
Master’s Thesis Game And Media Technology

Human engagement state recognition for autonomous
functioning of a robot in human-robot conversation

Faculty of Science
Department of Information and Computing Sciences

Author:
Kelly Griffioen

ICA-5496438

Supervisor:
Prof. dr. R.C. Veltkamp

August 19, 2020



Abstract

The goal of this thesis was to develop a model to classify the different states
of engagement. We took on the definition of engagement as the process by which
interactors start, maintain and end their perceived connection to each other during
interaction and included the state where an interactor does not have or no longer
has the intention to interact. Based on this, four states could be distinguished: no
interest, intention to interact (or interest), engaged and ending interaction. The
purpose of developing this model was to contribute to improving an informative
conversation between human and robot by improving the way a robot determines
who to engage with or pay attention to. Since engagement behaviour is not well
understood in the human-human context, despite its apparent significance, we looked
further into the research done both in human-human and human-robot interaction.
Based on this, we have composed a set of features and set up a Naive Bayes classifier
to classify the states of engagement. The features used are distance from the robot,
facing direction, gaze, position, sound direction and velocity. The model can classify
one person at a time, however the system is designed with the possibility to expand
it for multiple people as well as additional features.

We intend to both choose the features and design the model in a way that it can
be used regardless of the robot or platform as much as possible. However, to allow
testing and to have a system that can be used in practice, we take the humanoid
robot Pepper, developed by Softbank, as our main platform. This has given some
limitations as to what features are chosen and to how the model is implemented.

Evaluation of the model gives promising results for the overall model and the
states no interest, intention to interact and engaged, however the model performs
badly for the state ending interaction. We discuss for the latter state specifically and
for the model in general possibilities for improvement.
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1 INTRODUCTION

1 Introduction

In the last few years there has been a growing interest in the development of service
robots that can aid humans and this is still an active area of study. Different types of
applications have been developed, for instance in healthcare[20], museums[17, 27, 30] and
in the management of people in need, such as the elderly[7, 8].

(a) Thorvald II by Saga Robotics. (b) Tomato-picking robot by Root AI.

(c) Adlatus CR700 by ADLATUS
Robotics.

(d) Vest EXoskeleton or VEX by
Hyundai Motor.

Figure 1: Examples of service robots.

The term ‘service robot’ is defined as a robot that performs useful tasks for humans or
equipment excluding industrial automation applications1. Typically, they do the jobs that
are dirty, dull, distant, dangerous or repetitive, including household chores. Their degree
of autonomy ranges from partial autonomy, which includes human robot interaction, to full
autonomy. The term therefore covers a wide range of robots such as agricultural robots
(figure 1a and 1b), cleaning robots (figure 1c) and exoskeleton robots (figure 1d). Another
type of service robots are the humanoid robots, which are often used for communication
purposes. Many different models are available, each with a different focus, complexity and
price. Ocean One (figure 2a) for example is designed to explore coral reefs and can reach

1Service Robots https://www.ifr.org/service-robots/
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1 INTRODUCTION

depths that most human beings cannot. ASIMO (figure 2b) is a humanoid robot designed to
be a helper to people and Valkyrie (figure 2c) is designed to operate in degraded or damaged
human-engineered environments. Pepper (figure 2d) is another example and is designed
to interact with humans and is also suited for mobility. Additionally, it is more affordable
than some of the alternatives, which makes Pepper a popular robot for companies. It
is developed in 2014 by Aldebaran Robotics which was acquired by SoftBank Group in
2015 and rebranded as SoftBank Robotics. Currently, Pepper is used for several tasks
which include being used as a receptionist, providing information at events as well as being
subject to various fields of research.

(a) Ocean One by Stanford Robotics
Lab.

(b) ASIMO by Honda.

(c) Valkyrie by NASA. (d) Pepper by SoftBank Robotics.

Figure 2: Examples of humanoid robots.

A long-term goal in the field of autonomous robotics is to create systems that are capable
of assisting humans in intelligent and versatile ways [3] with interfaces that preferably
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1 INTRODUCTION

require little or no training. This requires sophisticated cognitive abilities that incorporate
perception, decision making and learning as well as the ability to interact with humans and
inquire for information. Researchers in the field of Robot-Human Interaction (HRI) have
been exploring the way to make humanoid robots interact with humans in a similar way as
humans do, however there has been a lack of knowledge on human behaviour in interaction.
Models exist for humans’ conscious information processing, yet natural interaction involves
a lot of humans’ unconscious information processing [13]. A widespread assumption in the
field of HRI is that interaction with a robot is good when it resembles natural (or human-
human) interaction and communication [6, 18]. What humans consider natural behaviour
for themselves is based on more than having a given or learnt behaviour repertoire and
making rational decisions in any one situation on how to behave. It varies greatly depending
on upbringing, context and the time in their lifetime. Robots do not experience the same
circumstances and do not have the memory to learn from them the same way humans do.
Therefore, any behaviour of a robot will be natural or artificial, solely depending on how
the humans interacting with the robot perceive it.

Since HRI is such a wide field and human behaviour varies greatly depending on the
situation, this thesis will aim to improve the interaction in a more specific setting. For
companies and store owners, humanoid service robots focused on communication and in-
teraction may be able to assist customers, clients or visitors by providing them with infor-
mation or answering questions in stores, at branches or at events. This thesis will focus on
events, which means the interaction will be in an open environment. In an open environ-
ment multiple people of different ages can interact with the robot at the same time. This
however, bring a lot of complexity and therefore this thesis will focus on one person at the
time. Since the ultimate goal is to include many different people, this will be taken into
account with certain design choices and additions.

Research in an open environment has been done before, for example in a shopping
centre by Tonkin et al. [31] and a science museum by Shiomi, Kanda, Ishiguro and Hagita
[27]. As opposed to the first method, the robot in this thesis has to execute its tasks
autonomously and as opposed to the latter method the robot has to be able to do so
independently of its environment. It therefore cannot make use of components set up in
other parts of the area such as the cameras and tags used in the science museum. To provide
information and answer questions effectively, so that it can reduce the workload of a human
operator, the robot needs to be able to interact autonomously with humans in a natural way
according to the situation. What is considered natural behaviour depends on each persons
experience, however by improving the general structure of an interaction, the naturalness
of the conversation can be improved. An initial condition for having a successful natural
conversation between a human and a robot is that the human is interested and wants to
engage in the conversation. If the robot’s task is to assist and provide information, the
robot has to focus on the person who requires it. Thereafter, the conversation can continue
as long as the person is engaged. If the detection and tracking of interest and engagement
are improved, the robot can assist humans more efficiently. This thesis attempts to provide
the basic tools to further build this desired behaviour on.
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2 RELATED WORK

The objective of this thesis will be to contribute to improving an informative conver-
sation between human and robot by improving the way a robot determines who to engage
with. We will compose a set of features based on previous research and set up a computa-
tional model to classify the different states of engagement. Additionally we will incorporate
a score for some of these states so that the robot can be directed to look at the right person.
With this we will determine whether a person has the intention to interact or not, keep
track of the engagement of a person with the robot and detect when a person ends the inter-
action when a person is within range of the robot’s sensors. This can be over the course of
an entire event, so it includes initiating, maintaining and ending multiple interactions and
therefore the model is continuously updated. To build the model we take several features
based on the behaviour humans exhibit for engagement. With these features we calculate
a score on which we base the classification of the different states of engagement. Based
on this model, other parts of the system can incorporate this classification to determine
for instance which person to look at or how to set up directional listening to improve the
robots attention. Pepper is currently often used in the event scenarios this thesis focuses
on and therefore we take this robot as the primary platform.

In the next section we will discuss other research related to engagement classification in
both human-human interaction and human-robot interaction, as well as the current state
of Peppers engagement. We also elaborate on our research goals there.

2 Related work

An assumption often made in the field of human-robot interaction is that an interaction is
natural when it corresponds with human-human interaction. We can therefore take inspi-
ration from human-human interaction to have a robot better detect which person to focus
on. In the paper by Sidner, Lee, Kidd, Lesh and Rich [28] they state that when individuals
interact with each other face-to-face, they use gestures and conversation to begin their
interaction, to maintain and accomplish things during the interaction and to end the inter-
action. The paper defines engagement as the process by which interactors start, maintain
and end their perceived connection to each other during interaction. It combines verbal
communication and non-verbal behaviours, all of which support the perception of connect-
edness between interactors. Evidence for the significance of engagement becomes apparent
in situations where engagement behaviours conflict or are not present at all. One such
example is given by Salem and Earle [24]. In their paper they emphasise the expressiveness
of the avatar as a crucial improvement to the efficiency of their communication capabilities.
They state that investigations into the structure of virtual world social encounters reveal
that the process of interaction typically breaks down into three sequential stages [33, 10].
In the start part people seek an individual or a group for meaningful conversation. In the
middle users interact and in the end they negotiate a way breaking out of the interaction.
To improve the expressiveness of virtual characters, Salem and Earle describe a vocabu-
lary of expressions to be implemented consisting of bodily actions that are described by
acronyms, emotion icons and keywords that are found within the text messages used to
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2 RELATED WORK 2.1 Human-Human Interaction

communicate in the virtual world. Despite the apparent significance of engagement be-
haviour, it is not well understood in the human-human context. This is partly because
it has not been identified as a basic behaviour. Instead, behaviours such as looking and
gaze, turn taking and other conversational matters have been studied separately, but only
in the sociological and psychological communities as part of general communication stud-
ies. In artificial intelligence the focus lies more on language understanding and production,
rather than on gestures or on the fundamental problems of how to start and maintain a
connection. Only since conversational agents and better vision technologies started to be
developed, studies started to address this. In human-robot interaction studies engagement
is now commonly defined [31, 1, 23].

For this thesis, the definition of engagement by Sidner et al. will be adopted. Based
on this, four states can be distinguished: no interest, intention to interact (also called
interest), engaged and ending interaction.

2.1 Human-Human Interaction

Rank Non-verbal variables Mean
1 Breaking eye contact 1.89
2 Left positioning 1.76
3 Forward lean 1.66
3 Nodding behaviour 1.55
4 Major leg movement 1.38
6 Smiling behaviour 1.31
7 Sweeping hand movement 1.23
8 Explosive foot movement 1.19
9 Leveraging 1.17
10 Major trunk movements 1.10
11 Handshake 1.09
12 Explosive hand contact 1.02

Table 1: Rank ordering of non-verbal
leave-taking behaviours.

One study, though old, that does look into
a stage of engagement solely in human-
human context is done by Knapp, Hart,
Friedrich and Shulman [16]. They have
looked into what specific verbal and non-
verbal behaviours are associated with the
termination of a conversation. They’ve con-
ducted an experiment in which a person was
asked to interview someone to obtain in-
formation as quickly as possible. For each
interview, four coders analysed verbal and
non-verbal cues according to specific cate-
gories starting from forty five seconds prior
to the interviewer rising from his seat until
he left the room. The categories used were
based on a review of literature, surveys, con-
trolled observation and a pilot project all
conducted by the authors of this paper. Table 1 shows an overall rank ordering of the
frequency of the non-verbal categories used in terminating the conversation.

2.2 Human-Robot Interaction

Engagement is more commonly defined in Human-Robot Interaction and several studies
have tried to shed some light on engagement by focusing on one part in different ways in
various specific scenarios.

7



2 RELATED WORK 2.2 Human-Robot Interaction

2.2.1 Initiating an interaction

When taking the definition of engagement made by Sidner et al., the first state is that of
starting an interaction. This can be initiated from both sides, which gives researchers the
choice for the robot to either wait until it is approached or approach someone itself. In
both scenarios it is important for the robot to recognise whether a person wants to interact
or not.

Proactive behaviour The following papers all take on a more proactive method by
letting the robot approach a target to initiate an interaction.

In the paper by Satake et al.[25] for instance, they propose a model of approach be-
haviour with which a robot can initiate conversation with people who are walking. They
predict the walking behaviour of people in a shopping mall, which they use to target a
person the robot can approach. In their previous study they have collected and clustered
people’s trajectories and classified each trajectory with an Support Vector Machine (SVM)
into four behaviour classes: fast-walking, idle-walking, wandering and stopping. Based on
these classes, the robot could choose the person who is likely to be interested in conver-
sation with the robot. The robot can then plan its approaching path and non-verbally
indicate its intention to initiate a conversation.

Another approach is presented by Pourmehr, Thomas, Bruce, Wawerla and Vaughan
[22]. They use a simple probabilistic framework for multi-modal sensor fusion that allows
a mobile robot to reliably locate and approach the most promising interaction partner
among a group of people in an uncontrolled environment. They focus on controlling a
mobile robot’s attention in multi-human robot interaction for distances greater than two
meters. Which person is most interested in interacting with the robot is based on the idea
that a person who is standing facing the robot and calling it will have the highest probability
of being a potential interaction partner. To determine where this person is located they
use three features. They detect legs to detect people, torsos to detect the orientation of the
people and the direction of sound to determine if a person is speaking. For each modality
they track detected humans using a bank of Kalman Filters. The output of these filters are
converted into probabilistic evidence grids which are all centred over the robot so the results
overlap. These grids are then fused to compute the integrated probability distribution.

In the paper by Kato, Kanda and Ishiguro [14] they model polite approaching behaviour
based on the behaviour of staff members in a shopping mall. These staff members adjust
their behaviour based on their estimation of a visitors’ intention. To do this for their
robot system, the authors collected pedestrians’ trajectories around a robot. Additionally,
they incorporated the distance from the robot, the fan shaped area in front of the robot
that covers the direction of the trajectory when a person moves towards the robot, the
stability of walking velocity and how long a person stands still. With these features they
distinguished ‘intention to interact’ and ‘other distinctive intention’. Every person not
belonging to either class was classified as ‘uncertain’. For classification they used an SVM.

8



2 RELATED WORK 2.2 Human-Robot Interaction

Passive behaviour As previously stated, another method is to have a static robot which
can be approached by people. It then needs to be taken into account that in a dynamic
public spaces such as the ones seen in these papers, a robot needs to be able to determine
the needs and intention of multiple people in a scene, so that it only interacts with people
who intent to interact with it.

In the paper by Foster, Gaschler and Giuliani [11] they address the task of estimating
the engagement state of customers for a robot bartender based on the data from audio-
visual sensors and incorporate behaviour to deal with multiple customers at once. To
confirm that the sensor data contains the information necessary to estimate user states,
they have done an offline experiment using hidden Markov models. They then compared
two strategies for online state estimation, namely a rule-based classifier based on observed
human behaviour in real bars and a set of supervised classifiers trained on a labelled corpus.
They found that all classifiers change their estimate too frequently for practical use, so to
address this they presented a classifier based on Conditional Random Fields.

Klotz et al. [15] present the integration of an engagement model in an existing dialog
system based on interaction patterns. As a sample scenario, this enables the humanoid
robot Nao to play a quiz game with multiple participants. To determine the user’s actions
(e.g. if the user explicitly wants to start an interaction with the system), they use a set of
possible utterances which are matched against the results of a speech recognition module.
To get an estimation of the user’s intention to interact they estimate the user’s current
visual focus of attention.

Within the context of engagement, non-verbal signals are used to communicate the
intention of starting the interaction with a partner. Vaufreydaz, Johal and Combe [32]
investigates methods to detect these signals in order to allow a robot to know when it’s
about to be addressed. Classically, spatial information like the human-robot distance and
human’s position and speed are used to detect engagement. In this paper however, they
also integrate multi-modal features. They started with computing 99 features on their
corpus, which they reduced based on social and cognitive science research on non-verbal
communication cues, the available sensors and performance of algorithms used in exper-
iments. Eventually they demonstrated however, that 7 selected features are sufficient to
provide a good starting engagement detection score.

In another example they propose a detector for the intention-for-interaction which fuses
multi-modal cues using a probabilistic discrete state Hidden Markov Model. The cues they
use are line of sight, anterior body direction and vocal activity[19].

Yumak, van den Brink and Egges [35] do not make use of a robot, but present a gaze
behaviour model for an interactive virtual character simulated in the real world. The
sensors used however are used in other papers as well and the model is suitable to be
implemented with a robot. For this they focus on estimating which user has an intention
to interact. The model takes into account behavioural cues such as proximity, velocity,
posture and sound. They use this to estimate an engagement score, which drives the gaze
behaviour of the virtual character.

9



2 RELATED WORK 2.3 Pepper

2.2.2 Maintaining and ending interaction

As defined by Sidner et al., initiating interaction is only one part of engagement. The
other two parts, maintaining and ending an interaction, do not seem to have had as much
attention in human-robot interaction as the first.

In the paper by Sidner et al. they have studied the effect of tracking faces during an
interaction and applied the results to human-robot interaction. They studied how two
humans tracked each other’s faces in one interaction. From this they defined the principle
of conversational tracking: a participant in a collaborative conversation tracks the other
participant’s face during the conversation in balance with the requirement to look away
in order to: (1) participate in actions relevant to the collaboration, or (2) multi-task with
activities unrelated to the current collaboration, such as scanning the surrounding envi-
ronment for interest or danger, avoiding collisions, or performing personal activities. They
then applied this principle on the behaviour of a humanoid robot that can participate in
conversational, collaborative interactions with engagement gestures. Experiments showed
that people found these interactions more appropriate than when the engagement gestures
are absent.

While people are maintaining their connection to each other via conversation, people
need to coordinate with one another on turn taking. This is done through both verbal
and non-verbal cues such as establishing or breaking eye contact and the use of head
and hand gestures. Some of these cues are similar to cues used to recognise other states
of engagement. For example, in a conversation with multiple people, participants direct
their gaze towards the person speaking. Directing their gaze away from the robot may be
interpreted as losing interest, while this is not the case in this scenario. Research has been
done on turn taking in human-robot interaction and what features are important. Bohus
and Horvitz [2] for example have constructed a computational framework for managing
multiparty turn taking in situated spoken dialog systems. They use face detection and
head pose tracking software to detect and track multiple participants in the scene, as well
as their focus of attention. They also capture the audio, perform speech recognition and
perform sound localisation. From this they infer attention, engagement and turn taking
among other conversational aspects.

2.3 Pepper

Despite its popularity, Pepper has its limitations when it comes to autonomously providing
information, including in recognising who wants to interact with it. When only using the
software Pepper has by default, Pepper responds to any detected stimulus (sound, move-
ment or touch) by looking in its direction. Then it will check if the stimulus corresponds
to a human. Pepper can detect a presence if it is within 1.5 meters. If the presence is
from a human, Pepper is then engaged with this person. When engaged, there are three
options that specify how focused the robot is on the engaged person. The default option
for Pepper is that when it’s engaged with a person, it can be distracted by any stimulus
and engage with another person. Alternatively, as soon as Pepper is engaged with a user,
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3 APPROACH 2.4 Research goals

it can be set not to get distracted by anything. In this case, Pepper focuses on the first
person until it loses him and can therefore only switch to another person when the first
one has walked away. The third option is to have Pepper still listen and react to other
stimuli, but always have it return to the person it is engaged with. Pepper tries, as much
as possible, to establish and keep eye contact while engaged. This and more information
about Pepper can be found on the Aldebaran documentation website2.

2.4 Research goals

To improve Pepper’s own engagement, it has to be able to recognise the engagement state
or the absence of an intention to interact from the people around it, starting with a single
person. Previous research has studied parts of engagement using both spatial and multi-
modal features. Based on this, the main goal of this thesis therefore is:

• Developing a model to detect engagement for a single person using spatial and multi-
modal features

To develop this model, several questions need to be answered:

• Which features sufficiently show when a person does not have the intention to inter-
act?

• Which features sufficiently show when a person does have the intention to interact?

• Which features sufficiently show that a person wants to maintain their perceived
connection?

• Which features sufficiently indicate a person is ending the interaction?

• Which approach can sufficiently classify the states of engagement using said features?

Note that due to the choice of robot these questions are all specific to the possibilities
of the available sensors. Furthermore, in the future the goal is to use the output of this
model to improve the behaviour of Pepper. It is therefore necessary to be able to use this
model in real-time.

3 Approach

This section describes the decisions made regarding the use of hardware, software and
approach for building an engagement model. The final approach consists of three parts.
Pepper provides sensory data which is send via a client over the network. On the server
side, this data is processed by a network to create features. These features are then used
by the model to classify the different stages of engagement.

2Aldebaran documentation http://doc.aldebaran.com/2-5/family/pepper_user_guide/

interacting_pep.html.
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3 APPROACH 3.1 Specifications Pepper

3.1 Specifications Pepper

Figure 3: Dimensions of Pepper with its arms down.

Pepper is a humanoid robot developed by Aldebaran Robotics. It was first introduced
in 2014 and is designed to interact with humans. Users can interact with Pepper through
either speech and dialogue which is available in 15 languages or through its tablet. This
section gives an overview of its hardware and relevant modules. Information about all the
modules is available at the Aldebraran documentation website3.

3.1.1 Hardware

For this thesis, we have made use of Pepper version 1.6.

Dimensions Pepper is 120 cm tall and weighs about 28 kg. It has 20 degrees of free-
dom for expressive movements and can rotate 360 degrees. The dimensions of Pepper are
displayed in figure 3. The joints of Pepper are displayed in figure 5.

Cameras The robot head is composed of three cameras:

• Two 2D Cameras

• One 3D Sensor

3NAOqi modules http://doc.aldebaran.com/2-5/naoqi/index.html.
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3 APPROACH 3.1 Specifications Pepper

(a) Location and field of view of the 2D
cameras.

(b) Location and field of view of the
3D sensor.

Figure 4: 2D cameras and 3D sensor of Pepper.

All three of them are located in the forehead. Figure 4a shows the location and field of
view of the 2D cameras. They provide a resolution up to 640*480 at 30 frames per second
(fps) or 2560*1920 at 1 fps. The 3D sensor provides an image resolution up to 320x240 at
20 frames per second. Its location is shown in figure 4b.

Figure 5: Joints of Pepper.

Microphones Pepper has four microphones lo-
cated on the top of its head.

Lasers Pepper is equipped with six laser line
generators. Three of those produce lasers pro-
jected on the ground in front of Pepper and three
of those are projected on the surroundings in
front, at the left and at the right side of pepper.

Sonars The robot is equipped with two ultra-
sonic sensors (or sonars) which allow it to estimate
the distance to obstacles in its environment.

3.1.2 Software

Pepper runs on NAOqi, which is an embedded
GNU/Linux distribution based on Gentoo. The programming framework is called the qi
Framework (previously NAOqi Framework). NAOqi supports working with Python, C++,
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Java, Javascript and ROS4. Additionally, a Python and C++ SDK can be used to work
with the qi Framework.

Another option is Choregraphe. This allows a user to create applications containing
Dialogs, services and powerful behaviors, such as interaction with people, dance, e-mails

Figure 6: The three frames used by
both the Nao and Pepper robot.

sending, without writing a single line of code5.
All documentation on the robots of Softbank is
available online6.

Pepper defines three types of frames for itself
and the objects around it. These three frames are
illustrated in figure 6.

For this thesis, the qi Framework (version 2.5)
is used with Python to gather the sensory data
and send it through a WebSocket connection. The
qi framework comes with a list of core modules
which give access to the sensors and provide inter-
pretation to a certain extent. This section further
explains the modules and data that are used.

ALPeoplePerception This module is an ex-
tractor that keeps track of the people around the
robot and provides basic information about them.
It gathers visual information from the RGB cam-
eras and the 3D sensor if available. Once people
have been detected their attributes are constantly
updated. The event that is used from this mod-
ule is the ’PeopleDetected’ event, which is raised
whenever at least one person is visible. From this
event the position of each person in the robot
frame is collected.

ALSoundLocalization This module identifies the direction of any loud enough sound
heard by Pepper. The sound wave emitted by a source is received at slightly different times
on each of the Pepper‘s four microphones, from the closest to the farthest. By using this
relationship, the robot is able to retrieve the direction of the emitting source.

ALVideoDevice This module provides images from the video cameras of Pepper.

4Programming of NAOqi http://doc.aldebaran.com/2-1/dev/programming_index.html.
5Choregraphe Suite http://doc.aldebaran.com/2-5/software/choregraphe/index.html#

choregraphe-suite.
6Softbank robot documentation http://doc.aldebaran.com/2-5/index_dev_guide.html.

14

http://doc.aldebaran.com/2-1/dev/programming_index.html
http://doc.aldebaran.com/2-5/software/choregraphe/index.html#choregraphe-suite
http://doc.aldebaran.com/2-5/software/choregraphe/index.html#choregraphe-suite
http://doc.aldebaran.com/2-5/index_dev_guide.html


3 APPROACH 3.2 Platform for Situated Intelligence

3.2 Platform for Situated Intelligence

A framework that is often used in research (e.g. in [22, 21, 23]) is the open-source Robot
Operating System (ROS) framework. Its primary goal is supporting code reuse and it is
both language and sensor independent. Additionally, ROS has access to more information
from Pepper’s sensors. The downside of ROS however, is that the infrastucture has to be
build up from the ground up. This means that Pepper loses the processes that are already
set up, such as the idle animation and stance. Additionally, newer versions of Pepper most
likely will no longer support ROS. Since the extra information we can get through ROS
does not outweigh the extra work we have to put in to get the functionality we need, we
have decided to go with the PSI framework instead.

The Platform for Situated Intelligence (PSI) is an open, extensible framework developed
by Microsoft. It enables the development, fielding and study of situated, integrative-AI
systems7. It provides a Runtime that enables parallel coordinated computation, a set of
Tools that provide development support and an ecosystem of Components. The latter
provides a wide array of AI technologies encapsulated into PSI components, which can be
easily developed by wiring them together. The initial set of components includes sensor
components for cameras and microphones, audio and image processing components. These
are used to create a network of relevant components for Pepper.

The data provided by the modules from the qi Framework is send to the PSI network
through a WebSocket connection. Similar as to how the modules use events to send data,
the server fires an event when data is received. Specific event source components are
subscribed to the right event through which the data is send into the network. This network
processes the data and produces what is needed to recognise the states of engagement by
the engagement model.

3.3 Engagement model

Recognising the states of engagement is done by recognising the behaviour of humans.
Researchers of the covered related work have done this by selecting or finding certain
meaningful features of this behaviour. To classify the four states no interest, intention
to interact, engaged and ending interaction for each person within the proximity robot, a
model needs to be developed that can be continuously updated for multiple people who
may enter and leave the vicinity. For this we need a set of features and a method to combine
these in a way that the classes can be distinguished.

3.3.1 Features

To compose the set of features we take into account the following three aspects: the explored
related work, the human frame and the limits brought by the choice of robot.

As for the related work explored in the previous section, engagement has been explored
in several different situations with a different focus and therefore with a different set of

7PSI https://github.com/microsoft/psi/wiki.
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Approach Humans In Shopping
Centre

x x x x

Find Person Calling x x
Customers Of Bartender x x x x x x x x

Human Assist Robot With Task
Non-Verbal Language For

Virtual Avatars
x x x x x

Robot In Home Environment x x x x
Intention To Interact When User

Sits 3m Before Robot
x x x

Quiz Game x x
Turn Taking x x x x

Virtual Character To Determine
Who To Look At

x x x x x x

Ending Conversation Between
Humans In Sitting Position

x x x x x

Table 2: Features that are used in more than one situation found in the related work.
Similar situations in different papers are combined.

features. By combining the similar situations and tallying which features are used for each,
an overview is obtained that shows which features are used in the most situations and which
are used for situations similar to the set-up in this thesis. Table 2 shows the features that
were used in more than one situation. Some papers however, describe the used features in
more detail than others, which makes it difficult to determine whether they use the same
features or if they’re different in any way. Additionally, most of the found papers focus
on intention to interact (or interest) and fewer papers on the other classes. This means
table 2 tells us more about the first then the latter and we might miss important features.
Another observation we made is that several papers explored which features where more
important than others ([25, 11, 32, 16, 35]) and Vaufreydaz et al. suggest that selecting
features can be more relevant than combining them. The latter statement is substantiated
by the model used by Klotz et al., which primarily uses the gaze of the participants as the
only feature. We therefore will also take into account the validation given in the papers
for the features individually. Furthermore, the choice of features is dependent on the robot
and hardware used. This means that some papers may have left out features solely because
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No interest x x x x x x x
Interest x x x x x x x x x x
Engaged x x x x x x x
Ending interaction x x x x x

Table 3: Features that are used in more than one situation found in the related work,
organised by engagement state.

they could not detect them (accurately).
Because of this last issue, we also take into account the human frame in general. Since

in the field of HRI the assumption is made that human-robot interaction is natural when
it compares to human-human interaction, we can use our personal experience and that of
others, like they have done in other papers [31, 22, 11]. This way we can infer which parts
of the body are prominent in showing engagement in conversation and how they are used.
We can then look at the related work again from this perspective and consider how those
researchers have considered or incorporated these parts. Furthermore, we can compare how
those researchers have chosen their features based on the human frame and their personal
experience with our ideas and perhaps derive other important features of this.

Since the focus of this thesis lies on classifying the four states we have divided engage-
ment in, it is important that we have sufficient features for each state. We therefore have
made an overview categorised by state of the features of table 2. This overview is shown
in table 3. Note that not all papers specify which features are important for which state
and some features are used for a different purpose then we want to use them for. Since we
cannot use those for our model, we have left them our of table 3.

Our ultimate goal is to develop a general model with a general set of features that can
be used regardless of the robot or platform. However, since we assess this initial direction
with the Pepper robot, we have to take the sensors and hardware of Pepper into account, as
well as the way we set up our PSI network and the capacity of the wireless network used to
pass the sensor information to this PSI network. Taking all of the considerations explained
in this section into account, we have narrowed the feature set down to the following six
features:

• Distance from the robot

• Facing direction
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• Gaze

• Position

• Sound direction

• Velocity

3.3.2 Method for combining features

The research covered in section 2 also describes several methods to classify the respective
states of engagement each paper focuses on. For this thesis we aim to develop a model
which is based on the understanding of the non-verbal behaviour involved in the different
stages of engagement. A rule-based classifier seems to be a suitable choice, however since
we have chosen six different features which are also to be categorised, a rule-based classifier
will become too complex. Additionally, we aim to develop a model that can be extended
with additional features relatively easily. For this purpose, we have decided to set up a
Naive Bayes classifier, which classifies the states one frame at the time. This approach can
naturally be extended to a situation requiring multinomial classification and it has been
shown that the method performs well despite of the underlying assumption of conditional
independence. This method can also provide a score for the intention to interact and
engaged states in the form of the chance of the assigned state.

To distinguish between each state, we categorise each feature further to facilitate the
differences between each state. We will elaborate on our choices based on the research done
in both human-human and human-robot interaction that we have covered before.

Distance Research in social sciences investigated how people manage distance during
social interactions [12]. It is considered along four zones: the intimate zone (0 to 0.15m),
the close intimate zone (0.15 to 0.45m), the personal zone (0.45m to 1.2m), the social
zone (1.2 to 3.6m) and public zone (more than 3.6m). According to Shi, Shimada, Kanda,
Ishiguro and Nagita [26], when a person approaches, the first utterance would happen at
a 2m distance in a small quiet room, however Kato, et al. found that in a larger and more
noise environment it is more natural to use the first utterance at a farther distance and
empirically decided it to be 3m. They have however set the social distance at which the
conversation takes place to 1.5m.

Facing direction One of the papers that uses et al. have set the limit of the facing
direction angle to 45◦.

Gaze The gaze angle is mainly used in its raw form [11, 2], though Yumak et al. also
have set the limit to 45◦.
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3 APPROACH 3.3 Engagement model

Position Yumak et al. define the position as ‘closeness to the centre of field of view
(FoV)’ and calculate the ‘field of view deviation’. When a person stands directly in front
of the robot, this deviation is 0◦. The limit is set to 35◦to either side based on the limits of
their setup. When a person stands directly in front of the robot, this person is considered
to be more engaged than someone standing at 35◦. They therefore map the deviation value
to 1-0, where 1 is for a deviation of 0◦and 1 for a deviation of 35◦.

A similar approach is taken by Kato et al., where they define a fan shaped area to
estimate whether the trajectory of a person would lead to the robot. If a smaller fan can
fit the direction of the trajectory, it is more likely that the person is moving towards the
robot.

Sound direction The main purpose of the sound direction in the covered research is to
determine whether a person is speaking or calling to the robot.

Velocity Several papers have mentioned that they distinguish between standing still and
moving, which is indicated by the threshold of 1m/s [14].

Feature categories Taking into account all of this information, we categorise our fea-
tures as follows, taking into account our own interpretation and expectations based on the
scenario we want to apply this model to, as well as the possibilities of our chosen robot
and approach.

• Distance

– Distance > 3.6m

– Distance < 3.6m, > 1.5m

– Distance < 1.5m

• Facing direction

– Facing direction > 45◦

– Facing direction < 45◦, > 10◦

– Facing direction < 10◦

• Gaze

– Gaze > 90◦

– Gaze < 90◦, > 45◦

– Gaze < 45◦, > 10◦

– Gaze < 10◦

• Position (angle with respect to the FoV)
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3 APPROACH 3.3 Engagement model

– 0◦ → 1

– 90◦ → 0

• Sound direction (or speaking)

– Speaking

– Not speaking

• Velocity

– Velocity > 0.1m/s

– Velocity < 0.1m/s

The way in which we define the position feature, it cannot be used like the other features
for classification by the Naive Bayes classifier. The reason we have chosen this feature and
defined it like this, is because we expect it to be of significant value for determining who
to look at in a scenario with multiple people. We assume that interested people standing
directly in front of Pepper have a higher chance of wanting to engage and that the engaged
person of highest importance also stands closer to the centre of Peppers FoV. Additionally,
this could give an indication regarding the number of people who are in conversation with
Pepper, since we presume that two (or more) people in conversation share the space in
front of the person (or robot) that has their focus. Therefore, instead of incorporating it
in the classification, we use it to adjust the final score of the engaged and interest states.

Bayes’ theorem Bayes’ theorem describes the probability of an event, based on prior
knowledge of conditions that might be relative to the event. This theorem is mathematically
stated as follows:

P (A|B) =
P (B|A)P (A)

P (B)
(1)

where

• A and B are events

• P (B) 6= 0

• P (A|B) and P (B|A) are conditional probabilities, i.e. the likelihood of event A
occurring given that B is true and the likelihood of event B occurring given that A
is true

• P (A) and P (B) are marginal probabilities, meaning the probabilities of observing A
and B respectively
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3 APPROACH 3.4 Evaluation

Naive Bayes classifier With Bayes’ theorem we can calculate the probability of a class
based on a feature. For multiple features, Bayes’ theorem can be extended to Naive Bayes,
provided that the features are independent. Naive Bayes can mathematically be written
as follows:

P (Ck|x1, . . . , xn) =
P (Ck)

∏n
i=1 P (xi|Ck)∏n

j=1 P (xj)
(2)

where

• Ck is a class for which the probability is calculated

• the features are denoted by x

This formula can be used for classification of a set of features with multiple classes by
calculating the probability of each class and assigning the class with the highest probability.
Since the denominator is only dependent on the set of features, this can be omitted. The
corresponding Naive Bayes Classifier is the function that assigns a class label ŷ = Ck for
some k as follows:

ŷ = argmax
k∈{1,...,K}

P (Ck)
n∏

i=1

P (xi|Ck) (3)

Probabilities The naive Bayes classifier requires several known probabilities. These are
usually calculated based on the occurrences of the features and classes in data that has
been obtained beforehand. Since we do not have this data yet, for the first test scenario
we will set up we make use of estimated probabilities. From this scenario we will record
the data, which will then be used to calculate the probabilities offline.

Online process When a person stands in the vicinity of the robot, we get a set of
features. With these features the state is assigned with the naive Bayes classifier. If the
state is either intention to interact (or interest) or engaged, the probability of this state
will then be multiplied with the position with respect to the FoV, which is 1 for 0◦ and will
decrease to 0 when it becomes 90◦. The behaviour of the robot can then be determined on
both the class label and the final probability.

3.4 Evaluation

As mentioned before, we cannot collect a significant corpus to train and assess our model.
We can however record the sensor information trough PSI in a smaller, controlled scenario.

The goal of the engagement model is to classify the different states of engagement based
on the behaviour humans use to indicate these states. Therefore, the model is successful
when it assigns the same state to a participant another human would assign. To evaluate
the engagement model, we will compare the classification made by the model with the
classification made by ourselves and one other person. To avoid disparity between the
human classifications, we will discuss our decisions to come to an agreement on the state
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3 APPROACH 3.4 Evaluation

for every frame. This gives the opportunity to discuss which features the classification is
mostly based on for future adjustment of the model.

(a) An illustration of the setup of the extra
camera used to record the experiments.

(b) An illustration of the setup of the
experiments.

Figure 7: Illustrations of the setup of the
experiments.

The model’s classification is done in
real-time on a separate laptop with the sen-
sors of the Pepper robot and is based on a
frame rate of one frame per second. As ex-
plained, the four different states of engage-
ment are defined as no interest, interest, en-
gaged and ending interaction.

In a pilot study we found that the def-
inition of ending interaction as defined by
the participant differs from the concept we
used, specifically it differs in where it starts,
ends and what the telltale features are to
recognise this. Since the model classifies
each frame separately and therefore does
not take into account what has happened
before each frame, we have decided to de-
fine ending interaction as the action of turn-
ing away after the conversation ended. To
assess its performance for all states of en-
gagement, we will set up five scenarios. One
shows all states in the order of no interest,
interest, engaged, ending interaction, no in-
terest. The other four scenarios only con-
tain one state in an attempt to create an
equal amount of frames for each state, since
in a natural interaction, not all states are
of equal duration. With our definition of
the state ending interaction, it is impossible
however to get an equal amount of frames
to the other states while maintaining the
naturalness of the behaviour. This is be-
cause ending interaction is a relatively short
state compared to the other states and can’t
be extended by itself. We therefore execute
this scenario a total of nine times. In an at-
tempt to keep it more natural, the scenarios
set up for this state are based on the partic-
ipant’s idea of the state rather than just the
action of turning away. The scenarios there-
fore include a final closing sentence, turning
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3 APPROACH 3.4 Evaluation

around and walking away, which means the scenarios consist of the states engaged, ending
interaction and no interest. These scenarios are played out twice by a single person, once
were all interactions take place in a straight line in the centre of Pepper’s field of view and
once with more variation in the position of the participant. All scenarios will entirely take
place within Pepper’s FoV. Since Pepper’s ‘autonomous life’ software makes it move it’s
head often, this will be paused so that Pepper only looks straight ahead. Note that the
ALPeoplePerception module only fires an event based on changes. It therefore is necessary
for the participant to start outside of Pepper’s FoV and walk up to the first position of
the scenario before the recording can start. The states shown in the scenario are the same
in the two times the scenario is enacted, however the details of the scenario will differ to
take advantage of the participant’s freedom in movement. This is all done by two different
people, giving a total of 20 scenarios.

Since the purpose of this system is to classify in real-time, the entire network including
the engagement model is run. Since the Naive Bayes classifier uses probabilities based on
previously acquired data we don’t have, we use probabilities that are manually estimated
based on our own expectations. Alongside the respective frames, all final features (i.e. the
raw data categorised as explained in section 3.3.2) are stored. This way we can afterwards
evaluate our model using an offline version of the engagement model, while we will still
see the performance and possible flaws of both the network and engagement model in the
scenarios themselves. We will use k-fold cross validation to evaluate our model.

Additional to the system and the robot, a camera is set up to give a third-person
perspective from behind Pepper. This view is used for the classification by the humans.
The setup of this camera is illustrated in figure 7a. The room in which the experiment takes
places is large enough to walk from one side to another at a distance larger than 3.6m from
Pepper. It is devoid of anything that resembles a human or can reflect the participant, so
that Pepper only classifies one person per frame. The setup of the room is illustrated in
figure 7b.

To keep the scenarios as natural as possible we will explain beforehand that the goal of
the experiment is to record the different stages of a conversation and will give instructions
as tasks rather than as states. Additionally, the participant receives a script of a short
conversation they can have with Pepper. This conversation contains questions to which
we ourselves will respond through Pepper. The participant is informed at the start of the
experiment how many scenarios need to be recorded and that instructions for each scenario
are given before each scenario, rather than all at once. Afterwards, the participant is
informed about the specific states we have divided interaction in and is asked to classify
the videos of the other participant. We will classify the videos of both, so that each video
is classified by two people.
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Figure 8: The system for running the engagement model with Pepper.
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4 Implementation

To send as little data as possible through the Wi-Fi network, we collect the following data
on Pepper from the modules mentioned in section 3.1.2:

ALPeoplePerception ALVideoDevice ALSoundLocalization

• Timestamp • Frame • Timestamp
• IDs of people in view • Azimuth values of all heard sounds
• Position of each person • Elevation values of all heard sounds

in the robot frame
This gets sent through the PSI network. The system is set up according to figure 8 and

consists of three parts: the client, the server and the PSI network. The PSI network in
turn consists of four groups. The green blocks represent the modules and the data we have
send from those, the red blocks represent the exact values of each feature and the orange
blocks represent the features categorised as discussed in section 3.3.2. All of the features
then converge in the engagement model where they are used to calculate the engagement
state of the person in view. The system is designed to calculate the engagement state for
one frame at a time.

Figure 9: Top view of the set-up to
illustrate the angle with respect to the

FoV of Pepper.

Video stream The frame from the video is pro-
cessed by OpenPose8, which is authored by Gines
Hidalgo, Zhe Cao, Tomas Simon, Shih-En Wei,
Hanbyul Joo, and Yaser Sheikh [4, 29, 5, 34].
To use this in our PSI network, we make use of
an OpenPose wrapper written in C# by Takuya
Takeuchi9. OpenPose gives 25 points represent-
ing the skeleton of the person visible in the frame.
An example of this is shown in figure 10a, whereas
the format and the identification of the points is
shown in 10b. From the points given by OpenPose
we calculate the gaze angle using the points rep-
resenting the eyes and ears (15, 16, 17, 18). The

facing direction is calculated using the shoulder points (2, 5). On the machine used for this
thesis, OpenPose takes almost one second to generate the key points, so the frame rate is
set to one frame per second so the classification can still be done in real-time.

People detection With the position we get from the people detection module we can
calculate the velocity by comparing it with the position of the person in the previous frame.
The distance is defined as the straight line distance between the origin of the robot frame

8OpenPose https://github.com/CMU-Perceptual-Computing-Lab/openpose.
9OpenPose wrapper in C# https://github.com/takuya-takeuchi/OpenPoseDotNet.
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4 IMPLEMENTATION

(a) An example of the points representing the
skeleton of people in an image.

(b) The format of the points.

Figure 10: Illustration of the key points
given by OpenPose

and the position of the person. This is then
used to calculate the angle with respect to
Pepper’s field of view. Note that the field of
view is based on the orientation of Pepper’s
base and does not change with the orien-
tation of Pepper’s head. The angle shows
whether a person stands in front of Pepper,
or further to either side. This is illustrated
in figure 9 showing a top view of the area in
front of Pepper (denoted with P). A human
(H) is standing to the right of Pepper’s base
at an angle of 45◦. When a person stands
directly in front of Pepper, this is consid-
ered 0◦and we’ve set the limit to 90◦. It
does not matter whether a person stands to
the left or to the right.

Sound direction Pepper raises an event
every 170ms if one or several sounds have
been localised during that time frame. The
angles provided by the sound source locali-
sation engine match the real position of the
source with an average accuracy of 10 de-
grees10.

ID mapping To determine whether a
sound originated from the person in view,
we match it using the nose point we get
from OpenPose (point 0). If one sound orig-
inates from within 10◦of this point, we deem
that the person is speaking. Aside from the
sounds, we also have to map the IDs given
by OpenPose with the IDs given by Pepper,
since both those systems have a different
way of assigning these. When classifying
one person, we don’t need explicit mapping.
However, as mentioned before, this system
is meant to classify one person at the time,
yet is designed with the possibility to be ex-
tended to classify multiple people at once and therefore contains components with this in
mind. The ID mapping component is one such component.

10ALSoundLocalization http://doc.aldebaran.com/2-5/naoqi/audio/alsoundlocalization.html
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6 CONCLUSION

Engagement model This component is an implementation of the Naive Bayes classifier
explained in section 3.3.2. Since Pepper sends its data and the PSI processes the data
asynchronously, yet the classifier needs all features to make a classification, this component
stores the features until it has received them all. Whether data has to be overwritten
or ignored when new data arrives is handled at various stages in the network. The white
components are the components we have setup an offline version of, which we use to evaluate
the model.

5 Results

Precision Recall F1 score
Macro 0.701 0.705 0.698
Weighted 0.838 0.843 0.839
Accuracy 0.841

Table 4: Performance metrics for the overall
model.

To evaluate our engagement model we use
the k-fold cross validation techniques with
k = 10. Our final data set consists of 1410
frames of which 728 are from one participant
and 682 are from the other. Each partic-
ipant has classified the frames of the other
participant and we have classified the frames
of both participants ourselves. We have dis-
cussed the differences in the classification and have come to an agreement for each frame.
These classifications are considered the ground truth. The number of frames for each state
in this ground truth are as follows: 469 are classified as no interest, 384 as interest, 504 as
engaged and 53 as ending interaction. The confusion matrix of the 10-fold cross validation
result is shown in table 5. From this matrix the performance metrics precision, recall and
F1 score can be calculated. For each state separately, precision is the number of frames
correctly classified as state S out of all of the frames classified as state S. Recall is the
number of frames correctly classified as state S out of all the ground truth frames classified
as state S. The F1 score, defined as F1 = 2 ∗ (precision ∗ recall)/(precision + recall),
is also calculated for each class separately. These results are shown in table 6. For the
model as a whole we can calculate the macro-averaged precision, macro-averaged recall
and macro-averaged F1 score as well as the weighted-average precision, weighted-average
recall and weighted-average F1 score. Additionally, we can calculate the overall average.
The macro-averaged metrics are computed as a simple arithmetic mean of our per-class
precision, recall and F1 score respectively. The weighted metrics are the arithmetic means
of our per-class metrics, for which each metric is weighted by the number of samples from
its corresponding class. This is all shown in table 4.

6 Conclusion

In this thesis we have looked into the non-verbal behaviours that are involved in engage-
ment, defined as the process by which interactors start, maintain and end their perceived
connection to each other during interaction. In a practical setting, this definition calls for a
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True
No interest Interest Engaged Ending interaction

P
re

d
ic

te
d No interest 423 36 3 24

Interest 38 294 38 12
Engaged 1 32 458 6
Ending interaction 7 22 5 11

Table 5: The confusion matrix of the 10-fold cross validation results.

No interest Interest Engaged Ending interaction
Precision 0.870 0.770 0.922 0.244
Recall 0.902 0.766 0.909 0.208
F1 score 0.886 0.768 0.915 0.224

Table 6: Performance metrics for each state.

way to distinguish between engagement and non-engagement (i.e. when a person has no in-
tention to start an interaction or when a person considers the interaction to be concluded).
We have therefore defined four states of engagement: no interest (or no intention to in-
teract), interest (or intention to interact), engaged and ending interaction. The objective
was to develop a model of the behaviour shown to indicate each of these states with the
purpose of improving the way a robot determines who to engage with to contribution to
improving an informative conversation between human and robot. As stated in section 2.4,
to develop such a model several questions needed to be answered. Based on our literature
study, developed model and experiments we can determine whether we can answer those
questions and to what extend we have achieved our main goal. The first few questions
regard the behaviour for each state. We can answer those based on the explored related
work and the human frame, however due to the limits brought by the choice of robot and
development of the network we can only comment on the sufficiency of a select few.

Which features sufficiently show when a person does not have the intention
to interact? The features we consider important to classify the no interest state are
distance from the robot, facing direction, gaze and velocity. Based on the results from our
experiments we can conclude that these features are sufficient to classify no interest. Both
the majority of the actual no interest frames are classified as such and few other states are
classified as no interest. For this state, the precision and recall values differ more than for
the other states.

Which features sufficiently show when a person does have the intention to
interact? The features we have chosen for the state interest are distance from the robot,
facing direction, gaze and sound direction. These features are also sufficient to classify
the state, since the precision and recall values are also quite high and only differ slightly.
Both values are a bit lower than for the no interest and engaged states however, so we will
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elaborate on that in section 7.

Which features sufficiently show that a person wants to maintain their perceived
connection? For the engaged state, we consider all of the features (distance from the
robot, facing direction, gaze, sound direction and velocity) to be of importance. This state
has the most similarities with the three other states. The significant features are therefore
not only the prominent features based on the behaviour of the state itself, but also the
features that key for humans in distinguishing between classes (e.g. whether someone is
speaking can give the difference between interest and engaged). Based on these features,
the results for this state are also promising. The overall score is even slightly higher than
from the no interest state and the difference between precision and recall is slightly less.

Which features sufficiently indicate a person is ending the interaction? Setting
up a suitable definition of the state ending interaction with clear boundaries which both
covers the perception of humans and fits the structure of a Naive Bayes classifier proved
to be impossible, since the state as defined by humans is more of a succession of actions
rather than a state defined by one type of behaviour. Even the sole action of turning away,
as which we have now defined this state, is not entirely independent of the state preceding
it. Choosing features suitable for the classification of this state likewise proved to be
difficult, partly by the lack of past research for this part of engagement. We have decided
to use the features distance from the robot and facing direction. The results show that the
classification of our model based on these features is vastly insufficient for classifying this
state, as the majority of the frames are classified as no interest. Based on the definition and
studied behaviour in past research as well as the difficulty of setting up a suitable definition
of the state for our model, we argue that the main fault for this state lies in the setup of
the model as opposed to the choice of features, however we do have reason to believe the
chosen set of features is lacking as well. In section 3.4 we namely explain that we have
discussed the classifications made by the participants. This discussion included how they
would define the ending interaction state. We will further discuss this result and propose
possible improvements in section 7.

Which approach can sufficiently classify the states of engagement using said
features? To classify the four states using the chosen features, we have chosen to set up
a Naive Bayes classifier. With an overall accuracy of 84% this model shows promise for
three of the four states. The macro F1 score is 0.698, though when taking a closer look
at the underlying scores per state, we can see that the model scores well on the states no
interest, interest and engaged (with 0.886, 0.768 and 0.915 F1 scores respectively). The
model however performs poorly on the state ending interaction (F1 score 0.224). Based
on the definitions in past research, our own interpretation in human-human interaction as
well as the discussion conducted with the participants of our experiment, we argue that
the main cause of this poor performance is that the basic Naive Bayes classifier we have
set up lacks the ability to take into account the temporal context of both the engaged state
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that precedes ending interaction as well as the actions that humans consider make up the
ending interaction state. We will further discuss this in section 7. Since the state ending
interaction occurs less and for a far shorter period of time compared to the other states,
we have taken this into account by also calculating weighted precision, weighted recall and
weighted F1 score. These again shows that the model overall performs well.

Developing a model to detect engagement for a single person using spatial and
multi-modal features Each previously answered question contributes to what extend
we have achieved our main objective. We have developed a classification model using Naive
Bayes, which can classify the four states of engagement using a set of five features. The
overall performance of this model is good and it can accurately classify three of the four
states. We argue that for the one state our model has a poor performance on, possible
adjustments and extensions made to the model as well as a redefinition of the state can
improve the performance sufficiently. Since the main purpose of the model is to contribute
to improving an informative conversation between human and robot, we can conclude we
have achieved our main objective.

7 Discussion and future work

Results The first point of discussion is the reason for the lower precision and recall
values for the interest state. Both values are close to each other, which means about
as much interest frames get classified as other states as the other way around. Looking
at table 5 we can see that the number of false positives and false negatives are about
equal for each state and that the most wrong classifications are generally from no interest
and engaged. Additionally, since the model performs poorly on the ending interaction
state, we can disregard this state. We speculate that the lower performance of interest is
due to a fault and limit we discovered during our experiments. We have not been able
to test this assumption in any way, however we can argue as to why we assume this.
When we analysed our results, we found that for none of the frames, the sound direction
feature indicated that the participant was speaking, even though we have numerous frames
containing a conversation with the robot. We have tested the component that matches the
sound with the person based on the frame on its own, however we were not able to test
each component in the network, so we expect something is wrong with the integration of
the component. In our discussion with the participants after our experiments, they both
indicated that to determine when a person was engaged as opposed to in the state interest,
they used whether the person was speaking as their main feature. Based on this we expect
that whether a person is speaking or not is an important indication for whether a frame
is considered interest or engaged for our model as well. We therefore think that this will
largely solve the false positives and false negatives between those states. Regarding the
misclassification of no interest with interest, we believe that this is partly due to the limit
of Pepper’s detection and tracking range being 2.5m. As mentioned before, the zone further
than 3.6m is called the public zone and at an event, will be the zone in which the state
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no interest can be mostly found. Of course it is possible and not unnatural for someone
to stand closer while not having the intention to interact with Pepper, however the limit
of Pepper required each scenario in our experiment setup to take place closer than 2.5m.
Both participants have indicated that if they would not have been limited to 2.5m, they
would have taken advantage of the extra space for some of the (parts of the) scenarios
classified as no interest. They did note that not every part of the scenarios felt unnatural.
We therefore expect that being able to expand the area in which people can be detected,
will improve the performance for both the interest state as well as the no interest state,
tough will not eliminate all false positives and false negatives.

The most important issue to discuss regarding the results is the poor performance of
the ending interaction state. As we have briefly explained previously, we expect this poor
performance to have two main reasons, namely the definition of the state and the inability
to take into account the temporal context of the model as we have set it up. During our
experiments, we asked the two participants to classify each others videos. We discussed
their classifications afterwards to come to an agreement on each frame and hear they’re
interpretation of engagement and its states. The definition of no interest that resulted from
this is as follows. Ending interaction starts when one of the interactors starts a closing
sentence (e.g. ‘Thank you for your time, goodbye.’), includes turning away from each
other and end after a person has walked a certain distance away or switches to another
action (e.g. looking at their phone or talking to someone else). We have not determined
which distance is far enough, however, both participants indicated that it would be farther
than the 2.5m limit to feel natural. This definition cannot be described by one type of
behaviour and is more of a succession of three actions (speaking, turning away, walking
away). This is where the inclusion of the temporal context is important. To accurately
classify ending interaction, the model has to know which action or state preceded the
current action. We intended that the model can be relatively easily expanded and therefore
consider the inclusion of the temporal context a useful option for future research. Changing
the definition of the state also has consequences for whether our current choice of features
is sufficient. Currently we only determine whether a person is speaking or not, but do not
register what exactly is said. To know whether a sentence is a closing sentence, we need at
least some degree of speech recognition. We therefore need to incorporate a new feature.
We assume that if we take on this new definition, once the model is expanded with the
inclusion of the temporal context and the speech recognition feature, the performance for
the ending interaction state will significantly increase.

Regarding the overall performance of the model, an accuracy of 0.84 means 16% of
the frames is wrongly classified. Since the intent is to use this model at an event, it is
important to know the implications on the scenarios that occur in this setting. We have not
performed any tests to specifically look into this, however we speculate that the most errors
occur around the transitions between states. We assume based on our own experience that
humans take some time to (unconsciously) make the transition between states. In these
moments, the occurrence of certain feature categories will differ less between states and
deviate more from the general occurrence for the respective states. The difference between
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the probabilities of both classes therefore also decreases, which decreases the certainty of
the assigned state. Taking the increase in error, or decrease in certainty over time into
account, may give the opportunity to predict a transition and adjust the behaviour of
Pepper accordingly.

Future work Being able to incorporate the temporal context is not only useful for clas-
sifying ending interaction, but can also be incorporated in the classification of all the other
states. Both due to human behaviour as well as physical limits (e.g. in distance or the
way humans can move their body) one cannot transition from each state to each of the
other states. For one person, the possible transitions we expect are illustrated in figure
11. Taking the previous state into account while classifying the current state can improve
the classification. Understanding the relations between the states can also potentially give
the opportunity to predict states to a certain extent. The presumed transition behaviour
might support this as well. In turn, this might improve the behaviour of Pepper.

If the inclusion of the temporal context will not be implemented for between the states,
it might improve the performance to implement a certain bias. Since we want to improve
the way Pepper determines who to engage with or pay attention to, the states interest and
engaged are more important than the other two. After all, it would be less rude to look at
a person who is not interested than to look away from someone who is. Of course it would
be even more rude to turn away from someone you are engaged in conversation with.

Figure 11: The engagement states and the transitions between them.

Possibly the most important next step for this system however, is to expand the model’s
ability to classify one person to classifying multiple people at the same time. The main
reason we have reduced our scope to one person for this thesis, is that multiple people
add multiple layers of complexity and given our time constraint as well as the amount of
work the initial setup of the system required, classifying multiple people was not feasible.
Wherever possible though, we have already incorporated the extensions we thought needed
for multiple people both in the design and technical implementation. Each component in
the network should be able to handle multiple people if all our assumptions hold true. In
our experience however, in the field of computer science, that is never the case, so we would
suggest to first (after making some final adjustments) run the model on multiple people at
once, to see where those assumptions fall through. Once the technical side of the system
works for multiple people, we need to determine which layer of complexity is most important
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Figure 12: The engagement states and the transitions between them in a scenario with
multiple people.

for the performance of the engagement model and what exactly this layer entails. One such
layer adds to the transitions between states as illustrated in figure 12. When alone, it would
be unnatural to not walk away at the end of an interaction, however when at least one other
person is present, it is possible that the first person stays after ending their interaction (e.g.
to listen to the conversation of the other person). This therefore adds another transition
from ending interaction to intention to interact (or interest). Even though the person just
finished an interaction, we can not rule out that the person might join in. This also means
that the ending interaction state only consists of a closing sentence, which adds complexity
to the classification of that state. An added benefit of classifying multiple people is that
other humans may provide clues as to what state others are in. For example, in turn-taking,
when one person ‘holds the floor’, the gaze of the other interactors is directed towards this
person [2]. This can help Pepper determine who is the most prominent speaker. Since
several of the systems in the papers covers in section 2 are able to classify multiple people
at once, we expect them to prove useful, together with our personal experience in human
interaction to expand the system while keeping its performance.

We have mentioned several times that our model has to contribute to improving an
informative conversation between human and robot. As it stands, the output of the model
is not used by Pepper. We can send the classified engagement state back to Pepper and
develop a way to base Pepper’s engagement behaviour on this state. This way we can
evaluate whether the model has the desired effect of improving the naturalness of Pepper’s
behaviour in an informative conversation at an event and whether this can sufficiently add
to Pepper’s ability to interact with humans autonomously.

Another improvement we could make is taking over something Pepper already has
incorporated to some extend in its own functionality. The ‘PeopleDetected’ event that
we use to get the position of the person visible, only fires this event when the person is
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visible by the cameras. The ALPeoplePerception11 module however has other functionality.
The module tries to find potential humans around the robot using visual cues. All new
people detected in the current video frame are associated (when possible) with previously
known people. This helps track someone and update his attributes. When somebody
gets out of the field of view, he/she is not immediately removed form the people list,
as this disappearance may be temporary and the result of the robot movements. This
concept would be useful for the engagement model as well, especially if the temporal context
becomes more important and the scenarios Pepper is put in contain more people.

Naive Bayes’ conditional independence The reason the Bayes classifier we use is
called naive is because it assumes that the features are independent. It is verified that the
the Bayesian classifier performs quite well in practice even when strong attribute depen-
dencies are present [9], however these dependencies do influence the probability estimates,
possibly to the point where its no longer usable for comparison between the humans in
Pepper’s presence. We have assumed that the features used are independent enough to
use the Naive Bayes classifier, considering that each of the features does not directly de-
pends on the result of another. However we comprehend that human behaviour may create
unconscious dependencies, for example between the facing direction and gaze. This could
potentially cause a deviation of the final score from the actual probability estimate, which
in turn could cause the wrong person to be picked as the prominent engagement partner.
Since engagement behaviour is not well understood in the human-human context, it is best
to take this into account while testing the model on multiple people.

Discussion with the experiment participants At the end of our experiments we
discussed the classifications made by the participants and asked them which features they
based those classifications on. Since we have not told them which features we have used for
our model, this gave us some insight in the behaviour other humans pay attention to when it
comes to engagement. Aside from the comments about the distance and the insights given
on the definition of ending interaction and the incorporation of speech recognition, they
both mentioned that the vertical gaze angle is an important feature to distinguish between
the no interest and interest states. It suggest a person shows no interest either by looking
down at something (e.g. their phone) or looking over Pepper’s head at something behind
the robot. In turn it suggests interest when the gaze angle is directed towards Pepper.
Both participants also confirmed our assumption that whether a person is speaking or not
is an important feature to distinguish between interest and engaged.
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[33] Hannes Högni Vilhjálmsson. Autonomous communicative behaviors in avatars. PhD
thesis, Massachusetts Institute of Technology, 1997.

[34] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh. Convolutional
pose machines. In CVPR, 2016.

[35] Zerrin Yumak, Bram van den Brink, and Arjan Egges. Autonomous social gaze model
for an interactive virtual character in real-life settings. Computer Animation and
Virtual Worlds, 28(3-4):e1757, 2017.

37


	Introduction
	Related work
	Human-Human Interaction
	Human-Robot Interaction
	Initiating an interaction
	Maintaining and ending interaction

	Pepper
	Research goals

	Approach
	Specifications Pepper
	Hardware
	Software

	Platform for Situated Intelligence
	Engagement model
	Features
	Method for combining features

	Evaluation

	Implementation
	Results
	Conclusion
	Discussion and future work
	Acknowledgements

