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Abstract

The memory effect is the total change in fields over infinite time and has been developed in detail for
gravitation. For electromagnetism the memory effect is a very recent study. In this paper we analyze
and calculate the memory as proposed by Susskind [1]. This memory is embedded in a spherical shell of
superconducting nodes with penetration depth λ. Between these nodes a current will flow that measures
the memory. This current is proportional to the gradient of the superconductor phase φ. We also extend
this memory to an expanding universe, since this connection has not yet been made for the electromagnetic
memory. As a charge source we take a single charged particle moving in the ẑ direction. In Minkowski
space we find an explicit expression for the final phase which causes the memory current. For the
expanding universe calculation we assumed the universe consists of a single component and undergoes
decelerated expansion. We also look at times t � λ only. Under these assumptions we have also found
an explicit expression for the memory effect in the expanding universe. Both solutions oscillate in time,
so the current we measure depends on the time of measurement.

The image on the front pages visualises the memory effect we are calculating. An explosion in the center
of a spherical shell shoots charged particles away in the radial direction. The spherical shell consists of
rings made of a superconducting material. These rings are not connected. As the particles move they alter
properties of the rings depending on their trajectory (blue lines). If we now connect the rings after infinite
time, electrical currents will flow from one ring to the other. This current is the memory of the particles
embedded in the superconductor.
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1 INTRODUCTION 1

1 Introduction

Imagine two negatively charged test particles. One particle (particle A) is moving with constant velocity. As
particle A is moving with constant velocity it is pushing the other particle (particle B) away causing it to
accelerate. Integrated over time this acceleration becomes a change in velocity. When integrating the accel-
eration over all time, this velocity change is called the memory effect. The memory effect is not necessarily
a change in velocity only. To be precise it is the total effect of a particle on an observer long after it has
passed. For gravitation this memory is actually a change in displacement instead of velocity.

The memory effect has gained popularity in the past few decades. The gravitational memory effect was
first introduced by Zel’dovich and Polnarev in 1974 [2]. In 1991 Christodoulou showed that gravitational
waves have a nonlinear memory effect that was not priorly known [3]. The analogy to an electromagnetic
memory effect came only much later and was first analyzed by Bieri and Garfinkle in 2013 [4]. They showed
that for electromagnetism there is also a memory effect, and also a nonlinear memory effect of the kind that
Christodoulou discovered if there are massless charged particles.
In 2015 Susskind proceeded to propose a method of measuring the electromagnetic memory effect [1]. This
memory effect is based on a system of superconductors. In a large sphere of superconductors currents will
flow in a manner caused by particles moving through the sphere. This flow of currents still happens after
infinite time, so it is a memory effect. To approach this we describe the superconductor as a complex scalar
field exhibiting spontanuous symmetry breaking. The flow of currents is then determined by the gauge field
and the argument of the complex scalar field. It is important that the currents are caused by the gauge field
and not by the electromagnetic field. This means that even though at infinite time the electromagnetic field
vanishes, the gauge field does not, rather it is a pure gauge. So even in the absence of electric and magnetic
fields there can still be a current. This might seem to break gauge symmetry, however this problem is fixed
by the complex scalar field as will be shown. To find this flow of currents both the electromagnetic gauge
field caused by the particle needs to be determined, as well as the change in fields inside the superconductor
itself. In Section 4.3 we analyze this method in detail and in Section 5 we provide an exact calculation.
All electromagnetism memory effects in previous literature were calculated in Minkowski spacetime only,
whereas for gravitation the link to an expanding universe has been made already. In this paper we generalize
Susskind’s proposal to an expanding universe as well.

There are multiple reasons the memory effect is interesting. The first is the ability to find new informa-
tion in existing data. Imagine the two particles from the beginning of this section. Assume that we know
what the velocity of particle B was before particle A entered its field of influence. This can be done for
example by simply putting particle B at rest at some location ourselves. Then we can measure this same
particle again after enough time, to notice that it is moving. The direction and speed with which it is moving
tells us something about the behaviour of particle A. For gravitational waves this is more interesting. Let us
place two test particles at rest with some distance L between them. After the gravitational wave has passed,
the distance between the particles has increased to some L + ∆L. By measuring this distance we find ∆L,
which gives us additional properties on the shape of the wave. This in turn gives us information on the source
of the wave, for example a collision of stars. Measurements of this memory have been proposed at LIGO [5],
which is the gravitational wave detection centre which made the first actual measurement of a wave in 2015.
The principle of gravitational memory is shortly explained in Section 3.3.
Memory also has fundamental connections to other theories. This connection is explained in much detail by
Strominger [6]. The memory effect has connections to the soft photon theorem and to asymptotic symme-
tries. The soft photon theorem maintains that during any physical process an infinite amount of photons
with zero energy is created. The properties of these photons are correlated to the physical process. The
memory effect is linked to the creation and annihilation of these soft photons by a Fourier transformation.
Similarly there is a connection between the memory and asymptotic symmetries. Asymptotic symmetries are
symmetries of the system at very large distances. This connection provides understanding and meaning to
all three theories, and gives the question of whether these kind of connections are valid for other theories as
well. For gravitation and electromagnetism these connections exist as shown by [6] [7]. Strominger proposes
that for other theories like quantum chromodynamics this connection might still hold, yet this remains to be
proven [6]. The connection for electromagnetism will be explained in Section 3.2.
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In Section 2.1 we first discuss of the mechanics of a four-dimensional spacetime and the properties of an
expanding universe. Because of the difference in the nature of a time dimension and a space dimension there
is classicaly unexpected behaviour in a four-dimensional spacetime. This difference arises from a different
sign in the metric tensor for time and space components. We also briefly introduce the mechanics of an
expanding universe, its properties and its complications. In Section 3 the memory effect itself is explained,
along with the earlier work done by Bieri and Garfinkle [4] and Strominger [6]. Proceeding in Section 4 we
first explain the principle of superconduction in field theory. This is in order to be able to understand the
memory that is analyzed in Section 4.3 and 4.4 after introducing a calculation trick in Section 4.2. In Section
5 we calculate the memory effect in Minkowski space first and afterwards we generalize this calculation to an
expanding universe in Section 6. We wrap the paper up by analyzing the similarities and differences between
the calculation for an expanding and a static universe.

2 The structure of spacetime

This paper will involve spacetime mechanics of both Minkowski spacetime and an expanding spacetime.
In order to calculate these spacetimes accurately analysis into their structure is needed, especially when
analysing asymptotic behaviour, which is behaviour for very large radial distance r. Indeed when analysing
a spacetime in the asymptotic regime the standard coordinates are not well-defined for massless particles.
This can be understood in the following way. Any particles’ four-momentum pµ obeys the following relation
pµp

µ = −m2. This equation holds for any metric. Here the (−,+,+,+) sign convention has been used.
Indices are raised and lowered using the metric tensor pµ = gµνp

ν and a repeated index implies summation.
m is the rest mass of the particle. For a massless particle in particular this means pµp

µ = 0. Massless
particles thus follow worldlines, trajectories through spacetime, which are lightlike. A lightlike path obeys
the equation ds2 = 0, where ds is the physical distance in an infinitesimally small interval. Massive particles
follow timelike trajectories where ds2 < 0 since then −m2 < 0. The physical distance between two infinitely
close events is given by the metric by

ds2 = gµνx
µxν . (2.1)

Here the four-vector xν is the coordinate of the event. An event is a physical happening in spacetime. It
can now be anything, for example a pulse of radiation or a quantum excitation. Each event corresponds to
a four-dimensional coordinate xν . In particular in Minkowski spacetime for a massless particle moving in a
constant direction this implies dt2 = dr2 or t = r + c. This shows indeed that when taking the limit t→∞
the distance r goes to infinity equally fast. When analyzing asymptotic behaviour the coordinates t and r
both approach infinity, making them unsuitable for asymptotic analysis. This invites us to need a different
set of coordinates for massive and massless particles. In order to see why this happens and understand these
spacetimes altogether we need a method of visualizing spacetimes. Because they are four dimensional we
need some method to take two dimensions away without losing information. This can be done using Penrose
diagrams.

2.1 Penrose diagrams

This section and Section 2.2 is based on [8] and [9]. Carter-Penrose conformal diagrams, or in short Penrose
diagrams, are diagrams that display the properties of a 4D spacetime in a 2D plane by compactifying the three
spatial dimensions into one. In practice this is done by removing angular dimensions and only taking the
distance r into account. In other words they map a (1+3)-space into a (1+1)-diagram. This way each point
(excluding boundaries) in a Penrose diagram in fact respresents a S2 two-sphere. These Penrose diagrams
preserve the causal structure of a spacetime, meaning in practice mostly that light cones still have to be
at 45◦ angles, although the mathematics of causal structure is more complex. It is also important that
timelike geodesics stay timelike and lightlike geodesics stay lightlike. The most important utilities of Penrose
diagrams lie in the fact that all infinities that are embedded in a spacetime, as well as all singularities, are
at finite distances in a Penrose diagram. Although not every spacetime can be conformally transformed in
such a manner that a proper Penrose diagram can be obtained, for example for four-dimensional anti-de
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Sitter spacetime [10], for more simple spacetimes it is possible, for example Minkowski spacetime and the
Schwarzschild solution. The Schwarzschild solution is the metric for a spherically symmetric distributed mass
at rest at the origin, for example our sun. For an expanding spacetime a general penrose diagram is possible
which will be noted in Section 2.3.
Penrose diagrams can be obtained in practice using conformal transformations. Conformal transformations
are transformations on the metric gµν → Ω2gµν which leave the coordinates unchanged. The angles between
vectors are also preserved. Indeed the generalized angle between two arbitrary four vectors xν and yν is given
by

angle =
gµνx

νyµ
√
gρσxρxσ

√
gλτyλyτ

. (2.2)

If we now transform the metric gµν → Ω2gµν , where Ω is some function, then in this equation the Ω’s above
cancel the ones below. These conformal transformations are fundamental for Penrose diagrams because
they allow us to remove infinities. The goal is to transform the infinite radial and time coordinate to a finite
coordinate while preserving the causal structure. The Penrose diagram is then obtained by drawing the range
of these new finite coordinates. In fact only the radial and time component are to be drawn. This means
that the direction of coordinates in R3 is removed. In this drawing various infinites are now actually the
boundaries of the finite coordinates so they are visible within the diagram. Mostly because of this property
Penrose diagrams are very important for analysing asymptotic behaviour at infinites and singularities.

Infinities

Before continuing about Penrose diagrams the different infinities used in this paper need to be defined because
of their importance in asymptotic behaviour. For a general spacetime there are different kinds of infinities
depending on which coordinate we choose to go to infinity. Behaviour of massless particles also adds a
difficulty of t and r going to infinity equally fast so that new coordinates need to be defined. In a short
overview these are given by:

• Future timelike infinity, t→∞, is the region of spacetime in the far future, denoted by i+. All physically
relevant massive particles and fields end up at future timelike infinity [11]. This is important because
this means that any theory that uses massive particles or massive fields only needs to take timelike
infinity into account.

• Past timelike infinity, same as future timelike except now that t→ −∞, denoted by i−. This is where
all massive particles and fields originate from, massless particles not necessarilly.

• Spacelike infinity, r →∞, is the region in space where interactions vanish because the distance between
all events diverges, denoted by i0. This infinity cannot be reached in a finite time in Minkowski space.

• Future null infinity, v = t + r → ∞, is the infinity where massless particles arrive after an infinitely
long time. Here v is the retarded time. Future null infinity is denoted by I+.

• Past null infinity, where u = t− r →∞. Past null infinity is where are past-direction moving massless
particles end up after enough time or where future moving massless particles start. Here u is the
retarded time. Past null infinity is denoted by I−.

The null infinities are of special significance in theories involving massless particles. For these particles
spatial coordinates are not well defined in the t → ∞ limit because in this limit r → ∞ as well, however
u stays finite. To properly analyze the spatial behaviour of masless particles at infinity it is then useful to
make an asymptotic expansion for r → ∞ while keeping u constant. The behaviour for massless particles
is also important for connecting the memory effect to other theories because the uncoupled gauge field of
electromagnetism is massless. For massless fields the same reasoning as for massless particles holds. The
memory effect is also usually analyzed in the large r limit, which means that retarded or advanced time need
to be used to avoid coordinate problems [6]. This paper will use massive particles only, so for the memory
effect only i+ is important, however the different infinities are relevant for the background information on
the memory effect. It is also important to note this difference for massless and massive particles, and to
understand why this paper uses future timelike infinity.
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2.2 Minkowski spacetime

Probably the most important Penrose diagram is that of Minkowski spacetime. The Minkowski space metric
is given in spherical coordinates by

ds2 = −dt2 + dr2 + r2dΩ2. (2.3)

Here dΩ is the unit metric on S2, in spherical coordinates given by dΩ2 = dθ2 + sin θ2dφ2. We transform
this metric into the advanced and retarded coordinates giving

ds2 = −dudv +

(
v − u

2

)2

dΩ2. (2.4)

The coordinates u and v still range from −∞ to∞ here. These need to be transformed such that their range
is finite and dΩ does not change. Note that it does not matter if a factor is placed in front of the metric,
because this factor can be removed using a rescaling ds2 → Ω2ds2. In other words we can remove such a
factor using a conformal transformation. This is allowed for the diagrams to work since no structure has
been changed. In order to transform u and v into finite coordinates the trigonometric tangent function is
especially useful. Choosing

u = tanU, v = tanV, (2.5)

such that −π2 < U ≤ V < π
2 , so the coordinates are finitely bounded. The substitution to tangent functions

could not be done on t and r, because then the 45◦ lightcone rule would be violated. This would mean the
causal structure were altered. With these new coordinates the metric becomes

ds2 =
1

4 cos2 U cos2 V
(−4dUdV + sin2(V − U)dΩ2). (2.6)

The 4 cos2 U cos2 V prefactor can be rescaled into ds2 by a conformal transformation. Denote the rescaled
metric by ds̃2. Furthermore transform the new coordinates U and V back to their original form U = 1

2 (T−R)
and V = 1

2 (T +R) with T and R the new coordinates to give

ds̃2 = −dT 2 + dR2 + sin2RdΩ2. (2.7)

This equation is of the form of the earlier Minkowski equation with the exception of r → sinR in front of the
dΩ and the important fact that the coordinates T,R are bound in the following way:

|T |+R < π, 0 ≤ R < π. (2.8)

Plotting these equations gives a right-pointing triangle which is the Penrose diagram for Minkowski spacetime.
This triangle can be mirrored in the R = 0 axis to result in a diamond shape, which is also a possible and
more neat Penrose diagram of Minkowski spacetime. This can be seen as letting −π < R < π which means
the radial coordinate is not strictly positive anymore, however a negative radial coordinate is effectively a
position vector mirrored in the origin or antipodally transformed. Two antipodal points are the two points
on a sphere that connect to each other through the origin so ~x has −~x as its antipodal conjugate. When
a particle reaches r = 0 its angular direction is also antipodally transformed. In the case of a triangle this
transformation is visualized by reflection, whereas in the diamond diagram the particles just keep moving.
In this sense the left side of the square diagram can be seen as the antipodal map of the right side.

Figure 1 and 2 give both possible penrose diagrams for Minkowski spacetime. The red lines are lines of
constant t and the blue lines are of constant r. The worldline of an arbitrary massive particle and of a lightray
have been illustrated. These two diagrams containt the exact same information since they are as explained
above antipodally connected. Every point in the diagram for r 6= 0 represents a two sphere S2. For figure 1
the two spheres for certain points are also connected to the other side of the diagram by antipodally mapping
the entire sphere. The infinities denoted by I±± denote the boundaries of future and past null infinity and
will be of importance in Section 3.2.
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Figure 2: The Penrose diagram as obtained by the
described conformal transformations [6].

The worldlines of massive particles have to start at i− and end up at i+ whereas the worldlines of massless
particles have to start at I− and end up at I+. This is visualized in the graph. This shows an important
difference between massive and massless particles in the way they need to be treated mathematically. When
analysing the memory for massive particles the limit to future time infinity needs to be taken whereas when
analysing the memory for massless particles the limit to future null infinity needs to be taken. A few other
properties of Minkowski spacetime can now also easily be observed. Any timelike observer will eventually
(when reaching i+) see the entire spacetime, so for a timelike observer everything that ever happened in the
spacetime can be observed. Furthermore past and future light cones intersect for any two events, meaning that
for Minkowski spacetime any two events were in fact causally connected in the past. This is not necessarily
true for all spacetimes, for example a closed matter dominated universe [9].

2.3 Expanding universe

The Friedmann-Lemâıtre-Robertson-Walker or FLRW metric is a solution to the Einstein field equations for
an isotropic and homogenuous universe. On a large scale this approximation is correct since galaxies are very
small compared to the size of the observable universe. The generalized metric makes no assumption on the
flatness of space, however in this paper no curvature is assumed. In this case the metric is given by

ds2 = −dt2 + a(t)2
(
dr2 + r2dΩ2

)
. (2.9)

Here a(t) is the scale factor of cosmology and it is determined by the constituents of the universe using the
Friedmann equations. This scale factor is of fundamental importance for how an expanding universe behaves.
For our universe the scale factor vanishes at t = 0, which corresponds to the big bang. This is not necessarely
true for all possible FLRW metric solutions, however for the ones we are discussing this will be true, as will
be explained later. This scale factor describes the expansion of space. To proceed the assumption that a(t)
increases monotonically is made, so the function is bijective. This allows us to rewrite the metric into the
conformal time τ which obeys dt→ a(τ)dτ to give a new metric

ds2 = a(τ)2
(
−dτ2 + dr2 + r2dΩ2

)
. (2.10)

Note that in Minkowski space the conformal time equals the normal time because then a(t) = 1. Also in
this equation it is clearly visible that for any flat FLRW space where the transformation to conformal time
is allowed, the space is conformally equivalent to Minkowski space. This property is useful for understanding



2 THE STRUCTURE OF SPACETIME 6

the FLRW mechanics as well as for calculational purposes. It will be explained more in Section 4.2. The
conformal time might have a new domain due to the transformation. To analyze this domain first the
solution for a(t) for a single component universe needs to be found. This function is given by the solution of
the Friedmann equations

ȧ2

a2
=

8πG

3
ρ, (2.11)

ä

a
= −4πG

3
(ρ+ 3p). (2.12)

The dot denotes a derivative over time. G is Newtons constant and ρ and p are respectively the energy
density and pressure. If the universe consists of a single component, for example only matter or radiation,
then the pressure and energy have the following relation

p = wρ. (2.13)

where w is a constant specific for each type of energy, w = 0 for matter dominated, w = 1/3 for radiation
dominated and w = −1 for dark energy dominated. With this relation the Friedmann equations have an
exact solution given by

a(t) =

(
t

t0

) 2
3(w+1)

(2.14)

Here t0 is a constant which fixes a(t0) = 1. We can now also see for which values of w there is a big bang,
namely those values where 2

3(w+1) is larger than zero, whereas if it is smaller than zero the universe actually

tends to a singularity instead of coming from one. Our universe actually comes from a big bang and tends to
a singularity as t→∞, but this is due to our universe consisting of more than one component. The domain
of the conformal time can be analyzed with this solution. The definition for conformal time is the above
transformation integrated:

τ =

t∫
0

1

a(t)
dt. (2.15)

This gives τ ∈ [0,∞) for w > −1/3 and τ ∈ [0, α], α < ∞ for w < −1/3. The value w = −1/3 is a critical
boundary value for which a ∝ t which we exclude in this paper. As it turns out in Section 6 the calculations
are more difficult when w < −1/3 because even though the physical distance of a free moving particle always
goes to infinity as t → ∞ (if a → ∞ so in an expanding universe) the coordinate distance might not. To
simplify the calculation w > −1/3 is now assumed, which corresponds to a decelerated expanding universe
ä < 0. In fact the actual assumption that needs to be made is only that ä < 0 without assuming there
is only one component. However toward the end of the paper we need to make a single component ansatz
anyway. Assuming ä < 0 ensures that the conformal time and coordinate distances of free moving observers
go to infinite which is important for integration. This will be the system that is worked with in Section 4,
5 and 6. Our current universe is in a cosmological constant, so dark energy, dominated phase meaning this
ansatz does not apply to our current state. In the present the universe is in accelerated expansion. However
in the past until a few billion years ago the universe was expanding with ä < 0 when the universe was matter
dominated so although this calculation has no connection to our universe right now it does tell us something
about the universe in the past.

The concept of distance

In the FLRW metric the concept of distance can be looked at from two different points of view. We will be
looking at distances on a hypersurface of constant t, τ only. There is the coordinate or comoving distance
from the origin xi and the physical distance

√
xixi. As the scale factor increases the coordinate distance for

a particle at rest stays the same. This means that the expansion of space generated by the scale factor has no
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effect on the coordinates of a particle at rest. Nevertheless the physical distance to the particle does increase
since

x2 = xix
i = gijx

ixj . (2.16)

As stated before xi does not change if a particle is at rest, however gij does. Since i, j denote the spatial part
only gij = a2δij . This introduces a scale factor into the physical distance contrary to the comoving distance.
This increase in the physical distance proportional to a produces the expansion of space, where the distance
between all physical objects increases, even though their coordinates stay the same. This also introduces the
problem of wanting some object at a fixed physical distance. In this case the object needs to be confined at
some coordinate distance xi ∝ a−1 so that the physical distance stays the same. This is possible through the
use of non-gravitational forces such as electromagnetism, since these are not taken into account in the ansatz
of a homogenuous universe.

Penrose diagram

i

i-

+

J +

0

J

J -

J +
i

i -

+
Future horizon

Figure 3: The penrose diagram of a decel-
erated expanding FLRW universe [12].

This flat decelerated expanding FLRW universe also has a Pen-
rose diagram that has been determined before by Kehagias and
Riotte [12]. To find this Penrose diagram a transformation to
retarded coordinates is used of the form u = τ − r to give

ds2 = a2
[
−du2 − 2dudr + r2dΩ2

]
. (2.17)

This is finitely transformed in the same manner as Minkowski
spacetime in section 2.2, however τ > 0 whereas in Minkowski
−∞ < t < ∞. At τ = 0 there is the Big Bang, so a new type
of singularity is expected at τ = 0 and for the rest similarity
to Minkowski can be expected. Indeed the Penrose diagram is
given by figure 3.

The diagram is the same as the Minkowski triangle for τ > 0
with the same future timelike infinity i+, future null infinity
I + = I+ and spacelike infinity i0. For τ < 0 the space is undefined and at τ = t = 0 the space has a
singularity which is the big bang. For this metric the same fact that massive particles have to end up at i+

holds, even though they can start anywhere at I −. Also the basic principles of causality and null behaviour
are the same as Minkowski space. This is very important because it means we do not have to account for
any causal horizons or unexpected asymptotic behaviour in our system.

2.3.1 Scale factor in conformal time

For the calculation in Section 6 we need the scale factor as a function of conformal time for a single component
universe. To do this we solve the Friedmann equation after substituting time to conformal time. This gives
for the chain rule

∂

∂t
=
∂τ

∂t

∂

∂τ
=

1

a

∂

∂τ
. (2.18)

We also use the relation p = wρ again. With this the Friedmann equations can be reduced to a single
nonlinear differential equation. Applying equation 2.18 as well gives

∂

∂τ

(
1

a(τ)

∂a(τ)

∂τ

)
= −1 + 3w

2

1

a(τ)2

(
∂a(τ)

∂τ

)2

. (2.19)

This equation has an exact solution given by

a(τ) =

(
τ

τ0

) 2
1+3w

. (2.20)

Here τ0 is a constant which chooses the initial condition a(τ0) = 1. Note that specifically for w = 1/3 we
have a ∝ τ and for w = 0 we have a ∝ τ2.
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3 The memory effect

The memory effect can be seen as the total change that a particle has caused to physical measurable properties
of an observer long after the particle has passed. In other words even though the particle has no instantaneous
effect on the observer anymore the effect that it has had in the past is still measurable. This memory of
the particles effects on the observer in the past is called the memory effect. It is classicaly a known effect
although the term memory for it is very recent: the change in velocity of a test particle due to some force
is also a memory effect! In this case it is the memory of the particle which causes the force field onto the
test particle. Gravitational waves similarly leave a memory effect on two test particles. Long after the wave
train has passed the particles have gained a permanent displacement, their relative distance has increased.
Electromagnetic waves have an effect on test particles too, they cause a permanent displacement of test
particles after a wave train has passed, however because of electromagnetic noise this effect is impossible
to measure [4]. Electromagnetic waves however have a fundamental difference with respect to gravitational
waves: for electromagnetic waves a permanent change in velocity, a velocity kick, is allowed, whereas for
gravitational waves this is forbidden and only permanent displacements are allowed [4]. In this paper the
memory effect is analyzed from a slightly different point of view inspired by a note of Susskind as stated in
the introduction [1]. The principle is that a moving charged test particle leaves a change in the phase of a
superconductor. This phase can be measured as currents running through the superconductor. Although this
is different than described before, this is also a memory effect, because it is the change that a test particle
causes to a measurable field, namely the phase of the superconductor (or more precisely the gradient of this
phase). This process and theory will be explained in much more detail in Section 4.

3.1 Electromagnetic memory

The memory effect of electromagnetism has been analyzed in detail by Bieri and Garfinkle [4]. This section
explains their article in depth to give a quantitative understanding of what the memory effect is. The
angular coordinates used are a set of complex stereographic coordinates that is useful for calculations, they
are explained in Appendix A. The memory effect derived here is the completely general effect for arbitrary
charge distribution in Minkowski spacetime for a test particle close to I+, so that the limit r → ∞ needs
to be taken, and u replaces the time coordinate. First the electric and magnetic fields are asymptotically
expanded in spherical coordinates, taking only lowest order terms into account:

Er =
E

(2)
r

r2
+ . . . , Ez = E(0)

z + . . . , (3.1)

Br =
B

(2)
r

r2
+ . . . , Bz = B(0)

z + . . . , (3.2)

J0 = ρ =
ρ(2)

r2
+ . . . , Jr = Jr =

J
(2)
r

r2
+ . . . , ρ(2) = J (2)

r , (3.3)

and angular current terms are negligible. Here the carthesian components of the magnetic and electric fields
are assumed to go as 1

r , so the angular parts go as r0 (this follows from the general tensor transformation).
Then it follows from the equations of motion that the radial components behave as 1

r2 . Now the assumption
that the four-current consists of massless particles is made to ensure there is a nonlinear effect as well. No
massless charged particles have been discovered yet, however there is no proof against their existence either.
In the case of massive particles the charge density has to fall off faster than any power of r. Substituting
advanced and retarded coordinates gives Ju = − 1

2 (Jr + ρ), Jv = 1
2 (Jr − ρ). This means that Jv along with

Jz can be ignored, and only Ju = −J (2)
r r−2 is of importance. Inserting the expansions into the Maxwell

equations and leaving out equations that give identical results later on gives:

−∂uE(2)
r +DzE(0)

z = J (2)
r , (3.4)

−∂uB(2)
r +DzB(0)

z = 0, (3.5)

∂uE
(0)
z − εzz̄∂uB(0)

z̄ = 0. (3.6)

Here Dz is the covariant derivative on S2 with metric γzz̄. The covariant derivative is a derivative that takes
the metric into account. It is defined through the use of Christoffel symbols. The repeated index over z
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implies summation over z and z̄. The ε is the antisymmetric levi-civita tensor on S2. The last equation can

easily be solved by B
(0)
z = E

(0)
z̄ . This gives a new smaller set of equations:

−∂uE(2)
r +DzE(0)

z = J (2)
r , (3.7)

∂uB
(2)
r + εzz̄DzE

(0)
z̄ = 0. (3.8)

Define new quantities Sz =
∫∞
−∞E

(0)
z du and Q =

∫∞
−∞ J

(2)
r du. Integrating the previous equations with respect

to u over R gives new equations in terms of S and Q:

DzS
z = (E(2)

r (∞)− E(2)
r (−∞)) +Q, (3.9)

εzz̄DzSz̄ = B(2)
r (∞)−B(2)

r (−∞). (3.10)

Note that integration over u is natural since the asymtotic behaviour near I+ is analyzed. The velocity
change ∆v =

∫∞
−∞ adu where the acceleration a = qE

m can be written neatly because of the definition of Sz
into

∆v =
q

mr
|Sz| . (3.11)

Where |Sz| =
√

2γzz̄SzSz̄. Note that the norm is simply the tensor contraction over the unit S2 metric.
Because of this |Sz| is not dependend on r anymore. This is the explicit formula for the memory effect. Note
that this equation is nothing else than the acceleration integrated over all time, where the accerelation is
given by Newtons equation. To have quantitative information on ∆v, Sz needs to be determined.

Now to calculate Sz only systems are considered that at asymptotic times consist of widely seperated charges
moving with constant velocity. From the Liénard Wiechert solution of electromagnetism the radial compo-
nent of the magnetic field falls away. This follows from the fact that Br = (~β× ~E) · r̂ and ~E ∝ (rr̂− ~βt) for a
single particle. Some vector calculus shows that Br = 0 and from superposition Br = 0 for many particles as
well. This is because these particles are widely seperated so that they do not interact. The Liénard Wiechert

solution for the electric field is given by equation 3.18. Now it can be concluded that B
(2)
r (±∞) = 0 so that:

εzz̄DzSz̄ = 0 −→ Sz = DzΨ. (3.12)

With Ψ a real scalar field that now need to be determined. From equation 3.9 it follows that

DzD
zΨ = (E(2)

r (∞)− E(2)
r (−∞)) +Q. (3.13)

Now from the maxwell equation ∂iEi = ρ it follows from the divergence theorem that∫
V

ρdV =

∫
V

∂iEidV =

∫
δV

ErdΩ, (3.14)

and thus also that
∫
S2 QdΩ =

∫
S2(E

(2)
r (−∞) − E(2)

r (∞))dΩ, meaning that the left hand side of equation
3.13 integrated over all solid angles is zero. Let subscript [0] denote the average of a quantity over the

two-sphere, then it follows from equation 3.13 that (E
(2)
r (−∞)−E(2)

r (∞))[0] = Q[0]. Adding this to equation
3.13 alongside with a redefinition Ψ = Ψ1 + Ψ2 gives:

DzD
zΨ1 = (E(2)

r (∞)− E(2)
r (−∞))− (E(2)

r (∞)− E(2)
r (−∞))[0], (3.15)

DzD
zΨ2 = Q−Q[0], (3.16)

and Sz = S1z + S2z ⇐⇒ S1z = DzΨ1, S2z = DzΨ2. These equations can be solved using multiple methods,
where the result will still depend linearly on the sources. Now after determining Sz there are two different
kind of memories. The first one belonging to Ψ1 is the familiar change in velocity obtained by integrating
the electrical field. Note that in classical mechanics the integral of the force is simply the change in velocity
over some interval times the mass. In the same sense is this memory purely classically propertional to the
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change in velocity over all time. This is the memory that should be familiar, however there is also a memory
analoguous to the nonlinear memory that Christodoulou derived for gravitational waves which is governed
by Ψ2 [4]. This memory fails the classical notion since it assumes lightlike charged particles for which a
relativistic theory is necessary. Although no lightlike charged particles have been observed up to date there
is no proof that they cannot exist. Equation 3.16 is only dependent on the amount of lightlike particles
that have radiated away to future null infinity, so the null kick is only caused by the amount of charge
that has radiated away to null infinity. This means that the memory effect is not only dependent on the
electromagnetic field generated by the particles, but also on the particles themself. In the assumption that
no lightlike charged particles exist the memory is only given by the integrated Lorentz force law.

3.2 The infrared triangle

Soft
Theorem

Ward
Identity Asymptotic

Symmetry

Vacuum
Transition

Memory
Effect

Fourier
Transform

1

Figure 4: The infrared triangle which visually illustrates the connection between the three theorems [6].

The memory effect appears to have connections to multiple other theories as well. These connections
are valid for both electromagnetism and gravity [7]. In his lecture notes Strominger explains the relation
between the memory effect, asymptotic symmetries and soft photon theorems in the infrared limit [6]. The
lecture notes are the source of information for this section and Section 3.3. The infrared limit means that low
energy situations are analyzed which corresponds to looking at long distance asymptotic behaviour only. The
memory effect is related to soft photon theorems through a Fourier transform, and the soft photon theorem
is related to asymptotic symmetries through ward identities. This gives some fundamental meaning to all
three of these theories. The soft photon theorem charactizes quantum scattering processes when an external
massless particle reaches zero energy. From this it also follows that an infinite amount of soft photons will
be created as we will see. Ward identities are identities which relate the quantum scattering amplitudes of
a scattering process. In this section the connection to asymptotic symmetries and soft photon theorem is
explained shortly. Let the system be described by a standard electromagnetism action in Minkowski space:

S =

∫ [
−1

2
F ∧ ?F

]
+ SM . (3.17)

with SM a general matter action so that the equations of motions are given by d ? F = ?J with Jν = δSM
δAν

.
The notation is that of differential forms as explained in Appendix B. Let the current be given by n charged
noninteracting particles with charge Qk and velocity βk. Then the solution of the equations of motion is
given by Liénard and Wiechert:

Fit(~x, t) =
1

4π

n∑
k=1

Qkγk(~x− t~βk)

|γ2
k(t− rx̂ · ~βk)− t2 + r2|

. (3.18)

This formula is not single-valued and has a discontinuity at i0. This is important since it possesses asymptotic
symmetries that follow from this fact. Evaluating the limit of fixed u and r →∞, and afterwards u→ −∞
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(denote this limit by I+
−) gives for the r component

Frt

∣∣∣∣
I+−

=
1

4πr2

n∑
k=1

Qk

γ2
k(1− x̂ · ~Bk)

, (3.19)

wheres when letting r →∞ with v constant and then v →∞ afterwards (denoted by I−+ ) gives

Frt

∣∣∣∣
I−+

=
1

4πr2

n∑
k=1

Qk

γ2
k(1 + x̂ · ~Bk)

. (3.20)

These two are in a general case clearly not equal. This means that the function is not continuous at the
infinitely small transition between I−+ and I+

− (see Figure 1), however they are linked to each other through
the antipodal matching condition:

Fru|I+− (~x, t) = Frv|I−+ (−~x, t). (3.21)

From this matching condition it follows that there is an infinite amount of conserved charges, one for each ε
defined by ε(z, z̄)|I+− = ε(z, z̄)|I−+ . The charge corresponding to each of these ε is given by Q+

ε =
∫
I+−
ε ? F .

Using the equations of motion the conserved charge can be written in terms of an integral over the field and
an integral over the current:

Q+
ε = −

∫
I+−

dud2z
(
∂zεF

(0)
uz̄ + ∂z̄εF

(0)
uz

)
︸ ︷︷ ︸

soft charge QS

+

∫
I+−

dud2zεγzz̄J
(2)
u︸ ︷︷ ︸

hard charge QH

. (3.22)

Note that in this equation the tensor field F and current J have been asymptotically expanded similar to
Section 3.1. The equation has been split in a soft charge QS and a hard charge QH . The name soft charge
comes from the fact that the left side of equation 3.22 connects with soft photons generated in this system.

The soft charge term involves the integral
∫

duF
(0)
uz . Remembering the definition of the Faraday tensor that

F
(0)
uz = E

(0)
z −B(0)

z̄ this integral is quite the same as the one in Section 3.1, so this integral is in fact the memory
effect of electromagnetism. This means that the soft charge QS in equation 3.22 is linearly dependent on the
memory effect only. The integral over the charge can also be written as a the limit of a Fourier transform

Nz = lim
ω→0

∫
R

F (0)
uz e

iωudu. (3.23)

In quantum field theory the electric field can be expressed as a Fourier transform, where the components are
given by creation and annihilation operators of photons. More quantitatively speaking for the gauge field
(neglecting helicity)

Ai =

∫
d3p

(2π)3

(
ape

ipµxµεi + a†pe
−ipµxµεi

)
. (3.24)

Here ε is a polarization vector and pµ and xµ are the four-momentum and coordinate vector respectively.
Note that this is simply a Fourier transformation of the gauge field where the creation and annihilation
operators ap and a†p are the Fourier components. Similarly if we (inverse) Fourier transform the electric field
the Fourier integral gets removed, so for the Fourier transform as given in equation 3.23 the only surviving
components are the creation and annihilation operators corresponding to photons with energy p0 = ω. As
such when promoting the integral in equation 3.23 to a quantum operator before taking the limit, it creates
and annihiliates photons with energy ω. After taking the limit Nz in fact creates and annihilates photons
with zero energy. This is the basis of the soft photon theorem, and since the integral over the electric field
is the memory effect, the limiting Fourier transform of this memory is the connection to the soft photon
theorem. The soft charge Qs then belongs to soft photons with polarization given by ∂z̄ε, meaning there is
an infinite amount of soft photons, one for each ε. To see this note that ε can be chosen as the spherical
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harmonics Y`m so that for each ` and m there is an independent function ε since the spherical harmonics are
orthogonal. Clearly the connection between the memory effect and the soft photon theorem is actually very
straightforward in its most basic form.

Asymptotic symmetries
The antipodal matching condition invites us to find asymptotic symmetries. Indeed these asymptotic sym-
metries are given by the functions ε(z, z̄). This symmetry has a corresponding conserved charge Q+

ε as a
generator, of which the explicit form was given in equation 3.22. This charge can now be expressed as a
quantum operator that has the following commutator with the quantum gauge field in equation 3.24[

Q+
ε , A

(0)
z (u, zz̄)

]
= i∂zε(z, z̄). (3.25)

This means that the conserved charge Q+
ε generates a gauge transformation with parameter ε. The condition

Az = 0 is not invariant under these symmetries since Q+
ε gauge transforms the field. The fact that this

condition is not invariant means that the symmetry is spontanuously broken. A spontanuously broken
symmetry has the fundamental property that it transforms the vacuum state. For this case it means that
if |0〉 is a vacuum state, then Q+

ε does not annihilate the vacuum Q+
ε |0〉 6= |0〉. Rather the vacuum state is

transformed

Q+
ε |0〉 = |vQ〉. (3.26)

Here |vQ〉 is a new vacuum state different from |0〉. This means in other words that the charge connected to
the asymptotic symmetry generates a vacuum transition. In order to connect this to the memory effect we
need to look at the definition of the charge Q+

ε again. As stated by equation 3.22 this charge consisted of
a soft charge and a hard charge. The hard charge QH in fact does commute with Az so the commutation
relation in equation 3.25 can be rewritten as[

QS , A
(0)
z (u, zz̄)

]
= i∂zε(z, z̄). (3.27)

This means that the commutator is fully determined by the soft charge QS . The term QS is linearly depen-
dent on the quantity Nz, however Nz gives us the memory effect. This means that the commutation relation
(equation 3.25) is linearly dependent on the same quantity as the memory effect! Similarly the charge QS
generates the vacuum transition of equation 3.26. This means that the memory effect is directly related to
the vacuum transition. More precisely can the memory effect be seen as a difference in vacuum state between
late and early times. This difference in vacuum state, the vacuum transition, caused by the memory effect
is the same transition as caused by the conserved charge Q+

ε for some specific ε. This finally means that
the memory effect is directly related to some asymptotic symmetry with generating function ε through the
vacuum transition that is caused by both Q+

ε as well as the memory effect itself. This shows the connection
between the memory effect and asymptotic symmetries and completes the two relations with the memory
effect in the infrared triangle (figure 4).

We can now conclude that the memory effect is of significant importance given its connection to both the
soft photon theorem as well as asymptotic symmetries. This adds both physical and mathematical meaning
to all three of these theories. The memory effect is the best observable, so with the help of the memory
using this it might be possible to verify the other two theories. The soft photon theorem might seem un-
physical, however the memory effect automatically involves the soft theorem, and the memory effect has a
more intuitive basis. We will not go into detail into ward identities, since this has little relevance to the
memory effect. From these connections we can also conclude different ways of looking at the memory effect.
Whereas we defined the memory effect as the change over all time of physically measurable fields we can
now define it differently. This can be useful since the new definitions are less ambiguous. We can define the
memory effect as the change in soft photon modes after infinite time, but a more useful definition comes from
the vacuum transition. It is possible to define the memory effect as being a transition between the vacuum
state at t → −∞ and t → ∞. This provides a strong definition for the memory effect. We have seen that
the connection between the memory effect and vacuum transitions is linear so we can make this definition
without problem. It is a nice way of looking at the memory effect, because it means that the memory of a
particle is actually embedded in the vacuum state of spacetime itself.
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3.3 Gravitational memory

The gravitational memory effect has been analyzed more than the electromagnetic memory [6]. This section
is based on a review of Strominger on the gravitational memory [13]. We will shortly discuss the memory
effect for gravity in order to provide a quick view into the physics of general relativity and the memory effect
from another point of view. The gravitional memory effect can hopefully also give some insight in how we can
measure the memory effect in the future. Although for gravitational memory the same infrared triangle as in
the previous section exists, we will not analyze this triangle any further at this point. In order to understand
the memory effect of gravity, the principle of gravity in modern physics needs to be reviewed briefly first.
The effect of gravity in general relativity works fundamentally different from Newtonian gravity. Free moving
particles follow geodesics in space. Geodesics are paths from some coordinate 1 to 2 that minimize the metric
distance ds between these points. Mathematically speaking they are the paths that minimize the action

S = c

2∫
1

ds. (3.28)

Here c is a constant that is usually the rest mass m of the particle. Because of this the ”force” of gravity is
not generated by a presence of mass, but by the metric tensor, since

ds2 = gµνx
µxν . (3.29)

Although the metric tensor is in turn determined by the mass, in addition to any other form of energy
and pressure present in the system, the mass dependence is drastically more complex than the Newtonian
potential. While the metric tensor has been solved in specific configurations for energy in space, for example
for a spherically symmetric mass around the origin, general solutions are impossible. For the memory effect
we are again interested in the asymptotic behaviour as r → ∞ again though, so that for an asymptotically
flat spacetime up to leading order in r the metric is given by

ds2 = −du2− 2dudr+ 2r2γzz̄dzdz̄+ 2
mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 +DzCzzdudz+Dz̄Cz̄z̄dudz̄. (3.30)

In this metric the quantities mB and Czz are the Bondi mass aspect, however their exact meaning is not
qualitatively relevant for the memory effect in the end. Let us take two test particles at some locations in
space.

These particles are free so that they follow geodesics in space. Their seperation is written as sz̄. The
equation of geodesic deviation, in other words the equation determing the deviation between two geodesics,
is now given near I+ by

r2γzz̄∂
2
us
z̄ = −Ruzuzsz. (3.31)

The tensor Ruzuz is the Riemann tensor which is dependent on the metric only. Using the metric in equation
3.30 this tensor can be found to give

Ruzuz = −r
2
∂2
uCzz. (3.32)

Imagine that the metric is now governed by some gravitational pulse, so that we can write the difference
between quantities before the pulse and after the pulse with a ∆. The above two equations can be integrated
twice with respect to u to give

∆sz̄ =
γzz̄

2r
∆Czzs

z. (3.33)

This ∆sz̄ means that the displacement between the particles has changed if ∆Czz is nonzero. This is the
gravitational memory effect. The particles gain a permanent displacement change when a gravitational wave
train has passed them. The change in displacement is also linearly dependent on the displacement before
the pulse. This has to be since if the initial displacement was zero contractions of spacetime do not affect
the displacement in any way. The equation also needs to hold for a Lorentz transformed frame, so if the
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Figure 5: The memory effect on two particles near I+ after a gravitational wave train has passed. Their
relative position has gained a permanent displacement [6].

discplacement is smaller due to Lorentz contraction s′z̄before = λsz̄before with λ < 1 at the beginning, then
the final displacement needs to differ by the same amount s′z̄after = λs′z̄after. The difference between the
displacement before and after is now also shifted ∆sz̄ = λ∆sz̄. Assuming the function for the memory effect
is Lorentz invariant, the memory effect has to depend linearly on the displacement, so that the λ cancels
out. This equation is different from the one for electromagnetism in 3.1 because this equation gives us a
displacement change instead of a velocity change. Another important difference is that for the electromagnetic
memory the velocity kick was not linearly dependent on the initial velocity. There is however no reason to
expect a nonzero kick for a particle at rest, since we can choose a different frame where the particle is not at
rest anymore. The displacement however can not be removed through a transformation, it can only be made
smaller. The change in ∆Czz obeys a relation to the source given by

∆Czz(z, z̄) =
4

π

∫
d2z′γz′z̄′

z̄ − z̄′
z − z′

(1 + z′z̄)2

(1 + z′z̄′)(1 + zz̄)3

(∫ uf

ui

du Tuu(z′, z̄′) + ∆mB

)
. (3.34)

Here ui is some time far before the pulse and uf some time long after the pulse. The stress energy component
Tuu and the mass difference ∆mB are the source of the gravitational pulse in the I+ limit. By measuring
the initial and final displacement of two test particles the difference ∆sz̄ can be determined. This way we
can learn something about Tuu and ∆mB by measuring the gravitational memory effect. Due to the nature
of gravitational effects lying deep in the field of general relativity we will not be going any further into
gravitational memory in this paper.

4 Superconductor Memory

The memory effect can manifest in many different ways. The method used in this paper is using the phase of
a superconductor as proposed by Susskind [1]. The principle is given by the fact that when a particle moves
through a ring of superconductors, it leaves a permanent change into the phase of these superconducting
rings depending on how the particle has moved through it. If at first these superconductors are disconnected
and as t→∞ they are reconnected currents will flow proportional to the gradient of this phase. To explain
the mechanics of this process first the principle of superconductivity in a field theoretic framework needs to
be analyzed. To do this the action of the superconductor needs to be constructed.
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4.1 The action of a superconductor

In a superconductor the standard gauge symmetry of electromagnetism is spontanuously broken. This can
be understood using the following reasoning. The magnetic field cannot penetrate very far into the super-
conductor, the Meissner effect, which effectively means that the photons have mass. This in turn means that
the gauge field has a mass, given by the effective photon mass. A mass term in the action breaks the gauge
symmetry. Indeed FµνF

µν is gauge invariant but m2AµA
µ is not. This means that inside a superconduc-

tor the gauge symmetry is explicitly broken. To make the theory physically valid again the system can be
restored by adding a complex scalar field which transforms under the gauge symmetry as well, so that the
symmetry is now spontanuously broken instead. As Weinberg explains in [14] the action of a general complex
scalar field ψ with spontanuous symmetry breaking is given by

S =

∫ (
−dψ ∧ ?dψ̄ − V (|ψ|)

)
. (4.1)

This action is invariant under the global symmetry of the form ψ → ψeiα where α is a constant. The potential
V is to ensure that there is a non-zero stable vacuum solution for the field so that the theory does not vanish.
The choice for the potential will be the so-called mexican hat potential given by V (x) = g(x2−m2/(2g))2 as
illustrated in Figure 6. This potential is special since shifting ψ as ψ → ψeiα does not alter V (|ψ|), so this

potential has an infinite amount of minima given by the disk with radius |ψ|2 = m2

2g . This disk also explains

V (ψ)

|ψ|

Figure 6: The mexican hat potential [6].

the hidden symmetry breaking in this action. For some vacuum state |Arg(ψ) = 0〉 shifting ψ by a complex
rotation α alters this vacuum state into |Arg(ψ) = α〉 while conserving the potential minimum. We conclude
that the vacuum state is not invariant under the global symmetry of the action [6]. A theory involving global
spontaneous symmetry breaking involves the appearance of a massless spin-zero boson called the goldstone
boson [14]. These bosons are responsible for the symmetry breaking and the field ψ describes them. In
Section 3.2 the goldstone bosons of the asymptotic symmetry breaking were in fact the soft photons. For this
paper the exact meaning of the goldstone bosons is of no importance though. When splitting the complex
field in polar coordinates ψ = ρce

ieφ we find two seperate functions, ρc and φ. The phase φ is called the
goldstone mode and describes the field of the goldstone bosons. Note that this is not a quantum mechanical
wave function, however it does carry information on the behaviour of the bosons. The norm ρc can be seen
as describing the intensity of the superconductor, in some sense equivalent to the charge density in solid
state mechanics. To be more exact ρc is equivalent to the fermion ladder operators of a superconductor when
deriving the action from a quantummechanical method. In this sense ρc is propertional to the density of
cooper pairs inside the superconductor [15]. Cooper pairs are bound pairs of electrons that move freely inside
a superconductor.

This action is however for a spontaneous symmetry breaking theory only, but in our system there is also
an electromagnetic field. To insert the electromagnetic field into the action as well the field action can be
added, but the complex scalar field also has to be coupled to the gauge field. Quantummechanically this
can be done by changing the derivative d of the scalar action to a covariant derivative D = d− ieA to give,



4 SUPERCONDUCTOR MEMORY 16

noting that complex conjugation of the derivative is needed as well to ensure the action is real:

S =

∫ (
−1

2
F ∧ ?F − (d− ieA)ψ ∧ ?(d + ieA)ψ̄ − ?g|ψ|4 + ?m2|ψ|2

)
+ SM . (4.2)

Note that F = dA is the Faraday tensor. The SM inserted is a general matter action which ensures the source
of the gauge field. Later there will be given explanation to this term but for now it is not of importance. In
this action there is a U(1) symmetry that is now local (coordinate dependent) given by

ψ → ψeiα(x) (4.3)

A→ A+ dα(x). (4.4)

We can now see that the complex scalar field ψ indeed solves the gauge symmetry problem in the beginning
of the section. The theory was not invariant under the transformation A→ A+dα(x), however it is invariant
by transforming ψ too. The fact that there is still spontanuous symmetry breaking comes from the fact
that the transformation for ψ is non-linearly realized. For a theory with local symmetry breaking, so a
theory involving gauge fields, the goldstone bosons are strictly speaking no longer goldstone bosons anymore
since they are now massive as is also visible in equation 4.2. This mass comes from the gauge field and the
mechanism is known as the Higgs mechanism [14]. Nevertheless the action still stand and it is in fact the
action of a superconductor! To see this the action is rewritten into polar coordinates ψ = ρce

ieφ to give

S =

∫ (
−1

2
F ∧ ?F − dρc ∧ ?dρc − e2ρ2

c(dφ−A) ∧ ?(dφ−A)− ?gρ4
c + ?m2ρ2

c

)
+ SM . (4.5)

In equation 4.5 the dependence on φ is only in combination with A as dφ−A. It is now remarkable to note
that we can theoretically transform A → A + dφ removing the phase altogether. This would fix the gauge
completely, meaning that effectively inside a superconductor the gauge field is uniquely determined. This
is of little practical use however because the Maxwell equations are gauge invariant, and the gauge fixing
condition is too complex to insert.

4.1.1 Physical properties

Of course there should come multiple known physical properties of superconductors out of this action. Indeed
the most important effects follow rather easily. Weinberg has done this in [14] on which this section is based.
Because of the action only depending on dφ−A it follows that in the hamiltonian the only term depending
on φ is given by (∂0φ− A0)2 + |∇φ− ~A|2. This means that the energy of the system is at a local minimum
exactly when ∂µφ = Aµ, which holds when looking deep in a superconductor where boundary conditions do
not matter. However when the gauge field is pure gauge there are no electric and magnetic fields, in other
words any magnetic fields from outside the superconductor are going to be expelled. This is the Meissner
effect and explains why magnets float on superconductors; the magnetic fields these magnets produce are
expelled from the superconductor, so the closer the magnets come to the superconductor the stronger the
expelling force is. If the magnet is not too large relative to the superconductor at some point the force of
expelling the field is equal to the force of gravity causing the magnet to float. Similarly if the magnetic field
is too strong it is energetically favorable to dismiss the superconductivity altogether.
Note that in equation 4.5 the gauge field also appears to have a mass now given by ρ2

ce
2, which indeed then

means that effectively inside a superconductor photons do have mass. For a massive field the potential is
roughly given by the Yukawa potential V ∝ e−eρcr/r for a field with mass eρc. This means that inside the
superconductor the electromagnetic field actually decays exponentially because the photon mass is not zero.
This effect is similar to the Meissner effect in the sense that deep inside a superconductor the electromagnetic
field vanishes, which can be understood as photons entering the superconductor gain mass and as such slow
down untill they are at rest inside the superconductor.

Secondly the magnetic flux deep inside a superconductor has to be quantized. This follows from the
following reasoning: the magnetic field has to be equal to the gradient of φ. The magnetic flux can be taken
as an integral over a closed loop

ΦB =

∫∫
S

~B · d~S =

∮
∂S

~A · d~̀=

∮
∂S

∇φ · d~̀= φ(end)− φ(begin), (4.6)
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where ∂S is a closed loop, so the integral goes over a closed loop with line element d~̀. Because the loop is
closed φ(end) = φ(begin) up to a value that does not change the earlier complex scalar field, so an integer
multiple of π/e. This gives that the magnetic flux inside the superconductor is also an integer multiple of
ΦB = nπ/e. Because of this the electric current going through the boundaries of the superconductor that
maintains this flux cannot decay smoothly, but also only by integer multiples, which means that there is
no ordinary electrical resistance. These properties do indeed show that equation 4.5 accurately describes a
superconductor.

Two types of superconductors
In order to proceed with the calculation in section 6 we introduce two typcial length scales inside a super-
conductor. The first is the correlation length which is given by [14] as

ξ =

√
2

m
. (4.7)

This length scale is obtained from the equations of motion for ρc. It describes the length scale at which small
perturbations in the field ρc happen. We neglect these perturbations in this paper by assuming ρc is stable in
the potential minimum of the mexican hat. This approximation is valid if we take the superconductor to be
large enough for these perturbations to be insignificant. Another typical length scale which plays a large role
in a superconductor is the penetration length which is given by the inverse of the the mass of the gauge field
as it was given in equation 4.5 for ρc in the potential minimum ρc = m/

√
2g. This gives for the penetration

length

λ =
m√
2ge

. (4.8)

The penetration length descibes how far the magnetic field is capable of penetrating a superconductor.
As shown in this section for the massive gauge field the potential is given by the yukawa potential. In
this potential the field decays exponentially and the typical rate of how fast this decay is, is given by
the penetration length. The penetration length is experimentally shown to be of order of 10−7m. The
correlation length varies greatly per material. For type I superconductors we have ξ > λ whereas for type II
superconductors we have λ > ξ. However superconductors around the boundary ξ ∼ λ exist, so we take the
correlation length to have the same order of magnitude as the penetration length.

4.1.2 Conserved current

We have seen that the action of equation 4.5 was invariant under the new gauge transformation. In polar
coordinates this transformation is written as:

φ → φ+ α (4.9)

A → A+ dα (4.10)

α : R4 7−→ R. (4.11)

Following Noether’s theorem this symmetry has a corresponding conserved current and conserved charge.
This conserved current can be derived by variating the action with respect to the gauge transformation and
noting that it does not change, so that S[φ+α,A+dα] = S[φ,A]. We now take the special case in which α is
constant and note that the action is only dependent on dφ and not on φ, this gives S[φ+α] = S[φ] −→ δS

δφ = 0.

Indeed this last equation is obeyed by the action. This equation can be rewritten as S[φ + α] − S[φ] = 0.
If we now take α infinitesimally small this equation is simply the definition of a minimized action so the
conserved current can be found by minizing the action with respect to φ which gives

d ? (−2e2ρ2
c(dφ−A)) = 0 (4.12)

=⇒ JC = 2e2ρ2
c(dφ−A) (4.13)

Here JC is the conserved current of the system. This means that in a superconductor currents will flow as
a gradient of the phase when the gauge field is absent, and when there is a gauge field these currents will



4 SUPERCONDUCTOR MEMORY 18

also be drawn in the direction of the gauge field. This conserved current equation will be of fundamental
importance for the memory that we are calculating because this is the earlier mentioned memory current
we would measure. Note that J0

C is actually the charge density of this current, which would be the charge
density of freely moving cooper pairs. This shows the connection between ρc and the charge density, however
∂oφ−A0 also plays a role.

4.2 Weyl transformation

In this subsection the action will first be Weyl transformed to provide easier methods for calculation. A
Weyl transformation is a transformation that changes the metric without shifting the coordinates of the form
ds2 → Ω2(xν)ds2. This is also a conformal transformation, however we will not be changing only the metric
but also the physical fields. Indeed it is easily visible that the FLRW metric in conformal time is perfect for
a Weyl transformation. The metric as in Section 2.3 is given by

ds2 = a(τ)2
[
−dτ2 + dr2 + r2dΩ2

]
. (4.14)

The Weyl transformation Ω = 1/a(τ) transforms the metric into the Minkowski metric. Since the Minkowski
metric is spatially flat and constant this metric is perfect for quantitative analysis. Along with the redefinition
of the metric it is useful to redefine some functions and symbols in the superconductor action as well to
maintain the same action. First the choice ρc → aρc is made, secondly we choose Aµ to be constant. The
phase φ is a scalar which does not change. The matter action SM is not invariant under the transformation,
however only the current JµM = δSM

δAµ
is important, which we choose invariant in its upper index (so JµM → JµM ).

In a short list this is given by

gµν → 1

a2
gµν , (4.15)

Aµ → Aµ, (4.16)

ρc → aρc, (4.17)

φ → φ, (4.18)

JµM → JµM . (4.19)

After the Weyl transformation the metric becomes indeed the Minkowski metric

ds2 = −dτ2 + dr2 + r2dΩ2, (4.20)

since ds2 = gµνdxµdxν . This means that the FLRW spacetime is conformally equivalent to the Minkowski
spacetime, which means that the causal structure as well as the angles between events are the same for
the FLRW metric as for the Minkowski metric as long as this transformation is allowed. Physically this
is to be expected since the spacetime was assumed to be isotropic and homogenuous meaning that there
can be no angular transformation without breaking the symmetry ansatz of the FLRW metric. Only the
spatial distances and time seperations of events (the coordinates with length dimension) change under this
transformation. Indeed the FLRW metric as introduced in section 2.3 only scales the physical distances
between events, the Weyl transformation removes this scaling. To transform the action we need to transform
all seperate parts using the list above. With these rules it is important to note that Aµ does change since
Aµ = gµνAν , this also gives for the Faraday tensor FµνF

µν = Fµνg
µτgνσFτσ. Lowering the indices is

important for the transformation because now the transformation of FµνF
µν√−g gives

FµνF
µν√−g = Fµνg

µτgνσFτσ
√−g Weyl transformation−−−−−−−−−−−−−→ Fµνa

2gµτa2gνσFτσ

√−g
a4

= FµνF
µν√−g. (4.21)

This means that FµνF
µν√−g is in fact invariant under Weyl transformations or Weyl invariant. In a similar

fashion the rest of the transformation can be inserted into the action to give

Snew =

∫ [
−1

4
FµνF

µν − 1

a2
∂µ(aρc)∂

µ(aρc)− e2ρ2
c(∂µφ−Aµ)(∂µφ−Aµ)− gρ4

c +
m2

a2
ρ2
c

]√−gd4x+SM .

(4.22)
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The action is almost the same as in equation 4.5. Let us analyze the ∂µ(aρc)∂
µ(aρc) more closely:

1

a2
∂µ(aρc)∂

µ(aρc) = ∂µρc∂
µρc + 2

1

a
ρc∂µρc∂

µa+
1

a2
ρ2
c∂µa∂

µa = ∂µρc∂
µρc −H∂0ρ

2
c − ρ2

cH2, (4.23)

where the (conformal) Hubble parameter H = ȧ
a has been used. This is slightly different from the normal

hubble parameter H because the derivative is with respect to conformal time now. The term H∂0ρ
2
c can

be rewritten as ∂0(Hρ2
c) − Ḣρ2

c . Now for the action the total differential ∂0(Hρ2
c) does not matter since it

reduces to zero due to vanishing boundary conditions, which means that H∂0ρ
2
c ≡ −Ḣρ2

c . This can finally
be inserted to give the fundamental action for our calculation

Snew =

∫ [
−1

4
FµνF

µν − ∂µρc∂µρc − e2ρ2
c(∂µφ−Aµ)(∂µφ−Aµ)− gρ4

c +M2(τ)ρ2
c

]√−gd4x+SM . (4.24)

This action is the same as the general action before the Weyl transformation (equation 4.5) except for the

now time dependent mass M2 = m2

a2 +H2−Ḣ. This is expected since conformal transformations as explained
in Section 2.1 preserves light cones, so the theory of a massless field, for example the gauge field with massless
photons, should not change under a conformal transformation. In the case of a superconductor the gauge
field is massive, however its mass ρ2

c has been rescaled. This gives that only the mass of the complex scalar
field transforms. In other words the physical properties of the superconductor change as spacetime expands.
This would affect the gauge field indirectly as well but we will assume the superconductor to be small enough
for this effect to be negligible. When the superconductor covers some volume V , this volume V expands as
space expands, which also means that the density of the superconductor decays as 1/V . From this we expect
the superconductor to decay in strength and after a certain while have no effect anymore. Indeed the mass
of the superconductor now decays and as τ →∞ the mass M → 0 so when space is maximally expanded the
superconductor has no superconducting properties anymore, similar to the volume V extending over all space
with zero density. The phase φ of the superconductor is invariant which means that when we determine the
phase after the Weyl transformation, we also immidiately know the phase from before. Because of invariance
of φ we will only work with the transformed action.

The mass of the superconductor

To check whether this mass is correct we can transform the action of a massive scalar field which is known to
be Weyl or conformally invariant and see if the mass correction is correct. Let us take the following invariant
action [16]

S =

∫ [
−∂µψ∂µψ −

R

6
ψ2

]√−gd4x, (4.25)

where ψ is a real scalar field and R is the Ricci scalar. The Ricci scalar transforms under a transformation
g → Ω2g as [16]

R̃ = Ω−2[R− 6gµν∂µ∂ν ln Ω− 6gµν(∂µ ln Ω)(∂ν ln Ω)]. (4.26)

In the case that Ω = 1
a this is given by

R̃ = a2[R− 6Ḣ+ 6H2]. (4.27)

Adding this to the previous lagrangian gives

−∂µψ∂µψ−
R

6
ψ2 =⇒ − 1

a2
∂µaψ∂

µaψ− R̃

6a2
ψ2 = L +

R

6
ψ2 +(H2−Ḣ)ψ2−ψ2

[
R

6
− Ḣ+H2

]
= L . (4.28)

The theory is indeed conformally invariant. This means that the earlier mass correction obtained by expand-
ing 1

a2 ∂µ(aρc)∂
µ(aρc) is corrent since it perfectly cancels the Ricci scalar.
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4.3 Superconductor memory

The memory of a passing particle can manifest itself as a velocity kick, but it can also manifest itself in the
phase φ of the superconductor as proposed by Susskind [1]. Assume that at some initial conformal time τi
with corresponding initial time ti there is only charge at rest at the origin and the gauge field Aµ(τi) = 0 and
the phase φ(τi) = 0. There is no external field. At τi there is an explosion so that charged particles move
outwards in the radial direction. For the experiment imagine that at some coordinate distance r = R which
obeys R� λ there is a large sphere of superconducting nodes that covers all angles. Before τ = τi the nodes
are connected and any currents are discharged to ensure that φ(τi) = 0. At τ = τi the nodes are disconnected,
the particles move through the nodes and change their phase, this is different for each node. In the end,
when all particles have left, the nodes are reconnected and currents will flow between them determined by
the conserved current (equation 4.12). These currents would discharge very quickly because they affect the
gauge field themselves, but would exist long enough to be measurable.

Figure 7: An image illustrating the setup of the system. The large spherical shell is covered in superconduct-
ing nodes, illustrated as small rings. The dashed lines are wires connecting the nodes, which are disconnected
between τ = τi and τ = ∞. The particles of the explosion follow the blue trajectories. They move through
the rings, and can pass freely without collision this way. As they move through the ring the phase inside the
ring and neighbouring rings gets changed. When reconnecting the wires as τ → ∞ currents will flow along
the circular nodes and wires proportional to the gradient of the phase determined by the particles moving
through the nodes.

The main principle is that at τ =∞ the phase φ and the gauge field Aµ have changed dependent on the
particle movement. To find the memory effect, i.e. the current which would flow at τ → ∞ the phase and
gauge field at τ →∞ need to be determined. Let us start from the equations of motion. Variating the action
of equation 4.5 to the gauge field gives the equation of motion for the gauge field:

δS = S[A+ δA]− S[A] =

∫
δA ∧ (−d ? F + ?2e2ρ2

c(dφ−A)) + δSM , (4.29)

=⇒ d ? F = ?JM + ?JC , (4.30)

where JM is the current generated by the matter action given by JµM = δSM
δAµ

and the conserved current

from Section 4.1.2 has been identified. This equation is in a complex manner coupled to the superconductor,
however the superconducting nodes were disconnected after τ = τi. We can conlude that in the modified
Maxwell equation 4.30 the current JC is of no importance. It is to be noted that of course the charge density
J0
C would still exist, however we never discussed the fact that the superconductor would also have stationary

protons, and be neutral on average. With this in mind we can remove J0
C as well. This gives the classical

Maxwell equation written in tensor form as

∂µF
µν = −JνM . (4.31)
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The charge density ρM = J0
M is singular at r = 0 for all τ < τi and is given by the moving particles for

τ > τi in a fashion which will be explained in Section 5 and 6. We now choose the temporal gauge A0 = 0
which still leaves some gauge freedom, to be precise the freedom to make gauge transformations where α is
space dependent only. We have chosen A(τi) = 0 however, so that the gauge is now completely fixed. Indeed
any space dependent but time independent transformation would remove this initial condition. In this gauge
Maxwell’s equation for ν = 0 can be written as

∂0∇ · ~A = −ρM , (4.32)

where the identities Aµ = (0, ~A) and ∇ = ∂i have been used, as well as the definition Fµν = 2∂[µAν] where
[...] denotes antisymmetrization. This equation determines the gauge field as it changes because of the
particles moving through space. To obtain the gauge field at time infinity this equation can be integrated
over all time resulting in

∇ · ~A(∞) = −Q(∞), (4.33)

where Q(τ) is defined as all the charge that has passed through a point ~x after a time τ . This means that
Q(∞) is simply all the charge that has passed ever in history, so that Q(∞) integrated over all solid angle
is all charged that has been released at the initial explosion. Note that this assumption could not have been
made when w < −1/3 because in that case if the radius of the sphere was large enough the particles might
not have reached the sphere at all due to the expansion of space going faster than the movement of the
particles! At time infinity long after the particles have passed the electric and magnetic field have to vanish,
meaning that the gauge field becomes pure gauge ~A = ∇λ. We can gauge transform this residual λ away at
the cost of altering the phase of the superconducting nodes φ→ φ−λ and removing the condition A(τi) = 0.
This condition does not matter anymore however for our measurement of the current at τ =∞. The gauge
field is completely absent now meaning that all memory is embedded in the superconducting phase only. If
there was a residual gauge field the effect on the superconductor would not necessarily be a memory, so it is
important that it can be transformed away. The gauge field is easily determined this way however the phase
also transforms due to the movement of the particles. We can argue that the phase in fact has to transform
in a manner linearly dependent on the gauge field because of the gauge transformation. If the phase were to
be constant we could make a transformation φ→ α(~x), removing this assumption.

To find quantitatively how the phase transforms we start again with the definition of the conserved current
because this is also the equation of motion. The conserved current equation 4.12 actually states that the
divergence over spacetime of the current is zero. In this case we confine the superconductor to some distance
r = R meaning that the divergence over the spherical shell only has to be zero. This gives the following
equation for the phase in vector notation

∂0(ρ2
c∂0φ)− ρ2

c∆Ωφ = −ρ2
c∇Ω · ~AΩ. (4.34)

The Ω subscript denotes that only the components on S2 need to be taken, so only the angular components,
and ∆ is the Laplace operator given by ∆ = ∇ · ∇. Solving this equation for φ and taking the τ →∞ limit
gives the memory phase. When this φ has been obtained we also substract the gauge field function λ so that
the phase is the only remaining memory. This final phase is then the same in the old FLRW metric since the
phase does not change during the Weyl transformation so this finalises the result. The superconductor norm

ρc will be assumed to be in the potential minimum ρ2
c = M2

2g at all time.

Physical distance

It is possible to confine the superconducting sphere to a fixed physical distance x = R instead. This would
mean that the radial coordinate would be given by r = R

a . This can be inserted into the conserved current

equation taken on the spherical shell only by adding the radial part of the divergence as well with r = R
a

inserted. This gives

∂r = − a

HR∂0. (4.35)

These radial derivatives can be inserted into equation 4.34 to give an addition time derivative term. This
makes the calculation unnecessary more complex however without adding a lot of additional value. Because
of this we choose the spherical shell at fixed coordinate distance r = R instead.
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4.3.1 The charge distribution

For our setup we take the initial explosion to consist of two particles, one moving in the ẑ and one in the −ẑ
direction in order to conserve momentum. Both these particles are massive and have the same mass so that
their initial speed β is identical. They will also have opposite charge q to preserve charge. We assume them to
be massive since no massless charged particles have been observed. The particles are assumed noninteracting
so that only the solution for the particle moving in the ẑ direction is needed. This solution is actually the
fundamental solution since any other solution can be obtained by a sum of rotated fundamental solutions.
Note that for the fundamental solution the azimuthal symmetry dictates that all φ coordinate dependence of
any function needs to vanish. In this paper we will only determine the fundamental solution since the total
solution can be found by letting θ → π − θ and q → −q. The fact that in the FLRW spacetime the particles
also do not change direction is easily argued from the fact that the spacetime was assumed isotropic and
homogenuous. Since these particles have no interaction their paths are described by timelike geodesics. The
action of a single charged particle with mass m and charge q is given by

SM =

∫ (
−m

√
−gµν

∂xµp
∂λ

∂xνp
∂λ

+ qAµ
∂xµp
∂λ

)
dλ, (4.36)

where λ is an affine parameter that parametrizes the particles movement. In this action xµp denotes the four-
position of the particle and the gauge field Aµ that couples to the particle movement needs to be evaluated
at xµp . The coupling of this gauge field is neglected for the movement of the particle, but it is important for

the definition of the matter current JM = δSm
δA , which can now be derived to be given by

Jµ(xν) = q

∫
R
ẋµpδ

(4)(xν − xνp(λ))dλ, (4.37)

where ẋµp = ∂xµ

∂λ . The solution of the geodesic equation can be inserted into equation 4.37 to obtain the
charge current of the problem. These geodesics will need to be treated carefully since the particles are
assumed to have an instantanuous velocity kick at τ = τi. This automatically also gives a discontinuity in
the charge current and in the fields at τ = τi. This discontinuity might seem unphysical but it is actually
only a mathematical method for analyzing the field. The behaviour at the explosion is of no importance,
only the characteristics of the particles movements afterwards, so it is of no physical importance if we choose
the particles to accelerate for a very short time, or instantly. Mathematically however working with a
discontinuity is rather easy. The electric and magnetic fields also recieve an infinite singularity at τ = τi,
this is however expected. Any charged particle that undergoes acceleration emits electromagnetic radiation,
in this case the acceleration is infinitely large for an infinitely short time, so the radiation peak should have
the same behaviour. The derivation of the charge current will be done in detail in Section 5 and 6. This
charge current is fundamental for the memory effect since it is the source of the gauge field and the phase of
the superconducting shell.

4.4 Symmetry analysis

It is possible for an initial charge Q to be confined at r = 0 for any τ < τi since this does not alter the
initial condition A(τi) = 0. Such a charge distribution would be spherically symmetric, and since the su-
perconductor is also spherical symmetric, this charge distribution should not be able to have any effect on
the final current. We can argue this since if it adds any angular dependence to the phase, this dependence
should be broken by rotating the system since the charge distribution is spherically symmetric. Indeed for

such an initial charge Q the electric field is simply ~EΩ = 0 and Er ∝ 1
r2 . In the temporal gauge ~̇A = − ~E so

that it is easily chosen that ~AΩ = 0 and Ar ∝ τ+c
r2 . For this final part we can freely choose c = −τi so that

indeed ~A(τi) = 0. We now proceed to look at spherical symmetry of the system and its meaning for the result.

In the original note of Susskind he proposes to rewrite equation 4.33 as

∇Ω · ~AΩ = − 1

r2
∂r(r

2Ar)−Q. (4.38)



4 SUPERCONDUCTOR MEMORY 23

In other words strip off the radial part of the divergence and take it to the other side. Then he proceeds
to assume the integral over the electric field vanishes for large r since the electric field of a particle moving
towards the sphere cancels the field as it moves toward the sphere. This field goes as 1/r2 since the assumption
is true for a flat disk, and the deviation of a disk goes as 1/r2. Q goes as 1/r2 as well however, so the field
integral is not negligible relative to Q. We will prove now that both terms are equally important for the
physical behaviour of the system. Starting from stokes theorem on the Maxwell equation∫

S3(r)

∇ · ~AdV =

∫
S2

r2ArdΩ = −
∫
S3(r)

QdV. (4.39)

Here S3(r) denotes a volume of a sphere with radius r, S2 is the boundary of this sphere and dV denotes
the volume element of the sphere. Taking the derivative to r on both sides and rewriting gives∫

S2

1

r2
∂r(r

2Ar)dΩ = −
∫
S2

QdΩ. (4.40)

This result means first of all that the order of r of both 1
r2 ∂r(r

2Ar) and Q need to be the same, since their
integral over all solid angle for arbitrary r needs to be the same. Furthermore this gives the important
identity∫

S2

∇Ω · ~AΩdΩ = 0. (4.41)

Mathematically speaking this result has to be true, since stokes theorem can be used again on equation 4.41
but now S2 is closed so there is no boundary, meaning the original integral had to vanish as well. Indeed
this integration should give zero from a physical perspective as well since the divergence over S2 should only
be nonzero where the field has a source contribution, however any charged particle that generates such a
sink in the field at some direction r̂ also has to generate it at −r̂ because of antipodal symmetry. If some
particle moves in the r̂ direction the gauge field on S2 flows toward a sink at r̂, however since it flows in this
direction it has to originate from some source, which from spherical symmetry easily follows to be −r̂. These
two singularities cancel each other, and since any field can be expressed as a superposition of many particles
the result has to be true for any gauge field as well. An interesting case to look at is the case of complete
spherical symmetry of Q, in which case the integrals over all solid angles in equation 4.40 can be removed
because the functions have to be direction independent giving

1

r2
∂r(r

2Ar) = −Q. (4.42)

In this case it follows that ∇Ω · ~AΩ = 0. Indeed ~AΩ should be direction independent as well. This means
however that the memory effect vanishes for spherically symmetric charge distributions since the memory is
only dependent on ~AΩ which was fixed to be zero at τ = τi. This shows why the initial conditions are of
little importance as long as they are chosen spherically symmetric. In fact any spherically symmetric charge
distribution can be present during the experiment without altering the memory effect, since no interaction
between the charged particles was assumed. The charge density ρM can then be split in a symmetric and an
antisymmetric part. The only contribution to the memory then comes from the antisymmetric part.
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5 Minkowski spacetime

5.1 The gauge field

To analyze this memory effect and how it is derived we first proceed in a simpler case where a(τ) = 1, so the
Minkowski spacetime. Now the conformal time is simply equal to the normal time τ = t. In this spacetime the
electric and magnetic fields generated by this particle have already been determined in the past by Liénard
and Wiechert in the Lorentz gauge. We need to transform it to the temporal gauge for determining the
phase. We also need to slightly transform the Liénard-Wiechert solution to account for the discontinuity at
t = ti. Since in Minkowski spacetime there is no convention that at t = 0 there is a big bang, we choose for
simplicity for this section only that ti = 0, which means that the explosion and the discontinuity is at t = 0.
We start with the four-position of the particle which is explicitely

xνp =

(
t

~β(t)Θ(t)

)
. (5.1)

Here Θ(x) is the Heaviside step function defined as

Θ(x) =

{
1, x > 0,

0, x < 0.
(5.2)

Under this definition the derivative Θ′(x) = δ(x) where δ(x) is the dirac delta function. The four-position
(equation 5.1) of the particle generates the following elements of the four current:

ρM = q

(
δ(~x)Θ(−t) + δ(~x− ~βt)Θ(t)

)
, (5.3)

~jM = ~βρM . (5.4)

Indeed the charge current also suddenly changes at t = 0. For the Liénard-Wiechert potentials ψLW and
~ALW this means that for t < 0 the potential is given by a particle at rest at the origin and for t > 0 the
gauge field is that of a relativistic moving particle. However we need to take causality into account: the
gauge field propagates at the speed of light because the photon is massless, so at some distance r the field for
the particle at rest is observed untill t > r. This finally gives the modified potentials in the Lorentz gauge

ψLG =
q

4πr
Θ(r − t) + ψLWΘ(t− r), (5.5)

~ALG = ~βψLWΘ(t− r) (5.6)

ψLW =
qγ

4π

1

|γ2(t− βr cos θ)2 − t2 + r2|1/2 . (5.7)

This is the complete gauge field in the Lorentz gauge. The potential ψLW is the Liénard-Wiechert potential
rewritten for a particle moving with ~β = βẑ. This potential needs to be transformed to the temporal gauge in
order to obtain the one we need. To see how this happens note the definition of the temporal gauge A0 = 0.
This means that in some way Ai has been modified so that A0 is part of it. Let us choose some α so that
∂0α = A0. Then this α generates the gauge transformation to the temporal gauge since now

A0 → A0 − ∂0α = 0, (5.8)

Ai → Ai − ∂iα. (5.9)

This finally means that the vector field ~A in the temporal gauge is given by

~A(t) = ~ALG(t) +∇
t∫

0

ψLG(t′)dt′. (5.10)

Note that ~ALG(0) = 0 so that ~A(0) = 0 as well for any r so the initial condition is still satisfied. The fact
that the sign of the integral changed to a plus comes from the fact that A0 = ψ but ∂0 = −∂0. We can
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insert the functions for ~ALG and ψLG to finally obtain the full gauge field in the temporal gauge. The only
component of interest is actually ~Aθ since ~Aφ = 0 and for the calculation ~Ar is not important. Inserting
ψLW , looking at the theta component only and working out the integral finally gives the complete temporal
gauge potential that we need

~Aθ =
qγ

4π

1

βr sin θ

Θ(t− r)
|γ2(t− βr cos θ)2 − t2 + r2|1/2

(
r − βt cos θ − β2r sin2 θ

)
− qΘ(t− r)

4πβ sin θ
. (5.11)

To obtain this the integral had been partially integrated, the fact that ~β = βẑ and the delta function identity

f(a)Θ(b− a) =

b∫
−∞

f(x)δ(x− a)dx (5.12)

has been used. Equation 5.11 is the only component we need for determing the phase using equation 4.34.
The gauge field still has the Heaviside step function, which is good, since we still need it to obey the same
causality principles. This field resembles the standard Liénard-Wiechert solution, but there are angular and
velocity dependent terms added which ensure the gauge.

5.1.1 The gauge lambda

As stated in Section 4.3 the gauge field ~A becomes a pure gauge as t → ∞ so that ~A = ∇λ. To find λ we
now need to solve equation 4.33. First we need to find Q for the given ρM . Q was defined as the total charge
that has gone through the sphere with initial value Q(ti) = Q(0) = 0 so that

Q =

∞∫
0

ρMdt. (5.13)

Now ρM as it was given in equation 5.3 was in carthesian coordinates. When switching the delta functions
to spherical coordinates a problem arises: we cannot just take rewrite the arguments or the fundamental
property of the delta function

∫
R δ(x)dx = 1 is not satisfied. When we rewrite δ(~x) = δ(r)δ(θ)δ(φ) the

jacobian of the integral r2 sin θ goes to zero so that the integral can never give 1. To have the correct charge
density the delta function transform needs to correct for the jacobian. Since the system is in azimuthal
symmetry we also want the dirac deltas to be φ independent so that also needs to be taken into account.
Indeed the correct form of the charge density in spherical coordinates is given by (for t > 0)

ρM =
q

2πr2 sin θ
δ(r − βt)δ(θ). (5.14)

Integrating this over all time is straightforward with the definition of the delta function so that Q is given
by

Q =
qδ(θ)

2πβr2 sin θ
. (5.15)

To find λ we now need to solve

∆λ = − qδ(θ)

2πβr2 sin θ
. (5.16)

This equation is a basic Poisson equation that has a solution using a Green’s function given by

λ =
−1

4π

∫
R3

Q

|~r − ~r′|d~r
′ =

q

4πβ

∞∫
0

1

|~r − r′ẑ|dr
′. (5.17)

This integral has a slight problem: it does not converge. This is luckily not very bad since we can shift λ
by any constant without breaking a symmetry or changing gauge. Indeed in the local U(1) symmetry of
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equation 4.9 letting α be constant only alters φ, but physically only dφ is important. To have a finite result
we substract the constant value of λ(r = a, θ = 0), with a some finite nonzero radius, from the original λ,
which would be a diverging constant, but we change the order of substraction and taking the limit of the
integral to give

λ =
q

4πβ

∞∫
0

(
1

|~r − r′ẑ| −
1

|a− r′|

)
dr′. (5.18)

The indefinite integral is given by∫ (
1

|~r − r′ẑ| −
1

|a− r′|

)
dr′ = log(r′ − r cos θ +

√
r′2 + r2 − 2rr′ cos θ) (5.19)

−1

2

(
(sgn(r′ − a)− 1) log(a− r′) + (sgn(r′ − a) + 1) log(r′ − a)

)
. (5.20)

When taking the limit r′ → ∞ the integral would have diverged before but now the asymptotic behaviour
goes as∫ (

1

|~r − r′ẑ| −
1

|a− r′|

)
dr′

r′→∞−−−−→ log(2r′)− log(r′) = log(2) (5.21)

so that the limit indeed exists and the renormalization works. The log(2) that remains can be transformed
away again later. The total integral for both boundaries is now given by

λ = − q

4πβ
log(r(1− cos θ)) +

���
���:

0q

4πβ
log(2a). (5.22)

The right part of the equation was constant, so it can be transformed away without losing information or
breaking symmetry as explained above. As such the only remaining term is the left part, which is the final
scalar field that generates ~A at t→∞. This is the scalar field that later needs to be substracted of the phase
φ to find the memory.

5.2 Phase

For the phase we need to solve equation 4.34 wih the use of the gauge field given in equation 5.11. However
since now we are calculating in Minkowski space where a = 1 we get M2 = m2. We assumed ρc to be stable
in the potential minimum. Looking at the action after the Weyl transform (equation 4.24) this means that

ρ2
c =

M2

2g
=
m2

2g
(5.23)

which is constant. This means that we can leave ρc out of the phase equation so that the phase is now finally
determined by

∂2
0φ−∆Ωφ = −∇Ω · ~AΩ. (5.24)

Note that the derivatives ∇Ω and ∆Ω are actually only derivates to θ only because of the azimuthal symmetry
given by

∆Ω =
1

r2 sin θ
∂θ(sin θ∂θ), ∇Ω · ~AΩ =

1

r sin θ
∂θ(sin θ ~Aθ). (5.25)

To solve equation 5.24 we expand both functions φ and ∇Ω · ~AΩ into spherical harmonics. However because
the derivatives are with respect to θ only we find m = 0 for the spherical harmonics. This means that the
functions are independent on the polar angle which indeed should be true. We find that instead we can use
a Legendre polynomial expansion

φ(θ, t) =

∞∑
`=0

a`(t)P`(cos θ), ∇Ω · ~AΩ(θ, t) =

∞∑
`=0

b`(t)P`(cos θ). (5.26)
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The Legendre polynomials form an orthogonal basis and are a special case of the spherical harmonics up to
a normalization constant. This means that the expansions are valid and fully describe the phase and gauge
field as they are required to be smooth with respect to θ on their domain. Inserting this expansion back into
equation 5.24 gives

∂2
0a` + ω2

`a` = −b`. (5.27)

Where the fact that ∆ΩP` = − `(`+1)
r2 P` has been used, or in other words the Legendre polynomials are

eigenfunctions of the symmetric spherical laplace operator, and ω2
` = `(`+1)

r2 has been defined. This equation
is a simple forced harmonic oscillator without damping with a force. This means that the phase can have
waves passing over the surface of the sphere when there is no source. These waves would be periodic and
boundary condition dependent. We assume boundary conditions here such that there are no waves, so that
the homogenuous solution becomes zero. The homogenuous equation has the two solutions e±iω`t. Using
Appendix C we can now solve the inhomogenuous equation using the Green’s functions that comes from the
homogenuous equation. The process is outlined in the same appendix. The Green’s functions that comes
from the complex solutions is complex as well, however we need the phase to be real. To solve this we take
the real part of the Green’s function as well. The Green’s function is given by

G(t, t′) =
1

2iω`

(
Θ(t− t′)eiω`(t−t′) + Θ(t′ − t)e−iω`(t−t′)

)
, (5.28)

Re(G(t, t′))
t→∞−−−→ sin(ω`(t− t′))

2ω`
Θ(t− t′). (5.29)

Using this Green’s function we can write the solution for a` as

a` = −
t∫

0

sin(ω`(t− t′))b`(t′)
2ω`

dt′. (5.30)

This Green’s functions is not well defined for ` = 0. For ` = 0 we need to look at equation 5.27 that gives
∂2

0a0 = −b0 for ` = 0. This gives a solution for ` = 0 given by

a0 = −
t∫

0

t′∫
0

b0(t′′)dt′′dt′ = −
t∫

0

(t− t′)b0(t′)dt′. (5.31)

The last equality can be checked by partial integration. We can insert this solution for a` back into the series
5.26 to give

φ = −
t∫

0

( ∞∑
`=1

sin(ω`(t− t′))b`(t′)
2ω`

P`(cos θ) + (t− t′)b0(t′)

)
dt′. (5.32)

The coefficients b` are defined as

b` =
2`+ 1

2

π∫
0

sin θ∇Ω · ~AΩP`(cos θ)dθ. (5.33)

Here the prefactor comes from the fact that the Legendre polynomials are not properly normalized but instead
obey the orthogonality relation

1∫
−1

P`(x)P`′(x)dx =
2

2`+ 1
δ``′ . (5.34)
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By inserting equation 5.33 the summation over ` can be removed and a new function can be introduced giving

φ(t, θ) = −
t∫

0

π∫
0

F (t, t′, θ, θ′)∇Ω · ~AΩ(t′, θ′)dt′ sin θ′dθ′ (5.35)

F (t, t′, θ, θ′) =

∞∑
`=1

sin(ω`(t− t′))
4ω`

(2`+ 1)P`(cos θ)P`(cos θ′) +
1

2
(t− t′). (5.36)

This result explicitely expresses the final phase in terms of the gauge field. This function F is in fact the
Green’s function of the total operator ∂2

0 − ∆Ω in the t → ∞ limit. Since this is the Green’s function we
remark that this equation for the phase is in fact valid for any gauge field, not just the gauge field of a single
moving particle.

5.3 The fundamental solution

The memory phase as t → ∞ is found by gauge transforming λ away. This means that φ → φ − λ. Using
this we can express the total phase as t→∞ as

φ = − lim
t→∞

t∫
0

π∫
0

F (t, t′, θ, θ′)∇Ω · ~AΩ(t′, θ′)dt′ sin θ′dθ′ − q

4πβ
log(r(1− cos θ)), (5.37)

F (t, t′, θ, θ′) =

∞∑
`=1

sin(ω`(t− t′))
4ω`

(2`+ 1)P`(cos θ)P`(cos θ′) +
1

2
(t− t′), (5.38)

∇Ω · ~AΩ =
qγΘ(t− r)
4πβr sin θ

∂θ

(
r − βt cos θ − β2r sin2 θ

|γ2(t− βr cos θ)2 − t2 + r2|1/2
)
. (5.39)

This set of equations gives the final solution for the memory effect in Minkowski space. If the function F
is numerically estimated, the solution for the phase is quickly found using the integrals. This function F
however appears to be oscillating around zero towards time infinity. This poses a problem since then the limit
is undefined. It is still possible to determine φ as a function of time though instead. This integral might be
very hard to solve, however we do not necessarily need to solve it. Assume we have measured ∂θφ from the
current. By integrating it we can find φ up to an integration constant of no importance. The irrelevance of
this constant comes from the fact that it only affects the zero component a0 of the Legendre expansion, and
not the components for ` ≥ 1. With the measured phase, we can determine a1 numerically using equation
5.33. Since the Legendre polynomials are orthonormal this a1 is unique and can be connected to the a1 that
was determined theoretically using the above equations. With this we can measure the charge q, speed β
and radius r or fractions of them. Since this current might depend on time the measurement would depend
on the time it was done after the explosion.

We can conclude that in Minkowski space there is indeed a measurable memory. The particle indeed
causes a current in the superconductor even after infinite time. This current memory is given analytically
by the gradient of equations 5.37 to 5.39. The memory depends on time of measurement, and the particle’s
charge, speed and direction of movement.

6 FLRW spacetime

6.1 The geodesic equation

In FLRW metric the scale factor is not constant anymore. To find the gauge field we now have to start from
the charge current. We calculate this in the FLRW metric before the Weyl transformation

ds2 = a2(−dτ2 + dr2 + r2dΩ2). (6.1)

The charge current was defined as

JνM (xν) = q

∫
ẋνp(λ)δ(4)(xν − xνp(λ))dλ. (6.2)
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before the Weyl transformation where xνp denotes the four position of the particle. To find the four position
of the particle we take a look again at the matter action caused by the particle

SM =

∫ (
−m

√
−gµν ẋνpẋµp + qẋp,µA

µ
)

dλ. (6.3)

Since we assumed that the particle is not affected by any other of the particles of the explosion the gauge
field Aµ can be set to zero for calculating the trajectory. This means that the four position is solved by only
variating

√
−gµν ẋν ẋµ in the action. This yields the geodesic equation of the form

∂2xνp
∂λ2

+ Γνµρ
∂xµp
∂λ

∂xρp
∂λ

= 0, (6.4)

Γνµρ =
1

2
gνσ
(
∂gµσ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)
. (6.5)

Here Γνµρ are the christoffel symbols and λ is an affine parameter that fully parametrizes the particles worldline.
Since we take the particle to start moving in the ẑ direction and space is homogenuous and isotropic we can
take x1

p = x2
p = 0. The derivative can also be expanded using the chain rule

∂

∂λ
=
∂τ

∂λ

∂

∂τ
= ẋ0

p

∂

∂τ
= x0

p

∂a

∂τ

∂

∂a
= x0

pHa
∂

∂a
(6.6)

where a is the scale factor and H the Hubble parameter. Rewriting the geodesic in terms of ẋνp with the
constraint on x1

p, x
2
p and equation 6.6 gives

x0
pHa

∂ẋνp
∂a

+ Γν00(ẋ0
p)

2 + Γν33(ẋ3
p)

2 + 2Γν03ẋ
0
pẋ

3
p = 0. (6.7)

We now note the general constraint on the four velocity of a massive particle that gµν ẋ
ν
pẋ

µ
p = −1. This

constraint allows us to choose only one component to solve in the geodesic equation, where we choose the
component ν = 0. In this case for the christoffel symbols Γ0

03 = 0, Γ0
00 = Γ0

33 = H. This finally gives us the
total set of equations necesarry to solve for the geodesic{

a
2

∂(ẋ0
p)2

∂a + 2(ẋ0
p)

2 − 1
a2 = 0,

(ẋ3
p)

2 = (ẋ0
p)

2 − 1
a2 .

(6.8)

This equation has an easy solution given by

(ẋ0
p)

2 =
1

a2
+

c

a4
(6.9)

(ẋ3
p)

2 =
c

a4
. (6.10)

The constant c has to be determined by initial conditions. To this end we assume that at initial time τ = τi
the scale factor is normalized so that a(τi) = 1, and furthermore that the particle moves in the ẑ direction
with velocity β so that the initial four velocity has to be given by a Minkowski four velocity of the form
x0
p(τi) = γ, x3

p(τi) = γβ. Inserting this into the solution for xνp finally gives

ẋ0
p =

1

a

√
1 +

γ2β2

a2
, (6.11)

ẋ3
p =

γβ

a2
. (6.12)

This is the final solution for the four velocity of a massive particle moving along a geodesic. The four position
can be found by integrating this result with respect to λ with initial value x0

p(τi) = τi and x3
p(τi) = 0. To

integrate for x3
p explicit knowledge of the scale factor is necessary whereas for x0

p not, which will be shown
below. Note that since the particle is only moving for τ > τi the four velocity and four position are both
stricly positive at all times. Remarkable in the four velocity is that it decays with the scale factor, meaning
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that any particle moving along a geodesic comes to rest at infinite time. The time velocity, which is also the
energy divided by its mass, also decays to zero as the scale factor grows, which is perhaps somewhat odd
since the particle also has a rest energy given by m. This comes however from the fact that we use conformal
time instead of time, so that the time component of the metric tensor also has a scale factor squared. Indeed
if we want to calculate the rest energy of the particle we need to use gµν ẋ

ν
pẋ

µ
p which was fixed to be −1, so

that the particle indeed still has rest energy m. The spatial components however are the same, so any spatial
velocity of a particle along a geodesic in fact does decay as space expands.

The solution of x0
p

The solution for x0
p(τ) is trivial since the 0-component of the four position has to equal time, so if we

parametrize the four position as a function of time the zero component becomes time. Indeed if we ex-
plicitely integrate

x0
p =

∫
ẋ0
pdλ =

∫
ẋ0
p

∂λ

∂τ
dτ =

∫
ẋ0
p

1

ẋ0
p

dτ =

∫
dτ = τ + c. (6.13)

We can choose c = 0 without any loss of generality. This finally means x0
p is indeed just equal to τ independent

on the scale factor. We can now write x0
p = τ(λ) where τ depends on λ if necessary. Moreover we can rather

choose to work in a τ basis instead of λ basis so that x0
p = τ , x3

p(λ(τ)) = x3
p(τ) and the velocities depending

on τ as well.

6.2 The charge current

In order to find the charge current we need to insert the newly found coordinates of the particle into equation
6.2. We can also immediately note that J1

M = J2
M = 0. For the other components the most important part is

the integral over the delta function. This is actually four times the delta function with only one coordinate λ,
so that it turns into three delta functions when integrated, which connect the coordinates where the charge
current is observed. We can take δ(x)δ(y) out so that the only necessary term to calculate is given by∫

ẋνp(λ)δ(τ − x0
p(λ))δ(z − x3

p(λ))dλ. (6.14)

Since a is monotonic the function λ(τ ′) is bijective, so that we can choose τ ′ as a new coordinate of integration
resulting in∫

ẋνp(τ ′)

ẋ0
p(τ
′)
δ(τ − τ ′)δ(z − x3

p(λ(τ ′)))dτ ′. (6.15)

This integral is easy to work out using the property of the delta function that
∫
R f(x)δ(x − a)dx = f(a) to

give

JνM (xν) = q
ẋνp(τ)

ẋ0
p(τ)

δ(x)δ(y)δ(z − x3
p(τ)), (6.16)

where the particles velocity and location have been rewritten in a τ basis. Also we need to insert again that
for τ < τi the particle is at rest at the origin. Rewriting this in spherical coordinates gives explicitly for both
nonzero components

J0
M =

qδ(θ)

2πr2 sin θ

(
Θ(τi − τ)δ(r) + Θ(τ − τi)δ(r − x3

p(τ))

)
, (6.17)

J3
M =

qv(τ)δ(θ)

2πr2 sin θ
Θ(τ − τi)δ(r − x3

p(τ)). (6.18)

Here v(τ) is defined as the coordinate velocity v =
ẋ3
p

ẋ0
p

=
∂x3
p

∂τ . Under this definition the coordinate x3
p can

also be written as the integral of the coordinate velocity x3
p =

∫
v(τ)dτ . This is the general charge current

inside the FLRW spacetime that generates the gauge field. Note that in section 4.2 the charge current also



6 FLRW SPACETIME 31

stays the same after the Weyl transform. This charge current largely looks like the charge current as it was
defined in Minkowski spacetime, except that the velocity of the particle now also depends on time. For a
general scale factor this equation cannot be simplified further. Although the coordinate velocity v is known
exactly using equation 6.11 and 6.12 the location x3

p can at this moment only be written as the integral over
the velocity

x3
p(τ) =

τ∫
τi

γβ√
a2(τ ′) + γ2β2

dτ ′. (6.19)

for τ > τi. This integral cannot be solved without knowledge of the scale factor.

6.3 The gauge field

With the new charge current the gauge field becomes a lot harder to calculate. We will from this point
work after the Weyl transform of Section 4.2. Again we calculate the gauge field in the Lorentz gauge and
transform it to the temporal gauge later on. In the Lorentz gauge the relevant equations of motion are given
by

∂µ∂
µAνLG = −JνM . (6.20)

The solution for this equation are given by the general Liénard-Wiechert potentials for an arbitrary moving
particle, modified for the discontinuity at τ = τi to give

ψLG = A0
LG =

q

4π

Θ(τr − τi)
R− v(τr)ẑ · ~R

+ Θ(τi − τr)
q

4πr
~R = ~r − x3

p(τr). (6.21)

Where τr is the retarded time that solves τr −R − τ = 0 with constraint τr < τ , and the vector potential is
given by ~ALG = Θ(τr − τi)v(τr)ψLGẑ. The heaviside step function can be rewritten as

Θ(τr − τi) = Θ(τ − τi − r). (6.22)

To see this we look at the definition of the retarded time when τr = τi. This gives τi + |~r − x3
p(τi)| − τ = 0.

The position of the particle x3
p is however zero at τi since that is the time of the explosion. This means that

the equation reduces to τi+r−τ = 0. It follows that τ = τi+r is equivalent to τr = τi. This proves equation
6.22. We should also expect this from causality. If an event happens at r = 0 and spacetime is isotropic and
homogenuous the signal should reach an observer at a specific distance r at the same time independent on
angle. To find the theta component in the temporal gauge we need to use the same transform used in Section
5.1 to give

~Aθ =
qv(τr)

4π(R− v(τr)ẑ · ~R)
(θ̂ · ẑ) +

q

4πr
∂θ

τ∫
τi+r

(
1

R− v(τr)ẑ · ~R

)
dτ. (6.23)

This is only for τ > τi + r, for τ < τi + r we have ~Aθ = 0. The integral can be simplified by integrating over
τr instead of over τ giving

~Aθ =
qv(τr)

4π(R− v(τr)ẑ · ~R)
(θ̂ · ẑ) +

q

4πr
∂θ

τr∫
τi

1

|~r − ẑx3
p(τ
′)|dτ

′. (6.24)

Note that the lower integration boundary is actually τr(τi + r), however τr = τi solves the equation τr − |~r−
ẑx3

p(τr)| − τi − r = 0. Indeed inserting τr = τi gives x3
p(τi) = 0, from which the result easily follows. This

allows us to say τr(τi + r) = τi, which is the new integration boundary.
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6.3.1 The gauge lambda

To find the function λ as τ →∞ we need to solve the equation

∆λ = −Q. (6.25)

Here Q is given by the integral of ρM over all time giving

Q =
qδ(θ)

2πr2 sin θ

∞∫
τi

δ(r−x3
p(τ))dτ =

qδ(θ)

2πr2 sin θ

∞∫
τi

1

v(τ)
δ(τ−(x3

p)
−1(r)))dτ =

qδ(θ)

2πr2 sin θ

1

v((x3
p)
−1(r))

. (6.26)

Here (x3
p)
−1 denotes the inverse function. The part v((x3

p)
−1(r)) is actually a very intuitive quantity: it is

the velocity the particle had when passing through the sphere of radius r. This means that the radius of the
sphere is now important for the gauge field at τ = ∞. It is also physically logical that the velocity at the
sphere needs to be taken and not the initial velocity for example, since the only directly observable velocity
at some radius r is the velocity at that radius. This differs fundamentally from Minkowski space since there
the velocity is constant. Denote this velocity v((x3

p)
−1(r)) = vs(r) where the subscript s stand for ”sphere”.

We can now solve the equation for λ using the same Green’s function as in section 5.1.1 giving

λ =
q

4π

∞∫
0

1

vs(r′)
1

|~r − ẑr′|dr
′. (6.27)

We can simplify this equation to some degree by substituting r = x3
p(τ) resulting in

λ =
q

4π

∞∫
τi

1

|~r − ẑx3
p(τ)|dτ. (6.28)

We can also now identify this lambda in equation 6.24. Indeed when taking the limit τ →∞ Aθ reduces to
the gradient of λ, since the left part of equation 6.24 goes to zero as τ → ∞ so only the right side remains,
which is the gradient ∇θ = 1

r∂θ of λ as given in equation 6.28.

6.4 Phase

For the phase we need to solve equation 4.34 with the use of the gauge field given in Section 6.3. Now we
cannot assume M2 = constant. We do assume ρc to be stable in the potential minimum. Looking at the
action after the Weyl transform (equation 4.24) this means that

ρ2
c =

M2

2g
(6.29)

which is a function of time only. Using the product rule we can now write the phase equation as

ρ2
c∂

2
0φ+ ∂0ρ

2
c∂0φ− ρ2

c∆Ωφ = −ρ2
c∇Ω · ~AΩ. (6.30)

For this equation the temporal gauge was particularly useful: ρ2
c is a function of time, so the product rule

would make the right hand side of equation 6.30 more complicated, however choosing A0 = 0 removes the
time derivative component altogether. This equation can be rewritten in a more neat way using the fact that
2g is constant into

∂2
0φ+ ∂0 log(M2)∂0φ−∆Ωφ = −∇Ω · ~AΩ. (6.31)

To solve this equation we expand both functions φ and ∇Ω · ~AΩ into Legendre polynomials again

φ =

∞∑
`=0

a`(τ)P` ∇Ω · ~AΩ =

∞∑
`=0

b`(τ)P`. (6.32)
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Inserting this expansion back into equation 6.31 gives

∂2
0a` + ∂0 log(M2)∂0a` + ω2

`a` = −b`. (6.33)

Where the same definition for ω2
` = `(`+1)

r2 has been used. The homogenuous equation is still that of a
harmonic oscillator, however now it is damped and the damping term is not constant anymore. What this
tells us is that while the phase is still determined by oscillating nodes in the spherical harmonic expansion,
the amplitude of these nodes change as space expands. In this way the damping term quantitatively adds
the expansion of spacetime into the phase. The homogenuous solution accounts for waves traveling over
the spherical surface, but these waves slowly decay and after infinite time are gone, since the spherical
shell expands with space, so if the energy of the waves stays the same, this energy is smeared out over an
infinite surface after infinite time. Equation 6.33 has no general solution for unknown scale factor a, even the
homogenuous equation does not. To proceed at this point a simplification without too much loss of generality
is needed. First we let the universe consist of a single component only as described in Section 2.3, which
means the scale factor is given by

a =

(
τ

τi

) 2
1+3w

. (6.34)

Remark that choosing only a single component is not a very unphysical ansatz. As long as spacetime is
dominated by a single component even though other components are present during the experiment, there
is no problem with removing the other altogether. Only a slight error is introduced which will be of small
magnitude depending on the manner of dominance of this component. Under this definition of the scale
factor the hubble parameter is given by

H =
2

1 + 3w

1

τ
. (6.35)

From these equations it is clear that if we choose τi � 1/m then H � m
a , since around τ = τi H ∼ 1

τi
whereas a ∼ 1. This means that we can choose τi very large so that

M2 ≈ m2

a2
. (6.36)

Equation 6.36 means that the rate of expansion of space is not important anymore relative to the amount
space has expanded already. Indeed we assume spacetime to be in a decelerated expansion, which means that
at large time the rate of expansion becomes very small, even though space has expanded by a large amount.
We want to know if this assumption makes any physical sense or if we accidentaly remove all physically
relevant times. To do this we need the order of magnitude of 1/m. As shown in equation 4.7 this magnitude
is given by the magnitude of the correlation length which we took equal to the magnitude of the penetration
length which is 10−7m. In units of time this gives 10−15s which is obtained by dividing by c. This shows us
that we can easily take the initial conformal time to be as little as one second while introducing an error of
only 10−30 because the equation for M2 actually involves a square. An initial conformal time corresponds to
an initial normal time by

ti =

τi∫
0

a(τ)dτ = τi
1 + 3w

3 + 3w
. (6.37)

From this we can conclude that the initial conformal time is the same order of magnitude as the initial
normal time. This means that the assumption that τi � 1/m is very nice, since we only exclude the very
first few nanoseconds after the big bang, which obey very different mechanics anyway. We need to remark
that effectively in the FLRW spacetime after the weyl transformation the penetration length and correlation
length actually change over time since the mass in equation 4.7 and 4.8 becomes time dependent. In the
original FLRW spacetime we choose 1/m as the correlation length however, so that after the transformation
the correlation length is the same at τ = τi because a(τi) = 1. Since m is constant we can rewrite equation
6.33 with the help of equation 6.36 into

∂2
0a` −

4

1 + 3w

1

τ
∂0a` + ω2

`a` = −b`. (6.38)
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Remark that the prefactor 4/(1 + 3w)1/τ = 2H. The homogenuous equation is solvable with the help of a
Bessel function. Using Appendix C we can again find the Green’s function for this problem. The process for
this is outlined in Appendix C which gives the following Green’s function

G(τ, τ ′) =
πτ ′

2

( τ
τ ′

)αw
Θ(τ − τ ′)Jαw(ω`τ

′)Bαw(ω`τ). (6.39)

Here Jn is the Bessel function of the first kind, Bn the Bessel function of the second kind and αw is defined
as

αw =
5 + 3w

2 + 6w
. (6.40)

Remark that the Bessel functions have known explicit forms for half integer values. If we evaluate equation
6.40 for matter dominated w = 0 and radiation dominated w = 1/3 we find respectively αw = 5/2 and
αw = 3/2. This means that in these two cases the Bessel functions can actually be removed for explicit
analytical counterparts. With this Green’s function the solution for the coefficients a` can now finally be
written

a` =
−πταwBαw(ω`τ)

2

τ∫
τi

(
1

τ ′αw−1
Jαw(ω`τ

′)b`(τ
′)

)
dτ ′. (6.41)

and the phase can be found by summing this solution over all `. Again the value for ` = 0 needs to be taken
seperately since Bn(0) is not well defined. For a0 we find by solving equation 6.38 with ω` = 0 that

a0 =

τ∫
τi

τ
αw−1/2
1

τ1∫
τi

τ
1/2−αw
2 b0(τ2)dτ2dτ1 =

τ∫
τi

τ ′

αw + 1/2

(( τ
τ ′

)αw+1/2

− 1

)
b0(τ ′)dτ ′. (6.42)

The last equality can again be checked by partial integration. Note that for αw = 1/2 this expression is the
same as in Minkowski spacetime, a property that will be analyzed later on. We sum over all ` and introduce
an integration function similar to Section 5.2. With the definition of b` we write the equation for the phase
as

φ(τ, θ) = −
τ∫

τi

∫ π

0

K1(τ, τ ′, θ, θ′)∇Ω · ~AΩ(τ ′, θ′)dτ ′ sin θ′dθ′, (6.43)

K1(τ, τ ′, θ, θ′) =
πτ ′

4

( τ
τ ′

)αw ∞∑
`=1

Bαw(ω`τ)Jαw(ω`τ
′)(2`+ 1)P`(cos θ)P`(cos θ′) (6.44)

+
τ ′

2(αw + 1/2)

(( τ
τ ′

)αw+1/2

− 1

)
.

Written this way the result looks similar to the Minkowski solution. Now K is the Green’s function of the
operator ∂0(ρ2

c∂0)−ρ2
c∆Ω in the τ →∞ and τi � 1/m limit. This function resembles much of the Minkowski

space one, but now the time dependent part is replaced by Bessel functions, taking the fact that space is not
constant into account. Similar to Minkowski spacetime this integral is valid for any gauge field, not just the
single particle one.

6.4.1 Approximating Minkowski spacetime

Let us look at the Green’s function K a bit closer now. The arguments for the Bessel function are given by
either τ or τ ′. We let τ →∞ so that Bαw(ω`τ) can be asymptotically expanded. Now what can we say about
τ ′? We know that τ ′ only runs in the interval [τi, τ ]. This means we can asymptotically expand Jαw(ω`τ

′)
as well if ω` · τi � 1. Remember the definition of ω2

` = 1/r2(`(`+ 1)). The argument is now large enough for
an asymptotic expansion if

τi � r, (6.45)
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since the values of ` need to be arbitrary. We assumed in the past that r � λ and τ � ξ. Since ξ and λ are
of the same order we cannot work with these limits alone. The limit r � λ is easily achieved however as we
can take the sphere to be anything larger than a few meters, so that if r is a few million meters r/c ∼ 1s. If
we now take the sphere to be a few billion years after the big bang, which is where we are now, we would
have τi ∼ 1016s. This shows that this limit is a decent approximation in a system like ours a few billion years
ago. The introduced error would be of order 10−8 since it goes as a square root as well be shown later. For
τi � r we can asymptotically expand Jαw(ω`τ

′) too. First we note that as shown in Appendix C another
appropriate Green’s function is instead given by

K =

∞∑
`=1

[
πτ ′

8

( τ
τ ′

)αw
Θ(τ − τ ′)

(
Jαw(ω`τ

′)Bαw(ω`τ)− Jαw(ω`τ)Bαw(ω`τ
′)

)
(6.46)

·(2`+ 1)P`(cos θ)P`(cos θ′)

]
+

τ ′

2(αw + 1/2)

(( τ
τ ′

)αw+1/2

− 1

)
.

As given by [17] the Bessel functions can be asymptotically expanded in the form

Jn(x) =

√
2

πx
cos
(
x− nπ

2
− π

4

)
+O(x−1), (6.47)

Bn(x) =

√
2

πx
sin
(
x− nπ

2
− π

4

)
+O(x−1). (6.48)

Applying this expansion to the Green’s function K gives us a new Green’s functions for the τi � r limit up
to highest order in τi/r by

K =

∞∑
`=1

τ ′

4ω`

1√
ττ ′

( τ
τ ′

)αw
Θ(τ − τ ′)

(
cos
(
ω`τ
′ − αwπ

2
− π

4

)
sin
(
ω`τ −

αwπ

2
− π

4

)
(6.49)

− cos
(
ω`τ −

αwπ

2
− π

4

)
sin
(
ω`τ
′ − αwπ

2
− π

4

))
(2`+ 1)P`(cos θ)P`(cos θ′)

+
τ ′

2(αw + 1/2)

(( τ
τ ′

)αw+1/2

− 1

)
.

Note that the the τ and τ ′ not inside the cosine and sine can be taken out of the sum. Also the trigonometric
identity sin(a) cos(b) − cos(a) sin(b) = sin(a − b) is useful at this point. With this we can finally write the
Green’s function as

K =
( τ
τ ′

)αw− 1
2

Θ(τ−τ ′)
∞∑
`=1

sin(ω`(τ − τ ′))
4ω`

(2`+1)P`(cos θ)P`(cos θ′)+
τ ′

2(αw + 1/2)

(( τ
τ ′

)αw+1/2

− 1

)
.

(6.50)

Recognise that the sum is actually the same sum as in the Green’s function in Minkowski space! The only
difference is that the normal time has been replaced by conformal time, this has little consequence however
since it is just a change of variables. From this we can also read that FLRW spacetime reduces to Minkowski
when αw = 1/2. For the value of αw = 1/2 the Bessel function asymptotic expansions become exact (the
O(x−1) terms vanish) so the Green’s function is not an aproximation anymore. Solving the equation for αw
gives w → ∞. Indeed for w → ∞ the scale factor also turns time independent. From this we can conclude
that Minkowski spacetime actually physically corresponds with a vanishing density. If the density does not
vanish the pressure blows up to infinity which physically cannot happen. This means that the Minkowski
metric is actually only valid in the absence of energy. This is of course not true in our universe, however
on small scales the approximation is valid and useful. We can also think about what happens if we keep
increasing τi. The universe is undergoing a decelerated expansion, so we expect it to become stationary and
imitate Minkowski spacetime after some redefining of variables as τ →∞. This means that if we let τi →∞
while keeping the interval of integration nonzero we should approach the Minkowski solution. Let us take
the limit of τi →∞ equally fast as τ →∞ so that

τ

τi
→ 1. (6.51)
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This means that the scale factor becomes time independent in this specific limit. Similarly the prefactor(
τ
τ ′

)αw−1/2 → 1 because τ ′ ∈ [τi, τ ] which means τ ′ → ∞ equally fast as well by the squeeze theorem. The
part for a0 is a little bit different because it tends to zero as τ ′ → τ , however the first order contribution in
its taylor series around τ ′ = τ is given by

τ ′

2(αw + 1/2)

(( τ
τ ′

)αw+1/2

− 1

)
≈ 1

2(αw + 1/2)
·
(
− (αw + 1/2)(τ ′ − τ)

)
=

1

2
(τ − τ ′). (6.52)

We now see that in the τi →∞ limit, up to highest order in τ ′ the Green’s function K of FLRW spacetime
matches exactly that of the Minkowski spacetime function F . This means that in this limit we indeed
effectively approach the Minkowski spacetime and the memory effect also becomes identical. It is tricky to
find this since the integration domain becomes an empty space. If we now choose to have taken the limits
and extend τ a little bit more to obtain an integration domain we can fix this problem. In this case the phase
becomes exactly that of Minkowski space. This means that indeed space becomes stationary as τ → ∞.
We can see more importantly that the FLRW solution for the phase becomes a function of τi, which should
asymptotically converge to the Minkowski solution.

6.5 The fundamental solution in an expanding universe

The total memory effect can now be written as a set of equations

φ(τ, θ) = − lim
τ→∞

τ∫
τi

∫
S2

F (τ, τ ′, r̂, r̂′)∇Ω · ~AΩ(τ ′, r̂′)dτ ′dΩ′ − q

4π

∞∫
τi

1

|~r − ẑx3
p(τ)|dτ, (6.53)

K1(τ, τ ′, θ, θ′) =
πτ ′

4

( τ
τ ′

)αw ∞∑
`=1

Bαw(ω`τ)Jαw(ω`τ
′)(2`+ 1)P`(cos θ)P`(cos θ′) (6.54)

+
τ ′

2(αw + 1/2)

(( τ
τ ′

)αw+1/2

− 1

)
,

∇Ω · ~AΩ =
qΘ(τ − τi − r)

4πr sin θ
∂θ

( −r sin2 θv(τr)

(R− v(τr)ẑ · ~R)
+ ∂θ

τr(τ)∫
τi

1

|~r − ẑx3
p(τ
′)|dτ

′
)
. (6.55)

Here x3
p is given by equation 6.19. With these equations we have succesfully determined the full solution

for the memory effect in FLRW spacetime. Although further analytical progression is not possible at this
point, the gauge field can easily numerically be calculated. Similarly if the function K1 can be numerically
estimated the final result is easily integrated. The result resembles that of the Minkowski spacetime, because
the Bessel functions are oscillating functions in time, except with decaying amplitude. This means in other
words that the periodic sines have been replaced by Bessel functions where the amplitude of oscillation decays
which characterizes the expansion of space. The Green’s function K1 also has other time dependences which
the Minkowski function K does not have. These characterize not the rate of expansion of space but the
amount it has expanded at that time.

We can again look at a single component of the Legendre expansion only. In this case we still measure q,
β and r but now we also measure the initial time τi which introduces a new observable parameter. Because
the initial time affects the memory we can now also measure it. This means we can determine when the
explosion happened. We have also seen that the Green’s function K1 asymptotically converges to Minkowski
spacetime meaning that if we measure at very large time we find up to leading order the Minkowski solution
with a small deviation that goes as 1/τi. In short we have explicitely calculated the memory effect in FLRW
spacetime. It is only different from the Minkowski solution by time-dependent quantities. This is expected
because the metric gµν is also only time-dependent. The current is analytically given by equation 6.53 to
6.55. It depends on time of measurement, the particle’s properties and now also on the time of the explosion.
A final note is that the current also depends on w. This means that by measuring the current we can find
what type of energy currently dominates the universe.
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7 Conclusion, Discussion and Outlook

7.1 Conclusion

The aim of this paper was to analyze the electromagnetic memory effect in an expanding universe and
provide an explicit calculation for the memory effect as it was proposed by [1]. To do this we first gave a
short overview of the necessary knowledge of spacetime mechanics and the FLRW metric. In Section 3 we
defined the memory effect, showed prior research and its importance. Moving on in Section 4 we derived
the necessary action to proceed with the calculation. The concept of spontanuous symmetry breaking was
introduced to explain the derivation of this action. From this action we derived some elementary properties
of a superconductor from a field theoretic framework. Also the difference between a type I and type II
superconductor was shown. The action exhibited a U(1) symmetry with a connected conserved current that
is fundamental for the memory effect. We have shown that the superconductor is mostly invariant under
a Weyl transformation from Minkowski spacetime to FLRW spacetime. A remarkable equivalence between
the expanding universe and stationary universe is clearly seen in this transformation. In the next section we
started to explain the memory effect as proposed by Susskind [1]. We gave an explanation on the system
and how we approach calculating it. It was important to note that we assume there are no spatial currents
meaning the gauge field was determined by the moving particles only, which we assumed noninteracting.
For the calculation we have proven that the divergence of the radial field can not be neglected in a large r
approximation, and how spherically symmetric charge distributions do not alter the memory effect.

The original findings of the paper are the exact Weyl transformation and Symmetry analysis (Section 4.2
and 4.4) and the calculation. Other original findings include the some interpretations and minor sections that
have no source. To give a familiar approach we first completed the calculation in flat Minkowski spacetime.
In this case the gauge field is already known by the Liénard Wiechert solution. Proceeding to calculate the
phase with a Green’s function method we found an explicit expression for the final memory effect as given
in Section 5.3.
Finally we calculate the memory effect in an expanding universe. First we solved the geodesic equation
for a free moving particle in the FLRW metric. This result gave us the charge distribution from which we
derived the gauge potential. With this gauge potential we calculate the necessary phase in the same way as
Minkowski spacetime. In order to proceed we needed to make the ansatz of a single component universe with
initial time τi � ξ which proved to be very good. With this ansatz we successfully calculated the memory
effect in the FLRW metric aswell with solution given in Section 6.5. To conlude the paper we showed that in
the appropriate limits the memory effect approaches that of Minkowski space. This is perfectly in line with
out earlier ansatz that space is in a decelerated expansion.

7.2 Discussion

We successfully calculated the finaly memory effect analytically, giving an explicit formula in Section 5.3 and
6.5. It is noteworthy that we have also derived Green’s functions along the road so that an extension to any
gauge field can easily be made. In order to achieve the result in an expanding universe we needed to make
a few approximations, namely that of a single component universe and that τi � ξ. Nevertheless the latter
introduced an error in the phase of order of magnitude as small as 10−30 being completely irrelevant. The
former introduced an error with less clarity on its magnitude, however since w is still arbitrary this error would
mostly depend on the duration of the experiment. Since this duration of the experiment is not necessarily
very large this error should not pose a problem either. Nevertheless we can also consider the theoretical case
of a single component universe in which there is no error at all. In order to check the calculation we did a few
methods. The first and easiest was checking all of the equations through a dimensional analysis test which
they passed. Secondly some equations could have been derived in a few different ways, for example the gauge
field and the gauge λ. We attempted all of these methods and the same result was found. Thirdly we can look
at the correspondence principle: the equations have to reduce to familiar equations in the appropriate limits
or special cases. This indeed also proved to be the case. Finally all equations that wolfram mathematica can
do, have been inserted into mathematica to find the same result. Of course these methods could not have
been done on all equations, since some equations involve quantities that have no analytical representation.

The calculation might involve a complication yet we have no proofs on this. The calculation is done by
solving the conserved current equation 4.34. This equation might however not be completely valid because
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we implicitly added a constraint that there should be no spatial currents. We have not inserted an explicit
constraint, but rather assumed ρc to be in the potential minimum and ignored the effect of the current on
the gauge field. This makes sure that ρc is determined with the constraint, and the gauge field as well. The
phase however makes no use of the constraint. If one were to insert the constraint explicitely, it might be
found that the equation for the phase that we have used is not completely valid. We have not explicitely
checked this. To make sure the calculation is correct or prove that something went wrong a deeper analysis
into the constraint would be needed.

For the calculation we made use of the temporal gauge with A(0) = 0. We could instead have used
A(∞) = 0 or a completely different gauge, for example the Lorentz gauge. This is a choice that we have
made. It might be however that the calculation is easier in a different gauge. In the Lorentz gauge for
example we have certainty that if A(∞) = ∇λ then λ = 0. This follows from the fact that λ needs to obey
∂µ∂

µλ = 0. This equation only has waves as solution, which we set to zero from boundary conditions. Then
the change in phase is the only remaining part.

7.3 Outlook

This paper provides quite a lot of opportunity for further research. One of these is mentioned in the discussion.
It is possible to attempt and extend this paper to an accelerated universe w < −1/3. This would involve
a very different approach, since particles never reach an infinite coordinate distance in conformal time, but
conformal time is also bound on a finite interval. In fact a conformal time approach would mean conformal
time is bound finitely everywhere, providing limits on the allowance of Fourier transforms. Nevertheless it
is an interesting case to try and analyze given the fact that we are currently in an accerelated universe.
Another possibility is to redo the calculation for the case that the nodes are electromagnetically bound to
each other so that r = R/a, so a time dependent radius. This only slightly alters the phase equation, but
perhaps to unsolvable levels. We have not checked this explicitely. This setup is physically more relevant
however because any real spherical shell of superconducting nodes would somehow be constrained so that the
nodes have the same physical distance from each other at all times. Additionaly we calculated the memory
effect for massive particles, however it is also possible to do the calculation for massless particles. This would
be very different because the gauge field is not smooth defined in this case, rather it is singular on the plane
tangent to the particles trajectory, and the particles move over null geodesics. This invites us to use null
infinity instead of timelike infinity and also allows for analysis into infrared behaviour. Finally as shown in
Section 3.2 the memory effect has many relationships to other physical theories. It could be a possibility to
try and find these relationships again in this setup. In his original note Susskind did mention that the gauge
field equation can be written in a form so that it resembles the soft photon emission theorem, however we did
not look into this [1]. The connection has not been priorly investigated in this setup so it is worth looking
into.
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A STEREOGRAPHIC COORDINATES I

A Stereographic coordinates

Figure 8: An image illustrating the definition of stereographic coordinates. The angles θ, φ of point P are
mapped to the coordinates x, y of P ′ where now the stereographic coordinate z = x+ iy [18].

Stereographic coordinates are coordinates that describe a point on a two-sphere using a single complex
coordinate. Although the coordinates themselves become more abstract, the equations that require them
become a lot easier because of removal of the angles, making all coordinates range from −∞ to +∞ and
removing the sin2 θ in the standard spherical metric. The concept of stereographical coordinates is obtained
in the following way: First the two-sphere of importance is placed on an infinite plane, the south pole of the
sphere just touching it. Then you take a line from the north pole to the plane, and the point that it touches
on the plane corresponds to the point that it intersects with on the sphere. This process is visualized in
Figure 8. The coordinate transformation is bijective so no information is lost and it has the following shape:

z =
x1 + ix2

x3 + r
z =

sin θ(sinφ+ cosφ)

1 + cos θ
, (A.1)

with x1, x2, x3 the standard carthesian coordinates. This transformation is reversed by:

φ = arctan

(
z − z̄
i(z + z̄)

)
θ = arccos

(
1− zz̄
1 + zz̄

)
, (A.2)

where the arctan technically needs to be the so-called atan2 to correct for the corresponding domain. This
definition can be inserted into the Minkowski metric equation to yield:

dΩ2 = 2γzz̄dzdz̄ γzz̄ =
2

(1 + zz̄)2
, (A.3)

where γzz̄ is the metric of the stereographical coordinates on the two-sphere that can be obtained through
a standard tensor transformation from spherical to stereographic coordinates. Indeed when γzz̄ is written in
matrix form

γzz̄ =

(
0 2

(1+zz̄)2
2

(1+zz̄)2 0

)
, (A.4)

this is the metric tensor that generates dΩ. We define γzz̄ as the metric, so that γzz = γz̄z̄ = 0 and γzz̄ given
above.
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B Differential forms

For this section [19] and [20] have been consulted, and equations B.10-B.21 have been self derived. Differential
forms are a compact and efficient method of doing manipulations on integrals and differential equations. A
form is technically a mathematical scalar, however it sums over elements that are orthogonal to each other
so it containts information in multiple dimensions, in the same way that complex numbers can hold two-
dimensional information in a single scalar. A p-form is a form with a p-element basis. A form is defined by
contracting a totally antisymmetric tensor with basis elements, so if A is a differential p-form and Aµ1···µp a
tensor A is defined by:

A =
1

p!
Aµ1···µpdx

µ1 ∧ ... ∧ dxµp , (B.1)

where ∧ denotes the wedge product given by:

A ∧B =
(p+ q)!

p!q!
A[µ1···µpBµp+1···µp+q ]dx

µ1 ∧ ... ∧ dxµp+q , (B.2)

where A is a p-form and B a q-form. The [...] brackets denote antisymmetrisation. Furthermore there are
two actions defined on p-forms, the hodge star on a p-form A in d dimensions:

?A =
1

p!
εµ1···µpν1···νd−pA

µ1···µpdxν1 ∧ ... ∧ dxνd−p , (B.3)

where ε is the levi civita tensor in d dimensions. ?A is a (d-p)-form, meaning that A ∧ ?A is a d-form, so
that integrating it is in fact a standard volume integral. For this reason ?A is sometimes called the hodge
dual, because it’s the dual to A that makes it integrable over all space. The hodge dual also has the following
important property for a p-form A on a Lorentz manifold with dimension d:

? ? A = (−1)p(q−p)+1A. (B.4)

The other action on p-forms is the exterior derivative defined by:

dA = (p+ 1)∂[µ1
Aµ2...µp+1]dx

µ1 ∧ ... ∧ dxµp+1 , (B.5)

which is the normal notion of the derivative on forms. The exterior derivative maintains the following basic
property:

d2 = 0 (B.6)

for all forms on which it acts. This easily follows from the antisymmetrization and the fact that the differential
operators commute. For a p-form A and q-form B the following property holds:

d(A ∧B) = (dA) ∧B + (−1)pA ∧ dB. (B.7)

Forms are particularly useful for integrals because of the following definition on d-forms A where d is the
amount of dimensions of the system:∫

A =

∫ ∑
µ1···µd

Aµ1···µd
√−g ddx. (B.8)

For integrals over forms a generalization of stokes’ integral theorem holds:∫
∂Ω

A =

∫
Ω

dA, (B.9)

for a form A and a manifold Ω with boundary ∂Ω.

Differential forms have the following property as well for two forms p-forms A and B:

A ∧ ?B = B ∧ ?A, (B.10)
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which can easily be seen through the property that

(A ∧ ?B)µ1···µd =
1

p!
Aν1···νpB

ν1···νpεµ1···µd . (B.11)

This last identity is equal to the fact that∫
A ∧ ?B =

∫
1

p!
Aν1···νpB

ν1···νp√−gddx. (B.12)

A generalization of this equation is given by

?(A ∧ ?B)µ1···µ(q−p) =
(−1)(q−p)(d−q)+1

p!
Aτ1···τpB

τ1···τp
µ1···µ(q−p) . (B.13)

With A a p form and B a q form, where q > p.

Forms in spacetime

For using forms it is important to note how they transform. First it is important to note that in spacetime
d = 4. Using equation B.13 it follows that:

FµνF
µν = −2 ? (F ∧ ?F ), (B.14)

AµJ
µ = − ? (A ∧ ?J), (B.15)

∂µψ∂
µψ∗ = − ? (dψ ∧ ?dψ∗), (B.16)

(?d ? F )ν = −∂µFµν , (B.17)

(? ? J)µ = Jµ, (B.18)

? ? ψ = −ψ. (B.19)

Although letters that will be used a lot have been used in the above, these equations hold for any forms that
have the same type of tensor structure. When we want to write the lagrangian in form notation, the hodge
dual of the above identities needs to be used:∫ (

−1

4
FµνF

µν

)√−gd4x =

∫ (
−1

4
? FµνF

µν

)
=

∫ (
1

2
? ?(F ∧ ?F )

)
=

∫ (
−1

2
F ∧ ?F

)
. (B.20)

It can now finally be shown that∫ [
−1

4
FµνF

µν −AµJµ
]√−gd4x =

∫ [
−1

2
F ∧ ?F −A ∧ ?J

]
. (B.21)
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C Green’s function

For solving the inhomogenuous equations arising in the phase calculation having a Green’s function is an
optimal method, so we need to find the Green’s function. This is possible using a method outlined by D.
Skinner [21]. For a general second order ordinary inhomogenuous differential equation

Lf(t) = α(t)
∂2f(t)

∂t2
+ β(t)

∂f(t)

∂t
+ γ(t)f(t) = g(t), (C.1)

the Green’s function that solves LG(t, t′) = δ(t− t′) automatically gives the full solution for the inhomogen-
uous equation

f(x) =

∫
R
G(t, t′)g(t′)dt′. (C.2)

Let f1, f2 denote the solution of the homogenuous equation where g(t) = 0. With this knowledge we can
write the Green’s function as

G(t, t′) =
1

α(t′)W (t′)

(
Θ(t′ − t)f1(t)f2(t′) + Θ(t− t′)f1(t′)f2(t)

)
. (C.3)

Here W (t) is the Wronskian given by W = f1f
′
2 − f2f

′
1 where the prime denotes the derivative. Using this

definition the Wronskian can also be written as a function of the coefficients of the differential equation
immediately

W ′(t) = −β(t)W (t). (C.4)

With these identities the Green’s functions can be derived. These Green’s functions will be defined on the
interval [ti,∞] × [ti,∞], and since we will be interested in the limit t → ∞ only the part with Θ(t − t′)
remains. We will now discuss the two specific cases.

Minkowski spacetime

In Minkowski spacetime we need the Green’s function for the equation

∂2
0a`m + ω2

`a`m = −b`m. (C.5)

The homogenuous equation can be rewritten into

∂2
0a`m = −ω2

`a`m. (C.6)

This equation has two trivial solutions

f1 = e−iω`t, (C.7)

f2 = eiω`t . (C.8)

With these solutions the Wronskian is clearly given by W = 2iω`. We can now write the total Green’s
function since α = 1 as

G(t, t′) =
1

2iω`

(
Θ(t′ − t)e−iω`(t−t′) + Θ(t− t′)eiω`(t−t′)

)
. (C.9)

Using eulers identity eiω`(t−t
′) = cos(ω`(t− t′)) + i sin(ω`(t− t′)) the imaginary part can be taken out to give

G(t, t′) =
sin(ω`(t− t′))

2ω`

(
Θ(t− t′)−Θ(t′ − t)

)
. (C.10)

This is finally the total real Green’s function for the inhomogenuous equation.



C GREEN’S FUNCTION V

FLRW spacetime

For the FLRW metric equation 6.38 we need to find the Green’s function again. First we analyze the
homogenuous equation

∂2
0a`m −

4

3w + 5)

1

τ
∂0a`m + ω2

`a`m = 0. (C.11)

This equation has the following homogenuous solutions

f1 = ταwJαw(ω`τ), (C.12)

f2 = ταwBαw(ω`τ), (C.13)

where Jn is the Bessel function of the first kind, Bn the Bessel function of the second kind and the constant
αw has been defined as

αw =
9 + 3w

10 + 6w
. (C.14)

For the Wronskian of the equation we write

W = ταwJαw(ω`τ)
∂

∂τ
(ταwBαw(ω`τ))− ταwBαw(ω`(τ))

∂

∂τ
(ταwJαw(ω`τ)) (C.15)

= τ2αwω`

(
Jαw(ω`τ)

∂

∂ω`τ
Bαw(ω`τ)−Bαw(ω`(τ))

∂

∂ω`τ
Jαw(ω`τ)

)
(C.16)

=
2

π
τ2αw−1. (C.17)

With this Wronskian and the homogenuous solutions the Green’s function can now be written down as

G(τ, τ ′) =
πτ ′

2

( τ
τ ′

)αw(
Θ(τ ′ − τ)Jαw(ω`τ)Bαw(ω`τ

′) + Θ(τ − τ ′)Jαw(ω`τ
′)Bαw(ω`τ)

)
. (C.18)

Since we are interested in the τ →∞ limit only again, we can rewrite the Green’s function for this limit as

G1(τ, τ ′) =
πτ ′

2

( τ
τ ′

)αw
Θ(τ − τ ′)Jαw(ω`τ

′)Bαw(ω`τ). (C.19)

This is however not the only possible Green’s function. Another valid Green’s function can be obtained by
swapping f1 and f2. When swapping this the sign of the wronskian is changed and the argument of the
Bessel function. This gives for the second Green’s function

G2(τ, τ ′) = −πτ
′

2

( τ
τ ′

)αw
Θ(τ − τ ′)Jαw(ω`τ)Bαw(ω`τ

′). (C.20)

The Green’s function of equation C.11 can now be written as the sum of these two. Indeed if LG(τ, τ ′) =
δ(τ − τ ′) is the equation for a Green’s function, and both G1 and G2 are Green’s functions, then L( 1

2 (G1 +
G2)) = δ(τ − τ ′). This finally means that G = 1

2 (G1 +G2) so we can write

G(τ, τ ′) =
πτ ′

4

( τ
τ ′

)αw
Θ(τ − τ ′)

(
Jαw(ω`τ

′)Bαw(ω`τ)− Jαw(ω`τ)Bαw(ω`τ
′)

)
. (C.21)
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