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Abstract

In sequential decision making, information cascades occur when agents base their
decisions on the actions of other agents, ignoring their own observations. This
can cause rational agents to perform sub-optimally at group level. The problem
seems to stem from a disbalance in on one hand providing new information for the
group (independent behavior), and other the other hand making use of this publicly
available information (dependent behavior). Carried out in extremes, the first type
of behavior would ignore potentially useful information, while the latter would lead
to possibly incorrect herding-behavior.

In this thesis, I investigate how in-group agents should ideally balance out the
use of publicly accessible information, so that they can maximize their result as a
group. A solution is provided for a specific example of sequential decision making,
known as the urn problem. The main finding is that a perfect balance indeed exists,
and that the information provided by early actors contributes the most to the opti-
mal group result.
Keywords: information cascade, sequential decision making, self-sacrificial behav-
ior, rational agent, group behaviour, incomplete information, game theory.
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Chapter 1

Introduction

As technology develops quickly in the fast-paced information society we live in,
more and more information is gathered and stored both by and for individuals. As
a result, the extent to which we are influenced by others in our decision making
increases.

Intuitively, when it comes to sequential decision making, acting after your pre-
decessors should only increase your ability to make the right decisions because you
have more information available to base your decisions on. As it turns out, making
use of the total information in a group often leads to better results than the results
of individuals in that group alone.

For example, Condorcet’s Jury Theorem illustrates the likelihood of a group to
arrive at a correct decision [1]. More precisely: it illustrates that if individual voters
are correct most of the time (> 50%), adding more voters to the group increases
the chance of arriving at a majority-correct outcome. But even if individuals are
not correct most of the time, we can see a similar increase in performance in the
following example. Imagine a simple game where people have to guess the amount
of candy in a jar. Assuming the people guess independently and that people are
just as likely to overestimate as to underestimate, the average error will eventually
balance out and approach zero as the amount of guesses increases to infinity.

In these cases of sequential decision making, the increased correctness of the
group is thanks to the Law of Large Numbers. However, the superior result was
calculated in retrospect and not actually used by anyone in the group itself. This
seemingly superior outcome is in this case only accessible by outsiders looking down
on the group, who are reasoning from a bird’s-eye view.

As Baltag et al. correctly state, the superior combined knowledge of a group that
doesn’t communicate (like in the above-mentioned examples) is actually a virtual
type of knowledge [2]. What is meant here by virtual, is that this knowledge is a
purely statistical attribute and is not accessible by anyone in the group. But could
this virtual knowledge be actualised if the members of the group communicated
about their actions? Paradoxically, communicating your actions to your successors
in order to transform the virtual group knowledge to actual knowledge may lead to
inferior group performances.

Faulty group behavior can sometimes be attributed to psycho-social phenomena
that lie at the basis of human group dynamics. Examples being conformity, where
people deliberately match their behavior to that of the group, or the Abilene-paradox,
where people make incorrect assumptions about the preferences of others [3].
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However, removing irrational human behavior may not always solve the emer-
gence of poor group results. Agents that behave perfectly rational may also produce
a surprisingly unsatisfactory group outcome. In the examples mentioned at the be-
ginning of this chapter, the decision makers did not communicate with each other.
This independence is one of the concepts that caused the superior group result in
the first place. But if the agents were to make use of the actions of others, the inde-
pendence would be lost, and the superior virtual group knowledge would no longer
exist since the Law of Large numbers does not necessarily hold when the samples
are not independent [4]. So by trying to pursue the better group result, the virtual
knowledge they are trying to actualize will be lost in the process of trying to reach it.
It seems that independence is key to the formation of the superior group results that
only exist afterwards, while dependence is key to making use of this extra knowledge
during the problem.

This problematic trade-off between dependence and independence lies at the root
of so-called information cascades. An information cascade is a situation where it is
optimal for an agent, having observed the actions of those that acted earlier, to base
his decision on the behavior of his predecessors without regard to his own, private,
information [5]. Though not problematic per se, in the formation of an information
cascade, independent decision making is lost quickly, causing all the decisions to be
based only on the information that the first few people (who acted independently)
provided. If the information that these initial actors provided was incorrect, all
successors would base their decisions on erroneous signals, causing everyone in the
group to be incorrect.

Most studies done on information cascades have come from scientific fields that
concern themselves with human decision making, examples being Economics and
Sociology. However, since information cascades can also occur in computer-like or
rational settings, research from other fields such as Computer Science and Network
Theory has also investigated them. Multiple efforts have been made to positively
influence the outcome of information cascades. For example, T. N. Le et al. analyzed
the value of noise in observations made by agents [6], while others researched the
effects of signal accuracy on the probability of an incorrect cascade [7, 8].

Despite these efforts and their progress, authors claim that information cascades
remain a fundamental challenge to group-rationality and therefore suggest further
research [2, 9]. One of the suggestions Baltag et al. make to prevent cascades from
happening is to have some in-group agents behave ‘irrationally’ by disregarding all
available evidence except for their own to base decisions on [2]. This way, they
would lower their own chances of being correct, but their sacrifice would increase
the likelihood of being correct for the others that have yet to act.

In this thesis, I build upon this suggestion. It seems that in most publications
surrounding information cascades, the individuals that are being studied had nothing
to gain from a superior group outcome; they were merely interested in their own
success, because that was where their reward was based upon. This is why Baltag et
al. would describe this type of behavior to prevent a cascade as irrational. However,
when agents get rewarded based on their performance as a group, this altruistic
behavior of self-sacrifice would no longer be intrinsically irrational.

This thesis dives deeper in the scenario where a few can sacrifice for ‘the greater
good’. There seems to be an optimal balance between on one hand making use of
the actions of others, and on the other hand ignoring those actions. If carried out in
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extremes, the first could potentially lead to catastrophic incorrect herding behavior,
while the latter would ignore potentially useful information. The main goal of this
thesis is to find out just where the above-mentioned balance lays, and to provide
an answer to the question of how a group should optimally take advantage of the
collectively available information.

This thesis will be structured as follows:
In chapter 2 I will first exemplify information cascades by providing a textbook ex-
ample (the so called urn problem) together with a formal Bayesian analysis. More-
over, this chapter will provide definitions used to analyze cascades, as well as gener-
alize key concepts and characteristics of information cascades. The main focus will
be on individual decision making.
In chapter 3 the attention is shifted to group results. I first examine both extremes
by looking at an all or nothing approach: one where all agents ignore others so that
no cascades emerge, the other where no agent ignores others so that cascades will
almost surely appear. Then, I compare these two extremes to a more balanced in-
between approach, where the goal is to maximize the amount of correct answers in
the group. I show that such an approach indeed exists and leads to very remarkable
group outcomes.
In chapter 4 I discuss my main findings and I conclude that an optimal balance
exists when trying to maximize the group outcome. These findings confirm that
self-sacrificial behavior is not irrational when agents have an incentive to maximize
the result of the group instead of maximizing their own likelihood of being correct.
In this final chapter I also suggest directions for further research.
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Chapter 2

Information Cascades

This chapter starts off with a section that covers an example problem of an infor-
mation cascade known as the urn problem. This problem was created for illustrative
purposes and thus gives a very clear insight into the formation mechanism and ef-
fects of information cascades [2]. The urn problem described in this section is based
on - and very similar to - the ones described in the works of: [ref. 2, 10, 9, 11].

2.1 Urn Problem - Informal Analysis

Consider two urns:

• Urn R, which contains two red balls and one green ball;

• Urn G, which contains two green balls and one red ball.

From the outside, both urns are indistinguishable. An experimenter randomly selects
one of these urns and places it in a room. One hundred individuals participating in
the experiment have to guess whether the experimenter placed R or G in the room.
To do so, they enter the room one at the time and draw one ball from the urn in
the room, observe its color, and place it back. The individual then guesses which
urn he or she thinks is more likely to be in the room and writes down this guess so
that all upcoming individuals can see what guesses were previously made by whom.
When everyone has made their guess, the experiment is over and the individuals
that voted correctly receive a reward.
We assume that all participants behave rationally and want to maximize their
chances of being rewarded. As a tie-breaking rule, whenever an individual has
no preference for either R or G, he or she will break the tie by voting for his or her
own observation. We also assume that the above-mentioned urn problem and all its
rules is common knowledge for all participants.
In this urn problem, the whole issue of partial information and information cascades
could easily be solved if the participants also communicated their observations along
with their vote. However, despite being an easy option in this example, the point of
this setup is to simulate situations where individuals can only observe the actions
of others, which is often the case in real life scenarios.
To analyze how this urn problem could play out, and how a cascade could start, I
will go over each individual in order to see what vote they would make with regards
to the evidence they have at their disposal.
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The first individual
When the first participant draws a red ball from the urn, he is justified in believing
that the odds of the urn containing two red balls and one green ball is higher than
the odds of the urn containing two green balls and one red ball. In this case he
will thus pursue his best chances at getting it right, and chooses urn R. The same
reasoning would apply were he to draw a green ball, resulting him in choosing urn
G. We can see that whatever ball the first person observes, his guess will be equal to
his observation. Because upcoming individuals can reason perfectly about the deci-
sion making of the first individual, they will be able to infer which ball he observed
simply by looking at the vote he made. I will refer to this type of information that is
being relayed for upcoming participants as perfect information. So, when given this
perfect information, nothing will be hidden to those that receive the information.
For the sake of analysis, for now we will now assume the first person observed a
green ball and voted for G.

The second individual
By looking at the guess made by the first participant, the second participant already
has an extra piece of evidence at her disposal besides her own observation. There
are two possible observations for the second individual:

• If the second individual draws the same colour ball (a green one) as the first
person, she should obviously pick this colour as well since it only provides
more evidence for the G urn.

• Suppose she draws a different colour ball (a red one). In this case there is
an equal amount of evidence for both options1. Consequently, she will apply
the tie-breaking rule as described above. Namely, since the total amount of
evidence is inconclusive, she will prefer her own signal and vote R.

We can see that the first two individuals both convey perfect information. To
continue with the example, let’s assume the second participant also draws a green
ball and consequently votes for G.

The third individual
Before the third participant draws a ball from the urn, she sees that both individuals
prior to her have voted for option G, and since she also knows that their votes relay
perfect information, she concludes that both drew a green ball.
Let’s again consider both possibilities for the third participant:

• Assume she draws a green ball. This observation obviously only adds to the
evidence pointing in the G urn direction. Obviously in this case, she will also
vote for G.

• Assume she draws a red ball. Things start to get interesting here. She would
reason as follows: two pieces of evidence point towards G, but only one (her
own) piece of evidence points towards R. Thus, she concludes that her chances
of being correct are higher when she votes for G.

1In the next section I show that this intuitive heuristic, where evidence is summed up and
cancelled out, is in fact perfectly rational for this specific urn problem.
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As we can see, an information cascade has begun: the third participant would,
despite her own evidence pointing in other directions, always vote G. In fact, in this
case she would not even have to take her own evidence into consideration, since she
knows that it could not possibly alter her decision in any way. By voting while being
in this cascade, she does not relay any new information to the next individual. In
other words, the next individual can not deduce what the third participant observed.

The fourth individual and onward
The fourth individual would reason that the person before him must have acted
purely based on the information that was available to her at the moment of arriving
in the room. He knows that she voted while being in an information cascade and he
reasons that her vote did not relay any new information. Hence, he is in the same
epistemic position as the person before him and will act the same: vote G.
The fifth and all other upcoming participants will apply the same reasoning.
As it turns out, all individuals after the first two are in the same epistemic position:
id est they have the same information available to them. Consequently, in this setup
the cascade will continue forever and all upcoming participants will pick their best
option, which is joining the cascade and voting for option G.

2.2 Urn Problem - Bayesian Analysis

So far I have shown that the participants based their decisions on the evidence by
simply counting it and checking which side is supported by more evidence. This
technique of simply summing up all the evidence (despite being a heuristic tool that
humans might use in real life situations[2]) is in this case perfectly rational as it
leads to the same results as calculating the likelihoods using Bayesian probability
theory. The reason for this is because of the symmetry in signal accuracy in our
example [6]. In other words, observing a red ball provides just as much evidence in
favor of R, as observing a green ball would for G. This allows participants to cancel
out opposite observations. However, it should be stressed that this is not generally
the case. The composition of the urns could be changed so that the symmetry is
lost. In that case this counting evidence heuristic no longer leads to perfect results.
In those cases, rational agents would rely on Bayesian probability theory to base
their decisions on [12]. For that reason, I provide a Bayesian analysis in this section,
which is again very similar to the work of [10].

The Urn Problem
Consider again the urn problem. Let’s denote the group of n agents as A =
{a1, a2, ..., an}. The conditional probabilities are calculated using Bayes Theorem:

P (A|B) =
P (B|A)P (A)

P (B)

Where P (B) 6= 0.
For each agent, the following prior probabilities are known:

• Both the majority-green urn (G) and the majority-red urn (R) have an equal
probability of being placed in the room:
P (G) = P (R) = 1

2
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• Based on the composition of urn G and R, the probability of drawing a green
ball (g) and a red ball (r) respectively, is equal to 2

3
:

P (g|G) = P (r|R) = 2
3

Let’s assume the experiment plays out the same way:

First Agent
Assume a1 observes a green ball (receives private signal g). He will calculate the
conditional probability of the urn being G:

P (G|g) =
P (g|G)P (G)

P (g)
=

P (g|G)P (G)

P (g|G)P (G) + P (g|R)P (R)

=
2
3
· 1
2

2
3
· 1
2

+ 1
3
· 1
2

=
2

3

After receiving private signal g, the conditional probability P (G|g) = 2
3
. Because

P (G|g) > P (R|g), logically a1 votes G.

Second Agent
For a2, after receiving signal g, he adds this evidence to the evidence he received
from a1 and calculates as follows:

P (G|g, g) =
P (g, g|G)P (G)

P (g, g)
=

P (g, g|G)P (G)

P (g, g|G)P (G) + P (g, g|R)P (R)

=
2
3
· 2
3
· 1
2

2
3
· 2
3
· 1
2

+ 1
3
· 1
3
· 1
2

=
4

5

P (G|g, g) > P (R|g, g), consequently a2 votes for G.

9



Third agent
The third agents reasons that if a2 received signal r, a2 would have calculated:

P (G|g, r) =
P (g, r|G)P (G)

P (g, r)
=

1

2

and therefore would have voted R as a result of the tie-breaking rule. Thus, a3
concludes based on the first two votes that a1 and a2 received signal g. After now
receiving signal r himself, the total evidence sums up to (g, g, r) and a3 calculates:

P (G|g, g, r) =
P (g, g, r|G)P (G)

P (g, g, r)
=

P (g, g, r|G)P (G)

P (g, g, r|G)P (G) + P (g, g, r|R)P (R)

=
2
3
· 2
3
· 1
3
· 1
2

2
3
· 2
3
· 1
3
· 1
2

+ 1
3
· 1
3
· 2
3
· 1
2

=
2

3

The effect of the information cascade becomes clear: a3 will vote for G despite his
own signal being r, since P (G|g, g, r) > P (R|g, g, r). The evidence gathered by
observing the agents that acted before him outweighs his own evidence.

Fourth and upcoming agents
Without any interventions, the same reasoning that was carried out by a3 will be
applied by agents a4, a5, ..., an. All of those agents will have the signals of a1 and a2
available to them (g, g), with the addition of their own signal (g ∨ r). The fact that
a3 voted G does not give the successors any new information, as they can reason
that a3 would have voted G in both of the cases (g, g, r) and (g, g, g). Therefore,
from this point on, the amount of information does not grow with each vote.
As a result, all agents after a3 will vote for G as well.

2.3 Definitions and Characteristics

In this section I will elaborate on the following characteristics of information cas-
cades:

1. The likelihood of information cascades;

2. The fragility of information cascades.

2.3.1 Cascade Likelihoods

In the provided urn example, we have not yet specified which urn was actually in the
room. Therefore, we can not yet know whether agents voted correctly or incorrectly.
The following terminology will be used to distinguish between the value of certain
signals and cascades (which are dependent on the state of the world/the urn in the
room):

• High Signals
Signals with a probability higher than 1

2
will be referred to as high signals. In

our case (g|G) and (r|R) are high signals, each with a probability of 2
3
;
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• Low Signals
Signals with a probability lower than 1

2
will be referred to as low signals. In

our case (r|G) and (g|R) are low signals;

• Incorrect/Correct Cascades
Cascades leading to (in)correct results will be named as (in)correct cascades.

To analyze how likely it is for a cascade to appear, let’s calculate the likelihoods for
all four possibilities after two signals (one cycle), and look at their corresponding
outcome (indicated with an arrow):

• <high signal, high signal> → correct cascade
The chance of receiving two high signals in a row is in our case equal to
P (g, g|G) (or P (r, r|R)), which is equal to: 2

3
· 2
3

= 4
9
;

• <high signal, low signal> → no cascade: baseline
The chance of receiving both a high and a low signal is equal to: 1

3
· 2
3

= 2
9
;

• <low signal, high signal> → no cascade: baseline
The chance of receiving both a low and a high signal is equal to: 2

3
· 1
3

= 2
9
;

• <low signal, low signal> → incorrect cascade
The chance of receiving two consecutive low signals is equal to: 1

3
· 1
3

= 1
9
.

We can conclude that for our instance of the urn problem, the following is true after
the first cycle of two agents:
- P (cascade) = P (high, high) + P (low, low) = 4

9
+ 1

9
= 5

9
;

- P (¬cascade) = P (low, high) + P (high, low) = 2
9

+ 2
9

= 4
9
.

We know that for an even amount of votes n there will have been n/2 cycles of two
votes. In order for a cascade to be present after n/2 cycles, a cascade only needs to
have happened once in the entire sequence. On the other hand, a baseline situation
(no cascade) is only present in the event that a cascade never occurred. The event
cascade is the complement of ¬cascade, therefore they are mutually exclusive and
collectively exhaustive (MECE). We can say that a cascade is not present after n/2
cycles if and only if the event ¬cascade occurred in every cycle. Therefore we can
write that the probability of a cascade after an even amount of votes n is equal to:

P (cascade) = 1− P (¬cascade)n/2

= 1−
(

4

9

)n/2

If the amount of agents approaches to infinity, we can calculate:

P (cascade) = lim
n→∞

(
1−

(
4

9

)n/2
)

= 1− 0

= 1

Thus we can say that given enough agents, cascades occur almost certainly. The
reason is that given enough votes, at some point the evidence difference will reach
a value of 2.
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2.3.2 Cascade Fragility

A cascade starts when a personal observation can no longer overthrow the prior
evidence available to someone. In our case, this happens when the total evidence
difference reaches a value of two. In figure 2.1, adapted from Easly & Kleinberg
(2010) [10, fig 16.3 on p. 501], I portray the situation as described in the previous
section where a cascade started after the first two G votes2.

Figure 2.1: A cascade starts after the first two people vote G, making the evidence
difference reach a value of 2. The green line will continue to follow the dotted line
for all upcoming participants. The colour of the dot (and line reaching that dot)
depicts the vote that the corresponding participant makes.

Cascades are fragile because they are based on very little information. As a result,
they can easily be ‘destroyed’ by new information. To illustrate the fragility of
cascades, imagine that a certain agent am with m > 2 decides to publicly announce
that he will disregard all other evidence and vote for his own observation. In that
case, am votes independently and thus conveys new information to am+1. The result
is that upon receiving his own signal, am+1 now has four pieces of evidence at his
disposal, namely the evidence of: a1, a2, am and am+1.

Coming back to our previous example where a1 and a2 voted G, assume now that
agent am publicly announces that he observed a red ball. Then, am+1, upon drawing
a red ball himself, will calculate:

P (G|g, g, r, r) =
P (g, g, r, r|G)P (G)

P (g, g, r, r)
=

1

2

2I would like to point out that in the original figure, the graph goes beyond the dotted line
that indicates the cascade boundary. I deliberately chose not to make the solid line surpass the
dotted line, since this would not accurately portray the epistemic position. As reasoned before,
all votes made while being in a cascade do not convey any new information. The reason for this
subtle distinction will become more obvious after studying fig. 2.2, where I illustrate the fragility
of cascades.
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Because we can cancel out all the evidence and since there is an equal amount of
evidence pointing to G and R, we can immediately see that P (G) = P (R) = 1

2
.

Now, having no preference, am+1 will apply the tie-breaking rule and follow his own
signal, which is r, and vote R accordingly. The following figure depicts this scenario
for m = 80 so that a80 votes independently:

Figure 2.2: A possible continuation after participant 80 conveys new information
(highlighted in orange together with an ‘!’). The cascade no longer exists. Partici-
pant 81 will vote according to his own observation. Assuming participants 82 and
83 also receive signal r, a new cascade emerges where every upcoming agent will
vote R.

Instead of being destroyed by the new information, the cascade could also have been
solidified. Agent a80 could have observed g. In that case, the amount of publicly
accessible evidence would be (g, g, g) and the solid green line would go up, surpassing
the dotted boundary line.
Once a cascade emerges, it remains the same informational state which also happens
to be its minimum in order to survive. This is due to the fact that all participant
that act on this cascade do not contribute to the total information upon which it is
based. As a result, the cascade does not grow stronger as it progresses.

To summarize, we have seen that the following characteristics apply to information
cascades in general:

• Cascades occur almost surely, given enough participants;

• Cascades can be incorrect, leading to wrong answers for everyone in the group;

• Cascades are fragile and can therefore easily be destroyed by new information
at any point.
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Chapter 3

Group Results of Information
Cascades

So far, the focus has been on individual decision making for agents who want to
maximize their own chance of being correct. If agents are rewarded based purely on
their own performance, and if one assumes that rational agents want to maximize
their expected pay-off, then this type of selfish behaviour seems perfectly rational.

However, what if agents get rewarded based on their performance as a group?
In that case, maximizing your own chances of being correct is not equal to maxi-
mizing your expected pay-off. In those situations, the whole problem of information
cascades becomes clear: group results may suffer if independence is lost too quickly.

This chapter will address the problem of information cascades directly by shifting
the attention to the results of individual decision making on the group outcome. For
different types of behavior, the expected group outcome is calculated. To illustrate
this, I will again consider the same urn problem as mentioned in chapter 2.

In the first section, we take a look at two extremes. A comparison is made
between complete independence (no cascades) and minimal independence. Minimal
independence is what we have observed so far in our previous analyses: an agent
will make use of available information as soon as possible.

In the second section, we find an optimal balance between the two. The goal is
to investigate how many agents should sacrifice themselves in the beginning before
other agents can rationally make use of this knowledge.

3.1 Two Extremes

The first extreme behavior I analyze will be referred to as altruistic behavior. This
is the type of behavior where every agent acts independently and only makes use
of his own evidence. Using the word altruistic in this context might seem counter-
intuitive since the agents are ignoring everything except for their own observations.
However, what is meant here, is altruistic in an epistemological way. We have seen in
the previous chapter that agents who act only on the information of others (agents in
a cascade) do not contribute to the publicly available evidence. In contrast, agents
who voted only according to their own observations relayed information. Thus,
in this case, by acting independently, useful information is provided for upcoming
agents. Hence the term altruistic.

One could still argue that altruism, which applies to human behavior, is not
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the correct word when speaking of rational agents. True altruism is not defined as
acting out of self-interest, but acting because you are concerned for others. But a
rational agent that is rewarded for the performance of the group, would in this case
not share his true information because he cares about others, but because he knows
that the group will perform better and therefore his own chance of receiving a high
rewarded grows. In that case, a better description of this behavior might be: One
for all, all for one or Do ut des1. However, for now I will stick with the terminology
of altruism in case of agents acting solely based on their own observations.

The other extreme, where agents make use of the available information as soon as
possible, will be covered in the Minimal Independence subsection. In contrast to
the behavior in the other subsection, this behavior could be addressed as selfish
behavior. Selfish in the sense that these agents will not contribute to the available
information unless they are forced to do so.

I will refer to agents that ignore all other evidence except their own as sacrificial
agents. The following notation will be used to express the expected amount of
correct answers (or expected correctness) in the urn problem for a group of n agents
where the first s agents act as sacrificial agents:

Cs(n) for s ∈ {0, 1, 2, .., n}

Note that for the altruistic behavior, every agent acts independently, so in that case
s = n. For the selfish behavior, as seen in chapter 2, the first two agents will always
vote for their own observation. As a consequence, even when no agent willingly
sacrifices himself, the first two agents will always provide true information. Since
a1 and a2 relay information no matter whether they sacrifice or not, a similar result
will appear when calculating Cs(n) for s = 0, 1, 2. This should be kept in mind when
calculating Cs(n) for s = 0.

3.1.1 Maximal Independence: Altruism

Maximal independence would be the best option if one were to reason as an outsider
after all agents have voted. This way, one would receive the maximum amount of
information to base one’s decision on. This type of behavior might therefore be
optimal in certain observational learning environments where the goal is to find out
the signal accuracy.

Expected Correctness
The calculation for the expected amount of correct answers is very straightforward.
Since each individual agent has a 2

3
chance of being correct, we expect that 2

3
of all

agents will be correct. We get:

Cn(n) =
2

3
n

1A Roman principle of reciprocity. The phrase literally translates to: I give with the intention
that you give.
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To compare the outcome of this strategy to other types, we will calculate the ex-
pected correctness for n = 10, 100, 1000. In this case, we get:

C10(10) ≈ 6.67

C100(100) ≈ 66.67

C1000(1000) ≈ 666.67

3.1.2 Minimal Independence: Selfishness

Agents that act selfishly will use all possible information available to them to in-
crease their own odds of being correct. We might observe this type of behavior in
competitive environments.

Expected Correctness
For n = 0:
Obviously, a game without any agents cannot have any agents voting correctly:

C0(0) = 0

For n = 2:
We know from chapter 2 that the MECE-principle applies and that there are two
possible events after two votes:

• P (cascade) = 5
9
:

The chance of an incorrect cascade is 1
3
· 1
3

= 1
9

(0 agents vote correctly).

The chance of a correct cascade is 2
3
· 2
3

= 4
9

(2 agents vote correctly).
So, on average 4

5
of all cascades are correct cascades.

This means that C0(2|cascade) = 4
5
· 2 + 1

5
· 0 = 8

5

• P (¬cascade) = 4
9
:

No cascade occurs when a1 and a2 vote differently (in that case, exactly one
agent is correct).
This means that C0(2|¬cascade) = 1.

To calculate the expected value we will use the general formula below, where out-
comes are weighted by their probability. Let X be a random variable with outcomes
x1, x2, ..xn occurring with probabilities p1, p2, ..pn. The expected value of X is then:

E(X) =
n∑

i=1

pi · xi (3.1)

For our instance, since we have covered all possible events (4
9

+ 5
9

= 1), the expected
correctness can be calculated using:

Cs(n) = P (cascade) · Cs(n|cascade) + P (¬cascade) · Cs(n|¬cascade)

Which in our case is:

C0(2) =
5

9
· 8

5
+

4

9
· 1

= 1
1

3
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For n = 4:
Using the same approach, we have that after the first two votes:

• A cascade appears: chance = 5
9
:

On average, 4
5

will be correct cascades in which all 4 agents vote correctly.
This means that C0(4|cascade) = 4

5
· 4 = 31

5

• No cascade appears: chance = 4
9
:

Exactly one of the two agents is correct in this case. So the expected cor-
rectness is 1 + the expected correctness for the remaining two agents. One
could calculate again what the expected amount of correct answers is for those
remaining agents, but since we are at baseline situation, the problem comes
down to our previous calculation: C0(2).
This means that C0(4|¬cascade) = 1 + C0(2) = 1 + 11

3
= 21

3

To calculate C0(4) we use Equation 3.1:

C0(4) =
5

9
· 31

5
+

4

9
· 21

3
≈ 2.96

As we can see, calculating C0(n) generally comes down to:

• Calculating C0(n) for cascades starting after 2 votes;

• Calculating C0(n) for no cascades after 2 votes, which equals 1 + C0(n− 2).

This calculation translates to the recurrence relation below, which describes the re-
lation between n and C0 for all even n such that n ≥ 2:

C0(n) =
5

9
· 4

5
n +

4

9
· (1 + C0(n− 2))

=
4

9
C0(n− 2) +

4

9
n +

4

9
To see how this strategy compares to the altruistic strategy above, we calculate2

again for the following values of n:

C0(10) ≈ 7.53

C0(100) ≈ 79.52

C0(1000) ≈ 799.52

Unsurprisingly, the expected group performance has increased. This is to be ex-
pected, because the agents in this group will make use of more true information.
Despite the fact that incorrect cascades will occur in this setting, correct cascades
have a higher likelihood of occurring.

If the amount of agents n grows, the likelihood that no cascade occurs shrinks.
Proportionally, cascade situations will play a bigger role. Since the likelihood of
a cascade being correct is equal to 4

5
, we can expect that the group performance

approaches 4
5
n or 80% correctness for any arbitrary large n. This is also easy to see

from the recurrence equation as presented in Appendix A.

2The calculation can either be done by solving the recurrence relation (see Appendix A) or by
defining a recursive function in Python (see Appendix B).
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3.2 Finding a Balance

As mentioned at the beginning of this chapter, even when 0 agents intentionally
sacrifice themselves, there is always of minimum of 2 agents that do relay true
information. Therefore, we start our analysis for s = 3, which actually means that
only one agents ‘truly’ sacrifices himself. Our goal is to calculate:

C3(n)

To do so, let’s take a look at all possible events with their respective results. I will
denote receiving a high/low signal as h and l respectively. For the first s agents, we
can make 2s different combinations. In this case, 23 = 8 combinations:

(hhh, hhl, hlh, hll, lhh, lhl, llh, lll)

Out of the 2s possible combinations, only s + 1 vary in evidence difference. This is
the case because we only have to count the amount of h′s and l′s, as the order in
which they occur does (for now) not matter. For a certain value of s it is easy to see
that there are indeed s + 1 of such combinations that vary in evidence difference:
the amount of high (or low) signals in a combination can be equal to {0, 1, 2.., s}.
This set contains s + 1 elements.

For s = 3, the four combinations that vary in evidence difference are shown
below together with how often they occur:

• 1x - 3 h’s and 0 l’s: {hhh}

• 3x - 2 h’s and 1 l’s: {hhl, hlh, lhh}

• 3x - 1 h’s and 2 l’s: {llh, lhl, hll}

• 1x - 0 h’s and 3 l’s: {lll}

For our calculations, it is useful to have a short notation for these types of combina-
tions. I will use the following notation: combinations that have n high signals and
m low signals (in any order) will be denoted as nHmL.

For higher values of s, checking all combinations and counting how often each dif-
ferent combination occurs becomes very cumbersome. For a certain value of s, the
question of how many times a combination with n amount of high signals occurs
basically comes down to the question of how many ways can we arrange n high
signals amongst a total of s signals. If we denote the amount of high signals as h
we can calculate the amount of possible arrangements for a certain combination by
taking the binomial coefficient: (

s

h

)
=

s!

h!(s− h)!

For example, for s = 3: in how many different ways can we arrange 2 high signals?
This is easy to see: since there is only one low signal in this case, the low signal can
be placed either at the first, second or third place. Thus, the answer is 3. Using the
binomial coefficient we get: (

3

2

)
=

3!

2!(1)!
=

6

2
= 3
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The calculation of the binomial coefficient for increasing values for s starting at
0, and increasing values for h reaching from 0 to and including s, is basically a
construction of Pascal’s triangle:

s = 0 1
s = 1 1 1
s = 2 1 2 1
s = 3 1 3 3 1
s = 4 1 4 6 4 1
s = 5 1 5 10 10 5 1
s = 6 1 6 15 20 15 6 1
h = 0 1 2 3 4 5 6

Note that the values in each row sum up to a total of 2s, which is the total amount
of occurrences. The top of the triangle is shifted to the left so that the entries of
s and h match to their corresponding binomial coefficient. Note that instead of h,
we could have used l since both values logically follow once one of them is know: a
combination for a certain s, having h high signals means having s− h low signals.

For example, for s = 6, out of all 26 = 64 possible combinations, how many
contain exactly 4 low signals? The answers is 15 and can either be found in row
s = 6 and column h = 4 or in row s = 6 and column h = 6− 4 = 2.

Now, to calculate C3(n), we will again make use of Equation 3.1. The probability
of a certain combination nHmL (where the order of the signals does not matter) is
equal to:

Occurrences(nHmL) · P (H)n · P (L)m

Where P (H) = 2/3 and P (L) = 1/3.
The following overview includes for s = 3 all four (in evidence) different combi-
nations: the amount of occurrences, the probability of the combination and the
expected value given that the event (combination) occurs.

1. 3H0L

• Occurrences: 1;

• P (3H0L) = 1 · P (H)3 · P (L)0 = (2
3
)3 = 8

27
;

• C3(n|3H0L) = n.
The calculation of the expected value is very straightforward for this
combination. Three high signals immediately leads to a correct cascade
and all n agents vote correctly in that case.

2. 2H1L

• Occurrences: 3;

• P (2H1L) = 3 · P (H)2 · P (L)1 = (2
3
)2 · 1

3
= 12

27
;

• C3(n|2H1L) breaks down to two possibilities:
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– 2
3

chance that a4 receives H. To simplify the notation, I will denote
this as a4 = H. In this case a correct cascade starts. But since one
agent already voted incorrectly, we get that:
C3(n|2H1L ∧ a4 = H) = n− 1;

– 1
3

chance that a4 receives L, in that case no cascade starts and we
return to baseline. Since the upcoming agents will no longer sacrifice,
for the remainder of the problem we have that s = 0. Since two agents
already voted correctly we have that:
C3(n|2H1L ∧ a4 = L) = 2 + C0(n− 4).

Now combining these two possibilities with their respective probabilities
we get:

C3(n|2H1L) =P (a4 = H|2H1L) · C3(n|2H1L ∧ a4 = H) +

P (a4 = L|2H1L) · C3(n|2H1L ∧ a4 = L)

=
2

3
· (n− 1) +

1

3
· (2 + C0(n− 4))

=
2

3
n− 2

3
+

2

3
+

1

3
C0(n− 4)

=
1

3
C0(n− 4) +

2

3
n

3. 1H2L

• Occurrences: 3;

• P (1H2L) = 3 · P (H)1 · P (L)2 = 2
3
· (1

3
)2 = 6

27
;

• C3(n|1H2L) again breaks down into two possibilities:

– 2
3

chance that a4 receives H, resulting in an equal amount of both
signals. The consequence is a baseline situation. Two agents already
voted correctly, so we get:
C3(n|1H2L ∧ a4 = H) = 2 + C0(n− 4);

– 1
3

chance that a4 receives L, in that case there are two more low
signals than high signals. We get an incorrect cascade but one agent
already voted correctly. We get: C3(n|1H2L ∧ a4 = L) = 1.

Now combining these two possibilities with their respective probabilities
we get:

C3(n|1H2L) =P (a4 = H|1H2L) · C3(n|1H2L ∧ a4 = H) +

P (a4 = L|1H2L) · C3(n|1H2L ∧ a4 = L)

=
2

3
· (2 + C0(n− 4)) +

1

3
· 1

=
4

3
+

2

3
C0(n− 4) +

1

3

=
2

3
C0(n− 4) + 1

2

3
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4. 0H3L

• Occurrences: 1;

• P (0H3L) = 1 · P (H)0 · P (L)3 = (1
3
)3 = 1

27
;

• C3(n|0H3L) = 0.
If the first three agents vote incorrectly based on a low signal, an incorrect
cascade begins and no agent votes correctly.

With the information above we can finally calculate C3(n) as follows:

C3(n) =P (3H0L) · C3(n|3H0L) + P (2H1L) · C3(n|2H1L) +

P (1H2L) · C3(n|1H2L) + P (0H3L) · C3(n|0H3L)

=
8

27
n +

12

27
·
(

1

3
C0(n− 4) +

2

3
n

)
+

6

27
·
(

2

3
C0(n− 4) + 1

2

3

)
+

1

27
· 0

=
8

27
C0(n− 4) +

16

27
n +

10

27

To see if indeed one extra agent who provides information leads to better results,
we calculate and compare:

C3(10) ≈ 7.59

C3(100) ≈ 82.24

C3(1000) ≈ 828.90

For n = 10, 100, 1000 we get a higher expected amount of correct answers with s = 3
than with s = 0. We already benefit from this extra information as soon as n = 8:

C3(6) < C0(6)

C3(8) > C0(8)

This means that for all n ≥ 8 it is a better option for the third agent to act on his
own information than to base his actions on the first two agents. The reason for
this is that his extra information ‘steers’ the group towards a correct cascade. The
downside of the sacrificial behavior becomes clear for n = 4 and n = 6, where s = 3
actually performs worse. The reason is that in those cases the sacrifice of a3 can
not be compensated by having enough successors make use of the extra information.
His own (possibly) incorrect answer will then play too big of a role in proportion to
the (small) group. Intuitively, the more agents that have to act, the more valuable
the information becomes. That is why the expected percentage of correct answers
increases as the amount of agents grows.

Our final goal would be to know how many agents s can we sacrifice for an arbitrary
value of n so that we can expect the highest amount of correct answers. Before
moving to the calculation for s = 4 directly, I will touch on the phenomenon of
subcascades.

For s = 3 we were able to treat combinations nHmL with the same signal difference
(n−m) as equal, since it did not matter in what order the evidence became publicly
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available. For s ≥ 4 however, it turns out the order does start to matter in some
cases.
Imagine for s = 4 how a4 would reason in the case that: a1, a2 and a3 all provide
the same signal, but a4 receives a different signal himself. Now, a4 would not know
if those initial three signals were high (and correct) or low (and incorrect), but he
reasons there are two possibilities:

• The first three signals were high signals, his own is low:

– If a4 indeed sacrifices by voting for his own signal, he will pass on the
following public information to a5: < high, high, high, low >, and the
result is a correct cascade, with the total amount of correct answers being
equal to n− 1.

– But had a4 in this case not sacrificed his information, the result for the
rest of the group would be the same: a correct cascade appears. The
amount of evidence passed on would then be < high, high, high, high >.
Since a4 did not vote incorrectly in this situation, the total amount of
correct answers will be equal to n.

To conclude, in this case it would be better for a4, despite being a sacrificial
agent, to ignore his signal and copy the first three agents. The result for the
total amount of correct answers would be an improvement of exactly 1.

• The first three signals were low signals, his own is high:

– In this case, if a4 indeed sacrifices, the evidence sums up to: < low, low, low, high >.
An incorrect cascade will start and only a4 votes correctly. The result is
that in total 1 agent votes correctly.

– But if a4 does not sacrifice, the sequence becomes < low, low, low, low >.
Now, because of the incorrect cascade, the result is a total of 0 correct
answers.

To conclude, the best option for a4 in this case is to sacrifice. The result is
again an improvement of 1 correct answer.

Upon receiving three equal signals, a4 reasons that whatever he votes, he will not
be able to avert the group from a cascade. In other words, whatever vote a4 makes,
he can not prevent that all agents a5, a6, .., an will vote similarly to agents a1, a2, a3.
Since his vote can not have any influence on the upcoming agents’ decision making,
a4 reasons that his best option is to maximize his own chances of being correct. A
problem is, that in-group agents can obviously not know whether a signal is high
or low. However, based on the higher probability of high signals in comparison to
low signals, it is more likely that the first three signals were high signals. Thus, by
ignoring his sacrificial status and his own signal, and by copying the actions of the
previous agents, a4 increases the expected correctness for himself and the group as
a whole.

We could say that a4 has entered a subcascade or a precascade: a cascade amongst
sacrificial agents in which the agents don’t base their actions on their own signals
but on the signals of their predecessors, only because they know that their actions
can not possibly influence other agents. So, for values of s > 3 we should redefine
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sacrificial agents as agents who share their information by acting independently,
only in the case that their information could possibly lead to different behavior for
any non-sacrificial agent. A subcascade is then nothing more than an extension of
a cascade that is inevitably going to take place among the non-sacrificial agents.

We can again use the binomial theorem to calculate for any s, how many of the 2s

combinations will contain subcascades. Before we do so, let’s analyze how often a
certain signal needs to occur among the sacrificial agents in order for a subcascade
to start. We have seen that a subcascade starts when it is no longer possible for the
remainder of the sacrificial agents to prevent a cascade from starting at agent as+1.
In order for this to happen, a certain signal should already have occurred in more
than half of the sacrificial agents, otherwise the remainder of the sacrificial agents
together with as+1 would be able to change the balance in favor of the other signal.
So, given s agents, we need the following amount of equal votes at a certain point
for a subcascade to start:

ds/2 + 1e

However, in order for a subcascade to start, there has to be at least one sacrificial
agent left after those equal signals have been shared (otherwise, a ‘normal’ cascade
will appear). So, ds/2 + 1e signals needs to ‘fit’ in the first s− 1 sacrificial agents.
As we can see for s = 3, we have that d3/2 + 1e = 3 signals need to fit in the first
3− 1 = 2 agents, which is impossible. That is why we were justified in disregarding
the order of the signals for s = 3, because there weren’t any subcascades.

For s = 4 we get d4/2 + 1e = 3 and 4− 1 = 3. For obvious reasons, three signals
can only be arranged in one way for three agents, but since this can be done with
both low and high signals, we need to multiply by 2. This means that for s = 4,
out of all 24 = 16 combinations, 2 will include a subcascade (which are the cases
analyzed previously). More generally, we can calculate the amount of subcascades
for a certain s with:

Subcascades(s) = 2 ·
(

s− 1

ds/2 + 1e

)

Returning to the calculation of C4(n), we require for all combinations that vary in
evidence their probability and their respective expected correctness. Multiplying
those properties for all combinations and then adding the sub-results leads to the
following calculation:
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C4(n) =P (4H0L) · C4(n|4H0L) +

3

4
·P (3H1L) · C4(n|3H1L ∧ ¬subcascade) +

1

4
·P (3H1L) · C4(n|3H1L ∧ subcascade) +

P (2H2L) · C4(n|2H2L) +

3

4
·P (1H3L) · C4(n|1H3L ∧ ¬subcascade) +

1

4
·P (1H3L) · C4(n|1H3L ∧ subcascade) +

P (0H4L) · C4(n|0H4L)

=
16

81
· n +

3

4
· 32

81
· (n− 1) +

1

4
· 32

81
· n +

24

81
· (2 + C0(n− 4)) +

3

4
· 8

81
· 1 +

1

4
· 8

81
· 0

=
24

81
C0(n− 4) +

24

81
n +

24

81
(n− 1) +

54

81

=
8

27
C0(n− 4) +

16

27
n +

10

27

In case this last expression does not look familiar to the reader: it should. It is equal
to the previous calculation for s = 3, so that we have:

C4(n) = C3(n)

So why did we not improve on the group outcome by having the fourth agent sac-
rifice? This is again due to similarity in signal accuracy and the fact that with an
even amount of information, we are either in a cascade or at baseline level. Since
the first agent to act after the s sacrificial agents also has his own observation as
evidence, the amount of signals available to that agent is equal to s + 1 (an odd s
leads to an even amount of evidence).

In our case for s = 3, if a4 was not already in a cascade, he would vote for
his own signal. There are only two cases for s = 3 in which a4, would not have
voted for his own signal, namely after (low, low, low) and (high, high, high). Now,
one would initially think the difference for s = 4 would be that in those very two
instances, a4 would indeed have shared his own information. However, those are
the two cases for which we have seen that a4 would still not vote for his own signal
despite being a sacrificial agent (the subcascades situations). Had we not taken into
account the emergence of subcascades, the performance for s = 4 would actually
have been slightly worse than for s = 3.

Since the above-mentioned properties apply to higher values of s, we can gener-
ally say that for s = {1, 3, 5..} we have that:

Cs(n) = Cs+1(n)
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As one might expect, with increasing values for n we start to see an improvement3

with s = 5 compared to s = 3 and s = 4:

C5(10) ≈ 7.52

C5(100) ≈ 84.54

C5(1000) ≈ 854.91

3.2.1 A Recursive Approach

Calculating for higher values of s directly becomes very cumbersome. But by divid-
ing the problem in steps of two and by keeping track of the evidence difference, we
can calculate recursively. In essence, this calculation comes down to:

Let n be the amount of agents and let s be the amount of sacrificial agents.
Sacrifice(n,s,EvidenceDifference=0):

• If after two votes it is certain that we have a cascade or all sacrificial agents
have at this point sacrificed:

– Calculate the outcome using one of our earlier methods

• If the outcome of a cascade is not certain after two votes:
Return a sum of the following recursive calls:

– 4/9 times (1 + Sacrifice(s - 2, n - 2, EvidenceDifference).
If two agents both vote differently, one of them is correct. The evidence
difference does not change.

– 4/9 times (2 + Sacrifice(s - 2, n - 2, EvidenceDifference + 2).
If two agents both vote correctly, both are correct. The evidence differ-
ence increases by 2.

– 1/9 times Sacrifice(s - 2, n - 2, EvidenceDifference - 2).
If two agents both vote incorrectly, neither are correct. The evidence
difference decreases by 2.

3The calculation is rather similar to the previous ones. For the interested reader, a python code
with the calculation can be found in Appendix B
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For a more detailed version of this calculation, please see Appendix B for a Python
implementation of this recursion. By plotting the expected correctness for n = 100
for different values of s we get:

Figure 3.1: The graph is steep in the origin but flattens for higher values of s. This
nicely illustrates that the information of the earlier agents is the most valuable. The
first agents that sacrifice have the most successors to share their information with.
Python tells us that that maximum lies at s = 23.

To finally answer our question: for an urn problem with 100 agents, 23 agents
should sacrifice to achieve the best expected group outcome. One could say that the
cascades that these agents enter are justified cascades. Despite being possibly incor-
rect, following these justified cascade does on average lead to the highest amount of
correct answers for the group.
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Chapter 4

Discussion & Conclusion

This thesis addresses the problem of poor group results caused by information cas-
cades by analyzing the trade-off between sharing versus making use of information.
I conclude that for certain sequential decision making problems there exists an op-
timal balance between independent and dependent decision making when it comes
to group outcomes. My findings also confirm that agents that act earlier in the
sequence provide more useful information than agents acting later on. This thesis
provides insights by taking a step in a new direction, but has its limits due to the
narrow and specific analysis. For more fruitful findings, further research is required.

One direction in which this thesis could be expanded is by combining the ap-
proach of self-sacrificial behavior with research from other fields. Being mainly
focused on probability theory, this thesis does not focus on the (higher-order) rea-
soning being carried out by the agents. The key question that remains: could this
theoretically optimal approach be actualized by rational agents? The field of Epis-
temic Logic could shed light on this aspect of the problem, e.g. by incorporating
the idea of sacrificial agents into the model used by Baltag et al [2].

While information cascades may occur in human-like settings, this thesis mainly
focused on the behavior of rational agents. A comparison was made by looking
at group outcomes for both individual and group based reward systems. To more
accurately investigate human-like behavior, one could implement a combined reward
system where agents get partially rewarded for their own performance and partially
rewarded for the group performance. This would mean that agents could take risks
by trying to get rewarded immediately, or could play it safe by increasing their
odds of at least receiving some reward by sharing their information with the group.
Another similar take would be to have agents behave in a stochastic way.

Extra research similar to this thesis could be carried out by increasing the amount
of true knowledge in a more practical way. For instance, instead of having a fixed
amount of agents sacrifice, one could artificially raise the cascade boundary. This
way, a cascade would only start if the evidence difference reaches a certain predefined
value, leading to cascades that are based on more information. One could also
experiment with a predefined certainty that a group must have of not being in an
incorrect cascade before acting upon that very cascade. Requiring high certainty
would cause agents to postpone the use of public information.

All in all, self-sacrificial behavior seems to be a promising strategy to prevent
the harm caused by information cascades. Further research will indicate the value
of this new strategy for practical applications.
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Appendix A

Recurrence Equation

We can calculate the expected amount of correct answers with:

C0(n) = 2 · P (high) · P (low) · (1 + C0(n− 2)) + P (high)2 · n + P (low)2 · 0

Plugging in the following values for P (high) and P (low):

P (high) = 2/3

P (low) = 1/3

Gives us the following recurrence relation:

C0(n) =
4

9
C0(n− 2) +

4

9
n +

4

9

Solving this recurrence relation with WolframAlpha1 gives:

C0(n) = c1(
2

9
)n + c2(−

2

9
)n +

4

5
n− 12

25

Since we are only working with even values of n we can remove parameter c2 and
write:

C0(n) = c(
2

9
)n +

4

5
n− 12

25

We know C0(n) = 0 for n = 0. Solving the equation above for n = 0 then gives:

0 = c(
2

9
)0 +

4

5
· 0− 12

25

c =
12

25

Finally, we can directly calculate C0(n) with the equation:

C0(n) =
12

25
· (2

9
)n +

4

5
n− 12

25

1Available at:
https://www.wolframalpha.com/examples/mathematics/discrete-mathematics/recurrences/
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Appendix B

Python Code

import math

import matplotlib.pyplot as plt

def Sac0Direct(number): #direct calculation for even numbers, s=0

return 12/25 * (2/9)**number + (4/5)*number - 12/25

def Sac0Rec(number): #recursive calculation for even numbers, s=0

if number == 0:

return 0

else:

return (4/9)*number + (4/9)*(1 + Sac0Rec(number-2))

def Sac3Rec(number): #recursive calculation for even numbers, s=3

if number <= 3:

return "Please enter a number greater than 3"

else:

return 10/27 + (8/27)*Sac0Rec(number-4) + (16/27)*number

def Sac4Rec(number): #recursive calculation for even numbers, s=4

if number <= 4:

return "Please enter a number greater than 4"

else:

return (24/81)*number + (24/81)*(Sac0Rec(number-4)) + \

(54/81) + (24/81)*(number-1)

def Ft(number): #returns the factorial of the given number

return math.factorial(number)

def Sac5Rec(number): #recursive calculation for even numbers, s=5

H = 2/3

L= 1/3

ans = 0

if number <= 5:

return "Please enter a number greater than 5"

else:



ans += (Ft(5)/(Ft(5)*Ft(0))) * \

(H**5 * L**0 *(number))

ans += (Ft(5)/(Ft(4)*Ft(1))) * \

(H**4 * L**1 *(number-1))*(4/5) #subcascade cases

ans += (Ft(5)/(Ft(4)*Ft(1))) * \

(H**4 * L**1 *(number))*(1/5) #subcascade cases

ans += (Ft(5)/(Ft(3)*Ft(2))) * \

(H**3 * L**2 *(number-2))*(2/3) #evidence of a6 matters

ans += (Ft(5)/(Ft(3)*Ft(2))) * \

(H**3 * L**2 *(3+Sac0Rec(number-6)))*(1/3) #evidence of a6 matters

ans += (Ft(5)/(Ft(2)*Ft(3))) * \

(H**2 * L**3 *(3+Sac0Rec(number-6)))*(2/3) #evidence of a6 matters

ans += (Ft(5)/(Ft(2)*Ft(3))) * \

(H**2 * L**3 *(2))*(1/3) #evidence of a6 matters

ans += (Ft(5)/(Ft(1)*Ft(4))) * \

(H**1 * L**4 *(1))*(4/5) #subcascade cases

ans += (Ft(5)/(Ft(1)*Ft(4))) * \

(H**1 * L**4 *(0))*(1/5) #subcascade cases

ans += (Ft(5)/(Ft(0)*Ft(5))) * \

(H**0 * L**5 *(0))

return ans

#n even agents, s odd sacrifices, ED = Evidence Difference

def SacSrec(n, s, ED = 0):

if s <= 2 and ED == 0:

#we know that s=0,1,2 lead to equal outcomes:

return Sac0Direct(n)

if s == 1 and ED == 2:

#if there is 1 sacrificial agent left and ED = 2, then:

return 2/3 * n + 2/9 * (1 + (n-2)) + 1/9 * Sac0Direct(n-2)

#2/3 H -> correct cascade, 2/9 LH -> correctcascade, 1/9 LL -> baseline

if s == 1 and ED == -2:

#if there is 1 sacrificial agent left and ED = -2, then:

return 1/3 * 0 + 2/9 * (1 + 0) + 4/9 * (2 + Sac0Direct(n-2))

#1/3 L -> incorrect cascade, 2/9 HL -> incorrect cascade, 4/9 HH -> baseline

if ED - s >= 2:

#cascade will inevitably happen so all agents join the (sub)cascade (high)

return n

if -ED - s >= 2:

#cascade will inevitably happen so all agents join the (sub)cascade (low)

return 0

#if not any of the above, recursive call:

else:

32



#4/9 chance at HL or LH -> 1 correct, ED=same

#4/9 chance at HH -> 2 correct, ED+2

#1/9 chance at LL -> 0 correct, ED-2

return 4/9 * (1 + SacSrec(n - 2, s - 2, ED)) + 4/9 * \

(2 + SacSrec(n - 2, s - 2, ED + 2)) + 1/9 * SacSrec(n - 2, s - 2, ED -2)

#Driver Code:

#comparing correctness for n=100:

print(Sac0Rec(100))

print(Sac0Direct(100))

print(Sac3Rec(100))

print(Sac4Rec(100))

print(Sac5Rec(100))

print()

print("Determining optimal s:")

#determine optimal s for n=100 and create graph

Cs = []

Ss = []

OptimalS = 0

BestSoFar = 0

print("Sacrifices: On avg. correct:")

for s in range(1, 30, 2):

C = SacSrec(100, s)

Cs.append(C)

Ss.append(s)

print('%f\t%f' % (s, C))

if C > BestSoFar:

BestSoFar = C

OptimalS = s

fig = plt.figure()

plt.plot(Ss, Cs)

plt.xlabel("Amount of sacrificial agents")

plt.ylabel("Expected amount of correct answers")

plt.show()

print()

print("Conclusion:")

print(str(OptimalS) + " Agents should sacrifice to achieve a maximal \

amount of correct answers for n=100.")
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