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Introduction

Ever since the discovery of Bragg diffraction early in the 20th century, scien-
tists have been able to examine crystalline structures up to atomic precision.
Since then, hundreds of thousands of crystals have been identified, and up un-
til the early 1980’s, all of them shared the property of periodicity. Scientists
were therefore understandably surprised when in 1982 the first non-periodic
crystal was discovered, and it took a long time for the scientific community to
accept the discovery. This new class of crystals, named quasicrystals, turned
out to be one of the most interesting subjects in the field of crystallogra-
phy in the last 35 years. Some quasicrystals are extremely strong and do
not corrode, which is convenient in cutting tools, while others have low heat
conductivity and a low friction coefficient, making them very useful for heat
insulating coatings.

Above all, quasicrystals are a very interesting mathematical subject. The
theory of filling a space aperiodically had already been developed in the
years before the discovery, and could readily be applied on the new crys-
tals. Furthermore, it was proven that quasicrystals can be generated using
regular crystals in higher dimensions, see Ref. [1]. In recent experiments,
1D quasicrystals have also been shown to exhibit new types of topological
phases, previously only attributed to higher dimensional systems, see Ref. [2].

In this thesis, we will focus our attention on one specific quasicrystal called
the Fibonacci quasicrystal. Since it is one dimensional it is one of the easiest
quasicrystals to understand and analyse. Nevertheless, it will turn out to
have some very interesting mathematical properties. In particular, it has a
recursive structure in its energy spectrum.

In the first section, we will provide an introduction to quasicrystals and
explain why for many years physicists dismissed their existence. We will fur-
thermore provide a proof for a central theorem in crystallography, called the
Crystallographic Restriction Theorem, which quasicrystals violate. Finally
we will explain how we can generate quasicrystals from higher dimensional
regular crystals.

In the second section, we will follow a 2016 article by Macé et al. about
the Fibonacci quasicrystal, see Ref. [3]. In this article, an approximation
for the Hamiltonian is used to predict a property of the energy spectrum.
A connection is then made from the 1D Fibonacci quasicrystal to the 2D
regular crystal from which it can be generated. By using this connection, a
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symmetry is found in the localization of the eigenstates of the quasicrystal.

In the third section, we will numerically verify the analytical predictions
made in the second section. We will solve the Schrödinger equation numeri-
cally on areas designed to simulate the Fibonacci quasicrystal. On a 1D area,
we will find a remarkable agreement between the theoretical predictions and
the numerical results. We will perform the same numerical calculation on
a 2D area, which is more representative of a potential experiment. We will
find the 2D simulation to be less accurate, but to still possess the same sym-
metries as the theoretical model at first order.

In the fourth section, we will discuss a relatively new technique in microscopy
called Scanning Tunneling Microscopy. These microscopes allow us to posi-
tion individual atoms on a surface with atomic precision. This has enabled
scientists to design surfaces that very accurately simulate any type of crystal
lattice in two dimensions. This technique has therefore frequently been used
to measure properties like the energy spectrum and the localization of the
eigenstates for all kinds of crystal lattices.

In the fifth section, we will take a look at two experiments that employ
this very technique. The first experiment by Gomes et al. aims to design
a surface which simulates the exciting new material graphene, see Ref. [4].
Atoms are placed on a surface in a triangular pattern, in order to replicate
the hexagonal structure of graphene, and the electronic properties of the
surface match with those of graphene. The second experiment by Collins et
al. actually studies a quasicrystal, though not the Fibonacci quasicrystal.
It examines the electronic properties of a 2D quasicrystal called the Penrose
tiling, see Ref. [5]. It finds a very similar property in the localization of
the eigenstates to the predictions we made about the Fibonacci quasicrystal,
further supporting our findings.
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1 Quasicrystals

Before 1982, the existence of quasicrystals was unknown to physicists. Reg-
ular crystals, however, were already a well-known subject at that time, and
in order to understand quasicrystals it is necessary to first understand the
basic properties of regular crystals.

It took until the first X-ray diffraction experiment in 1912 for physicists
to establish a proper definition of a crystal. These experiments revealed that
many solid materials possess symmetries in their atomic structure. One def-
inition of crystals at that time reads: A solid composed of atoms arranged
in a pattern periodic in three dimensions, see Ref. [6]. The structure of a
crystal can be visualized using a periodic array of points called a lattice. An
important consequence of the periodicity of the lattice is the Crystallographic
Restriction Theorem. This theorem states that a periodic lattice can only
have 2-, 3-, 4- or 6-fold rotational symmetry. We will provide a short proof
of this theorem.

Assume we have a periodic lattice which is invariant when rotated by an
angle θ = 2π/n around any lattice point, with n a positive integer. Consider
a line of lattice points along which the crystal is periodic, with a certain
lattice constant a. We will look at three consecutive lattice points A-O-B
(see Fig. 1). We can now rotate A and B by θ to the lattice points A’ and
B’. The line through A’ and B’ is parallel to our original line. It should
therefore also be periodic with lattice constant a. It follows that the distance
s between A’ and B’ has to obey s = ma, with m an integer. From geometry
we can find s to be 2a cos θ. So, the obtained relation is:

cos θ =
m

2
for integer m,

θ =
π

3
,
π

2
,
2π

3
or π

(1)

This corresponds to 6-,4-,3- and 2-fold rotational symmetry respectively,
therefore proving the theorem. The trivial solution θ = 2π is usually not
considered.
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Figure 1: A periodic lattice invariant under a rotation of θ. Consequently,
the distance s between the points A’ and B’ has to be equal to an integer
times the lattice constant a. This restricts θ to π/3, π/2, 2π/3 or π

We can subsequently describe a periodic lattice as a constantly repeating
cell, usually called a unit cell. It is important to note that this unit cell has
to fill the space without gaps by repeating itself. The unit cell must have the
same rotational symmetry as the lattice itself. So, the restriction theorem
also dictates that the only unit cells that can fill the entire space continuously
are 2-,3-,4- or 6-fold rotationally symmetric. Therefore, there will only be a
finite number of distinct unit cells. The lattices generated by these unit cells
are called the Bravais-lattices. All of the 2-dimensional Bravais-lattices are
depicted in Fig. 2.

Figure 2: The 2-dimensional Bravais-lattices with the corresponding unit
cell. They are translationally invariant in two directions and have 2-,3-,4- or
6-fold rotational symmetry. In 3 dimensions there are 14 Bravais-lattices and
in 1 dimension there is only 1. The figure has been extracted from Ref. [7].

This brings us to the discovery of quasicrystals in 1982. A diffraction ex-
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periment conducted by Dan Shechtman on an aluminium-manganese alloy
revealed a lattice that appeared to have 10-fold rotational symmetry (see
Fig. 3), although it later turned out to be 5-fold, see Ref. [8]. As we just es-
tablished, there is no unit cell with 5-fold rotational symmetry, which means
that this lattice cannot be constructed by a repeating unit cell. Consequently,
although it has rotational symmetry, this lattice cannot be periodic. This
was previously thought to be impossible and, a new definition of crystals had
to be introduced. This new definition contained both the periodic and the
aperiodic crystals or quasicrystals. Shechtman would later receive a Nobel
prize for his findings.

Figure 3: The original diffraction pattern obtained in Shechtman’s experi-
ment. It clearly possesses 5-fold rotational symmetry, which was previously
thought to be impossible for crystals. This figure has been extracted from
Shechtman’s 2011 Nobel Lecture.

Interestingly enough, all quasicrystals can be described as the projection of
a higher dimensional periodic lattice. For a rigorous mathematical proof of
this claim see Ref. [1]. To illustrate this, we will discuss a famous example
of creating a one dimensional quasicrystal, using a periodic two dimensional
lattice. Consider a square lattice in two dimensions, with points on every
position (m,n) for integer m and n. A line going through the origin with
irrational slope will never intersect with any of the other lattice points. If we
then project every lattice point within a certain range of this line onto it, we
obtain a sequence of points on the line (see Fig. 4). This sequence of points
is a one dimensional quasicrystal. Furthermore, if we pick the slope to be
exactly 1/τ , with τ = (1 +

√
5)/2 the golden ratio, we obtain the so-called

Fibonacci quasicrystal. We will discuss the main features of this crystal in
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the next section.

Figure 4: The construction of a 1D quasicrystal by projecting a 2D periodic
lattice onto a line with irrational slope. The resulting sequence of points is
a quasicrystal. The line has been shifted outside the range for clarity, but
this does not affect the sequence. Note that the range around the line is
determined by placing a square of unit length at the origin and projecting
its size along the line.
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2 Energy spectrum of the Fibonacci quasicrys-

tal

2.1 Construction of the Fibonacci quasicrystal

In this section we will further investigate the Fibonacci quasicrystal. An
alternative way to construct it is by making use of the Fibonacci word. We
use this terminology to distinguish from the Fibonacci sequence, which is
the famous sequence of numbers, and the Fibonacci chain, which denotes
the chain of sites that can be generated with the Fibonacci word. There are
many ways to construct the Fibonacci word. One of them is by repeated
substitution. We start off with one S and repeatedly substitute S → L
and L→ LS (see Table 1). One way to think of this sequence is in terms of
rabbits. S denoting a small rabbit and L a large one. In every new generation
small rabbits will grow up (S → L) and large rabbits will reproduce (L →
LS). An alternative name for this sequence is therefore the rabbit sequence.
If we now take the limit of the number of generations to infinity, we obtain
the Fibonacci word.

Number of letters Generations of the Fibonacci word
1 S
1 L
2 LS
3 LSL
5 LSLLS
8 LSLLSLSL
13 LSLLSLSLLSLLS
21 LSLLSLSLLSLLSLSLLSLSL

Table 1: The first few generations of the Fibonacci word. The left-hand side
denotes the number of letters in the generation, and follows the Fibonacci
sequence.

From this sequence we can construct a quasicrystal by associating L and
S with the distances between sites on a 1-dimensional lattice, L being a
long distance and S being a short distance. The energy spectrum of this
quasicrystal will turn out to have some interesting properties, as was shown
in Ref. [3]. In the following calculations, we will approximate the infinite
Fibonacci quasicrystal by looking at a periodic system, with the n-th gener-
ation of the finite Fibonacci chain as a unit cell. This system is called the
n-th approximant.
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We consider a tight-binding Hamiltonian for this crystal

H =
∑
i

ti(|i〉〈i+ 1|+ |i+ 1〉〈i|), (2)

where ti is the hopping constant between site i and i + 1, depending on the
distance between the sites. The constant can therefore take on two values, ts
(where the subindex s denotes strong, corresponding to S) and tw (where the
subindex w denotes weak, corresponding to L). The structure of the Hamil-
tonian depends on the single parameter ρ = tw/ts. Changing the hopping
constants without changing the ratio between them only scales the energy
values.

As L appears more frequently in the Fibonacci word than S, the same goes
for tw in comparison to ts. The ratio of their frequency will actually converge
to the golden ratio as we increase our approximant in size. We will pro-
vide a quick proof for this claim. Suppose that, for a chain of n generations
Cn, we have the number of times that ts and tw occur Nn(tw) = Fn−1 and
Nn(ts) = Fn−2 respectively, with Fn the n-th Fibonacci number. If we now
substitute S → L and L→ LS to obtain Cn+1, we find

Nn+1(tw) = Nn(tw) +Nn(ts) = Fn−1 + Fn−2 = Fn

and Nn+1(ts) = Nn(tw) = Fn−1.
(3)

It is easy to see that C2 satisfies our initial assumption. So, by induction,

∀n > 2, Nn(tw) = Fn−1 and Nn(ts) = Fn−2. (4)

For the infinite Fibonacci chain, the ratio between the frequencies will there-
fore be

N∞(tw)

N∞(ts)
= lim

n→∞

Fn−1
Fn−2

=
1 +
√

5

2
, (5)

which is the golden ratio.

2.2 Molecules and Atoms

We can give a physical interpretation to the system by associating two
strongly connected sites with a diatomic molecule, and a site with weak
connections to either side with a single atom (see Fig. 5).
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Figure 5: The unit cell of the sixth approximant of the Fibonacci chain. The
bonds follow the pattern of the Fibonacci word (see Table 1). The double
bonds denote a strong hopping ts and the single bonds a weak hopping tw.
We can interpret two strongly bonded sites as a diatomic molecule and a
site with weak bonds to either side as a single atom. This figure has been
extracted from Ref. [3] and has been modified for convenience.

We will consider the atomic and molecular energy levels separately, and later
combine them. There can either be one or two molecules between two atoms.
We can therefore approximate the coupling between two nearest atoms with
one of two values, which we will call t′w and t′s. We can construct a new lattice
by carrying out these approximations for every atomic site (see Fig. 6). In
fact, what we end up with is again an approximant of the Fibonacci chain,
but three iterations back. In other words, if we have a chain of n iterations
Cn, then the atomic energy levels are described by the Hamiltonian of Cn−3.
This transformation is called the atomic deflation.

Figure 6: Atomic deflation of the sixth approximant. The unit cell has been
shifted in order to make the approximation clearer. We approximate the
atomic energy levels by looking at the chain Cn−3. In this case the sixth
approximant is transformed to the third. Because of periodicity, the last site
is the same as the first one, which is why there seem to be nine sites in the
figure instead of eight. This figure has been extracted from Ref. [3].

This method also works for the molecular energy levels. There will be ei-
ther zero or one atom in between molecules, again resulting in two distinct
coupling constants. However, this time we find the chain describing the
molecular levels to be equal to Cn−2 (see Fig. 7). Similar to before, this
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transformation is called the molecular deflation. Since the two orbitals lo-
cated on a diatomic molecule can either be in a bonding or an anti-bonding
state, we need to shift Hn−2 by ±ts to obtain the energy levels of the molec-
ular sites in our original chain.

Figure 7: Molecular deflation of the sixth approximant. The unit cell has
again been shifted for clarity. The molecular energy levels can be approxi-
mated by looking at the chain Cn−2. In this case the sixth approximant is
transformed to the fourth. Because of periodicity, the last site is the same as
the first one, which is why there seem to be nine sites in the figure instead
of eight. This figure has been extracted from Ref. [3].

Now that we have the energy levels for the molecular and atomic sites, we
can write the Hamiltonian of our original chain as:

Hn = (zHn−2 − ts)⊕ (z̄Hn−3)⊕ (zHn−2 + ts) +O(ρ4), (6)

where z = ρ/2 and z̄ = ρ2 are scaling factors, with ρ = tw/ts. Their value is
derived in Ref. [9]. This approximation is exact in the limit ρ� 1. We can
give a minimal condition for the validity of this approximation, by requiring
ρ to be sufficiently small such that the different parts of the Hamiltonian do
not overlap, as was proposed in Ref. [10]. To formulate this mathematically,
we denote the width of the energy spectrum of Cn by ∆n. The distance
between the two molecular parts of the Hamiltonian is 2ts − z∆n−2. The
atomic part of the Hamiltonian needs to fit in between the two molecular
parts, so our condition becomes

z̄∆n−3 ≤ 2ts − z∆n−2. (7)

2.3 Energy spectrum and LDOS

The structure of the energy spectrum now starts to become clear. We see
in Eq. 6 that the spectrum can be decomposed into three main clusters, a
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bonding and anti-bonding molecular cluster, and the atomic cluster. Since
these are all scaled energy spectra of previous iterations of our Fibonacci
chain, we can again decompose each cluster into three smaller clusters, and
so on (see Fig. 8). Therefore, the energy spectrum has a recursive, Cantor
set-like description.

Figure 8: Energy spectrum of Cn. The top two rows show the spectra of the
chains Cn−3 and Cn−2. We can subsequently construct the spectrum of Cn
on the bottom row by combining these two spectra. This figure has been
extracted from Ref. [3].

Finally, we can also observe this triple structure when looking at the eigen-
functions corresponding to these energy levels. In order to reveal this, we
first need to rearrange the sites in a certain way. We want to group the sites
together such that we have two equally sized clusters of molecular sites and
one of atomic sites, similar to the eigenenergies.

For any chain Cn with n > 3, the number of atomic sites is equal to
NA = Fn−3. Since the total number of sites of Cn is Fn−1, it follows that the
number of molecular sites is NM = Fn−Fn−3 = 2Fn−2. Hence, our molecular
groups will both have to contain Fn−2 sites, and our atomic group Fn−3.

Here we recall that we can construct the Fibonacci quasicrystal using the
projection method, as was discussed in the previous section. We can obtain
any finite chain Cn by only taking the first Fn sites generated by the projec-
tion. If we take a close look at the construction of a chain Cn by this method,
we notice that there is a very natural way to divide the sites into the three
desired clusters. Within the projection range, the molecular sites are located
near the edges of the range, while the atomic sites are clustered in the centre
(see Fig. 9). If we now number these sites horizontally from bottom to top,
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the first Fn−2 are molecular, then we have Fn−3 atomic sites, and finally we
have Fn−2 molecular sites again. Numbering the sites in this manner is called
conumbering. The conumbers of a chain Cn follow the pattern of

c(i) = iFn−1 mod Fn, (8)

where c(i) is the conumber corresponding to site i.

Figure 9: The first 13 sites resulting from the projection method, equivalent
to C7 when using the rabbit sequence (see Table 1). If we look along the
projection range, we notice that the molecular sites are located near the top
and bottom, while the atomic sites are clustered in the centre. We number
them horizontally from top to bottom, which is called conumbering. This
figure has been extracted from Ref. [3].

This division is similar to the atomic and molecular deflation, where we
approximate Cn by looking at the atomic or molecular sites separately. Cru-
cially, since the deflated chains are again Fibonacci chains, the individual
atomic and molecular clusters are also Fibonacci chains, just three and two
generations back respectively. We can therefore again divide every cluster
into another two molecular and one atomic cluster, and so on. This is very
similar to the way we decomposed the energy spectrum.

Finally, we can observe this similarity by looking at the eigenfunctions cor-
responding to the eigenenergies, and calculating on which sites they are lo-
calized. To show this, we perform a periodic tight-binding calculation for
the chain C11, with F11 = 89 sites. The resulting eigenvectors tell us the
localization of this state on every site, i.e. the first component of the first
eigenvector tells us the localization of the first eigenstate on the first site. We
can use this to calculate the local density of states (LDOS) of the electrons,

LDOS(r, ε) =
∑
n

|Φn(r)|2δ(ε− εn), (9)

with Φn the eigenstate corresponding to the n-th eigenenergy εn. If we then
rearrange the site according to their conumbers, the recursive structure re-
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veals itself, see Fig. 10. As is to be expected, the eigenfunctions correspond-
ing to the molecular energy levels are highly localized on the molecular sites,
on the edges. The eigenfunctions corresponding to the atomic energy levels
are, however, highly located on the molecular sites, in the centre. Since the
clusters on the x-axis and the energy spectrum on the y-axis both have a
recursive structure, the figure also has this property. It consists of five main
squares, each of which contains a similar, but smaller figure, and so on. The
figure is also invariant under exchange of the position- and energy-axes.

Figure 10: LDOS of C11, using a tight-binding approximation. The figure
shows the localization of the eigenfunctions of the chain on its sites. On the
y-axis we have the energy levels to which the eigenfunctions correspond, and
on the x-axis we have the rearranged sites, according to their conumbers.
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Figure 11: The geometrical construction of the LDOS. From left to right, we
have shown the LDOS for C4, C6, and C8.
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3 Comparison to numerical calculations

Now that we have discussed the theoretical properties of the Fibonacci qua-
sicrystal, it will be interesting to see whether we can obtain these same
properties numerically. In this section, we will discuss the results that were
obtained by solving the Schrödinger equation numerically on a region that
simulates the one-dimensional Fibonacci quasicrystal.

In the previous section we took a mathematical approach in order to make
predictions about the 1D Fibonacci quasicrystal. In particular, we predicted
a recursive triple structure for the energy spectrum, where it could be contin-
uously divided into two molecular parts at the edges and an atomic part in
the centre. Furthermore, we predicted that see the same structure should be
observed when looking at the LDOS with the sites rearranged in a way that
the molecular sites are located at the edges and the atomic sites in the cen-
tre. We now want to verify whether we can confirm this result in a numerical
calculation.

3.1 Construction of the lattice

For this, we first need to construct a region that simulates the 1D Fibonacci
quasicrystal. We start off with the Fibonacci word of a certain generation
n, which consists of Fn letters. In the theoretical model, the letters of the
Fibonacci word correspond to the distance between neighbouring lattice sites.
In turn, this determines a certain hopping between the two sites. In the
numerical model the sites are evenly spaced, but we simulate the two different
hopping parameters by introducing two different height potentials of a certain
width Pwidth, which we will denote VL and VS, corresponding to the hopping
parameters tw and ts respectively. We then place these potentials on a one
dimensional region with length Fn, following the order of the Fibonacci word,
i.e. we place a potential of height VL at the position x = 0, VS at x = 1,
up until the last potential at x = Fn − 1. In the mathematical derivation,
we approximated the Fibonacci quasicrystal with a periodic unit cell of the
n-th generation chain Cn. We replicate this approximation by introducing
periodic boundary conditions to our region. In order to do this, we add a
potential VL at x = Fn, see Fig. 12. Our region now consists of Fn enclosed
sites, and we can impose the periodic boundary conditions by ”gluing” the
potential VL at x = Fn to the VL at x = 0.
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Figure 12: The region that approximates the lattice of C7. We have a one
dimensional space with potentials VL, depicted by the red bars, and VS,
depicted by the blue bars. The first 13 potentials follow the pattern of the
7-th generation Fibonacci word. We then add one more potential VL at the
end. As a result we obtain a region with F7 = 13 sites, just like in the chain
C7. The sites are marked with the numbers 1 through 13.

In theory, we now have a good approximation of the theoretical lattice. In
practice, however, we need to make one more adjustment. When the potential
height VS is small compared to VL, it allows the high-energy electrons to
also ”sit” on top of the small potential VS in between molecular sites. As
a result, the effective size of the molecular sites is larger than that of the
atomic sites, which lowers the on-site energy of the molecular sites. In the
theoretical model we do not run into this problem, since the electrons are
mathematically confined to the discrete sites, and cannot ”sit” on top of a
bond in between sites. Depending on the potentials, this can cause the high
molecular energy levels to mix with the atomic energy levels, or in some
cases they can even be lower than the atomic energy levels. To solve this,
we artificially shrink the molecular sites by a certain factor 0 < γ ≤ 1, such
that their effective size is comparable to the size of the atomic sites.

3.2 Eigenenergies and eigenfunctions

We now have everything to make a proper approximation of the Fibonacci
quasicrystal, and check whether we can find any of the previously determined
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properties. We have calculated the energy-eigenvalues for a region with F10 =
55 sites in Fig. 13. The energy spectrum clearly divides into two molecular
groups of F8 = 21 eigenvalues at the top and bottom, and an atomic group
of F7 = 13 eigenvalues in the middle. Moreover, we can actually see the
recursive structure, as the triple division is still apparent after zooming in
twice on the bottom molecular energy levels. Furthermore, we would expect
the energy spectrum to be symmetric, but the top higher energy levels seem
to be more spaced out than the lower energy levels. We suspect the reason
for this to be that the ratio between potential and energy value decreases for
higher energy levels. Therefore the higher energy levels are affected less by
the potentials than the lower ones.

Figure 13: The eigenvalues obtained by numerically solving the Schrödinger-
equation on a region with F10 = 55 sites. We used the potential heights
VL = 100 and VS = 30, the potential width Pwidth = 0.2, and the molecular
site shrinking factor γ = 0.92. On the left, the theoretical structure of the
energy spectrum was added from the previous section. The first figure to the
right of this is the set of the first 55 energy eigenvalues. The two figures after
this, zoom in consecutively on the part of the set highlighted in the black
boxes. The three-part division is noticeable until two levels deep, revealing
the recursive structure of the energy spectrum.

Furthermore, we have calculated the LDOS for the eigenfunctions corre-
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sponding to these energy levels. In the numerical approximation, we use

LDOS(r, ε) =
∑
n

|Φn(r)|2f(ε | εn, σ), (10)

where we have introduced a broadening f(ε |µ, σ) with mean µ and standard
deviation σ for the numerical approximation, instead of the δ-function in the
theoretical model. This allows for some overlap between the energy levels.
In our case, we used a normal distribution for the broadening, where σ is
determined by hand based on the spacing of the energy spectrum. If we
now look at the LDOS, we already see a clear split in the eigenfunctions, see
Fig. 14. The middle eigenfunctions seem to be dominant on the atomic sites,
while the outer eigenfunctions are more prominent on the molecular sites.

Figure 14: The LDOS for the first eight sites of C55. To make the figure
clearer, we used different parameters than in Fig. 13. The potential heights
are VL = 50 and VS = 25, the potential width is still Pwidth = 0.2, the
molecular site shrinking factor is γ = 0.94, and we used σ = 0.1.

If we then rearrange the sites according to their conumbers and plot the
LDOS, we obtain Fig. 15. Again, we clearly see the three-part division,
where the molecular eigenfunctions are localized on the molecular sites in
the corners, and the atomic eigenfunctions are localized on the atomic sites
in the centre. On top of this, if we look closely, we see that these 5 regions
subdivide two more times, showing the same recursive property as the energy
spectrum.

21



Figure 15: The LDOS obtained by a tight-binding calculation for 55
sites (left), compared to the LDOS obtained by numerically solving the
Schrödinger equation for a region with F10 = 55 sites. Because the molec-
ular sites are shrunk by a shrinking factor γ, the x-axis does not actually
run from 0 to 55 for the numerical figure, but rather stops at 52.48. The
parameters are the same as in Fig. 14. For these particular values, we can
see the recursive structure multiple levels deep. The main plot divides into
5 regions, which again divide into 5 regions, and in the top left and top right
we can see some of these regions divide into 5 regions again, as indicated by
the red box.

3.3 2D lattice

As a final comparison, we will examine the same results for a two dimensional
region. This will be more representative of the results of a potential experi-
ment. We construct the 2D region that simulates the Fibonacci quasicrystal
similar to the 1D region. However, now the region has a width in addition
to its length of Fn. We then extend all of the potentials along the width of
the region to the edges to enclose all the sites, see Fig. 16. We have chosen
the width to be 0.8 such that, if you take the space occupied by potentials
into account, every site is a square with side length 0.8. Furthermore, in
addition to the periodic boundary conditions along the short edges, we im-
pose Dirichlet boundary conditions along the long edges, meaning that the
eigenfunctions should be zero at y = ±0.4. Finally, we need to artificially
shrink the molecular sites again, for the same reasons as mentioned before.
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Figure 16: The region that approximates the lattice of C6 in two dimensions.
The potentials are placed in the same way as the one dimensional case, and
are then extended to the edges.

If we now calculate the energy eigenvalues and the LDOS for the rearranged
sites, we obtain Fig. 17 and Fig. 18, respectively. As expected, the energy
spectrum divides into three parts. However, it is hard to see any further
divisions, unlike the one dimensional case. For different parameter values,
it is possible to make one more division observable, but in general the two
dimensional approximation does not demonstrate the recursive structure as
clear as the one dimensional case does. Furthermore, in the LDOS figure, the
primary and secondary divisions are apparent. However, the third division
is hard to see, unlike the one dimensional case.

Figure 17: The eigenvalues obtained by numerically solving the Schrödinger-
equation on the two dimensional region with F10 = 55 sites. We used the
parameter values as in Fig. 13, VL = 100 and VS = 30, the potential width
Pwidth = 0.2, and the molecular site shrinking factor γ = 0.92. The first
figure shows the first 55 energy eigenvalues. The second figure zooms in on
the first 21 energy eigenvalues.

23



Figure 18: The LDOS obtained by numerically solving the Schrödinger equa-
tion for the two dimensional region with F10 = 55 sites. We used the same
parameters as in Fig. 15, except for σ, which we had to change since the
energy levels are more spaced out . The potential heights are VL = 50 and
VS = 25, the potential width is Pwidth = 0.2, the molecular site shrinking
factor is γ = 0.94, and we used σ = 0.2.
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4 Scanning Tunnelling Microscopy

Now that we have made theoretical predictions about the Fibonacci qua-
sicrystal, and have supported those predictions by numerical calculations, the
final step would be to experimentally verify our findings. This could be done
nowadays by employing a technique called Scanning Tunnelling Microscopy
(STM). This specific type of microscope falls within the broader category of
incredibly accurate microscopes called Scanning Probe Microscopy ; however
we will focus our attention on STM, as this is the technique that is most
useful for our subject. In this section we will explain how it works, and how
it can be applied to investigate our predictions.

In order to test our predictions, we need to be able to analyse a lattice
with an atomic precision, i.e. a resolution of order 1 Ångström. Before the
invention of STM, this precision could only be achieved using a Transmission
Electron Microscope or TEM because optical microscopes are limited by the
wavelength of the light they emit, which is generally orders of magnitude
greater than 1 Å. A TEM measures the transmission of electrons through a
very thin sample, usually of the order of 100 nm. This technique is useful
when looking at the composition and thickness of materials, but not neces-
sarily when trying to determine the structure on the surface of the sample.
As we will explain later, we do need a microscope that can do this to accu-
rately test our predictions.

This is where we can use an STM. These types of microscopes are based
on the quantum mechanical phenomenon called quantum tunnelling. The
idea is to use a fine metal tip as a probe, with which we can map the sur-
face structure. First we apply a voltage difference between the surface of the
sample and the metal tip. If we then bring the metal tip close enough to the
surface, electrons will be able to tunnel through the vacuum in between the
tip and the sample, causing a very small current to flow through the metal
tip, see Fig. 19. As the distance between sample and tip decreases, the cur-
rent will strictly increase. Therefore, every current corresponds to a certain
tip-sample distance. As we will show, a deviation of the size of an atom
will already noticeably affect the tunnelling current, giving us the required
resolution.

25



Figure 19: Schematic of an STM used on a sample consisting of 1 atom type.
The sample has an elevation of one atomic layer on the right. A voltage V
is applied between the probe and the sample. This figure has been extracted
from Ref. [11].

4.1 Constant-current method

There are two ways of using the STM: a constant-current and a constant-
height method. To obtain a height map of the sample, we move the probe over
the surface and adjust the height of the probe to keep the current constant.
This is done using piezoelectric actuators, which expand when an electric
field is applied to them. For example, in Fig. 19, as the probe comes across
the elevation in the sample, the tunnelling current will increase. This is used
to activate the actuators, which raise the probe until the current returns to
its original value. The height of the probe is then recorded as a function
of the position of the probe, to produce an image of the surface, called a
topograph, see Fig. 20. This will not always result in a perfect height map,
since different atoms and molecules have different electronic properties that
affect the tunnelling current. Some molecules can even inhibit the flow of
electrons when added on the surface, causing the probe to lower as it passes
over it. In any case, it will give us a very detailed map of the electronic

26



conductance at every part of the surface.

Figure 20: A topograph of a Si(111) surface. We can see that the resolution
is good enough to distinguish individual Si-atoms, indicated by the yellow
dots. We can also observe defects in the form of missing atoms. The unit cell
has been highlighted by the white rhombus. This figure has been extracted
from Ref. [11].

We will now quickly illustrate why we can generate a topograph with such
precision. In general, the probability density of an electron with energy E
at a position ~r is given by |ψ(~r)|2, where ψ(~r) is the wave function of the
electron. For simplicity, let us consider a free electron in 1D. The probability
density of the electron will then be homogeneous: |ψ(z)|2 = constant. If we
now introduce a potential at z = 0 with a width d and height V > E, the
electron will have a probability of tunnelling through the potential barrier,
see Fig. 21. In general, the wave function decays exponentially in the barrier,
hence we can write

ψ(z) ≈ ψ(0)e−kz, with k =

√
2me(V − E)

~2
, for 0 < z < d. (11)

Hence, the probability of an electron tunnelling through the barrier is given
by the transmission coefficient T , with

T =
|ψ(d)|2

|ψ(0)|2
≈ e−2kd. (12)

The tunnelling current will therefore be proportional to this coefficient T .
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Figure 21: Schematic overview of the quantum tunnelling of a free electron
with energy E through a potential of height V and width d. The top figure
shows the position of the potential, with the electron initially localized on
the left. The bottom figure shows the exponential decay of the real part of
its wave function when it tunnels through the potential. This figure has been
extracted from Ref. [11].

This is essentially what happens when the electrons tunnel into the metal
probe: the transmission coefficient exponentially decreases as the tip-sample
distance increases. If we fill in some typical value for the energy difference
V − E ≈ 4.5 eV, we find that 2k ≈ 22 nm−1. Therefore, if we increase
the tip-sample distance by δ = 1 Å, the transmission coefficient becomes
about 9 times smaller: Td/Td+δ = exp(2kδ) ≈ 9. It now becomes clear
why an STM can measure surface structures so accurately, since even a 1 Å
protrusion, which is about the size of an atom, changes the current by an
order of magnitude.

4.2 Constant-height method

Hence, the constant-current method gives us a very accurate to examine the
topography of the sample. To actually get a sense of the LDOS, we need
to measure the differential conductance dI/dV . This tells us the change in
the current flowing through the metal tip as we increase the voltage between
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the tip and the surface, and in order to measure this accurately, we keep the
height of the probe fixed. As the voltage increases, it will be possible for lower
energy electrons to bridge the tip-sample gap. Thus, if we look at dI(V0)/dV
for a certain voltage V0, we see the increase in the number of electrons that
are now able to reliably cross the gap for this voltage. It would make sense
to assume that this value is approximately proportional to the LDOS of
the electrons at E = eV0. However, we have shown that the transmission
coefficient T depends exponentially on the square root of the voltage, see
Eq. 12. This adds a featureless slope of background to our measurements,
which increases exponentially as we increase the voltage. To get rid of the
noise, we need to normalize dI/dV by dividing it by the total conductance
I/V . For the normalized differential conductance we can correctly assume

LDOS(eV ) ∝ dI/dV

I/V
. (13)

To obtain the energy spectrum we need to average the LDOS over the entire
sample. From this we get a total density of states as a function of the voltage.
Since the total density of states is proportional to the density of energy levels,
this tells us what the energy spectrum roughly looks like.

4.3 Designing the lattice

Finally, we need to find an accurate way to approximate the lattices we are
interested in, such that we can measure them using an STM. To effectively
make use of an STM, we need a surface that conducts electricity. Therefore,
a copper surface is usually used as a starting point. On the copper surface,
the electrons are free to move, and act effectively as a 2D electron gas. We
can now add other atoms or molecules to the copper surface to build an
approximation of the lattice. We can do this by using an STM again. If
we move the metal tip close enough, we can cause a stronger interaction
between the tip and the targeted atom, which can be either a repulsive or
attractive interaction. We can use this stronger interaction to either ”push”
or ”pull” the atom to the desired position, depending on the interaction
type. The ability to place individual atoms exactly where we want them
gives unprecedented control over the design of the sample, and enables us
to accurately build any lattice. Depending on the atom or molecule that we
have placed, this will induce a positive or negative potential for the electrons.
We can place the negative potentials at the site locations to attract the
electrons, or we can use the positive potentials to ”box in” the electrons at
the site locations. A typical molecule that is used for these experiments is a
CO-molecule, which induces a repulsive potential.
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5 Experimental Discussion

Now that we possess the required knowledge about STM, we can take a
look at some interesting experiments within this field. However, there have
not been any experiments about the one dimensional Fibonacci quasicrystal
yet. We will therefore first look at an experiment that uses STM to study
the electronic properties of a graphene lattice. Secondly, we will discuss
an experiment that detects the LDOS for a two-dimensional quasicrystal,
namely the Penrose tiling.

5.1 Designing a graphene lattice with STM

First off all, we will discuss the 2012 experiment by Gomes et al. about
the graphene lattice, see Ref. [4]. Graphene is a monolayer crystal of carbon
atoms, arranged in a hexagonal pattern also known as the honeycomb lattice,
see Fig. 22. It has been a subject of interest for years among physicists, due
to its many uncommon properties like high heat- and electrical-conductivity,
in addition to its incredible strength. The simplest theoretical model that
accurately describes the graphene lattice is the two-site tight-binding approx-
imation with a single hopping parameter t. This model is simulated in the
experiment using the technique described in the previous section. A struc-
ture similar to the graphene lattice is obtained by placing CO-molecules on
the copper surface, following the pattern of the triangular Bravais-lattice, see
Fig. 22.
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Figure 22: The graphene lattice. It consists of a single layer of carbon atoms,
arranged in a honeycomb pattern. We can generate this lattice by taking a
hexagonal Bravais-lattice, and then splitting every site into two new sites A
and B. We then apply a nearest neighbour approximation with a certain
hopping parameter t. The lattice can be simulated by placing CO-molecules
at the positions of the grey dots.

Using STM, we can then look at the topograph for a specific voltage, and
at the differential conductance for a certain voltage interval, see Fig. 23. In
Fig. 23a, we can clearly see the honeycomb pattern and the effects at the
edges of the lattice. In Fig. 23b, the spatially averaged differential conduc-
tance spectrum is shown. In essence, this is the spatially averaged LDOS on
the interval V = −200 mV to V = 200 mV. Since every eigenstate corre-
sponds to an energy eigenvalue at which it is most prominent, this shows us
the approximate shape of the energy spectrum. Notice that there is no large
gap in between the two peaks. Instead there seems to be a linear decrease
after the first peak at EM until the point ED, after which the conductance
seems to increase linearly again until the second peak. We now look at the
energy spectrum in reciprocal space in the inset of the second figure. This
reveals a double conical structure that reflects the linear dispersion relation
between the two peaks and the minimum point that connects them. This
shape is called a Dirac cone and the minimum ED the Dirac point. The Dirac
cone has long been theoretically predicted to appear in graphene, and is one
of its main characteristics. Both metals and insulators have parabolic energy
spectra in reciprocal space instead of conical; metals have a partially filled
upper band and insulators possess a gap between the upper and lower band.
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Thus, graphene does not fall within either of those categories. As a result of
the Dirac cone, the electrons act as if they would be massless and therefore
move with a constant Fermi velocity vF ≈ c/300 ms−1. The existence of
massless fermions in a graphene lattice had been reported experimentally by
Novoselov et al., see Ref. [12].

Figure 23: a The STM topograph for a lattice with 271 CO-molecules for
V = 10 mV and I = 1 nA, with a lattice constant of d = 8.8 Å. b The
differential conductance averaged over a number of sites near the centre of
the lattice. The curve has been normalized by showing the ratio between
the measured differential conductance and the differential conductance of a
clean copper surface. The point EM shows the maximum conductance at
V = −104 mV, corresponding to the M-point in reciprocal space. The point
ED shows the minimum conductance at V = −5 mV, and corresponds to
the Dirac point in reciprocal space. Furthermore, it is accompanied by a
tight-binding, next-nearest neighbours fit, shown by the dashed line as a
comparison. The inset shows the resulting Dirac-cone in reciprocal space.
This figure has been extracted from Ref. [4].

5.2 Electronic properties of the Penrose Crystal

The second experiment aims to employ STM to study the LDOS of the qua-
sicrystal corresponding to the Penrose tiling, where every vertex is a lattice
site. Since the Penrose crystal is a two-dimensional quasicrystal, it is very
well suited to be investigated with an STM, where we build the lattice on a
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2D copper surface. The construction is shown in Fig. 24a. Before we look
at the results of the experiment, let us quickly discuss the link with the Fi-
bonacci quasicrystal. At first order, i.e. if we only look at nearest neighbours,
the Fibonacci quasicrystal has two types of sites: atomic and molecular. We
predicted that, despite the lack of translational symmetry, the LDOS and the
energy spectrum still possess some order in relation to the different sites. We
observed a threefold splitting of the energy eigenstates, where the upper and
lower group of states were highly localized on the molecular sites, and the
middle group highly localized on the atomic sites. It will now be interesting
to see whether the lattice corresponding to the Penrose tiling expresses the
same properties. In contrast to the Fibonacci crystal, the Penrose crystal
actually has eight structurally different sites, see Fig. 24b.

Figure 24: a The construction of the Penrose lattice. The left half of the
figure shows the electron conductance at V = 10 mV and I = 1 nA. On
the right hand side, an overlay of the Penrose tiling has been added. b The
eight structurally different sites. The site in question is always at the centre.
Every one of them has a different first order-structure, except for site-E
and site-F, which are only different when comparing next-nearest neighbours
(second order). However, the sites are formed by different matching rules,
and should therefore be individually classified. This figure has been extracted
from Ref. [5].

Now that we have the necessary information about the Penrose lattice, it is
time to look at the differential conductance map for a couple of energy values,
see Fig. 25a-c. Similar to the first experiment, the differential conductance
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has been normalized by dividing it by the differential conductance of a clean
copper surface. In Fig. 25d-f, we have highlighted different types of sites in
the Penrose lattice. If we look at the conductance maps, we can see that
for every voltage the electrons form a standing wave, but only at particular
sites. For example, if we compare Fig. 25a to Fig. 25d, we notice that the
standing wave is mainly localized on the B-sites. We see a similar localization
on specific site types when we compare Fig. 25b,c to Fig. 25e,f, respectively.
For V = −200 mV, the E-,G- and H-sites seem to be dominant, while for
V = −100 mV, the F-sites are very clearly visible.

Figure 25: a,b,c The normalized conductance maps for V = 0, −200 and −
100 mV. d,e,f The Penrose lattice sites, where certain site types have been
highlighted in cyan for comparison. This figure has been extracted from
Ref. [5].

To support this further, we also show the average normalized differential con-
ductance for each of the site types as a function of the voltage, see Fig. 26.
For comparison, we show the different site types again in Fig. 26a, and the
differential conductance curves corresponding to these sites in Fig. 26b. No-
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tice that each curve has its own peak at a certain voltage, supporting the
claim that the states are grouped together at different energy values, and
are localized on sites of a specific type. In Fig. 26c, we have shown the nor-
malized conductance averaged over all sites. As expected for quasicrystals,
it seems spiky and irregular.
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Figure 26: a The Penrose tiling with the different site types highlighted. b
The normalized conductance curves for each of different site types. The con-
ductance has been averaged over all sites of the same type near the centre of
the lattice, to minimize edge effects. c The normalized conductance averaged
over all sites. This figure has been extracted from Ref. [5].

In conclusion, despite the lack of periodicity, we still observe resonant states,
which are localized at specific site types. This is very similar to the theoretical
predictions about the Fibonacci quasicrystal we made in previous sections.
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6 Conclusion

In this thesis we have explored quasicrystals, and in particular the mathe-
matical properties of the Fibonacci quasicrystal.

In the first section, we discussed the discovery of quasicrystals in 1982 by
Dan Shechtman, when he observed a diffraction pattern with 5-fold symme-
try. We proved that any periodic lattice needs to have 2-, 3-, 4- or 6-fold
rotational symmetry, which is what made Shechtman’s discovery so surpris-
ing. We also introduced the projection method, with which quasicrystals
can be generated from higher dimensional regular crystals. When we use
this method to project a part of the 2D square lattice on a line with a slope
equal to the golden ratio, we obtain the Fibonacci quasicrystal.

In the second section, we explained how the same quasicrystal can be con-
structed by making use of the Fibonacci word. At first order, this crystal
has two different sites: molecular and atomic. We then showed that we can
decompose its Hamiltonian into two molecular parts (bonding and antibond-
ing) and one atomic part. From this we derived that its energy spectrum has
a recursive structure, where it can be indefinitely divided into three parts,
similar to a Cantor set. The eigenstates corresponding to the atomic energy
levels are localized on the atomic sites, and idem for the molecular eigen-
states. When we rearranged the sites according to their position in the 2D
square lattice from which the quasicrystal is generated, the same three-fold
symmetry emerged in the LDOS.

In the third section, we verified whether our predictions could be confirmed
through numerical calculations. We solved the Schrödinger equation numer-
ically 1D and 2D to simulate the Fibonacci quasicrystal, using potentials of
different heights to replicate the different hopping parameters of the crystal.
In the 1D model, we found a remarkable agreement with the theoretical pre-
dictions. The recursive structure is visible until two levels deep in the energy
spectrum, and the same splitting is visible in the LDOS. The 2D offered
similar results, but the recursive structure is less clear.

In the fourth section, we analysed Scanning Tunnelling Microscopy. This
technique enables us to move around individual atoms on a conductive sur-
face with atomic precision, therefore making it possible to design surfaces
which accurately simulate 1D or 2D lattices. We can then measure their
electronic properties by moving a probe very closely over the surface, and
measure the current generated by the electrons that quantum tunnel into
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the probe. By doing this for different voltages between the probe and the
surface, we can obtain an accurate image of the energy spectrum and the
localization of the eigenstates of the surface.

In the fifth and final section, we discussed two experiments that employ
STM. The first experiment shows that it can successfully construct a surface
which replicates a graphene lattice. Among others, the characteristic Dirac
cone was observed in the energy spectrum. The second experiment investi-
gates the 2D quasicrystal called the Penrose tiling. At first order, this crystal
has eight structurally different sites. It was found that the eigenstates are
somewhat clustered in groups, each of which seems to be localized on their
own type of site. This is similar the Fibonacci quasicrystal, where molecular
and atomic eigenstates are localized respectively on atomic and molecular
sites.

It will be interesting to see if the predicted properties do emerge if an experi-
ment of the Fibonacci quasicrystal is conducted. A clever surface would have
to be designed, since our numerical calculations make use of perfectly rectan-
gular potentials of different heights, and different boundary conditions, which
are difficult to realize experimentally. Furthermore, it might be interesting to
analyse the 5D crystal from which the Penrose tiling can be generated. In the
Fibonacci quasicrystal, the site types corresponded with their position in the
2D ancestor crystal, which allowed us to rearrange the sites in a natural way,
and we could find something similar for the Penrose crystal. The observation
that we can categorize the sites according to their first-order structure, and
that the states cluster in groups which are localized on specific site types
could even be a general propery of quasicrystals, and could be a subject of a
future study.

In conclusion, the Fibonacci quasicrystal has shown to possess some very
interesting mathematical properties, which seem to hold up in numerical cal-
culations. These properties have not been tested experimentally yet, but an
experiment of a 2D quasicrystal shows similar properties.
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The Mathematica notebook used for the numerical cal-
culations.
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(*The notebook that was used to simulate

the 1D Fibonacci quasicrystal in 1D and 2D.*)

In[288]:= (*

The parameters that were used

-α is the generation of the chain we want to simulate

-fib is the α-th Fibonacci number, and therefore the number of sites

-VL and VS are the potential heights

-pwidth is half of the potential width

-msite is the molecular site shrinking factor, called γ in the thesis

-yheight is half of the width of the sites

*)

α = 10;

fib = Fibonacci[α];

VL = 50;

VS = 25;

pwidth = 0.1;

msite = 0.94;

yheight = 0.4;

(*We then calculate the number of molecular and atomic sites

nmols and natoms and the total length of the lattice lattlength*)

nmols = Fibonacci[α - 2];

natoms = Fibonacci[α - 3];

lattlength = msite * 2 * nmols + natoms;

(*We generate the Fibonacci word. It is generated by making use of the conumbers,

in order to make sure every site always has the

correct conumber assigned. By generating it this way,

the Fibonacci word and therefore the lattice can sometimes be shifted,

but this does not influence any of the outcomes*)

conumbers = ReplacePart[Table[Mod[Fibonacci[α - 1] * i, fib], {i, 1, fib}], -1 → fib];

permutation = Table[Position[conumbers, i][[1, 1]], {i, 1, Length[conumbers]}];

A = Table[, {i, 1, fib}];

For[i = 2, i ≤ fib, i++,

If[conumbers[[i]] > Fibonacci[α - 2] && conumbers[[i]] ≤ Fibonacci[α - 1],

{A[[i]] = L, A[[i - 1]] = L},]];

A[[1]] = L; A[[-1]] = L;

For[i = 2, i < fib, i++, If[A[[i]] === Null,

If[A[[i + 1]] === Null && A[[i - 1]] === S, A[[i]] = L, A[[i]] = S],]]

A = Prepend[A, L];

(*We calculate the permutated positions*)

dist = Table[If[A[[i]] === L && A[[i - 1]] === L, 1, msite], {i, 2, Length[A]}];

pos = Prepend[Table[Sum[dist[[j]], {j, 1, i}], {i, 1, Length[dist]}], 0];

pospermutation = Table[pos[[permutation[[i]] + 1]], {i, 1, fib}];

(*We define the potential function*)

B2 = Table[{If[A[[n]] === S, VS, VL],

Abs[x - pos[[n]]] < pwidth && y ≥ -yheight && y ≤ yheight}, {n, 1, Length[A]}];

Z[x_, y_] := Piecewise[B2];

(*Finally, we numerically solve the Schrödinger equation*)

{vals2, funs2} = NDEigensystem

-Laplacian[u[x, y], {x, y}] + Z[x, y] * u[x, y],

DirichletConditionu[x, y] ⩵ 0, y ≥ yheight || y ≤ -yheight,

PeriodicBoundaryConditionu[x, y], x ⩵ 0 && y < yheight && y > -yheight,

TranslationTransform[{lattlength, 0}],

u, {x, 0, lattlength}, {y, -yheight, yheight}, fib,

Method → {"SpatialDiscretization" →
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{"FiniteElement", "MeshOptions" → {"MaxCellMeasure" → 0.01}}};

(*We plot the eigenvalues*)

eigenvaluesplot = ListPlot[Table[vals2[[n]], {n, 1, fib}],

PlotRange → Full, AxesLabel → {"index", "energy"}, Frame → True]

Out[311]=
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(*We now want to calculate the LDOS. Based on the spacing of the energy values we

determine a value for the standard deviation σ. We then define the LDOS-function*)

σ = 0.2;

LDOS2[x_, y_, ϵ_] :=

SumAbs[funs2[[n]][x, y]]2 * PDF[NormalDistribution[vals2[[n]], σ], ϵ], {n, fib};

(*We define the position permutation function*)

mhalf = msite nmols;

diff = nmols - mhalf;

poschange[x_] :=

PiecewisepospermutationCeiling
x

msite
 - msite + x - msite Floor

x

msite
,

x ≤ mhalf && x > 0, pospermutation[[Ceiling[x + diff]]] - 1 +

x - mhalf + Floor[x - mhalf], x > mhalf && x ≤ mhalf + natoms,

pospermutationCeiling
x - natoms

msite
+ natoms - msite + x -

natoms + msite Floor
x - natoms

msite
 , x > mhalf + natoms && x ≤ lattlength;

(*We plot the LDOS for the permutated sites*)

conumberplot2 = DensityPlot[LDOS2[poschange[x], 0, ϵ],

{x, 0.01, fib - 1.01}, {ϵ, Floor[vals2[[1]]], Ceiling[vals2[[fib]]]},

PlotPoints → 100, Frame → True, FrameLabel → {"conumbers", "energy levels"}]

Out[ ]=

(*We now do the exact same, but in 1D*)
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In[312]:= α = 10;

fib = Fibonacci[α];

VL = 50;

VS = 25;

pwidth = 0.1;

nmols = Fibonacci[α - 2];

natoms = Fibonacci[α - 3];

msite = 0.94;

lattlength = msite * 2 * nmols + natoms;

conumbers = ReplacePart[Table[Mod[Fibonacci[α - 1] * i, fib], {i, 1, fib}], -1 → fib];

permutation = Table[Position[conumbers, i][[1, 1]], {i, 1, Length[conumbers]}];

A = Table[, {i, 1, fib}];

For[i = 2, i ≤ fib, i++,

If[conumbers[[i]] > Fibonacci[α - 2] && conumbers[[i]] ≤ Fibonacci[α - 1],

{A[[i]] = L, A[[i - 1]] = L},]];

A[[1]] = L; A[[-1]] = L;

For[i = 2, i < fib, i++, If[A[[i]] === Null,

If[A[[i + 1]] === Null && A[[i - 1]] === S, A[[i]] = L, A[[i]] = S],]]

A = Prepend[A, L];

dist = Table[If[A[[i]] === L && A[[i - 1]] === L, 1, msite], {i, 2, Length[A]}];

pos = Prepend[Table[Sum[dist[[j]], {j, 1, i}], {i, 1, Length[dist]}], 0];

pospermutation = Table[pos[[permutation[[i]] + 1]], {i, 1, fib}];

B1 = Table[{If[A[[n]] === S, VS, VL], Abs[x - pos[[n]]] < pwidth}, {n, 1, Length[A]}];

W[x_] := Piecewise[B1];

{vals, funs} = NDEigensystem[

{-Laplacian[u[x], {x}] + W[x] * u[x],

PeriodicBoundaryCondition[u[x], x ⩵ 0, TranslationTransform[{lattlength}]]},

u, {x, 0, lattlength}, 2 fib, Method → {"SpatialDiscretization" →

{"FiniteElement", "MeshOptions" → {"MaxCellMeasure" → 0.01}}}];

eigenvaluesplot = ListPlot[Table[vals[[n]], {n, 1, fib}],

PlotRange → {{0, fib + 1}, {Floor[vals[[1]]], Ceiling[vals[[fib]]]}},

AxesLabel → {"index", "energy"}, Frame → True]

Out[334]=
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In[278]:= σ = 0.1;

LDOS[x_, ϵ_] :=

SumAbs[funs[[n]][x]]2 * PDF[NormalDistribution[vals[[n]], σ], ϵ], {n, fib};

mhalf = msite nmols;

diff = nmols - mhalf;

poschange[x_] :=

PiecewisepospermutationCeiling
x

msite
 - msite + x - msite Floor

x

msite
,

x ≤ mhalf && x > 0, pospermutation[[Ceiling[x + diff]]] - 1 +

x - mhalf + Floor[x - mhalf], x > mhalf && x ≤ mhalf + natoms,

pospermutationCeiling
x - natoms

msite
+ natoms - msite + x -

natoms + msite Floor
x - natoms

msite
 , x > mhalf + natoms && x ≤ lattlength;

conumberplot = DensityPlot[LDOS[poschange[x], ϵ],

{x, 0.01, lattlength}, {ϵ, Floor[vals[[1]]], Ceiling[vals[[fib]]]},

PlotPoints → 100, Frame → True, FrameLabel → {"conumbers", "energy levels"}]

Out[283]=
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