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Abstract

Ontology engineering is a strenuous task, which has fueled research in-
vestigating how an ontology can be generated from text. Ontologies store
information in triples, which are also the targets of information extraction.
This insight is used in this thesis to motivate using a method from informa-
tion extraction to learn ontology triples. The transfer of methods is novel,
as well as the scope of the triple extraction. Parts of the triple have been
extracted with classifiers in previous studies, but in this thesis, a machine
learning method is used to classify complete triples. Several classifiers are
made to classify triples and arguments of triples. The features used are
words, POS tags and dependency parses. The best-performing triple classi-
fier achieves an F1 score of 0.520, outperforming the state of the art, albeit
on an easier task. These results indicate that the novel approach taken in
this thesis is promising.
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Chapter 1

Introduction

This thesis presents a new approach to learn information for an ontology.
The approach is inspired by information extraction techniques. Ontologies
and information extraction systems share a basic building block: the triple,
which consists of two arguments and a relation between them. In this thesis,
a classification approach is used to extract triples for an ontology. Classi-
fication has been used in the domain of information extraction to extract
arguments, or relations, but not both. Thus, this thesis is innovative in two
different ways. The first being that it carries over a method to a new do-
main. The second is that it extends previous classification approaches used
in information extraction. The research question driving this thesis is how
ontology triples can be classified using a machine learning classifier.

This thesis is organized in three main chapters: background, experimen-
tal study and discussion. Naturally, earlier chapters inform the choices made
in later chapters and fuel the discussions there. However, the chapters are
written such that they can be read in isolation if necessary.

In Chapter 2, the theoretical background is given that is needed to under-
stand the motivation of experimental design choices and place the results
and scope of the study in context. There are three main sections in this
background chapter: ontologies, information extraction and classification.

In Chapter 3, the experimental study is laid out. An existing dataset
is adapted and expanded with negative examples and more features so it
can be used for the purpose of training classifiers. In this study, several
different classifiers are trained on different features and tested to investigate
how triples can be classified most adequately.

Chapter 4 wraps up this thesis. It contains a conclusion and discusses
future research possibilities.
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Chapter 2

Background

The work presented in this thesis is inspired by the need for ontologies and
the high costs of creating them. As such, a theoretical background on on-
tologies is needed, which is given in the first section of this chapter. First,
I explain what ontologies are, and highlight that the specific form of an
ontology may vary from case to case. Highly expressive ontologies have dif-
ferent forms than less expressive ones. Then, the field of ontology learning
is introduced. I argue that less expressive ontologies may be learned using
techniques from information extraction (IE), given the structural similarities
of an ontology triple and an IE triple. Information extraction is the topic of
the second section of this chapter. It is explained what (open) information
extraction is, why it can be compared to ontology learning, and the state of
the art is described. In the third section of this chapter, I give background
information on classification and highlight related work in which a classifica-
tion approach is used for relation extraction and named entity recognition.
I make the case that information extraction can be seen as a classification
problem. While classification techniques have been used for relation extrac-
tion and named entity recognition, two subtasks of information extraction,
they have not been used to extract IE triples.

2.1 Ontologies

An ontology is a formal model of the structure of a system, capturing rel-
evant concepts of a specific domain and the relations between these con-
cepts (Guarino, Oberle, & Staab, 2009). An example of such a system is
a company, with different functions of employees as concepts, and the in-
terpersonal relationships of people as relations. In this example, concepts
of interest could be manager and secretary. A possible relation is that the
secretary assists the manager. Specific employees are instances of a concept.
To illustrate this, an example is given below. The concepts manager and
secretary are a set containing specific individuals, indicated with a unique
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number. The relation assists is a set with tuples that specify the two ele-
ments (people) engaging in that relation.

• manager = {85331, 10952, ...}

• secretary = {98090, 36561, ...}

• assists = {(98090, 85331), (36561, 10952), ...}

(example derived from Guarino et al. (2009))

The notion of an ontology was originally defined by Gruber (1995) as
“an explicit specification of a conceptualization”. A conceptualization is a
simplified view of the world that one wants to represent. Every knowledge
base, or knowledge-based system needs a conceptualization (Gruber, 1995).
An ontology explicitly specifies the concepts and relations that are relevant
for modelling a domain (Gruber, 2008). Borst (1997) defined an ontology
as a “formal specification of a shared conceptualization”. This definition re-
quires that the conceptualization is expressed in a formal, machine readable
format and that the conceptualization expresses a shared view. These re-
quirements points to the application of ontologies. Ontologies are commonly
used to exchange data among different systems, and enable interoperabil-
ity between systems and databases. They also provide a means for query
answering and accessing information in general (Gruber, 2008).

2.1.1 Expressivity of Ontologies

Ontologies can have many different forms and vary in their amount of ex-
pressivity. This stems from the fact that there is no agreement on what
kind of formal representation is needed for an ontology. Dictionaries, tax-
onomies, thesauri and richly axiomatized formalizations can all be ontologies
(Lehmann & Völker, 2014). Uschold and Grüninger (2004) introduced the
continuum of ontologies, with very lightweight ontologies that consist of
concepts only on one end of the spectrum, and formalized ontologies with
relations between concepts being highly specified on the other end of the
spectrum. Some knowledge representations have a richer meaning than oth-
ers. The expressivity of ontologies relies mostly on the expressivity of the
relation that is specified between concepts, as was also indicated by the
ontology continuum.

Knowledge can be represented in many different ways. In section 2.1, it
was represented using notation from set theory. It can also be represented
with Resource Description Framework (RDF), which is a standardized model
for knowledge representation (Jentzsch, Usbeck, & Vrandečić, 2014). One
of the basic notions of RDF is a triple. Triples consist of three elements:
a subject, a predicate and an object. The subject and object correspond
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to the aforementioned concepts, while the predicate indicates the relation
between these two concepts. An example of a triple is the following:

Sara leadResearcher grantProject

Triples can be expressed directly using RDF. We can create more triples,
implicitly, by using more expressive semantics in addition to RDF. Lan-
guages that do this are, among others, RDFS and OWL (Jentzsch et al.,
2014). RDFS can be used to describe class and property hierarchies. A
class corresponds to what was called a concept earlier, and a property to a
relation. An example of an RDFS triple is

leadResearcher rdfs:subPropertyOf researcher

Using the previous RDF triple and the RDFS triple, we can now infer that

Sara researcher grantProject

OWL expands the vocabulary to describe properties and classes even further.
It allows classes to be defined on the basis of another class (e.g. comple-
mentOf) or multiple other classes (e.g. unionOf, intersectionOf). It is also
possible to provide additional requirements for classes, (e.g. an instance of
one class cannot be an instance of another class, using disjointWith). Prop-
erties can also be restricted using OWL vocabulary by specifying that, for
example, at least one value of the property must come from a specific class
(someValuesFrom).

The point of this subsection was to point the reader’s attention to the
fact that ontologies vary in their expressivity, and to illustrate what is meant
by a highly specified formal model. This is important because the richness
or expressiveness of ontology determines the complexity of learning one.
Ontology learning is the subject of section 2.1.2.

2.1.2 Ontology Learning

Constructing an ontology is an expensive task which requires expert knowl-
edge on both the domain of interest and ontology engineering. In order
to create an ontology, the ontology engineer must acquire the specialized
domain knowledge that needs to be contained in the ontology, and then
formalize it in a manner that is logically sound. Once the ontology is con-
structed, it needs to be maintained, further increasing the costs of ontology
engineering. While there is a great demand for structured knowledge repre-
sentations, it is costly to do this manually, which is why techniques that can
do this automatically using data are attractive. Ontology learning, a term
that was coined by Mädche and Staab (2001), is concerned with this task.

Ontology learning hinges on the idea that domain knowledge is expressed
in and can be extracted from text. When a text is written, the writer’s
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Figure 2.1: Ontology learning layer cake (reprinted from Asim et al. (2018))

knowledge of a domain is converted into text. That knowledge must then
be reconstructed using the textual output of the writer. Asim, Wasim, Khan,
Mahmood, and Abbasi (2018) refer to ontology learning as a reconstruction
process. Crucial in this respect is that not all the writer’s knowledge is ex-
plicitly transferred to text. In fact, Biemann (2005) claims that the more
trivial or common-knowledge a piece of information is, the less likely it is to
be lexicalized. This is a big (if not the biggest) limitation of ontology learn-
ing: only knowledge that is expressed in text can be extracted. Even with
a perfect ontology learning method in place, knowledge that is not explic-
itly lexicalized can hardly or even impossibly be extracted. Cimiano (2014)
states that an ontology reflects the conceptualization of a domain, whereas
the results of an ontology learning algorithm reflects the idiosyncrasies of
the dataset. He claims that this is the reason why “ontology learning has
turned out to be much more difficult than expected” (p. v). It is important
to be aware of the limitations of ontology learning. However, these limita-
tions hold for many NLP tasks and may in part be solved by using more
data. Despite its limitations, ontology learning is a valuable task.

A general approach to ontology learning is described by the ontology
learning layer cake, a concept introduced by Buitelaar, Cimiano, and Magnini
(2005). Figure 2.1 illustrates this concept. The first layer in the cake is
term extraction, followed by synonym extraction. They are combined into
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concepts, from which a hierarchy within the concepts is derived. RDFS
vocabulary is well suited to express hierarchies. An example of a concept
hierarchy expressed using RDFS is mountainBike rdfs:subClassOf
bike. The fifth layer is relation extraction, and the sixth relation hi-
erarchy extraction. A relation hierarchy can be expressed in the follow-
ing way: brotherOf rdfs:subPropertyOf siblingOf. Next, axiom
schemata are instantiated. An example of this step is to mark two classes
as disjoint using OWL vocabulary. Finally, axioms are extracted from text.
An example of an axiom is that every research project must have a lead
researcher.

The ontology learning layer cake is not a normative model which indi-
cates the steps that are to be followed in order to learn an ontology. It
does give an overview of different aspects of ontology learning, and roughly
indicates the complexity level of the task. The lower levels are relatively
easy, whereas a higher level on the layer cake implies a more difficult task.
The layer cake may be used as a roadmap, where the lower levels indicate
the first steps, and the higher levels the final steps. However, this is not
necessarily the case; certain levels may be collapsed or skipped altogether.

The layer cake must be viewed in relation to ontology expressivity. A
highly expressive ontology requires all levels of the layer cake. Less ex-
pressive ontologies may lack concept and relation hierarchies, and axioms.
Thus, the layer cake also represents a way to think about ontology learning
in terms of ontology expressivity.

2.2 Information Extraction

In the previous section, we have seen what ontologies are, and what ontology
learning entails. There is a great deal of variation in ontology expressivity,
which is reflected in the complexity of the ontology learning task. In this
thesis, I argue that information extraction is, at its core, quite similar to
ontology learning. However, one must also realize that in order to create a
fully fledged, highly expressive ontology, more is needed than information
extraction might be able to provide, which we can understand better after
seeing different types of ontologies. In section 2.2, information extraction is
introduced, and in section 2.2.1, the connection between ontology learning
and information extraction is established. In section 2.2.2, the state of the
art in open information extraction is discussed.

Information extraction (IE) refers to extraction of structured representa-
tions from unstructured information in natural language (Jurafsky & Mar-
tin, 2009). These representations take the form of a tuple 〈arg1, rel, arg2〉
containing two arguments and a semantic relation between them (Niklaus,
Cetto, Freitas, & Handschuh, 2018). Given a sentence “Jeff founded Ama-
zon”, the tuple 〈 Jeff, founded, Amazon 〉 should be extracted.
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Early extraction tasks focused on the extraction of a specific argument:
the named entity (Sarawagi, 2008). Over the years, information extraction
has diversified and can now be applied more broadly to include not only
named entities, but entities in general, or even more general arguments.
Likewise, the extraction of relations has also opened up to more possibili-
ties, most notably after the introduction of Open IE1 by Banko, Cafarella,
Soderland, Broadhead, and Etzioni (2007). Whereas traditional IE methods
target a small set of predefined relations, Open IE extracts relations without
the need to prespecify them.

2.2.1 Connection to Ontology Learning

In section 2.1.1, the ontology triple was introduced. It consists of a sub-
ject, predicate and an object. The information extraction triple consists
of an arg1, relation and an arg2. Despite their different terminology, these
concepts are interchangeable. The subject corresponds to the arg1, the pred-
icate to the relation, and the object to the arg2. In this thesis, I use the
terminology of the IE triple, since I will use IE methodology. Because the
basic building block of both an ontology as well as an IE system is a triple,
we can claim that the task of information extraction is very similar to the
task of ontology learning. Ontology learning and information extraction are
both concerned with extracting tuples containing concepts and a relation
between them. However, for a highly expressive ontology, it is not enough
to extract just these three instances and store them in a tuple. According to
Suchanek (2014), there are three more requirements that need to be fulfilled
in order to use this tuple in an ontology:

1. Canonicity: The entities must be disambiguated. In the example
above, the information founded Amazon must be linked to the entity
Jeff Bezos instead of another entity with the first name Jeff.

2. Taxonomic organization: The entities must be placed in a taxonomy.
Jeff Bezos is a founder, which is a subclass of person. Jeff Bezos must
not only be part of the ontology as a separate instance, but must be
part of a taxonomy that indicates he is a founder and a person.

3. Consistency: The extracted information has to be consistent with the
other information in the ontology. For example, the information Jeff
founded Amazon is not consistent with an existing ontology that con-
tains information that Amazon was founded in 1920 and that Jeff was
born in 1970. In this case, the new information should not be entered
until this inconsistency is resolved.

1In this thesis, I use the terms information extraction and open information extraction
loosely: IE is also used to refer to Open IE. Since the field has evolved over the years, the
distinction between the two has become less distinct. Moreover, the difference between
the two is not of importance for this thesis.
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These requirements must be seen in relation to ontology expressivity. Suchanek
(2014) considers only highly expressive ontologies to be ontologies. Less ex-
pressive ontologies do not need to meet the requirements above. Again,
though, it is important to be aware of the different forms of ontologies.
Looking ahead, the goal of this thesis is to create a system by which triples
for a less expressive ontology can be learned. Thus, the system created in
this thesis will not meet the requirements set by Suchanek (2014).

The system will be created using techniques from open information ex-
traction. Therefore, it is important to gain insight into the state of the art
in open information extraction, which is described in section 2.2.2.

2.2.2 State of the Art

In order to determine the state of the art, systems need to be evaluated in the
same ways, so they can be compared. The standard for Open IE evaluation
is OIE2016 (Stanovsky & Dagan, 2016). Recently, a new standard has been
proposed with the name CaRB (Bhardwaj, Aggarwal, & Mausam, 2019).
The creators of this new standard argue that OIE2016 contains significant
errors in the gold dataset and misses important tuples, hence a new standard
for evaluation is needed. The two standards show that OLLIE, ClausIE,
OpenIE4, OpenIE5, and PropS are among the best performing open IE
systems. Table 2.1 summarizes the evaluation metrics of the most prominent
open IE systems from both the CaRB and OIE2016 evaluation.2 Overall,
the results show that OpenIE4 has the best performance. In the following
subsections, I describe the goals and methods of the systems from Table 2.1.

CaRB OIE2016

Precision Recall F1 AUC AUC

OLLIE 0.505 0.346 0.411 0.224 0.44 - 0.47
ClausIE 0.411 0.496 0.450 0.224 0.48 - 0.56
OpenIE4 0.553 0.437 0.488 0.272 0.53 - 0.56
OpenIE5 0.521 0.424 0.467 0.245
PropS 0.340 0.300 0.319 0.126 0.44 - 0.46

Table 2.1: Evaluation metrics for different Open IE systems (adapted from
Bhardwaj et al. (2019) and Stanovsky and Dagan (2016))

2OIE2016 assigns higher scores than CaRB due to a difference in scorers.
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OLLIE

The goal of OLLIE (Mausam, Schmitz, Soderland, Bart, & Etzioni, 2012)
was to improve on the state-of-the-art Open IE systems at the time, such
as ReVerb (Fader, Soderland, & Etzioni, 2011) and WOE (Wu & Weld,
2010). It aims to overcome two weaknesses present in those systems: (1) only
extracting relations expressed by verbs, and (2) ignoring context. OLLIE
uses over 110,000 seed triples from ReVerb to bootstrap a large training set;
it collects the sentences from a corpus that contain all the content words from
the seed triple. Then, OLLIE learns open pattern templates (mappings from
dependency paths to an extraction) using this training set. These patterns
are used to match patterns in a sentence, yielding the desired triples. These
triples are subjected to a context analysis. In this final step, information is
added about the context of the triple, containing for example a condition
under which the extraction is true.

ClausIE

ClausIE (Del Corro & Gemulla, 2013) is based on the idea that the clause
type describes a minimal unit of coherent information in a clause, and that
this can be used to form a proposition. Extracting coherent triples is an
important challenge in Open IE, and clause types can be used to avoid inco-
herent triples. Examples of clause types are Subject Verb and Subject Verb
Complement. ClausIE first computes a dependency parse for the sentence.
Then, the clauses within the sentence are computed. Once the clauses are
known, ClausIE determines the clause type (e.g. SV, SVO, SVOO, SVC)
using the dependency pattern and information about the verbs. Finally,
propositions are generated using those coherent clauses.

OpenIE4

OpenIE43 is a combination of SRLIE4 (Christensen, Mausam, Soderland,
& Etzioni, 2011) and RelNoun (Pal & Mausam, 2016). SRLIE generates
tuples using Semantic Role Labeling (SRL). The first step of SRLIE is to
process sentences with a dependency parser. Then, an SRL system is used
to produce SRL frames. The final step is to process the frames to produce
n-ary5 extractions. This is necessary as many frame arguments are not con-
sidered extraction arguments in Open IE. The main purpose of using SRL
frames is to be able to distinguish between information that is and is not
asserted by the sentence. For example, the sentence “Early scientists be-
lieved that the earth is the center of the universe” (example from Mausam,
2016) does not assert that the earth is the center of the universe. Rather, it

3OpenIE is available at https://github.com/knowitall/openie
4SRLIE is available at https://github.com/knowitall/srlie
5These are needed for relations mediated by a ditransitive verb
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asserts that early scientists believed this. Like OLLIE, SRLIE is devoted to
solving the problem of extracting tuples that are not true, which is caused
by ignoring context. RelNoun is a rule-based Open IE system that extracts
noun-mediated relations, such as 〈Mlada, be bride of, Yaromir 〉 from a sen-
tence like “Mlada, Yaromir’s bride,...”. Extracting noun-mediated relations
was the other challenge that OLLIE originally tried to solve.

OpenIE5

OpenIE56 is a combination of CALMIE (Saha & Mausam, 2018), BONIE
(Saha, Pal, & Mausam, 2017), SRLIE and RelNoun. SRLIE and RelNoun
are described above. CALMIE is specifically designed to improve processing
of conjuctive sentences. It splits a conjunctive sentence into multiple simple
sentences, and then passes these sentences to OpenIE4 (SRLIE and Rel-
Noun). BONIE is designed to improve extraction from numerical sentences.
It learns specific dependency patterns that express numerical relations by
bootstrapping in a similar way OLLIE does.

PropS

PropS (Stanovsky, Ficler, Dagan, & Goldberg, 2016) outputs a representa-
tion of the propositional structure of a sentence. The proposition structure
is induced from a (Stanford) dependency tree. The bigger bulk of the tree
to proposition conversion is done in a rule-based fashion. Certain phenom-
ena are difficult to identify from a dependency tree (such as the difference
between raising and control). PropS uses heuristics to target these construc-
tions and can then provide a fitting semantic representation.

2.3 Classification

In the previous section, information extraction was introduced and the state-
of-the-art methods were highlighted. In this section, classification is intro-
duced as a method for information extraction. First, a short introduction
on classification is given. Then, several studies are reviewed in which clas-
sification is used for named entity recognition and relation extraction, two
subtasks of information extraction.

Classification is a type of supervised learning where the aim is to cat-
egorize a set of data into classes. The algorithm used for classification in
this thesis is a Support Vector Machine (SVM). Figure 2.2 illustrates how
an SVM works. An SVM finds the optimal hyperplane7 for linearly separa-
ble patterns. The optimal hyperplane is the hyperplane that maximizes the
margin between the classes.

6OpenIE5 is available at https://github.com/dair-iitd/OpenIE-standalone
7A hyperplane is a higher-dimensional generalization of a line or plane
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Figure 2.2: Support Vector Machine

SVMs can be extended to cases in which the data is not linearly separable
in the following way. First, the data is transformed into higher dimensional
data using a nonlinear mapping. This mapping is also known as a kernel
function. Examples of kernels are the polynomial kernel or the radial basis
function (RBF) kernel. After the transformation, a linear separating hyper-
plane is found in this new, higher-dimensional space. This last part is no
different from what is done with linearly separable data. The difference is
that the hyperplane that is found in the new space is a non-linear hyperplane
in the original space.

2.3.1 Classification for information extraction

Classification techniques can and have been used for information extraction.
This does require a reformulation of the problem; classification can be used
to categorize a given input, not to extract entries that fit a certain class. I
return to this issue when introducing my method in the next chapter. In
what follows, I review studies concerned with two subtasks of information
extraction: 1) named entity recognition, and 2) relation extraction.

Takeuchi and Collier (2002) create an SVM to classify named entities in
the MUC-6 dataset and a molecular biology dataset. The features used are
surface word forms, POS tags, orthographic features and word class tags of
previous words. They found that POS tags hindered the performance on
their biomedical data, most likely due to the fact that the tagger was trained
on news texts. Their best-performing classifier obtains F1 scores of 0.718
and 0.748 on the different datasets.

Isozaki and Kazawa (2002) propose an SVM-based system to classify
named entities in Japanese. POS tags, character types and the word itself
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are collected for each word and its surrounding 2 words, yielding a total of
15 features. Their classifier achieves an F1 score of 0.900.

Ekbal and Bandyopadhyay (2008) create an SVM-based named entity
recognizer for Bengali to classify named entities into four predefined cate-
gories: person, location, organization, and miscellaneous. They show that
prefixes, suffixes, POS tags of current and surrounding 3 words, NE infor-
mation of previous words, digit features and gazetteer lists are the features
that contribute most to their NE system created for Bengali. They reach
an F1 score of 0.918. Ekbal and Bandyopadhyay (2010) adapted the system
to include Hindi, and incorporated some different features, including lexical
context patterns.

Hong (2005) uses SVMs to detect and classify relations between enti-
ties in the ACE corpus. The features that were used include words, POS
tags, (named) entity types, chunk tags, grammatical function tags, and the
distance between two named entities. The best F1 score achieved for the
combined task of detection and classification is .588. An F1 of .733 was
achieved for classification only.

Choi and Kim (2013) propose a social relation extraction system that
uses an SVM with a dependency kernel8 to extract relations between two
people mentioned in a text. The model with the best relation extraction
performance reaches an F1 of 0.626.

Boella, Di Caro, and Robaldo (2013) create classifiers to extract seman-
tic relations from legal texts. They create three binary SVMs; one for each
semantic tag (active role, passive role, involved object). The syntactic de-
pendencies of nouns are used as features. All nouns in a text are classified in
one or none of the three semantic tags. The F1 score for classifying instances
of active roles is relatively high (.948) compared to that of the passive role
classifier (.423) and the involved object classifier (.414).

Torres, de Piñerez Reyes, and Bucheli (2018) present a semantic rela-
tions classifier for Spanish. Their aim is to detect and classify relations
holding between two entities. The SVMs are trained on lexical, syntactic
and semantic features. The model trained on these three types of features
achieves an F1 score of .753.

In this section, examples were given of named entity recognition and
relation extraction using a classification approach. However, classification
has not been used to extract complete IE triples. In the next chapter, an
experimental study is described that investigates this possibility.

8It is beyond the scope of this thesis to elaborate on dependency kernels. Suffice it to
say that tree kernels are used to determine whether two entities are structurally related.
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Chapter 3

Experimental Study

In chapter 2, ontology learning and information extraction were discussed.
We saw that triples, i.e. tuples with three arguments1: relation, arg1 and
arg2, are an important building block of both an ontology as well as an
information extraction system. Classification techniques are used for infor-
mation extraction, but not for ontology learning. Given the shared building
block of ontologies and information extraction systems, I explore the possi-
bility of using classification for ontology learning. The study presented in
this chapter aims to answer the question if and how triples can be classified
using a machine learning classifier. Answering this question is an important
first step towards automatically creating ontologies using machine learning.

In section 2.3.1, examples were given of studies in which classification
approaches were used for relation extraction and named entity recognition.
Specifically, SVMs were used to classify relations or named entities. There-
fore, I hypothesize that triples can also be classified with an SVM. Using
classifiers for an extraction problem requires generating potential targets
for classification, as a classifier predicts the class of a given input; it does
not extract instances of a class. Thus, to extract triples using a classifier,
the problem needs to be restated as a classification problem. This means
potential triples need to be generated from a sentence, which can then be
classified as either a triple or not a triple.

To answer the question how triples can be classified, several different
models are created using different feature combinations. The three features
used in this study are 1) bag of words, 2) bag of POS tags, 3) and bag of
dependency parses. The IE studies using classification presented in section
2.3.1 often used features of a word and its neighboring words, including raw
words or tokens, and POS tags. Since no features of neighboring words are
collected in this study, dependency parses are used to take into account the
context of a word (as a dependency is influenced by context).

1In this thesis, arguments is used to refer to the three arguments of a triple: relation,
arg1, and arg2. When referring to the arguments of a relation, arg1 and arg2 are used.
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The use of these features, and the classification approach in general,
offers an important advantage over state-of-the-art Open IE methods such
as the ones discussed in section 2.2.2. The method in this study does not
rely on advanced NLP techniques such as semantic role labeling or context
analysis. Rather, it uses basic tools like POS taggers and parsers, which are
more likely to be available for languages other than English, and classifiers,
which are language-independent.

In this thesis, two types of classifiers are made: a triple classifier and an
argument classifier. The main goal of this thesis is to create an adequate
triple classifier. The purpose of the three argument classifiers is two-fold.
The first purpose is to investigate the performance of the triple classifier on
all the three elements of a triple. By creating a separate relation classifier,
for example, we can see whether an SVM with the features used in this thesis
is an adequate method to classify a relation. If the three arguments cannot
be classified properly, then classifying the complete triple properly is not
realistic either. The opposite is not necessarily true: it is possible that the
three arguments can be classified properly, but that the triple classifier does
not have an adequate performance using the same method. This is because
three items that are classified properly as arguments do not necessarily form
a correct triple. The second purpose of the argument classifiers is for the
triple classifier to be used on datasets without labeled triples in the future.
For now, it suffices to say that argument classifiers are needed to generate
potential arguments for the triple classifier if a dataset does not have labeled
triples. The dataset used in this thesis does label instances of triples in a
sentence. I return to the second purpose in section 4.2.

The structure of this chapter is as follows. Section 3.1 details the method
for creating the classifiers. First, the dataset is described. Second, the
algorithm is discussed. This entails feature extraction, preprocessing, and
training and testing procedures. Section 3.2 gives the results of the study.
Section 3.3 is a discussion of those results.

3.1 Method

This section lays out the method of creating the argument classifiers and
triple classifier. In section 3.1.1, I describe and illustrate the data that is
used to train and test the classifiers. First, the CaRB dataset is described.
This dataset contains sentences and accompanying triples, but no negative
examples of triples. In the second part of section 3.1.1, I describe how the
negative examples were generated to create training and testing data. Sec-
tion 3.1.2 describes the algorithm used to create the classifiers. First, feature
extraction is described. Second, I detail what models are created and how
that is done. This includes a description of different feature combinations
that were used, preprocessing steps and and the training and testing process.
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3.1.1 Dataset

CaRB dataset

The CaRB dataset (Bhardwaj et al., 2019) is used to train the classifiers.
The dataset consists of over 1,200 sentences from which 5,000 triples are
extracted by human annotators. The sentences are sampled from English
Wikipedia and the CoNLL-2009 shared task (Bhardwaj et al., 2019; Hajič
et al., 2009; He, Lewis, & Zettlemoyer, 2015; Stanovsky & Dagan, 2016). As
an example, a sentence with three triples is taken from the dataset:

Voyslava has killed Mlada , Yaromir ’s bride , to have him for herself .
〈 has killed, Voyslava, Yaromir ’s bride 〉
〈 has killed, Voyslava, Mlada 〉
〈 is bride of, Mlada, Yaromir 〉

Triples are tuples consisting of three arguments: a relation (e.g. has killed),
the relation’s first argument (arg1, e.g. Voyslava), and its second argument
(arg2, e.g. Yaromir’s bride). In the CaRB dataset, the majority of tuples
has three arguments, such as the examples given above. However, there are
tuples with a different number of arguments. In this thesis, only tuples with
three arguments are used, as a fixed number of arguments is preferable for
the purposes of training a classifier, and triples are the canonical tuples.
Tuples with more than three arguments are adapted to triples, and tuples
with two arguments are removed from the dataset.

Tuples with more than three arguments consist of a relation, an arg1, an
arg2, and one or more modifiers. The entries with modifiers are preserved,
because the modifiers can be removed, yielding a tuple with three arguments.
An example of an entry with a modifier is given below:

Mr. Baker found an opening under the house .
〈 found, Mr. Baker, an opening, under the house 〉

An entry with a ditransitive verb is not an example of a tuple with more
than three arguments. Ditransitive verbs are captured in two triples in the
CaRB dataset. An example is given below:

XM offers a free month of service to subscribers who called in complaints
〈 offers, XM, a free month of service 〉
〈 offers to, XM, subscribers who called in complaints 〉

Second, there are tuples with only two arguments. Although it is not fre-
quent in the dataset, there are intransitive verbs and transitive verbs that
spell out only one argument2. Entries that have a relation with only one
argument are removed from the dataset. An example is given below:

Competition in the sale of complete bikes is heating up too .
〈 is heating up too, Competition in the sale of complete bikes 〉

2In this case, argument refers to the arguments of a verb instead of the arguments of
a triple. In the remainder of this thesis, it does refer to the arguments of a triple.
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Creating the training and testing data

The CaRB dataset contains only positive examples of triples that are ex-
tracted from a sentence. In order to train a classifier, negative examples
are also necessary. First, I explain how the training and testing data for
the arg1, arg2 and relation classifiers is created. Then, I explain how the
training and testing data for the triple classifier is created.

Argument classifier data The dataset contains positive examples of
triples. The arguments of these triples are the positive examples of ar-
guments. Negative examples of arguments are generated using the charac-
teristics of the positive examples to minimize differences between positive
and negative examples in the data. The lengths (number of tokens) of all
positive examples of an argument are collected. This is done by creating a
list for each argument (arg1, arg2 and relation) containing the lengths of all
the examples of that argument. Say one example of an arg1 contains two
tokens, another one contains seven tokens, and yet another contains three,
then a list [2,7,3] is created. For each positive example of an argument,
a negative example is generated, randomly choosing a length from the list
gathered to determine the number of tokens the argument must consist of.
Suppose the sentence is “11 million copies of the flyer were distributed to the
public”, and the length that was randomly chosen from the list containing
arg2 lengths is 2. In that case, two tokens are randomly chosen from the
sentence, yielding the negative arg2 example “public distributed”.

Example

sentence 11 million copies of the flyer were distributed to the public

relation were distributed
arg1 11 million copies of the flyer
arg2 to the public

neg relation copies to million
neg arg1 of the flyer
neg arg2 public distributed

Table 3.1: Example of training and testing data

After the negative training and testing data is generated, it is added to
the positive training and testing data. The result of merging the positive
and negative data is indicated by training and testing data (arguments) in
Figure 3.1. The negative examples of arguments taken from a given sentence
are displayed on one row, and labeled with a 0.
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Figure 3.1: Creating training and testing data for the argument classifier

Figure 3.2: Creating training and testing data for the triple classifier
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Triple classifier data To create a triple classifier, training and testing
data is needed that lists positive and negative examples of triples. The train-
ing and testing data created for the argument classifiers does not suffice for
the purposes of training and testing a triple classifier, as it lists positive and
negative examples of arguments. The negative training and testing data for
the triple classifier should consist of a combination of positive and negative
examples of arguments; it should not be only negative arguments. However,
the arguments training and testing data is used as a starting point for the
triple training and testing data. Figure 3.2 shows the process of creating
training and testing data for the triple classifier. The training and testing
data (arguments) corresponds to that in Figure 3.1. Creating the triple
training and testing data is done by extracting all possible combinations of
positive and negative arguments for a sentence. In Figure 3.2, a positive
argument is indicated with a tick and a negative argument is indicated with
a cross. It can be seen that a sentence (e.g. a or b) has an entry with a
positive set of arguments and an entry with a negative set of arguments.
There are 23 = 8 triples generated for each pair of a positive and a negative
entry. One of these triples is a positive example of a triple (only positive
arguments), and the other 7 are negative examples of triples (ranging from
1 negative argument to only negative arguments). The generated negative
triples are stacked and added to the positive triples, creating the training
and testing data (triple).

3.1.2 Algorithm

Feature Extraction

The training and testing data that was described in the previous section
contains sentences and the arguments making up a triple. More features are
generated for the classifier to train on. These features are extracted using
the data present in the training and testing data. The features used in this
study are words, POS tags and dependency parses. Figure 3.3 details the
steps of the feature extraction process: extracting sentences, tagging and
parsing them, extracting arguments, collecting the argument’s POS tags
and dependency parses, cleaning the tags and parses, concatenating them
and adding them to the training and testing data to create training and
testing data with features.

First of all, the sentences are extracted from the dataset, after which
they are tagged and parsed using SpaCy (Honnibal & Montani, 2017). Then,
the arguments are extracted, and the POS tags and dependency parses are
collected for each argument token. In Figure 3.3, the sentence “the woman
walked the dog” is used as an example. Suppose the triple belonging to this
sentence is 〈 walked, the woman, the dog 〉. POS tagging and dependency
parsing is done on the sentence, the arguments (relation, arg1, or arg2) are
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Figure 3.3: Creating features for the training and testing data

extracted from the dataset and their POS tags and dependency parses are
collected. Arg1 consists of two tokens: “the” and “woman”. Two POS
tags are collected for “the”, which are both associated with the DET tag.
“Woman” is associated with the NOUN tag. Two dependency parses are
collected for “the”, both of with are det. The dependency parse collected
for “woman” is nsubj.

The difficulty is to make sure that the argument token corresponds to the
correct token in the sentence in case a token occurs more than once.3 That
is why first all the POS tags and dependency parses are collected, and then
an additional step of cleaning is done. In this cleaning step, it is checked
whether tokens have multiple POS tags or dependency parses. This is the
case when a token occurs twice in the sentence. Suppose a token occurs
twice and it has two different POS tags. In this case, the token’s POS tags
are removed. The rationale behind this is to prevent noise. No POS tag
of a certain token is chosen instead of a correct POS tag and one or more
false ones. If the multiple POS tags are identical, the redundant POS tags
are removed. This would have been done in the example used before, where
both instances of “the” in the sentences were associated with the DET tag.
The same process is used to check if a token has multiple dependency parses.

Besides checking for multiple POS tags and dependency parses, the
cleaning step incorporates a check for implicit sentences. It is checked
whether all the tokens in the triple are present in the sentence. If they

3The position of an argument’s token in the sentence is not indicated in the original
CaRB dataset. That is likely due to the fact that not all tokens in the triple’s argument
are part of the sentence.

24



are not, the triple is considered implicit. An example of an implicit triple is
given below:

Voyslava has killed Mlada , Yaromir ’s bride , to have him for herself .
〈 is bride of, Mlada, Yaromir 〉

It can be gathered from “Mlada, Yaromir’s bride” that Mlada is the bride
of Yaromir. This is captured in the triple given in the example. I consider
the relation implicit, as the tokens from “is bride of” are not present in
the sentence. If one of the triple’s arguments is implicit, then the triple is
implicit. Implicit triples are removed from the dataset for two reasons: 1)
their POS tags and dependency parses cannot be collected from the sentence,
and 2) to minimize differences between the positive and negative examples
of triples. Since negative examples are generated using only tokens from the
sentence, it is fairer to allow only positive examples with tokens that are
present in the sentence.

After collecting and cleaning the POS tags and dependency parses, the
POS tags and dependency parses of all argument tokens are concatenated
and added to the training and testing data. An example of the data yielded
by the process is given in Table 3.2 and is indicated by training and testing
data (features) in Figure 3.3.

Example

sentence 11 million copies of the flyer were distributed to the public
relation were distributed
arg1 11 million copies of the flyer
arg2 to the public

relation POS AUX VERB
arg1 POS NUM NUM NOUN ADP D NOUN
arg2 POS ADP D NOUN

relation dep auxpass ROOT
arg1 dep compound nummod nsubjpass prep det pobj
arg2 dep prep det pobj

Table 3.2: Example of training and testing data with features
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Models

A support vector machine (SVM) with an RBF kernel was trained on the
triple data to create a triple classifier. Separate SVMs with RBF kernels
were trained on the argument data to create three argument classifiers. For
all classifiers, 2-fold cross-validation4 was used to train and test the models,
since a limited data sample is available. The training and testing data was
vectorized again in each fold to create a model that is based on the training
data only, and is not influenced by the testing data. Vectors with absolute
counts were used. Different models were created by training the classifiers on
different combinations of three features: words, POS tags and dependency
parses. When a classifier is trained using a feature x, the training and testing
data are vectorized, creating a bag of x representation. The following models
were created for each of the four classifiers:

• Bag of Words (BoW): a BoW model is created by training the classi-
fier on the vectorized columns with the original arguments or triples,
containing the tokens or words that make up the argument or triple.

• Bag of POS tags (BoP): a BoP model is created by training the clas-
sifier on the vectorized POS tags of the argument or triple.

• Bag of dependency parses (BoD): a BoD model is created by training
on the dependency parses.

• Combination of BoW and BoP (BoW+BoP): this model is created
by training on both the word feature as well as the POS tag feature.

• Combination of Bow, BoP and BoD (BoW+BoP+BoD): this model
combines all the previous models, as it is created by training on all
the available features.

A baseline is created by randomly predicting a binary classification. The
arguments have a 0.5 chance of being classified correctly, as there are two
classes that are evenly distributed. The chance of a triple being classified
correctly is lower. This is due to the distribution of positive and negative
examples of triples: one out of eight potential triples is actually a triple.
Since the prediction is done randomly, many triples are misclassified.

4A number of models were also created using 5-fold and 10-fold cross-validation, in
order to examine whether there was a performance difference. After all, a model trained
with 2-fold cross-validation has only seen 50% of the data, whereas a model trained with
10-fold cross-validation is trained on 90% of the data. The mean scores of models trained
using 2-, 5- and 10-fold cross-validation were comparable. This indicates that the classifiers
can be trained on a small amount of data, as the performance does not change considerably
when using a smaller portion of the data is used.
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3.2 Results

The performance of the four classifiers - arg1, arg2, relation, and triple -
is given in this section. Tables 3.3, 3.4 and 3.5 show the precision, recall
and F1 of the different models created using different features. The base-
line model that was created shows a better performance for the argument
classifiers than for the triple classifier, as expected. The BoW model shows
considerable improvement on the baseline for the argument classifiers, but
not for the triple classifier. The BoP and BoD model do show an increase
in performance compared to the baseline for all classifiers. With two minor
exceptions in the recall, the BoW+BoP+BoD model, which combines all
three features, is the best performing model. The F1 of the relation clas-
sifier is the highest (0.916), followed by the arg1 classifier (0.887) and the
arg2 classifier (0.797). The triple classifier reaches an F1 of 0.520, which is
considerably higher than the baseline.

baseline BoW BoP BoD
BoW+

BoP

BoW+
BoP+
BoD

arg1 0.433 0.782 0.743 0.875 0.832 0.890
arg2 0.520 0.621 0.701 0.751 0.726 0.767
relation 0.552 0.796 0.854 0.863 0.885 0.908
triple 0.084 0.200 0.395 0.482 0.454 0.542

Table 3.3: Precision of the random prediction baseline, bag of words (BoW),
bag of POS tags (BoP), bag of dependency parses (BoD), BoW and BoP
combined, and BoW, BoP and BoD combined

baseline BoW BoP BoD
BoW+

BoP

BoW+
BoP+
BoD

arg1 0.542 0.637 0.862 0.839 0.865 0.883
arg2 0.448 0.481 0.774 0.803 0.733 0.830
relation 0.593 0.701 0.894 0.881 0.926 0.925
triple 0.360 0.164 0.457 0.507 0.412 0.501

Table 3.4: Recall of the random prediction baseline, bag of words (BoW),
bag of POS tags (BoP), bag of dependency parses (BoD), BoW and BoP
combined, and BoW, BoP and BoD combined
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baseline BoW BoP BoD
BoW+

BoP

BoW+
BoP+
BoD

arg1 0.481 0.702 0.798 0.856 0.848 0.887
arg2 0.481 0.542 0.736 0.776 0.729 0.797
relation 0.571 0.745 0.873 0.872 0.905 0.916
triple 0.136 0.181 0.424 0.495 0.432 0.520

Table 3.5: F1 of the random prediction baseline, bag of words (BoW), bag of
POS tags (BoP), bag of dependency parses (BoD), BoW and BoP combined,
and BoW, BoP and BoD combined

3.3 Discussion

The main goal of this thesis is to answer the question how ontology triples
can be learned using a machine learning classifier. The results indicate
that the triple classifier which was trained on word, POS and dependency
features has the best performance. Given the performance of the different
models, the most important feature seems to be the dependency parses. Of
the models containing only one feature, the dependency model (BoD) has
the best performance. Moreover, the model with two combined features
(BoW+BoP) improves considerably when the dependency feature is added.
This might be because bag of x models cannot take word order into account.
Adding a dependency feature is a way of taking syntactic information into
account, which is (partly) expressed by word order in English.

Compared to the state of the art open information extraction systems,
discussed in section 2.2.2, the best model created in this thesis performs
well. The best performing open information extraction tool is OpenIE4,
which reaches an F1 of 0.488. The performing model in this thesis is the
BoW+BoP+BoD model, which achieves an F1 of 0.520. However, the results
of OpenIE4 and the classifiers presented in this thesis cannot readily be
compared, as the tasks are somewhat different. In the state of the art
methods, all triples are generated, positive and negative ones. In this thesis,
the positive triples were taken from the dataset, and the negative triples were
generated. As such, there was no chance that the correct positive example
was not generated. Thus, while the performance scores of the classifiers in
this study may be higher, the task was also somewhat easier.

As mentioned in the introduction of this chapter, one of the purposes
of the argument classifiers was to offer an insight into the performance of
the triple classifier. We can conclude that whatever might be lacking in the
performance of the triple classifier is not due to an inability to classify argu-
ments. Regarding the argument classifiers, the relation classifier obtains the
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best results, followed by the arg1 and the arg2 classifier. An ad hoc analy-
sis was done to investigate whether negative instances of certain arguments
were more frequent in misclassified triples. For example, did misclassified
triples more often contain a negative arg2 than a negative relation? The
analysis revealed no particular patterns, suggesting that the performance
of the argument classifiers does not directly translate into the performance
of the triple classifier. The false positives and false negatives were also in-
vestigated to check if certain feature patterns were often misclassified (e.g.
relations with prepositions were often misclassified). Again, no patterns
stood out as being misclassified more often than others.

Mapping the results from this study to the ontology learning layer cake
introduced in section 2.1.2 is not straightforward. The scope of this study
was term/concept extraction and relation extraction. The layer cake presup-
poses, however, that the relations are extracted using certain concepts. That
was not the case in this study, which means that the performance of those
two tasks are independent. Moreover, the performance of the argument clas-
sifiers revealed that relation extraction was more successful than concepts
(arg1 and arg2) extraction. Thus, the method of this study might succeed
on tasks higher in the layer cake, while being less successful at supposedly
easier tasks.
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Chapter 4

Discussion

4.1 Conclusion

In this thesis, I investigated the possibility of using machine learning clas-
sifiers to classify triples for an ontology. I argued that ontology triples
and information extraction triples are interchangeable with respect to their
structure, and used this insight to transfer methods from open information
extraction to ontology learning. Up to date, classifiers have been used for
subtasks of information extraction, such as relation extraction and named
entity recognition. The results show the approach taken in this thesis is
promising. The argument classifiers have a relatively high performance, as
expected, given that classifiers have been used for these purposes in the past.
The best-performing triple classifier is an SVM trained on word, POS and
syntactic dependency features. It obtains an F1 score of 0.520, which out-
performs the state of the art open information extraction systems, albeit on
a slightly easier task. These results indicate that the novel approach taken
in this thesis is promising.

4.2 Future Research

The most obvious question for further research is how the triple classifier can
be improved and if this can be done up to a point where the classifier can
be used to populate an ontology with. Regarding the first part of that ques-
tion, it is worth exploring new features that contain information about how
arguments are related to each other in a potential triple. To give an exam-
ple, a feature explicitly indicating whether there is a syntactic dependency
between the arg1 and the relation might prove useful. The reason to assume
it might be is because the argument classifiers perform well compared to the
triple classifier: while the classifiers are adequate at categorizing an argu-
ment, classifying whether these arguments belong together in a triple is not
as straightforward. Thus, any information indicating whether a set of argu-
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ments form a triple might improve the triple classifier. Regarding the second
part of the question, it is reasonable to assume that a classifier approach
will always contain some wrongly classified items. However, for the purposes
of populating an ontology, a classifier approach could provide an adequate
enough solution. First of all, any mistakes contained in the ontology could
be solved by an ontology engineer. Second, this classifier approach offers a
low entry point, which is especially interesting when extracting an ontology
for other languages other than English, for which less resources are avail-
able. All that is needed is a dataset, a POS tagger and parser. Compared
to the requirements of the state of the art methods, which include context
analysis, clause computation, semantic role labeling and more, that is not
much. Finding a usable dataset is the most difficult, although this thesis
shows that a smaller dataset is also adequate. Compared to state-of-the-art
open information extraction systems, the resources used in this thesis are
more likely to be available for languages other than English.

Another interesting question is how well the results hold up when all
triples are generated. Much is already in place to generate all triples. The
argument classifiers could be used to filter potential arguments. The triples
could be generated using different combinations of potential arguments, in
the same way that the negative triples were generates in this study. The
reason not all triples were generated in this thesis is that the number of
generated triples would have been quite explosive. This in turn requires a
way to trim down the amount of triples generated. Figuring out how to do
this best was beyond the scope of this thesis. That is why the option was
chosen to use the positive triples available. If all triples are to be generated,
I expect especially recall to be somewhat lower, since there is a chance that
the positive triple is not generated at all. However, since the performance
of the argument classifier is quite good, generating potential triples using
these classifiers is a promising topic of further research.
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Torres, J. P., de Piñerez Reyes, R. G., & Bucheli, V. A. (2018). Support
Vector Machines for Semantic Relation Extraction in Spanish Lan-
guage. In Proceedings of the 13th Colombian Conference on Computing
2018 (pp. 326–337). Retrieved from https://doi.org/10.1007/
978-3-319-98998-3 26
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