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Abstract

Acoustic levitation makes it possible to remotely measure the viscosity of particles even
if they have no electric or magnetic properties. This is done by acoustically levitating
the droplet and measuring the damping constant of the resonant oscillation. To mea-
sure this the free decay method[1] is used where the droplet is excited into oscillation
by turning the acoustic field off for 2.5 ms. After the excitation the damping of the
oscillation is measured via stroboscopic imaging, using the shutter of a camera and cal-
culating the radius of the droplet by fitting an ellipse to the edge of the droplet. Water
and colloidal droplets with 1 µm particles based on polymethacrylate are investigated
and since the droplets evaporate in the acoustic levitator an increase in viscosity is
measured for the colloidal droplet that eventually crystallizes.
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1 Introduction

The study of dynamic properties of liquid droplets is of great interest to scientist for a
better understanding of the characteristics and possible industrial applications of materials.
Measurement of properties such as surface tension and viscosity can be difficult since the
droplet is in contact with a surface, which can result in unwanted frictions and contamination
of the droplet. Acoustic levitation is a method to let particles or liquid droplets float in an
ultrasonic acoustic field, where before this was only possible for particles with magnetic or
electric components via the use of a magnetic or electric field. Using this method contactless
measurements can be done. In this thesis, the floating droplets are trapped in the central
node of the acoustic field, constructed of two plates filled with ultrasonic transducers. The
shape of the droplet and especially the damping of the resonant oscillation after an excitation
is investigated.

As Kremer et al.[1] discussed, there are two methods to excite droplets into oscillation, a
steady-state frequency response (FRF) and a free decay (FD) method. The former uses an
increasing modulation frequency while the droplet’s response is monitored continuously and
the latter initially excites the droplet into oscillation and after the excitation the decaying
oscillation is recorded.[1] In this thesis the FD method is used and for excitation the acoustic
field is briefly turned off, in the order of ms. This way the droplet is in free fall until the field
is turned back on, ceasing the excitation, the droplet is dragged back into the central node.

The damping of the oscillation and thus the reduction of the change in radius of the
ellipsoidal droplet is linked to the viscosity of the droplet. So with the acoustic levitator
the viscosity can be measured remotely. Also the droplet is evaporating inside the trap
which results in a changing damping constant for the oscillation. The goal of this thesis is
to investigate a droplet of colloidal suspension and measure the viscosity while evaporating.
The hypothesis is that while evaporating the viscosity increases and that a change in phase
becomes visible due to crystallization of the droplet.

This thesis starts with a theoretical framework for free oscillating droplets and the relation
between the damping of the resonant oscillation and the viscosity of the droplet. Then the
experimental setup will be explained and the methods to analyze the data will be discussed.
Afterwards the data will be analyzed and the results will be presented and discussed. Finally
the conclusions are stated and an outlook for further research will be given.
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2 Theory

In this section the theoretical framework for droplets in an acoustic field will be described.
First the basic principles of the acoustic field will be explained. Then the relation between the
viscosity and the damping of the resonant oscillation will be derived, following the calculations
of H. Lamb’s Hydrodynamics[2]. Afterwards the mathematics of ellipses will be discussed
and finally a model from where the damping constant can be derived will be presented.

2.1 Acoustic field

A levitated droplet in an acoustic field is subject to two forces: the axial force along the
axis of levitation, which is responsible for the droplet not falling down, and the radial force
perpendicular to the axis of levitation. The ratio of these forces are (5:1) resulting in an
ellipsoidal shape of the droplet.[1] Further theoretical background of the forces that play a
role in acoustically levitating droplets and the boundaries of this system are beyond the scope
of this thesis.

Inside the acoustic trap standing waves will form with a layer pattern of nodes. These
nodes typically form every 1

2
λ. For a sound velocity of vsound = 343 m · s−1 at room tempera-

ture and a frequency of f = 40 kHz the spatial separation of the nodes of the standing wave
becomes:

1

2
λ =

vsound
2f

=
343

2 ∗ 40 ∗ 103
= 4.29mm.

2.2 Viscosity

In this section the relation between the damping constant τ (in s) and dynamic viscosity µ
(in Pa · s) will be derived. Viscosity is a measure of the resistance of a fluid to deformation
under shear stress. Viscous forces oppose the motion of one portion of a fluid relative to
another.[3, p. 431]. The derivation starts from the relation between the change in total
energy and dissipation, which is the lost of mechanical energy[3, p. 246], given by H. Lamb
equation (10) from article 355:1

d

dt
(T + V ) = −2Fav, (1)

with T and V the kinetic and potential energy respectively and Fav the average dissipation.
First the dissipation F will be derived, followed by the kinetic and potential energy T and
V to eventually get an expression for viscosity as a function of the damping constant from
equation (1). The dissipation F is given by Lamb(6) using an irrotational approximation:

2F = µ

∫∫
∂q2

∂r
r2dω = µr2

∂

∂r

∫∫
q2dω. (2)

1The following calculations follow the reasoning of article 355 of H. Lamb. The equations from H. Lamb
will simply be referred to as Lamb(10).
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Where q is a velocity term[3, p. 595], r is the radius of the droplet and ω is a frequency term.
Using a relation for q and the velocity potential φ gives the following identity:

r2
∫∫

q2dω =
∂

∂r

∫∫
φ
∂φ

∂r
r2dω. (3)

Here the velocity potential can be expressed as a function of radius and time:

φ = A
rn

an
Sn cos(σt+ ε). (4)

With A and ε arbitrary constants, a the radius in the undisturbed state[3, p. 443], Sn
a surface harmonic, σ/2π a frequency[3, p. 241] and n an integer representing modes of
oscillation.

From equations (2), (3) and (4) it can be calculated, as is shown in Appendix A.1, that
the average dissipation Fav is given by:

2Fav = n(2n+ 1)(n− 1)
µ

a

∫∫
S2
ndωA

2. (5)

Now for the determination of the potential and kinetic energy H. Lamb uses that twice the
kinetic energy is given by:[3, p. 445]

2T = ρ

∫∫
φ
∂φ

∂r
r2dω = ρna

(r
a

)2n+1
∫∫

S2
ndωA

2 cos2(σt+ ε), (6)

with ρ the density of the droplet. On average half of the total energy will be for the kinetic
energy T and half for the potential energy V . The potential energy will be defined with a
sin2(σt+ ε) for the right exchange between the energies:

T =
1

2
ρna

(r
a

)2n+1
∫∫

S2
ndωA

2 cos2(σt+ ε),

V =
1

2
ρna

(r
a

)2n+1
∫∫

S2
ndωA

2 sin2(σt+ ε).

Combining these and the identity cos2(x) + sin2(x) = 1 gives the sum:

T + V =
1

2
ρna

(r
a

)2n+1
∫∫

S2
ndωA

2 (7)

Now as last step filling in the expressions for Fav, equation (5), and T + V , equation (7), in
equation (1) it can be derived, as shown in Appendix A.2, that for the viscosity µ it holds
that:

µ =
ρa2

τ(n− 1)(2n+ 1)
.2 (8)

The mode of interest for the viscosity determination is the n = 2 mode since n = 0 and n = 1
represent respectively the volumetric pulsation and the translatory motion of the droplet.[5]

2This formula is also used by Kremer et al.[1], Langstaff et al.[4] and Becker et al.[5] for viscosity mea-
surement of acoustically levitated droplets.
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This equation, according to Prosperetti et al. is only valid for drops with Ohnesorge
number smaller than 0.1. The Ohnesorge number is given by:[6]

Oh =
µ
√
ρσa

(9)

A calculation for a water droplet with ρ = 997 Kg · m−3, σ = 71.97 · 10−3 N · m−1 and
µ = 1.002 · 10−3 Pa · s gives a minimum volume equal spherical radius of a = 1.40 · 10−6

m = 14 nm. Which is several orders of magnitude smaller than the droplets that are levitated
in this thesis, which have a radius in the order of mm.

2.3 Ellipse calculations

Since the data that is obtained is a two dimensional image of the ellipsoidal droplet, the
calculations needed can be simplified to ellipses. The quadratic equation of an ellipse has the
form:3

ax2 + 2bxy + cy2 + 2dx+ 2fy + g = 0. (10)

And from here it can be calculated that the radius of the droplet r, while considering a
possible angle with the x-axis, is given by:

r =

√
2(af 2 + cd2 + gb2 − 2bdf − acg)

(b2 − ac)(±
√

(a− c)2 + 4b− (a+ c))
. (11)

Where ± is used for calculating the horizontal and vertical radii respectively. This will be
used to calculate the radius and the volume of the oscillating droplet inside the trap.

2.4 Damped harmonic oscillation

The damping of the resonant oscillation can be determined via the following formula for the
radius r(t) as function of time t:

r(t) = r0 + Ae−
t
τ cos(2πft) + ξ. (12)

In this formula the fitting parameters are the equilibrium radius of the drop r0 in mm, the
dimensionless amplitude of the drop shape oscillation A, the damping constant τ in s, the
frequency f in Hz and ξ a noise factor. Because this noise factor can become large if the
acoustic trap or the excitation method are not optimal another approach becomes helpful.
Using the standard deviation of the radius of the droplet, the relation then becomes:

σ2
r = 〈r(t)2〉 − 〈r(t)〉2,

σ2
r = r20 + ξ2 +

1

2
A2e

2t
τ − r20 − ξ2,

σr =
1√
2
Ae

t
τ . (13)

3The calculations are from http://mathworld.wolfram.com/Ellipse.html. This is also used by Ben Hammel
and Nick Sullivan-Molina in their Python class for ellipse fitting, which will be discussed in Data analysis,
section 3.2.
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3 Experiment

The viscosity of a droplet is dependent of the damping of its resonant oscillation. In order to
have the droplet reach this resonant oscillation an excitation is needed. This can be done by
the free decay method[1], where the droplet is excited into oscillation and after the excitation
the damping of the oscillation is measured. The excitation is done by turning the field off for
2.5 ms to give the droplet a free fall. The time of the free fall is chosen so that whence the
field is turned back on the droplet is caught back into the same node of the acoustic field.
In order to derive the viscosity and the damping of the resonant frequency an analysis of the
data is needed. This is done using Python and will be described in section 3.2.

3.1 Experimental setup

3.1.1 Acoustic levitator

The main part of the setup is the acoustic levitator which consists out of two panels, con-
structed as a cutout from a sphere with a radius of 110.5 mm. On these panels 72 transducers
are installed with a sharp resonance at 40 kHz, all following the curvature of the panels.4

For a view of the acoustic levitator see figure 1 and for a schematic overview of the setup
see figure 2. The two panels are driven by a signal generator that outputs the 40 kHz block
signal and an amplifier with a 16V power supply.

The data obtained are images taken with a Basler camera using illumination from a LED
and a 10 µs shutter time. From Kremer et al.[1] it became clear that the damping of the
resonant oscillation takes around 50 ms. Even though the camera has a 10 µs shutter time,
the time to take one image and process it takes around 10 ms. So the damping happens
too fast for the camera to take enough images to record the damping of one excitation.
Stroboscopic imaging with the shutter is then used. The excitation is repeated, in the
assumption that the excitation is reproducible. The images are taken with an increasing time
of 1 ms between two consecutive images to eventually record the whole damped oscillation.

3.1.2 Synchronized triggering

In order to take the images at the right time after the field is turned back on, with an increase
in time every image, both the signal generator and the camera are externally triggered with
two signals from an Arduino Mega. The burst function of the signal generator is used. Here,
when externally triggered, it burst out 23900 cycles every 0.6 s so that the field is turned off
for 100 cycles, which corresponds with 2.5ms for a 40 kHz signal.

The increasing time after each image is obtained by also externally triggering the camera,
but with a slightly different frequency, such that the falling slope of the signal increases
1 ms every period with respect to the trigger signal of the signal generator. For a clear
visualization of the signals and the programming of the Arduino see figure 3.

4The building of the acoustic levitator is roughly based on the explanation from:
http://www.instructables.com/id/Acoustic-Levitator/. Only here a signal generator is used for the
40 kHz signal instead of an Arduino.
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Figure 1: This is the acoustic levitator consisting of two panels filled with transducers that
have a sharp resonance at 40 kHz. Also the LED for illumination of the droplet is shown and
the cardboard surrounding the levitator to minimalize air fluctuations.

Figure 2: This is a schematic overview of the setup with the two triggering signals from
the Arduino to the camera and the signal generator, the acoustic levitator, driven by the
amplified bursted signal and the sample, illuminated by a LED.
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Image

Bursted 
signal 

Signal  
generator 

Camera

dt t idtdt dt idtt-idt

(a) (b)

Figure 3: (a) Here the two signals are shown for triggering the signal generator and the
camera. At the top of the figure it is shown that on the falling edge the signal generator
is triggered and a signal is bursted to the acoustic levitator. The dots represent when the
images are made. (b) This is the code used to program the two signals of the Arduino with
a frequency difference in the falling edge of the signal due to the iteration over i. PIN is the
signal for the camera and PINSIG for the signal generator. The else loop is made to ensure
a continuous signal.

3.1.3 Limitation of distortions

The airflow around the acoustic levitator can result in translational vibrations of the droplet,
and since this translation pushes the droplet towards high pressure regimes other oscillations
can also be developed. To minimize this airflow the setup should be sealed from the outside
air. Here the levitator is surrounded with cardboard, conveniently also blocking light coming
in from the outside.

The size of the droplet is also of much influence. According to Theory it is shown that
the droplet should not be too small, order of nm. However, from the experiment it becomes
clear that a droplet should also not be too big. Droplets with a larger radius than 1.5 mm
can drop too much into a high pressure regime when the field is turned off, simply because
a larger radius reaches further down when falling the same distance as a smaller droplet.
Because of this the bottom of the droplet gets a push back up with a greater upward force
at the bottom than around the edges. This results in deformation of the droplet, in a way
inconsistent with the elliptical shape from the resonant oscillation. Another effect that a
too big droplet has is that some higher mode surface oscillation can occur. Images of these
unwanted deformations are shown in figure 4. The experimental data also suggests that this
plays a bigger role for droplets of water than for droplets of a colloidal suspension, since these
deformations have not been observed in the measurements of the colloidal suspension.
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(a) (b)

Figure 4: Here the resulting unwanted deformation of a water droplet is shown. This defor-
mation arises because the droplet has a too big volume equal sphere radius, greater than 1.5
mm. (a) The asymmetrical shape of the droplet suggests the presence of higher modes of
oscillation. (b) The concave bottom is the result of the droplet dropping too far in a high
pressure regime when the field is turned off and is then pushed back with greater force when
the field is turned back on.

3.2 Data analysis

The raw data obtained from this setup are images of the droplet, elliptically shaped due
to their oscillation and the pressure forces of the acoustic field, as is shown in figure 5(a).
From this image the radius of the ellipse needs to be calculated to eventually determine the
damping of the resonant oscillation obtained from excitation of the droplet. From here the
viscosity can be calculated via equation (8) from Theory, section 2.2.

3.2.1 Radius determination

The radius determination is done using Python with a script that first selects all the pixels
on the edge of the droplet in order to fit an ellipse to that edge. The edge detection is
done using the difference in intensity between the gray-scaled pixels of the droplet and the
background. Because of the illumination from the LED the background is so bright it reaches
the maximum pixel intensity, whereas the droplet does not.

The fitting of the ellipse is done with the use of a class of functions created by Ben Hammel
and Nick Sullivan-Molina.[7] In this class the ellipse is fitted to data points of high intensity,
so in order to have the right data as input the image is inverted. Now the background
becomes dark with low intensity pixels and only an elliptical edge of high intensity is left.
The inverted image and the edge of the droplet are shown in figure 5(b) and 5(c).

Now an ellipse is fitted to the edge, taking the angle of the droplet into account since
the droplet sometimes can get tilted by a few degrees, as is shown in figure 5(d). From the
fit parameters the horizontal radius is calculated using equation(11), as described in Theory,
section 2.3. In Appendix B.1 an overview of the calculation using Python is given. From
here the radius as a function of time is created in order to determine the damping of the
oscillation, as is shown in figure 6.
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Figure 5: (a) An image of the raw data. (b) The image with inverted pixel intensities. (c)
The detected edge of the droplet with high intensity. (d) The fitted ellipse to the edge of the
droplet.

Figure 6: Here the horizontal radius of the water droplet is plotted as a function of time.
There are 6 full periods of damping after excitation, clearly visible by the increase and
decrease of the spread in radii. The slope of the plot is negative because the droplet shrinks
during the measurement due to evaporation.

3.2.2 Pixel size determination

As one can see from figure 5 the image is given in number of pixels. This is not a problem
for the determination of the damping constant, but since the volume equal sphere radius
is needed for the calculation of the viscosity a pixel size determination is needed. This is
done by taking an image of the millimeter stripes of a ruler, with an intensity difference with
respect to the rest of the ruler. This difference can be made bigger by increasing the shutter
time of the camera. Using this image the number of pixels between two millimeter stripes is
calculated line by line and averaged over 289 measurements. The pixel size determined by
this method is: 15.57±0.28 µm per pixel, with the uncertainty calculated from the standard
deviation of the 289 measurements.
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3.2.3 Damping fitting

From the radius as function of time, shown in figure 6 (a) a second oscillation is visible,
especially in the tail of the envelope. This could be due to higher oscillation modes present.
Because of this two different analysis are used. For the first analyses it is used that the decay
of the amplitude is clearly visible. Equation(13) is then used to calculate the damping since
it relies on the standard deviation of the radius. For the second analysis the oscillation in
the radius is used directly and the damping is calculated from equation (12).

Because the measurement takes long enough for the droplet to evaporate a significant
portion of its volume a downward slope of the radius is visible. To eliminate this effect for
the fist method equation (13) will be divided by the equilibrium radius r0 and for the second
method a linear evaporation term will be added to equation (12), giving the following result:

σr
r0

=
1√
2r0

Ae
−t
τ , (14)

r(t) = r0 + Ae−
t
τ cos(2πft) + ξ − kt. (15)

In order to fit the data shown in figure 6 to these equations it needs to be separated in
periods. This is done using Python and shown in figure 7(a). For the fitting to equation
(14) the standard deviation is calculated for bins of 100 measurements, moving the bin by
one point each calculation. The bin size is chosen so it contains at least 2 periods of the
second oscillation which is enough to average over. An example of the fitting to the standard
deviation and to the data directly are shown in figure 7(b) and 7(c). In Appendix B.2 an
overview of the fitting in Python is given.

The uncertainties of τ are calculated taking the square root of the covariance of the fit
parameters provided by the scipy.optimize package from Python. Then for the viscosity the
uncertainties follow from calculation with the minimal and maximum value of τ .

(a) (b) (c)

Figure 7: (a) The horizontal radius of one period of the damping after excitation is shown.
(b) The standard deviation of that radius, divided by the equilibrium radius for bins of 100
measurements is shown. The continuous line is a fit to the data following the model described
by equation (14). (c) Equation (15) is directly fitted to the data. The data is presented as
connected lines to check the frequency of the fitted function.
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4 Results

The remote viscosity measurement is done for two different droplets, a water and a colloidal
droplet. The results for these droplets will be presented separately. For each droplet the time
between images increases with 1 ms. Here the data is presented as if there is 1 ms between
consecutive images instead of the 601 ms that is actually between them, because the droplet
is excited every measurement. Also the time on the x-axis is set to 0 for each period. This
is done so a time indication of the damping becomes visible, but note that in this way the
evaporation looks misleadingly fast.

For the fitting of the damping of the resonant oscillation a cutout is made of every period
of damping. This cutout consists out of 597 measurements. There are 600 images in one
period, but the last three images are left out since they are made during the excitation of
the next period. Also the vertical radius is used for the fitting since it changes less and is
smaller due to its elliptical shape, which resulted in data with less distortions.

4.1 Water

First a water droplet is levitated. Here 4200 images are made and with an excitation every
0.6 s the total measurement takes 42 minutes. Because of this the droplet evaporates during
the measurement. The vertical radius as a function of time is shown in figure 8. In this
figure a downward slope is visible which means a decreasing average radius, which is due to
the evaporation of the droplet.

In the measurement 6 damped periods of oscillations are visible. Each period and both
analysis methods, as discussed in section 3.2.3 are shown in figure 9. For each period the
average vertical and horizontal radius is calculated. From here the average volume V and
volume equal sphere radius a are calculated such that a calculation can be made of the
viscosity µ using equation (8). The results of this are given in table 1, where the subscripts
1 and 2 represent the fitting to the standard deviation and directly to the data respectively.

Figure 8: Here the vertical radius of the water droplet is shown as a function of time. 4200
Measurements are made during 42 minutes imaging 6 full periods of damped oscillations.
The downward slope is due to evaporation of the water droplet.
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(a)

(b)

(c)

Figure 9: The radius measurement of the water droplet is cut out per period. Period 1 to
6 are represented by figures (a) to (f). Left: the vertical radius as function of time for the
water droplet is shown. Middle: the the standard deviation divided by average radius σ/r0
is fitted to equation (14). Right: the data is directly fitted to equation (15).
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(d)

(e)

(f)

Figure 9: Continued.
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Table of experimental data of water droplet per period of damping
Period τ1 (ms) τ2 (ms)∗ V (mm3) a (mm) µ1(mPa · s) µ2 (mPa · s)∗
1 155.1 ± 3.1 83 ± 273 4.91 1.05 1.42 ± 0.03 2.65 ± 0.89
2 136.0 ± 2.8 83 ± 318 4.71 1.00 1.47 ± 0.03 2.40 ± 0.67
3 130.2 ± 1.9 72 ± 290 3.45 0.94 1.35 ± 0.02 2.45 ± 0.65
4 118.9 ± 1.6 76 ± 379 2.80 0.87 1.27 ± 0.02 1.99 ± 0.41
5 108.3 ± 1.2 72 ± 397 2.27 0.82 1.24 ± 0.01 1.76 ± 0.35
6 77.8 ± 1.2 56 ± 383 1.73 0.74 1.40 ± 0.02 1.45 ± 0.29

Table 1: Here the results are represented, calculated from the radius measurements of a water
droplet. For each period of damping two different analysis are used. τ1 and µ1 are derived
from analyzing the decay of the standard deviation of the radius. τ2 and µ2 are derived from
analyzing the data directly. From the radii the average volume V and average volume equal
sphere radius a are calculated to eventually derive the viscosity according to equation (8).
∗ The uncertainty is unphysically large for τ2, such that this data must be discarded.

4.2 Colloidal droplet

Next the viscosity is measured of a levitated water droplet suspended with 1 µm particles
based on polymethacrylate. The mass concentration of the colloids at the start of the mea-
surement is 10%. The colloids with a density of 1.19 g · cm−3[8] are suspended in water
with a density of 0.997 g · cm−3. In total 7200 images are taken, which takes 72 minutes in
total. This is enough time for the water in the droplet to fully evaporate such that a solid
disc shape remains, containing the colloidal particles. During this evaporation the density
increases, and is calculated from the initial mass concentration and the evaporation rate of
water in the droplet. The horizontal and vertical radii are both plotted as function of time
in figure 10.

(a) (b)

Figure 10: (a) Is the horizontal radius of the colloidal droplet and (b) is the vertical radius.
The measurement consists of 7200 images and takes 72 minutes. The downward slope is
due to evaporation of the colloid suspension. When the droplet is evaporated enough the
excitation is not longer visible in the radius and the droplet loses its ellipsoidal shape.
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The measurement of the horizontal radius can be divided into two regions. One with
the negative slope where the droplet is evaporating but still liquid and the other from the
positive slope where the droplet is deforming, becoming flatter and eventually becoming fully
solid. For the viscosity measurement of this colloidal droplet the first region is of interest
since this is the only place where the excitation is visible in the radius of the droplet. For the
second region the droplet loses its ellipsoidal shape so the analysis of the elliptical edge is no
longer sufficient here. The cutouts from the data, done the same way as for the water droplet
and both fitting results of the damping to the standard deviation divided by the average
radius and to the data directly are shown in figure 11. The results from fitting the damping
τ , calculating the volume equal sphere radius a, the changing density and the viscosity are
represented in table 2. Once again the subscripts 1 and 2 represent the fitting to the standard
deviation and directly to the data respectively.

(a)

(b)

Figure 11: The radius measurement of the colloidal droplet is cut out per period. Period 1
to 6 are represented by figures (a) to (f). Left: the vertical radius as function of time for the
colloidal droplet is shown. Middle: the standard deviation divided by average radius σ/r0 is
fitted to equation (14). Right: the data is directly fitted to equation (15).
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(c)

(d)

(e)

Figure 11: Continued.
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(f)

Figure 11: Continued.

Table of average experimental data per period of damping
Period τ1 (ms) τ2 (ms)∗ V (mm3) a (mm) ρ (g · cm−3) µ1 (mPa · s) µ2 (mPa ·s)∗
1 142.6 ± 2.1 75 ± 198 4.63 1.25 0.9989 2.19 ± 0.03 4.16 ± 1.8
2 314.0 ± 20 82 ± 232 3.99 1.19 0.9992 0.90 ± 0.06 3.45 ± 1.4
3 119.9 ± 1.4 87 ± 281 3.48 1.14 0.9995 2.17 ± 0.03 2.99 ± 1.0
4 99.4 ± 1.1 85 ± 361 2.94 1.08 1.000 2.35 ± 0.03 2.74 ± 0.7
5 60.9 ± 0.64 62 ± 274 2.41 1.01 1,001 3.35 ± 0.04 3.29 ± 0.8
6 31.0 ± 0.50 26 ± 158 1.92 0.93 1.002 5.58 ± 0.09 6.66 ± 1.1

Table 2: Here the results are represented, calculated from the radius measurements of the
colloidal droplet with 1 µm particles based on polymethacrylate. For each period of damping
the constant τ is derived in two different ways. τ1 and µ1 are derived from analyzing the
decay of the standard deviation of the radius. τ2 and µ2 are derived from analyzing the data
directly. From the radii the average volume V , average volume equal sphere radius a and
density ρ are calculated to eventually derive the viscosity according to equation (8).
∗ The uncertainty is unphysically large for τ2, such that this data must be discarded.

From the data in figure 11 (b) it can be seen that the fit for τ1 is not representable for
the data. Due to some distortions in the data a too high value for the damping constant
is calculated from the fit resulting in a too low viscosity. Also the second method of fitting
results in such high uncertainties, roughly 4 times the estimated value, that it will not be
used to evaluate the change in viscosity due to evaporation. In the discussion, section 5,
a broader explanation for these choices will be provided. The change in viscosity due to
evaporation for the colloidal droplet calculated from the first fitting method discarding the
second period is shown in figure 12.
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Figure 12: Here the time evolution of the viscosity is shown for the colloidal droplet. The
viscosity is obtained using the first fitting method discarding the value for the second period.
On the x-axis the time is given in minutes. Here in contrast to the other presentations of the
data the 0.6 s between two excitations is included since here the timescale for evaporation is
important instead of the damping constant.

In region 2 the droplet loses its ellipsoidal shape and decreases in size rapidly in com-
parison with region 1. The horizontal radius increases, flattening out the droplet, and the
surface becomes more edgy. The acquired radii are no longer representative for the droplet
since an ellipse is fitted to a no longer elliptical shape. See figure 13 for 9 images of the
droplet in region 2 of the measurement. Here the images show 14 minutes of evaporation
47 minutes after the start of the measurements. The first 8 images with 2 minutes between
them show the deformation of the droplet and a cumulation at the border resulting in a
more edgy surface. The last two images are two consecutive images from the solid residue of
the evaporated colloidal suspension. In this last step a dent appears and the residue starts
rotating.

This last step seems to be consistent with the findings of Agthe et al., where they found
“a two-step process where the particles cluster into an intermediate disordered precursor
that rapidly transforms into large, well ordered mesocrystals”.[9] They are left with a dry
hollow capsule which can be compared with the dent and is also observed in repetition of
the experiment. Figure 14 is an image of the evaporated colloidal droplet of this experiment
showing the dent and hollow capsule shape. Transition electron microscopy is needed to give
a more elaborate observation of the crystallization of the residue.
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Figure 13: Here 9 images of the droplets crystallization progress are shown, covering in total
14 minutes of the experiment. The first image (top left) is taken 47 minutes after the start of
the measurement and the last image (bottom right) 61 minutes. There are 2 minutes between
all the first 8 images. The last two images are consecutive images showing the rotation and
the dent of the solid, which is not spherical symmetric.

Figure 14: These are the residues of the evaporated colloidal droplet with 1 µm particles
based on polymethacrylate. Left is the residue with the dent for which the evaporation is
analyzed. The one on the right is the residue from a repetition of the experiment also showing
the hollow capsule shape as Agthe et al.[9] described.
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5 Discussion

As briefly mentioned in 4.2 of the results the second analysis method where the damping is
fitted directly to the data result in unacceptable large uncertainties, varying from 2.6 to 6.1
times the estimated value of τ2. By eye it is visible from figure 11 that the fit estimates a too
low value for τ2. The high uncertainties can also follow from an extra oscillation becoming
clear in the most damped region of the envelope of the data which is averaged out in the
first analysis method where the fit is made to the standard deviation. In order for the second
method to work, improvements must be made to the stability of the trap and the excitation
method.

Also in the results the measurement of the second period of the colloidal droplet is dis-
carded. This is done because the fit to the standard deviation gave an uncertainty at least
10 times higher than the other uncertainties. This distortion is also visible in the radius
measurement, giving a higher standard deviation and a wrong fit for τ1 resulting in a higher
value than expected. The choice to discard this data is legitimate because these distortions
are observed before, for instance when someone walked by the levitator.

For increasing the reliability of the measurements faster imaging of the radius of the
droplet is needed. A high speed camera, for instance, can measure the damping of the
resonant oscillation in one excitation. This has the benefits that the assumption that the
excitation is reproducible is no longer needed. Also evaporation does not play a role during
one excitation so averaging the volume and with that the volume equal sphere radius per
period of excitation is no longer needed. Another improvement could be made regarding the
air flow in the setup. The measurement can be distorted much by airflow and especially hot
or cold air, fluctuating the temperature in the setup, since viscosity is highly temperature
dependent. An air sealed box around the setup will eliminate more of these distortions than
the cardboard that is used now.

The acoustic levitator can be used for remote measurements of viscosity and surface
tension, but another region of interest that could be explored further is, as Seddon et al.[10]
suggested, the dynamics in a droplet since there is no friction with a wall since the whole
droplet has an uniform air-liquid interface. Also the crystallization of the colloidal droplet
inside the acoustic levitator is interesting for further research.
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6 Conclusions

We investigated the viscosity of acoustically levitated droplets. The free decay method is
used where the field is turned off for 2.5 ms. With stroboscopic imaging the damping of
the resonant oscillation is imaged. The camera is triggered ever 601 ms and the excitation
every 600 ms resulting in effectively imaging the damping every 1 ms. The calculation of the
radius of the droplet is done by fitting an ellipse to the edge. From the measured radius the
damping constant τ is calculated using two different analyses, a fit to the standard deviation
of the radius, giving τ1, µ1 and a fit to the radius directly, giving τ2, µ2. Here the second
method was found to be insufficient for the obtained data due to too many distortions in the
damped oscillation, resulting in a too short fit for τ2 with uncertainties roughly 4 times as
big as the initial value.

Measurements are done with a water and a colloidal droplet with 1 µm particles based on
polymethacrylate. For the water droplet in 6 periods of measurements an average viscosity
of: µ1 = 1.36 ± 0.02 mPa · s was found. Which is off by a factor 1.36 from the literature
value of µ = 1.002 mPa · s. And for the colloid an increasing viscosity due to evaporation
from µ1 = 2.19± 0.03 mPa · s to µ1 = 5.58± 0.09 mPa · s was measured.
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A Appendix

A.1 Appendix

Here the derivation of equation (5) for the average dissipation Fav will be calculated starting
with the equations (2), (3) and (4) respectively:
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Combining this result with equations (3) gives:
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Now using the above result combined with equation (2) gives the expression for the dissipation
F in the approximation that a=r:
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Finally taking the average value of the cosine squared gives the wanted expression for the
average dissipation Fav:

2Fav = n(2n+ 1)(n− 1)
µ

a

∫∫
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ndωA

2.

A.2 Appendix

Here the derivation of equation (8) for the dynamic viscosity µ will be calculated starting
with the equation (1) for energy and dissipation and filling in the equations (5) and (7):
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This leads to a differential equation. We know that A relates to e−t/τ so the damping constant
τ is given by:
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µ
.

The dynamic viscosity µ can than be calculated via the following formula:

µ =
ρa2

τ(n− 1)(2n+ 1)
.
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B Appendix

B.1 Appendix

Figure 15: This is a part of the code used for fitting ellipses to the edges of the droplets.
(**) refers to the site: http://mathworld.wolfram.com/Ellipse.html and (***) to A. White
and B. McHale, Faraday rotation data analysis with least-squares elliptical fitting.
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B.2 Appendix

Figure 16: This is a a part of the code used for the fitting methods. The function fit1 is
the first method where τ is fitted the data via equation (14) and function fit2 is the second
method where τ is fitted to the data via equation (15).
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