
of the crystal. This could be a sign of incorporation of NO−3 ions during growth into the crystal
lattice which were replaced at a later moment in time (Klassen-Neklyudova (2012)). Growth is
mostly expressed in the [010] direction and some growth in the [100] direction.
If growth kinetics are the underlying reason for changes in morphology, two main factors that can
play a role are the diffusion of crystal building ions to the existing crystal and the incorporation,
related to adsorption and hydration kinetics, of those ions into the existing crystal. At higher
sulphate activities, sulphate assisted desolvation of the barite crystal surface is possible (Piana
et al. (2006)), making the incorporation of ions easier. The desolvation of barium is slower than
that of sulphate potentially resulting in a very rapid incorperation of the abundant sulphate and
a limited incorperation of the sparse barium. At raq = 0.01 and Ω = 500, this maybe leads to very
slow growth, resulting in small crystals and would lead to the polar (100) surface to grow as long
as it consists of sulphate ions and the (010) surface to grow more quickly than the non-polar (210)
surface, which consists of both types of ions. At raq = 0.1 and Ω = 500, the aided desolvation and
the slightly higher abundance of barium leads to slightly quicker growth and to the expression of
the mixed (210) surface in favor of the (100) surface. This leads to pseudo-rhombohedral crystals.
At raq = 1, both ions are similarly likely to be near the surface of the crystal. The incorperation of
sulphate is more rapid than of barium, leading to the expression of the (100) surface, consisting of
sulphate most likely and growth on the (010) face. This is very different at raq = 10. The growth
seems to be almost random. At this stoichiometry, the concentration of sulphate might be too low
to assist in the desolvation of the (010) surface, resulting in decreased growth in that direction
and thus limiting the elongation along the [010] (b-axis in Figure 2.11). At the (001) surface,
barium desolvation might be aided by other anions, promoting a range of growth surfaces, leading
to the high variety in crystal shape. An alternative would be, that due to the low concentration
of sulphate at raq = 10, other anions are incorporated into the crystal lattice. Depending on the
frequency and location of the incorperation, the shape of the final crystal will vary. It has been
shown that background ions can greatly influence crystal growth and morphology, varying from
attaching to preexisting growth islands to start a new growth row or the formation of stabilized
chains, which are less polar than the sulphate and barium bound terraces (Risthaus et al. (2001)).
If the lack of sulphate allows more nitrate to attach to preexisting growth islands, this can alter
the shape of the final crystal and increase the growth rate. Additionally, barium bound terraces
might be bound by stabilized chains before a sulphate was able to bond.
As previously mentioned, there is also the possibility of extensive aggregation at higher barium
activity. Aggregation of paticles with different growth histories might be responsible for the large
morphological variety observed. This aggregation would be in line with the observations from
the DLS, where at Ω = 100 and raq = 100 almost only very large particles were observed in the
forward scatter (Figure 4.4 J). There seems to be some hopper crystal formation, as the middle
of (100) surface has decreased growth compared to the edges of this plane (Figure 4.4 H). This is
likely due to a diffusion limitation of crystal building ions to this surface. Creating a concentration
gradient leading to more rapid growth on the edges. This suggests that barium desolvation is
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not limiting at this stoichiometry as the crystal building ions do not arrive simultaneously at the
surface. This is logical considering the very high stoichiometry and the associated abundance of
barium. On the [001], this is very different. The middle seems to grow more rapidly, possible
due to desolvation being assisted by other ions here (Piana et al. (2006)) or even incorporation
of non-sulphate anions, similar to raq = 10. A potential diffusion limitation is observed at this
resolution at raq = 100, due the formation of hopper crystals, and may play a less dominant role
at less extreme stoichiometries. This might have an influence on the growth of standard faces at
raq = 10. Similar processes to those observed at Ω = 500 might also play a role at Ω = 100. The
neutral {210} surfaces consist of alternating barium and sulphate ions whereas the polar {100}
planes are either completely composed of barium ions or sulphate ions (Risthaus et al. (2001)).
At raq = 0.1, excess sulphate, with rapid desolvation kinetics, potentially increases growth on the
(100) surface. The aided desolvation of barium by sulphate, makes the expression of the mixed
{210} planes possible, leading to a very standard barium crystal. At raq = 1, many different
growth mechanisms seem to occur at this stoichiometry, more akin to what is observed at Ω = 500
and raq = 10. The (210) surface and the (100) surface are never expressed well in the same crystal,
indicating that the early stages of crytal formation create a preference. In general, growth occurs
more on the (010) surface in favour of the (210), possibly due to promotion of barium desolvation
by sulphate, this may be the cause of the greater shape variety. Excess barium has been shown
to lead to more rapid growth rates on the (001) surface Kowacz et al. (2007). The step spreading
velocity at the (210) surface might also increase, increasing its growth rate and thereby elongating
the crystal along the [010] (b-axis in Figure 2.11) as the (210) surface now has the highest growth
rate. As barium is present in excess, it is more likely that the (100) plane is composed of barium
ions, this could limit its growth due to a limitation in desolvation kinetics and thereby lead to
a prismatic crystal with pyramidal points. At the rhomboid crystals, the {100} faces have not
developed. This means the {210} planes can freely grow and it not cause the same elongation
along the [010] (b-axis in Figure 2.11) and instead also increases the width of the crystal.

At both measured Ω′s, higher barium activity leads to larger crystals than higher sulphate
activity (Figure 4.1). At Ω = 100, the largest crystals are formed at a stoichiometry of raq = 10
(Figure 4.1 C). This is different at Ω = 500, where the largest crystals are formed at raq = 1.
The results from Ω = 100 are in line with earlier research (Kowacz et al. (2007)), also having
a growth optimum at slightly higher stoichiometries, and with the data from DLS (Figure 4.4).
The DLS data also shows the largest particles at the higher barium activity (Figure 4.4 J). The
oversaturation is however much higher than at the experiments of Kowacz et al. (2007). The
growth optimum also seems to be at even more extreme stoichiometries than was observed by
them. With the largest crystals being observed in the DLS at raq = 100. At Ω = 500, higher
barium activity leads to larger crystals than increased sulphate activity but raq = 1 seems to be
most optimal for growth (Figure 4.1 F). This means that at Ω = 500, there is a possible break
with the earlier trend. From Kowacz et al. (2007), it seems that at higher supersaturations, higher
stoichiometry is needed for optimum growth. This trend does not seem to continue to Ω = 500.
The supersaturation may be sufficiently high that when the growth solutions are mixed, many
critical nucleii form instantaneous. At deviating stoichiometries, these may be charged. This
charge, which is either negative when sulphate is abundant or positive when barium is abundant
reduces the rate of aggregation and thus decreases final crystal size. Higher barium activity still
leads to larger crystals than higher sulphate activity due to the same processes than at Ω = 100
(e.g. higher step edge velocity and increased 2D-nucleation (Kowacz et al. (2007)).
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5.5 Recommendations

The exploratory nature of this research leads to a large amount of recommendations. They are
divided into chemical parameters variation, experimental set-up and data processing. The ionic
strength should be greatly reduced and the background ions should be chosen that they do not
interfere with the barium electrode. Additionally, measuring with different background electrolytes
would provide insight into the effects of varying background salts. This makes it possible to
track the reaction and to measure zeta potential. From this potential, the surface charge of the
particles can be calculated. Momentarily, it is unknown if the particles are charged at different
stoichiometries and how this affects their behaviour. The second parameter recommendation is
to work at higher supersaturations. The large error margin provides an incentive to decrease the
time resolution of processes to some extent in favour of higher reproducibility. The reproducibility
is expected to increase if the measured volume is more representative. It is more representative
due to the higher amount of measured particles. A downside is the potential for even more rapid
precipitation. For the experimental set-up, automation is possible, this will increase the amount
of measurements that can be performed by and reduces human error. Due to the high data
production, critical moments (e.g. changes in growth mode, nucleation speed, nuclei size) can be
accurately identified and in flow experiments are recommended for those moments. This will allow
for high resolution and statistically valid data of these critical moments. For future studies, faulty
measurements should be removed based on expert knowledge and not suppressed by compound
graphs, all measurement angles should be presented separately and the transfer from translational
diffusion coefficient (Dtrans) should be made with a custom function for the shapes identified in
the SEM experiments. The translation with the equivalent sphere model introduces a margin of
error that is undesirable. A titration set-up for the DLS would also be very valuable, as SAXS
data for the titration experiment has already been collected. This could lead to a more synergistic
approach.

5.6 Societal relevance

The fundamental nature of the research prevents direct applications in society or industry. It
does however support coming research in a variety of ways. The lessons learned (Section 5.5)
provide vital information for successfully reaching the goals of the Crystal Clear project. The
novel synergistic approach of the Crystal Clear project, with the chemical parameters framed
by this research and the effectiveness for modifying crystal growth by altering stoichiometry il-
lustrated, will potentially help understanding nucleation in abundant settings such as the ocean
(Church and Wolgemuth (1972), Mart́ınez-Ruiz et al. (2019)) and hydrocarbon reservoirs (Sorbie
and Mackay (2000)). Additionally it might create understanding of primary production in the
oceans of the past (Paytan and Griffith (2007)). This increased understanding might create and
array of geo-engineering options to control crystal formation by modifying ionic ratio’s instead
of adding, potentially harmful, additives. The effects of modifying ionic ratio’s are on display in
this research and further experimentation, considering the recommendations, may enhance our
understanding of crystal nucleation.
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5.7 Limitations of the study

The largest limitation is the high degree of uncertainty due to the very high error margin of
all results. The averaging of multiple DLS measurements give a robust idea of the trends but
increased the standard deviation and removed detail. Additionally, the transfer function used
to convert translational diffusive coefficient to size introduces an additional error. The potential
effects of local supersaturation cannot be discerned from other processes and the highly dynamic
system makes the MADLS calculations problematic. It it not possible to have very high confidence
in specific hypotheses put forward in regards to particle population distribution, as no reaction
pathways, concentration gradients or energy fluctuations in the system can be discerned from this
data. Initial nucleation also occurs outside the timeframe of the DLS measurements, limiting the
information that can be obtained regarding the moment of nucleation.

5.7.1 The refractive index and solubility of barite

The size measurements exhibit an additional error from varying refractive index. Different direc-
tions through the barite crystal have different refractive indices (ranging between nx = 1.6481 and
nz = 1.6361 Vedam (1951)). Because the particle spins randomly in the solution, its refractive
index changes. The translation from translational diffusion coefficient to particle size takes re-
fractive index into account. Consequently, the changing refractive index leads to different particle
sizes. The effect is however expected to be limited, because the effects average out as long as
the particles are relatively symmetrical, due to their random spinning motion and because the
difference in refractive index in different directions are limited. The amount of barite particles
produced is very low due to the low solubility of barite (Pksp = 9.97 Ball and Nordstrom (1991)).
This makes the measurement more variable, depending on what is in the analysed volume during
the measurement time. At higher particle concentrations, the representativeness of the measure-
ments would have improved, but, the growth processes or changes in population would have been
recorded less accurately due to the low time resolution of the MADLS measurements.

Due to the relative nature of the intensity plots, it is unclear if the total amount of particles
increases over time. This is however to be expected as the solution is supersaturated in regards
to barite and during exploratory measurements, the solution became visibly turbid at very high
supersaturations (Ω = 5000) during incubation.

5.7.2 Compound graphs

The compound graphs, where five runs were averaged into one graph, greatly increases the sta-
tistical validity of the results but also introduces some key issues. Firstly, it is assumed that all
experiments produce exactly the same amount of particles, 15 % of scattered intensity is taken to
be the same across experiments for the compound graphs. The key assumption underlying this, is
that every repetition of the same experiment produces exactly the same amount of material. This
is not true. Secondly, time steps are taken to be simultaneous, the first time-step of experiment
one is averaged with the first time step of all other experiments even though the real timing differs
(max 1 minute). If more than two measurements were missing, the datapoints were excluded.
Trends within one experiment, such as a general increase in size of a highly disperse population
might be obscured by a different experiment, which was started slightly later and was potentially
coagulating, decreasing the prominence of a certain population at a certain number of time steps.
Filtering the data by hand for faulty data is the most accurate way to increase the quality of
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the data. In this research however, a simpler approach was followed. Faulty measurements were
greatly reduced in their prominence by presenting compound graphs. An important assumption
is made when calculating the standard deviation of the graphs. It is assumed the data points are
distributed in a Gaussian way. An additional margin of error is introduced into the measurements
by MADLS algorithm (Equation 2.13), which assumes that the measurements at all angles are of
an unchanging sample and can be treated as simultaneous.

5.7.3 Agreement

There is however an agreement between DLS and SAXS on growth mode at raq = 10. The effects
of higher barium activity at Ω = 100 lead to increased growth (SEM) and are in line with earlier
research (Kowacz et al. (2007)), this agreement is partially absent at Ω = 500. A stoichiometry of
raq < 1 does however still lead to smaller particles at all Ω′s, similar to Kowacz et al. (2007)). The
agreement between increased growth at higher stoichiometries can also be observed in the DLS
measurements at Ω = 100. The same agreement is not observed at Ω = 500. A potential increase
of nucleation rate due to a smaller critical nucleus size, possibly related to overcoming the energy
barrier for nucleation via kinetics, is also observed. The synergistic approach between DLS, SAXS
and SEM points towards nucleation and growth which is aided by more abundant barium. That
all the utilized techniques have similar results which are in line with earlier research make the
approach promising.
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6

Conclusion

The different populations of crystals are established before the DLS measurements start. Only some
minor variation due to stoichiometry exist between the established populations. The dominant
crystal population is centered around 400nm at all stoichiometries. Particle size evolution suggests
that the water exchange kinetics around sulphate are more rapid than around barium, leading to
more rapid ion-depletion and decrease of supersaturation. Higher barium than sulphate activity
leads to larger crystals at both supersaturations. Possibly due to the slower water exchange
kinetics around barium and due to a switch to 2D-nucleation. Overcoming the thermodynamic
energy barrier to growth by a kinetic effect. The critical nucleus size is most likely affected by
stochiometric variations, with higher stoichiometry leading to lower nucleii size, potentially due to
the same kinetic effect. A modification of effective supersaturation in regards nucleation occurs.
These observations are similar in most experiments and are in line with previous literature. Crystal
shape is strongly affected by stoichiometry. Higher stoichiometry leading to more elongation at
Ω = 100 and slight deviations from raq = 1 at Ω = 500 lead to higher variation in particle
shape, whereas strong deviations lead to rectangular crystals, similar to raq = 1. The modification
of crystal populations potentially has wide ranging consequences for understanding natural and
anthropogenic systems. Providing possible, environmentally friendly, solutions to geo-engineering
challenges in the hydrocarbon industry and might increase our understanding of ancient ocean
productivity.
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Appendix A

(Appendix)

Crystal size measurements based on Figure A.1.

Table A.1: Crystal size measurements, based on SEM images, after 3 hours of incubation at Ω = 500 and
raq = 0.01

Width (nm) Length (nm) Ratio (Width/Length)
552 964 0.57
631 1060 0.60
629 1160 0.54
988 1170 0.84

Av:700 St.Dev:144 Av:1089 St.Dev:77 Av:0.64 St.Dev:0.1

Table A.2: Crystal size measurements, based on SEM images, after 3 hours of incubation at Ω = 500 and
raq = 0.1

Width (nm) Length (nm) Ratio (Width/Length)
515 562 0.92
562 674 0.83
602 688 0.88
535 581 0.92
532 561 0.94
463 546 0.85
543 584 0.93
476 727 0.65
439 607 0.72

Av:519 St.Dev:40.3 Av:614 St.Dev:55 Av:0.85 St.Dev:0.08
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Figure A.1: Crystal size measurements, based on SEM images, Ω = 100 and Ω = 500
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Figure A.2: Crystals observed in the SEM at Ω = 500. Signs of 2D-nucleation visible on the surface of
the crystal (raq = 0.1)

Table A.3: Crystal size measurements, based on SEM images, after 3 hours of incubation at Ω = 500 and
raq = 1

Width (nm) Length (nm) Ratio (Width/Length)
7540 9190 0.82
8350 10210 0.82
8040 10700 0.75
6770 8210 0.82
5280 6160 0.86
6650 8250 0.81
2770 2770 1

Av:6486 St.Dev:1406 Av:7927 St.Dev:1978 Av:0.84 St.Dev:0.05

Table A.4: Crystal size measurements, based on SEM images, after 3 hours of incubation at Ω = 500 and
raq = 10

Width (nm) Length (nm) Ratio (Width/Length)
1520 1970 0.77
1060 1210 0.87
558 611 0.91
1550 2460 0.63
187 265 0.71
1470 1750 0.84
1260 1260 1
522 542 0.96
420 1290 0.33

Av:950 St.Dev:470 Av:1262 St.Dev:538 Av:0.78 St.Dev:0.15
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Table A.5: Crystal size measurements, based on SEM images, after 3 hours of incubation at Ω = 100 and
raq = 1

Width (nm) Length (nm) Ratio (Width/Length)
901 1230 0.73
1120 1740 0.64
1400 2240 0.63
1350 2180 0.62
882 1910 0.46
498 1390 0.36
1480 1580 0.94
963 1530 0.63
965 1300 0.74
861 920 0.94
1390 1580 0.88
1070 1470 0.73
1160 1910 0.61
882 1320 0.67
838 1040 0.81

Av:1051 St.Dev:215 Av:1556 St.Dev:300 Av:0.69 St.Dev:0.12

Table A.6: Crystal size measurements, based on SEM images, after 3 hours of incubation at Ω = 100 and
raq = 10

Width (nm) Length (nm) Ratio (Width/Length)
10600 10600 1
1550 3130 0.50
1190 5460 0.22
10300 10800 0.95
4170 6780 0.62
3110 6290 0.50
3920 6080 0.64
2610 7870 0.33
4070 6980 0.58
4130 4590 0.90

Av:4565 St.Dev:2354 Av:6858 St.Dev:1764 Av:0.67 St.Dev:0.20
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Figure A.11: Forward scatter, rapid development of Ω = 100 with raq = 0.01, raq = 0.1, raq = 1, raq = 10
and raq = 100 from top to bottom. Plotted side by side in 3D-plot and gridplots
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Figure A.12: Forward scatter, rapid development of Ω = 500 with raq = 0.01, raq = 0.1, raq = 1, raq = 10
and raq = 100 from top to bottom. Plotted side by side in 3D-plot and gridplots
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Full Python code for automation of Minteq calculations:

def bus c d i r ( ) :
print ( ' Finding working d i r e c t o r i e s ' )
print ( ' I t may take a few minutes ' )
print ( ' Please wait ' )
a=0
f l a g d i r , f l a g d i r 1 , f l a g d i r 2=False , False , Fa l se
dbc={}
exed i r=owd+”\Mintrun17 . exe ”
f l a g d i r 2==True
print ( 'Working d i r e c t o r y ' ,owd)
for ( dirpath , dirnames , f i l enames ) in os . walk ( 'C:\\ ' ) :

for f in f i l enames :
i f f== ' comp 2008 . vdb ' :

dbdir=os . path . j o i n ( dirpath , f )
db=open( dbdir , ' r ' )
f l a g d i r=True

for f in dirnames :
i f f== 'Vminteq31 ' and 'Program ' not in dirpath :

outd i r=os . path . j o i n ( dirpath , f )
print ( ' Databases d i r e c t o r y ' , ou td i r )
f l a g d i r 1=True
break

i f f l a g d i r==True and f l a g d i r 1==True and f l a g d i r 2==True :
break

for l i n e in db :
dbc [ ( str ( l i n e . s p l i t ( ' , ' ) [ 1 ] ) ) ]= str ( l i n e . s p l i t ( ' , ' ) [ 0 ] )

db . c l o s e ( )
print ( 'Done ' )
print ( ' Ca l cu l a t i on s begin . Good luck ! ' )
return ( dbc , outdir , exed i r )

def r ead input (Minit , a , s o l u t i o n s f l a g ) :####check i f when i t e r t h e components t h e order i s c o r r e c t
components={}
Minit . c l o s e ( )
Minit=open( ' i n i t i a l v a l u e s Vm in t e q . txt ' , ' r ' )
f l a g=False
l a s t s o l u t i o n=True
print ( ” So lut i on ”+str ( a ) )
for l i n e in Minit :

i f l i n e . f i nd ( ”Output f i l e ” ) !=−1:
o u t pu t f i l e=str ( l i n e . s p l i t ( ' , ' ) [ 1 ] ) . r s t r i p ( )

i f l i n e . f i nd ( ”Unit” ) !=−1:
un i t = str ( l i n e . s p l i t ( ' , ' ) [ 1 ] ) . r s t r i p ( )

i f l i n e . f i nd ( ” Ions o f i n t e r e s t ” ) !=−1:
s a l t 1=(str ( l i n e . s p l i t ( ' , ' ) [ 1 ] ) , str ( l i n e . s p l i t ( ' , ' ) [ 2 ] ) . r s t r i p ( ) )

i f l i n e . f i nd ( ”BGE” ) !=−1:
s a l t 2=(str ( l i n e . s p l i t ( ' , ' ) [ 1 ] ) , str ( l i n e . s p l i t ( ' , ' ) [ 2 ] ) , str ( l i n e . s p l i t ( ' , ' ) [ 3 ] ) . r s t r i p ( ) )

i f l i n e . f i nd ( ” So lut i on ”+str ( a )+ '\n ' ) !=−1:
f l a g=True
l a s t s o l u t i o n=False
continue

e l i f l i n e . f i nd ( ” So lut i on ”+str ( a+1)+ '\n ' ) !=−1:
f l a g=False
continue

i f f l a g==True and l i n e . f i nd ( ”Boundary condit ions ” )==−1:
components [ ( str ( l i n e . s p l i t ( ' , ' ) [ 0 ] ) ) ]= f loat ( l i n e . s p l i t ( ' , ' ) [ 1 ] )
key = ( str ( l i n e . s p l i t ( ' , ' ) [ 0 ] ) )
i f key != ' ”CO2 ( g ) ” ' and key != 'Temp ' and key != ' sod iumnit rate ' and uni t== ' Mi l l imo l a l ' :

components [ key ]=components [ key ]∗10∗∗(−3)
i f f l a g==True and l i n e . f i nd ( ”Boundary condit ions ” ) !=−1:

key=np . array ( l i n e . s p l i t ( ) ) [ 1 ]
try :

Boundary condit ions [ key ]=[ f loat (np . array ( l i n e . s p l i t ( ) ) [ 2 ] ) , f loat (np . array ( l i n e . s p l i t ( ) )
[ 3 ] ) ]

except :
Boundary condit ions [ key ]= str (np . array ( l i n e . s p l i t ( ) ) [ 2 ] )

i f l a s t s o l u t i o n !=False :
s o l u t i o n s f l a g=False

return components , Boundary condit ions , a , s o l u t i o n s f l a g , unit , s a l t 1 , sa l t2 , o u t pu t f i l e

def wr i t e i nput ( components , dbc , unit , outdir , exed i r ) :
a=0
os . chd i r ( outd i r )
minin=open( ' minin . vda ' , 'w ' )
minin . wr i t e ( ' ”Visua l MINTEQ 3.1 input f i l e ”\n ' )
minin . wr i t e ( ' ”Problem no .” ,1\n ' )
minin . wr i t e ( ' ”Databases : ” , ” thermo . vdb” ,” type6 . vdb” ,” comp 2008 . vdb” ,” gauss ian . vdb”\n ' )#'” Databases

:” ,” '+ db1d i r + '” ,” '+ db2d i r +”,”+ db3d i r +”,”+ db4d i r + '” '+ '\n ')#'”\ r\n ')

minin . wr i t e ( str (round( components [ 'Temp ' ] , 2 ) )+ ' ,” '+unit+ ' ” ,0 .001 ,0\n ' )
minin . wr i t e ( ' 0 ,0 , 1 , 0 , 3 , 0 , 0 , 0 , 1 , 1 , 0 , 0 , 0 '+ '\n ' )
minin . wr i t e ( ' ”MULTI / SWEEP” ,”” ,1\n ' )
minin . wr i t e ( ' 0 ,0 ,0\n ' )
i f ' ”CO2 ( g ) ” ' in components :

a+=1
i f 'Temp ' in components :

a+=1
i f ' sod iumnit rate ' in components :

a+=1
minin . wr i t e ( ' ”No . o f components ” , '+str ( len ( components )−a )+ '\n ' )
for key , value in components . i tems ( ) :
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#pr i n t ( ' l i n e 1 0 3 ' , key , v a l )
i f key != ' ”CO2 ( g ) ” ' and key != 'Temp ' and key != ' sod iumnit rate ' :

i f components [ key ]<0:
minin . wr i t e ( str ( dbc [ key ] )+ ' , '+str ( ” { : . 2E}” . format ( components [ key ] ) )+ ' , '+ ' −7.00 ,”y” ,”n” , '+

str ( key )+ '\n ' )
#minin . w r i t e ( '%7 s%2s%8s%8s%23s%−18s\ r\n '%(dbc [ key ] , ” ” , s t r ( ”{ : . 2E}” . format ( components [

key ] ) ) , '−7.00 ' ,” y /” , s t r ( key ) ) ) ###s c i e n t i f i c ,
else :

minin . wr i t e ( str ( dbc [ key ] )+ ' , '+str ( ” { : . 3E}” . format ( components [ key ] ) )+ ' , '+str (round(math .
log10 ( components [ key ] ) ) )+ ' ,” y” ,”n” , '+str ( key )+ '\n ' )

#minin . w r i t e ( '%7 s%2s%9s%8.2 f%23s%−18s\ r\n '%(dbc [ key ] , ” ” , s t r ( ”{ : . 3E}” . format ( components [
key ] ) ) , f l o a t ( round (math . l o g10 ( components [ key ] ) ,2) ) ,” y /” , s t r ( key
) ) ) ###s c i e n t i f i c ,

i f key== ' ”CO2 ( g ) ” ' :
minin . wr i t e ( ' ””\n ' )
minin . wr i t e ( ' 3 ,1\n ' )
minin . wr i t e ( ' 3301403 ,18.149 '+ ' , '+ '−10, '+str (math . log10 ( components [ key ] ) )+ ' , '+str ( key )+ '\n ' )
#minin . w r i t e ('%−8s%2s%8s%11s%20s%−18s\ r\n '%( s t r (3301403) ,” ” , s t r ( round (18.149−math . l o g10 (

components [ key ] ) ,4) ) ,” −10.0000” ,” /” , s t r ( key ) ) ) ###s c i e n t i f i c ,
minin . wr i t e ( ' ””\n ' )
minin . wr i t e ( ' ”END”\n ' )
#minin . w r i t e ( ' \ r\n ')
#minin . w r i t e ( ' \ r\n ')
minin . c l o s e ( )

def s ta r t minteq ( components , dbc , unit , outdir , exed i r ) :
###cr e a t e i npu t f o r minteq from con c en t r a t i o n s and s p e c i e s in components
#'/mnt/c/Users / j a k o s /Documents/Vminteq31 ')
wr i t e i nput ( components , dbc , unit , outdir , exed i r )
i f os . system ( exed i r ) !=0:

print ( 'Oops something i s wrong , p l e a s e check input f i l e in the Databases d i r e c t o r y ' )

## Serg i o do your l i t t l e dance here

def read output ( sa l t1 , sa l t2 , components , Boundary condit ions ) :#read and check d e c i d e what to do
Minout=open( ' vmint . out ' , ' r ' )
output={}
eq mass , P r e c i p i t a t e s=False , Fa l se
for l i n e a in Minout :

#i f l i n e a . f i n d (” Sa t u r a t i on i n d i c e s and s t o i c h i ome t r y o f a l l m inera l s ”) !=−1:
# SI=True
i f l i n e a . f i nd ( ' ” '+Boundary condit ions [ ' SI phase ' ]+ ' ” ' ) !=−1:

output [ ' SI ' ]=np . array ( l i n e a . s p l i t ( ' , ' ) ) [ 3 ] . astype ( f loat )
i f l i n e a . f i nd ( ”Equi l ibr ium pH= ” ) !=−1:

output [ 'pH ' ]=np . array ( l i n e a . s p l i t ( ' , ' ) ) [ 1 ] . astype ( f loat )
i f l i n e a . f i nd ( ”Equi l ibr ium i on i c s t r ength (m)=” ) !=−1:

output [ ' IS ' ]=np . array ( l i n e a . s p l i t ( ' , ' ) ) [ 1 ] . astype ( f loat )
i f l i n e a . f i nd ( ” Equ i l i b ra t ed mass d i s t r i b u t i o n ” ) !=−1:

eq mass=True
continue

i f l i n e a . f i nd ( ”Percent d i f f e r e n c e=” )!=−1 and eq mass==True :
output [ 'Charge Balance % ' ]=np . array ( l i n e a . s p l i t ( ' , ' ) ) [ 1 ] . astype ( f loat )

i f l i n e a . f i nd ( ' Sto ich iometry on l i n e below ' ) !=−1:
P r e c i p i t a t e s=True
a=0
continue

i f l i n e a . f i nd ( ' ”” ' ) !=−1:# and P r e c i p i t a t e s==True :
Pr e c i p i t a t e s=False

i f Pr e c i p i t a t e s==True :
a+=1
i f ' Pr e c i p i t a t e s ' not in output and a%2!=0:

output [ ' Pr e c i p i t a t e s ' ]= [ ( str (np . array ( l i n e a . s p l i t ( ' , ' ) ) [ 1 ] ) , np . array ( l i n e a . s p l i t ( ' , ' ) )
[ 3 ] . astype ( f loat ) ) ]

e l i f a%2!=0:
output [ ' Pr e c i p i t a t e s ' ] . append ( ( str (np . array ( l i n e a . s p l i t ( ' , ' ) ) [ 1 ] ) , np . array ( l i n e a . s p l i t (

' , ' ) ) [ 3 ] . astype ( f loat ) ) )

i f eq mass==True and l i n e a . f i nd ( s a l t 1 [ 0 ] ) !=−1:
s a l t conc0=(np . array ( l i n e a . s p l i t ( ' , ' ) ) [ 2 ] . astype ( f loat ) )

i f eq mass==True and l i n e a . f i nd ( s a l t 1 [ 1 ] ) !=−1:
s a l t conc1=(np . array ( l i n e a . s p l i t ( ' , ' ) ) [ 2 ] . astype ( f loat ) )

for key , va l in components . i tems ( ) :
i f eq mass==True and l i n e a . f i nd ( key ) !=−1:# and l i n e a . f i n d (” E q u i l i b r a t e d mass d i s t r i b u t i o n

”)==−1:
output [ key ]=np . array ( l i n e a . s p l i t ( ' , ' ) ) [ 2 ] . astype ( f loat )

output [ ' r ' ]= sa l t conc0 / sa l t conc1

Minout . c l o s e ( )
return output

def check parameters ( output , Boundary condit ions , components , sa l t1 , s a l t 2 ) :
components

check=False

i f not ( output [ ' IS ' ]>( Boundary condit ions [ ' IS ' ] [ 0 ] − Boundary condit ions [ ' IS ' ] [ 1 ] ) and output [ ' IS ' ]<
( Boundary condit ions [ ' IS ' ] [ 0 ]+ Boundary condit ions [ ' IS ' ] [ 1 ] ) ) :

check=True
i f output [ ' IS ' ]<=(Boundary condit ions [ ' IS ' ] [ 0 ] − Boundary condit ions [ ' IS ' ] [ 1 ] ) :
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components [ s a l t 2 [ 0 ] ]= components [ s a l t 2 [ 0 ] ] ∗ 1 . 0 5###increment to go to t h e nex t l oop
components [ s a l t 2 [ 1 ] ]= components [ s a l t 2 [ 1 ] ] ∗ 1 . 0 5

i f output [ ' IS ' ]>= ( Boundary condit ions [ ' IS ' ] [ 0 ]+ Boundary condit ions [ ' IS ' ] [ 1 ] ) :
check=True
components [ s a l t 2 [ 0 ] ]= components [ s a l t 2 [ 0 ] ] ∗ 0 . 9 5###increment to go to t h e nex t l oop
components [ s a l t 2 [ 1 ] ]= components [ s a l t 2 [ 1 ] ] ∗ 0 . 9 5

i f not ( output [ 'pH ' ]>( Boundary condit ions [ 'pH ' ] [ 0 ] − Boundary condit ions [ 'pH ' ] [ 1 ] ) and output [ 'pH ' ]<
( Boundary condit ions [ 'pH ' ] [ 0 ]+ Boundary condit ions [ 'pH ' ] [ 1 ] ) ) :

check=True

i f output [ 'pH ' ]<=(Boundary condit ions [ 'pH ' ] [ 0 ] − Boundary condit ions [ 'pH ' ] [ 1 ] ) :
i f components [ ' ”H+1” ' ]<0:

d=((14+math . log10(−components [ ' ”H+1” ' ] ) ) +0.01)#∗1 .001)###pH
i f d<=7:

components [ ' ”H+1” ' ]=10∗∗(−d)−10∗∗(−7)
else :

components [ ' ”H+1” ' ]=−(10∗∗(−(14−d) )−10∗∗(−7) )##OH− c onc en t r a t i on
else :##ac id

d=(−math . log10 ( components [ ' ”H+1” ' ] ) ) +0.01###pH
i f d<=7:

components [ ' ”H+1” ' ]=10∗∗(−d)−10∗∗(−7)
else :

components [ ' ”H+1” ' ]=−(10∗∗(−(14−d) )−10∗∗(−7) )
i f output [ 'pH ' ]>= ( Boundary condit ions [ 'pH ' ] [ 0 ]+ Boundary condit ions [ 'pH ' ] [ 1 ] ) :

check=True

i f components [ ' ”H+1” ' ]<0:
d=((14+math . log10(−components [ ' ”H+1” ' ] ) ) −0.01)#∗0 .999)###pH
i f d<=7:

components [ ' ”H+1” ' ]=10∗∗(−d)−10∗∗(−7)
else :

components [ ' ”H+1” ' ]=−(10∗∗(−(14−d) )−10∗∗(−7) )##OH− c onc en t r a t i on
else :##ac id

d=(−math . log10 ( components [ ' ”H+1” ' ] ) )−0.01#∗0.999###pH
i f d<=7:

components [ ' ”H+1” ' ]=10∗∗(−d)−10∗∗(−7)
else :

components [ ' ”H+1” ' ]=−(10∗∗(−(14−d) )−10∗∗(−7) )##OH− c onc en t r a t i on

i f not ( output [ ' SI ' ]>( Boundary condit ions [ ' SI ' ] [ 0 ] − Boundary condit ions [ ' SI ' ] [ 1 ] ) and output [ ' SI ' ]<
( Boundary condit ions [ ' SI ' ] [ 0 ]+ Boundary condit ions [ ' SI ' ] [ 1 ] ) ) :

check=True
i f output [ ' SI ' ]<=(Boundary condit ions [ ' SI ' ] [ 0 ] − Boundary condit ions [ ' SI ' ] [ 1 ] ) :

components [ s a l t 1 [ 0 ] ]= components [ s a l t 1 [ 0 ] ] ∗ 1 . 0 1###increment to go to t h e nex t l oop
components [ s a l t 1 [ 1 ] ]= components [ s a l t 1 [ 1 ] ] ∗ 1 . 0 5

i f output [ ' SI ' ]>= ( Boundary condit ions [ ' SI ' ] [ 0 ]+ Boundary condit ions [ ' SI ' ] [ 1 ] ) :
check=True
components [ s a l t 1 [ 0 ] ]= components [ s a l t 1 [ 0 ] ] ∗ 0 . 9 5###increment to go to t h e nex t l oop
components [ s a l t 1 [ 1 ] ]= components [ s a l t 1 [ 1 ] ] ∗ 0 . 9 5

i f not ( output [ ' r ' ]>( Boundary condit ions [ ' r ' ] [ 0 ] − Boundary condit ions [ ' r ' ] [ 1 ] ) and output [ ' r ' ]< (
Boundary condit ions [ ' r ' ] [ 0 ]+ Boundary condit ions [ ' r ' ] [ 1 ] ) ) :

print ( ' r ' , output [ ' r ' ] )
check=True
i f output [ ' r ' ]<=(Boundary condit ions [ ' r ' ] [ 0 ] − Boundary condit ions [ ' r ' ] [ 1 ] ) :

components [ s a l t 1 [ 0 ] ]= components [ s a l t 1 [ 0 ] ] ∗ 1 . 0 5
#components [ s a l t 1 [ 1 ] ]= components [ s a l t 1 [ 1 ] ] ∗ 1 . 0 5

i f output [ ' r ' ]>= ( Boundary condit ions [ ' r ' ] [ 0 ]+ Boundary condit ions [ ' r ' ] [ 1 ] ) :
check=True
components [ s a l t 1 [ 0 ] ]= components [ s a l t 1 [ 0 ] ] ∗ 0 . 9 5
#components [ s a l t 1 [ 1 ] ]= components [ s a l t 1 [ 1 ] ] ∗ 0 . 9 5

return check , components

def e x c e l c a l ( components , output , sa l t2 , check ) :#wr i t e i n pu t s in f i l e or RAM
##np the e xa c t c a l u l a t i o n s o f t h e e x c e l s h e e t
#sodium −2∗SO4−2 − OH
#i f ou tpu t [ 'pH ']>=7:
check2=False
i f check == False :

pOH=14−output [ 'pH ' ]
OH=10∗∗(−pOH)
i f components [ ' ”H+1” ' ]<=0:#Na−NaSO4−NaOH−−>NaNO3+Ba(NO3) 2

sod iumnit rate=components [ s a l t 2 [ 0 ] ] − 2∗ components [ s a l t 1 [ 1 ] ]+ components [ ' ”H+1” ' ]
components [ ' sod iumnit rate ' ]= sod iumnit rate

i f sod iumnit rate==(components [ s a l t 2 [1 ] ]−2∗ components [ s a l t 1 [ 0 ] ] ) :
check2=True

print ( ' Fina l r e s u l t ' )###f i n a l check
components [ s a l t 2 [ 1 ] ]=2∗ components [ s a l t 1 [ 0 ] ]+ sod iumnit rate

i f components [ ' ”H+1” ' ]>0 and s a l t 2 [2]== sa l t 2 [ 1 ] :#Cl−CaCl2−HCl−−−>NaCl+CaCl2
sod iumnit rate=components [ s a l t 2 [ 1 ] ] − 2∗ components [ s a l t 1 [0 ] ] − components [ ' ”H+1” ' ]
components [ ' sod iumnit rate ' ]= sod iumnit rate
i f sod iumnit rate==(components [ s a l t 2 [0 ] ]−2∗ components [ s a l t 1 [ 1 ] ] ) :

check2=True

print ( ' Fina l r e s u l t ' )###f i n a l check

components [ s a l t 2 [ 0 ] ]=2∗ components [ s a l t 1 [ 1 ] ]+ sod iumnit rate

i f components [ ' ”H+1” ' ]>0 and s a l t 2 [ 2 ] != s a l t 2 [ 1 ] and s a l t 2 [ 2 ] in components :
i f components [ s a l t 2 [2] ]== components [ ' ”H+1” ' ] :
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check2=True

print ( ' Fina l r e s u l t ' )
components [ s a l t 2 [ 2 ] ]= components [ ' ”H+1” ' ]

i f components [ ' ”H+1” ' ]>0 and s a l t 2 [ 2 ] != s a l t 2 [ 1 ] and s a l t 2 [ 2 ] not in components :
sod iumnit rate=components [ s a l t 2 [ 1 ] ] − 2∗ components [ s a l t 1 [0 ] ] − components [ ' ”H+1” ' ]
components [ ' sod iumnit rate ' ]= sod iumnit rate
i f sod iumnit rate==(components [ s a l t 2 [0 ] ]−2∗ components [ s a l t 1 [ 1 ] ] ) :

check2=True
components [ s a l t 2 [ 0 ] ]=2∗ components [ s a l t 1 [ 1 ] ]+ sod iumnit rate

#components [ s a l t 2 [ 0 ] ]=2∗ components [ s a l t 1 [ 1 ] ]+OH+sod i umn i t r a t e

##Na=NaNO3+NaOH+Na2SO4
##NO3=NaNO3+BaNO3

check=True
return check2 , components

def w r i t e f i n a l ( components , output , a , Boundary condit ions , o u t pu t f i l e ) :
## wr i t e e v e r y t h i n in ou tpu t
#a=4
os . chd i r (owd)#'#/mnt/c/Users / j a k o s /OneDrive/Janou−PhD/ automat ion / ')
f out=open( ou tpu t f i l e , ' a ' )
fout . wr i t e ( ' So lut i on '+str ( a )+ '\n ' )
fout . wr i t e ( s a l t 1 [0 ]+ ' ( '+sa l t 2 [1 ]+ ' ) 2 '+str ( ” { : . 3E}” . format ( components [ s a l t 1 [ 0 ] ] ) )+ '\n ' )
fout . wr i t e ( ' ( '+sa l t 2 [0 ]+ ' ) 2 '+sa l t 1 [1 ]+ ' '+str ( ” { : . 3E}” . format ( components [ s a l t 1 [ 1 ] ] ) )+ '\n ' )

i f components [ ' ”H+1” ' ]<=0:
fout . wr i t e ( s a l t 2 [0 ]+ 'OH '+str ( ” { : . 3E}” . format(−1∗components [ ' ”H+1” ' ] ) )+ '\n ' )
fout . wr i t e ( s a l t 2 [0 ]+ s a l t 2 [1 ]+ ' '+str ( ” { : . 3E}” . format ( components [ ' sod iumnit rate ' ] ) )+ '\n ' )

i f components [ ' ”H+1” ' ]>0 and s a l t 2 [ 2 ] != s a l t 2 [ 1 ] and s a l t 2 [ 2 ] in components :
f out . wr i t e ( s a l t 2 [0 ]+ s a l t 2 [1 ]+ ' '+str ( ” { : . 3E}” . format ( ( components [ s a l t 2 [1 ] ] − components [ s a l t 1

[ 0 ] ] ) ) )+ '\n ' )
fout . wr i t e ( 'H '+sa l t 2 [2 ]+ ' '+str ( ” { : . 3E}” . format ( components [ ' ”H+1” ' ] ) )+ '\n ' )

i f components [ ' ”H+1” ' ]>0 and s a l t 2 [ 2 ] != s a l t 2 [ 1 ] and s a l t 2 [ 2 ] not in components :
f out . wr i t e ( s a l t 2 [0 ]+ s a l t 2 [1 ]+ ' '+str ( ” { : . 3E}” . format ( components [ ' sod iumnit rate ' ] ) )+ '\n ' )
fout . wr i t e ( 'H '+sa l t 2 [1 ]+ ' '+str ( ” { : . 3E}” . format ( components [ ' ”H+1” ' ] ) )+ '\n ' )

i f components [ ' ”H+1” ' ]>0 and s a l t 2 [2]== sa l t 2 [ 1 ] :
f out . wr i t e ( s a l t 2 [0 ]+ s a l t 2 [1 ]+ ' '+str ( ” { : . 3E}” . format ( components [ ' sod iumnit rate ' ] ) )+ '\n ' )
fout . wr i t e ( 'H '+sa l t 2 [1 ]+ ' '+str ( ” { : . 3E}” . format ( components [ ' ”H+1” ' ] ) )+ '\n ' )

fout . wr i t e ( 'pH '+str ( output [ 'pH ' ] )+ ' SI '+str ( Boundary condit ions [ ' SI phase ' ] )+ ' '+str ( output [
' SI ' ] )+ ' Omega '+str (10∗∗ output [ ' SI ' ] )+ ' IS '+str ( output [ ' IS ' ] )+ ' r '+str ( output [ ' r ' ] )+
'\n ' )

fout . wr i t e ( 'Charge balance % '+str ( output [ 'Charge Balance % ' ] )+ '\n ' )
fout . wr i t e ( ' Precp i t a t e s \n ' )
for i in range ( 0 , ( len ( output [ ' Pr e c i p i t a t e s ' ] ) ) ) :

f out . wr i t e ( output [ ' Pr e c i p i t a t e s ' ] [ i ] [ 0 ]+ ' '+str ( output [ ' Pr e c i p i t a t e s ' ] [ i ] [ 1 ] )+ '\n ' )

fout . wr i t e ( '\n ' )
fout . c l o s e
#pr i n t ( s a l t 1 [0]+ '( '+ s a l t 2 [ 1 ]+ ' ) 2 ' , components [ s a l t 1 [ 0 ] ] )
#p r i n t ( '( '+ s a l t 2 [ 0 ]+ ' ) 2'+ s a l t 1 [ 1 ] , components [ s a l t 1 [ 1 ] ] )
#p r i n t ( s a l t 2 [0 ]+ 'OH' ,(−1∗ components [ '”H+1” ' ] ) )
print ( 'pH ' , output [ 'pH ' ] , ' SI ' , Boundary condit ions [ ' SI phase ' ] , output [ ' SI ' ] , 'Omega ' , (10∗∗ output [ '

SI ' ] ) , ' IS ' , output [ ' IS ' ] , ' r ' , output [ ' r ' ] )
#pr i n t ( Boundary cond i t i ons )

def d r i v e r ( components , Boundary condit ions , unit , s a l t1 , sa l t2 , dbc , outdir , exed i r ) :
check , check2=True , Fa l se
while check2 == False :

while check == True :
s ta r t minteq ( components , dbc , unit , outdir , exed i r )
output=read output ( sa l t1 , sa l t2 , components , Boundary condit ions )
check , components=check parameters ( output , Boundary condit ions , components , sa l t1 , s a l t 2 )
#pr i n t ( components )

check2 , components=e x c e l c a l ( components , output , sa l t2 , check )
check=True

return components , output

def r u n a l l ( ) :
a=1
dbc , outdir , exed i r=bus c d i r ( )
s o l u t i o n s f l a g=True
while s o l u t i o n s f l a g==True :

components , Boundary condit ions , a , s o l u t i o n s f l a g , unit , s a l t 1 , sa l t2 , o u t pu t f i l e=read input (Minit , a
, s o l u t i o n s f l a g )

i f s o l u t i o n s f l a g==False :
break

components , output=dr i v e r ( components , Boundary condit ions , unit , s a l t1 , sa l t2 , dbc , outdir , exed i r )
w r i t e f i n a l ( components , output , a , Boundary condit ions , o u t pu t f i l e )
time . s l e ep (1)
a+=1

### Main b l o c k
import numpy as np
import math
import time
import os
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s t a r t t ime = time . time ( )
Minit=open( ' i n i t i a l v a l u e s Vm in t e q . txt ' , ' r ' )
s a l t 1=( ' ”Ba+2” ' , ' ”SO4−2” ' )#( 'Ca+2 ' , 'CO3−2 ')
s a l t 2=( ' ”Na+1” ' , ' ”NO3−1” ' , ' ”Cl−1” ' )#( 'Na+1 ' , 'Cl−1 ')
Boundary condit ions={}
Boundary condit ions [ ' IS ' ]= [ 0 . 2 0 0 , 0 . 0 5 ]
Boundary condit ions [ 'pH ' ]= [ 7 . 0 , 0 . 0 5 ]
Boundary condit ions [ ' SI ' ] = [ 1 . 8 , 0 . 1 ]
Boundary condit ions [ ' r ' ]= [ 1 . 0 , 0 . 0 0 0 1 ]
owd = os . getcwd ( )
###Minteq l oop
##pu t i n g in t h e i n i t i a l v a l u e s
##read ing and che c k in g t h e output , produce new inpu t based on the ou tpu t or i f e v e r y t h i n g i s f i n e do

the e x c e l c a l c u l a t i o n
###repu t t h e r e v i s e d v a l u e s in minteq
##Ca l c u l a t e NaNO3 s a l t , r e v i s e t h e inpu t w i th new s a l t c on c en t r a t i o n s
##repu t t h e r e v i s e d v a l u e s in minteq
##read ing and che c k in g t h e output , i f someth ing i s o f f s t a r t minteq aga in acco rd ing to which va l u e i s

o f f .

r u n a l l ( )
exe t ime=round ( ( ( time . time ( ) − s t a r t t ime ) /60) ,2)
print ( ' ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ' )
print ( ' Execution time ' )
print ( exe time , ' minutes ' )
print ( ' Al l done . Enjoy ' )
print ( ' ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ' )

Full Python code for the fitting of the SAXS-data

# −∗− cod ing : u t f−8 −∗−
”””
”””

# Import l i b r a r i e s
import matp lo t l ib . pyplot as p l t
import numpy as np
import math
import os
from s c ipy . opt imize import l e a s t s q
import pandas as pd
from os . path import i s f i l e
import s c ipy . i n t e g r a t e as sp i
from decimal import Decimal

#===========================================================
# Parameters
#===========================================================

path = 'C:/ Users /David/Documents/Uni/Master/MSC thesis /SAXS data/ Figures / '
os . chd i r ( 'C:/ Users /David/Documents/Uni/Master/MSC thesis /SAXS data/ da ta t r ea t ed ' )

# Def ine t h e range o f R
R = np . arange ( 0 . 0 1 , 250 , 0 . 25 )

# Def ine parameters in case o f manual f i t t i n g
N = 400
mu = 100
s = 0 .2
eta = 2e−9
p = [N,mu, s , eta ]

#=====================================================
# Def ine f i t t i n g f u n c t i o n : form f a c t o r f o r s ph e r e s
# wi th a lognorma l d i s t r i b u t i o n f o r t h e i r r a d i i R
#=====================================================

# Lognorm (mu, s )
# Funct ion to o b t a i n lognorma l d i s t r i b u t i o n as a f un c t i o n o f R, w i th a norma l i z ed area e qua l t o 1
def Lognorm( c o e f f s ) :

# c o e f f s [ 1 ] = mu, c o e f f s [ 2 ] = s
Lognorm = R∗∗(−1) ∗ np . exp(− (np . l og (R)−np . log ( c o e f f s [ 1 ] ) ) ∗∗2 / (2∗ c o e f f s [ 2 ] ∗ ∗ 2 ) )
# Obtain area w i th t r a p e z o i d method
Lognorm int = sp i . t rapz (Lognorm , R)
# Div ide Lognormal f u n c t i o n by area to o b t a i n a new area e qua l t o 1
Lognorm norm = Lognorm/Lognorm int
# Check i f area i s e qua l t o 1
#Lognorm int norm =sp i . t r a p z ( Lognorm norm , r a d i i )
#p r i n t ( Lognorm int norm )
#p l t . p l o t ( r a d i i , Lognorm norm )
return ( Lognorm norm )

# I q c a l c ( q , N, mu, s , e t a )
# Funct ion to o b t a i n I ( q ) f o r p l o t t i n g
def I q c a l c (q , c o e f f s ) :

# c o e f f s [ 0 ] = N, c o e f f s [ 3 ] = e ta
# d e f i n e r ad i u s R as a lognorma l d i s t r i b u t i o n
Lognorm N = c o e f f s [ 0 ] ∗ Lognorm( c o e f f s )

#de f i n e a matr ix I q
Iq =[ ]
# ob t a i n I (R) a t e ve ry q
for qval in q :
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I i n t=0
r index=0
# sum over R va l u e s to s imu l a t e t h e i n t e g r a t i o n over R and f i n a l l y o b t a i n I ( q )
for r in R:

I i n t=I i n t+Lognorm N [ r index ]∗ (4/3∗math . p i ∗ r ∗∗3) ∗∗2 ∗ c o e f f s [ 3 ]∗∗2 ∗ ( ( ( 3∗ (math . s i n ( qval ∗ r )−
qval ∗ r ∗math . cos ( qval ∗ r ) ) /( qval ∗ r ) ∗∗3) ) ∗∗2)

r index=r index+1
Iq . append ( I i n t )

return ( Iq )

#=====================================================
# Plo t i n v a r i a n t
#=====================================================

# fun c t i o n to p l o t i n v a r i a n t from f i l e s
# dataname , e . g . ' i n v t i t r a t i o n r 1 0 KC l v 0 p 3 r u n 1 '
def i nva r i an t2 ( dataname ) :

os . chd i r ( 'C:/ Users /David/Documents/Uni/Master/MSC thesis /SAXS data/ databar i t e ' )
f i l e=(dataname+ ' . csv ' )
a=np . l oadtxt ( f i l e ) .T
p l t . p l o t ( a [ 0 ] , a [ 1 ] )
p l t . x l ab e l ( ' time [ min . ] ' )
p l t . y l ab e l ( 'Q ' )
p l t . s a v e f i g ( os . path . j o i n ( path , dataname+ ' i n v a r i a n t . png ' ) , dpi=800)

#=====================================================
# Funct ion to o b t a i n ove rv i ew p l o t o f one run ,
# dataname as f o l l o w s : ' d a t a t i t r a t i o n r 0 p 1 KC l v 0 p 6 '
#=====================================================
# Labe l range : −7 f o r threenumbered t imeframes ; −6 f o r twonumbered t imeframes
def mul t ip l o t ( dataname , t i nduc t i on ) :

os . chd i r ( 'C:/ Users /David/Documents/Uni/Master/MSC thesis /SAXS data/ da ta t r ea t ed ' )
datapathname= ' . / '+dataname+ ' / '+dataname+ ' '
r ange f i l enames=np . arange ( t induct i on −10, t i nduc t i on +15 ,5)
# Generate a l i s t o f e x p e c t e d f i l e names
e x p e c t e d f i l e s = [ datapathname+” {} . csv ” . format ( i ) for i in r ange f i l enames ]
# F i l t e r t h e l i s t t o j u s t t h e f i l e s t h a t a c t u a l l y e x i s t
a c t u a l f i l e s = [ f for f in e x p e c t e d f i l e s i f i s f i l e ( f ) ]
# Load f i l e s and p l o t da ta in one f i g u r e
#p l t . f i g u r e ( f i g s i z e =(8 ,10) )
for f i l e in a c t u a l f i l e s :

i f f i l e [−7] == ' ' :
nr = −6

else :
nr = −7

a=np . l oadtxt ( f i l e , sk iprows=4) .T
p l t . l o g l o g ( a [ 0 ] [ 1 : 2 0 0 ] , a [ 1 ] [ 1 : 2 0 0 ] , l a b e l= ' frame : '+str ( f i l e ) [ nr :−4])
p l t . l egend ( l o c=1 , prop={ ' s i z e ' : 8})
p l t . xlim (min( a [ 0 ] ) , a [ 0 ] [ 2 0 0 ] )
#p l t . x l im (0 ,10)
p l t . ylim (1 e−8, 1)
p l t . x l ab e l ( 'q ($nmˆ{−1}$ ) ' )
p l t . y l ab e l ( ' I ( q ) ' )

p l t . s a v e f i g ( os . path . j o i n ( path+dataname , dataname+ ' mult ip lo t2 . png ' ) , dpi=800)

#==================================================
# Open f i l e s , o b t a i n means
#==================================================
# Funct ion to open f i l e and c r e a t e data frame
# Example f o r f i l e name : ' d a t a t i t r a t i o n r 0 p 1 KC l v 0 p 6 r u n 2 6 0 . c sv '
def data ( f i l ename ) :

i f f i l ename [−7] == ' ' :
nr = −7

else :
nr = −8

os . chd i r ( 'C:/ Users /David/Documents/Uni/Master/MSC thesis /SAXS data/ da ta t r ea t ed / '+f i l ename [ : nr ] )
a=np . l oadtxt ( f i l ename , sk iprows=18) .T #from f i l e Alex , s k i p rows=18
X=a [ 0 ]
Y=a [ 1 ]
data=pd . DataFrame({ ' q exp ' : X[ 1 : 5 5 ] , ' I exp ' : Y[ 1 : 5 5 ] } )
return ( data )

# Funct ions to o b t a i n means o f d a t a s e t s
def mean2( data1 , data2 ) :

data = pd . DataFrame({ ' x1 ' : data1 [ ' I exp ' ] , ' x2 ' : data2 [ ' I exp ' ]} )
mean = data .mean( ax i s=1)
return (mean)

def mean3( data1 , data2 , data3 ) :
data = pd . DataFrame({ ' x1 ' : data1 [ ' I exp ' ] , ' x2 ' : data2 [ ' I exp ' ] ,

' x3 ' : data3 [ ' I exp ' ]} )
mean = data .mean( ax i s=1)
return (mean)

#========================================
# Funct ion p l o t da ta and f i t t i n g f u n c t i o n
# wi th manual ly d e f i n e d parameters
#========================================
def manua l f i t ( data ) :
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q = data [ ' q exp ' ]
p l t . l o g l o g (q , I q c a l c (q , p) , l a b e l= ' form func t i on sphere f i t ' )
p l t . l o g l o g ( data [ ' q exp ' ] , data [ ' I exp ' ] , l a b e l= ' exper imenta l data ' )

p l t . t i t l e ( 'SAXS data f i t : r =0.1 , v=0.6 mL $minˆ{−1}$ , run 2 , timeframe 61 ' )
p l t . x l ab e l ( 'q ($nmˆ{−1}$ ) ' )
p l t . y l ab e l ( ' I ( q ) ' )
p l t . l egend ( l o c=1 , prop={ ' s i z e ' : 8})

#============================================
# F i t t i n g f u n c t i o n : non l i n ea r l e a s t s qua r e s
#============================================

#de f i n e f un c t i o n to c a l c u l a t e r e s i d u a l s
def r e s i d u a l s (param , y , x ) :

e r r = y−I q c a l c 2 (x , param)
abse r r = abs ( e r r )
return abse r r

#de f i n e f un c t i o n to c a l c u l a t e l e a s t s q u a r e s f i t
def f i t ( data ) :

dataname = ' da ta t i t r a t i on r 1 KCl run1 '
q = data [ ' q exp ' ]
q 4 = 0.00000001∗q∗∗−4
#i n i t i a l g u e s s e s f o r t h e f i t t i n g parameters
N in i=10
mu ini=100
s i n i =0.2
e t a i n i=7e−8
mu2 ini=60
p0 = [ N ini , mu ini , s i n i , e t a i n i , mu2 ini ]
#the l e a s t s q package c a l l s t h e Levenberg−Marquandt a l g o r i t hm
p l sq = l e a s t s q ( r e s i dua l s , p0 , args=(data [ ' I exp ' ] , data [ ' q exp ' ] ) ,

maxfev=2000)
#ob t a i n p l o t
p l t . l o g l o g (q , I q c a l c (q , p l sq [ 0 ] ) , l a b e l= ' Nls f i t ' )
p l t . l o g l o g (q , data [ ' I exp ' ] , ' . ' , l a b e l= ' Experimental data ' )
p l t . l o g l o g (q , q 4 , l a b e l= ' $qˆ{−4}$ ' )
p l t . t i t l e ( ' frame 108 ' )
p l t . x l ab e l ( 'q ($nmˆ{−1}$ ) ' )
p l t . y l ab e l ( ' I ( q ) ' )
p l t . t ext ( 0 . 07 , 0 . 00001 , 'N = '+str (round( p l sq [ 0 ] [ 0 ] , 2 ) ) , f o n t s i z e =8)
p l t . t ext (0 . 07 , 0 . 000006 , '\u03BC = '+str (round( p l sq [ 0 ] [ 1 ] , 0 ) ) , f o n t s i z e =8)
p l t . t ext (0 . 07 , 0 . 0000035 , ' s = '+str (round( p l sq [ 0 ] [ 2 ] , 2 ) ) , f o n t s i z e =8)
p l t . t ext (0 . 07 , 0 . 000002 , '\u03B7 = '+str ( ” { : 0 . 2 e}” . format ( p l sq [ 0 ] [ 3 ] ) ) , f o n t s i z e =8)
p l t . t ext (0 . 07 , 0 . 000001 , '\u03BC '+ ' $ {2} =$ '+str (round( p l sq [ 0 ] [ 4 ] , 0 ) ) , f o n t s i z e =8)
p l t . l egend ( l o c=1 , prop={ ' s i z e ' : 8})
p l t . s a v e f i g ( os . path . j o i n ( path , dataname+ ' b imoda l 108 f i t . png ' ) , dpi=800)
print ( p l sq [ 0 ] )

#i n s t a l l . packages (” p lo t3D ”)
l ibrary ( ”plot3D” )
l ibrary ( ” r g l ” )
l ibrary ( emdbook ) # Logar i tmic a p p l i c a t i o n s
l ibrary ( bbmle ) # Logar i tmic a p p l i c a t i o n s
l ibrary ( numDeriv ) # Logar i tmic a p p l i c a t i o n s
l ibrary ( plot3D )
l ibrary ( vrmlgen )
l ibrary ( t i dy r )
l ibrary ( ggp lot2 )
l ibrary ( s c a l e s )
l ibrary ( base )
l ibrary ( p ly r )
l ibrary ( dplyr )

# Set Work environment
setwd ( ”C:\\ Users\\david\\OneDrive\\Documenten\\MADLs\\Omega100\\ r0 .01 ” )

# Impor t ing d a t a s e t s
NumberOfParticles Run1 <− read . table ( f i l e = ”Omega100 r0 .01 Run1 . txt ” , header = FALSE, sep=”” , dec=” , ”

)
NumberOfParticles Run2 <− read . table ( f i l e = ”Omega100 r0 .01 Run2 . txt ” , header = FALSE, sep=”” , dec=” , ”

)
NumberOfParticles Run3 <− read . table ( f i l e = ”Omega100 r0 .01 Run3 . txt ” , header = FALSE, sep=”” , dec=” , ”

)
NumberOfParticles Run4 <− read . table ( f i l e = ”Omega100 r0 .01 Run4 . txt ” , header = FALSE, sep=”” , dec=” , ”

)
NumberOfParticles Run5 <− read . table ( f i l e = ”Omega100 r0 .01 Run5 . txt ” , header = FALSE, sep=”” , dec=” , ”

)
Dataset Run1 <− read . table ( f i l e = ”RTimesteps r0 .01\\Dataset Run1 . txt ” , header = FALSE, sep=”” , dec=” .

” )
Dataset Run2 <− read . table ( f i l e = ”RTimesteps r0 .01\\Dataset Run2 . txt ” , header = FALSE, sep=”” , dec=” .

” )
Dataset Run3 <− read . table ( f i l e = ”RTimesteps r0 .01\\Dataset Run3 . txt ” , header = FALSE, sep=”” , dec=” .

” )
Dataset Run4 <− read . table ( f i l e = ”RTimesteps r0 .01\\Dataset Run4 . txt ” , header = FALSE, sep=”” , dec=” .

” )
Dataset Run5 <− read . table ( f i l e = ”RTimesteps r0 .01\\Dataset Run5 . txt ” , header = FALSE, sep=”” , dec=” .

” )
Dataset Run6 <− read . table ( f i l e = ”RTimesteps r0 .01\\Dataset Combined . txt ” , header = FALSE, sep=”” ,

dec=” . ” )
S i z e <− NumberOfParticles Run2$V1
Size2 <− log10 ( S i z e )
##############################
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# Create Vec tors #
##############################
#Run1 TimeVectors
Time1 Sca Run1 <− Dataset Run1$V1 [ 1 ]
Time2 Sca Run1 <− Dataset Run1$V1 [ 2 ]
Time3 Sca Run1 <− Dataset Run1$V1 [ 3 ]
Time4 Sca Run1 <− Dataset Run1$V1 [ 4 ]
Time5 Sca Run1 <− Dataset Run1$V1 [ 5 ]
Time6 Sca Run1 <− Dataset Run1$V1 [ 6 ]
Time7 Sca Run1 <− Dataset Run1$V1 [ 7 ]
Time8 Sca Run1 <− Dataset Run1$V1 [ 8 ]
Time9 Sca Run1 <− Dataset Run1$V1 [ 9 ]
Time10 Sca Run1 <− Dataset Run1$V1 [ 1 0 ]
Time11 Sca Run1 <− Dataset Run1$V1 [ 1 1 ]
Time12 Sca Run1 <− Dataset Run1$V1 [ 1 2 ]
Time13 Sca Run1 <− Dataset Run1$V1 [ 1 3 ]
Time14 Sca Run1 <− Dataset Run1$V1 [ 1 4 ]
Time15 Sca Run1 <− Dataset Run1$V1 [ 1 5 ]
Time16 Sca Run1 <− Dataset Run1$V1 [ 1 6 ]
Time17 Sca Run1 <− Dataset Run1$V1 [ 1 7 ]
Time18 Sca Run1 <− Dataset Run1$V1 [ 1 8 ]
Time19 Sca Run1 <− Dataset Run1$V1 [ 1 9 ]
Time20 Sca Run1 <− Dataset Run1$V1 [ 2 0 ]
Time21 Sca Run1 <− Dataset Run1$V1 [ 2 1 ]
Time22 Sca Run1 <− Dataset Run1$V1 [ 2 2 ]
Time23 Sca Run1 <− Dataset Run1$V1 [ 2 3 ]
Time24 Sca Run1 <− Dataset Run1$V1 [ 2 4 ]
Time25 Sca Run1 <− Dataset Run1$V1 [ 2 5 ]
Time26 Sca Run1 <− Dataset Run1$V1 [ 2 6 ]
Time27 Sca Run1 <− Dataset Run1$V1 [ 2 7 ]
Time28 Sca Run1 <− Dataset Run1$V1 [ 2 8 ]
Time29 Sca Run1 <− Dataset Run1$V1 [ 2 9 ]
Time30 Sca Run1 <− Dataset Run1$V1 [ 3 0 ]
Time31 Sca Run1 <− Dataset Run1$V1 [ 3 1 ]
Time32 Sca Run1 <− Dataset Run1$V1 [ 3 2 ]
Time33 Sca Run1 <− Dataset Run1$V1 [ 3 3 ]
Time34 Sca Run1 <− Dataset Run1$V1 [ 3 4 ]
Time35 Sca Run1 <− Dataset Run1$V1 [ 3 5 ]
Time36 Sca Run1 <− Dataset Run1$V1 [ 3 6 ]
Time37 Sca Run1 <− Dataset Run1$V1 [ 3 7 ]
Time38 Sca Run1 <− Dataset Run1$V1 [ 3 8 ]
Time39 Sca Run1 <− Dataset Run1$V1 [ 3 9 ]
Time40 Sca Run1 <− Dataset Run1$V1 [ 4 0 ]
Time41 Sca Run1 <− Dataset Run1$V1 [ 4 1 ]
Time42 Sca Run1 <− Dataset Run1$V1 [ 4 2 ]
Time43 Sca Run1 <− Dataset Run1$V1 [ 4 3 ]
Time44 Sca Run1 <− Dataset Run1$V1 [ 4 4 ]
Time45 Sca Run1 <− Dataset Run1$V1 [ 4 5 ]

Time1 Vec Run1 <− rep (Time1 Sca Run1 , each=150)
Time2 Vec Run1 <− rep (Time2 Sca Run1 , each=150)
Time3 Vec Run1 <− rep (Time3 Sca Run1 , each=150)
Time4 Vec Run1 <− rep (Time4 Sca Run1 , each=150)
Time5 Vec Run1 <− rep (Time5 Sca Run1 , each=150)
Time6 Vec Run1 <− rep (Time6 Sca Run1 , each=150)
Time7 Vec Run1 <− rep (Time7 Sca Run1 , each=150)
Time8 Vec Run1 <− rep (Time8 Sca Run1 , each=150)
Time9 Vec Run1 <− rep (Time9 Sca Run1 , each=150)
Time10 Vec Run1 <− rep (Time10 Sca Run1 , each=150)
Time11 Vec Run1 <− rep (Time11 Sca Run1 , each=150)
Time12 Vec Run1 <− rep (Time12 Sca Run1 , each=150)
Time13 Vec Run1 <− rep (Time13 Sca Run1 , each=150)
Time14 Vec Run1 <− rep (Time14 Sca Run1 , each=150)
Time15 Vec Run1 <− rep (Time15 Sca Run1 , each=150)
Time16 Vec Run1 <− rep (Time16 Sca Run1 , each=150)
Time17 Vec Run1 <− rep (Time17 Sca Run1 , each=150)
Time18 Vec Run1 <− rep (Time18 Sca Run1 , each=150)
Time19 Vec Run1 <− rep (Time19 Sca Run1 , each=150)
Time20 Vec Run1 <− rep (Time20 Sca Run1 , each=150)
Time21 Vec Run1 <− rep (Time21 Sca Run1 , each=150)
Time22 Vec Run1 <− rep (Time22 Sca Run1 , each=150)
Time23 Vec Run1 <− rep (Time23 Sca Run1 , each=150)
Time24 Vec Run1 <− rep (Time24 Sca Run1 , each=150)
Time25 Vec Run1 <− rep (Time25 Sca Run1 , each=150)
Time26 Vec Run1 <− rep (Time26 Sca Run1 , each=150)
Time27 Vec Run1 <− rep (Time27 Sca Run1 , each=150)
Time28 Vec Run1 <− rep (Time28 Sca Run1 , each=150)
Time29 Vec Run1 <− rep (Time29 Sca Run1 , each=150)
Time30 Vec Run1 <− rep (Time30 Sca Run1 , each=150)
Time31 Vec Run1 <− rep (Time31 Sca Run1 , each=150)
Time32 Vec Run1 <− rep (Time32 Sca Run1 , each=150)
Time33 Vec Run1 <− rep (Time33 Sca Run1 , each=150)
Time34 Vec Run1 <− rep (Time34 Sca Run1 , each=150)
Time35 Vec Run1 <− rep (Time35 Sca Run1 , each=150)
Time36 Vec Run1 <− rep (Time36 Sca Run1 , each=150)
Time37 Vec Run1 <− rep (Time37 Sca Run1 , each=150)
Time38 Vec Run1 <− rep (Time38 Sca Run1 , each=150)
Time39 Vec Run1 <− rep (Time39 Sca Run1 , each=150)
Time40 Vec Run1 <− rep (Time40 Sca Run1 , each=150)
Time41 Vec Run1 <− rep (Time41 Sca Run1 , each=150)
Time42 Vec Run1 <− rep (Time42 Sca Run1 , each=150)
Time43 Vec Run1 <− rep (Time43 Sca Run1 , each=150)
Time44 Vec Run1 <− rep (Time44 Sca Run1 , each=150)
Time45 Vec Run1 <− rep (Time45 Sca Run1 , each=150)

# #Run2 Timevec tors
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Time1 Sca Run2 <− Dataset Run2$V1 [ 1 ]
Time2 Sca Run2 <− Dataset Run2$V1 [ 2 ]
Time3 Sca Run2 <− Dataset Run2$V1 [ 3 ]
Time4 Sca Run2 <− Dataset Run2$V1 [ 4 ]
Time5 Sca Run2 <− Dataset Run2$V1 [ 5 ]
Time6 Sca Run2 <− Dataset Run2$V1 [ 6 ]
Time7 Sca Run2 <− Dataset Run2$V1 [ 7 ]
Time8 Sca Run2 <− Dataset Run2$V1 [ 8 ]
Time9 Sca Run2 <− Dataset Run2$V1 [ 9 ]
Time10 Sca Run2 <− Dataset Run2$V1 [ 1 0 ]
Time11 Sca Run2 <− Dataset Run2$V1 [ 1 1 ]
Time12 Sca Run2 <− Dataset Run2$V1 [ 1 2 ]
Time13 Sca Run2 <− Dataset Run2$V1 [ 1 3 ]
Time14 Sca Run2 <− Dataset Run2$V1 [ 1 4 ]
Time15 Sca Run2 <− Dataset Run2$V1 [ 1 5 ]
Time16 Sca Run2 <− Dataset Run2$V1 [ 1 6 ]
Time17 Sca Run2 <− Dataset Run2$V1 [ 1 7 ]
Time18 Sca Run2 <− Dataset Run2$V1 [ 1 8 ]
Time19 Sca Run2 <− Dataset Run2$V1 [ 1 9 ]
Time20 Sca Run2 <− Dataset Run2$V1 [ 2 0 ]
Time21 Sca Run2 <− Dataset Run2$V1 [ 2 1 ]
Time22 Sca Run2 <− Dataset Run2$V1 [ 2 2 ]
Time23 Sca Run2 <− Dataset Run2$V1 [ 2 3 ]
Time24 Sca Run2 <− Dataset Run2$V1 [ 2 4 ]
Time25 Sca Run2 <− Dataset Run2$V1 [ 2 5 ]
Time26 Sca Run2 <− Dataset Run2$V1 [ 2 6 ]
Time27 Sca Run2 <− Dataset Run2$V1 [ 2 7 ]
Time28 Sca Run2 <− Dataset Run2$V1 [ 2 8 ]
Time29 Sca Run2 <− Dataset Run2$V1 [ 2 9 ]
Time30 Sca Run2 <− Dataset Run2$V1 [ 3 0 ]
Time31 Sca Run2 <− Dataset Run2$V1 [ 3 1 ]
Time32 Sca Run2 <− Dataset Run2$V1 [ 3 2 ]
Time33 Sca Run2 <− Dataset Run2$V1 [ 3 3 ]
Time34 Sca Run2 <− Dataset Run2$V1 [ 3 4 ]
Time35 Sca Run2 <− Dataset Run2$V1 [ 3 5 ]
Time36 Sca Run2 <− Dataset Run2$V1 [ 3 6 ]
Time37 Sca Run2 <− Dataset Run2$V1 [ 3 7 ]
Time38 Sca Run2 <− Dataset Run2$V1 [ 3 8 ]
Time39 Sca Run2 <− Dataset Run2$V1 [ 3 9 ]
Time40 Sca Run2 <− Dataset Run2$V1 [ 4 0 ]
Time41 Sca Run2 <− Dataset Run2$V1 [ 4 1 ]
Time42 Sca Run2 <− Dataset Run2$V1 [ 4 2 ]
Time43 Sca Run2 <− Dataset Run2$V1 [ 4 3 ]
Time44 Sca Run2 <− Dataset Run2$V1 [ 4 4 ]
Time45 Sca Run2 <− Dataset Run2$V1 [ 4 5 ]

Time1 Vec Run2 <− rep (Time1 Sca Run2 , each=150)
Time2 Vec Run2 <− rep (Time2 Sca Run2 , each=150)
Time3 Vec Run2 <− rep (Time3 Sca Run2 , each=150)
Time4 Vec Run2 <− rep (Time4 Sca Run2 , each=150)
Time5 Vec Run2 <− rep (Time5 Sca Run2 , each=150)
Time6 Vec Run2 <− rep (Time6 Sca Run2 , each=150)
Time7 Vec Run2 <− rep (Time7 Sca Run2 , each=150)
Time8 Vec Run2 <− rep (Time8 Sca Run2 , each=150)
Time9 Vec Run2 <− rep (Time9 Sca Run2 , each=150)
Time10 Vec Run2 <− rep (Time10 Sca Run2 , each=150)
Time11 Vec Run2 <− rep (Time11 Sca Run2 , each=150)
Time12 Vec Run2 <− rep (Time12 Sca Run2 , each=150)
Time13 Vec Run2 <− rep (Time13 Sca Run2 , each=150)
Time14 Vec Run2 <− rep (Time14 Sca Run2 , each=150)
Time15 Vec Run2 <− rep (Time15 Sca Run2 , each=150)
Time16 Vec Run2 <− rep (Time16 Sca Run2 , each=150)
Time17 Vec Run2 <− rep (Time17 Sca Run2 , each=150)
Time18 Vec Run2 <− rep (Time18 Sca Run2 , each=150)
Time19 Vec Run2 <− rep (Time19 Sca Run2 , each=150)
Time20 Vec Run2 <− rep (Time20 Sca Run2 , each=150)
Time21 Vec Run2 <− rep (Time21 Sca Run2 , each=150)
Time22 Vec Run2 <− rep (Time22 Sca Run2 , each=150)
Time23 Vec Run2 <− rep (Time23 Sca Run2 , each=150)
Time24 Vec Run2 <− rep (Time24 Sca Run2 , each=150)
Time25 Vec Run2 <− rep (Time25 Sca Run2 , each=150)
Time26 Vec Run2 <− rep (Time26 Sca Run2 , each=150)
Time27 Vec Run2 <− rep (Time27 Sca Run2 , each=150)
Time28 Vec Run2 <− rep (Time28 Sca Run2 , each=150)
Time29 Vec Run2 <− rep (Time29 Sca Run2 , each=150)
Time30 Vec Run2 <− rep (Time30 Sca Run2 , each=150)
Time31 Vec Run2 <− rep (Time31 Sca Run2 , each=150)
Time32 Vec Run2 <− rep (Time32 Sca Run2 , each=150)
Time33 Vec Run2 <− rep (Time33 Sca Run2 , each=150)
Time34 Vec Run2 <− rep (Time34 Sca Run2 , each=150)
Time35 Vec Run2 <− rep (Time35 Sca Run2 , each=150)
Time36 Vec Run2 <− rep (Time36 Sca Run2 , each=150)
Time37 Vec Run2 <− rep (Time37 Sca Run2 , each=150)
Time38 Vec Run2 <− rep (Time38 Sca Run2 , each=150)
Time39 Vec Run2 <− rep (Time39 Sca Run2 , each=150)
Time40 Vec Run2 <− rep (Time40 Sca Run2 , each=150)
Time41 Vec Run2 <− rep (Time41 Sca Run2 , each=150)
Time42 Vec Run2 <− rep (Time42 Sca Run2 , each=150)
Time43 Vec Run2 <− rep (Time43 Sca Run2 , each=150)
Time44 Vec Run2 <− rep (Time44 Sca Run2 , each=150)
Time45 Vec Run2 <− rep (Time45 Sca Run2 , each=150)
#
# #Run3 TimeVectors
Time1 Sca Run3 <− Dataset Run3$V1 [ 1 ]
Time2 Sca Run3 <− Dataset Run3$V1 [ 2 ]
Time3 Sca Run3 <− Dataset Run3$V1 [ 3 ]
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Time4 Sca Run3 <− Dataset Run3$V1 [ 4 ]
Time5 Sca Run3 <− Dataset Run3$V1 [ 5 ]
Time6 Sca Run3 <− Dataset Run3$V1 [ 6 ]
Time7 Sca Run3 <− Dataset Run3$V1 [ 7 ]
Time8 Sca Run3 <− Dataset Run3$V1 [ 8 ]
Time9 Sca Run3 <− Dataset Run3$V1 [ 9 ]
Time10 Sca Run3 <− Dataset Run3$V1 [ 1 0 ]
Time11 Sca Run3 <− Dataset Run3$V1 [ 1 1 ]
Time12 Sca Run3 <− Dataset Run3$V1 [ 1 2 ]
Time13 Sca Run3 <− Dataset Run3$V1 [ 1 3 ]
Time14 Sca Run3 <− Dataset Run3$V1 [ 1 4 ]
Time15 Sca Run3 <− Dataset Run3$V1 [ 1 5 ]
Time16 Sca Run3 <− Dataset Run3$V1 [ 1 6 ]
Time17 Sca Run3 <− Dataset Run3$V1 [ 1 7 ]
Time18 Sca Run3 <− Dataset Run3$V1 [ 1 8 ]
Time19 Sca Run3 <− Dataset Run3$V1 [ 1 9 ]
Time20 Sca Run3 <− Dataset Run3$V1 [ 2 0 ]
Time21 Sca Run3 <− Dataset Run3$V1 [ 2 1 ]
Time22 Sca Run3 <− Dataset Run3$V1 [ 2 2 ]
Time23 Sca Run3 <− Dataset Run3$V1 [ 2 3 ]
Time24 Sca Run3 <− Dataset Run3$V1 [ 2 4 ]
Time25 Sca Run3 <− Dataset Run3$V1 [ 2 5 ]
Time26 Sca Run3 <− Dataset Run3$V1 [ 2 6 ]
Time27 Sca Run3 <− Dataset Run3$V1 [ 2 7 ]
Time28 Sca Run3 <− Dataset Run3$V1 [ 2 8 ]
Time29 Sca Run3 <− Dataset Run3$V1 [ 2 9 ]
Time30 Sca Run3 <− Dataset Run3$V1 [ 3 0 ]
Time31 Sca Run3 <− Dataset Run3$V1 [ 3 1 ]
Time32 Sca Run3 <− Dataset Run3$V1 [ 3 2 ]
Time33 Sca Run3 <− Dataset Run3$V1 [ 3 3 ]
Time34 Sca Run3 <− Dataset Run3$V1 [ 3 4 ]
Time35 Sca Run3 <− Dataset Run3$V1 [ 3 5 ]
Time36 Sca Run3 <− Dataset Run3$V1 [ 3 6 ]
Time37 Sca Run3 <− Dataset Run3$V1 [ 3 7 ]
Time38 Sca Run3 <− Dataset Run3$V1 [ 3 8 ]
Time39 Sca Run3 <− Dataset Run3$V1 [ 3 9 ]
Time40 Sca Run3 <− Dataset Run3$V1 [ 4 0 ]
Time41 Sca Run3 <− Dataset Run3$V1 [ 4 1 ]
Time42 Sca Run3 <− Dataset Run3$V1 [ 4 2 ]
Time43 Sca Run3 <− Dataset Run3$V1 [ 4 3 ]
Time44 Sca Run3 <− Dataset Run3$V1 [ 4 4 ]
Time45 Sca Run3 <− Dataset Run3$V1 [ 4 5 ]

Time1 Vec Run3 <− rep (Time1 Sca Run3 , each=150)
Time2 Vec Run3 <− rep (Time2 Sca Run3 , each=150)
Time3 Vec Run3 <− rep (Time3 Sca Run3 , each=150)
Time4 Vec Run3 <− rep (Time4 Sca Run3 , each=150)
Time5 Vec Run3 <− rep (Time5 Sca Run3 , each=150)
Time6 Vec Run3 <− rep (Time6 Sca Run3 , each=150)
Time7 Vec Run3 <− rep (Time7 Sca Run3 , each=150)
Time8 Vec Run3 <− rep (Time8 Sca Run3 , each=150)
Time9 Vec Run3 <− rep (Time9 Sca Run3 , each=150)
Time10 Vec Run3 <− rep (Time10 Sca Run3 , each=150)
Time11 Vec Run3 <− rep (Time11 Sca Run3 , each=150)
Time12 Vec Run3 <− rep (Time12 Sca Run3 , each=150)
Time13 Vec Run3 <− rep (Time13 Sca Run3 , each=150)
Time14 Vec Run3 <− rep (Time14 Sca Run3 , each=150)
Time15 Vec Run3 <− rep (Time15 Sca Run3 , each=150)
Time16 Vec Run3 <− rep (Time16 Sca Run3 , each=150)
Time17 Vec Run3 <− rep (Time17 Sca Run3 , each=150)
Time18 Vec Run3 <− rep (Time18 Sca Run3 , each=150)
Time19 Vec Run3 <− rep (Time19 Sca Run3 , each=150)
Time20 Vec Run3 <− rep (Time20 Sca Run3 , each=150)
Time21 Vec Run3 <− rep (Time21 Sca Run3 , each=150)
Time22 Vec Run3 <− rep (Time22 Sca Run3 , each=150)
Time23 Vec Run3 <− rep (Time23 Sca Run3 , each=150)
Time24 Vec Run3 <− rep (Time24 Sca Run3 , each=150)
Time25 Vec Run3 <− rep (Time25 Sca Run3 , each=150)
Time26 Vec Run3 <− rep (Time26 Sca Run3 , each=150)
Time27 Vec Run3 <− rep (Time27 Sca Run3 , each=150)
Time28 Vec Run3 <− rep (Time28 Sca Run3 , each=150)
Time29 Vec Run3 <− rep (Time29 Sca Run3 , each=150)
Time30 Vec Run3 <− rep (Time30 Sca Run3 , each=150)
Time31 Vec Run3 <− rep (Time31 Sca Run3 , each=150)
Time32 Vec Run3 <− rep (Time32 Sca Run3 , each=150)
Time33 Vec Run3 <− rep (Time33 Sca Run3 , each=150)
Time34 Vec Run3 <− rep (Time34 Sca Run3 , each=150)
Time35 Vec Run3 <− rep (Time35 Sca Run3 , each=150)
Time36 Vec Run3 <− rep (Time36 Sca Run3 , each=150)
Time37 Vec Run3 <− rep (Time37 Sca Run3 , each=150)
Time38 Vec Run3 <− rep (Time38 Sca Run3 , each=150)
Time39 Vec Run3 <− rep (Time39 Sca Run3 , each=150)
Time40 Vec Run3 <− rep (Time40 Sca Run3 , each=150)
Time41 Vec Run3 <− rep (Time41 Sca Run3 , each=150)
Time42 Vec Run3 <− rep (Time42 Sca Run3 , each=150)
Time43 Vec Run3 <− rep (Time43 Sca Run3 , each=150)
Time44 Vec Run3 <− rep (Time44 Sca Run3 , each=150)
Time45 Vec Run3 <− rep (Time45 Sca Run3 , each=150)
#
#Run4 TimeVectors
Time1 Sca Run4 <− Dataset Run4$V1 [ 1 ]
Time2 Sca Run4 <− Dataset Run4$V1 [ 2 ]
Time3 Sca Run4 <− Dataset Run4$V1 [ 3 ]
Time4 Sca Run4 <− Dataset Run4$V1 [ 4 ]
Time5 Sca Run4 <− Dataset Run4$V1 [ 5 ]
Time6 Sca Run4 <− Dataset Run4$V1 [ 6 ]
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Time7 Sca Run4 <− Dataset Run4$V1 [ 7 ]
Time8 Sca Run4 <− Dataset Run4$V1 [ 8 ]
Time9 Sca Run4 <− Dataset Run4$V1 [ 9 ]
Time10 Sca Run4 <− Dataset Run4$V1 [ 1 0 ]
Time11 Sca Run4 <− Dataset Run4$V1 [ 1 1 ]
Time12 Sca Run4 <− Dataset Run4$V1 [ 1 2 ]
Time13 Sca Run4 <− Dataset Run4$V1 [ 1 3 ]
Time14 Sca Run4 <− Dataset Run4$V1 [ 1 4 ]
Time15 Sca Run4 <− Dataset Run4$V1 [ 1 5 ]
Time16 Sca Run4 <− Dataset Run4$V1 [ 1 6 ]
Time17 Sca Run4 <− Dataset Run4$V1 [ 1 7 ]
Time18 Sca Run4 <− Dataset Run4$V1 [ 1 8 ]
Time19 Sca Run4 <− Dataset Run4$V1 [ 1 9 ]
Time20 Sca Run4 <− Dataset Run4$V1 [ 2 0 ]
Time21 Sca Run4 <− Dataset Run4$V1 [ 2 1 ]
Time22 Sca Run4 <− Dataset Run4$V1 [ 2 2 ]
Time23 Sca Run4 <− Dataset Run4$V1 [ 2 3 ]
Time24 Sca Run4 <− Dataset Run4$V1 [ 2 4 ]
Time25 Sca Run4 <− Dataset Run4$V1 [ 2 5 ]
Time26 Sca Run4 <− Dataset Run4$V1 [ 2 6 ]
Time27 Sca Run4 <− Dataset Run4$V1 [ 2 7 ]
Time28 Sca Run4 <− Dataset Run4$V1 [ 2 8 ]
Time29 Sca Run4 <− Dataset Run4$V1 [ 2 9 ]
Time30 Sca Run4 <− Dataset Run4$V1 [ 3 0 ]
Time31 Sca Run4 <− Dataset Run4$V1 [ 3 1 ]
Time32 Sca Run4 <− Dataset Run4$V1 [ 3 2 ]
Time33 Sca Run4 <− Dataset Run4$V1 [ 3 3 ]
Time34 Sca Run4 <− Dataset Run4$V1 [ 3 4 ]
Time35 Sca Run4 <− Dataset Run4$V1 [ 3 5 ]
Time36 Sca Run4 <− Dataset Run4$V1 [ 3 6 ]
Time37 Sca Run4 <− Dataset Run4$V1 [ 3 7 ]
Time38 Sca Run4 <− Dataset Run4$V1 [ 3 8 ]
Time39 Sca Run4 <− Dataset Run4$V1 [ 3 9 ]
Time40 Sca Run4 <− Dataset Run4$V1 [ 4 0 ]
Time41 Sca Run4 <− Dataset Run4$V1 [ 4 1 ]
Time42 Sca Run4 <− Dataset Run4$V1 [ 4 2 ]
Time43 Sca Run4 <− Dataset Run4$V1 [ 4 3 ]
Time44 Sca Run4 <− Dataset Run4$V1 [ 4 4 ]
Time45 Sca Run4 <− Dataset Run4$V1 [ 4 5 ]

Time1 Vec Run4 <− rep (Time1 Sca Run4 , each=150)
Time2 Vec Run4 <− rep (Time2 Sca Run4 , each=150)
Time3 Vec Run4 <− rep (Time3 Sca Run4 , each=150)
Time4 Vec Run4 <− rep (Time4 Sca Run4 , each=150)
Time5 Vec Run4 <− rep (Time5 Sca Run4 , each=150)
Time6 Vec Run4 <− rep (Time6 Sca Run4 , each=150)
Time7 Vec Run4 <− rep (Time7 Sca Run4 , each=150)
Time8 Vec Run4 <− rep (Time8 Sca Run4 , each=150)
Time9 Vec Run4 <− rep (Time9 Sca Run4 , each=150)
Time10 Vec Run4 <− rep (Time10 Sca Run4 , each=150)
Time11 Vec Run4 <− rep (Time11 Sca Run4 , each=150)
Time12 Vec Run4 <− rep (Time12 Sca Run4 , each=150)
Time13 Vec Run4 <− rep (Time13 Sca Run4 , each=150)
Time14 Vec Run4 <− rep (Time14 Sca Run4 , each=150)
Time15 Vec Run4 <− rep (Time15 Sca Run4 , each=150)
Time16 Vec Run4 <− rep (Time16 Sca Run4 , each=150)
Time17 Vec Run4 <− rep (Time17 Sca Run4 , each=150)
Time18 Vec Run4 <− rep (Time18 Sca Run4 , each=150)
Time19 Vec Run4 <− rep (Time19 Sca Run4 , each=150)
Time20 Vec Run4 <− rep (Time20 Sca Run4 , each=150)
Time21 Vec Run4 <− rep (Time21 Sca Run4 , each=150)
Time22 Vec Run4 <− rep (Time22 Sca Run4 , each=150)
Time23 Vec Run4 <− rep (Time23 Sca Run4 , each=150)
Time24 Vec Run4 <− rep (Time24 Sca Run4 , each=150)
Time25 Vec Run4 <− rep (Time25 Sca Run4 , each=150)
Time26 Vec Run4 <− rep (Time26 Sca Run4 , each=150)
Time27 Vec Run4 <− rep (Time27 Sca Run4 , each=150)
Time28 Vec Run4 <− rep (Time28 Sca Run4 , each=150)
Time29 Vec Run4 <− rep (Time29 Sca Run4 , each=150)
Time30 Vec Run4 <− rep (Time30 Sca Run4 , each=150)
Time31 Vec Run4 <− rep (Time31 Sca Run4 , each=150)
Time32 Vec Run4 <− rep (Time32 Sca Run4 , each=150)
Time33 Vec Run4 <− rep (Time33 Sca Run4 , each=150)
Time34 Vec Run4 <− rep (Time34 Sca Run4 , each=150)
Time35 Vec Run4 <− rep (Time35 Sca Run4 , each=150)
Time36 Vec Run4 <− rep (Time36 Sca Run4 , each=150)
Time37 Vec Run4 <− rep (Time37 Sca Run4 , each=150)
Time38 Vec Run4 <− rep (Time38 Sca Run4 , each=150)
Time39 Vec Run4 <− rep (Time39 Sca Run4 , each=150)
Time40 Vec Run4 <− rep (Time40 Sca Run4 , each=150)
Time41 Vec Run4 <− rep (Time41 Sca Run4 , each=150)
Time42 Vec Run4 <− rep (Time42 Sca Run4 , each=150)
Time43 Vec Run4 <− rep (Time43 Sca Run4 , each=150)
Time44 Vec Run4 <− rep (Time44 Sca Run4 , each=150)
Time45 Vec Run4 <− rep (Time45 Sca Run4 , each=150)
#
# #Run5 TimeVectors
Time1 Sca Run5 <− Dataset Run5$V1 [ 1 ]
Time2 Sca Run5 <− Dataset Run5$V1 [ 2 ]
Time3 Sca Run5 <− Dataset Run5$V1 [ 3 ]
Time4 Sca Run5 <− Dataset Run5$V1 [ 4 ]
Time5 Sca Run5 <− Dataset Run5$V1 [ 5 ]
Time6 Sca Run5 <− Dataset Run5$V1 [ 6 ]
Time7 Sca Run5 <− Dataset Run5$V1 [ 7 ]
Time8 Sca Run5 <− Dataset Run5$V1 [ 8 ]
Time9 Sca Run5 <− Dataset Run5$V1 [ 9 ]
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Time10 Sca Run5 <− Dataset Run5$V1 [ 1 0 ]
Time11 Sca Run5 <− Dataset Run5$V1 [ 1 1 ]
Time12 Sca Run5 <− Dataset Run5$V1 [ 1 2 ]
Time13 Sca Run5 <− Dataset Run5$V1 [ 1 3 ]
Time14 Sca Run5 <− Dataset Run5$V1 [ 1 4 ]
Time15 Sca Run5 <− Dataset Run5$V1 [ 1 5 ]
Time16 Sca Run5 <− Dataset Run5$V1 [ 1 6 ]
Time17 Sca Run5 <− Dataset Run5$V1 [ 1 7 ]
Time18 Sca Run5 <− Dataset Run5$V1 [ 1 8 ]
Time19 Sca Run5 <− Dataset Run5$V1 [ 1 9 ]
Time20 Sca Run5 <− Dataset Run5$V1 [ 2 0 ]
Time21 Sca Run5 <− Dataset Run5$V1 [ 2 1 ]
Time22 Sca Run5 <− Dataset Run5$V1 [ 2 2 ]
Time23 Sca Run5 <− Dataset Run5$V1 [ 2 3 ]
Time24 Sca Run5 <− Dataset Run5$V1 [ 2 4 ]
Time25 Sca Run5 <− Dataset Run5$V1 [ 2 5 ]
Time26 Sca Run5 <− Dataset Run5$V1 [ 2 6 ]
Time27 Sca Run5 <− Dataset Run5$V1 [ 2 7 ]
Time28 Sca Run5 <− Dataset Run5$V1 [ 2 8 ]
Time29 Sca Run5 <− Dataset Run5$V1 [ 2 9 ]
Time30 Sca Run5 <− Dataset Run5$V1 [ 3 0 ]
Time31 Sca Run5 <− Dataset Run5$V1 [ 3 1 ]
Time32 Sca Run5 <− Dataset Run5$V1 [ 3 2 ]
Time33 Sca Run5 <− Dataset Run5$V1 [ 3 3 ]
Time34 Sca Run5 <− Dataset Run5$V1 [ 3 4 ]
Time35 Sca Run5 <− Dataset Run5$V1 [ 3 5 ]
Time36 Sca Run5 <− Dataset Run5$V1 [ 3 6 ]
Time37 Sca Run5 <− Dataset Run5$V1 [ 3 7 ]
Time38 Sca Run5 <− Dataset Run5$V1 [ 3 8 ]
Time39 Sca Run5 <− Dataset Run5$V1 [ 3 9 ]
Time40 Sca Run5 <− Dataset Run5$V1 [ 4 0 ]
Time41 Sca Run5 <− Dataset Run5$V1 [ 4 1 ]
Time42 Sca Run5 <− Dataset Run5$V1 [ 4 2 ]
Time43 Sca Run5 <− Dataset Run5$V1 [ 4 3 ]
Time44 Sca Run5 <− Dataset Run5$V1 [ 4 4 ]
Time45 Sca Run5 <− Dataset Run5$V1 [ 4 5 ]

Time1 Vec Run5 <− rep (Time1 Sca Run5 , each=150)
Time2 Vec Run5 <− rep (Time2 Sca Run5 , each=150)
Time3 Vec Run5 <− rep (Time3 Sca Run5 , each=150)
Time4 Vec Run5 <− rep (Time4 Sca Run5 , each=150)
Time5 Vec Run5 <− rep (Time5 Sca Run5 , each=150)
Time6 Vec Run5 <− rep (Time6 Sca Run5 , each=150)
Time7 Vec Run5 <− rep (Time7 Sca Run5 , each=150)
Time8 Vec Run5 <− rep (Time8 Sca Run5 , each=150)
Time9 Vec Run5 <− rep (Time9 Sca Run5 , each=150)
Time10 Vec Run5 <− rep (Time10 Sca Run5 , each=150)
Time11 Vec Run5 <− rep (Time11 Sca Run5 , each=150)
Time12 Vec Run5 <− rep (Time12 Sca Run5 , each=150)
Time13 Vec Run5 <− rep (Time13 Sca Run5 , each=150)
Time14 Vec Run5 <− rep (Time14 Sca Run5 , each=150)
Time15 Vec Run5 <− rep (Time15 Sca Run5 , each=150)
Time16 Vec Run5 <− rep (Time16 Sca Run5 , each=150)
Time17 Vec Run5 <− rep (Time17 Sca Run5 , each=150)
Time18 Vec Run5 <− rep (Time18 Sca Run5 , each=150)
Time19 Vec Run5 <− rep (Time19 Sca Run5 , each=150)
Time20 Vec Run5 <− rep (Time20 Sca Run5 , each=150)
Time21 Vec Run5 <− rep (Time21 Sca Run5 , each=150)
Time22 Vec Run5 <− rep (Time22 Sca Run5 , each=150)
Time23 Vec Run5 <− rep (Time23 Sca Run5 , each=150)
Time24 Vec Run5 <− rep (Time24 Sca Run5 , each=150)
Time25 Vec Run5 <− rep (Time25 Sca Run5 , each=150)
Time26 Vec Run5 <− rep (Time26 Sca Run5 , each=150)
Time27 Vec Run5 <− rep (Time27 Sca Run5 , each=150)
Time28 Vec Run5 <− rep (Time28 Sca Run5 , each=150)
Time29 Vec Run5 <− rep (Time29 Sca Run5 , each=150)
Time30 Vec Run5 <− rep (Time30 Sca Run5 , each=150)
Time31 Vec Run5 <− rep (Time31 Sca Run5 , each=150)
Time32 Vec Run5 <− rep (Time32 Sca Run5 , each=150)
Time33 Vec Run5 <− rep (Time33 Sca Run5 , each=150)
Time34 Vec Run5 <− rep (Time34 Sca Run5 , each=150)
Time35 Vec Run5 <− rep (Time35 Sca Run5 , each=150)
Time36 Vec Run5 <− rep (Time36 Sca Run5 , each=150)
Time37 Vec Run5 <− rep (Time37 Sca Run5 , each=150)
Time38 Vec Run5 <− rep (Time38 Sca Run5 , each=150)
Time39 Vec Run5 <− rep (Time39 Sca Run5 , each=150)
Time40 Vec Run5 <− rep (Time40 Sca Run5 , each=150)
Time41 Vec Run5 <− rep (Time41 Sca Run5 , each=150)
Time42 Vec Run5 <− rep (Time42 Sca Run5 , each=150)
Time43 Vec Run5 <− rep (Time43 Sca Run5 , each=150)
Time44 Vec Run5 <− rep (Time44 Sca Run5 , each=150)
Time45 Vec Run5 <− rep (Time45 Sca Run5 , each=150)
#Run1 graph
t i f f ( ”Run1 r0 .01 Omega100 Grid MADLS In t en s i t y . t i f f ” , un i t s=” in ” , width=5, he ight=5, r e s =300)

Time Vec1 <− as . data . frame (c (Time1 Vec Run1 , Time2 Vec Run1 , Time3 Vec Run1 , Time4 Vec Run1 , Time5 Vec
Run1 , Time6 Vec Run1 , Time7 Vec Run1 ,

Time8 Vec Run1 , Time9 Vec Run1 , Time10 Vec Run1 , Time11 Vec Run1 , Time12
Vec Run1 , Time13 Vec Run1 , Time14 Vec Run1 ,

Time15 Vec Run1 , Time16 Vec Run1 , Time17 Vec Run1 , Time18 Vec Run1 ,
Time19 Vec Run1 , Time20 Vec Run1 , Time21 Vec Run1 ,

Time22 Vec Run1 , Time23 Vec Run1 , Time24 Vec Run1 , Time25 Vec Run1 ,
Time26 Vec Run1 , Time27 Vec Run1 , Time28 Vec Run1 ,

Time29 Vec Run1 , Time30 Vec Run1 , Time31 Vec Run1 , Time32 Vec Run1 ,
Time33 Vec Run1 , Time34 Vec Run1 , Time35 Vec Run1 ,

Time36 Vec Run1 , Time37 Vec Run1 , Time38 Vec Run1 , Time39 Vec Run1 ,

118



Time40 Vec Run1 , Time41 Vec Run1 , Time42 Vec Run1 ,
Time43 Vec Run1 , Time44 Vec Run1 , Time45 Vec Run1) )

S i z e Vec1 <− as . data . frame (c ( Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,
Size2 , Size2 ,

Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,
Size2 , Size2 ,

Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,
Size2 , Size2 ,

Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , S i ze2 ) )
Number Vec1 <− as . data . frame (c ( NumberOfParticles Run1$V2 , NumberOfParticles Run1$V3 , NumberOfParticles

Run1$V4 , NumberOfParticles Run1$V5 , NumberOfParticles Run1$V6 , NumberOfParticles Run1$V7 ,
NumberOfParticles Run1$V8 ,

NumberOfParticles Run1$V9 , NumberOfParticles Run1$V10 ,
NumberOfParticles Run1$V11 , NumberOfParticles Run1$V12 ,
NumberOfParticles Run1$V13 , NumberOfParticles Run1$V14 ,
NumberOfParticles Run1$V15 ,

NumberOfParticles Run1$V16 , NumberOfParticles Run1$V17 ,
NumberOfParticles Run1$V18 , NumberOfParticles Run1$V19 ,
NumberOfParticles Run1$V20 , NumberOfParticles Run1$V21 ,
NumberOfParticles Run1$V22 ,

NumberOfParticles Run1$V23 , NumberOfParticles Run1$V24 ,
NumberOfParticles Run1$V25 , NumberOfParticles Run1$V26 ,
NumberOfParticles Run1$V27 , NumberOfParticles Run1$V28 ,
NumberOfParticles Run1$V29 ,

NumberOfParticles Run1$V30 , NumberOfParticles Run1$V31 ,
NumberOfParticles Run1$V32 , NumberOfParticles Run1$V33 ,
NumberOfParticles Run1$V34 , NumberOfParticles Run1$V35 ,
NumberOfParticles Run1$V36 ,

NumberOfParticles Run1$V37 , NumberOfParticles Run1$V38 ,
NumberOfParticles Run1$V39 , NumberOfParticles Run1$V40 ,
NumberOfParticles Run1$V41 , NumberOfParticles Run1$V42 ,
NumberOfParticles Run1$V43 ,

NumberOfParticles Run1$V44 , NumberOfParticles Run1$V45 ,
NumberOfParticles Run1$V46) )

Dataset Run1 2 <− as . data . frame (cbind (Time Vec1 , S i z e Vec1 , Number Vec1 ) )

write . table ( Dataset Run1 2 , f i l e=”Omega100 r0 .01 Run1 GRID MADLS In t en s i t y . txt ” ,
row .names=FALSE, col .names=FALSE, sep=” , ” )

Dataset Run1 3 <− read . table ( f i l e = ”Omega100 r0 .01 Run1 GRID MADLS In t en s i t y . txt ” , header = FALSE,
sep=” , ” , dec=” . ” )

Grid Time1 <− Dataset Run1 3$V1
Grid S i ze1 <− Dataset Run1 3$V2
Grid Number1 <− Dataset Run1 3$V3

Dataset Run1 3 %>% ggplot ( aes (x = Grid Size1 , y = Grid Time1 , z = Grid Number1 , f i l l = Grid Number1) )
+

geom ra s t e r ( aes ( f i l l =Grid Number1) ) +
scale y cont inuous ( breaks = seq (0 , 10500 , by = 1500) ) +
scale f i l l g rad i ent ( low=”blue ” , high=” ye l low ” ) #l im i t s=c (0 ,50)

dev . of f ( )

#Run2 Graph
t i f f ( ”Run2 r0 .01 Omega100 Grid MADLS In t en s i t y . t i f f ” , un i t s=” in ” , width=5, he ight=5, r e s =300)

Time Vec2 <− as . data . frame (c (Time1 Vec Run2 , Time2 Vec Run2 , Time3 Vec Run2 , Time4 Vec Run2 , Time5 Vec
Run2 , Time6 Vec Run2 , Time7 Vec Run2 ,

Time8 Vec Run2 , Time9 Vec Run2 , Time10 Vec Run2 , Time11 Vec Run2 , Time12
Vec Run2 , Time13 Vec Run2 , Time14 Vec Run2 ,

Time15 Vec Run2 , Time16 Vec Run2 , Time17 Vec Run2 , Time18 Vec Run2 , Time19
Vec Run2 , Time20 Vec Run2 , Time21 Vec Run2 ,

Time22 Vec Run2 , Time23 Vec Run2 , Time24 Vec Run2 , Time25 Vec Run2 , Time26
Vec Run2 , Time27 Vec Run2 , Time28 Vec Run2 ,

Time29 Vec Run2 , Time30 Vec Run2 , Time31 Vec Run2 , Time32 Vec Run2 , Time33
Vec Run2 , Time34 Vec Run2 , Time35 Vec Run2 ,

Time36 Vec Run2 , Time37 Vec Run2 , Time38 Vec Run2 , Time39 Vec Run2 , Time40
Vec Run2 , Time41 Vec Run2 , Time42 Vec Run2 ,

Time43 Vec Run2 , Time44 Vec Run2 , Time45 Vec Run2) )
S i z e Vec2 <− as . data . frame (c ( Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,

Size2 , Size2 ,
Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,

Size2 , Size2 ,
Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,

Size2 , Size2 ,
Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , S i ze2 ) )

Number Vec2 <− as . data . frame (c ( NumberOfParticles Run2$V2 , NumberOfParticles Run2$V3 , NumberOfParticles
Run2$V4 , NumberOfParticles Run2$V5 , NumberOfParticles Run2$V6 , NumberOfParticles Run2$V7 ,

NumberOfParticles Run2$V8 ,
NumberOfParticles Run2$V9 , NumberOfParticles Run2$V10 , NumberOfParticles

Run2$V11 , NumberOfParticles Run2$V12 , NumberOfParticles Run2$V13 ,
NumberOfParticles Run2$V14 , NumberOfParticles Run2$V15 ,

NumberOfParticles Run2$V16 , NumberOfParticles Run2$V17 ,
NumberOfParticles Run2$V18 , NumberOfParticles Run2$V19 ,
NumberOfParticles Run2$V20 , NumberOfParticles Run2$V21 ,
NumberOfParticles Run2$V22 ,

NumberOfParticles Run2$V23 , NumberOfParticles Run2$V24 ,
NumberOfParticles Run2$V25 , NumberOfParticles Run2$V26 ,
NumberOfParticles Run2$V27 , NumberOfParticles Run2$V28 ,
NumberOfParticles Run2$V29 ,

NumberOfParticles Run2$V30 , NumberOfParticles Run2$V31 ,
NumberOfParticles Run2$V32 , NumberOfParticles Run2$V33 ,
NumberOfParticles Run2$V34 , NumberOfParticles Run2$V35 ,
NumberOfParticles Run2$V36 ,

NumberOfParticles Run2$V37 , NumberOfParticles Run2$V38 ,
NumberOfParticles Run2$V39 , NumberOfParticles Run2$V40 ,
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NumberOfParticles Run2$V41 , NumberOfParticles Run2$V42 ,
NumberOfParticles Run2$V43 ,

NumberOfParticles Run2$V44 , NumberOfParticles Run2$V45 ,
NumberOfParticles Run2$V46) )

Dataset Run2 2 <− as . data . frame (cbind (Time Vec2 , S i z e Vec2 , Number Vec2 ) )
write . table ( Dataset Run2 2 , f i l e=”Omega100 r0 .01 Run2 GRID MADLS In t en s i t y . txt ” ,

row .names=FALSE, col .names=FALSE, sep=” , ” , quote = FALSE)
Dataset Run2 3 <− read . table ( f i l e = ”Omega100 r0 .01 Run2 GRID MADLS In t en s i t y . txt ” , header = FALSE,

sep=” , ” , dec=” . ” )

Grid Time2 <− Dataset Run2 3$V1
Grid S i ze2 <− Dataset Run2 3$V2
Grid Number2 <− Dataset Run2 3$V3

Dataset Run2 3 %>% ggplot ( aes (x = Grid Size2 , y = Grid Time2 , z = Grid Number2 , f i l l = Grid Number2) )
+

geom ra s t e r ( aes ( f i l l =Grid Number2) ) +
scale y cont inuous ( breaks = seq (0 , 13500 , by = 1500) ) +
scale f i l l g rad i ent ( low=”blue ” , high=” ye l low ” ) #l im i t s=c (0 ,50)

dev . of f ( )

#Run3 Graph
t i f f ( ”Run3 r0 .01 Omega100 Grid MADLS In t en s i t y . t i f f ” , un i t s=” in ” , width=5, he ight=5, r e s =300)

Time Vec3 <− as . data . frame (c (Time1 Vec Run3 , Time2 Vec Run3 , Time3 Vec Run3 , Time4 Vec Run3 , Time5 Vec
Run3 , Time6 Vec Run3 , Time7 Vec Run3 ,

Time8 Vec Run3 , Time9 Vec Run3 , Time10 Vec Run3 , Time11 Vec Run3 , Time12
Vec Run3 , Time13 Vec Run3 , Time14 Vec Run3 ,

Time15 Vec Run3 , Time16 Vec Run3 , Time17 Vec Run3 , Time18 Vec Run3 ,
Time19 Vec Run3 , Time20 Vec Run3 , Time21 Vec Run3 ,

Time22 Vec Run3 , Time23 Vec Run3 , Time24 Vec Run3 , Time25 Vec Run3 ,
Time26 Vec Run3 , Time27 Vec Run3 , Time28 Vec Run3 ,

Time29 Vec Run3 , Time30 Vec Run3 , Time31 Vec Run3 , Time32 Vec Run3 ,
Time33 Vec Run3 , Time34 Vec Run3 , Time35 Vec Run3 ,

Time36 Vec Run3 , Time37 Vec Run3 , Time38 Vec Run3 , Time39 Vec Run3 ,
Time39 Vec Run3 , Time41 Vec Run3 , Time42 Vec Run3 ,

Time43 Vec Run3 , Time44 Vec Run3 , Time45 Vec Run3) )
S i z e Vec3 <− as . data . frame (c ( Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,

Size2 , Size2 ,
Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,

Size2 , Size2 ,
Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,

Size2 , Size2 ,
Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , S i ze2 ) )

Number Vec3<− as . data . frame (c ( NumberOfParticles Run3$V2 , NumberOfParticles Run3$V3 , NumberOfParticles
Run3$V4 , NumberOfParticles Run3$V5 , NumberOfParticles Run3$V6 , NumberOfParticles Run3$V7 ,
NumberOfParticles Run3$V8 ,

NumberOfParticles Run3$V9 , NumberOfParticles Run3$V10 ,
NumberOfParticles Run3$V11 , NumberOfParticles Run3$V12 ,
NumberOfParticles Run3$V13 , NumberOfParticles Run3$V14 ,
NumberOfParticles Run3$V15 ,

NumberOfParticles Run3$V16 , NumberOfParticles Run3$V17 ,
NumberOfParticles Run3$V18 , NumberOfParticles Run3$V19 ,
NumberOfParticles Run3$V20 , NumberOfParticles Run3$V21 ,
NumberOfParticles Run3$V22 ,

NumberOfParticles Run3$V23 , NumberOfParticles Run3$V24 ,
NumberOfParticles Run3$V25 , NumberOfParticles Run3$V26 ,
NumberOfParticles Run3$V27 , NumberOfParticles Run3$V28 ,
NumberOfParticles Run3$V29 ,

NumberOfParticles Run3$V30 , NumberOfParticles Run3$V31 ,
NumberOfParticles Run3$V32 , NumberOfParticles Run3$V33 ,
NumberOfParticles Run3$V34 , NumberOfParticles Run3$V35 ,
NumberOfParticles Run3$V36 ,

NumberOfParticles Run3$V37 , NumberOfParticles Run3$V38 ,
NumberOfParticles Run3$V39 , NumberOfParticles Run3$V40 ,
NumberOfParticles Run3$V41 , NumberOfParticles Run3$V42 ,
NumberOfParticles Run3$V43 ,

NumberOfParticles Run3$V44 , NumberOfParticles Run3$V45 ,
NumberOfParticles Run3$V46) )

Dataset Run3 2 <− as . data . frame (cbind (Time Vec3 , S i z e Vec3 , Number Vec3 ) )

write . table ( Dataset Run3 2 , f i l e=”Omega100 r0 .01 Run3 GRID MADLS In t en s i t y . txt ” ,
row .names=FALSE, col .names=FALSE, sep=” , ” )

Dataset Run3 3 <− read . table ( f i l e = ”Omega100 r0 .01 Run3 GRID MADLS In t en s i t y . txt ” , header = FALSE,
sep=” , ” , dec=” . ” )

Grid Time3 <− Dataset Run3 3$V1
Grid S i ze3 <− Dataset Run3 3$V2
Grid Number3 <− Dataset Run3 3$V3

Dataset Run3 3 %>% ggplot ( aes (x = Grid Size3 , y = Grid Time3 , z = Grid Number3 , f i l l = Grid Number3) )
+

geom ra s t e r ( aes ( f i l l =Grid Number3) ) +
scale y cont inuous ( breaks = seq (0 , 13500 , by = 1500) ) +
scale f i l l g rad i ent ( low=”blue ” , high=” ye l low ” ) #l im i t s=c (0 ,50)

dev . of f ( )
#Run4
t i f f ( ”Run4 r0 .01 Omega100 Grid MADLS In t en s i t y . t i f f ” , un i t s=” in ” , width=5, he ight=5, r e s =300)

Time Vec4 <− as . data . frame (c (Time1 Vec Run4 , Time2 Vec Run4 , Time3 Vec Run4 , Time4 Vec Run4 , Time5 Vec
Run4 , Time6 Vec Run4 , Time7 Vec Run4 ,

Time8 Vec Run4 , Time9 Vec Run4 , Time10 Vec Run4 , Time11 Vec Run4 , Time12
Vec Run4 , Time13 Vec Run4 , Time14 Vec Run4 ,

Time15 Vec Run4 , Time16 Vec Run4 , Time17 Vec Run4 , Time18 Vec Run4 ,
Time19 Vec Run4 , Time20 Vec Run4 , Time21 Vec Run4 ,
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Time22 Vec Run4 , Time23 Vec Run4 , Time24 Vec Run4 , Time25 Vec Run4 ,
Time26 Vec Run4 , Time27 Vec Run4 , Time28 Vec Run4 ,

Time29 Vec Run4 , Time30 Vec Run4 , Time31 Vec Run4 , Time32 Vec Run4 ,
Time33 Vec Run4 , Time34 Vec Run4 , Time35 Vec Run4 ,

Time36 Vec Run4 , Time37 Vec Run4 , Time38 Vec Run4 , Time39 Vec Run4 ,
Time40 Vec Run4 , Time41 Vec Run4 , Time42 Vec Run4 ,

Time43 Vec Run4 , Time44 Vec Run4 , Time45 Vec Run4) )
S i z e Vec4 <− as . data . frame (c ( Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,

Size2 , Size2 ,
Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,

Size2 , Size2 ,
Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,

Size2 , Size2 ,
Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , S i ze2 ) )

Number Vec4<− as . data . frame (c ( NumberOfParticles Run4$V2 , NumberOfParticles Run4$V3 , NumberOfParticles
Run4$V4 , NumberOfParticles Run4$V5 , NumberOfParticles Run4$V6 , NumberOfParticles Run4$V7 ,
NumberOfParticles Run4$V8 ,

NumberOfParticles Run4$V9 , NumberOfParticles Run4$V10 , NumberOfParticles
Run4$V11 , NumberOfParticles Run4$V12 , NumberOfParticles Run4$V13 ,

NumberOfParticles Run4$V14 , NumberOfParticles Run4$V15 ,
NumberOfParticles Run4$V16 , NumberOfParticles Run4$V17 ,

NumberOfParticles Run4$V18 , NumberOfParticles Run4$V19 ,
NumberOfParticles Run4$V20 , NumberOfParticles Run4$V21 ,
NumberOfParticles Run4$V22 ,

NumberOfParticles Run4$V23 , NumberOfParticles Run4$V24 ,
NumberOfParticles Run4$V25 , NumberOfParticles Run4$V26 ,
NumberOfParticles Run4$V27 , NumberOfParticles Run4$V28 ,
NumberOfParticles Run4$V29 ,

NumberOfParticles Run4$V30 , NumberOfParticles Run4$V31 ,
NumberOfParticles Run4$V32 , NumberOfParticles Run4$V33 ,
NumberOfParticles Run4$V34 , NumberOfParticles Run4$V35 ,
NumberOfParticles Run4$V36 ,

NumberOfParticles Run4$V37 , NumberOfParticles Run4$V38 ,
NumberOfParticles Run4$V39 , NumberOfParticles Run4$V40 ,
NumberOfParticles Run4$V41 , NumberOfParticles Run4$V42 ,
NumberOfParticles Run4$V43 ,

NumberOfParticles Run4$V44 , NumberOfParticles Run4$V45 ,
NumberOfParticles Run4$V46) )

Dataset Run4 2 <− as . data . frame (cbind (Time Vec4 , S i z e Vec4 , Number Vec4 ) )

write . table ( Dataset Run4 2 , f i l e=”Omega100 r0 .01 Run4 GRID MADLS In t en s i t y . txt ” ,
row .names=FALSE, col .names=FALSE, sep=” , ” )

Dataset Run4 3 <− read . table ( f i l e = ”Omega100 r0 .01 Run4 GRID MADLS In t en s i t y . txt ” , header = FALSE,
sep=” , ” , dec=” . ” )

Grid Time4 <− Dataset Run4 3$V1
Grid S i ze4 <− Dataset Run4 3$V2
Grid Number4 <− Dataset Run4 3$V3

Dataset Run4 3 %>% ggplot ( aes (x = Grid Size4 , y = Grid Time4 , z = Grid Number4 , f i l l = Grid Number4) )
+

geom ra s t e r ( aes ( f i l l =Grid Number4) ) +
scale y cont inuous ( breaks = seq (0 , 13500 , by = 1500) ) +
scale f i l l g rad i ent ( low=”blue ” , high=” ye l low ” ) #l im i t s=c (0 ,50)

dev . of f ( )

#Run5
t i f f ( ”Run5 r0 .01 Omega100 Grid MADLS In t en s i t y . t i f f ” , un i t s=” in ” , width=5, he ight=5, r e s =300)

Time Vec5 <− as . data . frame (c (Time1 Vec Run5 , Time2 Vec Run5 , Time3 Vec Run5 , Time4 Vec Run5 , Time5 Vec
Run5 , Time6 Vec Run5 , Time7 Vec Run5 ,

Time8 Vec Run5 , Time9 Vec Run5 , Time10 Vec Run5 , Time11 Vec Run5 , Time12
Vec Run5 , Time13 Vec Run5 , Time14 Vec Run5 ,

Time15 Vec Run5 , Time16 Vec Run5 , Time17 Vec Run5 , Time18 Vec Run5 ,
Time19 Vec Run5 , Time20 Vec Run5 , Time21 Vec Run5 ,

Time22 Vec Run5 , Time23 Vec Run5 , Time24 Vec Run5 , Time25 Vec Run5 ,
Time26 Vec Run5 , Time27 Vec Run5 , Time28 Vec Run5 ,

Time29 Vec Run5 , Time30 Vec Run5 , Time31 Vec Run5 , Time32 Vec Run5 ,
Time33 Vec Run5 , Time34 Vec Run5 , Time35 Vec Run5 ,

Time36 Vec Run5 , Time37 Vec Run5 , Time38 Vec Run5 , Time39 Vec Run5 ,
Time40 Vec Run5 , Time41 Vec Run5 , Time42 Vec Run5 ,

Time43 Vec Run5 , Time44 Vec Run5 , Time45 Vec Run5) )
S i z e Vec5 <− as . data . frame (c ( Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,

Size2 , Size2 ,
Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,

Size2 , Size2 ,
Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 ,

Size2 , Size2 ,
Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , Size2 , S i ze2 ) )

Number Vec5<− as . data . frame (c ( NumberOfParticles Run5$V2 , NumberOfParticles Run5$V3 , NumberOfParticles
Run5$V4 , NumberOfParticles Run5$V5 , NumberOfParticles Run5$V6 , NumberOfParticles Run5$V7 ,
NumberOfParticles Run5$V8 ,

NumberOfParticles Run5$V9 , NumberOfParticles Run5$V10 , NumberOfParticles
Run5$V11 , NumberOfParticles Run5$V12 , NumberOfParticles Run5$V13 ,

NumberOfParticles Run5$V14 , NumberOfParticles Run5$V15 ,
NumberOfParticles Run5$V16 , NumberOfParticles Run5$V17 ,

NumberOfParticles Run5$V18 , NumberOfParticles Run5$V19 ,
NumberOfParticles Run5$V20 , NumberOfParticles Run5$V21 ,
NumberOfParticles Run5$V22 ,

NumberOfParticles Run5$V23 , NumberOfParticles Run5$V24 ,
NumberOfParticles Run5$V25 , NumberOfParticles Run5$V26 ,
NumberOfParticles Run5$V27 , NumberOfParticles Run5$V28 ,
NumberOfParticles Run5$V29 ,

NumberOfParticles Run5$V30 , NumberOfParticles Run5$V31 ,
NumberOfParticles Run5$V32 , NumberOfParticles Run5$V33 ,

121



NumberOfParticles Run5$V34 , NumberOfParticles Run5$V35 ,
NumberOfParticles Run5$V36 ,

NumberOfParticles Run5$V37 , NumberOfParticles Run5$V38 ,
NumberOfParticles Run5$V39 , NumberOfParticles Run5$V40 ,
NumberOfParticles Run5$V41 , NumberOfParticles Run5$V42 ,
NumberOfParticles Run5$V43 ,

NumberOfParticles Run5$V44 , NumberOfParticles Run5$V45 ,
NumberOfParticles Run5$V46) )

Dataset Run5 2 <− as . data . frame (cbind (Time Vec5 , S i z e Vec5 , Number Vec5 ) )

write . table ( Dataset Run5 2 , f i l e=”Omega100 r0 .01 Run5 GRID MADLS In t en s i t y . txt ” ,
row .names=FALSE, col .names=FALSE, sep=” , ” )

Dataset Run5 3 <− read . table ( f i l e = ”Omega100 r0 .01 Run5 GRID MADLS In t en s i t y . txt ” , header = FALSE,
sep=” , ” , dec=” . ” )

Grid Time5 <− Dataset Run5 3$V1
Grid S i ze5 <− Dataset Run5 3$V2
Grid Number5 <− Dataset Run5 3$V3

Dataset Run5 3 %>% ggplot ( aes (x = Grid Size5 , y = Grid Time5 , z = Grid Number5 , f i l l = Grid Number5) )
+

geom ra s t e r ( aes ( f i l l =Grid Number5) ) +
scale y cont inuous ( breaks = seq (0 , 13500 , by = 1500) ) +
scale f i l l g rad i ent ( low=”blue ” , high=” ye l low ” ) #l im i t s=c (0 ,50)

dev . of f ( )

#Combined Grid P l o t r0 .01
t i f f ( ”Combined r0 .01 Omega100 Grid MADLS In t en s i t y . t i f f ” , un i t s=” in ” , width=5, he ight=5, r e s =300)
Number Vec Combined <− (Number Vec1 + Number Vec2 + Number Vec3 + Number Vec4 + Number Vec5 )/5
Time Vec Combined <− Dataset Run6
Dataset Combined 2 <− as . data . frame (cbind (Time Vec Combined , S i z e Vec5 , Number Vec Combined ) )
write . table ( Dataset Combined 2 , f i l e=”Omega100 r0 .01 Combined GRID MADLS In t en s i t y . txt ” ,

row .names=FALSE, col .names=FALSE, sep=” , ” )
Dataset Combined 3 <− read . table ( f i l e = ”Omega100 r0 .01 Combined GRID MADLS In t en s i t y . txt ” , header =

FALSE, sep=” , ” , dec=” . ” )

Grid Time Combined <− Dataset Combined 3$V1
Grid S i z e Combined <− Dataset Combined 3$V2
Grid Number Combined <− Dataset Combined 3$V3

Dataset Combined 3 %>% ggplot ( aes (x = Grid S i z e Combined , y = Grid Time Combined , z = Grid Number
Combined , f i l l = Grid Number Combined ) ) +

geom ra s t e r ( aes ( f i l l =Grid Number Combined ) ) +
scale y cont inuous ( breaks = seq (0 , 13500 , by = 1500) ) +
scale f i l l g rad i ent ( low=”blue ” , high=” ye l low ” , l im i t s=c (0 ,15) ) #l im i t s=c (0 ,50)

dev . of f ( )

a <− data . frame (matrix (ncol=1,nrow=150) )

stdev <− function ( t imestep ){
for ( i in 1 :150) {

a [ i , 1 ] <− sd (c ( NumberOfParticles Run1 [ i , t imestep ] , NumberOfParticles Run2 [ i , t imestep ] ,
NumberOfParticles Run3 [ i , t imestep ] , NumberOfParticles Run4 [ i , t imestep ] , NumberOfParticles
Run5 [ i , t imestep ] ) )

}
return ( a )

}

b <− data . frame (matrix (ncol=45,nrow=150) )

stdev (2)

for ( i in 1 : 45 ) {

b [ , i ] <− stdev ( i +1)
}
c <− c (b [ , 1 ] , b [ , 2 ] , b [ , 3 ] , b [ , 4 ] , b [ , 5 ] , b [ , 6 ] , b [ , 7 ] , b [ , 8 ] , b [ , 9 ] , b [ , 1 0 ] , b [ , 1 1 ] , b [ , 1 2 ] , b [ , 1 3 ] , b [ , 1 4 ] , b

[ , 1 5 ] , b [ , 1 6 ] ,
b [ , 1 7 ] , b [ , 1 8 ] , b [ , 1 9 ] , b [ , 2 0 ] , b [ , 2 1 ] , b [ , 2 2 ] , b [ , 2 3 ] , b [ , 2 4 ] , b [ , 2 5 ] , b [ , 2 6 ] , b [ , 2 7 ] , b [ , 2 8 ] , b [ , 2 9 ] , b

[ , 3 0 ] , b [ , 3 1 ] , b [ , 3 2 ] ,
b [ , 3 3 ] , b [ , 3 4 ] , b [ , 3 5 ] , b [ , 3 6 ] , b [ , 3 7 ] , b [ , 3 8 ] , b [ , 3 9 ] , b [ , 4 0 ] , b [ , 4 1 ] , b [ , 4 2 ] , b [ , 4 3 ] , b [ , 4 4 ] , b [ , 4 5 ] )

#Combined Grid P l o t r0 .01 Errormargin
t i f f ( ”Combined STDev r0 .01 Omega100 Grid MADLS In t en s i t y . t i f f ” , un i t s=” in ” , width=5, he ight=5, r e s

=300)
Number Vec Error <− c
Time Vec Combined <− Dataset Run6
Dataset Error 2 <− as . data . frame (cbind (Time Vec Combined , S i z e Vec5 , Number Vec Error ) )
write . table ( Dataset Error 2 , f i l e=”Omega100 r0 .01 Combined Error GRID MADLS In t en s i t y . txt ” ,

row .names=FALSE, col .names=FALSE, sep=” , ” )
Dataset Error 3 <− read . table ( f i l e = ”Omega100 r0 .01 Combined Error GRID MADLS In t en s i t y . txt ” , header

= FALSE, sep=” , ” , dec=” . ” )
Grid Time Error <− Dataset Error 3$V1
Grid S i z e Error <− Dataset Error 3$V2
Grid Number Error <− Dataset Error 3$V3

Dataset Error 3 %>% ggplot ( aes (x = Grid S i z e Error , y = Grid Time Error , z = Grid Number Error , f i l l =
Grid Number Error ) ) +

geom ra s t e r ( aes ( f i l l =Grid Number Error ) ) +
scale y cont inuous ( breaks = seq (0 , 13500 , by = 1500) ) +
scale f i l l g rad i ent ( low=”blue ” , high=” ye l low ” , l im i t s=c (0 ,15) ) #l im i t s=c (0 ,50)

dev . of f ( )
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