
Faculteit Bètawetenschappen

Photon Conversion Classification by Boosting
Decision Trees

Bachelor Thesis

Tijmen Schaapherder

Natuur- en Sterrenkunde

Supervisors:

Mike Sas
Institute for Subatomic Physics

Prof. Dr. Thomas Peitzmann
Institute for Subatomic Physics

June 13, 2018

Abstract

The ALICE detector located at CERN studies subatomic particles produced in heavy-ion collisions.
These collisions generate enormous amounts of particles including photons. The data gathered from these
collisions is contaminated with background. This research focuses on generating a viable and efficient
machine-learning algorithm for selecting photon conversions and discriminating them from background.
The method used is that of the boosted decision tree (BDT). A Monte Carlo simulation is used to train
and test the BDT and afterwards to test the performance of the BDT. The Monte Carlo simulation
consists of data taken from a simulated collision of 40%-60% centrality and a center of mass energy of√
sNN = 2.76 TeV (Tera electron Volts).

i

CONTENTS ii

Contents

1 Introduction 1
1.1 A Large Ion Collider Experiment . 1

1.1.1 The ALICE subdetectors . 2
1.2 The standard model . 3

1.2.1 Photons . 4
1.3 Research objectives . 5

2 Method 6
2.1 Decision tree . 7
2.2 Boosting . 8
2.3 Toolkit for Multivariate Analysis . 10

3 Training and Testing 11
3.1 Variables . 11
3.2 BDT Configuration . 13
3.3 Test and Training Results . 14

3.3.1 Control Plots . 14
3.3.2 Correlation Matrix . 16
3.3.3 BDT Response . 18
3.3.4 Optimal Cut Value . 19

4 Classification 20
4.1 Results . 20

4.1.1 Performance . 20

5 Conclusion 22

Appendix A I

Appendix B II

Appendix C III

References V

1 INTRODUCTION 1

1 Introduction

Located west of Geneva (Switzerland) on the border between Switzerland and France stands the CERN main
headquarters. This is home to the world’s largest and most powerful particle accelerator, namely the Large
Hadron Collider (LHC). Working as of late 2008, it consists of a 27-kilometre ring of numerous supercon-
ducting magnets. Inside the accelerator the LHC can produce 2 high-energy particle beams, which travel
in opposite directions close to the speed of light and are made to collide. These collisions produce many
subatomic particles. The beams are directed around the accelerator by the superconducting magnets. The
particle beams are made to collide at four locations around the accelerator. At these locations there each
stands one giant particle detector, at which the results of a collision are measured[1].

1.1 A Large Ion Collider Experiment

A Large Ion Collider Experiment (ALICE) is one of the main detectors at the LHC. At ALICE the accelerators
produce head-on collisions between heavy ions, such as lead nuclei. Its objective is to study the physics of
strongly interacting matter at extreme high energy densities. The study of the properties of the quark-gluon
plasma, a state of matter only existing at extreme high temperatures and energy densities, is one of its main
occupations. ALICE consists of multiple subdetectors that use various techniques to detect and measure the
particles produced in a heavy ion collision, which will be described below[2][3].

Figure 1: The ALICE detector with the locations of the subdetectors labeled.

1 INTRODUCTION 2

1.1.1 The ALICE subdetectors

Charged particles in ALICE, like electrons and positrons, are primarily measured in the inner barrel. By
measuring the electron and positron particles, photon conversions can be reconstructed. The charged particle
detectors that are utilized in this research, are the Inner Tracking System, the Time Projection Chamber
and the Time of Flight detector.
The Inner Tracking System (ITS) is made out of six layers of silicon detectors. The main purpose of the
ITS is the tracking of particles in the vicinity of the initial collision and the reconstruction of the primary and
secondary vertices. These vertices are the locations of the initial collision and particle decay, respectively.
Additionally the ITS recovers particles missed by the external barrel detector[4].
The Time Projection Chamber (TPC) is the primary tracking detector of the central barrel. It consists
of a gas filled cylinder divided in two drift regions. Charged particles pass through the TPC, which ionise the
gas inside, consequently freeing electrons that flow under influence of an applied electrical field to the end
plates of the cylinder. Here the electrons are registered and used to reconstruct the path of charged particles
through the TPC[5].
The Time of Flight (TOF) detector measures the time of flight of charged particles and is composed of
a large array of multigap resistive plate chambers (MRPCs) which forms a cylindrical surface in the inner
barrel. Together with the momentum and track length measured by other detectors, the time of flight can
be used to calculate the mass of a particle[6].

After a collision in ALICE, high-energy particles are produced. The corresponding energy of these particles
is measured by the calorimeters in ALICE. The calorimeters used in this research will be discussed below.
The Photon Spectrometer (PHOS) is a high-resolution photon detector made out of lead tungstate crys-
tals. Its main goal is to measure photons emitted by the quark-gluon plasma. If a high-energy photon collides
with these crystals, the lead tungstate will start to glow, and this glow can be measured. This way the PHOS
is able to detect photons originating at angles around 90◦ of the center-of-mass system[7].
The Electromagnetic Calorimeter (EMCal) is a calorimeter primarily consisting of scintillator layers and
lead foils. Particles passing through the EMCal and interacting with the lead produce an electromagnetic
shower. The photons originating from this electromagnetic shower are measured. This way, the EMCal is
able to determine the energy of the interacting particles[8].

At ALICE the data is gathered in very brief time intervals, all data measured at such an time interval is
ranked under the same event. The trigger detectors regulate the measurements at these intervals and are
able to determine the event time very precisely.
The V0 detector serves as trigger detector and the collision centrality detector. At times of collisions
particles do not always collide perfectly in the center they do not always collide perfectly in the center of one
another. The centrality is a measurement of how much these particles ‘overlap’ at the time of collision. The
V0 detector provides the number of collisions inside a specific centrality range[9].
The T0 detector serves as trigger detector and provides the start signal for some of the other detectors,
such as the TOF detector. The T0 detector also gives a rough estimate of the centrality[10].

1 INTRODUCTION 3

1.2 The standard model

The standard model is at present the best and most generally accepted theory of elementary particles. Its
intent is to explain all phenomena regarding particle physics, excluding those resulting from gravity. It de-
scribes three of the four fundamental forces, namely the strong force, weak force and electromagnetic force.
Elementary or fundamental particles are characterized as point-like particles, not having an internal structure
or excited states. The primary attributes that describe elementary particles are the mass, spin and electric
charge of the concerned particle. Particles with half integer spin and integer spin are called fermions and
bosons, respectively. Fermions number a total of 24, consisting of 6 leptons, 6 quarks and their respective
antiparticles. They are classified in 3 different generations, with the first generation being the only stable
one[11].

Quarks are the ‘building blocks’ of matter. Quarks are divided in six different flavours and they carry colour
charge. Multiple quarks can form hadrons, particles exclusively made up of quarks that are hold together by
the strong force. Hadrons are subdivided into mesons and baryons. Mesons are particles made up of a quark
and antiquark, while baryons are made up of three quarks. Quarks interact via the strong force and are kept
together inside a hadron due to a process called confinement. A group of quarks forming a hadron combine
in such a way that the resulting particle always will be colour neutral[12].

The leptons consist of the electron, muon and tau and their corresponding neutrinos. The electron, tau and
muon interact via the electromagnetic force. The neutrinos interact solely via the weak force, due to the fact
that they are electrically neutral.

According to the standard model bosons are divided into the gauge bosons and the Higgs boson. These
gauge bosons or ‘force carriers’ mediate the fundamental forces. The photon and gluon are both massless
particles that mediate the electromagnetic force and strong force, respectively. The W+, W− and Z bosons
are the force carriers of the weak force and due to their charge the W+ and W- boson also couples to the
electromagnetic force. The Higgs boson has 0-spin and is affiliated with the Higgs field, the latter explains
why some fundamental particles have mass. The Higgs boson has been long since predicted by the standard
model and has just recently been discovered. The discovery and confirmed existence of the Higgs boson is
one of the major achievements of the LHC and CERN.

Figure 2: A schematic view of the standard model.

1 INTRODUCTION 4

1.2.1 Photons

The photon is one of the gauge bosons and the force carrier for the electromagnetic force. It is a quantum of
light, a bundle of light or electromagnetic wave consists of photons. Photons have a spin of 1. These massless
particles carry the energy of the wave while moving with the speed of light. The energy of a photon can be
calculated via:

E = ~ω, (1)

where ~ is the reduced Planck constant and ω the angular frequency. The total energy of an electromagnetic
wave is equal to the total energy of the photons that the wave consists of. Due to having no electrical charge,
the photon has no antiparticle, or depending on your point of view, is its own antiparticle. Despite of having
no mass a photon does have a momentum, which can be calculated via:

p = ~k, (2)

where k is the wave vector and ~ the reduced Planck constant.

In the field of subatomic physics the role of a photon mainly lays as force carrier of the electromagnetic
force, or as rest product from high-energy particle collisions. When fast moving particles at, for example,
the LHC are made to collide, the result yields a lot of different particles flying of in all directions. Some of
these particles will be photons, other particles may later decay to photons and even other, due to for example
bremsstrahlung, may lose energy in the form of photons. The photons may convert, using detector material,
to an electron-positron pair. Additionally an electron-positron pair is able to convert to two photons, this
process is called electron-positron annihilation and is displayed as:

e+ + e− → γ + γ. (3)

In short, due to the massive energy accumulated at these collisions enormous amounts of photons will be
produced. The produced photons at ALICE will be detected and identified by the PHOS detector, EMCal
detector and via photons that convert in the central barrel.

1 INTRODUCTION 5

1.3 Research objectives

The primary objectives of this research:

• Study the properties and procedure of the machine learning boosted decision tree method.

• Acquire a basic understanding of the ALICE detector and its subdetectors.

• Train and test the boosted decision tree using Monte Carlo data.

The main research goal:

• Use the boosted decision tree method to classify photons and evaluate the performance of the boosted
decision tree.

2 METHOD 6

2 Method

At the LHC or other particle accelerators, the measurements of the particle collisions will result in enormous
amounts of data. Although in most cases there will be certain amounts of background contaminating the data.
The aim of this research is to find a way to minimalize the amount of background contaminating the data.
For example, let the data from Figure 3 be from a MC simulation. The signal and background are classified
and when a cut is made at 0.0 for input variable var4 a lot of background can be removed, while most of the
signal will remain. Nevertheless it is clear that every arbitrary cut made at a variable from Figure 3 results in
a substantial loss of signal while keeping a significant amount of background. To improve upon this method
the concept of machine learning is used. The procedure is as follows; with the help of ROOT, a framework for
high-energy data processing, a boosted decision tree (BDT) will be introduced. The boosting of a decision
tree indicates the ’learning’ of a tree from the missclassified candidates of the previously constructed decision
trees. The ROOT-integrated Toolkit for Multivariate Analysis (TMVA) provides the necessary functions to
construct a boosted decision tree. Through training and testing the BDT with data produced at a Monte
Carlo (MC) simulation, the BDT will build a classifier. The classifier is constructed by training and testing
over all the variables, which when all taken together will ultimately produce a so-called optimal cut value
on the BDT output. This value is calculated on the basis of an as high as possible signal versus background
ratio and an as high as possible signal efficiency. When applied on real data this cut value can be used to
discard most of the background while keeping nearly all the signal. A Monte Carlo simulation is a simulated
high-energy particle collision of which the background and signal particles are known. Consequently a MC
simulation will train the BDT in separating the background and signal.

Figure 3: Four arbitrary distributions which indicate the difference between signal and background. For
variable var4 its is obvious to see a cut made at 0 results in the best ratio of signal versus background.

2 METHOD 7

2.1 Decision tree

The fundamental concept behind a decision tree is the classification of data. In the case of this research the
classification of background and signal particles. A decision tree consist of multiple nodes, starting off at the
root node a cut will be made on a relevant variable that divide the node into two subsamples. This procedure
continues hierarchical until the decision tree reaches the so-called end nodes of the tree. The aim is that these
end nodes consist almost entirely of either background or signal. The end nodes will be labelled, depending
on the majority of either signal or background in the nodes, accordingly as either signal or background. The
nodes between the root node and end nodes are called the chance nodes. If a end node is classified as signal
it will probably still contain an amount of background and vice versa. Consequently some data will be lost
in the process. A way to compare the nodes with respect to the ratio between signal and background is to
calculate the signal purity of a node via:

p =
S

S +B
, (4)

where S and B stand for the amount of signal and background candidates, respectively. If the signal and
background candidates are known, which is the case in a MC simulation, the goal is to achieve an as high
as possible separation between background and signal. Figure 4 shows an schematic view of a decision tree
with arbitrary cut variables.

Figure 4: A schematic image of a decision tree. The root node will subdivided into two chance nodes
depending on the cut of c1. Relative to the root node, one node will have a higher background to signal
ratio, while the other has a higher signal to background ratio. Eventually the procedure of subdividing
the node will accumulate in the end nodes. These are labelled S or B, corresponding to a signal node or
background node respectively.

2 METHOD 8

The purity is used to calculate the Gini of a node, which is defined as:

Gini = p(1− p). (5)

The Gini will help us to calculate the separation gain:

SeparationGain = NpGini(Parent)−Nd1Gini(Daughter1)−Nd2Gini(Daughter2), (6)

where Np, Nd1 and Nd2 are the total number of candidates at the parent, first daughter and second daughter
node, respectively. The highest possible separation for a node is achieved by maximizing the separation gain,
in other words the focus is to minimalize the Gini of the daughter nodes. This is done through the process
of cutting the variables at different values. The value that returns the best separation will be used as cut
value. This method is repeated for the other cut variables and the leftover nodes. This way, a decision tree
is created that can be used to identify unclassified candidates [13].

2.2 Boosting

To produce a stable and efficient machine learning particle classifier the single decision tree method can be
improved. To counteract this problem, the boosting of decision trees is used. When a decision tree is trained,
some candidates will be misclassified. Boosting implies that the next tree being trained learns from the
previous tree in a way that depends on the misclassification rate of that tree. The misclassified candidates
are given a higher weight by multiplying the initial weight of the new tree with a so-called boost weight :

α =

(
1− err
err

)β
, (7)

where the misclassification rate err is defined as:

err =
Total weight of misclassifications

Total weight of entire tree
, (8)

and β a parameter for controlling the learning rate of the algorithm. To make sure the sum of the weights re-
mains consistent, the weights of the entire event sample are renormalized. The process of classifying weights
depending on the misclassification of the previous tree is repeated until a preferential number of trees is
attained, which now form a so-called forest. This way the forest dictates the output value, eliminating the
susceptibility of statistical fluctuations.

An individual classifier will yield an result concerning the classification of signal or background. This result
called h(x) produces the value of +1 for a signal event and -1 for a background event. Where x is a so-called
tuple containing input variables. Consequently the yboost(x) value for the BDT output is generated:

yboost(x) =
1

Ntrees

Ntrees∑
i=1

ln(αi) ∗ hi(x). (9)

2 METHOD 9

The summation over all classifiers in the collection produces the value of yboost(x), which, for small values,
corresponds to background-like events, while values that are relatively high indicates signal-like events. The
yboost(x) value for each event is used to build the BDT output classifier. A distribution is build with signal
and background significantly separated. A appropriate made cut on the classifier can now discriminate back-
ground and signal to a much higher degree than with only one decision tree.

Due to the procedure described above a BDT is generally susceptible to overtraining. Overtraining arises
when a BDT contains too few degrees of freedom, as a result of an algorithm containing too many modified
parameters corresponding with too few data points. It leads to a seemingly increase of performance of a
training sample, but a decrease of performance when measured over a test sample and results in a decreasing
performance of the classification. To detect overtraining the results of the training and testing phase can
be compared, when they don’t correspond well overtraining is probably the cause. A different method
is to conduct a Kolmogorov-Smirnov (KS) test, which compares the test and training distributions. An
extremely low KS value indicates overtraining, while a value close to 1 corresponds to negligible overtraining.
Overtraining can, for example, be countered by reducing the number of trees in the forest or adjusting the β
parameter. An example of a overtrained BDT is displayed in Figure 5[14].

Figure 5: The result of a clearly overtrained BDT. The test sample does not correspond well with the points
of the training sample. The KS test values are extremely low which also indicates a overtrained BDT.

2 METHOD 10

2.3 Toolkit for Multivariate Analysis

The Toolkit for Multivariate Analysis (TMVA) is a ROOT-integrated package for the analysis of multivariate
classification and regression problems. ROOT is a at CERN born framework written in the C++ program-
ming language. It provides various kinds of functions to process and classify large amounts of data. The
TMVA package provides the necessary components for machine learning classification techniques, like the
BDT. It also provides the necessary functions to examine the effectiveness of the BDT, like the KS test
for overtraining. The TMVA has the BDT separated in to two stages, a training and testing phase and a
classification phase.

The first stage consists of setting up a script in C++ to train and test the Monte Carlo simulated data.
To generate a working script, first the variables over which the BDT will train need to be determined and
classified as either signal or background. The corresponding variables from the MC simulation should be
added to the script. Hereafter the training can commence. The data will be split in a training sample and
test sample later to be used to train and test the data. The training starts with instantiating a Factory
object. So it generates the BDT forest depending on the training settings. These settings determine, for
example, the number of trees in the forest and will be discussed later. Ultimately, after the trained variables
are tested by the test sample, this results in several different generated control plots, allowing the user to
check out the results of the training and testing stage.

In the last stage, the weights calculated at the training and testing phase will be used to classify data. At the
end of the training and testing stage a weight file is generated. This file consists of weights for each decision
tree, which needs to be loaded in a new C++ script. A data set of which the signal and background particles
are unknown need to be loaded in the new C++ script. The variables corresponding to those that were
used in the training stage need to be coded. To start the classification a reader class object is instantiated
and will start classifying the unknown data on the basis of the loaded-in weight file. The result yields a
number of histograms, depending on the settings at the start of the classification stage. Using the cut value
generated at the training stage a selection of candidates is made, which ultimately yields in data of which
most background is eliminated and most signal remains. A schematic view of both the BDT phases is shown
in appendix A.

3 TRAINING AND TESTING 11

3 Training and Testing

Regarding the training and testing phase of the photon, an MC simulation is used with a collision centrality
between 40% and 60%. The center of mass energy at the collisions per nucleon pair is 2.76 TeV. The data
consist of 1507519 photon candidates that will be used to train and test the BDT.

3.1 Variables

At times of collision numerous photons will be produced of which some will convert to a electron-positron
pair. Therefore the variables used for training should not only be the measurements of photons, but should
include the electron and positron measurements as well. The selected variables and their conversions are
shown in Table 1. This doesn’t include every variable available from the MC simulation, as not every vari-
able is particularly useful for signal and background selection. For example the Cartesian coordinates (x, y
and z) are generally independent regarding a particle being background or signal. Consequently these are left
out, while variables like the momentum of a particle are much more useful and thus included in the training
variable selection.

photonQt Qt of a photon
photonPsiPair ψpair of photon

photonCosPoint cos(θp) of photon
photonInvMass Invariant mass of photon (Mγ)

dEdxPositronITS dE
dx of positron in ITS

dEdxPositronTPC dE
dx of positron in TPC

dEdxElectronITS dE
dx of electron in ITS

dEdxElectronTPC dE
dx of electron in TPC

clsTPCPositron Number of clusters of positron in TPC
clsTPCElectron Number of clusters of electron in TPC

ptPositron Pt of positron
ptElectron Pt of electron
photonR R of photon

Table 1: BDT training input variables and their conversions.

After selecting the training variables, the spectator variables could be selected. These are variables that are
not especially useful regarding the training stage, but could have some value at the end of the training and
testing stage. When declared spectator a variable is not used in the training, but will appear in the final out-
put and can consequently be used to evaluate the BDT training output. The variables selected as spectators
and their conversions are shown in Table 2. Figure 6 displays some of the converted variables used in the BDT.

photonPt Pt of photon
photonPhi φ of photon
photonEta η of photon

Table 2: The variables selected as spectator and their conversions.

3 TRAINING AND TESTING 12

V0

fiducial

zone

P

+ track

track

DCA
R

b

b+

primary vertex

Figure 6: A schematic view of the conversions of some of the input variables.

The variables selected for training need to be coded to separate signal and background candidates. After
this additional cuts can be made to each candidate. Some variables consist of parts with a high particle
concentration, while other parts are extremely low concentrated. If these low concentrated areas exist on the
boundary values of a variable, these parts could be cut away. This could lead to a better performance of the
BDT and decreased computation time. The cuts can be selected independently for signal and background
candidates. Table 3 displays the variables that are cut and their cut values.

Signal Candidate Cuts Background Candidate Cuts

photonQt < 0.05 photonQt < 0.25
photonInvMass < 0.1 photonInvMass < 1

dEdxPositronITS < 1050 dEdxPositronITS < 1050
ptPositron < 2.5 ptPositron < 2.5
ptElectron < 2.5 ptElectron < 5

dEdxElectronITS < 1050 dEdxElectronITS < 1050
40 < dEdxPositronTPC < 100 40 < dEdxPositronTPC < 120
40 < dEdxElectronTPC < 100 40 < dEdxElectronTPC < 120

photonCosPoint > 0.8
-0.5 < photonPsiPair < 0.5

Table 3: The cuts made per variable.

At the start of the training, the BDT has to determine the ideal cut values for each input variables. This goes
as follows; each variable distribution will be cut in multiple parts of equal size. The number of cuts made can
be specified in the BDT settings. For each cut the separation gain (defined in section 2.1) is calculated. The
cut with the highest separation gain is used in the BDT. The histograms of the input variables are displayed
in appendix B.

3 TRAINING AND TESTING 13

3.2 BDT Configuration

The last steps to be completed before the training and testing stage can be initiated are to code the C++ script
with proper settings. To train the BDT will take a sample of 200000 signal and 200000 background photon
candidates. For the testing stage the BDT will use 140000 signal and 140000 background candidates. These
candidates are all randomly selected from the Monte Carlo data. The BDT itself needs to be configured
as well. To obtain the optimal configuration the BDT is tested with various settings. To evaluate the
performance the significance is calculated. The significance is explained in section 3.3.4. Table 4 and 5 shows
various settings tested with their corresponding significance.

Ntrees: 400 850 1200

MaxDepth:
2 31.04 31.09 31.10
3 31.13 31.15 31.16
4 31.16 31.17 31.18
5 31.17 31.18 31.19

Table 4: Test settings and significance for BDT for nCuts = 20.

Ntrees: 400 850 1200

MaxDepth:
2 31.10 31.13 31.14
3 31.15 31.18 31.18
4 31.17 31.20 31.20
5 31.19 31.20 31.21

Table 5: Test settings and significance for BDT for nCuts = 40.

Ntrees sets the number of trees generated in the BDT forest. MaxDepth sets the allowed depth of a tree. For
illustration, the example in figure 4 has a MaxDepth of 3. The number of cuts made per input variable to
determine its ideal cut value is specified by nCuts. Higher settings for Ntrees, MaxDepth and nCuts generally
mean a better performing BDT at the cost of a greater risk of overtraining the BDT. Hence these settings
need to be considered carefully as they also determine the computation time for a large part. The testing
of the settings has displayed that higher settings do not show a significant improvement of the calculated
significance. Hence the settings of the BDT of this research have accordingly been kept close to the default
settings. The settings used in the BDT are shown in Table 6. The complete list of settings that can be used
in the BDT are shown and explained in appendix C.

Option Value

NTrees 850
MinNodeSize 2.5%
MaxDepth 3
BoostType AdaBoost

AdaBoostBeta 0.5
BaggedSampleFraction 0.5

SeparationType GiniIndex
nCuts 20

Table 6: Settings of the BDT.

3 TRAINING AND TESTING 14

3.3 Test and Training Results

In this section the results of the training and testing phase will be discussed. The various plots produced by
the BDT are displayed and elaborated. The training and testing is done through data taken from a Monte
Carlo simulation, which is stored in a .root file. At the end of the training and testing a weight file is created
that will be used in the classification stage. The first decision tree generated by the BDT is displayed in
Figure 7. In this example four out of the thirteen variables are used to construct this tree.

S/(S+B)=0.904 S/(S+B)=0.182

S/(S+B)=0.853

dEdxElectronTPC< 63.5

S/(S+B)=0.592 S/(S+B)=0.088

S/(S+B)=0.374

dEdxElectronITS< 756

S/(S+B)=0.017

S/(S+B)=0.071

photonQt>0.0305

S/(S+B)=0.513

photonInvMass>0.0498

Decision Tree no.: 1Pure Signal Nodes

Pure Backgr. Nodes

Figure 7: The first decision tree. The candidate cuts and purity of the nodes are shown.

3.3.1 Control Plots

The error fraction, also called the misclassification rate (defined in section 2.2), of each individual decision
tree is displayed in Figure 8. The first number of trees has an error fraction relatively low with respect to the
remaining trees. The error fraction of a tree never surpasses the 0.5, which is expected. The error fraction
is used to calculate the boost weight for each tree. The boost weight is defined in section 2.2 and displayed
per tree in Figure 9. Clearly dependent on the error fraction the first number of trees has a boost weight
relatively much higher as the remaining trees. After approximately the first 100 trees the boost weight for
each tree, just like the error fraction, remains somewhat stable.

3 TRAINING AND TESTING 15

Figure 8: The error fraction per decision tree.

Figure 9: Boost weight per decision tree.

3 TRAINING AND TESTING 16

3.3.2 Correlation Matrix

The BDT calculates the linear correlation between each variable. The correlations of signal and background
candidates are separated and shown in Figure 10a and 10b. The variables with values close to zero or dis-
played in green are not closely correlated with each other. The values close to a hundred or viewed in red
are positively correlated, while values close to minus one hundred or viewed in blue are negatively correlated.
If a number is not displayed in the figures, it indicates a correlation value very close to zero, consequently
having practically no correlation with each other. Closely correlated variables are generally not very useful
for constructing a BDT due to the candidate cuts being correlated as well.

As is clear from the figures most variables do not truly correlate with each other. The ones that do show
signs of correlation are most notably the correlations of photonInvMass-photonQt in signal and background
candidates, and photonR with both photonInvMass and photonQt in background candidates. Using the cor-
relation between two random highly correlated variables, the two variables could be combined into one. This
procedure is not performed in this research.

3 TRAINING AND TESTING 17

100−

80−

60−

40−

20−

0

20

40

60

80

100

photonQt

photonPsiPair

photonCosPoint

photonInvMass

dEdxPositronITS

dEdxPositronTPC

dEdxElectronITS

dEdxElectronTPC

clsTPCPositron

clsTPCElectron

ptPositron

ptElectron

photonR

photonQt

photonPsiPair

photonCosPoint

photonInvMass

dEdxPositronITS

dEdxPositronTPC

dEdxElectronITS

dEdxElectronTPC

clsTPCPositron

clsTPCElectron

ptPositron

ptElectron

photonR

Correlation Matrix (signal)

100 ­17 74 12 ­1 13 ­1 1 13 12 2

100

­17 100 ­17 3 3 2 1 4 4 3 3 8

 74 ­17 100 13 ­2 12 ­2 17 18 3

 12 3 13 100 ­6 73 ­5 ­17 ­16 ­6 ­8 53

 ­1 3 ­2 ­6 100 ­5 10 20 7 7 4 ­12

 13 2 12 73 ­5 100 ­6 ­16 ­16 ­8 ­6 53

 ­1 1 ­2 ­5 10 ­6 100 7 18 4 5 ­13

 4 ­17 20 ­16 7 100 25 44 14 ­42

 1 4 ­16 7 ­16 18 25 100 14 43 ­42

 13 3 17 ­6 7 ­8 4 44 14 100 22 ­15

 12 3 18 ­8 4 ­6 5 14 43 22 100 ­16

 2 8 3 53 ­12 53 ­13 ­42 ­42 ­15 ­16 100

Linear correlation coefficients in %

(a)

100−

80−

60−

40−

20−

0

20

40

60

80

100

photonQt

photonPsiPair

photonCosPoint

photonInvMass

dEdxPositronITS

dEdxPositronTPC

dEdxElectronITS

dEdxElectronTPC

clsTPCPositron

clsTPCElectron

ptPositron

ptElectron

photonR

photonQt

photonPsiPair

photonCosPoint

photonInvMass

dEdxPositronITS

dEdxPositronTPC

dEdxElectronITS

dEdxElectronTPC

clsTPCPositron

clsTPCElectron

ptPositron

ptElectron

photonR

Correlation Matrix (background)

100 5 ­15 82 2 ­8 3 ­8 15 14 26 24 73

 5 100 10 3 3 ­3 ­3 9

­15 100 ­12 14 11 15 11 ­6 ­7 ­9 ­9 7

 82 10 ­12 100 3 ­5 4 ­4 8 7 39 36 75

 2 3 14 3 100 32 2 ­3 ­36 10 ­25 14 16

 ­8 11 ­5 32 100 ­2 ­36 5 ­23 6 2

 3 3 15 4 2 ­2 100 32 9 ­36 13 ­25 17

 ­8 11 ­4 ­3 32 100 5 ­38 6 ­24 2

 15 ­3 ­6 8 ­36 ­36 9 5 100 ­12 37 ­14 5

 14 ­3 ­7 7 10 5 ­36 ­38 ­12 100 ­13 38 4

 26 ­9 39 ­25 ­23 13 6 37 ­13 100 ­16 17

 24 ­9 36 14 6 ­25 ­24 ­14 38 ­16 100 16

 73 9 7 75 16 2 17 2 5 4 17 16 100

Linear correlation coefficients in %

(b)

Figure 10: (a) Correlation matrix for signal candidates. (b) Correlation matrix for background candidates.

3 TRAINING AND TESTING 18

3.3.3 BDT Response

The BDT response, also called BDT output, is displayed in Figure 11. It shows the BDT response distri-
bution of signal and background, where signal tends to be closer to 1 compared to background. The BDT
response value is determined by formula 9 in section 2.2. This distribution is however not an indication of
the ratio of signal and background candidates due to the exactly same number of signal and background
candidates used in the training en testing phase. It is evident from the figure that the cut value should be
close to zero. Additionally the BDT is checked for overtraining. The KS test value of 0.153 for signal and
0.065 for background are easily within the acceptable boundaries and thus indicate no significant overtraining
of the BDT. A KS test value of 1 indicates that the two distributions correspond exactly, while a lower value
points out less correspondence between the samples. The test sample and training sample correspond quite
well as is clear from the figure.

0.6− 0.4− 0.2− 0 0.2 0.4

BDT response

0

1

2

3

4

5

6

7

8d
x

 /
(1

/N
)

d
N

Signal (test sample)

Background (test sample)

Signal (training sample)

Background (training sample)

Kolmogorov­Smirnov test: signal (background) probability = 0.153 (0.065)

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.0
)%

TMVA overtraining check for classifier: BDT

Figure 11: The MVA BDT response.

3 TRAINING AND TESTING 19

3.3.4 Optimal Cut Value

The data taken from the MC simulation is prone to statistical variations. Consequently the BDT is sensitive
to these variations, which in turn could decrease the performance of the BDT. For acquiring the best possible
performance for the BDT the highest possible significance is calculated. The significance is defined as:

Significance =
S√
S +B

. (10)

As displayed in Figure 12, the highest significance is calculated to be 31.15 at an optimal cut value of 0.0.
The significance is displayed by the green curve, which should be rather smooth and stable at the optimal
cut value to counteract the statistical variations. The optimal cut value is used in the application phase to
select the unidentified signal or background candidates.

0.6− 0.4− 0.2− 0 0.2 0.4

Cut value applied on BDT output

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

n
c
y
 (

P
u

ri
ty

)

Signal efficiency

Background efficiency

Signal purity

Signal efficiency*purity

S+BS/

For 1000 signal and 1000 background

 isS+Bevents the maximum S/

31.15 when cutting at ­0.00

Cut efficiencies and optimal cut value

0

5

10

15

20

25

30

S
ig

n
if

ic
a
n

c
e

Figure 12: Efficiencies per applied cut value. The optimal cut value is given.

4 CLASSIFICATION 20

4 Classification

After the training and testing phase is completed the BDT should be ready to start classifying unidentified
data. A new C++ script should be developed where the variables used in the training and testing stage are
coupled to the variables from the unidentified data and the spectators defined in the training in testing stage
should be included in the new script. The same candidate cuts used to train the BDT ought to be defined in
the script. Additionally the .xml weight file created at the end of the training and testing phase should be
loaded in the new C++ script. The weight file contains all the necessary information needed to successfully
classify the unknown data. A reader class object, a TMVA function, is implemented to classify the data on
the basis of the weight file. For classifying the data the same data from the Monte Carlo simulation is used.
Hence the collision centrality is 40% - 60% for a center of mass energy of 2.76 TeV. A MC simulation, from
which the background and signal particles are known, is used to easily calculate the performance of the BDT.

4.1 Results

The output of the BDT, where the MC simulation is treated as data, is displayed in Figure 13. Figure
a shows the complete distribution of all classified photon candidates, so this includes the background par-
ticles. Figure b shows the BDT distribution after applying the optimal cut value derived from the BDT
training. In a good performing BDT this should include most signal candidates of the original complete
data, while most background is eliminated. The selected candidates should contain a to some degree neg-
ligible amount of data contaminating background. Hence the new data encloses a high amount of useful data.

MVA_BDT

Entries 1507519

Mean 0.2315−

Std Dev 0.2725

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
0

10000

20000

30000

40000

50000

60000

70000

MVA_BDT

Entries 1507519

Mean 0.2315−

Std Dev 0.2725

MVA_BDT

(a) The application output without selection.

MVA_Signal_BDT

Entries 355362
Mean 0.2105
Std Dev 0.07508

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
0

5000

10000

15000

20000

25000

30000

35000

40000

45000
MVA_Signal_BDT

Entries 355362
Mean 0.2105
Std Dev 0.07508

MVA_Signal_BDT

(b) The application output after selection.

Figure 13: The BDT application output.

4.1.1 Performance

A BDT performance can be based on the amount of data ‘lost’ after a selection of data and the purity of the
selection. The purity is explained in section 2.1 for decision tree nodes, but it can be likewise applicable to
the whole of the BDT output. To evaluate the lost data, the signal efficiency is calculated through:

Efficiency = Safter/Sbefore, (11)

where Sbefore and Safter are the number of signal candidates before and after the selection, respectively.
Figure 14 shows the distribution of signal and background after the selection. It is evident most signal is
selected, while most background is cleared away. The precise figures are displayed in Table 7. Almost 99% of
the signal is selected, while about 98% of the background is removed. The total signal purity is almost 95%.

4 CLASSIFICATION 21

MVA_kind_BDT

Entries 336623

Mean 0.2184

Std Dev 0.06756

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
0

5000

10000

15000

20000

25000

30000

35000

40000

45000
MVA_kind_BDT

Entries 336623

Mean 0.2184

Std Dev 0.06756

MVA_kind_BDT

(a) Signal after selection.

MVA_background_Kind

Entries 18421
Mean 0.06676
Std Dev 0.05785

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

4000

4500
MVA_background_Kind

Entries 18421
Mean 0.06676
Std Dev 0.05785

MVA_background_Kind

(b) Background after selection.

Figure 14: Signal and background in selected output.

Signal Background Total Purity

Before selection 341449 1166070 1507519 0.2928
After selection 336623 18421 355362 0.9481

Efficiency 0.9859 0.0158

Table 7: BDT performance.

5 CONCLUSION 22

5 Conclusion

The boosted decision tree method has been trained and tested and used to classify data taken from a Monte
Carlo simulation of lead-lead collisions. The simulated data has a centrality of 40% - 60% with a center of
mass energy of 2.76 TeV. The photons have been selected regarding signal and background to produce a more
manageable and useful amount of data. The Monte Carlo simulation has been used to classify the data to
generate an evaluation of the boosted decision tree method. Thirteen input variables are used to train the
boosted decision tree while three so-called spectator variables are applied to the data.

Training and testing the boosted decision tree produced an optimal cut value of 0 to classify the data. The
results of the training and testing stage indicated no significant overtraining and produced a stable operating
boosted decision tree. Most variables are relatively uncorrelated which indicates a good performance of the
boosted decision tree. In the training phase 200 000 background and signal randomly selected candidates
were used and for testing 140 000 background and signal candidates.

The classification of photon particles taken from the Monte Carlo data is primarily implemented to evaluate
the performance of the boosted decision tree. The data was selected using the optimal cut value acquired
in from the training and testing stage. This eventually resulted in a signal efficiency of 0.9859 and a signal
purity of 0.9481.

In my opinion the boosted decision tree method is a viable option for selecting data. When familiar with
ROOT, TMVA and C++ the boosted decision tree method is relatively accessible and time saving. In this
research training and testing of the data taken from the Monte Carlo simulation, which consisted of about 1
500 000 entries, generally took less than ten minutes. The performance results were also quite satisfying, as I
believe that an efficiency of almost 99% and purity of almost 95% are quite impressive. Although I don’t have
produced any comparison with other machine learning methods, I certainly think that the boosted decision
tree method is applicable in the data processing of particle physics data.

Appendix A I

Appendix A

Flowchart for the two phases

Figure 15: TMVA flowchart.

Appendix B II

Appendix B

Input Variables

0 0.05 0.1 0.15 0.2 0.25

photonQt

0

20

40

60

80

100

0
.0

0
6
4
1

/

(1
/N

)
d
N

Signal

Background

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.0
)%

Input variable: photonQt

1− 0 1 2 3 4

photonPsiPair

0

0.5

1

1.5

2

2.5

3

3.5

0
.1

4
3

/

(1
/N

)
d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.0
)%

Input variable: photonPsiPair

1− 0.5− 0 0.5 1

photonCosPoint

0

2

4

6

8

10

12

14

16

18

20

0
.0

5
1
2

/

(1
/N

)
d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.0
)%

Input variable: photonCosPoint

0.2 0.4 0.6 0.8 1

photonInvMass

0

5

10

15

20

25

30

35

0
.0

2
5
6

/

(1
/N

)
d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.0
)%

Input variable: photonInvMass

0 200 400 600 800 1000

dEdxPositronITS

0

0.005

0.01

0.015

0.02

0.025

0.03

2
6

/

(1
/N

)
d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.0
)%

Input variable: dEdxPositronITS

50 60 70 80 90 100 110 120

dEdxPositronTPC

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

2
.0

5

/

(1
/N

)
d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.0
)%

Input variable: dEdxPositronTPC

Figure 16: Input Variables(1).

0 200 400 600 800 1000

dEdxElectronITS

0

0.005

0.01

0.015

0.02

0.025

0.032
6
.1

/
(1

/N
)

d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.0
)%

Input variable: dEdxElectronITS

50 60 70 80 90 100 110 120

dEdxElectronTPC

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.082
.0

4

/

(1
/N

)
d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.0
)%

Input variable: dEdxElectronTPC

40 60 80 100 120 140 160

clsTPCPositron

0

0.005

0.01

0.015

0.02

0.025

3
.4

9

/

(1
/N

)
d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.0
)%

Input variable: clsTPCPositron

20 40 60 80 100 120 140 160

clsTPCElectron

0

0.005

0.01

0.015

0.02

0.025

3
.5

6

/

(1
/N

)
d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.0
)%

Input variable: clsTPCElectron

0.5 1 1.5 2 2.5 3 3.5 4

ptPositron

0

0.5

1

1.5

2

2.5

3

3.5

0
.1

0
4

/

(1
/N

)
d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.2
)%

Input variable: ptPositron

0.5 1 1.5 2 2.5 3 3.5 4

ptElectron

0

0.5

1

1.5

2

2.5

3

3.5

0
.1

0
2

/

(1
/N

)
d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.2
)%

Input variable: ptElectron

Figure 17: Input Variables(2).

20 40 60 80 100 120 140 160 180

photonR

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

4
.4

8

/

(1
/N

)
d
N

U
/O

­f
lo

w
 (

S
,B

):
 (

0
.0

,
0

.0
)%

 /
 (

0
.0

,
0

.0
)%

Input variable: photonR

Figure 18: Input Variables(3).

Appendix C III

Appendix C

Options table taken from the TMVA website[15]

Figure 19: BDT options(1).

Figure 20: BDT options(2).

Appendix C IV

Figure 21: BDT options(3).

V

References

[1] Large Hadron Collider, URL https://home.cern/topics/large-hadron-collider.

[2] ALICE, URL https://home.cern/about/experiments/alice.

[3] ALICE, URL http://alice.web.cern.ch/.

[4] ALICE ITS, URL http://alice.web.cern.ch/detectors/more-details-alice-its.

[5] ALICE TPC, URL http://alice.web.cern.ch/detectors/more-details-alice-tpc.

[6] ALICE TOF, URL http://alice.web.cern.ch/detectors/more-details-time-flight.

[7] ALICE PHOS, URL http://alice.web.cern.ch/detectors/more-details-alice-photon-spectrometer.

[8] ALICE EMCal, URL http://alice.web.cern.ch/detectors/more-details-emcal.

[9] ALICE V0, URL http://alice.web.cern.ch/detectors/more-details-alice-v0-detector.

[10] ALICE T0, URL http://alice.web.cern.ch/detectors/more-details-about-t0.

[11] B. R. Martin, Nuclear and Particle Physics (2009), 2nd edition, (ISBN-13: 978-0470742754).

[12] E. M. Henley and A. Garcia, Subatomic Physics (2007), 3rd edition, (ISBN-13: 978-9812700575).

[13] M. Sas, Particle identification with boosted decision trees (2014), bachelor Thesis.

[14] A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne, and H. Voss, Tmva user guide,
october 4, 2013, URL http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf.

[15] URL http://tmva.sourceforge.net/optionRef.html.

https://home.cern/topics/large-hadron-collider
https://home.cern/about/experiments/alice
http://alice.web.cern.ch/
http://alice.web.cern.ch/detectors/more-details-alice-its
http://alice.web.cern.ch/detectors/more-details-alice-tpc
http://alice.web.cern.ch/detectors/more-details-time-flight
http://alice.web.cern.ch/detectors/more-details-alice-photon-spectrometer
http://alice.web.cern.ch/detectors/more-details-emcal
http://alice.web.cern.ch/detectors/more-details-alice-v0-detector
http://alice.web.cern.ch/detectors/more-details-about-t0
http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf
http://tmva.sourceforge.net/optionRef.html

	Introduction
	A Large Ion Collider Experiment
	The ALICE subdetectors

	The standard model
	Photons

	Research objectives

	Method
	Decision tree
	Boosting
	Toolkit for Multivariate Analysis

	Training and Testing
	Variables
	BDT Configuration
	Test and Training Results
	Control Plots
	Correlation Matrix
	BDT Response
	Optimal Cut Value

	Classification
	Results
	Performance

	Conclusion
	Appendix A
	Appendix B
	Appendix C
	References

