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Abstract

A system of spin waves interacting with a spin-polarized current in a ferromagnetic material has recently
been suggested as a black-hole-analogue. When a spin wave encounters such a black or white hole, it is
partly reflected and partly transmitted, similar to a quantum mechanical particle encountering a potential
step. We calculate the reflection and transmission coefficients of this spin wave and use these coefficients to
determine the Green’s function that is needed to calculate how spin waves are emitted from imperfections
at the horizon Cherenkov processes. This way we find an expression for the wave function describing the
Cherenkov radiation on both sides of the black or white hole. We discuss subtleties concerning current
conservation in our results, and make suggestions for further research.
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1 INTRODUCTION 1

1 Introduction

The death of Stephen Hawking earlier this year (14 March 2018) was naturally followed by obituaries in
newspapers around the world, all taking account of his numerous contributions to physics. The most im-
portant of these was often said to be his discovery that black holes emit radiation, the so called Hawking
radiation. This evaporation of black holes has, ever since its prediction in 1974, been one of the most exciting
phenomena in theoretical physics [1]. It has however not been experimentally confirmed in the last fourty-
four years, despite physicists best intentions. This is a problem that occurs not only in the case of Hawking
radiation, but in a lot more physical theories concerning the horizon of a black hole. While this horizon
is an enormously interesting place, questioning multiple of our leading theories, it is almost impossible to
subject it to precise measurements, for reasons that are fairly obvious. In 1981, W. G. Unruh proposed a
possible solution to this problem [2]. He suggested sending sound waves through a convergent fluid flow.
If there is a horizon at a certain position x0, separating an area with subsonic flow from an area with su-
personic flow, one can to large extent imitate the kinematics of a black hole or its time-reversal, the white hole.

With this article a new research field was born: analogue gravity (see also [3]). Besides the system of
sounds waves in a fluid flow, there is a growing list of other proposed black-hole-horizon analogues, including
systems as flowing Bose-Einstein Condensates (which might already have been successful in finding Hawking
radiation, see [4]) and light in dispersive media [5]. The system that is investigated in this thesis is one of
the latest additions to the list. A magnonic black hole (visualized by the artist impression on the title page
[6]) is created by initiating spin waves in a magnetic material subject to a constant magnetic field, while at
the same time letting an electrical spin-polarized current flow through this material. The spin wave interacts
with the current via the so called spin transfer torques (STT’s), an exchange force between the spin of the
itinerant electrons and the spin of the localized electrons. When the current exceeds a critical amperage cor-
responding to a critical electron drift velocity vc, these STT’s stop the propagation of the wave. A magnonic
black or white hole is thus a boundary between a “subsonic” region (with electron velocity |v| < vc) and a
“supersonic” region (with |v| > vc) [5].

Although this black-hole-analogue offers several practical and theoretical benefits (see also [5]), there is

Figure 1: Two examples of Cherenkov-like radiation. On the left photo we see a source of water waves
(the duck) moving faster through the medium than the waves themselves, causing a cone-like wave pattern
[7]. On the right we see the cone-like pattern of spin-Cherenkov radiation in a square lattice caused by a
Gaussian-like source, as calculated by T. Koskamp in his bachelor thesis on the influence of Dzyaloshinskii-
Moriya interaction and spin-orbit torques on the current driven spin-Cherenkov effect (see also [8]). The
colors indicate the amplitude of the dimensionless magnetization.



1 INTRODUCTION 2

still research needed before we can really get useful experimental results. Some aspects of the magnonic
black hole are yet to be investigated and described. One of them is the subject of this thesis: the spin-
Cherenkov radiation caused by the black or white hole. The Cherenkov effect, in 1934 discovered by the
Soviet physicist Pavel Alekseyevich Cherenkov, occurs when a source of light travels faster through a certain
medium than the speed of light in that medium, causing radiation [8]. Analogue to this phenomenon there
exists a spin-Cherenkov effect, occurring when the source of a spin wave travels faster through the medium
than the spin wave itself, or, in our case, when the source is stationary and the medium is flowing faster than
the propagation speed of the spin wave. When an initiated spin wave reaches the event horizon (the black
or white hole), the sudden change in background current perturbs the wave and causes a part of it to reflect,
similar to the reflection and transmission of a quantum mechanical wave at a potential step. The horizon
can therefore be seen as a source of spin waves which is partly placed in a medium flowing faster than the
speed of the spin waves. While the current driven spin-Cherenkov effect of a random spin wave source has
already been described in the bachelor thesis of T. Koskamp [8] and the master thesis of M. de Kruijff [9],
the Cherenkov radiation caused by a magnonic black or white hole has never been examined. Because a de-
scription of this effect is very important in understanding this black-hole-analogue and essential for obtaining
meaningful experimental results, determining this influence is the main goal of this thesis. We focus on spin
waves in ferromagnetic materials, although this research could also be done on antiferromagnetic materials
or magnetic insulators [5].

We start with the Landau-Lifshitz-Gilbert equation in section 2 to derive the dispersion relation of a spin
wave interacting with a current. In section 3 we use this relation to find the critical velocity and we calcu-
late solutions to the scattering problem of the spin wave at the event horizon. We then get reflection and
transmission coefficient that depend on the currents on both side of the horizon and the wave frequency. If
we plot these coefficients against the frequency, with fixed electron velocities on both sides, we clearly see
that the reflection coefficient is almost zero at higher frequencies, but grows fast in the region of low wave
frequency. Finally in section 4 we construct a Green’s function out of the wave functions found in section 3.
With the Green’s function, we derive expressions for two new wave functions (one for each side of the event
horizon) that give the Cherenkov radiation caused by the horizon.



2 SPIN WAVES 3

2 Spin waves

In this chapter we discuss the basics of spin waves and introduce the formulas that are needed to describe
the dynamics of spin waves interacting with a current. Hereby we largely follow the discussion of Krüger
[10]. For simplicity, a one-dimensional lattice is considered.

2.1 Landau-Lifshitz-Gilbert equation

In 1935, L. D. Landau and E. M. Lifshitz introduced a differential equation that is used to describe the
dynamics of the magnetization in a ferromagnetic material [11]:

∂m

∂t
= −γm×Heff . (1)

In this equation m is the direction of the magnetization, γ is the electron gyromagnetic factor and Heff is
the effective field. In 1955, T. L. Gilbert added an extra damping term to this equation [12],

∂m

∂t
= −γm×Heff + αm× ∂m

∂t
, (2)

where α is the damping parameter. The meaning of this latter equation is explained in this subsection.

2.1.1 Magnetization

Every electron has a spin which can have two values: +~
2 (which is called spin up) and −~

2 (which is called
spin down). If an atom has equal amounts of electrons with spin up and electrons with spin down, the total
spin of the atom is zero. In the case of unequal amounts of spin ups and spin downs, the atom does have a
spin, either up or down. Magnetization occurs when the spins of all the atoms in a certain grid align, due to
either the interaction with an external magnetic field or the interaction between the spins of the atoms. This
magnetization M has a certain direction and magnitude. We assume that the temperature of the ferromagnet
is way below the Curie temperature, so the magnitude is equal to the saturation magnetization Ms, which
allows us to easily obtain a unit vector indicating just the direction of the magnetization:

M

Ms
= m. (3)

2.1.2 Effective field

The effective field is calculated by taking the functional derivative of the total energy of the magnetic system
with respect to the magnetization:

Heff = − 1

µ0Ms

δE

δm
. (4)

The energy of the system is given by three components.

Exchange energy: The exchange energy EE is the result of the Heisenberg interaction between neighbour-
ing spins and is in our case of a one-dimensional lattice given by

EE =
JS2

2

∑
i

2a2
(
∂m

∂x

)2

. (5)

In this latter equation, S is the magnitude of the spin, a is the distance between two spins and J is
a constant material property, the exchange integral. If J is positive, neighbouring spins tend to align
(because then the magnetization is the same at every value of x which minimizes the energy), and the
material is ferromagnetic. If J is negative, the material is an antiferromagnet. This means that in a
ferromagnet it takes energy to perturb a spin out of its position of alignment with the other spins.
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In the case of magnetization changes that are on a far larger scale than that of the distance between
different spins, it is useful to turn Eq. (5) into a continuous form, using a spin density of one spin per
distance a. Another simplification is the following:(

∂m

∂x

)2

=
∂

∂x

(
m · ∂m

∂x

)
−m · ∂

2

∂x2
m =

1

2

∂2

∂x2
(m ·m)−m · ∂

2

∂x2
m = −m · ∂

2

∂x2
m. (6)

Eq. (5) then becomes

EE = −µ0Ms

2γ
A

∫
dx m · ∂

2

∂x2
m (7)

where A = 2γJaS2

µ0Ms
, the exchange constant.

Zeeman interaction: This is the interaction of the spins with an external magnetic field, and is described
by

EZ = −µ0Ms

∫
dx H ·m, (8)

in which H is the external magnetic field. We set the magnetic field in the positive ẑ-direction, so
H = H0ẑ.

Anisotropy energy: Anisotropy is a property of the material, caused by spin-orbit coupling and dipole-
dipole interactions. It makes the spins favour a certain direction, called the easy axis. However, if the
magnitude of the external magnetic field is big enough, the spins are forced to align with H, and the
anisotropy can be neglected. For simplicity, we assume that this is the case.

Following Eq. (4) we now get

Heff = − 1

µ0Ms

(
δEE
δm

+
δEZ
δm

)
. (9)

By definition, the functional derivative of the energy is given by

δE

δm
= lim
ε→0

1

ε

 E[m(x′) + εx̂δ(x′ − x)]− E[m(x′)]
E[m(x′) + εŷδ(x′ − x)]− E[m(x′)]
E[m(x′) + εẑδ(x′ − x)]− E[m(x′)]

 . (10)

Then the contribution of the exchange energy to the effective field is the following:

δEE
δm

= lim
ε→0

1

ε


−µ0Ms

2γ A
∫
dx′

[(
m + εx̂δ(x′ − x)

)
· ∂2

∂x′2

(
m + εx̂δ(x′ − x)

)
−m · ∂2

∂x′2 m
]

−µ0Ms

2γ A
∫
dx′

[(
m + εŷδ(x′ − x)

)
· ∂2

∂x′2

(
m + εŷδ(x′ − x)

)
−m · ∂2

∂x′2 m
]

−µ0Ms

2γ A
∫
dx′

[(
m + εẑδ(x′ − x)

)
· ∂2

∂x′2

(
m + εẑδ(x′ − x)

)
−m · ∂2

∂x′2 m
]
 . (11)

Using integration by parts two times, we get mi
∂2

∂x′2 δ(x
′−x) = δ(x′−x) ∂2

∂x′2mi, because the boundary terms
are 0. Then the latter equation simplifies to

δEE
δm

= lim
ε→0

1

ε


−µ0Ms

γ A
∫
dx′

(
εx̂δ(x′ − x) · ∂2

∂x′2 m
)

−µ0Ms

γ A
∫
dx′

(
εŷδ(x′ − x) · ∂2

∂x′2 m
)

−µ0Ms

γ A
∫
dx′

(
εẑδ(x′ − x) · ∂2

∂x′2 m
)
 , (12)

which is easy to solve:

lim
ε→0

1

ε


−µ0Ms

γ A
∫
dx′

(
εx̂δ(x′ − x) · ∂2

∂x′2 m
)

−µ0Ms

γ A
∫
dx′

(
εŷδ(x′ − x) · ∂2

∂x′2 m
)

−µ0Ms

γ A
∫
dx′

(
εẑδ(x′ − x) · ∂2

∂x′2 m
)
 = −µ0Ms

γ
A
∂2

∂x2
m. (13)
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The contribution of the Zeeman energy to the effective field is given by

δEZ
δm

= lim
ε→0

1

ε

 −µ0Ms

∫
dx′

(
H · [m + εx̂δ(x′ − x)]−H ·m

)
−µ0Ms

∫
dx′

(
H · [m + εŷδ(x′ − x)]−H ·m

)
−µ0Ms

∫
dx′

(
H · [m + εẑδ(x′ − x)]−H ·m

)
 = −µ0MsH. (14)

That makes the total effective field

Heff = − 1

µ0Ms

(
−µ0Ms

γ
A
∂2

∂x2
m− µ0MsH

)
=
A

γ

∂2

∂x2
m + H =


A
γ
∂2

∂x2mx

A
γ
∂2

∂x2my

A
γ
∂2

∂x2mz +H0

 . (15)

2.1.3 Gilbert damping

Now it is clear what the Landau-Lifshitz equation (Eq. (1)) means. If the spin of an atom in a ferromagnet
is disturbed from its equilibrium position (the alignment with the effective field), it will precess around the
equilibrium axis. If there is no loss of energy, this movement never stops. However, this is not a realistic
situation, because in reality the system always loses energy in the form of heat. To take this into account,
Gilbert introduced the damping term in Eq. (2). Because of this damping term, the direction of the
magnetization will move towards the equilibrium axis again.

Figure 2: The precession of spin around the equilibrium axis without Gilbert damping (a) and with Gilbert
damping (b) [13].

2.2 Spin transfer torques

The existence of the exchange energy described above has an important consequence. If a spin is disturbed
from its equilibrium position, it changes the effective field, so the spin of the atom next to it will also start to
precess as a result of the exchange energy. This movement is then transferred from spin to spin, or in other
words, we have created a spin wave. This spin wave is described by a quasi-particle, the magnon. We would
like to get a dispersion relation to describe the spin wave, and the Landau-Lifshitz-Gilbert (LLG) equation
is the perfect tool to do that. But in this thesis we are interested in propagation of spin waves interacting
with a current, so we have to add extra terms to the LLG equation in order to derive a dispersion relation
that is useful to us.

2.2.1 Landau-Lifshitz-Gilbert equation with spin transfer torques

While every atom in the lattice has electrons bound to it, giving it a spin, it is also a characteristic of metals
that they contain itinerant electrons, electrons that are not bound to atoms so they can move through the
material. These electrons are responsible for the current. Just like there is interaction between the spins of
the localized electrons, there is interaction between the localized electrons and the itinerant electrons which
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is called sd-interaction: the free electrons induce spin transfer torques (STT’s) on the bound electrons. This
way a current influences the spin wave.
To take account for these STT’s, we have to add two terms to the LLG equation, an adiabatic term [14] and
a non-adiabatic term [15]. Then the equation looks like this:

∂m

∂t
= −γm×Heff + αm× ∂m

∂t
− bjm× (m× (j · ∇)m)− bjβm× (j · ∇)m. (16)

In the latter equation bjm×(m×(j ·∇)m) is the adiabatic term and bjβm×(j ·∇)m the non-adiabatic term,
with j the current density. The coupling constant between the current and the magnetization is described by
bj = µBP

eMs(1+β2) , with µB the Bohr magneton, e the elementary charge and P the polarization of the current.

The strength of the damping is given by β = τex
τsf

. Here, τ is the relaxation time of the free spins due to

sd-interaction (τex) or spin flips (τsf ) [10].

Figure 3: Impression of the propagation of a magnon through a one-dimensional lattice[16].

2.2.2 Dispersion relation

Now we are able to derive a dispersion relation for the spin wave. We linearize the magnetization around
the ẑ direction because of the external field. To start the spin wave, we perturb the system in the x̂ and ŷ
direction with small deviations:

m =

 δmx

δmy

1

 , (17)

where δmx,y � 1, so δm2
x,y ≈ 0.

Plugging this into Eq. (16) we get the following equations:[
∂
∂tδmx

∂
∂tδmy

]
=


(
−(H −A ∂2

∂x2 )− α ∂
∂t + bjjβ

∂
∂x

)
δmy + bjj

∂
∂xδmx(

H −A ∂2

∂x2 + α ∂
∂t − bjjβ

∂
∂x

)
δmx + bjj

∂
∂xδmy

 , (18)

where H = γH0 and we use that j = j, since our current only flows in the x̂ direction.
Now we make an ansatz for the deviations of the following form:

δmx,y = Cx,ye
i(kx−ωt). (19)

Substituting Eq. (19) into Eq. (18) and writing it in matrix form, we get[
−i(ω + kbjj) H +Ak2 − iαω − ikbjjβ

−(H +Ak2) + iαω + ikbjjβ −i(ω + kbjj)

] [
Cx
Cy

]
= 0. (20)

This equation only has solutions for Cx,y if the determinant of the left matrix is zero. To solve this matrix
for ω, we use that α, β � 1, so αβ ≈ 0 and 1 + iα ≈ 1

1−iα . That results in

ω = H +Ak2 − kbjj − iαH +Ak2 + i(α− β)kbjj. (21)

Now we have an expression that gives us the frequency ω as a function of the wave number k. This equation
has some very important features. The first one is the presence of the term H. This term makes sure that
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there is a gap in the dispersion relation, or in other words, there is a certain amount of energy needed to
initiate a spin wave (see figure 4). It is also the value of the minimum frequency of the spin wave. If we
set H = 1T , which is a typical magnitude for the magnetic field in spin wave experiments, the minimum
frequency is around 30 GHz.
The second feature is the difference between the real and the imaginary part of the dispersion relation. In
Eq. (21), bjj has the dimension of velocity and can be seen as the velocity of the electrons forming the
current. This means that if the current is big enough, both parts of the dispersion relation switch sign. If
the real part switches sign, there is an energetic instability: the ground state of the system has changed.
This is clear if we see the initiation of a spin wave as an excitation of the system that is linearly dependent
of the frequency. A frequency with a negative real part than lowers the energy, indicating that the ground
state we started with is not the real ground state. If the imaginary part of the dispersion relation switches
sign, the system is dynamically unstable. This means that the system will move away from the state that it
was in. This becomes clear if we take a look at our ansatz in Eq. (19). Inserting a frequency with a positive
imaginary part in this ansatz means that the deviations blow up, so the system is not stable.
The important thing about the dispersion relation is that the critical current vc at which the energetic
instability occurs differs from the current at which the dynamic instability occurs, because of the existence
of the β-damping. This means the system can be forced to obtain a new ground state, without moving to
this new state. As we will see later in this thesis, this is a crucial condition for the simulation of a black hole
and the presence of Cherenkov radiation.

Figure 4: In this figure we plotted the dimensionless frequency ω
H against the dimensionless wave number

η, which is related to k by η = k
√

A
H . We can clearly see the shifting of the dispersion relation by the

electron velocity v = −bjj. If |v| > |vc|, ω is smaller than zero for certain k meaning the system possesses a
different ground state than the one we started with. Also clear in this figure is the energy gap H, which is
the minimum energy that is needed to initiate a spin wave at v = 0.
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3 Reflection and transmission coefficients

Now that we have derived a dispersion relation for a spin wave, and concluded that there is a critical speed
vc at which the system obtains a new ground state without moving towards it, we can start with simulating
a black or white hole. First we have to calculate the critical speed, after which we just follow the steps used
in calculating the scattering of a quantum mechanical particle at a potential step [17]. In our case there is
no potential step, but a sudden change in the velocity of the background electrons from smaller than vc to
larger than vc or vice versa.

3.1 The critical speed

As said in the previous section, the term bjj has the dimension of velocity. Because j is the current and
we are dealing with electrons (with negative charge), a positive j means a negative electron velocity, so we
substitute bjj = −v in the dispersion relation (Eq. 21):

ω = H +Ak2 + kv − iα(H +Ak2) + i(α− β)kv. (22)

The real part of the latter equation changes sign if v is larger than a certain value vc, where vc is the velocity

at which the minimum frequency is exactly zero, so when Re(ω) = 0 and dRe(ω)
dk = 0.

dRe(ω)

dk
= 2Ak + vc = 0, (23)

so
k = − vc

2A
. (24)

Plugging this into
H +Ak2 + kvc = 0, (25)

gives

H +A
vc

2

4A2
− vc

2

2A
= 0. (26)

Then we find
|vc| = 2

√
AH. (27)

When we do the same for the imaginary part, we find

|vc,d| = |
2α

α− β
|
√
AH. (28)

This means we have a system that is energetically unstable but dynamically stable when | 2α
α−β |

√
AH > |v| >

2
√
AH. This is only possible if 0 < β < 2α. Note that when β = α, the system will always be dynamically

stable.

3.2 Scattering of the magnon

The next step in calculating the reflection and transmission coefficients is determining a Schrödinger-like
equation for the magnon. Let us define a wave function Ψ so that

m =

 Re(Ψ)
− Im(Ψ)
1− |Ψ|2,

 , (29)

which is true for Ψ = δmx − iδmy. Then Eq. (18) transforms into

i
∂

∂t
Ψ(x, t) =

(
−A ∂2

∂x2
+H − iv ∂

∂x

)
Ψ(x, t), (30)
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where we assumed the damping parameters α and β to be negligible small, an assumption that is necessary
for the scattering calculation, as we shall see later on.
We now set the boundary conditions for the scattering problem. The first boundary condition is

ΨL(x0) = ΨR(x0), (31)

e.g. the wave has to be continuous at the white or black hole positioned at x0. For the next boundary
condition we integrate both sides of our Schrödinger equation from x0 − ε to x0 + ε and then take the limit
of ε to zero:

lim
ε→0

x0+ε∫
x0−ε

dx i
∂

∂t
Ψ(x, t) = lim

ε→0

x0+ε∫
x0−ε

dx

(
−A ∂2

∂x2
+H − iv(x)

∂

∂x

)
Ψ(x, t), (32)

which becomes

0 = lim
ε→0

[−A ∂

∂x
Ψ(x, t)− iv(x)Ψ(x, t)

]x0+ε

x0−ε
+ i

x0+ε∫
x0−ε

dx Ψ(x, t)
d

dx
v(x)

 . (33)

We can write v(x) as vL + (vR − vL)H(x − x0), with vL, vR the electron velocity left and right of x0, and
with H(x− x0) the Heaviside step function. The derivative of the Heaviside step function is the Dirac delta
function, so we get [

∂

∂x
ΨL(x, t)

]
x=x0

=

[
∂

∂x
ΨR(x, t)

]
x=x0

. (34)

We start solving the problem with the following ansatz:

ΨL = eik1x +Beik2x, (35)

ΨR = Ceik3x, (36)

where B and C are the amplitudes of the reflected and transmitted spin wave respectively. If we set x0 = 0,
the two boundary conditions transform to the following equations:

1 +B = C, (37)

k1 +Bk2 = Ck3, (38)

which leads to

B =
k3 − k1
k2 − k3

. (39)

From the first boundary condition we now derive

C =
k2 − k1
k2 − k3

. (40)

k1,2,3 are determined by using the abc-formula for Eq. (22), with α, β = 0:

k =
−v ±

√
v2 − 4A(H − ω)

2A
. (41)

This gives us the following k:

k1 =
−vL +

√
v2L − 4A(H − ω)

2A
, (42)

k2 =
−vL −

√
v2L − 4A(H − ω)

2A
, (43)

k3 =
−vR +

√
v2R − 4A(H − ω)

2A
, (44)

k4 =
−vR −

√
v2R − 4A(H − ω)

2A
, (45)
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where k4 is not yet of use to us, but it will be in the following section. Inserting these in Eq. (39) and Eq.
(40) leads to

B =
vL − vR +

√
v2R − 4A(H − ω)−

√
v2L − 4A(H − ω)

vR − vL −
√
v2L − 4A(H − ω)−

√
v2R − 4A(H − ω)

(46)

C =
−2
√
v2L − 4A(H − ω)

vR − vL −
√
v2L − 4A(H − ω)−

√
v2R − 4A(H − ω)

. (47)

Having found the reflection and transmission amplitudes, we are now able to define and calculate the reflection
and transmission coefficients as the amplitudes times their complex conjugate:

|B|2 =

(
vL − vR +

√
v2R − 4A(H − ω)−

√
v2L − 4A(H − ω)

vR − vL −
√
v2L − 4A(H − ω)−

√
v2R − 4A(H − ω)

)2

(48)

|C|2 =
4(v2L − 4A(H − ω))(

vR − vL −
√
v2L − 4A(H − ω)−

√
v2R − 4A(H − ω)

)2 . (49)

In appendix A, we derive a demand the two coefficients should always meet, using an adjusted version of the
continuity equation of the quantum mechanical scattering problem. Curiously enough, the coefficients we
just calculated do not match this equation. This can have many reasons, on which we will further elaborate
in the discussion (section 6). For now, we assume that our coefficients are right.

Below, in figures 5, 6, 7 and 8, are the two coefficients plotted against the dimensionless frequency ω
H in

the four possible situations for a spin wave encountering the horizon of a black or white hole, where the
“supersonic” area has an electron velocity of |v| = 101

100vc and the “subsonic” area an electron velocity of
|v| = 99

100vc. In the plots it is clearly visible that if the frequency (i.e. the energy of the magnon) is high,

there is almost no reflection. Only with low frequencies, approximately ω < H
2 , the reflection becomes

substantial. Note that this scattering calculation only holds if there is a magnon frequency with ω > H− v2

4A .
For smaller frequencies the wave numbers become imaginary, and we get a different kind of scattering (with
exponentially growing or decaying wave functions). Although this is precisely the case we are interesting in
for our magnonic black or white hole (because only with lower frequencies we attain energetic instability),
we now stick to the scattering calculation with higher frequencies, for reasons that will become clear in the
next section.
In the plots, we see similar coefficients for spin waves going into a white or black hole (figure 5 and 6)
with a transmission coefficient going to zero and a reflection coefficient going to one for lower frequencies.
The coefficients for spin waves going out of a white or black hole (figure 7 and 8) also look similar, with a
remarkable high transmission coefficient for low frequencies. Some of the results may seem counter-intuitive
(for instance the high reflection coefficient for a wave entering a black hole, or the high transmission coefficient
for a wave escaping a black hole), but it is important to realize that our black and white holes are not really
black and white holes for the frequencies we plotted, because there is no energetic instability, as we just
explained.
The good thing about the reflection and transmission coefficients is that they can be measured. Magnonic
scattering experiments have already been conducted in the past, where the cause of the scattering was
something different than a black or white hole (for instance an inhomogeneous region in a homogeneous
ferromagnetic film [18]). The spin waves can be measured with techniques like ferromagnetic resonance [19].
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Figure 5: An initial spin wave going into a black hole (vL = 99
100vc, vR = 101

100vc, as indicated by the blue
arrows).

Figure 6: An initial spin wave going into a white hole (vL = − 99
100vc, vR = − 101

100vc, as indicated by the blue
arrows).
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Figure 7: An initial spin wave going out of a black hole (vL = − 101
100vc, vR = − 99

100vc, as indicated by the blue
arrows).

Figure 8: An initial spin wave going out of a white hole (vL = 101
100vc, vR = 99

100vc, as indicated by the blue
arrows).
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4 The Cherenkov effect

We now continue with the last step of our calculations, having acquired all the necessary mathematical tools
to calculate the Cherenkov effect of the magnonic black or white hole.

4.1 The Green’s function

A Green’s function is normally used to calculate the Cherenkov radiation, as it is the ideal mathematical
tool to determine the influence of the moving of a source on the field that source causes. Although our case
is different (we are dealing with a stationary source and a moving medium), we still need a Green’s function
for determining the wave function.
We start with adding a source term S(x) to our wave function:

i
∂

∂t
Ψ(x, t) =

(
−A ∂2

∂x2
+H − iv ∂

∂x

)
Ψ(x, t) + S(x). (50)

Note that both sides can be multiplied with ~, and then we associate the left side of the equation as the
energy of the magnon E, and the right side minus the source term as H0/~, a differential operator that gives
the energy when acting upon the wave function. Now we get[

ω − H0

~

]
Ψ(x) = S(x), (51)

with ω = E
~ and H0/~ = −A ∂2

∂x2 +H − iv. The solution of the differential equation is

Ψ(x, t) =

∫ ∞
−∞

dx′
∫ ∞
−∞

dt′G(x, x′, ω)S(x′), (52)

where the Green’s function G(x, x′, ω) is a solution to[
ω − H0

~

]
G(x, x′, ω) = δ(x− x′). (53)

To find the Green’s function we redefine the solutions we found for the homogeneous problem (the wave
equation without the source term):

Ψ1(x, ω) =

{
eik1(ω)x +B1(ω)eik2(ω)x if x ≤ 0;
C1(ω)eik3(ω)x if x ≥ 0,

Ψ2(x, ω) =

{
eik4(ω)x +B2(ω)eik3(ω)x if x ≥ 0;
C2(ω)eik2(ω)x if x ≤ 0,

(54)

with reflection coefficients Bi and transmission coefficients Ci as follows:

B1(ω) =
vL − vR +

√
v2R − 4A(H − ω)−

√
v2L − 4A(H − ω)

vR − vL −
√
v2L − 4A(H − ω)−

√
v2R − 4A(H − ω)

, (55)

C1(ω) =
−2
√
v2L − 4A(H − ω)

vR − vL −
√
v2L − 4A(H − ω)−

√
v2R − 4A(H − ω)

, (56)

B2(ω) =
vR − vL +

√
v2R − 4A(H − ω)−

√
v2L − 4A(H − ω)

vL − vR +
√
v2L − 4A(H − ω) +

√
v2R − 4A(H − ω)

, (57)

C2(ω) =
2
√
v2R − 4A(H − ω)

vL − vR +
√
v2L − 4A(H − ω) +

√
v2R − 4A(H − ω)

, (58)
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where we calculated B2 and C2 the same way as B1 and C1 in section 3. In equation 54, Ψ1 corresponds
to an initial wave reaching the horizon from the left side and Ψ2 corresponds to an initial wave reaching the
horizon from the right side.
We know from quantum mechanics that our wave functions are orthonormal, so

1

2π

∫ ∞
−∞

dω′ Ψn(x, ω′)Ψ∗n(x′, ω′) = δ(x− x′). (59)

We now construct our Green’s function as a linear combination of possible solutions [20]:

G(x, x′, ω) =
∑

n∈{1,2}

cn(x)
1

2π

∫ ∞
−∞

dω′
Ψn(x, ω′)Ψ∗n(x′, ω′)

ω − ω′(1 + iα)
, (60)

where we reintroduced an infinitesimal small damping factor α so we integrate over the lower complex
plane. This ensures that we have a retarded Green’s function, which is what we need in this case [21]. The
normalization factors cn(x) obey

∑
n∈{1,2} cn(x) = 1.

Substituting the wave functions (Eq. 54) leads to the following:

G(x, x′, ω) =



1
2π

∫∞
−∞ dω′

[
c1(eik1x+B1e

ik2x)
(
e−ik1x′+B∗1e

−ik2x′
)
+c2

(
|C2|2eik2(x−x′)

)
ω−ω′(1+iα)

]
if x, x′ ≤ 0;

1
2π

∫∞
−∞ dω′

[
c1(eik1x+B1e

ik2x)
(
C∗1 e

−ik3x′
)
+c2(C2e

ik2x)
(
e−ik4x′+B∗2e

−ik3x′
)

ω−ω′(1+iα)

]
if x ≤ 0 ≤ x′;

1
2π

∫∞
−∞ dω′

[
c1(C1e

ik3x)
(
e−ik1x′+B∗1e

−ik2x′
)
+c2(eik4x+B2e

ik3x)(C∗2 e
−ik2x)

ω−ω′(1+iα)

]
if x′ ≤ 0 ≤ x;

1
2π

∫∞
−∞ dω′

[
c1

(
|C1|2eik2(x−x′)

)
+c2(eik4x+B2e

ik3x)(e−ik4x+B∗2e
−ik3x)

ω−ω′(1+iα)

]
if x, x′ ≥ 0.

(61)
Now we formulate a solution to our nonhomogeneous problem in two parts:

ΨL(x, t) =
1

2π

∫ ∞
−∞

dt′
∫ ∞
−∞

dω′

ω − ω′(1 + iα)[ ∫ 0

−∞
dx′

(
c1
(
eik1x +B1e

ik2x
) (
e−ik1x

′
+B∗1e

−ik2x′
)

+ c2

(
|C2|2eik2(x−x

′)
))

S(x′)

+

∫ ∞
0

dx′
(
c1
(
eik1x +B1e

ik2x
) (
C∗1e

−ik3x′
)

+ c2
(
C2e

ik2x
) (
e−ik4x

′
+B∗2e

−ik3x′
))

S(x′)
]
, (62)

for x ≤ 0, and

ΨR(x, t) =
1

2π

∫ ∞
−∞

dt′
∫ ∞
−∞

dω′

ω − ω′(1 + iα)[ ∫ 0

−∞
dx′

(
c1
(
C1e

ik3x
) (
e−ik1x

′
+B∗1e

−ik2x′
)

+ c2
(
eik4x +B2e

ik3x
) (
C∗2e

−ik2x′
))

S(x′)

+

∫ ∞
0

dx′
(
c1

(
|C1|2eik2(x−x

′)
)

+ c2
(
eik4x +B2e

ik3x
) (
e−ik4x

′
+B∗2e

−ik3x′
))

S(x′)
]
, (63)

for x ≥ 0. These are the expressions we need to find the Cherenkov radiation of a black or white hole.
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5 Conclusion

In this thesis we derived expressions that describe the Cherenkov effect caused by a magnonic black or white
hole. In section 2, we determined the dispersion relation of a magnon interacting with a spin-polarized
current out of the Landau-Lifshitz-Gilbert equation, extended with an adiabatic and a non-adiabatic term
to take account for the influence of the electrical current. We assumed that the external magnetic field is so
large that all contributions to the effective field apart from the contributions of the exchange energy and the
external field can be neglected (for instance the anisotropy). We used this in section 3 to find the critical
itinerant electron velocity. With this critical velocity, we considered the black or white hole analogue, with
on one side of the horizon an electron velocity higher than critical, and on the other side lower than critical.
Following the quantum mechanical scattering calculation at a potential step, we defined wave functions of
our magnon on both sides of the horizon by transforming our dispersion relation. We calculated the reflection
and transmission coefficients of an initial spin wave propagating out or in of a black or white hole (neglecting
the damping terms of the dispersion relation). We found coefficients that are only dependent of the wave
frequency and the electron speed on both sides of the horizon.
The next step was substituting these wave functions in a Green’s function, so we could derive a new wave
function that involved the influence of a source term in a moving medium. We found expressions in section
4 for this wave function that should give the Cherenkov radiation of the black or white hole when evaluated.
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6 Discussion and Outlook

The most intriguing point of discussion of this thesis is the contradiction between the reflection and trans-
mission amplitudes found in section 4 and the relation between the coefficients derived out of the continuity
equation in appendix A. This contradiction means that we made a mistake in at least one of these derivations.
The derivations both look quite straightforward; they both follow from the quantum mechanical scattering
calculation, adjusted to our case of a magnonic black or white hole. So the question is: what subtlety did
we miss? If we made a mistake in the appendix, which we assumed in section 3, the rest of this thesis still
holds. However, if there is something wrong in our derivation of the coefficients, the third and fourth section
have to be revised. It is therefore very important that this contradiction will be solved.
One way so solve it that seems to be mathematically correct, is by adding a nonzero constant when solving
the integral of equation 68, with value −vL|ΨL(0)|2 for the current on the left side and value −vR|ΨR(0)|2
for the current on the right side of the horizon. Equation 72 then becomes

|B|2 +
vL − vR +

√
v2R − 4A(H − ω)√

v2L − 4A(H − ω)
|C|2 = 1, (64)

which is perfectly correct for the coefficients we found. However, there should be a physical reason to fix
the constants of the integral on a certain value (for instance a boundary condition) and up to now, we
haven’t been able to find a justification for these values. It probably requires a fresh perspective to find this
justification, or to find a completely different solution for this problem, so we invite everyone who reads this
thesis to take up the challenge.

6.1 Outlook

Unfortunately, there was not enough time in this research project to solve the integrals of the wave function
we found in section 4, either numerically or analytically. This should be the first step in following research
on magnonic black or white holes, after of course the problem mentioned above is solved. The Cherenkov
radiation caused by a magnonic black or white hole is an intriguing phenomenon. Does a black hole causes
long-range Cherenkov waves? How does the wave pattern look like in a white hole, where the part of the source
term producing Cherenkov radiation can’t produce an outgoing wave because of the “supersonic” electron
velocity (see figure 9)? These are crucial questions in the research of the magnonic black-hole-analogue, and
should be answered before we can really proceed to setting up experiments.

Figure 9: Schematic picture of a magnonic black (left) and white (right) hole, where the blue arrows indicate
the electron velocity and the source term is represented by a Gaussian-like curve, centered around the hole.
The red part of the source should normally produce Cherenkov radiation, being in the “supersonic” area. At
the black hole, this could cause long-range Cherenkov waves into the black hole. However, the spin waves
created by the source at the white hole can’t propagate away from the source. Calculating the wave pattern
of the Cherenkov radiation is therefore far from trivial.
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A Calculating the continuity equation for spin waves interacting
with a current

In this appendix we use the continuity equation as formulated in hydrodynamics and quantum mechanics to
derive the probability current of the spin wave. This offers us a way to check our reflection and transmission
coefficients.
The continuity equation in quantum mechanics reads

∂

∂t
|Ψ|2 = − ∂

∂x
J, (65)

with J the probability current [17]. Here J is defined as J = Ψ∗ ∂∂xΨ−Ψ ∂
∂xΨ∗, but our abnormal Schrödinger

equation forces us to find a new definition. Knowing that

i
∂

∂t
Ψ∗(x, t) =

(
A
∂2

∂x2
−H − iv(x)

∂

∂x

)
Ψ∗(x, t), (66)

we obtain the expression

∂

∂t
|Ψ|2 =

∂

∂x

[
−iA

(
Ψ
∂

∂x
Ψ∗ −Ψ∗

∂

∂x
Ψ

)
−
∫ x

dx′ v(x′)
∂

∂x′
|Ψ|2

]
. (67)

So the probability current becomes

J = iA

(
Ψ(x, t)

∂

∂x
Ψ∗(x, t)−Ψ∗(x, t)

∂

∂x
Ψ(x, t)

)
+

∫ x

dx′ v(x′)
∂

∂x′
|Ψ(x′, t)|2. (68)

Because in our case Ψ(x, t) = Ψ(x), i.e. the wave function is time independent, the probability current is
independent of x, so the current is the same at both sides of the event horizon:

iA

(
ΨL(x)

∂

∂x
Ψ∗L(x)−Ψ∗L(x)

∂

∂x
ΨL(x)

)
+ vL|ΨL(x)|2 =

iA

(
ΨR(x)

∂

∂x
Ψ∗R(x)−Ψ∗R(x)

∂

∂x
ΨR(x)

)
+ vR|ΨR(x)|2. (69)

Substituting our ansatz (Eq. 35) for ΨL and ΨR leads to

A
(

2k1 + k1Be
i(k2−k1)x + k2Be

i(k2−k1)x + k1B
∗ei(k1−k2)x + k2B

∗ei(k1−k2)x + 2k2|B|2
)

+

vL

(
1 +Bei(k2−k1)x +B∗ei(k1−k2)x + |B|2

)
= 2Ak3|C|2 + vR|C|2. (70)

By substituting our expressions for k (Eq. 42) we obtain√
v2L − 4A(H − ω)−

√
v2L − 4A(H − ω)|B|2 =

√
v2R − 4A(H − ω)|C|2. (71)

Now we derived a requirement every reflection coefficient |B|2 and transmission coefficient |C|2 should meet:

|B|2 +

√
v2R − 4A(H − ω)√
v2L − 4A(H − ω)

|C|2 = 1. (72)
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