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Abstract

This thesis investigates the necessary steps to introduce optimal fusion into a compiler for a data-
parallel, array based language. Existing literature includes various practical fusion methods,
which are based on local rewrites and do not consider the global optimal solution, and methods
that are able to identify the optimal fusion clustering. There are no methods that use this optimal
clustering to achieve optimally fused code, whilst preserving parallelism and type-safety. In this
thesis, we expand upon the latter methods and ensure that the resulting fusion system preserves
parallelism and type-safety. The proposed method consists of an integer linear programming
formulation to identify the optimal clustering, an explicit fusion AST to encode this clustering
in the abstract syntax tree, and an explicitly loopy intermediate representation to generate fused
code.

In the process of developing this system, we formalise the concepts of vertical and horizontal
fusion, and introduce diagonal fusion. These concepts are used in the explicit fusion AST,
and allow us to preserve type-safety throughout the compiler, amounting to a partial proof of
correctness.

We demonstrate that this approach is viable through a partial implementation in the compiler
for Accelerate, an embedded language in Haskell.
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1 Introduction

Consider the following Haskell function:

h :: [a] -> ([a], [a])

h xs = (map g ys, ys)

where ys = map f xs

A compiler could generate code for this function that first fully computes ys, and then computes
map g ys. The next iteration is identical in meaning:

h1 :: [a] -> ([a], [a])

h1 xs = (map (g . f) xs, map f xs)

This version is obtained by inlining ys, and fusing the two maps. It is possible to keep optimising
along this path, which will eventually compute h in one pass over xs, but there is a big downside:
We duplicate a lot of work, because the function f gets evaluated twice for each element in xs. A
different approach changes the type signature slightly1, but is able to fuse this function optimally:

h2 :: [a] -> [(a, a)]

h2 = map (\x -> let y = f x in (g y, y))

In this context, optimal means that this is the quickest, most efficient formulation of h. We
would prefer a compiler or optimisation framework where we can write the first version of h, and
get the performance of the optimally fused version. This would free programmers from having to
consider the implementation details of fusing loops, and allow them to write more modular and
maintainable code. There has been a lot of research into fusion systems with excellent results for
simple cases, such as map f . map g, however many of these systems still fail to fuse examples
such as h.

Performance of data-parallel computing, such as on a GPU, is often highly memory-bound.
This makes fusion even more relevant in this field, but none of the fusion techniques for parallel
architectures are capable of fusing the function h. Moreover, with respect to the examples that
these techniques can fuse, whenever there are several conflicting options, they often do not make
the optimal choice that would lead to the quickest code.

There is previous research in finding the optimal fusion clustering. This is a computationally
expensive task, which makes it unsuitable for most compilers. Interestingly, such work has
not focused on data-parallel array languages. However, these could be a great fit for relatively
expensive optimisation techniques and analyses, because they are focused on high performance
computing where compilation time is regarded to be less important than execution time.

In a relatively separate field, much work has gone into local fusion techniques: These do
not consider the global optimisation problem of clustering all functions into fusible clusters, but
greedily fuse adjacent functions. Such techniques are much faster, making them more suitable
for mainstream compilers, but they do not achieve optimal results.

Our research question is How can we optimally fuse all programs in a data-parallel language?
In the process of answering this question, we make the following contributions:

• We introduce diagonal fusion as a parallel to horizontal and vertical fusion in Section 4.1,

• We adapt an existing technique for finding optimal fusion clusters to support parallel
operations in Section 4.3,

• We introduce the idea of annotating the Abstract Syntax Tree (AST) with fusion informa-
tion in Section 4.4,

1Fusing h optimally without changing its type signature is of course also possible, but it might not be expressible
in Haskell. In the case of linked lists, we can achieve this with explicit recursion instead of map.
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• And we devise a technique and representation for using such a clustering to fuse Accelerate
programs in Section 4.5.

We will design an approach to find the optimal fusion clustering for a data-parallel array
language, by adapting an existing solution. We also present a novel approach to representing
this clustering in the AST, which consists of explicitly annotating pairs of functions with vertical,
horizontal, and diagonal fusion. Finally, we attempt to generate fused code from this AST.

Chapter 2 will expand upon the relevant background, including a more detailed introduction
on fusion. Chapter 3 will introduce Accelerate, an open-source data-parallel array language
embedded in Haskell, which we use as a case study. Chapter 4 covers the theoretical contribution
of this thesis, and in Chapter 5 we detail a partial implementation of the proposed solution in the
compiler of Accelerate. Finally, Chapters 6 and 7 cover our results and discuss their implications.
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2 Background

2.1 Fusion

Throughout this thesis, we will use imperative loops as the key intuition for thinking about
fusion. At the same time, we are mainly interested in fusion on functional languages, where
these loops are not explicitly present. Because of this, it is useful to develop a simple intuition
for how functional idioms like map, fold, filter, scan, zip relate to these imperative loops.

Functions like map abstract over the underlying data structure, but their implementation
may vary. In the following section, we will assume immutable arrays (such as provided by
Data.Array and Data.Vector in Haskell). A simple comparison of these functions and a possible
implementation is shown below. In each example, n is the length of the array xs, and for the
zip it is assumed that both input arrays have the same size. Initialising statements are omitted,
because the focus lies on the loopy structure.

Haskell Imperative

ys = map f xs for (int i = 0; i<n; i++)

ys[i] = f(xs[i]);

y = foldl f e xs for (int i = 0; i<n; i++)

y = f(y, xs[i]);

ys = filter f xs for (int i = 0; i<n; i++)

if (f(xs[i])){

ys[j] = xs[i];

j++;

}

ys = scanl f e xs for (int i = 0; i<n; i++)

ys[i+1] = f(ys[i], xs[i]);

zs = zip xs ys for (int i = 0; i<n; i++)

zs[i] = (xs[i], ys[i]);

Composition of such functions and loops is done in Haskell by applying one of these functions to
the result of another, such as map f (map g xs), or explicitly: map f . map g. In the explicit
loopy imperative world, this is represented by simply pasting the second loop after the first loop.

Haskell Imperative

zs = map f (map g xs) for (int i = 0; i<n; i++)

ys[i] = g(xs[i]);

for (int j = 0; j<n; j++)

zs[j] = f(ys[j]);

Often, when we encounter two separate loops, it is possible to rewrite the loopy imperative
code such that only one loop remains. This process is called fusion, and automatic fusion is
an important optimisation step for various languages and compilers. There are various benefits,
depending on the language and context in which fusion is performed. The big factors are memory
traffic (reducing the number of both reads and writes), memory use, and eliminating duplicate
loop counters and redundant allocations. We will formalise the rules for when fusion is valid in
the coming sections.
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Haskell Imperative

Unfused zs = map f (map g xs) for (int i = 0; i<n; i++)

ys[i] = g(xs[i]);

for (int j = 0; j<n; j++)

zs[j] = f(ys[j]);

Fused zs = map (f . g) xs for (int i = 0; i<n; i++){

y = g(xs[i]));

zs[i] = f(y);

}

If we look at the simple example above where two maps are fused, we can see all these factors
come into play: Fusing these loops reduced memory use, by eliminating the need for the array
ys.2 Secondly, for each element of xs, we previously had two array reads and two array writes.
Because we removed the array ys, the fused version only has one of each, which allows it to wait
for memory access only half as often. Finally, fusion eliminates one set of loop counters: Instead
of counting from 0 to n with both i and j, we eliminate j completely.

2.1.1 Classifying Fusion Categories

While all forms of fusion essentially combine two loops into one loop, we would like to categorise
specific fusion instances. The terms vertical fusion and horizontal fusion describe the relationship
of the two loops, and they are widely accepted in the existing literature [1]. Their intüıtive
meaning is best illustrated using a control flow graph:

(a) Vertical fusion

(b) Horizontal fusion

Figure 1: Vertical and horizontal fusion, as seen in a control flow graph

Vertical Fusion The canonical example of vertical fusion is the map fusion rule, which can be
seen in Figure 1a:

map f . map g = map (f . g)

Here, we see that any occurrence of this pattern of two sequential maps can be rewritten into
one map.

Vertical fusion involves eliminating an intermediate result. By writing these two steps in a
single loop, we can reduce memory usage and traffic: The intermediate result does not need to be
written to and read from main memory. Moreover, if the intermediate result is an array, it need

2Of course, both of these maps could also be done in place, if we use mutable arrays. That would eliminate
this one upside of fusion, but the other points still stand.
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never exist fully. We can simply generate and consume this intermediate result, one element at
a time. In the control flow graph of Figure 1a, we see that the second step is directly beneath
the first one.

Horizontal Fusion An example of horizontal fusion is shown in Figure 1b, where two inde-
pendent functions are mapped over the same array. This corresponds to the following fusion
rule3:

\xs -> (map f xs, map g xs) ≈ map (\x -> (f x, g x))

Horizontal fusion is performed by fusing the independent loops into a single loop, producing two
results. Horizontal fusion could be classified into more detailed categories: The two loops might
iterate over the same source array, which would mean that we save some memory access time,
because we can read each element only once and use it for both of the independent loops. It is
also possible that the two loops are truly independent, as long as they have the same iteration
size. As in vertical fusion, we also eliminate the duplicate loop counters. In the control flow
graph of Figure 1b, we see that neither of these loops in horizontal fusion is a descendant of the
other: they have a horizontal relationship.

2.1.2 Limitation

Consider the following function, which appeared in the introduction:

-- Unfused

f xs = let ys = map g xs

in (ys, map h ys)

// Unfused

for (int i = 0; i < n; i++)

ys[i] = g(xs[i]);

for (int j = 0; j < n; j++)

zs[j] = h(ys[j]);

return (ys, zs);

We cannot horizontally fuse these loops, because the second loop (map h ys) depends on the
result of the first loop (map g xs). We could vertically fuse these loops, but then we lose access
to ys: it would get fused away. In the introduction, we saw that by inlining ys, we can fully
fuse this function, at the cost of computing g twice for each element of xs. Needless to say, this
is not satisfactory.

We see that the combination of vertical and horizontal fusion is not always enough to directly
encode all fusion possibilities. The above function serves as a minimal example: It should be
apparent that this function can be rewritten into a single loop over xs without duplicating
work, as below. We currently have no terminology for talking about the fusion of such functions.
Section 4.1 will introduce diagonal fusion, which covers this case. The combination of horizontal,
vertical and diagonal fusion will allows us to classify every fusion opportunity.

// Fused

for (int i = 0; i < n; i++){

y = g(xs[i]);

3Note that in this case, there is the subtle difference between a list of pairs and a pair of lists. In an imperative
language, we can fuse this function without making this change: the fused loop can still write to two arrays. In
purely functional languages, it is often difficult to express this fused version that writes to two separate arrays.
Some compilers transform the first representation, called an Array of Structs, into the second one, a Struct of
Arrays. Performing this conversion at runtime is called zipping and unzipping.
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ys[i] = y;

zs[i] = h(y);

}

2.2 Shortcut fusion systems

Shortcut fusion systems represent a subset of fusion systems which can be implemented relatively
easily, through a combination of general-purpose optimisations (such as inlining and specialisa-
tion) and targeted rewrite rules. During the optimisation passes of the compiler, where these
rules and other optimisations are repeatedly applied, these rules replace every occurrence of the
left-hand side of the rule with the corresponding right-hand side.

{- # RULES

"map/map" ∀f g xs. map f (map g xs) = map (f.g) xs

# -}

For example, if we have a rewrite rule for the map/map fusion rule like above, the two maps are
fused any time the compiler encounters the given pattern.

A näıve way to use these rewrite rules for large-scale fusion this would be to write a rule
for all combinations of the list primitives: One rule for map/map, one for foldr/map, one for
foldr/filter, one for map/filter, etc. This is not a very desirable solution: It leads to a quadratic
number of rewrite rules, which in turn leads to unmaintainable libraries that cannot efficiently be
combined, and longer compile times. Instead, shortcut fusion systems[2] have been designed. The
idea behind such systems is to write all list primitives in terms of a very small set of combinators,
and use rewrite rules and inlining to fuse instances of these combinators. When designing such a
system, like any other optimisation, two properties are important: The transformation must be
correct, preserving semantics, and it must be an improvement with respect to the optimisation
goal. For fusion, although the end goal is the speed of generated code, we usually count the
number of main memory reads and writes, or the number of allocations.

In the case of rewrite rules, we add another requirement: the optimisation process must
always terminate after a finite number of rewrites. This last requirement is usually trivial to
check, since each application of the rewrite rules strictly reduces the number of combinators in
each of the systems we will look at. It is important to keep this in mind, as GHC4 itself does not
check whether the rewrite rules terminate. There is also no fine-grained mechanism to control
the order in which these rules fire.

All fusion systems based on these rewrite rules, and in particular all shortcut fusion systems,
are inherently local optimisations. This means that they fuse programs step by step, and never
consider the globally optimal fusion. Still, they illustrate some core ideas: Each shortcut fusion
system uses just one or two combinators, and one or two rewrite rules, to dramatically simplify
their implementation. Secondly, we will see that each of these techniques rewrites list functions
to a completely different representation. Because each of these representations seems logical,
one can only appreciate the choice when we look at a couple of shortcut fusion systems in more
detail.

2.2.1 Stream fusion

The popular Haskell library Vector uses Stream fusion to fuse Arrays.
Note that sometimes, the word stream is used to refer to infinite lists. For stream fusion, we

use the following definition of a stream:

data Stream a = ∃s. Stream (s -> Step (a, s)) s

data Step a s = Done

4The Glasgow Haskell Compiler is the de facto compiler for Haskell.
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| Skip s

| Yield a s

In this context, a stream is a reformulation of a list, with a seemingly redundant Skip constructor.
This isomorphism follows from the following transformation functions:

stream :: [a] -> Stream a

stream xs = Stream uncons xs

where

uncons [] = Done

uncons (x:xs) = Yield x xs

unstream :: Stream a -> [a]

unstream (Stream next s) = unfold next s

where

unfold next s = case next s of

Done -> []

Skip s' -> unfold next s'

Yield x s' -> x : unfold next s'

One might notice that the phantom type variable s, though existentially quantified, is always
instantiated to [a] in these functions. That is not a coincidence: This is always the case. The
reason Stream is defined in this way, is that it increases typesafety: This formulation, while not
valid in normal Haskell5, abstracts over s which makes it much easier to prove its correctness
[3].

In a stream fusion system, all list functions are written to work on streams. For example,
map is written as:

map :: (a -> b) -> [a] -> [b]

map f = unstream . maps f . stream

maps :: (a -> b) -> Stream a -> Stream b

maps f (Stream next s) = Stream next' s

where

next' str = case next str of

Done -> Done

Skip s' -> Skip s'

Just x s' -> Yield (f x) s'

Surprisingly, the only fusion rule we need for stream fusion is the following rule, which removes
redundant conversions:

{- # RULES

"stream/unstream" ∀s. stream (unstream s) = s

# -}

This rule (combined with the other optimisation techniques like inlining and case-of-case trans-
formations) is enough to generate optimally fused code for many functions. Specifically, if map
cannot be fused with anything, these other optimisations are sufficient to eliminate all the Step
and Stream wrappers and generate a normal definition of map.

5Haskell, as defined in the language reports, does not support this. GHC, the de facto Haskell compiler,
supports such quantification through language extensions.
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2.2.2 Unbuild/unfoldr

Unbuild/unfoldr fusion is based on the functions unfoldr and unbuild (sometimes referred to
as destroy) [4]:

unfoldr :: (s -> Maybe (a,s)) -> s -> [a]

unbuild :: (∀s. (s -> Maybe (a,s)) -> s -> b) -> [a] -> b

unbuild g xs = g uncons xs

uncons [] = Nothing

uncons (x:xs) = Just (x, xs)

Here unfoldr is a familiar list construction function, and unbuild is a list consumer that is
tailored to fuse with unfoldr. Like in Stream fusion, the nested forall in the type signature
reflects existential quantification, even though s will always be instantiated to [a]. In this
fusion system, all fusible functions are written in terms of these two building blocks. The fusion
rule for unbuild/unfoldr fusion is the following:

{- # RULES

"unbuild/unfoldr" ∀k g s. unbuild g (unfoldr k s) = g k s

# -}

This fusion system allows us to express zip-like functions in such a way that they can fuse both
input lists. On the flip side, some other functions (most notably filter) cannot be fused in
this fusion system at all. This is because, while filter can be written in terms of unfoldr, it
requires a recursive ‘stepping function’ which cannot be fused. In fact, unbuild/unfoldr fusion is
functionally identical to Stream fusion, aside from the Skip option. If we replace the Maybe in
unbuild/unfoldr fusion with a Step, or the Step in Stream fusion with a Maybe, these two fusion
systems can fuse exactly the same functions.

2.2.3 Foldr/build

The final shortcut fusion system we discuss, is the first one that was developed: The foldr/build
fusion system [5]. This is the system which GHC still uses (with minor changes) to fuse functions
on linked lists in the base package. Foldr/build fusion is based on the functions foldr and build:

foldr :: (a -> b -> b) -> b -> [a] -> b

build :: (∀b. (a -> b -> b) -> b -> b) -> [a]

build g = g (:) []

Foldr is a familiar list consuming operation, which functional programmers come across regularly.
It is preferred over foldl since it can deconstruct a cons list one element at a time. A useful
intuition for foldr, especially in this context, is that it replaces the (:) and [] in a list:

foldr c n [1, 2, 3] ==

foldr c n (1 : (2 : (3 : []))) ==

(c 1 (c 2 (c 3 n)))

-- In particular:

foldr (:) [] == id

Once again, we refer to language extensions and proofs on free theorems for the nested forall in
the type of build [3], instead of instantiating b with [a].

Armed with the foldr-intuition, we can see how build is a list producer that should fuse
with a foldr-like consumer. This is exploited using the only rewrite rule of this fusion scheme:
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{- # RULES

"foldr/build" ∀f g z. foldr f z (build g) = g f z

- # }

Foldr/build fusion is capable of fusing filters, but many other common list-based functions cannot
be expressed in terms of foldr and build. For example, zip-like functions can only be fused
with one of their arguments. Left folds have also been problematic for a long time, because
although they can be expressed in terms of foldr, the resulting code was far from optimal [2].
In recent versions of GHC, foldl can now be fused efficiently with foldr/build fusion [6].

2.3 Flow fusion

In Lippmeier et al. [7], the authors advocate for a new fusion system called flow fusion. It is
compared with stream fusion, as one of the main goals is to fuse zip-like functions (which the
foldr/build fusion system cannot handle) more efficiently. They critiques stream fusion on two
aspects: the reliance on optimisation passes like inlining, and the duplication of loop counters.
We have mentioned the first of these aspects before, as a positive aspect: Shortcut fusion methods
are remarkably easy to implement if these other optimisations are already present. Lippmeier et
al. [7] points to a concrete downside of this reliance: The system is not just fragile, but there is a
whole family of fusible constructs that cannot be inlined. For example, whenever a list producer
has multiple consumers, it cannot be inlined without duplicating work, and thus it cannot be
fused at all in a shortcut fusion system.

The second critique this paper has on stream fusion is the duplication of loop counters. This
is a situation which happens when a zip-like function is fused: As there is no guarantee that the
input lists are of equal length, code generated by stream fusion will introduce a loop counter for
each of the inputs, as well as for the output list. These variables are always identical (they are
incremented simultaneously) and could be optimised away, but the bounds checks cannot.

Flow fusion first identifies, on a global level, which functions can be fused. It does this using
rate inference. The idea behind rates is that they represent an approximation to array length
equality: Two lists with the same rate are guaranteed to have the same length, but not the
other way around. After rate inference, the program is divided into processes. Each process is
guaranteed to completely fuse.

Each of these processes is then scheduled into a procedure, which is an abstract, imperative
loop nest. Procedures are defined such that they can never contain unfused loops: They consist
of a ‘start’ and an ‘end’ statement, which are both executed exactly once for each evaluation of
the loop, a ‘body’, which is executed as many times as the loop loops, and one ‘inner nest’, which
is a recursive definition. This is the phase where fusion happens. Afterwards, these abstract
loop nests are concretized and inserted back into the main program.

The idea of these procedures is very similar to a part of my contribution. Section 4.5 goes
into more detail and compares the approaches. All in all, Flow fusion is capable of perfectly
fusing sequential programs, if they are properly clustered. Section 2.5 goes into more detail on
what this means.

2.4 Fusion in purely functional data-parallel languages

There are a number of purely functional data-parallel languages, which serve to make high-
performance computing declarative. This Section explores the approaches these languages use
for fusion.

Accelerate is one of these languages. It is deeply embedded in Haskell, and compiles to parallel
code for both CPU and GPU. Accelerate is discussed in more detail in Section 3. Accelerate uses
Delayed Arrays for fusing its operations[8, 9]. This approach fuses all cheap primitives vertically
into their consuming counterparts. It does not support horizontal fusion in general, though use
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of functions like zipWith could result in horizontal fusion. I will discuss the current state of
fusion in Accelerate in more detail in Section 3.2.

The language Futhark is similar in purpose to Accelerate, but it is not embedded in a host
language. Futhark’s backend is significantly different to Accelerate, and it uses streams exten-
sively. The fusion is based on rewrite rules that greedily attempt to fuse these streams [10].
Since these rewrite rules and their ordering are static, there is not much control over the fusion
process.

The language Lift also falls under the category of data parallel array languages. Lift aims to
be an intermediate representation that high-level languages can compile into. In turn, Lift then
performs low-level optimisations and emits OpenCL code. Lift performs some limited vertical
fusion [11].

Halide is a domain specific language for image processing pipelines embedded in C++, whose
backend can perform a wide range of optimisation techniques including fusion. It is most
suited for automatic tuning, where a large number of optimisation techniques are attempted
in a stochastic search in order to experimentally find an optimal code generation scheme[12].

Single assignment C (SaC) is a purely functional array language, that compiles to many
parallel backends. Its syntax is aimed at providing imperative programmers a familiar, C-like
interface. This makes it feel like a subset of C with some added features, like the with-loop which
defines parallel generation, modification and folding of arrays [13]. SaC implements vertical
fusion as with-loop folding [14] and horizontal fusion as with-loop fusion [15]. As in many other
languages, these fusion opportunities are considered separately, and no attempt is made to find
an optimal fusion clustering.

Other language projects that aim to provide a functional programming interface to parallel
architectures include SPOC [16], Obsidian [17] and Nikola [18]. None of these seem to perform
a significant amount of array fusion.

2.5 Finding optimal fusion clusterings

All shortcut fusion methods are inherently local transformations. If we consider fusion on a
whole-program basis instead, it turns out that there can be multiple ways to partition the graph
into fused clusters. Some of these are simply less fused than others, but there can also be multiple
distinct local optima. In the general case, this problem is NP-complete. Troels Henriksen
and Cosmin Eugen Oancea [19] define this as a graph partitioning problem, and provide an
exponential exact algorithm, a greedy approximation algorithm, and a safe preprocessing step
that, in practice, speeds up the exact algorithm significantly.

A different approach uses Integer Linear Programming. An Integer Linear Program (ILP) is
a set of integer (or real) variables, with linear constraints and a linear objective function. Solving
ILPs is NP-complete, but there are solvers (both commercial and free) that use heuristics and
various algorithms which are capable of solving most ILPs quite quickly. Because of this, they
are a popular tool for solving NP-complete problems. In the rest of this section, we look at two
papers that use ILPs to find optimal fusion clusterings.

2.5.1 Optimal weighted loop fusion for parallel programs

In Megiddo and Sarkar [20], the authors describe an Integer Linear Programming formulation
for finding the optimal clustering of loops to fuse. They do this in two steps: First a näıve
formulation, and then they refine it into a more efficient ILP. They also describe a custom
branch-and-bound algorithm which they suspect to be superior in performance to a general
purpose ILP solver.

First, they introduce some terminology: A loop dependency graph is a directed acyclic graph,
where each node represents a loop. There are two types of edges in this graph: Fusible edges,
which represent the idea that although one of the loops depends on the other, they can be fused,
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and infusible edges, which represent the idea that one of the loops depends on the other, and
they cannot be fused. In either case, if the edge (i, j) exists, the cluster containing j cannot be
computed earlier than the cluster containing i.

The first proposed ILP, which has O(n2) variables and O(n3) constraints where n is the
size of the graph that represents the program, assigns a π variable to each node on the loop
dependency graph. These variables will tell us which loops are fused: if πi = πj , we fuse loops
i and j. Furthermore, they introduce a constraint for each fusible edge (i, j) that πj − πi ≥ 0
and for each infusible dependency edge (i, j) that πj − πi ≥ 1. They also have a variable xi,j
for each i, j, which signifies whether i and j are fused. Finally, they introduce some constraints
that relate these variables to each other to be consistent, including a transitivity constraint
xi,k ≤ xi,j + xj, k.

A simple proof shows that these transitivity constraints are not required, and indeed follow
from the other rules. This leads to a more efficient ILP formulation, that is linear in size with
respect to the graph.

2.5.2 Fusing Filters with Integer Linear Programming

The authors of Robinson et al. [21] iterate on Megiddo and Sarkar [20]. Where the original ILP
formulation does not support filter-like operations, as they alter the size of arrays, this paper
describes a way to embed them into the existing framework. Arrays that can be deduced to have
the same size are handled just like in the original formulation. When two arrays do not always
have the same size, but they have a pair of ancestors that do, the arrays can only be fused if
they are both fused with their respective ancestors, and the ancestors are fused with each other.

2.6 Summary

In Figure 2, we compare the existing fusion methods that are discussed in this thesis, on five
aspects. Note that delayed arrays are also in this comparison, they will be covered in more
detail in Section 3.2. The columns zip and filter show which fusion methods are capable of
fusing both inputs to a zip, or handle filter-like operations. The other three columns compare
different aspects of these fusion systems: Can they preserve parallelism, do they consider global
implications or are they based on local rewrites, and is the fusion method type-preserving?

parallel global zip filter typed

stream X X X
unfoldr/unbuild X X
foldr/build X X
flow X X X
delayed arrays X X X

Figure 2: Comparing existing fusion methods

This table shows that there is currently no fusion system that answers all our needs. We identified
the following gaps:

1. The existing concepts horizontal and vertical fusion are not sufficient to describe all legal
fusion opportunities.

2. There is no complete, type-safe compiler that uses a method such as the ILPs from Sec-
tion 2.5 to optimally fuse programs.
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3 Accelerate

In this thesis, we use the language Accelerate as a case study and we partially implement the
proposed fusion process in its compiler. The strengths and weaknesses of the proposed approach
to fusion align well with the language Accelerate: Longer compile times are acceptable, achieving
optimal performance from declarative code is already the goal, and the language only exposes
higher-order looping structures (no explicit recursion or loops). For this reason, we provide an
overview of the relevant details of Accelerate in this section.

3.1 Introduction to Accelerate

Accelerate is an open source language deeply embedded in Haskell aimed at high-performance
parallel computing [22, 23, 8, 24]. Accelerate code embedded into Haskell is not complied by
the Haskell compiler: The Accelerate library includes a runtime compiler which generates and
compiles parallel SIMD or GPU code at application runtime. Accelerate code often looks very
similar to Haskell code. For example, this is an implementation of the dot product function:

dotp :: Num a => Acc (Vector a) -> Acc (Vector a) -> Acc (Scalar a)

dotp xs ys = fold (+) 0 $ zipWith (*) xs ys

In this example, fold and zipWith are not the familiar Haskell functions that work on lists, but
Accelerate functions operating on array computations embedded in the Accelerate world. This
is reflected in the types:

fold :: (Shape sh, Elt a)

=> (Exp a -> Exp a -> Exp a)

-> Exp a

-> Acc (Array (sh :. Int) a)

-> Acc (Array sh a)

zipWith :: (Shape sh, Elt a, Elt b, Elt c)

=> (Exp a -> Exp b -> Exp c)

-> Acc (Array sh a)

-> Acc (Array sh b)

-> Acc (Array sh c)

The Accelerate language consists of two levels, Acc and Exp. Exp is the world of scalar values
and functions, which can be executed on a single thread of, for example, a GPU. Acc describes
arrays and collective array operations, such as map and fold. The typeclass Elt describes the
types of values that can be contained in arrays, and the typeclass Shape describes the possible
shapes of these arrays. Two instances of Shape are Z (a scalar array, an array that contains only
one element, an array with dimension 0) and (Shape sh) => Shape (sh :. Int) (an array
with one extra dimension). Z and :. are used to denote both type-level shapes, and value-level
shapes, which double as (zero-based) indexes into arrays.
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One of the restrictions of Accelerate is that it does not support nested parallelism. Exp

computations can index into arrays, but only if each Exp computation in one Acc computation
indexes into the same set of arrays: Scalar expressions cannot initiate parallel computations.
For example, the following function is not allowed:

matvecmul :: Num a => Acc (Matrix a) -> Acc (Vector a) -> Acc (Vector a)

matvecmul mat vec =

let Z :. rows :. cols = shape mat

in generate (Z :. rows)

(\(Z :. row) ->

(dotp vec

(backpermute (Z :. cols)

(\(Z :. col) -> Z :. col :. row)))

! Z)

Here, we try to define matrix-vector multiplication using the dotp function we saw earlier, by
using backpermute to extract the relevant row from the matrix. The reason this will not work, is
that each scalar expression would have to compute the parallel dotp and backpermute functions.
However, this does not mean we can never write functions that have a collective operation inside
of a generate: It is just that the collective operation may not depend on the index. In this
example, the index row is used inside of the backpermute. This breaks the two-level system
where individual Exp functions are not allowed to create their own collective Acc computations.

3.1.1 Shapes

Shapes are snoc lists, which means that the outermost Int corresponds to the innermost di-
mension of the array. Functions like fold reduce along this innermost dimension. For example,
in the following code snippet, xs is a two-dimensional array with twelve elements: four rows
with three elements each. The row ranging from (Z :. 0 :. 0) to (Z :. 0 :. 2) contains
the numbers {0, 1, 2} in order, and the suggestively named function seven indexes into the
8th location to find the number 7.

seven :: Exp Int

seven = xs ! (Z :. 2 :. 1)

where

xs :: Acc (Array (Z :. Int :. Int) Int)

xs = use $ fromList (Z :. 4 :. 3) [0..11]

3.1.2 Primitive Array operations

Accelerate has a variety of primitive array operations. Since these are the subjects of fusion, it
is important to be familiar with their declarative meaning and to gain an intuition for how these
operations might be evaluated on parallel hardware.

Map The function map applies an Exp function to each element in an Acc array. Depend-
ing on the amount of parallelism available, any number of these computations might be done
synchronously.

map :: (Shape sh, Elt a, Elt b)

=> (Exp a -> Exp b)

-> Acc (Array sh a)

-> Acc (Array sh b)
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Fold The function fold reduces an array along its innermost dimension. Unlike foldl or
foldr, this function assumes associativity6 of the combination function and does not specify the
order of operations: Depending on the backend, the size of the array, and even the amount of
parallelism available different methods might be used.

fold :: (Shape sh, Elt a)

=> (Exp a -> Exp a -> Exp a)

-> Exp a

-> Acc (Array (sh :. Int) a)

-> Acc (Array sh a)

Scans The functions scanl, scanr have the same declarative meaning as their Haskell coun-
terparts. For example, scanl (+) 0 computes the prefix sum of a vector. On higher-dimensional
data, scans (like folds) work along the innermost dimension. Where folds reduce each innermost
row to a single element, scans preserve the dimensionality. Like folds, scans require the function
to be associative.

scanl, scanr :: (Shape sh, Elt a)

=> (Exp a -> Exp a -> Exp a)

-> Exp a

-> Acc (Array (sh :. Int) a)

-> Acc (Array (sh :. Int) a)

Stencils A stencil is like a map, except the input for the Exp function is not a single element,
but the surrounding region in the input array. For example, a 3∗3 stencil looks at all nine inputs
in the range {i-1, i, i+1} × {j-1, j, j+1} to compute the new value at position (i, j).
The typeclass Stencil captures the possible input ranges, and the data Boundary describes how
the edges of the stencil should be computed, when some of the input coordinates do not exist.
Stencils provide an interesting tradeoff for fusion: Whenever a stencil fuses (vertically) with its
input, work is duplicated. Sometimes, the benefits of fusion may outweigh the recomputation of
a cheap function, but at other times fusing may have a net negative effect.

stencil :: (Stencil sh a stencil, Elt b)

=> (stencil -> Exp b)

-> Boundary (Array sh a)

-> Acc (Array sh a)

-> Acc (Array sh b)

Generate For the cases where all the specialised primitives do not have the desired expressivity,
there is also the generate function. It generalises all array computations: Given a shape and
a generating function, this constructs an array that has the desired element at each index.
generate has no explicit array input, which means that it does not fuse with anything that
happens before the generate.

generate :: (Shape sh, Elt a)

=> Exp sh

-> (Exp sh -> Exp a)

-> Acc (Array sh a)

Indexing Arrays can be indexed either with their multidimensional coordinates, or with a
linear index. Indexing is a fusion preventing operation: The indexed array has to be fully
computed before it can be accessed safely.

6Reminder: an operator ⊕ is associative if (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) for all a, b, c. The related concept of
commutativity holds if a⊕ b = b⊕ a for all a, b, but Accelerate does not assume this property.
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3.2 Fusion through Delayed Arrays

The current approach to fusion in Haskell is through the use of Delayed Arrays[25, 8, 9]. The
idea is simple: Wherever possible, arrays are not represented explicitly, but as a shape and
an indexing function. This means that, for example, composing index space transformations is
achieved by composing the functions instead of creating the intermediate arrays.

The primitive collective operations in Accelerate are categorised as either element-wise or
collective. In this distinction, element-wise operations are the primitives where each element of
the output only depends on a single element of the input array. Conversely, collective operations
are the primitives where a single element of the output array can depend on multiple elements
of the input array. Element-wise operations can be written as delayed arrays, but consumers
cannot because they would introduce nested parallelism. Primitives that do not belong to either
of these categories are never fused. This includes constructs like control flow and foreign function
interfaces. In Figure 3, we show how most primitives are classified into these categories.

Element-wise Collective Infusible

Map Folds Variable
Generate Scans Let-binding

Backpermute Permute Array introduction
ZipWith Stencils Control flow

Slice Foreign functions
Replicate Function application

Figure 3: The element-wise, collective, and infusible operations in Accelerate

Array fusion in Accelerate now amounts to a two-step process:

1. In the producer-producer step, successive element-wise operations in the AST are vertically
fused into a single delayed array. This is done in a straightforward manner, ignoring any
work duplication that might arise: Functions like Backpermute can access a single value
in the source array arbitrarily often. For example, a chain of maps will be transformed
according the classic map-fusion rule mentioned earlier. Each fusion step here is a source-
to-source rewrite.

2. In the producer-consumer step, the AST is annotated to signify which of the above delayed
arrays should be computed directly, and which should be embedded into the consuming col-
lective operation. During code generation, the embedding of delayed arrays into collective
operations will happen. The output of a collective operation never gets fused.

It is possible that a chain of maps and backpermutes, which are simple content and index
space transformation functions, is not allowed to fuse with their input and output. For example,
there is an explicit fusion preventing function to give the programmer more control. In this case,
we would still like to fuse these maps and backpermutes with each other, as these functions fuse
very well. To facilitate this, a hybrid Map/Backpermute primitive is added to the AST.

While this current approach solves many issues that previous methods would have had, the
most important of which is the preservation of parallelism, it is still not the ideal solution.
Only a limited subclass of fusion operations can be expressed in this framework (notably, only
vertical fusion is possible), and one can even construct examples where the current fusion causes
arbitrarily high slowdowns.7

7This occurs when an expensive map on a small array is followed by a backpermute that transforms it into a
big array.
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3.3 Internal Representation

Accelerate’s internal representation is strongly typed. This makes it a lot more difficult to make
incorrect transformations, as they would often be caught by the typechecker. This gives us some
correctness guarantees, but it also makes large-scale transformations on the AST more difficult.
In sections 4.4 and 5 we will work with this representation and expand it.

3.3.1 Typed de Bruijn indices

The internal representation is based on type-safe De Bruijn indices[26]. This means that the
environment is modelled as a list of values, and variables are represented by indices in this
list. Concretely, each let-binding introduces new variables on top of this list. The indices and
environment are strongly typed. This gives some guarantees: An index is a proof that the
environment contains an variable of a certain type, and we cannot change the environment or
the indices without properly updating the other.

The datatypes for indices Idx and environments Val are shown below, together with the
essential projection prj which uses an index to get a value from an environment.

data Idx env t where

ZeroIdx :: Idx (env, t) t

SuccIdx :: Idx env t -> Idx (env, s) t

data Val env where

Empty :: Val ()

Push :: Val env -> t -> Val (env, t)

prj :: Idx env t -> Val env -> t

prj ZeroIdx (Push _ v) = v

prj (SuccIdx idx) (Push val _) = prj idx val

To be able to do transformations on the AST, there are some utilities for working with the
environment. For example, the following newtypes represent Weakening and Strengthening, the
process of making an environment bigger or smaller. Weakening is always valid, but strength-
ening returns a Maybe to represent the idea that an Idx might not be present in the smaller
environment.

newtype env :> env' = Weaken (∀t. Idx env t -> Idx env' t)

newtype env :?> env' = Strengthen (∀t. Idx env t -> Maybe (Idx env' t))

Accompanying these newtypes are functions that apply a weakening or strengthening to (a
branch of) an AST, by applying the index transformation inside to each Idx.

A LeftHandSide arrs env env' describes how the environment env can be extended with
the array or arrays arrs to get env'. In other words, it is a generalisation of env' = (env, arrs),
which can deal with pairs of arrays and with wildcards, that do not expand the environment.
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data LeftHandSide arrs env env' where

LeftHandSideArray

:: (Shape sh, Elt e)

=> LeftHandSide (Array sh e) env (env, Array sh e)

LeftHandSideWildcard

:: ArraysR arrs

-> LeftHandSide arrs env env

LeftHandSidePair

:: LeftHandSide arrs1 env env'

-> LeftHandSide arrs2 env' env''

-> LeftHandSide (arrs1, arrs2) env env''

3.3.2 Abstract Syntax Tree

The abstract syntax tree is the internal representation of an Accelerate program. It uses the
De Bruijn indices both on the Acc level, for array-level variables, and on the Exp level, for
element-level variables. In this thesis, we will only focus on the array-level.

In the listing below, the type of the environments is represented by aenv, aenv'. We see that,
in the case of Alet (the array-level let-binding constructor), the LeftHandSide representation
from Section 3.3.1 is used.

data PreOpenAcc acc aenv a where

Alet :: LeftHandSide bndArrs aenv aenv'

-> acc aenv bndArrs

-> acc aenv' bodyArrs

-> PreOpenAcc acc aenv bodyArrs

Map :: (Shape sh, Elt e, Elt e')

=> PreFun acc aenv (e -> e')

-> acc aenv (Array sh e)

-> PreOpenAcc acc aenv (Array sh e')

ZipWith :: (Shape sh, Elt e1, Elt e2, Elt e3)

=> PreFun acc aenv (e1 -> e2 -> e3)

-> acc aenv (Array sh e1)

-> acc aenv (Array sh e2)

-> PreOpenAcc acc aenv (Array sh e3)

(..)

The AST is not defined recursively, but parametrised over a recursive closure. This allows us to
define arbitrary recursive closures in the backend, for example to annotate each node with some
information.

newtype OpenAcc aenv t = OpenAcc (PreOpenAcc OpenAcc aenv t)

The recursive closure OpenAcc is the most neutral one: It is just a wrapper around PreOpenAcc.
This means that an AST of type OpenAcc can be interpreted as a PreOpenAcc where all instances
of acc are simply recursive.

The closure that currently represents a fused Accelerate program is shown below. It is
a generalized algebraic datatype (GADT) with two constructors: Delayed, which represents a
fused chain of element-wise operations as an array that can be generated from its shape and a
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function from each index, and Manifest, which represents a real array that will be computed in
memory.

data DelayedOpenAcc aenv a where

Manifest :: PreOpenAcc DelayedOpenAcc aenv a

-> DelayedOpenAcc aenv a

Delayed :: (Shape sh, Elt e) =>

{ extentD :: PreExp DelayedOpenAcc aenv sh

, indexD :: PreFun DelayedOpenAcc aenv (sh -> e)

, linearIndexD :: PreFun DelayedOpenAcc aenv (Int -> e)

} -> DelayedOpenAcc aenv (Array sh e)
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4 Theoretical contribution

The main question we try to answer with this thesis is: How can we optimally fuse all programs
in a data-parallel language? To this end, we formulate the following subquestions:

1. What kind of data structure can express a fusion clustering in the AST? Sections 4.1 and
4.4 cover this question.

2. Can we use an ILP solver to find the optimal fusion clustering for a data-parallel array
program? This question will be answered in Section 4.3.

3. How do we represent and evaluate these fused programs? We answer this question in
Section 4.5.

Section 4.2 gives an overview of the sections that follow it, and details how the ideas that
are presented interact. Section 5 will discuss how these ideas are leveraged in the Accelerate
compiler.

Throughout this chapter, we will look at the following Accelerate program as an example.
The goal is to optimally fuse it. This example is a slightly altered version of normalise2 from
Robinson et al. [21]. Compared to the original version, we replace the filter with a scan.8

normalise2 :: Acc (Array DIM1 Int) -> Acc (Array DIM1 Int, Array DIM1 Int)

normalise2 xs = (ys1, ys2) where

sum1 = the $ fold (+) 0 xs

scn = scanl (+) 0 xs

sum2 = the $ fold (+) 0 scn

ys1 = map (`div` sum1) xs

ys2 = map (`div` sum2) xs

(a) Unfused
(b) The optimal clustering

Figure 4: The control flow graph of normalise2

8Accelerate (due to its parallel nature) does not have filter as a primitive operation. It is defined in Accelerate’s
standard library, but an efficient filter on highly parallel backends consists of multiple passes. In other words, the
data parallel filter implementation can never fully fuse with itself. Fusion techniques presented here and elsewhere
could fuse the first and last pass of this filter with its input and output, if the filter is just one function in a larger
program.
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As noted in Robinson et al. [21], and demonstrated in Figure 4, the optimal fusion grouping
for this program is {sum1, scn, sum2}, {ys1, ys2}. We will explore how we can get to this
conclusion in Section 4.3, and how we aim to generate fused code in Section 4.5. First, we
explore the idea of ‘diagonal fusion’ in the next section.

4.1 The gap between vertical and horizontal fusion

The concepts of vertical and horizontal fusion have been introduced in Section 2.1.1. Figure 5
shows how we can apply these concepts to fuse the first half of normalise2: First we vertically
fuse the scan with its consumer, the fold that produces sum2. After that, the sum1 fold and the
scan/fold combination both consume xs, and they could do so in lockstep. This means that we
can horizontally fuse them.

Figure 5: Applying vertical and horizontal fusion to the first half of normalise2

We have seen in Section 2.2 that many prior fusion systems are not capable of fusing both
inputs to a zip, but this concept is easily subsumed by horizontal and vertical fusion: We can
horizontally fuse the inputs, and then vertically fuse that result into the zip.

We were able to fuse sum1, scn and sum2 with just vertical and horizontal fusion, because
normalise2 is not a very complex example. To make it more interesting, let us expand it slightly:
Consider that xs is a result of a map, as in Figure 6.

Figure 6: How can we fuse xs?
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Here, the familiar constructs of vertical and horizontal fusion cannot help us: We want to
somehow perform the map in lockstep with the first half of normalise2, but also store xs as a
manifest array for the second half of normalise2. A horizontal fusion is not legal, as the scan
and folds depend on xs, but a vertical fusion would eliminate xs. Introducing the concept of
diagonal fusion will give us a general way to talk about this situation and describe more complex
fusion opportunities.

4.1.1 Diagonal fusion

Figure 7: Diagonal fusion

Diagonal fusion is a term and concept which has not been expressed before. As the name suggests,
it is a combination of vertical and horizontal fusion. In diagonal fusion, the two steps which we
fuse into one loop have a vertical relationship (meaning that the result of one step is used to
compute the other step), but the intermediate result is also stored for future computations or
even as part of the result of the program. This allows us to still reap half9 of the benefits of
vertical fusion, in situations where vertical fusion would not be possible. Note that it is possible
to emulate diagonal fusion by first horizontally fusing the identity function and some other
function, and then vertically fusing the result (see Figure 8). However, this added map id could
have performance implications. The strength of adding diagonal fusion explicitly is that we can
guarantee that this identity function is free, and it allows us to construct and decompose the
fusion AST more easily, while keeping it decoupled from language constructs.

Figure 8: Emulating diagonal fusion using horizontal and vertical fusion

9Diagonal fusion eliminates the read of the intermediate result, but not its write.
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Diagonal fusion is very similar to a standard let binding, with respect to its expressivity.
This means that diagonal fusion, in combination with some form of environment weakening,
subsumes both vertical and horizontal fusion: One could emulate vertical fusion by discarding
a result after diagonal fusion, and one could emulate horizontal fusion using diagonal fusion, by
weakening one of the functions to work in an environment that includes the result of the other
function. This guarantees that it is expressive enough to capture any possible fusion instance,
as they could also be expressed using let-bindings.

As is a common theme in this thesis, we note that expressivity is not always a good thing: The
concepts of vertical and horizontal fusion are useful, precisely because they are more restrictive.
This benefit extends beyond human conversation; the restrictions on these fusion concepts allow
more targeted optimisations. As a result, we aim to use all three fusion directions in our approach.
Note that this choice is somewhat contrary to the philosophy of shortcut fusion schemes: They
are focused on rewriting every fusible function into one or two combinators. That said, using
three fusion combinators is still very doable, even if we encounter quadratic or even exponential
blow-up in the number of functions we have to write later on.

Together, the three concepts of Vertical, Horizontal and Diagonal fusion cover all local data
dependency relationships that two fusible loops can have, except for complete independence.10 It
could be possible that two loops are guaranteed to have the same size, without having a common
ancestor. In particular, this occurs when the result arrays of these two loops are zipped: The
function zip ignores the excess input of the largest array, so we are allowed to simply not
compute that part in the first place. For our purposes, it is sufficient to treat this case like
ordinary horizontal fusion. In other words, we define horizontal fusion as any fusion where the
two loops can be computed independently.

Coming back to our example, it is now obvious that we want to diagonally fuse xs = map f ys

with the cluster containing the scan and folds, as we can see in Figure 9.

Figure 9: Fusing the first half of the extended version of normalise2

10This follows from a simple argument: Either the two nodes are completely unrelated (independence) or not. If
not, then either one is the ancestor of the other (vertical or diagonal relationship), or not (horizontal relationship).
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4.2 Compiler pipeline

In this section, we give a quick overview of the parts of the compiler pipeline that are affected
by the new fusion system. The changes can roughly be split in two phases: Fusion and Code
Generation. The fusion phase is mostly backend-agnostic, whilst the code generation phase has
to be implemented for each supported backend. Accelerate supports parallel backends for the
CPU and the GPU, and an interpreter in Haskell.

The fusion phase is discussed in sections 4.4 and 4.3, and the code generation phase is
discussed in Section 4.5. In Section 5, the implementation in Accelerate is discussed in more
detail.

1. Fusion phase:

(a) Convert the AST to a labelled and let-bound version

(b) Generate the ILP constraints

(c) Solve the ILP

(d) Reorder the AST to group the clusters

(e) Explicitly annotate the AST with vertical, horizontal, diagonal fusion primitives

2. Simplification passes

3. Code generation phase:

(a) Convert each AST node to the Intermediate Representation

(b) Fuse these representations using the fusion annotations

(c) Generate code for each fully fused loop nest

4.3 ILP formulation

As noted in Section 2.5, the problem of finding the optimal fusion clustering is, in general, NP-
hard. Figure 10 shows three locally optimal fusion clusterings for normalise2. In none of these
clusterings can two clusters be fused, because that would violate a non-fusible edge.

Figure 10: Three locally optimal fusion clusterings.

The core idea behind the ILP has been discussed in Section 2.5. To summarise:

• Numeric π variables are assigned to each node, these label the clusters. All nodes with the
same π value are in the same cluster, and the clusters can be computed in order from 1 to
n. Each cluster can potentially have a data dependency on any of the previous clusters,
but not on any of the later ones: We require an acyclic clustering.
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• Binary fusion variables are assigned either to each pair of nodes (first, inefficient formu-
lation and the formulation that supports filters), or to each edge (second, more efficient
formulation).

• Linear constraints relate these variables to each other.

The choice to solve an NP-hard problem at compile time, in order to optimise the runtime
of a program, means that we have to accept that compilation might take longer than usual:
Programs that would otherwise compile in seconds, could potentially take minutes in the ILP
solver. Because of this, we take care to keep the ILP formulation as small as possible, eliminating
many redundant variables and constraints.

As in Megiddo [20], our formulation only has variables and constraints for ‘relevant’ edges.
Megiddo’s ILP formulation uses a fusion variable only for each edge in the graph. We use one
for each edge and one for each pair of sibling11 nodes in the graph. This means that the number
of constraints is quadratic in the outgoing degree of the nodes, but in practice this degree tends
to be small. The reason that the formulation by Robinson et al. [21] is bigger, is that their
approach uses a constraint, and thus a variable, relating each pair of nodes of different iteration
size to their parent nodes. Because solving ILPs is computationally expensive, and worst-case
exponential, we avoid having the ILP be quadratic in the size of the AST. In Accelerate, we can
get away with an ILP that is roughly linear in the size of the AST, due to the following line of
reasoning:

When we only have variables and constraints for local relations, as in Megiddo [20], global
fusion relations can be extracted in two ways: Through the π variables (when two nodes belong
to the same cluster, they should be fused), and through transitive fusion relations (when nodes
x and y are both fused with node z, then x and y are also fused with each other). We note that,
necessarily, the transitive relationship implies the π relationship but the reverse does not always
hold. In other words, the π relationship describes a fusion clustering that is at least as fused as
the transitive relationship. If we instead have fusion variables for each pair of nodes, these two
relationships always lead to the same clustering.

In Megiddo [20], the version with π variables is used. We cannot guarantee that this π
property is strong enough, so we must choose the other, more restrictive, option. This means
that, sometimes, we might not fuse two clusters that could have fused. In return, we know that
the subgraph of the program that belongs to each cluster is now always connected.

In the context of a language like Accelerate, not fusing these independent clusters turns
out to be a good thing, even when fusing them would be possible: The only cost is the, often
negligible, overhead of loop counters, and in return we can schedule these independent clusters
concurrently.

To deal with Accelerate’s particular needs, for each node we define input direction, shape and
output direction, shape variables. These variables relate to the fusion variables according to two
simple rules:

• If two connected nodes are fused, the output shape and output direction of the first node
must be identical to the input shape and input direction of the second node;

• If two sibling nodes are fused, the input shape and input direction of both nodes must be
identical.

The direction variables describe the order in which, respectively, the input or output arrays
are read or written. For example, scans have a particular direction in which they have to be
evaluated, and (back)permutes have an unpredictable order. This means that scanl . scanl

and permute . backpermute are both vertically fusible, whilst scanr . scanl and
backpermute . permute are not.

11Two nodes are siblings in the graph if they have the same ancestor.
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In the case of unpredictable memory access patterns, it might be tempting to simply never
fuse. However, this is too restrictive: For example, it is perfectly feasible to fuse
backpermute . map, it simply means we evaluate the map out of order. Note that it depends
on the size of the input and output arrays whether this fusion makes the map cheaper or more
expensive, but even if it duplicates work, fusion can be beneficial. In the future, array size
inference and function cost analysis could provide the ILP with information to make this decision.

The rest of the ILP consists of node specific constraints: they describe which nodes are
allowed to be fused under which circumstances, and which invariants must hold. Specifically,
they all put restrictions on the shape and direction variables. For example, in any clustering,
the input direction and output direction must match for each map node, and a scanl node has
to be evaluated left-to-right. All of these constraints follow trivially from the imperative-loop
intuition for the corresponding node.

Finally, we experiment with some GPU-specific shape variables. Where the direction variables
specify the order, these specify the location of the array is in memory. Concretely, this is a number
representing how many dimensions each thread or threadblock contains.

4.4 Explicit Fusion AST

The previous section described a method to identify the optimal fusion clustering for a given
problem, but there is still some work to do before we reach our end goal, which is code where
those loops have been fused. In this section we show that we cannot perform this fusion as a
source-to-source rewrite, and propose a representation that allows us to delay this until a later
stage, where it is possible to perform fusion.

We cannot fuse on a normal Accelerate AST, as it simply is not expressive enough. For
example, we could fuse a map and a fold over the same array horizontally, but we cannot write
this fused function in the normal Accelerate AST: There is no way to construct something that
produces two arrays of different dimensionality, and automatically gets compiled into a single
loop. Instead, we will use the information from the graph and the ILP solution to explicitly
annotate the AST with labels that describe which nodes should be fused, and in what fashion.
We will then utilise this new AST to perform the actual fusion at code generation time.

We want to annotate the AST with detailed instructions on how to fuse each of the operators.
Each node of the AST should consist of a tree of fusions, and only the leaves of these trees contain
the PreOpenAcc datatype. We could describe our example, the fused first half of normalise2
in Figure 4b, as the fusion tree in Figure 11.

Figure 11: Fusion tree of the first half of normalise2
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data Plurality = Single | Multiple

data PreFusedOpenAcc (n :: Plurality) aenv a where

RootOfCluster :: PreFusedOpenAcc Single aenv a

-> PreFusedOpenAcc Multiple aenv a

LeafOfCluster :: AST.OpenAcc aenv a

-> PreFusedOpenAcc Single aenv a

Unfused :: AST.PreOpenAcc (PreFusedOpenAcc Multiple) aenv a

-> PreFusedOpenAcc Multiple aenv a

Vertical :: LeftHandSide a aenv benv

-> PreFusedOpenAcc Single aenv a

-> PreFusedOpenAcc Single benv b

-> PreFusedOpenAcc Single aenv b

Horizontal :: PreFusedOpenAcc Single aenv a

-> PreFusedOpenAcc Single aenv b

-> PreFusedOpenAcc Single aenv (a,b)

Diagonal :: LeftHandSide a aenv benv

-> PreFusedOpenAcc Single aenv a

-> PreFusedOpenAcc Single benv b

-> PreFusedOpenAcc Single aenv (a,b)

Listing 1: The explicit fusion closure

We want to embed this information in the AST. We do this by defining a new recursive knot,
as seen in Section 3.3.2. In Listing 1, the definition of this explicit fusion AST is shown, and
Listing 2 shows how this encapsulates the fusion of normalise2.12 We use the GHC extension
DataKinds to make the phantom types Single and Multiple of kind Plurality. The AST of an
Accelerate program will, in general, consist of multiple clusters. The phantom type of kind
Plurality disambiguates whether an AST node is inside one of the clusters (Single), or a high-
level node that contains multiple clusters (Multiple), such as a let-binding or array-level control
flow. The nodes that contain multiple clusters are all under the constructor Unfused, which has
a recursive closure back into the explicit fusion tree. Each cluster has a single RootOfCluster

node, underneath which zero or more of the Vertical, Horizontal and Diagonal nodes form
a tree. In the leaves of this tree, LeafOfCluster nodes contain regular AST nodes. Note that
these final nodes do not have a PreFusedOpenAcc closure, as they are supposed to only contain
very minimal nodes, like a single map or fold.13

The three fusion constructors reflect the patterns that we encountered before. They use
the LeftHandSide constructor we encountered previously to encode the relationship between
the environments: For both vertical and diagonal fusion, the LeftHandSide tells us that benv

is aenv, extended with a. As always, the final type constructor (b or (a, b)) in this GADT
represents the type of the value that the corresponding AST evaluates to. Note that these reflect
the idea that horizontal and diagonal fusion return both a and b, whilst vertical fusion fuses a

away.

12The function definitions (map, fold, scanl) have been simplified in this snippet, instead of expanding the
entire Accelerate AST terms.

13In fact, we could give these nodes a closure that only allows indexing to statically guarantee this. This is
omitted for the sake of clarity.
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RootOfCluster $ Diagonal

LeftHandSideArray

LeafOfCluster $ map f

Horizontal

LeafOfCluster $ fold (+) 0

Vertical

LeftHandSideArray

LeafOfCluster $ scanl (+) 0

LeafOfCluster $ fold (+) 0

Listing 2: Fused normalise2 in the fusion AST

An important note at this point, is that there is no restriction on the shape of the results
for any of the fusion constructs: It is for example, by design, possible to horizontally fuse a fold
and a map over the same array, even though the result types have different dimensionality. This
parallel concept cannot be expressed in the current delayed/manifest representation, regardless
of how it is constructed. Of course, not every fusion that can be expressed in this AST is actually
viable, as we could not make all impossible states unrepresentable.

Adding more type-level safety, ensuring that all fusions that can be encoded are valid in some
broader sense, is left for future work. Possible avenues include statically ensuring that both steps
in horizontal fusion loop over the same source, and that the second step in both vertical and
diagonal fusion can use the first result as a streaming parameter.

4.5 Generating fused code

In this section, we will look at how to transform the annotated AST we introduced in the
previous section into fused, low-level code. We cannot perform this step before code generation
in a normal Accelerate AST, as it simply is not expressive enough. For example, we could fuse
a map and a fold over the same array horizontally, but we cannot write this fused function in
the normal Accelerate AST. This is why we introduce the explicit fusion AST in Section 4.4,
which manages to delay this problem until code generation. Fusing these loops once they have
been completely generated into target code, such as LLVM IR, is also not an attractive option,
as these low-level loops are too expressive: Blindly fusing them is unsafe as they may contain
various side-effects, and it might not be trivial to figure out how to fuse them exactly.

In fact, that is very close to the approach that flow fusion takes [7]. In flow fusion, fusible
functions are identified and then converted into explicit loops, which are then fused with no
regard for safety: If the first phase incorrectly classifies functions as fusible, the fusion process
will proceed and generate incorrect loops.

The approach we detail in this thesis differs from flow fusion on two main fronts: We add type
safety, which is especially useful in the Accelerate compiler where the typechecker is leveraged
across the entire pipeline, and we make sure that all the explicit loops can be executed in parallel,
which allows us to generate code for the parallel hardware that Accelerate targets.

We accomplish this by defining a strongly typed, restrictive representation for these abstract
loop nests. We will refer to this as the intermediate representation (IR) from now on. This
intermediate representation should be expressive enough to allow transpiling Accelerate into it,
while being restrictive enough to allow safe fusion of, arbitrary but fusible, loop nests. The code
generation of a fusion-annotated AST will then consist of the following steps:
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1. Transpile each Accelerate instruction into the IR.

2. Directly fuse the IR of parts that were annotated to be fused.

3. Generate code for the resulting IR.

The high-level idea of this representation is to expose the array-level control flow, using one
looping constructor and a couple of strongly typed composition constructors. The loop is the For
constructor of the IntermediateRep GADT. Contrary to all user-facing Accelerate functions,
this For loop is closer to the imperative code that gets generated: It iterates over the outermost
dimension of the data, whereas all functions on the user-facing end work on the innermost
dimensions. The intermediate representation is designed in such a way that while these For

loops may be nested and composed with statements at each level, there are never two loops at
the same depth. This gives a static guarantee that every instance of this IR represents a fully
fused program: It can easily be evaluated or compiled in such a way that memory reads and
writes are minimised. Moreover, since the For loop is by design a parallel construct in this
language, we can also generate fused code for parallel backends from such a program. Section 5
details how this representation is implemented in Accelerate.

As a motivating example, let us look at the first half of normalise2 again. Since it can be fully
fused, our goal is to generate low-level code for it containing only one loop. First, we translate
each of the functions into an intermediate representation. The resulting pieces of explicitly loopy
ASTs are shown below. Higher-level Accelerate code is shape-polymorphic, but in the process
of code generation we have to instantiate it with a code that works on specific arrays of given
dimensionalities. Explicit loops means that this instantiation has already happened.

The implementation of IntermediateRep belongs in Section 5, this example serves as an
informal introduction to it and the underlying ideas, which we will discuss here. We do not
advise the reader to dive into the example in-depth here, the takeaway is that all four of these
have their own For loop, inside of which is some computation.

xs :: IntermediateRep ((), Vector Int) () ((), Vector Int)

xs = For (Simple $ Take' (OneToOne (\(PushEnv _ ys) _ ->

get >>= \i -> modify (+1) >> return (ys ! (Z :. i)))) Base) Id t1

sum1 :: IntermediateRep ((), Vector Int) ((), Vector Int) ((), Scalar Int)

sum1 = For (Simple $ Take (ManyToOne (const $ modify . (+)) get) Base) t1 t2

scn :: IntermediateRep ((), Vector Int) ((), Vector Int) ((), Vector Int)

scn = For (Simple $ Take (OneToOne (\_ a -> modify (+a) >> get)) Base) t1 t1

sum2 :: IntermediateRep ((), Vector Int) ((), Vector Int) ((), Scalar Int)

sum2 = sum1

-- Some index space transfomations, to embed computation inside the loops

t1 :: Transform ((), Scalar Int) ((), Vector Int)

t1 = Fn 1 Id

t2 :: Transform ((), Array Neg1 Int) ((), Scalar Int)

t2 = Fn 0 Id

If we can write the entire first half of normalise2 as one such IntermediateRep, we have
successfully fused their imperative versions. All that would then remain is to translate the
resulting IntermediateRep into a real imperative language.

Because of the way we designed this intermediate representation, it is relatively easy to write
this fused version by hand. Once again, the example is too convoluted to examine in-depth, but
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the main takeaway is that we now have one For loop, inside of which inner contains all of the
loop bodies:

let xs = Take' (OneToOne (\(PushEnv _ ys) _ ->

get >>= \i -> modify (+1) >> return (ys ! (Z :. i)))) Base

sum1 = Take (ManyToOne 30 (const $ modify . (+)) get) Base

sum2 = Weaken (Fn 0 (Skip Id)) $ Simple $

Take (ManyToOne 30 (const $ modify . (+)) get) Base

scn = Take (OneToOne ref (\_ a -> modify (+a) >> get)) Base

temp = PushEnv EmptyEnv . Array (fromElt Z) <$> newArrayData 1

sum2scn = Before (Partition (Skip Id) (Fn 0 (Skip Id))) temp scn sum2

sum1sum2scn = Besides (Partition (Skip Id) (Fn 0 (Skip Id))) sum1 sum2scn

inner = Before' (Partition (Skip Id) Id) (Partition

(Skip (Skip Id)) (Fn 0 (Fn 0 (Skip Id)))) xs sum1sum2scn

in For inner Id (Fn 0 (Fn 0 (Fn 1 Id)))

Here, we fused the loops and manually fix the environments (using transformations like Skip).
Sadly, this is not quite sufficient: We cannot expect a programmer to manually fuse IntermediateRep
structures halfway in the compilation phase, this is a process which must happen automatically.
Given the first definitions of xs, sum1, scn, sum2 (the ones that each have their own loop),
we want to have functions that can fuse them automatically, like this:

program = fuseDiagonal xs $ fuseHorizontal sum1 $ fuseVertical scn sum2

Once we manage this, we could use the explicit fusion AST to generate fused (intermediate
representation) code.
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5 Implementation in Accelerate

In this chapter, we tie all the pieces from chapter 4 together and show how they are, partially,
implemented in the Accelerate compiler.

5.1 Fusion phase

In order to generate an ILP formulation corresponding to a program, we add some intermediate
steps. First, the AST is rewritten into one where each relevant node has a unique label, which
will serve to name the ILP variables, and where all combinators work only on variables. As a
concrete example, below are excerpts from the normal Accelerate AST, and the AST used for
fusion analysis:

-- normal version

data PreOpenAcc acc aenv a where

Map :: (Shape sh, Elt e, Elt e')

=> PreFun acc aenv (e -> e')

-> acc aenv (Array sh e)

-> PreOpenAcc acc aenv (Array sh e')

-- fusion version

data PreLabelledAcc acc aenv a where

Map :: (Shape sh, Elt e, Elt e')

=> NodeId

-> PreFun acc aenv (e -> e')

-> ArrayVars aenv (Array sh e)

-> PreLabelledAcc acc aenv (Array sh e')

Note that in the PreLabelledAcc version, the Map constructor has an extra field for its NodeId,
and the array that it maps over is always a variable.

A different option would have been to use the existing AST, and encode the NodeId in the
recursive knot. There are two reasons why we did not go for this option:

1. Not every AST node should have a NodeId. In particular, we do not want to assign
a name to let-binding nodes, because they are not relevant for the ILP, and the global
transformations that will happen in the fusion process will create new binding nodes.

2. Statically ensuring that each combinator works on a variable helps to simplify the whole
process. This translation needs to happen at some point, because it is needed for the
explicit fusion AST, so adding it while labelling all nodes is a sensible option.

The corresponding excerpt of the translation can be found below. The State monad is used to
label each node individually. Here, letBind abstracts a very common pattern in the letBindAcc
function: it binds acc to a variable in an Alet node, and it embeds the continuation inside it.
w $:> letBindFun f is shorthand for applying the weakening w to the AST letBindFun f. This
is needed, because let-binding the array acc means that f now operates in a larger environment,
as it has access to acc.

letBindAcc :: AST.OpenAcc aenv a

-> State Int (LabelledOpenAcc aenv a)

letBindAcc (AST.OpenAcc pacc) = LabelledOpenAcc <$> case pacc of

AST.Map f acc -> letBind acc $ \w var ->

Map <$> getInc <*> w $:> letBindFun f <*> var
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Now we have this new, labelled and let-bound, AST, we can use it to generate the ILP. First,
a single pass over the AST abstracts away all the irrelevant details to make a Directed Acyclic
Graph (DAG), represented as a list of nodes. These nodes contain only the important details:
their label, the label of their input variables, and the type of node (map, fold, etc). We also
generate a list of fusion preventing edges. Most of these occur as a result of indexing, as we can
only safely index into an array if it is already fully computed in an earlier cluster. An exception
to this rule occurs when we index into an element-wise array: If each element can be computed
without nested parallelism, we could inline the delayed array representation instead. Identifying
these opportunities, and weighing them against possible work duplication, is left for future work.

data DirectedAcyclicGraph = DAG {

nodes :: IM.IntMap NodeType,

fpes :: [(NodeId, NodeId)]

}

Subsequently, this DAG is used to create the ILP, consisting of the variables and constraints
mentioned previously. The ILP determines a clustering of the nodes. The entire pipeline up
to this point has been succesfully implemented. What is left, is to use the weakening and
strengthening operations to rewrite the program into a tree of these clusters, and finally, rewrite
each of these clusters into the explicit fusion AST we encountered in Section 4.4

5.2 Code generation phase

In this section, we look at the code generation phase and how it changes due to this new approach
to fusion. As mentioned before, we translate the explicitly fused Accelerate AST into some
intermediate representation, that we can directly perform fusion on. Afterwards, we generate
code for the fused version of this representation. Most of the contents in this Section will have
to be re-implemented for each backend, as it is intertwined with code generation itself.

In the code in this section, the AST will include regular Haskell-level functions to denote
element-level expressions. This came about as a result of the language being written for a
Haskell-level interpreter, and is kept that way here for the sake of simplicity. For code-generating
backends, some slight alterations need to be made to only one GADT in this language. Parts of
the language are purposefully, but only slightly, altered here for the sake of simplicity. For exam-
ple, typeclass constraints are omitted from nearly all functions and data types: they are usually
not instructive in this context, as much as they are just boilerplate or leaking implementation
details. The uncensored versions can be found on GitHub.

5.2.1 Intermediate Representation

The first step in the code generation phase is to translate the individual Accelerate AST nodes
into the IR. This is not implemented yet, the main challenge here is to translate the contained
Exp expressions. Luckily, for parallel backends, where the IR will contain the Exp expressions
instead of haskell-level functions, this part is irrelevant.

Like the Accelerate AST, the GADTs for this intermediate representation are strongly typed.
The types encode the environment that these programs work on, which are tuple-based lists of
arrays. We need to be able to do index transformations on these arrays and environments. Since
these appear everywhere in the design, it is best we discuss them up front:
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data Transform from to where

Id :: Transform a a

Fn :: Int

-> Transform from to

-> Transform (from, Array sh e) (to, Array sh' e)

Skip :: Transform from to

-> Transform from (to, Array sh e)

The intuition behind a Transform, is that it is a constructive proof that from is a subset of to.
The constructors Id and Skip very clearly resemble this relationship: Together, they allow us
to weaken an environment, such that we can embed a program into one where the environment
is bigger. Fn is less obvious, partially because there is no type-level guarantee that this subset
relationship holds. In practice, the way Fn is used is inside of loops: You can embed a program
that consumes a 1-dimensional array inside of a loop, to make a program that consumes a 2-
dimensional array. The Int represents the offset that should be added to the virtual index, to
get the physical index in the manifest array.

The astute reader might have noticed that using only Skip and Id we can only skip arrays
from the top of the environment, as there is no Take constructor. We get around this by using
Fn 0 as a synonym for Take, when sh and sh' are the same shape.

Currently, there is no type-level guarantee that relates the shapes sh and sh' in Fn. Doing
so is left for future work, one of the possibilities is to add a GADT GreaterShape as such:

data Transform from to where

Fn :: GreaterShape sh sh'

-> Int

-> Transform from to

-> Transform (from, Array sh e) (to, Array sh' e)

data GreaterShape sh sh' where

Equal :: GreaterShape sh sh'

Greater :: GreaterShape sh sh'

-> GreaterShape sh (sh :. Int)

As with other parts, like the explicit fusion AST, we attempted to make this functional before
adding more typesafety, making less illegal states representable.

Transforms compose naturally, due to the transitivity of the subset relationship. We can
even define an instance of Category:

compose :: Transform b c -> Transform a b -> Transform a c

compose Id x = x

compose x Id = x

compose (Skip x) y = Skip (compose x y)

compose (Fn _ x) (Skip y) = Skip (compose x y)

compose (Fn i ab) (Fn j bc) = Fn (i+j) (compose ab bc)

instance Category Transform where

id = Id

(.) = compose

For brevity, we also introduce a Partition, which is nothing more than two Transforms that
point to the same manifest environment and a promise that the resulting environments are
disjoint. Partitions inside of the IR should generally represent a true partition, that is, they
should also cover the entire source environment. In the interpreter, some notation is abused and
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the second condition does not necessarily hold, as the partition is then fused with weakening
Transforms.

data Partition a b ab = Partition (Transform a ab) (Transform b ab)

The main meat of this language is the GADT IntermediateRep:

data IntermediateRep permanentIn tempIn out where

For :: IntermediateRep pin tin out

-> Int

-> Transform tin tin'

-> Transform out out'

-> IntermediateRep pin tin' out'

Weaken :: Transform a a'

-> IntermediateRep p a b

-> IntermediateRep p a' b

Simple :: LoopBody pin a b

-> IntermediateRep pin a b

-- Vertical fusion

Before :: Partition a b ab

-> ValArr b

-> LoopBody pin a b

-> IntermediateRep pin ab c

-> IntermediateRep pin a c

After :: Partition a b ab

-> ValArr b

-> IntermediateRep pin a b

-> LoopBody pin ab c

-> IntermediateRep pin a c

-- Diagonal fusion

Before' :: Partition a b ab

-> Partition b c hor

-> LoopBody pin a b

-> IntermediateRep pin ab c

-> IntermediateRep pin a hor

After' :: Partition a b ab

-> Partition b c hor

-> IntermediateRep pin a b

-> LoopBody pin ab c

-> IntermediateRep pin a hor

-- Horizontal fusion

Besides :: Partition b c hor

-> LoopBody pin a b

-> IntermediateRep pin a c

-> IntermediateRep pin a hor

As mentioned before, this language is mainly focussed on the control flow and the types of the
in- and output environments. In this GADT, the outside environment is called permanentIn,
abbreviated to pin. This consists of arrays that are not fused into this IR. The type variable
tempIn, abbreviated to tin, represents input variables that this IR fuses away. The type variable
out contains the type of the output environment that this IR produces.
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We need to separate these environments, to be able to recursively embed instances of this IR
inside of the loops. The temporary input and output variables grow with the loops, enforcing
locality, whilst the permanent inputs do not, allowing us to randomly index into manifest arrays.

The most important building block in this IR is the For loop. Though it is not statically
enforced in the types, this loop should reduce the dimensionality of every array in both the
temporary inputs and the outputs by one. More specifically, it represents iterating over the
outermost dimension, contrary to how the source language Accelerate functions are defined.
This means that the existence of a For implies that all the arrays in both the temporary input
and the output environments should have identical outermost dimensions. This is indeed one of
the necessary conditions that allow us to completely fuse arrays in parallel computing contexts.
All the other shown constructors represent the various ways to compose a LoopBody with an
IntermediateRep that may contain a For loop. Note that it is impossible to sequentially
compose two loops: this language cannot express unfused structures. The differences between
the vertical, diagonal, and horizontal constructors lie in the way they handle the type variables.

One of the concepts that seems inherent to this design is the notion of an Array of dimension
negative one. Such an array cannot exist, but being able to construct and reason about an
IntermediateRep that consumes or produces an array of this dimension starts to make sense
once we embed it in a For loop.

Consider a normal Accelerate fold, over a two-dimensional array: The innermost loop tra-
verses the input array, combining its intermediate result with each element, one at a time. Once
this loop has finished, it can write the result into the output array. The shapes in the type
of the complete program should be DIM2 -> DIM1, and the shapes in the type of the program
inside of the outermost loop should be DIM1 -> DIM0. But what kind of type can we assign to
the innermost loop body? Here, we choose to say that its type should be DIM0 -> Neg1, which
keeps true to the invariants of the For loop, that the input and output shapes should increase
by one.

-- Accelerate:

example1 :: Acc (Array DIM2 Int) -> Acc (Array DIM1 Int)

example1 = fold (+) 0

// Imperative version:

for xs in xss

t := 0 // initialise

for x in xs

t += x // combine

y := t // assign

In the imperative version, we say that inside of the innermost for-loop, t has dimension negative
one: It is a partial result for what will be a scalar (zero-dimensional array) outside of the loop.

Note that we do not need more negative dimensions: Even if we vertically fuse two folds,
we can stack the current implementation. Naively interpreting or compiling this might produce
unnecessary temporary values like t3 below, but removing those later should not be a difficult
task (one would expect the low level optimisations to take care of that). Regardless, it should
not be counted as a memory read or write as it is a local scalar value.

-- Accelerate:

example2 :: Acc (Array DIM3 Int) -> Acc (Array DIM1 Int)

example2 = fold (*) 1 . fold (+) 0
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// Imperative version:

for xss in xsss

t1 := 1 // initialise

for xs in xss

t2 := 0 // initialise

for x in xs

t2 += x // combine

t3 := t2 // assign

t1 *= t3 // combine

y := t1 // assign

Since LoopBody appears so frequently in the IntermediateRep above, we will discuss it next.
Important to note is that while IntermediateRep is quite universal, and essential to the design
of this fusion, LoopBody is much more backend-specific. The version that we will see now is
only suitable for the sequential interpreter, but by replacing the Haskell-level functions inside
with Exp-like Accelerate ASTs, the same ideas should be applicable to code generating backends.
Some implementation details like IORefs will also show up here, as they make it much simpler
to write an interpreter. Again, these are really artifacts that belong to the interpreter, and
not inherent to the idea of a LoopBody. LoopBody consists of two GADTs: LoopBody', which
contains the statements to convert one array into another one, and LoopBody, which may consist
of multiple such LoopBody's and ties them into the environment.

data LoopBody permIn tempIn out where

Base :: LoopBody pin () ()

Weak :: Partition a rest a'

-> Partition rest b b'

-> LoopBody p a b

-> LoopBody p a' b'

Use :: Array sh e

-> IORef Int

-> LoopBody pin a b

-> LoopBody pin a (b, Array DIM0 e)

Take :: LoopBody' pin (Array sh1 a) (Array sh2 b)

-> LoopBody pin c d

-> LoopBody pin (c, Array sh1 a) (d, Array sh2 b)

data LoopBody' permIn tempIn out where

OneToOne :: IORef s

-> (ValArr pin -> a -> State s b)

-> LoopBody' pin (Array DIM0 a) (Array DIM0 b)

ManyToOne :: IORef (s, Int)

-> Int

-> (ValArr pin -> a -> State s ())

-> State s b

-> LoopBody' pin (Array DIM0 a) (Array Neg1 b)

OneToMany :: IORef (s, [b], Int)

-> Int

-> (ValArr pin -> a -> State s [b])

-> LoopBody' pin (Array Neg1 a) (Array DIM0 b)

A LoopBody' describes how to turn a single array into another one. Maps, but also scans, can be
implemented by the OneToOne constructor. The ManyToOne constructor allows us to implement
folds, and the OneToMany constructor is useful for unfolds. While unfolds in general are not a
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part of Accelerate, they include replicates and allow arbitrary generates. An implementation
aimed at generating code for parallel hardware probably needs to reconsider this constructor.

An important detail in LoopBody' is the dimensionality of the input and output arrays: The
OneToOne constructor has scalar in- and outputs, but in the other two constructors we see the neg-
ative dimensions that were discussed earlier resurface: Each iteration of a ManyToOne LoopBody'

updates the partial result, but only when we step out of the loop will we have a complete scalar
result of type Array DIM0 b.

LoopBody describes how we can turn one environment into another environment, by applying
LoopBody's, weakening and introducing new arrays.

5.2.2 Fusing the Intermediate Representation

Fusing arbitrary IntermediateRep programs is now a matter of writing the functions that belong
to the following type signatures. Since each IR has up to eight possible constructors, these
functions tend to get quite lengthy. However, thanks to the strongly typed representation, it is
fairly doable to let the types guide us in this development and most cases turn out to be easy.
Nevertheless, these functions are not yet fully implemented.

weakenIR :: Transform a b

-> IntermediateRep p a c

-> IntermediateRep p b c

fuseHorizontal :: IntermediateRep p a' b

-> IntermediateRep p a'' c

-> Partition a' a'' a

-> Partition b c d

-> IntermediateRep p a d

fuseVertical :: IntermediateRep p a b

-> IntermediateRep p ab c

-> Partition a b ab

-> IntermediateRep p a c

fuseDiagonal :: IntermediateRep p a b

-> IntermediateRep p ab c

-> Partition a b ab

-> Partition b c d

-> IntermediateRep p a d

Though the strongly typed environments and Transforms guide the writing of these functions,
they do not make them more readable. For example, below are some exerpts from the imple-
mentation of fuseHorizontal, showing three key cases: Fusing two loops recursively, and the
two variations of fusing a single loopbody with a recursive loop nest. These implementations use
the omitted functions mkSmth and trivialPartition to generate the appropriate Transforms.
Something is used to generate the Transforms inside of the loops, there are actually multiple
viable options here.
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fuseHorizontal (For bIR n' ti' to')

(For cIR n'' ti'' to'')

(Partition aa' aa'') (Partition bd cd)

| n' == n''

= case mkSmth aa' aa'' ti' ti'' of -- input

Exists' (Something aa1 a1a1' a1a1'') ->

case mkSmth bd cd to' to'' of -- output

Exists' (Something dd1 b1d1 c1d1) ->

For (fuseHorizontal bIR cIR a1a1' a1a1'' b1d1 c1d1) n' aa1 dd1

fuseHorizontal (Simple lb) ir (Partition aa' aa'') (Partition bd cd) =

Besides (Partition bd cd)

(Weak (Partition aa' mkSkips) trivialPartition lb)

(Weaken aa'' ir)

fuseHorizontal ir (Simple lb) (Partition aa' aa'') (Partition bd cd) =

Besides (Partition cd bd)

(Weak (Partition aa'' mkSkips) trivialPartition lb)

(Weaken aa' ir)

trivialPartition :: Partition () a a

5.2.3 Evaluating the Intermediate Representation

The only backend that is currently implemented for this fusion process is the interpreter. Given
the inputs and an environment consisting of allocated mutable arrays to hold the output, the
interpreter is able to successfully compute the output arrays and store them. It does so sequen-
tially, as the interpreter runs inside Haskell, but on a completely fused IR.

When evaluating a complete Accelerate program that is fused into multiple clusters, we
evaluate each cluster in turn and use the resulting environment as the permanent input of the
subsequent clusters.
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6 Results

In Figure 12, some analytical results are presented on three versions of normalise2. The first
version corresponds with the declarative, unfused code. The second version shows what happens
to the presented metrics when subjected to stream fusion, or fusion through delayed arrays.14

Finally, we also show the optimally fused version. We also present the same metrics, applied to
the expanded version of normalise2: Here, the input array xs is replaced with a map, which
allowed us to demonstrate diagonal fusion in Section 4.1.

normalise2 expanded normalise2

Unfused Stream Optimal Unfused Stream Optimal

Loops 5 4 2 6 5 2
Array reads 5n+ 2 4n+ 2 2n+ 2 6n+ 2 5n+ 2 2n+ 2
Array writes 3n+ 2 2n+ 2 2n+ 2 4n+ 2 3n+ 2 3n+ 2

Figure 12: The effects of different fusion techniques on normalise2

In these results, n refers to the length of the input list, which corresponds with the length
of the output lists. These results are based on a counting argument from reading the code,
no experimental tests were performed. However, as GPU programs are often memory-bound,
these numbers give a rough indication of the relative runtime performance of the variations of
normalise2: The optimally fused version has about half the number of array reads and writes,
which would imply a significant speedup.

In these tables, we notice that in both cases, stream fusion eliminates one read and one
write per element. Optimal fusion is able to improve upon that by eliminating another two
or three reads per element, but no more writes. This reflects the idea that stream fusion and
delayed arrays are good at vertical fusion, eliminating the intermediate result, but do not perform
horizontal or diagonal fusion. Horizontal and diagonal fusion, by themselves, only eliminate
reads, not writes. Of course, there are cases where horizontal or diagonal fusion is necessary to
enable vertical fusion, in which case they can eliminate writes.

To assure that the intermediate representation based on explicit loops can be evaluated, we
wrote an interpreter and tested it on normalise2. This interpreter works in Haskell, which
makes it unsuitable for performance comparisons, but it demonstrates that this explicitly loopy
representation can be evaluated.

14Though different, these two fusion mechanisms amount to the same fusion clustering in this case.
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7 Discussion and conclusion

The main question we set out to answer with this thesis is: How can we optimally fuse all
programs in a data-parallel language? This question reflects the gap in the existing literature
between algorithms that find optimal fusion clusterings for sequential programs, and non-optimal
fusion systems that are applicable to data-parallel languages. None of these existing solutions
find the optimal fusion clustering in a data-parallel context, and generate low-level code that
accomplishes this fusion clustering.

In order to answer the main question, we identified several subquestions. These were applied
to the case study of Accelerate. Because not all fusion opportunities can be expressed in the
domain specific language, the first subquestion is concered with expressing a fusion clustering
in the AST. This revealed that the existing terminology of vertical and horizontal fusion was
not sufficient, so the term diagonal fusion was coined and formalised. Diagonal fusion could
be described as a variant on vertical fusion, whilst also storing the intermediate result. Fusion
clusters can be expressed in the AST as a tree of these three concepts.

The second subquestion this thesis answered concerns the algorithm that identifies the opti-
mal fusion clustering. An existing Integer Linear Programming solution for sequential programs
was adapted to a data-parallel context. This new formulation only has variables and constraints
that are local in the program graph, which keeps the size of the ILP roughly linear with respect
to the size of the program. We also added direction and shape variables, and proposed a method
to encode in the ILP when random access functions like permute can safely be fused.

Finally, we also investigated the impact on code generation. An intermediate representation
was designed to be both expressive and restrictive enough to allow translating Accelerate into
it, to allow fusion of instances of it, and to allow code generation from it. This intermediate
representation is strongly typed, and utilises the formalisation of vertical, horizontal and diagonal
fusion to leverage the type system for static correctness guarantees.

In conclusion, we argue that whilst ambitious, it is feasible to perform optimal fusion in a
compiler for a purely functional data-parallel language, by separating fusion into distinct phases
and delaying actual fusion until the code generation phase.

The underlying principle in this thesis, which is to explicitly annotate the constructs that
should be fused and delay fusing them until a later stage, could be applied to a much broader
range of applications. In this case, we were interested in performing fusion while retaining the
ability for parallel execution. One could possibly adopt the entire approach for a programming
language different context, with other limitations or concerns. For example, this technique might
be applicable in a language where we are not interested in data parallelism, but in concurrency.
Or alternatively, a compiler that generates formal proofs of correctness alongside programs or
performs automatic differentiation might also have slightly different fusion constraints. Amongst
smaller changes, the ILP formulation would need to be redesigned to reflect the fusion constraints
for the domain at hand.

7.1 Future work

There are some limitations of the proposed method which should be addressed by future research:
First, the current implementation has not been finished, and some of the gaps might pose
challenges. In particular, the large-scale rewriting to group nodes that should be fused has
not been attempted, and there is only an interpreter for the intermediate representation.

Secondly, it would probably be more accurate to dissect high-level nodes into individual
kernels before generating the ILP: Highly parallel implementations of functions like a fold consist
of multiple kernels that cannot be fused with each other. As such, it makes little practical sense
to fuse this whole fold with something else: Instead, we could argue to fuse ‘the last kernel of
a fold with the first kernel of a scan’, for example. This way, we could find even more fusion
opportunities and have a representation that does not contradict itself.
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Finally, it would be interesting to explore the idea mentioned near the end of Section 5.1:
Indexing into an array might not always be fusion preventing, if the indexed array is element-wise
(in other words, if it can be represented as a delayed array). We are interested in figuring out
how to incorporate this idea into the proposed solution, because there are scenarios where this
leads to a more efficient fusion clustering than the proposed ‘optimal’ one.
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