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Abstract

Thurston’s Geometrization conjecture states that every closed three dimensional
manifold can be decomposed in a canonical way into pieces such that each piece admits
a locally homogeneous metric. This conjecture was proven by Grisha Perelman with
the use of the Ricci flow equation. This equation is a heat type evolution equation
for a one parameter family of Riemannian metrics on a manifold where we deform
the metrics in the direction of the Ricci curvature tensor. A one parameter family of
metrics which satisfies the Ricci flow equation is called a Ricci flow. There are many
interesting phenomena regarding Ricci flows. There are Ricci flows that exist for all
positive times and converge to a Riemannian metric; there are Ricci flows that exist for
all positive times but fail to converge and there exist Ricci flows that exist only up to a
finite time. A tool to study Ricci flows that exist for all times is the quasi-convergence.
This is an equivalence relation which compares the large time behaviour of two Ricci
flows. In this thesis we give an alternative characterization of the quasi-convergence
equivalent classes via Lie group actions and compute the quasi-convergence equivalence
classes for left invariant Ricci flows on SL(2,R).
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1 Introduction

R. Hamilton in 1982, [8], introduced the Ricci flow equation,

∂

∂t
g = −2 Ric(g),

with the aim to prove Thurston’s geometrization conjecture. This conjecture states that
every closed three dimensional manifold M can be decomposed in a canonical way into
pieces such that each piece in this decomposition admits a locally homogeneous metric. The
study of Ricci flow had a profound impact in the field of geometry and topology. G. Perelman
[13] and [14] using the Ricci flow was able to solve the geometrization conjecture and with
that he proved the famous Poincare conjecture which was unsolved for many years. Another
remarkable result that was proven with the use of Ricci flow by S. Brendle and R. Schoen [2]
was the Differentiable Sphere conjecture. This conjecture states that if M is complete and
simply connected n-dimensional Riemannian manifold with the sectional curvature taking
values in the interval (1, 4] then M is diffeomorphic to the n-dimensional sphere Sn. In the
study of Riemannian metrics that solve the Ricci flow equation R.Hamilton and J.Isenberg
[7] conjectured that the collapsing solutions of the Ricci flow equation will approach in a
particular sense the evolution of a locally homogeneous solution of the Ricci flow equation. In
order to approach this problem they introduced the notion of quasi-convergence. If g(t), h(t)
are two solution of the Ricci flow equation, we say that g(t) quasi-converges to h(t) and we
write h ∈ [g] if and only if for any ε > 0 there exist a time tε such that

sup
Mn×[tε,∞)

|h(t)− g(t)|g(t) < ε

Thus, quasi-convergence captures the large time behaviour of the solution to the Ricci flow
equation. Quasi-convergence is an equivalence relation, therefore we can classify the asymp-
totic behaviour of solutions to the Ricci flow equation and describe it as equivalence classes
of evolving metrics. D. Knopf and K. McLeod ([11]), studied the quasi-convergence classes
for homogeneous solutions of the Ricci flow and gave a description of their equivalence classes
for almost all homogeneous metrics except for the case of SL(2,R).

The aim of this master thesis is twofold. First of all, we study the behaviour of the Ricci
flow for homogeneous metrics. We describe what kind of curvature singularities, collapsing
phenomena or convergences occur in these cases. The second aim of this master thesis is
give a good description of the quasi-convergence classes for homogeneous Ricci flows. In
particular, using a suitable parametrization of the space of metrics we can characterize the
quasi-convergence class of an homogeneous Ricci flow as the orbit space of a particular
action of a Lie group. This approach give us two advantages. The first one is to simplify
the computations done in [11] and as a result to compute the quasi-convergence class for
homogeneous metrics on SL(2,R) which is a new result that was not done previously. The
second one is, via the actions of Lie groups, to give a more rich structure of the quasi-
convergence relation for better understanding of this phenomenon.
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2 Riemannian Geometry

Before dealing with the Ricci flow equation we first present the basic notions of Riemannian
geometry that are going to be used in this thesis. Also we fix the notation that we are going
to follow throughout the text. For a detail exposition of Riemannian geometry the reader
can consult [3] or [15].

2.1 Basics of Riemannian Geometry

Consider a smooth manifold M of dimension n.

Definition 2.1.1. A Riemannian metric g (also denoted by 〈., .〉 ) on M is a smooth positive-
definite section of the bundle of symmetric covariant 2-tensors S2T ∗M . A Riemannian
manifold is a smooth manifold M equipped with a Riemannian metric g.

The Riemannian metric enables us to measure lengths of curves and volumes of regions
on a manifold. One can show, with the use of partitions of unity, that every smooth manifold
M admits a Riemannian metric.

If we want to differentiate vector fields or tensor fileds along vector fields on a manifold
we have to use the notion of affine connection in the tangent bundle.

Definition 2.1.2. A connection in TM is a map

∇ : Γ(TM)× Γ(TM)→ Γ(TM)

(X, Y ) 7→ ∇XY

which satisfies the following properties:

(i) ∇XY is C∞(M)-linear in X : if f, h ∈ C∞(M) and X, Y, Z ∈ Γ(TM) then

∇(fX+hZ)Y = f∇XY + h∇ZY

(ii) ∇XY is R-linear in Y : if a, b ∈ R and X, Y,W ∈ Γ(TM) then

∇X(aY + bW ) = a∇XY + b∇XW

(iii) ∇XY satisfies the Leibniz rule in Y : if f ∈ C∞ and X, Y ∈ Γ(TM) then

∇X(fY ) = X(f)Y + f∇XY

There are many connections defined on a smooth manifold M but there exist only one
which makes the metric tensor parallel and the torsion tensor identically zero. This connec-
tion is called the Levi-Civita connection and plays a crucial role in the study of geometry of
manifolds.

Definition 2.1.3. The Levi-Civita connection in the tangent bundle TM is the unique
connection ∇ : Γ(TM)⊗Γ(TM)→ Γ(TM) which satisfies the following two properties: For
all X, Y, Z ∈ Γ(TM)

metric compatibility : X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ)

torsion free : ∇XY −∇YX − [X, Y ] = 0
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With the use of the Levi-Civita connection we can define the curvature tensor. The
curvature tensor is the central object in the study of Riemannian manifolds as it leads to
the notion of curvature of a manifold.

Definition 2.1.4. The (3,1)-Riemann curvature tensor Rm is the (3,1)-tensor defined by

Rm(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

where X, Y, Z ∈ Γ(TM).
The (3,1)-Riemann curvature tensor Rm is indeed a tensor. To prove this we must show

that Rm is C∞(M)-linear in all of its arguments. That is we have to show that

Rm(fX, Y )Z = Rm(X, fY )Z = Rm(X, Y )fZ = f Rm(X, Y )Z

for all smooth functions f ∈ C∞(M). We will only prove Rm(fX, Y )Z = f Rm(X, Y )Z
which more complicated than the other two equalities. The proof of the remaining two
follows similarly and can be found in [3]. We have,

Rm(X, Y )fZ =∇X∇Y fZ −∇Y∇XfZ −∇[X,Y ]fZ

=∇X(Y (f)Z + f∇YZ)−∇Y (X(f)Z + f∇XZ)− [X, Y ](f)Z − f∇[X,Y ]Z

=X(Y (f))Z + Y (f)∇X∇YZ +X(f)∇YZ + f∇YZ

− Y (X(f))Z −X(f)∇Y∇XZ − Y (f)∇XZ − f∇XZ

−X(Y (f))Z + Y (Z(f))Z − f∇[X,Y ]Z

=f(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z)

=f Rm(X, Y )Z

We also consider the (4,0)-Riemann curvature tensor which is the metric contraction of
the (3,1)-Riemann curvature tensor

R(X, Y, Z,W ) = g(R(X, Y )W,Z).

The Riemann curvature tensor has many symmetries. Among them the most basic ones
are the following:

Proposition 2.1.5. For every X, Y, Z,W smooth vector fields on M we have

R(X, Y, Z,W ) = −R(Y,X,Z,W )

R(X, Y, Z,W ) = −R(X, Y,W,Z)

R(X, Y, Z,W ) = R(Z,W,X, Y )

R(X, Y, Z,W ) +R(Y,Z,X,W ) +R(Z, Y,X,W ) = 0

The last equality is called first Bianchi identity.

Proof. The reader can consult [15] for a proof of this result.
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The Riemann curvature tensor is used to define the sectional curvature of a Riemannian
manifold. Suppose that x, y are two linear independent tangent vectors in the tangent space
TpM, where p ∈ M . We use the notation x ∧ y to denote the 2-dimensional plane which is
spanned by the vectors x and y. The sectional curvature of the plane x ∧ y is defined by

K(x ∧ y) =
R(x, y, x, y)

|x|2|y|2 − g(x, y)2
.

The sectional curvature is an invariant that captures, locally, the geometry of a manifold.
An important fact that we have to mention here is that the sectional curvature determines
the Riemann curvature tensor. This actually comes down to a completely algebraic fact.
The proof of this proposition can be found in [3].

Proposition 2.1.6. Suppose that (V, 〈., .〉) is a finite dimensional inner product vector
space of dimension n with n > 2. Let R and R′ be two (3,1)-tensors on V that share the
same symmetries with the (3,1)-Riemann curvature tensor. If x, y ∈ V are two linearly
independent vectors we write

K(x ∧ y) =
R(x, y, x, y)

|x|2|y|2 − 〈x, y〉2
, K ′(x ∧ y) =

R′(x, y, x, y)

|x|2|y|2 − 〈x, y〉2

for their corresponding sectional curvatures. If K(x ∧ y) = K ′(x ∧ y) for every two linearly
independent vectors x, y ∈ V then R = R′

The Riemann curvature tensor is a very complicated object. It is usually convenient to
study objects which contain part of the information of the Riemann curvature tensor but
are simpler. The most notable ones are the Ricci curvature tensor and the scalar curvature.

Definition 2.1.7. The Ricci curvature tensor is (2,0)-tensor given by the trace of the Rie-
mann curvature tensor

Ric(Y, Z) = trace(X 7→ Rm(X, Y )Z),

where X, Y, Z are smooth vector fields on M . If {ei}ni is an orthonormal frame on M , that
is, g(ei, ej) = δij then the Ricci curvature tensor is given by

Ric(Y, Z) =
∑
i,j

R(ei, Y, ej, Z).

Definition 2.1.8. The scalar curvature is is defined as the pointwise trace of the Ricci
tensor,

R = tr(Ric)

It is sometimes useful for computational reasons to describe all these geometric quantities
that we have defined in a local coordinate system around a point.

We begin with the metric g ∈ Γ(S2T ∗M). Let p be a point in a manifold M . Let U be
a coordinate neighborhood around the point p ∈ M and φ = (x1, x2, ..., xn) the coordinate
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map defined on U . We denote by ∂
∂xi

the coordinate frame and by dxi its dual frame i.e
dxi( ∂

∂xj
) = δij.

Then g can be written locally in U as

g = gijdx
i ⊗ dxj,

for all i, j. The fact that g is a symmetric covariant 2-tensor translates to gij = gji. If X, Y
are smooth vector fields the on U they can be written as

X = X i ∂

∂xi
, Y = Y j ∂

∂xj

then

g(X, Y ) = gijdx
i ⊗ dxj(X, Y ) = gijdx

i ⊗ dxj(X i ∂

∂xi
, Y j ∂

∂xj
) = gijX

iY j

Lets now compute the Levi-Civita connection in local coordinates. In order to do that
we will use the properties of the connection. We have,

∇XY = ∇Xi ∂

∂xi
Y j ∂

∂xj
= X i∇ ∂

∂xi
Y j ∂

∂xj

= X i ∂

∂xi
(Y j)

∂

∂xj
+X iY j∇ ∂

∂xi

∂

∂xj

We set Γkij
∂
∂xk

:= ∇ ∂

∂xi

∂
∂xj

. So

∇XY = X i ∂

∂xi
(Y k)

∂

∂xk
+X iY jΓkij

∂

∂xk

The functions Γkij are called Christoffel symbols.
With the use of Christoffel symbols we can compute the components of the (3,1)-Riemann

curvature tensor in local coordinates. Using the fact that [ ∂
∂xi
, ∂
∂xj

] = 0 where { ∂
∂xi
} is a local

coordinate frame we have,

Rm

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
= ∇ ∂

∂xi
∇ ∂

∂xj

∂

∂xk
−∇ ∂

∂xj
∇ ∂

∂xi

∂

∂xk

= ∇ ∂

∂xi
Γmjk

∂

∂xm
−∇ ∂

∂xj
Γmik

∂

∂xm

=
∂

∂xi
(Γljk)

∂

∂xl
− ∂

∂xj
(Γlik)

∂

∂xl
+ ΓmjkΓ

l
im

∂

∂xl
− ΓmikΓ

l
jm

∂

∂xl

Therefore, the components Rl
ijk of the (3,1)-Riemann curvature tensor are:

Rl
ijk =

∂

∂xi
(Γljk)−

∂

∂xj
(Γlik) + ΓmjkΓ

l
im − ΓmikΓ

l
jm

Taking the metric contraction we can compute the components of the (4,0)-Riemann curva-
ture tensor

Rijks = Rl
ijkgsl (2.1)
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Lastly, the components of the Ricci curvature tensor are

Rjs = Rijksg
ik (2.2)

and of the scalar curvature tensor are

R = gjkRjk. (2.3)

2.2 Left invarant metrics on Lie groups

Our attention will mainly be on left invariant metrics on Lie groups. Here we change the
notation for a Riemannian metric from g to 〈., .〉.

Definition 2.2.1. Let G be a Lie group and g the Lie algebra i.e. the space of left invariant
vector fields on G. A Riemannian metric on a Lie group G is called left invariant if

〈u, v〉y = 〈d(Lx)yu, d(Lx)yv〉Lxy

for all x, y ∈ G and u, v ∈ TyG.

The fact that 〈u, v〉y = 〈d(Lx)yu, d(Lx)yv〉Lxy for all x, y ∈ G and u, v ∈ TyG is equivalent
to the assertion that the left translations Lx : G → G, Lx(y) = xy are isometries for
all x ∈ G. Also, The fact that 〈., .〉 is left invariant implies that for every X, Y, Z left
invariant vector fields on G we have X〈Y, Z〉 = 0. There is a direct way to obtain a left
invariant metric on a Lie group. Suppose that 〈., .〉e is an inner product on TeG then
〈u, v〉x = 〈d(Lx−1)xu, d(Lx−1)xv〉e where u, v ∈ TxG, x ∈ G is a left invariant metric on G.

Now we have to describe the Levi-Civita connection on a Lie group equipped with a left
invariant Riemannian metric.

Lemma 2.2.2. Let 〈., .〉 be a left invariant metric on a Lie group G. If X, Y, Z be left
invariant vector fields on G, then the Levi-Civita connection is given by

〈∇XY, Z〉 =
1

2
(〈[X, Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉)

Proof. Using the Koszul formula

2〈∇XY, Z〉 = X〈Y, Z〉+ Y 〈X,Z〉+ Z〈Y,X〉+ 〈[X, Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉

as well as the fact that for every X, Y, Z left invariant vector fields on G, X〈Y, Z〉 = 0, by
direct computation we get

〈∇XY, Z〉 =
1

2
(〈[X, Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉).

We can exploit the simplicity of the Levi-Civita connection to describe the curvature
tensor of a left invariant metric on a Lie group G.
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Lemma 2.2.3. Suppose that 〈., .〉 is a left invariant metric on a Lie group G, ∇ the Levi-
Civita connection and X, Y, Z,W left invariant vector fields on G. Then the Riemann cur-
vature tensor is given by

〈Rm(X, Y )Z,W 〉 = 〈∇XZ,∇YW 〉 − 〈∇YZ,∇XW 〉 − 〈∇[X,Y ]Z,W 〉

for any left invariant vector fields X, Y, Z on G.

Proof. By the definition of the Riemann curvature tensor

〈Rm(X, Y )Z,W 〉 = 〈∇X∇YZ,W 〉 − 〈∇Y∇XZ,W 〉 − 〈∇[X,Y ]Z,W 〉
= X〈∇YZ,W 〉 − 〈∇YZ,∇XW 〉 − Y 〈∇XZ,W 〉

+ 〈∇XZ,∇YW 〉 − 〈∇[X,Y ]Z,W 〉
= 〈∇XZ,∇YW 〉 − 〈∇YZ,∇XW 〉 − 〈∇[X,Y ]Z,W 〉,

where the last equality follows from the fact that X〈Y, Z〉 = 0 for any left invariant vector
fields X, Y, Z.

2.3 Homogeneous metrics and homogeneous models

Suppose that M is a smooth manifold.

Definition 2.3.1. A Riemannian metric g is called locally homogeneous if for every x, y ∈M
there exist neighborhoods Ux ⊂ M of x and Uy ⊂ M of y and an isometry γ from Ux to Uy
such that γ(x) = y. A Riemannian metric is called homogeneous if for every x, y ∈M there
exist an isometry γ from M to itself such that γ(x) = y.

Every left invariant metric on a Lie group is locally homogeneous. A nice result that
connects the locally homogeneous metrics with the homogeneous ones is the following

Proposition 2.3.2. If the manifold M is simply connected then every locally homogeneous
metric is homogeneous.

Proof. We refer to [16] for the proof of this result.

Definition 2.3.3. A homogeneous model is a pair (M̃, ) where M̃ is a simply connected
manifold and g̃ a homogeneous metric on M̃. Thus if (M, g) is a manifold with a locally
homogeneous metric then its universal cover M̃ with the lifted metric g̃ has the structure of
a homogeneous model.

An equivalent description of manifolds equipped with complete locally homogeneous met-
rics is that of model geometries.

Definition 2.3.4. A model geometry is a triple (M,G,G∗) where M is a simply connected
smooth manifold, G∗ a Lie group and G is a group of diffeomorphisms which acts transitively
on M such that for each x ∈M, the isotropy group

Gx = {γ ∈ G | γ(x) = x}

is isomorphic to G∗.
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A model geometry is called maximal if the group G is maximal among the subgroups
of the diffeomorphism group Diff(M) that have compact isotropy groups. The concepts of
homogeneous model and model geometry are equivalent and it follows from the following
proposition.

Proposition 2.3.5. Every model geometry (M,G,G∗) may be regarded as a complete ho-
mogeneous space (M, g) and vice versa if (M, g) is a complete homogeneous manifold then
(M, Iso(M, g), Isox(M, g)) is a model geometry.

Proof. For a proof we refer to [4], p. 4-8.

In the three-dimensional case there are nine classes of homogeneous manifolds. They are
summarized in the following table ([9]).

Classes of homogeneous manifolds
Class Description Dimensions of

isometry group
Thurston’s geome-
try

R3 Commutative 3 or 4 or 6 E3

SU(2) Simple 3 or 4 or 6 S3

SL(2,R) Simple 3 or 4 SL(2,R)
Heisenberg Nilpotent 3 or 4 Nil
E(1,1) Solvable 3 Solv
E(2) Solvable 3 or 4 or 6 E3

H3 Not a Lie group 6 H3

SO(3) × R Not a Lie group 4 S2 × R
H2 × R Not a Lie group 4 H2 × R

As we can see most of the homogeneous models are Lie groups but there exist homoge-
neous models which are not Lie groups.
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3 Ricci flow

The Ricci flow equation is a heat-like evolution equation for the metric on a Riemannian
manifold where we deform the metric in the direction of the Ricci curvature tensor.

∂

∂t
g(t) = −2 Ric(g(t)). (3.1)

A solution g(t) to the Ricci flow equation is called Ricci flow.
In the view of equation (3.1) we consider the metrics g(t) as a positive sections of the

fixed bundle S2T ∗M of symmetric covariant 2-tensors over M . The time derivative makes
sense since at each point p ∈ M we differentiate g(t) in the vector space given by the fibre
of this bundle at p (see [1]).

A classical example to illustrate how the Ricci flow equation behaves is the following:

Example 1. Suppose that g0 is the standard metric on the sphere Sn of radius 1. Consider
the 1-parameter family of metrics on the sphere g(t) = r(t)g0. This family is a Ricci flow
if and only if r(t) = (1 − 2(n − 1)t). Indeed, using that the standard metric on the sphere
satisfies the relation Ric(g0) = (n− 1)g0 as well as the scaling invariance of the Ricci tensor,
Ric(g) = Ric(σg) for σ > 0, we have

∂g(t)

∂t
=
∂(1− 2(n− 1)t)g0

∂t
= −2(n− 1)g0 = −2 Ric(g0) = −2 Ric(g(t))

This solution exists on the time interval (−∞, 1
2(n−1)

) and the sphere will collapse to a point

in finite time T = 1
2(n−1)

.

Looking closely at this example we observe that we did not use any specific property of
the standard metric on the sphere apart from the fact that it is an Einstein metric. Recall
that a metric g is Einstein if there exist a constant c ∈ R such that Ric = cg. So we can
generalize Example 1 to Einstein manifolds:

Example 2. Consider a manifold with an initial metric g0 satisfying the property Ric(g0) =
λg0 where λ ∈ R. Then a solution to the Ricci flow equation with initial data g(0) = g0 is
given by g(t) = (1− 2λt)g0.

Indeed, with direct computation we have

∂

∂t
g(t) = −2λg0

= −2 Ric(g0)

= −2 Ric((1− 2λt)g0)

= −2 Ric(g(t))

So, g(t) is a solution to the Ricci flow equation.

An important aspect of the Ricci flow is the diffeomorphism invariance.

Proposition 3.0.1. Suppose that ḡ(t) is a solution to the Ricci flow equation and φ : M →
M̄ a time-independent diffeomorphism. Then the pullback metric g(t) = φ∗ḡ(t) is a solution
to the Ricci flow equation as well.
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Proof. Indeed, we have:

∂

∂t
g(t) =

∂

∂t
φ∗ḡ(t)

= φ∗
∂

∂t
¯g(t)

= φ∗(−2 Ric(ḡ(t))

= −2φ∗Ric(ḡ(t))

= −2 Ric(φ∗ḡ(t))

= −2 Ric(g(t))

where we used the diffeomorphism invariance of the Ricci curvature tensor φ∗Ric(g) =
Ric(φ∗g) as well as the fact that the time derivative commutes with pullbacks of time-
independent diffeomorphisms.

An interesting consequence of the fact that the Ricci flow equation is invariant under
the full diffeomorphism group is that the Ricci flow preserves isometries. Thus, if an initial
metric is locally homogeneous then it will remain locally homogeneous as long as the solution
exist. Also, since the Ricci flow preserves isometries, if the initial manifold is a quotient of
a Riemannian manifold by a group of isometries then it will remain so under the Ricci flow.
Therefore, using the fact that the Ricci flow commutes with the covering map µ : M̃ → M
we can study the Ricci flow of any locally homogeneous metric by studying that of its
homogeneous model and vise versa.

In the case of the Ricci flow we do not consider a single manifold equipped with a metric
g but rather a manifold with a one parameter family of metrics, parametrized by the flow
parameter t, that satisfies the Ricci flow equation. So in order for this consideration to
have a meaning we must have a short time existence and uniqueness for this equation. The
Ricci flow equation is not strictly parabolic so we cannot assume short time existence and
uniqueness. In order to prove short time existence and uniqueness we have to modify the
Ricci flow equation in order to be strictly parabolic. Also, we should note that the reason
why the Ricci flow equation is not strictly parabolic is exactly the diffeomorphism invariance
of the Ricci tensor.

Theorem 3.0.2. If (M, g0) is a closed Riemannian manifold, there exists an ε > 0 and a
unique solution g(t), defined for time t ∈ [0, ε), to the Ricci flow equation such that g(0) = g0.

Proof. We will give a sketch of the proof for short time existence. An interested reader can
consult [4], [5] or [1] for a detailed proof.

R. Hamilton, [8], gave a proof for this result using heavy analytic techniques like the
Nash–Moser implicit function theorem. Later D. DeTurk, [6], gave a simpler proof for this
theorem. The main idea is the following. The Ricci flow equation as noted before is not
strictly parabolic since the principal symbol of the non-linear partial differential operator
−2 Ric has a non trivial kernel. So we are searching for an equivalent flow that is strictly
parabolic, apply short time existence to this new equation and then pullback the solution
by a time dependant diffeomorphism. This new equation is called Ricci-DeTurk flow.
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Suppose that we have a fixed background metric ḡ, with a Levi-Civita connection ∇̄. We
define the Ricci-DeTurk flow by,

∂

∂t
gij = −2 Rij +∇iWj +∇jWi,

where g(0) = g0 is the initial metric and Wi is an one form given by

Wi = gikg
pq(Γkpq − Γ̄kpq).

Note that if g(s) is a 1-parameter family of metrics with variation ∂
∂s
gij(s) = vij and g(0) = g0

then
∂

∂s
|s=0W (g(s))j = Xj + terms of order zero in v

where X = 1
2
∇W − div v.

Lemma 3.0.3. The following equality holds:

∂

∂s
|s=0(−2 Rij +∇iWj +∇jWi) = ∆Lvij + terms of order one in v.

Here ∆L is the Lichnerowicz Laplacian for covariant 2-tensors, which is an elliptic differential
operator.

Thus, the Ricci-DeTurk flow is strictly parabolic so given any smooth initial metric g0

on a closed manifold there exist a unique solution g(t) to this equation such that g(0) = g0.
Now consider the time-dependent diffeomorphisms defined by the ODE:

∂

∂t
φt = −W ∗

φ0 = id

where W ∗(t) is the dual vector field of W with respect to g(t). Pulling back the solution of
the Ricci-DeTurk flow g(t) by the diffeomorphisms φt we obtain a solution to the Ricci flow
g̃(t) = φ∗tg(t). Indeed,

∂

∂t
g̃ =

∂

∂t
φ∗tg(t)

= φ∗t
∂

∂t
g(t) +

∂

∂s
|s=0(φ∗t+sg(t))

= φ∗t (−2 Ric g(t)) + φ∗t (LW (t)g(t))− L(φ−1
t )∗W (t)(φ

∗
tg(t))

= −2 Ric(φ∗tg(t))

= −2 Ric(g̃(t)).

We should note that if a solution to the Ricci flow g(t) converges to a metric g(t)→ g∞
then the limit metric g∞ must be an Einstein metric. Thus, if a manifold does not admit an
Einstein metric there is no hope for any Ricci flow on this manifold to converge.
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When we consider a manifold equipped with a one parameter family of metrics which
satisfies the Ricci flow equation all the geometric quantities that are defined with the use of
the metric change as well. It is usually convenient to modify the Ricci flow equation in order
to keep the volume fixed.

Definition 3.0.4. Let M be a compact manifold of dimension n equipped with an one

parameter of metrics g(t). Let 〈r(t)〉 =
∫
M R(t)dµ

Vol(M)
be the average scalar curvature of the

metric g(t). The equation

∂

∂t
g(t) = −2 Ric(g(t)) +

2

n
〈r(t)〉g(t),

is called normalized Ricci flow equation since a solution to this equation has fixed volume.

The solution to the Ricci flow and to the normalized Ricci flow are related by a rescaling
in space and time. In particular given a solution g(t) to the Ricci flow equation, the metric
ḡ(t̄)) = c(t)g(t) where

c(t) = exp

(
2

n

∫ t

0

r(τ)dτ

)
, t̄(t) =

∫ t

0

c(τ)dτ

is a solution to the normalized Ricci flow equation.

A remarkable result due to R. Hamilton ([8]) which illustrates the impact of the study
of (normalized) Ricci flow for three dimensional manifolds is the following.

Theorem 3.0.5. Let (M3, g0) be a closed Riemannian manifold with positive Ricci curva-
ture. Then there exists a unique solution g(t) to the normalized Ricci flow equation with
g(0) = g0 for all times t ≥ 0. Furthermore, as t→∞ the metrics g(t) converge exponentially
in every Cm-norm to a C∞ metric g∞ with constant positive sectional curvature.

This theorem implies that all three-dimension manifolds with positive Ricci curvature are
homeomorphic to the three-dimensional sphere. In section 5 we will prove a similar result due
to J. Isenberg and M. Jackson ([9]) which states that all homogeneous normalized Ricci flows
on the Lie group SU(2) will converge to a homogeneous metric with positive scalar curvature.

The last result we have to mention regarding the Ricci flow is the long-time existence
theorem. We start with some definitions.

Definition 3.0.6. Suppose (M, g(t)), t ∈ [0, T ), is a solution to the Ricci flow equation. We
say that [0, T ) is the maximum interval of existence if either T = ∞ or that T < ∞ and
there does not exist ε > 0 and a smooth solution g̃(t), t ∈ [0, T + ε) of the Ricci flow such
that g̃(t) = g(t) for t ∈ [0, T ). In the latter case we say that g(t) forms a singularity at time
T or simply g(t) is a singular solution.

With this terminology we can talk about the Ricci flow g(t) with initial metric g0 on a
maximal interval [0, T ). The next theorem provides the long-time existence for a solution to
the Ricci flow equation. Proof of this result can be found in [1].

15



Theorem 3.0.7. Let M be a compact manifold with a smooth initial metric g0. The
unique solution g(t) of the Ricci flow equation with g(0) = g0 exists on a maximal interval
0 ≤ t < T ≤ ∞. Furthermore, T <∞ if and only if

lim
t→T

sup
x∈M
|Rm(x, t)| =∞

i.e. as t→∞ the Riemann curvature tensor is unbounded.
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4 Milnor frame

In order to study the behaviour of the Ricci flow equation for left invariant metrics on Lie
groups we will first introduce a particular class of frames on the Lie algebra of a Lie group
such that the structure constants have a special form. Our ultimate goal is to use this frame
to diagonalize a left invariant metric on a Lie group and the Ricci tensor in order for the
Ricci flow equation to have a simple form. The diagonalization will of the Ricci flow equation
will be proven in the next section.

4.1 Algebraic preliminaries

We begin with some algebraic preliminaries regarding frames on Lie algebras. A Lie algebra
structure on the vector space R3 is given by

[. , .] ∈ Λ2R3∗ ⊗ R3

where Λ2R3∗ is the space of alternating 2-covectors in R3.

Lemma 4.1.1. The space End(R3) is naturally isomorphic with Λ2R3∗ ⊗ R3 via the map

φ : End(R3)→ Λ2R3∗ ⊗ R3 ' Hom(Λ2R3,R3)

given by
L 7→ L ◦ ρ

where ρ ∈ Λ2R3∗ ⊗ R3 is the cross product of R3,

ρ : (u,w) 7→ u× w, ∀x, y ∈ R3.

Proof. The space Λ2R3∗ is a 3-dimensional vector space and it is spanned by the basis

e2 ∧ e3, e3 ∧ e1, e1 ∧ e2,

where e1, e2, e3 form the dual basis of the standard basis of R3. These elements are equal to

e1 ◦ ρ, e2 ◦ ρ and e3 ◦ ρ.

Indeed,
e1 ◦ ρ(v, w) = (v, w)1 = v2w3 − v3w2 = e2 ∧ e3(v, w),

e2 ◦ ρ(v, w) = (v, w)2 = v3w1 − v1w3 = e3 ∧ e1(v, w)

and
e3 ◦ ρ(v, w) = (v, w)3 = v1w2 − v2w1 = e1 ∧ e2(v, w)

for any v, w ∈ R3 . From this we see that the map

γ : R3∗ → Λ2(R3∗)
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given by
ξ 7→ ξ ◦ ρ

is an isomorphism. Therefore, we have the isomorphisms

End(R3) ' R3∗ ⊗ R3 ' Λ2(R3∗)⊗ R3

The first map α : End(R3)→ R3∗ ⊗ R3 is defined by α(L) =
∑

j e
j ◦ L⊗ ej. So the map

φ : End(R3)→ Λ2(R3∗)⊗ R3

is defined by

φ(L) =
∑
j

ej ◦ L ◦ ρ⊗ ej = L ◦ ρ

Now suppose that G is a 3-dimensional Lie group with Lie algebra g. A frame for g is a
linear isomorphism

β : R3 → g

The group GL(3,R) acts on the set of frames denoted by, F(g) by

A∗(β) := β ◦ A−1

where β ∈ F(g) and A ∈ GL(3,R). Given a frame β ∈ F(g) we can define the map

[. , .]β : R3 × R3 → R3

by
[x, y]β = β−1([βx.βy]).

This means that the map [. , .]β can be regarded as an element of Λ2R3∗⊗R3 hence [u, v]β =
σβ(u× v) for a unique matrix σβ ∈ End(R3) 'M3(R3). Now, for every x, y ∈ R3 we have

[β(x), β(y)] = β(σβ(x× y)). (4.1)

and so we can determine σβ uniquely. The next two results describe the transformation of
the matrix σβ under the action of the group Gl(3,R).

Lemma 4.1.2. Let A ∈ GL(3,R). Then

Ax× Ay = det(A)(A−1)T (x× y).

Proof. Using the formula 〈a × b, c〉 = det(a, b, c) where a, b, c ∈ R3 we have that for every
x, y, z ∈ R3

〈Ax× Ay, z〉 = det(Ax,Ay, z)

= det(A)(x, y, A−1z)

= det(A)〈x× y, A−1z〉
= det(A)〈(A−1)T (x× y), z〉
= 〈det(A)(A−1)T (x× y), z〉

Therefore, Ax× Ay = det(A)(A−1)T (x× y) for every x, y ∈ R3.
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Corollary 4.1.3. Let β ∈ F(g) and A ∈ GL(3,R). Then

σA∗β = (det(A))−1AσβA
T

Proof. Using the formula [β(x), β(y)] = β(σβ(x× y)) we have

β(A−1σA∗β(x× y)) = A∗β(σA∗β(x× y))

= [A∗β(x), A∗β(y)]

= [β(A−1x), β(A−1y)]

= [β(σβ(A−1x× A−1y))]

= β(σβ(det(A−1)AT (x× y))).

Therefore, for every x, y ∈ R3 we have

A−1σA∗β(x× y) = det(A−1)σβA
T (x× y),

or equivalently,

σA∗β(x× y) = det(A−1)AσβA
T (x× y),

for every x, y ∈ R3. So the transformation of the matrix σβ is given by,

σA∗β = det(A−1)AσβA
T .

4.2 Relation with left invariant metrics

If g : g× g→ R is an inner product on a Lie algebra g and β ∈ F(g) a frame, we define the
inner product gβ on R3 by

gβ(x, y) = g(β(x), β(y)).

If we consider the action of the group Gl(3,R) on the space of frames F(g) given by (A, β) =
A∗β then the next Lemma shows the expression of an inner product with respect to the
frame A∗β.

Lemma 4.2.1. Let A ∈ GL(3,R). Then

gA∗β = (A−1)∗gβ,

where gβ = β∗g

Proof. For every x, y ∈ R3 we have

gA∗β(x, y) = g(β(A1x), β(A1y))

= gβ(A−1x,A−1y)

= ((A−1)∗g)β(x, y)

Therefore, gA∗β = (A−1)∗gβ.
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Remark 4.2.2. In this thesis we will often identify an inner product γ ∈ IP (R3) with the
associated Hermitian matrix (γ(ei, ej)) where (e1, e2, e3) is the standard basis of R3. Then
for A ∈ GL(3,R) we have

A∗γ = ATγA. (4.2)

In this way the formula of Lemma 4.2.1. becomes:

gA∗β = (A−1)TgβA
−1.

Suppose that β is a frame for g, then

[β(ei), β(ej)] =
∑
k

ckijβ(ek)

We will express σβ in terms of the structure constants ckij. Recall that σβ is determined
by

[β(x), β(y)] = β(σβ(x× y))

So by taking x = ei and y = ej we get that:∑
k

ckijβ(ek) = β(σβ(ei × ej))

Hence, σβ(ei × ej) =
∑

k c
k
ijek. In a matrix form we can write σβ as:

σβ =

 c1
23 c1

31 c1
12

c1
23 c2

31 c2
12

c3
23 c3

31 c3
12


Definition 4.2.3. Let g be a left invariant Riemannian metric on a Lie group G. By a
Milnor frame for the pair (g, ge) we mean a frame β ∈ F(g) such that both σβ and gβ are
diagonal and the entries of σβ are in the set {−2, 0, 2}.

A Milnor frame for (G, g) is a left invariant frame β on the Lie group G such that the
frame evaluated at the identity element e is a Milnor frame for (g, ge).

We observe that if MF (g, ge) is the collection of all Milnor frames on (g, ge) and MF (G, g)
is the collection of all Milnor frames for (G, g) then the evaluation map

ev : MF (G, g)→MF (g, g)

β 7→ βe

is a bijection.
A Lie group G is called unimodular if its volume form is bi-invariant. It was proven in

[12] that for any left-invariant metric g on a unimodular Lie group G there exists a frame
β ∈MF (G, g) such that this frame is a Milnor frame for the metric g.

Milnor frames will be extremely important not only for the computation of solutions of
the Ricci flow equation for left invariant metrics on Lie groups but also for the study of the
quasi-convergence classes.
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In our definition of Milnor frame we did not specify the order of the entries of the matrix
σ. For example if we consider a Milnor frame β = (β1, β2, β3) for the pair (G, g) where G is
the Heisenberg group and g is a left invariant metric on G then the matrix σβ of the structure
constants can be written in the form

σβ = 2

 −1 0 0
0 0 0
0 0 0

 .

But we can consider also the Milnor frame β′ = (β2, β1, β3) which has the matrix of structure
constants

σβ′ = 2

 0 0 0
0 −1 0
0 0 0

 .

Clearly, these two frames are the same up to order and they correspond to isomorphic
matrices σβ and σβ′ . To overcome this inconvenience we say that σ has the standard form
provided that we have fixed a particular form for the matrix σ. For example in the case of
the Heisenberg group we fix the standard for of the matrix σ to be

σβ = 2

 −1 0 0
0 0 0
0 0 0

 .
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5 Ricci flow on Homogeneous manifolds

In this section we will describe the Ricci flow for some 3-dimensional homogeneous manifolds
and give the general formulas for the Ricci flow for left invariant metrics on Lie groups. We
study the Ricci flow equations for the spaces R3,H3, SU(2), S2 × R and H2 × R ([9]). The
Ricci flow of homogeneous metrics on R3 and H3 are the simplest among those examples.
Their simplicity follows from the fact that these kind of metrics have constant Ricci curvature
and are Einstein metrics. In the case of the Ricci flow on SU(2) the situation becomes more
complicated. We will prove that the normalized Ricci flow of every left invariant metric on
SU(2) converges to a metric of constant positive scalar curvature. The last two examples
are unique on their own. There are no Einstein metrics on the S2 × R and H2 × R so the
Ricci flow cannot converge. In the case of S2 × R we will prove that any Ricci flow g(t)
develops a curvature singularity in finite time, that is there exist a time T < ∞ such that
the curvature of g(t) diverges to infinity as t → T . The Ricci flow on H2 × R has the
property that the component of R shrinks to zero while the components of H2 expand to
infinity. Such a phenomenon is called pancake degeneracy. The computations of the Ricci
flow equation for left invariant metrics will be given in later sections where we will also
compute the quasi-convergence class for these cases.

5.1 Ricci flow for left invariant metrics on Lie groups

Suppose that G is a 3-dimensional unimodular Lie group with a left invariant metric g.
Consider a Milnor frame β = (β1, β2, β3) for the pair (G, g) That is g is diagonal

g = Aω1 ⊗ ω1 +Bω2 ⊗ ω2 + Cω3 ⊗ ω3

with respect to the dual frame ω = (ω1, ω2, ω3) of β and the structure constants satisfy,
[βi, βj] = ckijβk where ckij ∈ {2, 0,−2} and ckij = 0 unless i, j, k are distinct. Using the Milnor
frame we can compute the Riemann curvature tensor and as a result the Ricci curvature
tensor. This will lead us to a simplified expression of the Ricci flow equation. First of all
we normalize this frame in order to make it orthonormal and compute the Ricci curvature
tensor.

Proposition 5.1.1. Let

e1 = A−1/2β1, e2 = B−1/2β2, e3 = C−1/2β3.

where (β1, β2, β3) is a Milnor frame. Then this new frame is orthonormal and the structure
constants for this frame are

[e1, e2] =
Cc3

12

(ABC)1/2
e3,

[e2, e3] =
Ac1

23

(ABC)1/2
e1,

[e3, e1] =
Bc2

31

(ABC)1/2
e2.
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Proof. Indeed by direct computation we have,

[e1, e2] = [A−1/2β1, B
−1/2β2]

= A−1/2B−1/2[β1, β2]

= (AB)−1/2c3
12β3

= (AB)−1/2C1/2c3
12e3

= (ABC)−1/2Cc3
12e3

=
Cc3

12

(ABC)1/2
e3.

Similarly,

[e2, e3] = [B−1/2β2, C
−1/2β3]

= B−1/2C−1/2[β2, β3]

= (BC)−1/2c1
23β3

= (BC)−1/2A1/2c1
23e1

= (ABC)−1/2Ac1
23e1

=
Ac1

23

(ABC)1/2
e1.

Lastly,

[e3, e1] = [C−1/2β3, A
−1/2β1]

= C−1/2A−1/2[β3, β1]

= (BC)−1/2c2
31β2

= (BC)−1/2A1/2c2
31e2

= (ABC)−1/2Ac2
31e2

=
Bc2

31

(ABC)1/2
e2.

Putting l1 = A, l2 = B and l3 = C we can compute the components of the Levi-Civita
connection as follows:

〈∇eiej, ek〉 =
1

2
(〈[ei, ej], ek〉+ 〈[ek, ei], ej〉 − 〈[ej, ek], ei〉)

=
1

2(ABC)1/2
(lkc

k
ij + ljc

j
ki − lic

i
jk).
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Using the formula for the curvature tensor we have

K(ei ∧ ej) = 〈Rm (ei, ej) ej, ei〉 =
〈
∇eiej,∇ejei

〉
−
〈
∇ejej,∇eiei

〉
−
〈
∇[ei,ej ]ej, ei

〉
=

1

4ABC

(
lkc

k
ij − ljc

j
ik − lic

i
jk

) (
lkc

k
ji − licijk − ljc

j
ik

)
− 1

2ABC
lkc

k
ij

(
lic

i
kj − ljc

j
ki − lkc

k
ji

)
=

1

4ABC

((
lic

i
jk − ljc

j
ki

)2 −
(
lkc

k
ij

)2
)

+
2

4ABC
lkc

k
ij

(
lic

i
jk + ljc

j
ki − lkc

k
ij

)

Here we used that ∇ejej = 0, the skew-symmetry of ckij in i and j and the fact that 〈ei, ej〉 =

δji . Thus, the sectional curvatures K(ei ∧ ej) = R(ei, ej, ei, ej) = 〈Rm(ei, ej)ej, ei〉 are given
by:

K (e2 ∧ e3) =
(c2

31B − c3
12C)2

4ABC
+ c1

23

2c2
31B + 2c3

12C − 3c1
23A

4BC
,

K (e3 ∧ e1) =
(c3

12C − c1
23A)2

4ABC
+ c2

31

2c3
12C + 2c1

23A− 3c2
31B

4AC
,

K (e1 ∧ e2) =
(c1

23A− c2
31B)2

4ABC
+ c3

12

2c1
23A+ 2c2

31B − 3c3
12C

4AB
.

and K(ei, ej) = 0 where i 6= j. So, using Definition 2.5.1. we can write the Ricci curvature
tensor as follows:

Ric (e1, e1) =
(c1

23A)2 − (c2
31B − c3

12C)2

2ABC
,

Ric (e2, e2) =
(c2

31B)2 − (c3
12C − c1

23A)2

2ABC
,

Ric (e3, e3) =
(c3

12C)2 − (c1
23A− c2

31B)2

2ABC
.

and Ric(ei, ej) = 0 if i 6= j. Thus as we can see the Ricci tensor is diagonal with respect to
the frame {e1, e2, e3}. We want now to prove that the Ricci flow will remain diagonal with
respect to a Milnor frame. Let S2g∗ denote the space of symmetric bilinear maps g×g→ R.
Then the set of inner products IP (g) is open in S2g∗. Let g ∈ g be an inner product on
g. Then g extends to a left invariant metric g̃ on G such that g̃e = g. We regard the Ricci
tensor as a map

Ric : Γ(S2T ∗G)→ Γ(S2T ∗G)

g̃ 7→ Ric(g̃)
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Now using the evaluation map eve at the identity element e of G we can write Ric(g̃)e as an
element of S2g∗. So we define the map Rice by

Rice : IP (g)→ S2g∗

g 7→ Ric(g̃)e

which is evidently a smooth map. Thus it is a smooth vector field on IP (g). Given a one
parameter family g(t) of inner products on a Lie algebra g we have the one parameter family

g̃(t) of left invariant metrics on G given by g̃(t)e = g(t). We consider the Ricci flow equation
on G

∂

∂t
g̃(t) = −2 Ric(g̃(t)), g̃(0) = g̃. (5.1)

and the following flow equation on g,

d

dt
g(t) = −2Rice(g(t)), g(0) = g. (5.2)

We will show that equations (5.1) and (5.2) are equivalent. In particular we will prove the
following result.

Proposition 5.1.2. If g̃(t) is satisfies the equation (5.1) then g(t) satisfies the equation

(5.2). Conversely, if g(t) satisfies the equation (5.2) then g̃(t) satisfies the equation (5.1).

Proof. Suppose that g̃(t) satisfies (5.1) then g(0) = g̃(0)e = g̃e = g and

d

dt
g(t) =

d

dt
(g̃(t)e)

=

(
∂

∂t
g̃(t)

)
e

= −2 Ric(g̃(t))e

= −2Rice(g(t))

Thus, g(t) satisfies (5.2). Now suppose that g(t) satisfies (5.2). Then g̃(0) = g̃ and(
∂

∂t
g̃(t)

)
e

=
∂

∂t
(g̃(t)e)

=
d

dt
g(t)

= −2Rice(g(t))

= −2 Ric(g̃(t))e

Since left translations by any element y of G is an isometry and Ricci flow preserves isometries
(see Proposition 3.0.1) we get that(

∂

∂t
g̃(t)

)
y

= −2 Ric(g̃(t))y
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for every y ∈ G. Finally,
∂

∂t
g̃(t) = −2 Ric(g̃(t))

that is g̃(t) satisfies (5.1).

Since IP (g) is open in S2g∗ the equation (5.2) is the flow equation for the vector field
Rice on IP (g). Fix a frame β : R3 → g. Then we will prove the following lemma

Lemma 5.1.3. Let gt be a solution to the equation (5.2) for |t| < δ. Then if (g0)β is diagonal
we get (gt)β is diagonal for |t| < δ.

Proof. We define the map Sβ by

Sβ : S2g∗ → R3

T 7→ (T (β1, β2), T (β1, β3), T (β2, β3))

The set KerSβ ∩ IP (g) is an open subset of KerSβ. We claim that if Sβ(g) = 0 then
Sβ(Rice(g)) = 0. Indeed, we have

Sβ(Rice(g)) = (Ric(g̃)e(β1, β2),Ric(g̃)e(β1, β3),Ric(g̃)e(β2, β3))

= (A1/2B1/2 Ric(g̃)e(e1, e2), A1/2B1/2 Ric(g̃)e(e1, e3), B1/2C1/2 Ric(g̃)e(e2, e3))

= 0

where e1 = A−1/2β1, e2 = B−1/2 and e3 = C−1/2 as in Proposition 5.1.1. Then Rice regarded
as a vector field on IP (g) is tangent to KerSβ ∩ IP (g). It follows that

(g0)β is diagonal =⇒
g0 ∈ KerSβ ∩ IP (g) =⇒

∀t ∈ (−δ, δ) : gt ∈ KerSβ ∩ IP (g) =⇒
∀t ∈ (−δ, δ) : (gt)β is diagonal.

Thus we have proven that the Ricci flow equation is diagonal with respect to a Milnor
frame. So the Ricci flow equation is equivalent to the system:

dA

dt
=

(c2
31B − c3

12C)2 − (c1
23A)2

BC
, (5.3)

dB

dt
=

(c3
12C − c1

23A)2 − (c2
31B)2

AC
, (5.4)

dC

dt
=

(c1
23A− c2

31B)2 − (c3
12C)2

AB
. (5.5)

The normalized Ricci flow, Definition 3.0.1, for left invariant metrics is of the form:
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dA

dt
=
−4(c1

23A)2 + 2(c2
31B)2 + 2(c3

12C)2 − 4c2
31B · c3

12C + 2c3
12C · c1

23A+ 2c1
23A · c2

31B

3BC
,

(5.6)

dB

dt
=

2(c1
23A)2 − 4(c2

31B)2 + 2(c3
12C)2 + 2c2

31B · c3
12C − 4c3

12C · c1
23A+ 2c1

23A · c2
31B

3AC
, (5.7)

dC

dt
=

2(c1
23A)2 + 2(c2

31B)2 − 4(c3
12C)2 + 2c2

31B · c3
12C + 2c3

12C · c1
23A− 4c1

23A · c2
31B

3AB
. (5.8)

5.2 The Ricci flow on R3

Consider the manifold R3 equipped with the standard Riemannian metric gR3 of constant
curvature 0. This manifold can be regarded as a homogeneous space for the isometry group
Iso(R3) acts transitively on R3. We want to study the Ricci flow equation for all homogeneous
metrics g on R3. Any homogeneous metric on R3 can be written as

g0 = A0gR3

where A0 is a real number. Thus we can write g(t) = A(t)gR3 for a one parameter family
of homogeneous metrics on R3. Using the scaling invariance of the Ricci tensor, Ric(σg) =
Ric(g), we have that any family of homogeneous metrics on R3 is Ricci-flat, that is Ric(g(t)) =
0. Thus the Ricci flow g(t) in this class is trivial:

d

dt
g(t) = −2 Ric(g(t)) = −2 Ric(g0) = 0

So g(t) = g0 for every t > 0.

5.3 The Ricci flow on H3

Consider the hyperbolic space H3 with the standard hyperbolic metric gH3 of constant cur-
vature −1. We regard H3 as a homogeneous space for its isometry group acts transitively
on H3. All homogeneous metrics g0 on H3 can be written as

g0 = Λ0gH3

where Λ0 is a positive constant. This kind of metrics are Einstein so just like Example 2 of
Section 3 we have that

g(t) = (Λ0 + 2t)g0

is a solution to the Ricci flow equation. So we can write g(t) = Λ(t)g0 where Λ(t) = Λ0 + 2t.
We see that the Ricci flow on H3 expands linearly in time, in contrast with the case of R3

where the flow is stationary.
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5.4 The Ricci flow of SU(2)

Consider the compact Lie group SU(2). Let g0 be any left invariant metric and let β ∈ F(g)
be a Milnor frame for g0. If ω is the dual frame of β that is ωi(βj) = δij then g0 can be
written as

g0 = A0ω
1 ⊗ ω1 +B0ω

2 ⊗ ω2 + C0ω
3 ⊗ ω3

The matrix σβ of the structure constants is of the form

σβ = 2

 −1 0 0
0 −1 0
0 0 −1

 .

In order to study the behaviour of the Ricci flow of SU(2) we will use the normalized Ricci
flow in order to fix the volume of SU(2). The result that we want to prove is the following:

Theorem 5.4.1. Every left invariant metric on SU(2) converges exponentially to the round
metric of the three-sphere with scalar curvature R = 3

2

This is a remarkable result since if we choose the initial metric to satisfy B0 = C0 <
A0

4

then the scalar curvature satisfies R0 < 0 but the flow will converge to a metric of positive
scalar curvature.

Proof. Suppose that
g = Aω1 ⊗ ω1 +Bω2 ⊗ ω2 + Cω3 ⊗ ω3

is a one parameter family of left invariant metrics on SU(2) expressed in the Milnor frame β.
Note that A,B,C are function of time. The components of the Ricci tensor and the scalar
curvature of the metric g on SU(2) are given by:

R11 =
1

2
A
[
A2 − (B − C)2

]
,

R22 =
1

2
B
[
B2 − (A− C)2

]
,

R33 =
1

2
C
[
C2 − (A−B)2

]
,

R =
1

2

{[
A2 − (B − C)2

]
+
[
B2 − (A− C)2

]
+
[
C2 − (A−B)2

]}
,

‖Ric ‖2 =
1

4

{[
A2 − (B − C)2

]2
+
[
B2 − (A− C)2

]2
+
[
C2 − (A−B)2

]2}
.

Thus using the equations (5.4), (5.5) and (5.6) the normalized Ricci flow equation is of
the form:
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d

dt
A =

2

3

[
−A2(2A−B − C) + A(B − C)2

]
,

d

dt
B =

2

3

[
−B2(2B − A− C) +B(A− C)2

]
,

d

dt
C =

2

3

[
−C2(2C − A−B) + C(A−B)2

]
.

In terms of the metric components if A = B = C then we get a fixed point for the Ricci
flow. Indeed, if A = B = C then

d

dt
A =

2

3

[
−A2(2A−B − C) + A(B − C)2

]
=

2

3

[
−A2(2A− A− A) + A(A− A)2

]
= 0

and similarly for B and C. Those components are the metric components of the round sphere
S3. This lead us to calculate the evolution equations for the differences between A,B,C:

d

dt
(A−B) =

2

3

[
−2
(
A3 −B3

)
+ C

(
A2 −B2

)
+ C2(A−B)

]
,

d

dt
(A− C) =

2

3

[
−2
(
A3 − C3

)
+B

(
A2 − C2

)
+B2(A− C)

]
,

d

dt
(B − C) =

2

3

[
−2
(
B3 − C3

)
+ A

(
B2 − C2

)
+ A2(B − C)

]
.

As we can see for the symmetry of the equations that without loss of generality we can
assume that A0 ≥ B0 ≥ C0. By using the differential equations for the differences of A,B,C
we get that A ≥ B ≥ C for all t. Now since 2C −A−B ≤ 0 we get that d

dt
C ≥ 0 and so C

is non decreasing. We will now estimate the evolution equation for A− C.

d

dt
(A− C) =

2

3
(−2(A2 + AC + C2) +B(A+ C) +B2)(A− C)

=
2

3
(−2C2 − AC − (A−B)(A+ C)− (A2 −B2))(A− C)

≤ −2C2
0(A− C).

integrating this inequality yields

A− C ≤ (A0 − C0)e−2C2
0 t

Therefore, A−C decays to zero exponentially and since A ≥ B ≥ C for all t we get that
the Ricci flow converges exponentially to the fixed point A = B = C = 1, where we have
used the normalization ABC = 1. From the evolution equation for the scalar curvature

R =
1

2

{[
A2 − (B − C)2

]
+
[
B2 − (A− C)2

]
+
[
C2 − (A−B)2

]}
we conclude that R approaches exponentially the value 3

2
while the norm of the Ricci tensor

||Ric || exponentially approach the value 3
4
.
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5.5 The Ricci flow on S2 × R
A nice example of a homogeneous manifold which is not a Lie group is S2×R equipped with
the product metric gR + gS2 , where gS2 is the standard metric on the sphere S2 of constant
curvature 1 and gR the standard metric on R. We regard S2 × R as a homogeneous space
for the isometry group SO(2)× R acts transitively on S2 × R. Any homogeneous metric on
S2 × R are of the form

g0 = A0gR +B0gS2

where A0, B0 are positive constants. Thus a one parameter family of homogeneous metrics
in There is no Einstein metric on this class so Ricci flows on S2 × R can be written as

g = AgR +BgS2

where A and B are functions of time. S2 × R cannot converge. We will show that actually
Ricci flows on S2×R form curvature singularity in finite time. The components of the Ricci
curvature, the scalar curvature and the norm of the Ricci tensor are given by:

R11 = 0

R22 = 1

R33 = 1

R =
2

B

||Ric ||2 =
2

B2

So the Ricci flow equation takes the form

d

dt
B = −2

3
d

dt
A =

4

3

A

B

Integrating directly these equations we obtain the solutions

B = B0 −
2

3
t

A =
A0B

2
0

B0 − 2
3
t

As we can see the round two sphere shrinks linearly in t, while the metric components
of R expand at the indicated rate. The curvature singularity is obtained exactly at time
T = 3

2
B0 where the radius of the sphere reaches zero. In order to avoid this curvature

singularity we can normalize the Ricci flow is such a way the the volume of the 2-sphere
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remain fixed. Let 〈r(t)〉 be the average of the scalar curvature of S2. We consider a variant
of the normalized Ricci flow:

∂

∂t
g = −2 Ric(g) + 〈r(t)〉g

Then the system transforms to

d

dt
A = 0

d

dt
B = 2B/A

whose solution is

A = A0,

B = B0e
2/A0t

This solution exist for all times t ∈ [0,∞) and it is non-singular for all times t > 0.

5.6 The Ricci flow on H2 × R
Consider the manifold H2 × R where H2 is the hyperbolic plane equipped with the product
metric gR+gH2 where gH2 is the standard metric on the hyperbolic plane of constant curvature
−1. We regard H2 × R as a homogeneous space for its isometry group Iso(H2) × R acts
transitively on H2 × R. All the homogeneous metrics on this manifold are of the form.

g0 = D0gR + E0gH2

where D0 E0 are positive constants. So a one parameter family of homogeneous metrics is
of the form

g = DgR + EgH2

where D and E are functions of time. Just like the case of S2 × R there are no Einstein
metrics in the class of homogeneous metrics therefore the Ricci flow equation cannot con-
verge. But, in contrast with the case of S2 × R the Ricci flows do not develop curvature
singularities but develop pancake degeneracies.

The components of the Ricci curvature tensor, the scalar curvature and the norm of the
Ricci tensor are:

R11 = 0

R22 = −1

R33 = −1

R = −2/E

||Ric ||2 = 2/E2
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So the Ricci flow equation has the form

d

dt
E =

2

3
d

dt
D = −4

3
D/E

Therefore we can directly gt the solution to the Ricci flow equation:

E = E0 +
2

3
t

D = D0E
2
0/(E0 +

2

3
t)2

As we can see from the solution the component of the hyperbolic part of the metric scales
linearly in time while the other component decreases with rate 1/t2. So as t → ∞ the
component D goes to zero. Therefore we cannot have convergence. Also, the norm of the
Ricci tensor evolves by

||Ric || =
√

2/(E0 +
2

3
t)

which is a characteristic phenomenon for this kind of degeneracy.
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6 Quasi-convergence

We proved that any normalized Ricci flow on SU(2) exists for all times t > 0 and converges
to a left invariant metric on SU(2) with positive scalar curvature. Unfortunately, there exist
Ricci flows, even in the special case of left invariant metrics on Lie groups, that exist for all
times but the limit of the solution as t→∞ is not a Riemannian metric. Such a phenomenon
is called collapsing.

Definition 6.0.1. We say that a solution to the Ricci flow equation collapses if the injectivity
radius of the corresponding solution to the normalized Ricci flow

∂

∂t
g(t) = −2 Ric(g(t)) +

2

n
〈r(t)〉g(t)

goes to zero as t→∞.

Here 〈r(t)〉 =
∫
M R(t)dµ

Vol(M)
is the average of the scalar curvature. In order to study the asymp-

totic behaviour of those collapsing solutions R. Hamilton and J. Isenberg ([7]) introduced
the concept of quasi-convergence.

Definition 6.0.2. Suppose that we have two solutions g(t), h(t) of the Ricci flow equation
on a manifold M . We say that g(t) quasi-converges to h(t) and we write h(t) ∈ [g(t)] if and
only if for any ε > 0 there exist a time tε such that

sup
M×[tε,∞)

|h(t)− g(t)|g(t) < ε.

This is the same as saying that supM |h(t)− g(t)|g(t) → 0 as t→∞.

The quasi-convergence study the large time behaviour of solutions to the Ricci flow
equation that exist for all times t ∈ (0,∞). We will prove that the quasi-convergence is an
equivalence relation on the set C([0,∞),Γ(S2

+T
∗M)), where S2

+T
∗M is the set of positive

definite covariant 2-tensors on M

S2
+T
∗M =

∐
m∈M

S2
+T
∗
mM, S2

+T
∗
mM = {T ∈ S2T ∗mM : T (x, x) > 0,∀x ∈ TmM \ {0}}

and C([0,∞),Γ(S2
+T
∗M)) is the space of continuous functions from [0,∞) to Γ(S2

+T
∗M).

Also we denote by ∼ the quasi-convergence equivalence relation on C([0,∞),Γ(S2
+T
∗M)).

That is if g(t), h(t) ∈ C([0,∞),Γ(S2
+T
∗M)) then

g(t) ∼ h(t) ⇔ sup
M
|h(t)− g(t)|g(t) → 0 as t→∞.

Thus, we can divide solutions to Ricci flow equations into equivalence classes. These equiva-
lent classes contain Ricci flows that are close to each other in the sense of quasi-convergence.
R. Hamilton conjectured that the large time behaviour of any collapsing solution will be
quasi-converge to the evolution of a locally homogeneous metric ([7]).
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Before proving that the quasi-convergence is an equivalence relation we first make some
remarks about inner products on vector spaces. Let V be a finite dimensional vector space
over R with dim(V ) = n. Let S2V ∗ be the space of symmetric bilinear forms on V and let

IP (V ) = {h ∈ S2V ∗ | ∀x ∈ V \ {0}, h(x, x) > 0}

be the space of inner product on V . Every inner product h ∈ IP (V ) induces an inner
product on the space of covariant symmetric 2-tensors S2V ∗ ⊂ ⊗2V ∗. This inner product
induces a norm |.|h on S2V ∗. In order to prove that quasi-convergence is symmetric we first
have to prove the following.

Lemma 6.0.3. Let V be a vector space. There exist a constant C with 0 < C < 1 such
that for any inner product g ∈ IP (V ) and for any covariant symmetric 2-tensor β ∈ S2V ∗

the following inequality holds:

C|β|g ≤ sup
x∈V \{0}

|β(x, x)|
g(x, x)

≤ |β|g.

Also, the constant C depends only on the dimension of the vector space V .

Proof. Using the Cauchy-Schwartz inequality we get |β(x, x)| ≤ |β|g||x||2 = |β|gg(x.x) for
every x ∈ V \ {0}. Thus by taking the supremum over x ∈ V \ {0} we get the right
inequality. To get the left inequality, we write |β|2g as |β|2g =

∑
i,j |β(ei, ej)|2. where {ei} is

an orthonormal basis for V . So we compute

|β(ei, ej)|g =

∣∣∣∣12β(ei + ej, ei + ej)− β(ei, ei)− β(ej.ej)

∣∣∣∣
g

≤
∣∣∣∣β(ei + ej, ei + ej)

g(ei + ej, ei + ej)

∣∣∣∣
g

+
1

2

(∣∣∣∣β(ei, ei)

g(ei, ei)

∣∣∣∣
g

+

∣∣∣∣β(ej.ej)

g(ej.ej)

∣∣∣∣
g

)

≤ 2 sup
|β(x, x)|g
g(x, x)

.

So by taking the sum over i and j we get,

|β|2g ≤ 2 dim(V )2 sup
|β(x, x)|2

g(x, x)
,

for every x ∈ V \ {0}. Thus we proved the result for C = 1
2 dim(V )2

.

The fact that the constant C in Lemma 6.0.3 depends only on the dimension on the vector
space V enables us to transfer this inequality for every tangent space TmM of a manifold M
for every m ∈M . Thus we gain the following result
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Corollary 6.0.4. Suppose that βt is a one parameter family of symmetric 2-tensors on M
and gt a one parameter family of Riemannian metrics on M . Then

|βt|gt → 0 as t→∞ if and only if
|βt(x, x)|
gt(x, x)

→ 0 as t→∞ uniformly for x ∈ TM \ {0},

where TM \ {0} is the tangent bundle of M without the zero section.

We are now ready to show that the quasi-convergence is symmetric.

Proposition 6.0.5. Let gt, ht be two one parameter families of Riemannian metrics on M
with t ∈ [0,∞). Then |gt − ht|gt → 0 if and only if |gt − ht|ht → 0.

Proof. Using Corollary 6.0.4. we have (with x ∈ TM \ {0}),

sup
M
|ht − gt|gt → 0⇔∣∣∣∣ht(x, x)− gt(x, x)

gt(x, x)

∣∣∣∣→ 0 uniformly on TM \ {0} ⇔

ht(x, x)

gt(x, x)
→ 1 uniformly on TM \ {0} ⇔

gt(x, x)

ht(x, x)
→ 1 uniformly on TM \ {0} ⇔∣∣∣∣ht(x, x)− gt(x, x)

ht(x, x)

∣∣∣∣→ 0 uniformly on TM \ {0} ⇔

sup
M
|ht − gt|ht → 0

So the quasi-convergence is a reflexive relation. It remains to show that quasi-convergence
is a transitive relation.

Proposition 6.0.6. Suppose that gt, ht, ft are one parameter families of Riemannian metrics
on a manifold M with t ∈ [0.∞). Assume that gt quasi-converges to ht and ht quasi-converges
to ft. Then gt quasi-converges to ft.

Proof. Since gt quasi-converges to ht we have that

|gt(m)− ht(m)|gt(m) → 0

as t→∞ uniformly in m ∈M . Also, ht quasi-converge to ft, thus,

|ht(m)− ft(m)|ht(m) → 0

as t→∞ uniformly in m ∈M . Therefore,

|gt(m)− ft(m)|gt(m) = |gt(m)− ht(m) + ht(m)− ft(m)|gt(m)

≤ |gt(m)− ht(m)|gt(m) + |ht(m)− ft(m)|gt(m)
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Since gt quasi-converges to ht we have |gt(m) − ht(m)|gt(m) → 0 uniformly in m ∈ M . So
it suffices to show that |ht(m)− ft(m)|gt(m) → 0 uniformly in m ∈ M . We have by Lemma
6.0.3,

|ht − ft|gt ≤
1

C
sup

m∈M,x∈TmM\{0}

|ht(m)(x, x)− ft(m)(x, x)|
gt(m)(x, x)

=
1

C
sup

m∈M,x∈TmM\{0}

(
|ht(m)(x, x)− ft(m)(x, x)|

ht(m)(x, x)

(
ht(m)(x, x)

gt(m)(x, x)

))
=

1

C
sup

(m,x)∈TM\{0}

(
|ht(m)(x, x)− ft(m)(x, x)|

ht(m)(x, x)

(
ht(m)(x, x)

gt(m)(x, x)

))
Since, |ht − ft|ht → 0 uniformly on TM \ {0} and |gt − ht|gt → 0 uniformly on TM \ {0} we
get that

sup
(m,x∈TM\{0})

|ht(m)(x, x)− ft(m)(x, x)|
ht(m)(x, x)

ht(m)(x, x)

gt(m)(x, x)

= sup
(m,x)∈S(TM)

|ht(m)(x, x)− ft(m)(x, x)|
ht(m)(x, x)

ht(m)(x, x)

gt(m)(x, x)
→ 0

where S(TM) is the unit sphere bundle of the tangent bundle TM . This implies that
|gt − ft|gt → 0 as t → ∞ uniformly in S(TM) and in TM \ {0}. So gt quasi-converges to
ft.

Finally, quasi-convergence is trivially reflexive, therefore we have proven the following
theorem.

Theorem 6.0.7. Quasi-convergence is an equivalence relation.

In the following two sections we will describe the quasi-convergence as an equivalent rela-
tion and compute the quasi-convergence classes of left invariant Ricci flows on Lie groups. We
should note in [11] the authors made some computations for the quasi-convergence classes of
left invariant Ricci flows on Lie groups. The method that they used was a direct computation
of these quasi-convergence classes. We will follow a different route. We will define an action
of the group GL(3,R) on the space of 3×3 matrices and describe the quasi-convergence class
[g] of a left invariant Ricci flow as the orbit of the diagonal part of [g] under a subgroup of
GL(3,R).
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7 Strategy to compute the quasi-convergence classes

In this section we are going to present the general strategy to determine the quasi-convergence
classes. First of all we will use the so called Iwasawa decomposition for GL(3,R) to describe
the space of metrics on a three dimensional vector space as the space N×A ' GL(3,R)/O(3)
where N is the group of 3 by 3 nilpotent matrices and A the group of 3 by 3 diagonal matrices.
Subsets of this space will parametrize the quasi-convergence classes. Next we will define an
action of the Lie group GL(3,R) to the space of 3 × 3 matrices M3(R) and determine the
stabilizer subgroup of this action. Then the quasi-convergence class can be characterized as
the orbit space for a particular subgroup of the stabilizer subgroup.

7.1 Iwasawa decomposition

We begin by recalling the notion of a semisimple Lie algebra and the Cartan decomposition.

Definition 7.1.1. A Lie algebra g is called semisimple if the Killing form

B(X, Y ) = tr(adX ◦ adY )

is non-degenerate.

Suppose that G is a connected Lie group with semisimple Lie algebra g. Let B be the
Killing form on g. We denote by θ : g→ g a Cartan involution of g. That is θ is a Lie algebra
automorphism of g, with θ2 = −1 and (X, Y ) 7→ −B(X, θY ) is a positive definite bilinear
form on g. The involution θ has two eigenvalues, +1 and −1 with corresponding eigenspaces
k and p, respectively.

Definition 7.1.2. The Cartan decomposition of the Lie algebra g is a decomposition of g
as a direct sum of vector spaces

g = k⊕ p.

That is we decompose the Lie algebra g into the eigenspaces of the Cartan involution θ.
In our analysis of the quasi-convergence class for homogeneous Ricci flows as well as the
the description of the space of inner products on an vector space we will use the Iwasawa
decomposition. First we will describe the Iwasawa decomposition on the Lie algebra level
and the we will derive a global form of the Iwasawa decomposition for any semisimple Lie
group. Proof of these results can be found in [10].

Proposition 7.1.3. (Iwasawa decomposition for semisimple Lie algebras) Suppose that g is
a real semisimple Lie algebra. We can decompose the Lie algebra g as a direct sum of Lie
subalgebras

g = k⊕ a⊕ n

where k is the eigenspace of the Cartan involution θ corresponding to the eigenvalue +1, a
is an abelian subalgebra of g and n is an nilpotent subalgebra of g.

We will now present the global version of the Iwasawa decomposition. We denote by
K,A and N the analytic subgroups of k, a and n.
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Proposition 7.1.4. (Iwasawa decomposition) Suppose that G is a real semisimple Lie group
with Lie algebra g. We write g = k⊕ a⊕ n for the Iwasawa decomposition of the Lie algebra
g. Then the multiplication map

K × A×N → G

(k, a, n) 7→ kan

is a diffeomorphism.

The subgroups A and N that appear in this decomposition are simply connected. Of
particular interest is the Iwasawa decomposition for the Lie group GL(n,R). The group
GL(n,R) is not semisimple but it admits an Iwasawa decomposition as follows:

Proposition 7.1.5. We can decompose the Lie group GL(n,R) as

GL(n,R) = O(n)AN

where A is the abelian group which contains all diagonal matrices and N is the nilpotent
group which contains all the upper-triangular matrices.

Proof. We refer to [10] for a proof of the Iwasawa decomposition in the more general setting
of reductive Lie groups like GL(n,R).

A consequence of the Iwasawa decomposition for GL(3,R) is that the space of all metrics
on R3 can be described as N × A, where N is the 3-dimensional nilpotent group and A the
group of diagonal matrices. That is we get an isomorphism

N × A ' GL(3,R)/O(3) ' IP (R3).

7.2 Group actions

Motivated by Corollary 4.1.3. we define an action of the Lie group GL(3,R) on the space of
3× 3 real matrices M3(R) by,

GL(3,R)×M3(R)→M3(R)

(A,M) 7→ A ·M = (det(A))−1AMAT
(7.1)

The next thing we want to describe is the stabilizer subgroup of this action if we have fixed
a matrix σ ∈M3(R) that corresponds to the matrix of structure constants. That is we want
to find all elements A of the group GL(3,R) that satisfy the equation

(det(A))−1AσAT = σ.

We will denote this group by GL(3,R)σ. To simplify the computations we will usually
consider the corresponding action on the Lie algebra level,

gl(3,R)×M3(R)→M3(R)

(X,m) 7→ X ·m = − tr(X)m+Xm+ (Xm)T
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and determine the Lie algebra of the stabilizer group for a fixed σ ∈M3(R).

Lie(GL(3,R)σ) = {X ∈M3(R) | − trX +Xσ + (Xσ)T = 0}.

Suppose now that g is an inner product on the Lie algebra g. Consider a Milnor frame β
on (g, g) such that σβ has a fixed standard form σ and the inner product g is diagonal with
respect to β. Extend g to a left invariant metric g̃ on G such that g̃(e) = g. We denote by
IP (G)G the space of left invariant metrics on G. The map

IP (g)→ IP (G)G

g 7→ g̃

is a bijection. We define

[g̃]β = {h̃ ∈ IP (G)G | h̃β diagonal and |g̃t − h̃t|g̃t → 0}.

where g̃t and h̃t are the Ricci flows on G with initial data g̃ and h̃ respectively. We also
define

[g]β = {h ∈ IP (g) | hβ diagonal and |gt − ht|gt → 0}.

The bijection between g and IP (G)G induces a bijection between the sets [g] and [g̃]. Thus,
if we denote by ∼ the quasi-convergence equivalence relation we have that

g ∼ h⇔ g̃ ∼ h̃⇔ |g̃t − h̃t|g̃t → 0

We also observe that |gt − ht|gt → 0 is equivalent to |gtβ − htβ |gtβ → 0.

A first aim of this section is to describe the space [g]β. We start with a frame β on g
such that the matrix of the structure constants σβ is diagonal and has the standard form
σβ = σ. Let

Mβ = {g ∈ IP (g) | gβ is diagonal }

That is we consider the space of inner products on the Lie algebra g such that these inner
products are diagonal with respect to the frame β. We denote by A the subgroup of GL(3,R)
consisting of the diagonal matrices with non-zero entries. Then we can describe Mβ as

Mβ = {g ∈ IP (g) | β∗g ∈ A.e}

where e is the standard Euclidean metric and A.e is the action of the group A on e given by
a.e = (a−1)∗e. We also consider the map A→Mβ by a 7→ (β−1)∗(a.e).

Definition 7.2.1. We define the equivalent relation ∼β on the space ofMβ as the restriction
of the quasi-convergence relation ∼ to the space Mβ.

This means that gt, ht ∈ Mβ are equivalent with respect to the equivalent relation ∼β
if and only if the corresponding left invariant Ricci flow g̃t quasi-converges to left invariant
Ricci flow h̃t.

Now select a frame β ∈ F(g) such that the matrix of the structure constants σβ is of the
standard form σ. Using the frame β we can view any inner product g ∈ IP (g) as an inner
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product on R3. So we have a bijective map β∗ : IP (g) → IP (R3) given by g 7→ β∗g := gβ.
Now consider the action of the Lie group GL(3,R) on IP (R3),

GL(3,R)× IP (R3)→ IP (R3)

(x, γ) 7→ (x−1)∗γ

The standard Euclidean inner product e is in IP (R3) and so we can consider the stabilizer
subgroup of e which is exactly O(3). The group GL(3,R) acts transitively on IP (R3). Thus
IP (R3) can be described as

IP (R3) ' GL(3,R3)/O(3).

Suppose now that we have the group GL(3,R)σ consisting of all the 3 by 3 matrices that
stabilize the matrix of structure constants σ.

Lemma 7.2.2. The map

GL(3,R)σ × A→ GL(3,R)/O(3)

(x, a) 7→ xa · [e] = xa ·O(3)

is surjective.

Proof. Consider hβ := (x−1)∗e a metric on R3, where x ∈ GL(3,R) and e the Euclidean
inner product on R3. Define the inner product h on g by h = (β−1)∗(hβ). Now, by [12], h has
a Milnor frame α such that σα = σ and α∗h = hα is diagonal, with respect to the standard
basis of R3 (see Remark 4.2.2.). We have σα = σβ = σ and β = α ◦ (α−1 ◦ β). Combining
those two relations we have

σ = σβ = (α−1 ◦ β) ◦ σα = σ

Thus, y = α−1 ◦ β ∈ GL(3,R)σ.
Now

β∗ ◦ (α−1)∗ ◦ a∗e = (x−1)∗e =⇒
y∗α∗e = (x−1)∗e =⇒

x∗(ay)∗e = e =⇒
ayx ∈ O(3) =⇒

x ∈ y−1a−1O(3)

where y−1 ∈ GL(3,R)σ and a ∈ A.

A corollary of this result is the following.

Corollary 7.2.3. The map

GL(3,R)σ × A→ IP (R3)

(y, a) 7→ ((ya)−1)∗e

is surjective.
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Suppose that h is an inner product on the Lie algebra g. If β is any frame on g then hβ is
an inner product on R3. Using Lemma 7.2.1 we have that hβ = ((ya)−1)∗e = (y−1)∗(a−1)∗e
for some a ∈ A and y ∈ GL(3,R)σ. Thus y∗β∗h = (a−1)∗e. Denote by α = β ◦ y, then α is a
Milnor frame for (g, h). So we have proven the following lemma.

Lemma 7.2.4. If α and β are Milnor frames for h and g, respectively then α−1 ◦ β ∈
GL(3,R)σ.

7.3 Relation with automorphisms group

Let g be a 3-dimensional Lie algebra. Recall (eq. (4.1)) that for a frame β ∈ F(g) the matrix
of structure constants σβ is defined by

[βu, βv] = β(σβ(u× v)).

where u, v are in R3. We want to prove that the group GL(3,R)σ is isomorphic to the
automorphism group Aut(g) of the Lie algebra g. In order to show this we first have to
prove some lemmas.

Lemma 7.3.1. Let α, β be two frames on the Lie algebra g such that σα = σβ. Then the
composition

β ◦ α−1 : g→ g

is a Lie algebra automorphism.

Proof. For x, y ∈ g we have

[β ◦ α−1x, β ◦ α−1y] = βσβ(α−1x× α−1y)

= βσα(α−1x× α−1)

= β ◦ α−1[x, y]

Thus, β ◦ α−1 is a Lie algebra automorphism.

Lemma 7.3.2. Suppose that φ ∈ GL(3,R) and β a frame of the Lie algebra g. Then the
following assertions are equivalent.

1. φ ∈ GL(3,R)σβ

2. β ◦ φ ◦ β−1 ∈ Aut(g)

Proof. Suppose that φ ∈ GL(3,R)σβ . Since φ is a linear isomorphism the composition β ◦φ :
R3 → g is a frame for g with matrix of structure constants

σβ◦φ = φ−1σβ = σβ.

So by Lemma 7.3.1 we have that β◦φ◦β−1 ∈ Aut(g). For the converse suppose that β◦φ◦β−1

is a Lie algebra automorphism. In order to show that φ ∈ GL(3,R)σβ we have to show that
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σβ = σβ◦φ◦β−1 . We have, for every u, v ∈ R3

(β ◦ φ)σβ◦φ(u× v) = [(β ◦ φ)u, (β ◦ φ)v]

= [(β ◦ φ ◦ β−1)βu, (β ◦ φ ◦ β−1)βv]

= (β ◦ φ ◦ β−1)[βu, βv]

= (β ◦ φ ◦ β−1)βσβ(u× v)

Thus,
(β ◦ φ)σβ◦φ(u× v) = (β ◦ φ)σβ(u× v)

for every u, v ∈ R3. Using that φ ∈ GL(3,R) we have that σβ◦φ = σβ.

As a corollary of this result we have the following

Corollary 7.3.3. Let β ∈ F(g) with σβ = σ. Then the map,

β∗ : GL(3,R)→ GL(g)

φ 7→ β ◦ φ ◦ β−1

restricts to a group isomorphism GL(3,R)σ → Aut(g).

We will define an equivalence relation for inner products on a Lie algebra.

Definition 7.3.4. Suppose that gt and ht are one parameter families of inner products on
the Lie algebra g with t ∈ [0,∞) that satisfy the flow equation

d

dt
gt = −2Rice(gt). (7.2)

Then gt is equivalent to ht and we write gt ∼g ht if and only if for every ε > 0 there exist a
positive number tε such that for every t > tε we have

|gt − ht|gt < ε.

The next proposition relates the equivalence relation for families of inner products on
Lie algebras with the quasi-convergence of their corresponding left invariant metrics on Lie
groups.

Proposition 7.3.5. Suppose that gt and ht are solutions of the flow equation (7.2). Let
g̃t and h̃t be the corresponding solutions to the Ricci flow equation as in Proposition 5.1.2.
Then

gt ∼g ht ⇔ g̃t ∼ h̃t.

Proof. To prove this proposition we will use the left invariance of the Riemannian metrics
g̃t and h̃t. We have,

g̃t ∼ h̃t ⇔ |g̃t − h̃t|g̃t → 0

⇔ ∀x ∈ G, |g̃t(x)− h̃t(x)|g̃t(x) → 0

⇔ |g̃t(e)− h̃t(e)|g̃t(e) → 0

⇔ |gt − ht|gt → 0

⇔ gt ∼g ht.
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Definition 7.3.6. We define the equivalence relation ∼g on IP (g) as follows: if g and h are
inner products on g then g ∼g h if and only if the corresponding solutions gt and ht to the
equation (7.2), with initial data g and h respectively, satisfy the property gt ∼g ht.

Similarly, we define the equivalence relation ∼ on the set of left invariant metrics IP (G)G

on a Lie group G as follows: if g̃ and h̃ are left invariant metrics on G then g̃ ∼ h̃ if and
only if the corresponding solutions g̃t and h̃t, with initial data g̃ and h̃ respectively, satisfy
the property g̃t ∼ h̃t as in Definition 6.0.2.

We will now describe the connection between the Ricci flow equation and the automor-
phism group of a Lie algebra and of a Lie group. Let g be a Lie algebra and let G̃ be the
simply connected Lie group with Lie algebra g. Suppose that g is an inner product on g and
φ an automorphism of the Lie algebra. We denote by φ∗g the pullback of the inner product
g by the automorphism φ. Since φ is an automorphism and in particular is a vector space
isomorphism φ∗g is an inner product on g. Now consider the left invariant extensions φ̃∗g
and g̃ on G̃ of φ∗g and g respectively. Also consider the lift Φ ∈ Aut(G̃) of the map φ. So
we have TeΦ = φ. Let Φ∗g̃ be the pullback of g̃ by the automorphism Φ of G̃. It is easy to
check that since Φ is an automorphism of the Lie group G̃, Φ∗g̃ is a left invariant metric on
G̃.

Lemma 7.3.7. With notation as above we have

Φ∗g̃ = φ̃∗g.

Proof. We will prove this equality at the identity element e of G̃. Then using that the metrics
Φ∗g̃ and φ̃∗g are left invariant we will have the equality for every element x ∈ G̃. For every
u, v ∈ TeG̃ we have

(Φ∗g̃)e(u, v) = g̃Φ(e)(TeΦ(u), TeΦ(v))

= g̃e(φ(u), φ(v))

= g(φ(u), φ(v))

= (φ∗g)(u, v)

= (φ̃∗g)e(u, v)

Thus
(Φ∗g̃)e = (φ̃∗g)e.

Assume that g(t) is a solution to the flow equation

d

dt
g(t) = −2Rice(g(t)). (7.3)

The next lemma shows that automorphisms of the Lie algebra commutes with the vector
field Rice.
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Lemma 7.3.8. Suppose that φ is an automorphism of a Lie algebra g and G̃ a connected and
simply connected Lie group with Lie algebra g. Let Φ be the corresponding automorphism
of the Lie group G̃ such that TeΦ = φ. Then we get

φ∗Rice(g) = Rice(φ
∗g)

Proof. By direct computations we have,

φ∗Rice(g) = φ∗Ric(g̃)e

= (TeΦ)∗Ric(g̃)e

= Ric(Φ∗g̃)e

= Ric(φ̃∗g)e

= Rice(φ
∗g)

With the use of Lemma 7.3.7 we can show the following theorem.

Theorem 7.3.9. Suppose that g(t) is a solution to the flow equation (7.2). Then φ∗(g(t))
is a solution to the flow equation (7.2). Also we have that φ∗(g(t)) = φ∗(g)(t)

Proof.

d

dt
φ∗(g(t)) = φ∗(

d

dt
g(t))

= φ∗(−2Rice(g(t)))

= −2Rice((φ
∗g(t)))

The equality φ∗(g(t)) = φ∗(g)(t) follows from the uniqueness of solutions of the equation
(7.2) and the fact that φ∗(g(0)) = φ∗(g)(0).

We proved the Theorem 7.3.1 for a connected and simply connected Lie group with Lie
algebra g. We want to get this result for every connected Lie group with Lie algebra g.
Suppose that G is a connected lie group with Lie algebra g. Let G̃ → G be the universal
covering group. That is G̃ is a Lie group and π a lie group homomorphism such that
Teπ : TeG̃→ TeG is a lie algebra isomorphism. Suppose that g ∈ IP (g) is an inner product
on g and g̃ ∈ IP (G)G the corresponding left invariant metric on G with g̃e = g. Let ˆ̃g = π∗g̃
the pullback of the metric g̃ on the universal cover G̃. Then ˆ̃ge = (Teπ)∗g̃e = (Teπ)∗g.

Therefore, ˆ̃g = ˜(Teπ)∗g. We can now prove the following Lemma.

Lemma 7.3.10. With the same notation as above we have

Rice((Teπ)∗g) = (Teπ)∗Rice(g)
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Proof.

Rice(Tπ)∗eg) = Ric( ˜(Teπ)∗g)e

= Ric(ˆ̃g)e

= Ric(π∗g̃)e

= π∗(Ric(g̃))e

= (Teπ)∗(Ric(g̃)e)

= (Teπ)∗(Rice(g)).

Armed with these results we can prove the following theorem.

Theorem 7.3.11. Let g ∈ IP (g) an inner product on a Lie algebra g. For every φ ∈ Aut(g)
we have

φ∗Rice(g) = Rice(φ
∗g).

Proof. In order to prove this theorem we will apply Corollary 7.3.2 to ψ = (Teπ)∗ ◦ φ ◦
((Teπ)∗)−1. So for every g ∈ IP (g) we have

φ∗Rice(g) = ψ = ((Teπ)∗)−1 ◦ ψ ◦ (Teπ)∗

= ((Teπ)∗)−1 ◦ ψRice((Teπ)∗g)

= (((Teπ)∗)−1Rice(ψ
∗ ◦ (Teπ)∗g)

= Rice((((Teπ)∗)−1) ◦ ψ ◦ (Teπ)∗g)

= Rice(φ
∗g)

And thus we proved that the operator Rice does not depend on the group we chose. This
has the following application for the quasi-convergence equivalence relation.

Corollary 7.3.12. Let φ be an automorphism of g. If g, h ∈ IP (g) and g ∼g h, then
φ∗g ∼g φ

∗h.

Proof. Let g, h be two inner products on the Lie algebra g. Consider the corresponding Ricci
flow equations gt and ht with initial data g and h respectively. Assume that gt quasi-converges
to ht. Then by definition

|gt − ht|gt → 0

as t→∞, which implies that

|φ∗(gt)− φ∗(ht)|φ∗(gt) → 0

as t→∞. Now using Theorems 7.3.8. and 7.3.10. we have

|(φ∗g)t − (φ∗h)t|(φ∗g)t → 0.

Therefore, φ∗g ∼g φ
∗h.
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We will now describe the equivalent classes for the quasi-convergence in IP (g). For this
we will fix a standard form σ. For any frame β ∈ F(g) with σβ = σ we consider the map

φβ : GL(3,R)σ × A→ IP (g)

given by
β∗(φβ(x, a)) = xa · e = ((xa)−1)∗e

where e is the Euclidean inner product on R3. Now since the map β∗ : IP (g) → R3 is a
bijection and the map

β∗φβ : GL(3,R)σ × A→ IP (R3)

(x, a) 7→ ((xa)−1)∗e

is surjective by Corollary 7.2.1. we deduce that the map φβ is surjective.

Definition 7.3.13. We define the equivalent relation ∼σ on GL(3,R)σ × A as

(x, a) ∼σ (y, b)⇔ φβ(x, a) ∼ φβ(x, b)

where ∼ denotes the quasi-convergence equivalence relation on IP (g).

Roughly speaking we transfer the quasi-convergence relation on the space of Ricci flows to
the space GL(3,R)σ×A. The next Lemma shows how this equivalent relation on GL(3,R)σ×
A behaves under the action of GL(3,R)σ.

Lemma 7.3.14. Suppose that (x, a) ∼σ (y, b). Then for all z ∈ GL(3,R)σ we have

(zx, a) ∼σ (zy, b).

Proof. We have

β∗φβ(zx, a) = ((zxa)−1)∗e

= (z−1)∗((xa)−1)∗e

= (z−1)∗β∗φβ(x, a).

Therefore
φβ(zx, a) = (βz−1β−1)∗φβ(x, a).

Likewise,
φβ(zy, b) = (βz−1β−1)∗φβ(y, b).

So from the fact that (x, a) ∼σ (y, b) we deduce that φβ(x, a) ∼ φβ(y, b) that is φβ(x, a)
quasi-converges to φβ(y, b). Using Corollary 7.3.1. we get that βz−1β−1 is an automorphism
of the Lie algebra g and thus by Corollary 7.3.2. we have

(βz−1β−1)∗φβ(x, a) ∼ (βz−1β−1)∗φβ(y, b).

So we deduce that φβ(zx, a) ∼ φβ(zy, b) and thus

(zx, a) ∼σ (zy, b).
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Now let β ∈ F(g) a frame on the Lie algebra g with σβ = σ, and let b ∈ A. Let
g = (β−1)∗(b−1)∗(e) where e is the Euclidean metric. Then β∗(g) = gβ is of the form

gβ = (b−1)∗e = b−2
11 e

1 ⊗ e1 + b−2
22 e

2 ⊗ e2 + b−2
33 e

3 ⊗ e3

where ei is the dual frame of β. So β is a σ-Milnor frame for g. Our calculations give us
all metrics h ∈ IP (g) such that h quasi-converges to g i.e. the equivalence class [g]. Indeed,
putting hβ = ((xa)−1)∗e we calculate the set

S(β, b) = {(x, a) ∈ GL(3,R)σ × A | (β−1)∗((xa)−1)∗e ∼ g = (β−1)∗(b−1)∗(e)}
= {(x, a) ∈ GL(3,R)σ × A | (x, a) ∼σ (e, b)}
= [(e, b)]∼σ

From our calculations we can determine the equivalent classes [(e, b)]∼σ for every b ∈ A. It
follows by Lemma 7.3.3

[(x, b)]∼σ = [(xe, b)]∼σ = Lx[(e, b)]∼σ .

Here Lx : GL(3,R)σ × A→ GL(3,R)σ × A, (y, a) 7→ (xy, a)
Now take a subgroup H < GL(3,R)σ such that HAO(3) = GL(3,R)σ or equivalently

H × A→ IP (R3) ' GL(3,R)/O(3)

(h, a) 7→ ((ha)−1)∗e

is surjective. Then we define ψβ = φβ|H×A. We note that ψβ is surjective. We pullback the
equivalent relation ∼σ to H × A as follows

(h, a) ∼σH (h′, a′)⇔ ψβ(h, a) ∼ ψβ(h′, a′)

We have [(e, b)]∼σH = [(e, b)]∼ ∩ (H × A). Then [(h, b)]∼σH = Lh([(e, b)]∼σH ).

Definition 7.3.15. Now consider a left action of a group G on a set S. An equivalent
relation ∼ on S is called G-invariant if for every s, t ∈ S and g ∈ G we have

s ∼ t =⇒ g · s ∼ g · t.

If we have a left action of a group G on a set S with an equivalent relations then there
is a unique G-action on the set S/ ∼ such that the map p : S → S/ ∼ is G-equivariant and
it is given by

g · [s] = [g · s].
Definition 7.3.16. A slice for the G-action is a subset Σ of S such that for every s ∈ S the
set Σ ∩G · s is non empty.

Suppose that Σ is a slice of the G-action such that for every s0 ∈ Σ the class [s0] is
known. Then each s ∈ S equals to g · s0 for some g ∈ G and

[s] = [g · s0] = g · [s0]

In our situation where we have the equivalent relation ∼σ on GL(3,R)σ × A a slice is
given by Σ = {(e, a) | a ∈ A} and for the action of GL(3,R)σ on GL(3,R)σ × A the class
[(e, a)] can be computed.

A natural question that arises is the following: How does φβ : Gσ × A → IP (g) depend
on β? Well suppose that a ∈ F(g) is another frame on g such that σα = σ.
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Lemma 7.3.17. The map ξ = α ◦ β−1 belongs to Aut(g) and the following diagram com-
mutes:

GL(3,R)

IP (g) IP (g)

φα φβ

ξ∗

Proof. From the definitions of φα and φβ it follows that

α∗φα(x, a) = ((xa)−1)∗(e) = β∗φβ(x, a)

Therefore,

φβ(x, a) = (β−1)∗α∗ ◦ φα(x, a)

= (α ◦ β−1)∗φα◦β−1(x, a).

By putting ξ = α◦β−1 = β ◦ (β−1 ◦α)◦β−1 we have that β−1 ◦α ∈ GL(3,R)σ, so ξ ∈ Aut(g)
by Lemma 7.3.2.

Corollary 7.3.18. The above diagram shows that

(x, a) ∼σα (y, b)⇔ φα(x, a) ∼ φβ(y, b)

⇔ ξ∗(φα(x, a)) ∼ ξ∗(φβ(y, b))

⇔ φβ(x, a) ∼ φα(y, b)

⇔ (x, a) ∼σβ (y, b).

Therefore we have proven the following theorem.

Theorem 7.3.19. If α, β ∈ g are Milnor frames on g such that σα = σβ = σ then the
equivalence relation ∼σα on Gl(3,R) with respect to α is equal to the equivalence relation
∼σβ on Gl(3,R) with respect to β.
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8 Computation of the quasi-convergence classes for Lie

groups

In this section we present the computations for the quasi-convergence classes for left invariant
Ricci flows on Lie groups.

8.1 The quasi-convergence classes for the Heisenberg group

The first example that we will consider is the Heisenberg group. Let G be the Heisenberg
group equipped with a left invariant metric g0.

Suppose that β = (β1, β2, β3) is a Milnor frame for the pair (G, g0) with dual frame
ω = (ω1, ω2, ω3). The matrix of the structure constants in the case of the Heisenberg group
has the standard form

σ = 2

 −1 0 0
0 0 0
0 0 0

 .

The expression of the metric with respect to this frame has the form:

g0 = A0ω
1 ⊗ ω1 +B0ω

2 ⊗ ω2 + C0ω
3 ⊗ ω3,

and the Ricci tensor relative to this frame has the expression

Ric(g0) = 2
A2

0

B0C0

ω1 ⊗ ω1 − 2
A0

C0

ω2 ⊗ ω2 − 2
A0

B0

ω3 ⊗ ω3.

Suppose now that we have a one parameter family of left invariant metrics on the group G.
Then we can write g relative to the Milnor frame β as follows

g = Aω1 ⊗ ω1 +Bω2 ⊗ ω2 + Cω3 ⊗ ω3,

where A,B,C are functions of time such that A(0) = A0, B(0) = B0 and C(0) = C0.
Similarly, The Ricci tensor for the one parameter family of left invariant metrics g expressed
in the Milnor frame β has the form:

Ric(g) = 2
A2

BC
ω1 ⊗ ω1 − 2

A

C
ω2 ⊗ ω2 − 2

A

B
ω3 ⊗ ω3.

So the Ricci flow equation is equivalent to the system.

d

dt
A = −4

A2

BC
,
d

dt
B = 4

A

C
,
d

dt
C = 4

A

B

In order to provide a solution to the Ricci flow equation we first have to determine the
quantities that are conserved by the Ricci flow.

Lemma 8.1.1. The quantities AB and (B/C) are conserved by the Ricci flow i.e. d
dt

(AB) =
d
dt

(B/C) = 0.
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Proof.
d

dt
(AB) = B

d

dt
A+ A

d

dt
B = −4

A2B

BC
+ 4

A2

C
= 0

and
d

dt
(B/C) =

C d
dt
B −B d

dt
C

C2
=

4CA
C
− 4BA

B

C2
= 0

Thus, we introduce positive constants Φ = AB = A0B0 and Ψ = B
C

= B0

C0
. We have

d

dt
(A/B2) =

B2 d
dt
A− A d

dt
B2

B4
=
−4B2 A2

BC
− 8AB A

C

B4
= −12

B

C

(
A

B2

)2

Integrating this equality we get

A

B2
=

C0/B0

12t+B0C0/A0

or equivalently

A =
C0/B0

12t+B0C0/A0

B2

Using this we can compute d
dt
A as follows:

d

dt
A = −4Ψ

(
A

B2

)
A = −4

A

12t+B0C0/A0

.

Therefore,
A = A

2/3
0 B

1/3
0 C

1/3
0 (12t+B0C0/A0)−1/3

Lastly we have that B = Φ/A and C = B/Ψ. To sum everything up, the solutions to the
Ricci flow equations are given by:

A = A
2/3
0 B

1/3
0 C

1/3
0 (12t+B0C0/A0)−1/3 , (8.1)

B =
Φ

A
= A

1/3
0 B

2/3
0 C

−1/3
0 (12t+B0C0/A0)1/3 , (8.2)

C =
B

Ψ
= A

1/3
0 B

−1/3
0 C

2/3
0 (12t+B0C0/A0)1/3 . (8.3)

We should remark that A(t)→ 0 as t goes to infinity while B(t) and C(t) diverge to diverge
to infinity as t goes to infinity. Just like the case of H2 × R, the solution of the Ricci flow
for any left invariant metric on the Heisenberg group forms a pancake degeneracy.

In order to compute the quasi-convergence equivalence class [g] of a left invariant Ricci
flow in the Heisenberg group we first have to compute the quasi-convergence equivalent class
[g]β of a left invariant Ricci flow on the Heisenberg group for a fixed Milnor frame β. Suppose
that

ḡ = Āω1 ⊗ ω1 + B̄ω2 ⊗ ω2 + C̄ω3 ⊗ ω3
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is another solution to the Ricci flow equation that has the same Milnor frame β then ḡ ∈ [g]β
if |g − ḡ|2g → 0 as t→∞. That is if every term in the following sum converges to zero.

|g − ḡ|2g =

(
A− Ā
A

)2

+

(
B − B̄
B

)2

+

(
C − C̄
C

)2

→ 0.

By using the equations of the solution to the Ricci flow (8.1) - (8.3), |g − ḡ|2g → 0 translates
to

A− Ā
A

= 1− Ā
2/3
0 B̄

1/3
0 C̄

1/3
0

A
2/3
0 B

1/3
0 C

1/3
0

(
12t+B0C0/A0

12t+ B̄0C̄0/Ā0

)1/3

→ 1− Ā
2/3
0 B̄

1/3
0 C̄

1/3
0

A
2/3
0 B

1/3
0 C

1/3
0

B − B̄
B

= 1− Ā
1/3
0 B̄

2/3
0 C̄

−1/3
0

A
1/3
0 B

2/3
0 C

−1/3
0

(
12t+ B̄0C̄0/Ā0

12t+B0C0/A0

)1/3

→ 1− Ā
1/3
0 B̄

2/3
0 C̄

−1/3
0

A
1/3
0 B

2/3
0 C

−1/3
0

C − C̄
C

= 1− Ā
1/3
0 B̄

−1/3
0 C̄

2/3
0

A
1/3
0 B

−1/3
0 C

2/3
0

(
12t+ B̄0C̄0/Ā0

12t+B0C0/A0

)1/3

→ 1− Ā
1/3
0 B̄

−1/3
0 C̄

2/3
0

A
1/3
0 B

−1/3
0 C

2/3
0

Lemma 8.1.2. The class [g]β is 1-dimensional. In particular ḡ ∈ [g]β if and only if there
exists a positive scaling parameter λ such that

Ā0 =
A

λ
, B̄0 = λB0, C̄0 = λC0

Proof. Let Ā0 > 0 arbitrary and define λ by λ := A0

Ā0
. Then ḡ ∈ [g]β only if Ā

A
→ 1 =⇒

B̄0C̄0 = λ2B0C0 and C̄
C
→ 1 =⇒ B0C̄0

2
= λB̄0C

2
0 .

Solving these equations for B̄0

B0
yields

λ2C0

C̄0

=
B̄0

B0

=
C̄2

0

λC2
0

which implies C̄0

C0
= λ and hence B̄0

B0
=

C̄2
0

λC2
0

= λ.

Having computed the quasi-convergence class [g]β of a left invariant Ricci flow for a fixed
Milnor frame we can proceed to the computation of the full quasi-convergence equivalence
class. Suppose that g and h are two left invariant Ricci flows on the Heisenberg group. We

pick a Milnor frame β for g. Then gβ is diagonal and σβ = σ = 2

 −1 0 0
0 0 0
0 0 0

. As in

the previous section consider the action of the Lie group GL(3,R) on the space of the 3× 3
matrices M3(R) given by

A · σ = (det(A))−1AσAT . (see (7.1))

In order to determine the stabilizer subgroup GL(3,R)σ of this action, that is
GL(3,R)σ = {A ∈ GL(3,R) | (det(A))−1AσAT = σ}, we will consider the action on the
Lie algebra level. By putting A = exp(tX) for X ∈ g and by taking the derivative of
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the relation (det(A))−1AσAT = σ at zero we find that on the Lie algebra level we have
− trXσ +Xσ + (Xσ)T = 0.

We compute,

− trXσ = −(X11 +X22 +X33)

 −1 0 0
0 0 0
0 0 0

 =

 X11 +X22 +X33 0 0
0 0 0
0 0 0



Xσ =

 X11 X12 X13

X21 X22 X23

X31 X32 X33

 −1 0 0
0 0 0
0 0 0

 =

 −X11 0 0
−X21 0 0
−X31 0 0



(Xσ)T =

 X11 X12 X13

X21 X22 X23

X31 X32 X33

 −1 0 0
0 0 0
0 0 0

T

=

 −X11 −X21 −X31

0 0 0
0 0 0


So X11 + X22 + X33 − X11 − X11 = 0 which implies that X11 = X22 + X33. Also, X21 = 0
and X31 = 0.

So the Lie algebra of this stabilizer group for the Heisenberg group is given by:

Lie(GL(3,R)σ) =


 X + Y A C

0 X D
0 B Y

 : X, Y,A,B,C,D ∈ R

 ,

and finally (GL(3,R)σ)e = Gσ is equal to,

Gσ =


 xy a c

0 x d
0 b y

 : x, y, a, b, c, d ∈ R


Lemma 8.1.3. The group N =


 1 n1 n3

0 1 n2

0 0 1

 : n1, n2, n3 ∈ R

 is a subgroup of Gσ.

Proof. Let n ∈ N . Then n is of the form

 1 n1 n3

0 1 n2

0 0 1

 where n1, n2, n3 are real numbers.
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We note that det−1(n) = 1 since det(n) = 1. Thus we have

nσnT =

 1 n1 n3

0 1 n2

0 0 1

 −1 0 0
0 0 0
0 0 0

 1 0 0
n1 1 0
n3 n2 1


=

 −1 0 0
0 0 0
0 0 0

 1 0 0
n1 1 0
n3 n2 1


=

 −1 0 0
0 0 0
0 0 0

 = σ.

Thus N is a subset of Gσ. Also N is obviously a group and hence N is a subgroup of Gσ.

In the following we will identify inner products on R3 with Hermitian matrices an in
Remark 4.2.2. So let β be a Milnor frame for g and consider α = βn a Milnor frame for h
as in Lemma 8.1.3. Therefore, g is diagonal with respect to β and corresponds to the initial
data gβ(0) = (A0.B0, C0) while h is diagonal with respect to α and corresponds to the initial
data hα(0) = (Ā0, B̄0, C̄0). The expression of the Ricci flow of h in the frame α has the form
hβ = nThαn where n is the matrix

n =

 1 n1 n3

0 1 n2

0 0 1


Thus,

hβ =

 1 n1 n3

0 1 n2

0 0 1

T  Ā 0 0
0 B̄ 0
0 0 C̄

 1 n1 n3

0 1 n2

0 0 1


=

 Ā n1Ā n3Ā
n1Ā n2

1Ā+ B̄ n1n3Ā+ n2B̄
n3Ā n1n3Ā+ n2B̄ n2

3Ā+ n2
2B̄ + C̄


Theorem 8.1.4. The quasi-convergence class of any left invariant metric g on the Heisenberg
group G can be described as

[g] = (N0)β · [g]β

where [g]β is the quasi-convergence class of g for a fixed Milnor frame β and (N0)β =
{β ◦ n0 ◦ β−1 | n0 ∈ N0} < Aut(g) with N0 the subgroup of GL(3,R)σ consisting of the
matrices of the form  1 n1 n3

0 1 0
0 0 1

 , n1, n2 ∈ R.

In particular, the quasi-convergence classes for the Heisenberg group are 3-dimensional.
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Proof. Let h be a Ricci flow for the Heisenberg group, then h ∈ [g] if and only if |h−g|2g → 0
as t→∞, that is if every term in the following sum converge to zero

(Ā− A)2

A2
+

(n2
1Ā+ B̄ −B)2

B2
+

(n2
3Ā+ n2

2B̄ + C̄)2

C2
+2

(n1Ā)2

AB
+2

(n3Ā)2

AC
+2

(n1n3Ā+ n2B̄)2

BC
→ 0,

as t→∞. Suppose that every term of the sum converge to zero. Looking at the first term
(Ā−A)2

A2 we get that Ā− A→ 0. This in particular implies that B̄ − B → 0 and C̄ − C → 0
or equivalently the diagonal part of h is in the quasi-convergence class of the [g]β for a fixed
Milnor frame β. Now looking at the last term

(n1n3Ā+ n2B̄)2

BC

and using the properties of the solution of the Ricci flow equation i.e. A(t)→ 0 while B(t)
and C(t)→∞ we get that n2 = 0. Therefore, a generic Ricci flow in the quasi-convergence
class of [g] has the form:

hβ =

 Ā n1Ā n3Ā
n1Ā n2

1Ā+ B̄ n1n3Ā
n3Ā n1n3Ā n2

3Ā+ C̄


where (Ā, B̄, C̄) is such that hα ∈ [g]β for a fixed Milnor frame β and n1, n3 ∈ R.

8.2 The quasi-convergence classes for Iso(E2)

Let G be the Lie group Iso(E2) and g0 a locally homogeneous metric on G. Let β be a Milnor
frame for the pair (G, g0) with dual frame ω = (ω1, ω2, ω3). The matrix σ of the structure
constants is of the form

σβ = 2

 −1 0 0
0 −1 0
0 0 0

 .

Consider a one-parameter family of left invariant metrics g on G such that g(0) = g0. This
family relative to the Milnor frame β can be written in the diagonal form as:

g = Aω1 ⊗ ω1 +Bω2 ⊗ ω2 + Cω3 ⊗ ω3.

The sectional curvatures are

K (β2 ∧ β3) =
(A+B)2 − 4A2

ABC
,

K (β3 ∧ β1) =
(A+B)2 − 4B2

ABC
,

K (β1 ∧ β2) =
(A−B)2

ABC
.

and so the Ricci flow is equivalent to the system,
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d

dt
A = 4

B2 − A2

BC
,

d

dt
B = 4

A2 −B2

AC
,

d

dt
C = 4

(A−B)2

AB
.

with A0 = A(0), B0 = B(0) and C0 = C(0). To describe the behaviour of a solution to this
system we first have to find the conserved of the Ricci flow equation.

Lemma 8.2.1. The conserved quantities for this system of equations are: AB and C(A+B)
i.e. d

dt
(AB) = d

dt
(C(A+B)) = 0.

Proof. Indeed, by direct calculation we get

d

dt
(AB) = A

d

dt
B +B

d

dt
A

= A4
A2 −B2

AC
+B4

B2 − A2

BC

= 4
A2 −B2

C
+ 4

B2 − A2

C
= 0

and

d

dt
(C(A+B)) = (A+B)

d

dt
C + C

d

dt
C

= 4(A+B)
(A−B)2

AB
+ 4C(

B2 − A2

BC
+
A2 −B2)

AC

= 4(A+B)
(A2 − 2AB +B2)

AB
+ 4

AB2 − A3 +BA2 −B3

AB

= 4
A3 − 2A2B + AB2 + A2B − 2AB2 +B3

AB
+ 4

AB2 − A3 +BA2 −B3

AB
= 0

Therefore we define the the quantities Φ = A0B0 and Ψ = C0(A0 +B0).

Lemma 8.2.2. As t→∞ we have,

• both A(t) and B(t) converge to
√
A0B0

• C(t) converge to C0

2

(√
A0

B0
+
√

B0

A0

)
Proof. We set ρ = B/A. We consider the simplified system

d

dt
ρ = 8

(1− ρ2)

C
,

d

dt
C = 4

(1− ρ)2

ρ
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Since every point on the ray ρ = A/B = 1 the component C is a fixed point, we may assume
that ρ0 6= 1. Hence ρ 6= 1 for all times from the uniqueness of solutions to the Ricci flow
equation. Because dρ

dt
> 0 if 0 < ρ < 1 and dρ

dt
< 0 if ρ > 1 it follows that the function ρ is

bounded and monotone. Therefore, it converges to a limit ρ∞ which satisfies ρ0 < ρ∞ ≤ 1
or 1 ≤ ρ∞ < ρ0. Now, since ρ is monotone we can write C as a function of ρ. So we have

d

dρ
logC =

1

2ρ

1− ρ
1 + ρ

But,

log
C(ρ(t))

C0

=

∫ ρ(t)

ρ0

1

2ρ

1− ρ
1 + ρ

dρ→ log

√
P∞

1 + ρ∞
− log

√
P0

1 + ρ0

as t→∞

Therefore we conclude that the limit limt→∞C(t) exists. As a result ρ∞ = 1. Using this we
have

lim
t→∞

A(t) = lim
t→∞

B(t) =
√

Φ =
√
A0B0

and

lim
t→∞

C(t) =
C0

2

(√
A0

B0

+

√
B0

A0

)

We remark that the limit of the solution limt→∞ g(t) to the Ricci flow is a metric with
zero sectional curvature. Using the properties of the solution to the Ricci flow equation we
can determine the quasi-convergence class for a fixed Milnor frame.

Lemma 8.2.3. Suppose that g is a left-invariant metric on Iso(E2), then [g]β is 1-parameter
family.

Proof. The proof of this lemma is a calculation similar to that of Lemma 8.1.2 and we will
not present it here. See [11] for a full proof.

We will now start to compute the full quasi-convergence class for Iso(E2). Suppose
that h, g are two left invariant Ricci flows on the Lie group Iso(E2). Let β be a Milnor
frame for g i.e. g is diagonal with respect to this frame and corresponds to the initial data
gβ(0) = (A0, B0, C0) and let α be a Milnor frame for h i.e. h is diagonal with respect to this
frame and corresponds to the initial data hα(0) = (Ā0, B̄0, C̄0). In the case of Iso(E2) we
have that

σ = 2

 −1 0 0
0 −1 0
0 0 0


We want to determine the Lie algebra of the stabilizer group GL(3,R)σ as in the case of the
Heisenberg group. That is we have to determine the all the 3 × 3 matrices X that satisfy
the equation − tr(X) +Xσ + (Xσ)T = 0 i.e.

− tr(X)

 −1 0 0
0 −1 0
0 0 0

+X

 −1 0 0
0 −1 0
0 0 0

+

X
 −1 0 0

0 −1 0
0 0 0

T

= 0
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So we have:

− tr(X)

 −1 0 0
0 −1 0
0 0 0

 =

 X11 +X22 +X33 0 0
0 X11 +X22 +X33 0
0 0 0



Xσ =

 X11 X12 X13

X21 X22 X23

X31 X32 X33

 −1 0 0
0 −1 0
0 0 0

 =

 −X11 −X21 0
−X21 −X22 0
−X31 −X32 0


and

(Xσ)T =

 X11 X12 X13

X21 X22 X23

X31 X32 X33

 −1 0 0
0 −1 0
0 0 0

T

=

 −X11 −X12 −X31

−X12 −X22 −X32

0 0 0


Thus we get X33 = 0, X11 = X22, X12 = −X21 and X32 = X31 = 0. So the Lie algebra of

the stabilizer group is

Lie(GL(3,R)σ) =


 Y −X V

X Y W
0 0 0

 : Y,X, V,W ∈ R


So the Lie group Gσ = (GL(3,R)σ)e is of the form

Gσ =


 y x−1 p

x y q
0 0 1

 : x, y, p, q ∈ R

 .

By direct calculation, as in Lemma 8.1.3 we have the following,

Lemma 8.2.4. The group Iso(E2) consisting of matrices of the form

 cosθ −sinθ p
sinθ cosθ q

0 0 1


is a subgroup of Gσ.

Theorem 8.2.5. The quasi-convergence class of any left invariant metric g on the group
G = Iso(E2) can be described as

[g] = (K0)β · [g]β

where [g]β is the quasi-convergence class of g for a fixed Milnor frame β and (K0)β =
{β ◦ k0 ◦ β−1 | k0 ∈ K0} < Aut(g) with K0 the subgroup of GL(3,R)σ consisting of the
matrices of the form  cosθ −sinθ 0

sinθ cosθ 0
0 0 1

 , θ ∈ R.

In particular, every quasi-convergence class is a 2-parameter family.
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Proof. Let

K =

 cosθ −sinθ p
sinθ cosθ q

0 0 1


be the matrix which corresponds to the change of frames from α to β i.e. β = αK. Then
hα = KThβK is the Ricci flow h expressed in the Milnor frame β. In particular

hβ =

 cosθ −sinθ p
sinθ cosθ q

0 0 1

T  Ā 0 0
0 B̄ 0
0 0 C̄

 cosθ −sinθ p
sinθ cosθ q

0 0 1

 =

 Ācos2θ + B̄sin2θ −Ācosθsinθ + B̄cosθsinθ pĀcosθ + qB̄sinθ
−Ācosθsinθ + B̄cosθsinθ Ācos2θ + B̄sin2θ −Āpsinθ + B̄qcosθ

pĀcosθ + qB̄sinθ −Āpsinθ + B̄qcosθ p2Ā+ q2B̄ + C̄


Now h ∈ [g] if and only if every term in the following sum converge to zero

|h− g|2g =
(Ācos2θ + B̄sin2θ − A)2

A2
+

(Ācos2θ + B̄sin2θ −B)2

B2
+

(p2Ā+ q2B̄ + C̄ − C)2

C2

+ 2
(−Ācosθsinθ + B̄cosθsinθ)2

AB
+ 2

(pĀcosθ + qB̄sinθ)2

AC
+ 2

(−Āpsinθ + B̄qcosθ)2

BC

Suppose that every term of this sum converge to zero. Looking at the last term

2
(−Āpsinθ + B̄qcosθ)2

BC

and using that both A(t), B(t)→
√
A0B0, (Lemma 8.2.2) we get that

2
(−Āpsinθ + B̄qcosθ)2

BC
→ 2

(−psinθ
√
A0B0 + qcosθ

√
A0B0)2

√
A0B0

C0

2

(√
A0

B0
+
√

B0

A0

) .

So we deduce that in order for this term to go to zero we must have p = q = 0. Now looking
at the third term of the sum

(p2Ā+ q2B̄ + C̄ − C)2

C2
=

(C̄ − C)2

C2

we get that C̄ −C → 0 and as a result Ā−A→ 0 and B̄−B → 0. As a result the diagonal
part of h with respect to the Milnor frame α is in the class [g]β for a fixed Milnor frame β
for g i.e. hα ∈ [g]β. So [g] is a 2- parameter family. A generic Ricci flow in this equivalence
class can be written as

hβ =

 Ācos2θ + B̄sin2θ −Ācosθsinθ + B̄cosθsinθ 0
−Ācosθsinθ + B̄cosθsinθ Ācos2θ + B̄sin2θ 0

0 0 C̄


where θ ∈ R and Ā− A→ 0, B̄ −B → 0 and C̄ − C → 0.
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8.3 The quasi-convergence classes for Iso(E1
1)

Let G be the Lie group Iso(E1
1) equipped with a left invariant metric g0 and β a Milnor frame

for the pair (G, g0) with dual frame ω = (ω1, ω2, ω3). Consider a one parameter family of
left invariant metrics g such that g(0) = g0. Relative to the frame β the family g can be
written in a diagonal form as

g = Aω1 ⊗ ω1 +Bω2 ⊗ ω2 + Cω3 ⊗ ω3.

The sectional curvatures are of the form:

K (β2 ∧ β3) =
(A− C)2 − 4A2

ABC
,

K (β3 ∧ β1) =
(A+ C)2

ABC
,

K (β1 ∧ β2) =
(A− C)2 − 4C2

ABC
.

The Ricci flow equation is equivalent to the system

d

dt
A = 4

C2 − A2

BC
,

d

dt
B = 4

(A+ C)2

AC
,

d

dt
C = 4

(A2 − C2)

AB
.

In order to determine the behaviour of the solution to the Ricci flow equation we first have
to find the conserved quantities of the system.

Lemma 8.3.1. The conserved quantities of this system are AC and B(C − A) that is
d
dt

(AC) = d
dt

(B(C − A)) = 0.

Proof. Indeed,

d

dt
(AC) = C

d

dt
A+ A

d

dt
C

= 4C
C2 − A2

BC
+ 4A

(A2 − C2)

AB

= 4
C2 − A2 + A2 − C2

B
= 0

and

d

dt
(B(C − A)) = (C − A)4

(A+ C)2

AC
+B4(

(A2 − C2)

AB
− C2 − A2

BC
)

= 4(C − A)
A2 + 2AC + C2

AC
+ 4(

A2C − C3

AC
− AC2 − A3

AC
)

= 4
CA2 + 2AC2 + C3 − A3 − 2A2C − AC2

AC
+ 4

A2C − C3 + A3 − AC2

AC
= 0
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So we introduce the quantities Φ = AC = A0C0 and Ψ = B(C − A) = B0(C0 − A0).

Lemma 8.3.2. The solutions to the Ricci flow satisfy the following :

• both A(t) and C(t) converge to
√
A0B0,

• while B(t)→∞.

Proof. Put ρ = A/C and consider the simplified system,

d

dt
ρ = 8

1− ρ2

B
,

d

dt
B =

1 + ρ

2ρ(1− ρ)
.

If we have the initial condition A0 = C0 then Ψ = 0, ρ = 1 and B grows linearly in time.
If this is not the case then by arguing as in the case of Iso(E2), we have that ρ is strictly
monotone and approaches a limit ρ∞ which satisfies ρ0 < ρ∞ ≤ 1 or 1 ≤ ρ∞ < ρ0. Since

d

dρ
logB =

1 + ρ

2ρ(1− ρ)

we get that B →∞ while A,C →
√

Φ.

This kind of behaviour for the Ricci flow where two directions of the metric converge
while the other one expands to infinity is called cigar degeneracy. We can now determine
the quasi-convergence class [g]β of a left invariant Ricci flow on Iso(E1

1) for a fixed Milnor
frame β.

Lemma 8.3.3. The quasi-convergence class [g]β for a fixed Milnor frame β is a 2-parameter
family.

Proof. We refer [11] for the full proof of this Lemma.

Now let h, g be two homogeneous Ricci flows for the Lie group Iso(E1
1) and α, β be

Milnor frames for h, g respectively. That is gβ is diagonal and corresponds to the initial data
gβ(0) = (A0, B0, C0) while hα corresponds to the initial data hα(0) = (Ā0, B̄0, C̄0). We want
to determine the Lie algebra of the stabilizer group GL(3,R)σ. In order to do this we have
to specify the 3× 3 matrices that satisfy the equation − tr(X)σ+Xσ+ (Xσ)T = 0. For the

group Iso(E1
1) we have σ = 2

 −1 0 0
0 0 0
0 0 1

.

So

− tr(X)

 −1 0 0
0 0 0
0 0 1

+X

 −1 0 0
0 0 0
0 0 1

+

X
 −1 0 0

0 0 0
0 0 1

T

= 0

We have

− tr(X)

 −1 0 0
0 0 0
0 0 1

 =

 X11 + x22 +X33 0 0
0 0 0
0 0 −X11 −X22 −X33

 ,
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X

 −1 0 0
0 0 0
0 0 1

 =

 X11 X12 X13

X21 X22 X23

X31 X32 X33

 −1 0 0
0 0 0
0 0 1

 =

 −X11 0 X13

−X21 0 X23

−X31 0 X33

 ,

and

X
 −1 0 0

0 0 0
0 0 1

T

=

 −X11 0 X13

−X21 0 X23

−X31 0 X33

T

=

 −X11 −x21 −X31

0 0 0
X13 X23 X33

 .

Therefore we get: X11 = X33, X22 = X21 = X23 = 0 and X13 = X31 So

Lie(GL(3,R)σ) =


 X A Y

0 0 0
Y B X

 : X, Y,A,B ∈ R


Thus, the group Gσ is equal to

Gσ =


 x a y

0 1 0
y b x

 : x, y, a, b ∈ R


By direct computations, as in Lemma 8.1.3. we get the following,

Lemma 8.3.4. The group of matrices generated by the matrices of the form x a y
0 1 0
y b x


where x2 − y2 = 1 is a a subgroup S of the group Gσ.

Theorem 8.3.5. The quasi convergence class of any left invariant metric g on G = Iso(E1
1)

can be described as
[g] = (S0)β · [g]β

where [g]β is the quasi-convergence class of g for a fixed Milnor frame β and (S0)β = {β ◦
s0 ◦ β−1 | s0 ∈ S0} < Aut(g) with S0 the subgroup of GL(3,R) consisting of the matrices of
the form,  1 a 0

0 1 0
0 b 1

 , a.b ∈ R.

In particular, every quasi-convergence class is a 4-parameter family.
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Proof. Let

R =

 x a y
0 1 0
y b x


where x2 − y2 = 1, x > 0 be the matrix corresponding to the change of frame from α to β
i.e. α = βR. Then, hβ = RThαR is the Ricci flow h expressed in the frame β,

hβ =

 x a y
0 1 0
y b x

T  Ā 0 0
0 B̄ 0
0 0 C̄

 x a y
0 1 0
y b x


=

 x2Ā+ y2C̄ axĀ+ byC̄ yxĀ+ xyC̄
axĀ+ byC̄ a2Ā+ B̄ + b2C̄ ayĀ+ bxC̄
yxĀ+ xyC̄ ayĀ+ bxC̄ y2Ā+ x2C̄


The Ricci flow h ∈ [g] if and only if every term in the following sum converge to zero:

|h− g|2g =
(x2Ā+ y2C̄ − A)2

A2
+

(a2Ā+ b2C̄ + B̄ −B)2

B2
+

(y2Ā+ x2C̄ − C)2

C2

+ 2
(axĀ+ byC̄)

AB
+ 2

x2y2(Ā+ C̄)2

AC
+ 2

(ayĀ+ bxC̄)2

BC

Looking at the first
(x2Ā+ y2C̄ − A)2

A2

and the third term
(y2Ā+ x2C̄ − C)2

C2

we see that
(x2Ā+ y2C̄ − A)2

A2
→ (x2

√
Ā0B̄0 + y2

√
Ā0B̄0 −

√
A0B0)2

A0B0

and
(y2Ā+ x2C̄ − C)2

C2
→ (y2

√
Ā0B̄0 + x2

√
Ā0B̄0 −

√
A0B0)2

A0B0

.

So in order those terms to converge to zero we must have x2 + y2 = 1. But x2 − y2 = 1 and
x > 0 thus we conclude that x = 1 and y = 0. In this case we get also that the diagonal
part of h with respect to the Milnor frame α is in the quasi-convergence class of g for a fixed
Milnor frame β i.e. ha ∈ [g]β. Therefore, [g] is a 4-parameter family of Ricci flows and a
generic Ricci flow in this equivalence class has the expression:

hβ =

 Ā+ aĀ+ 0
aĀ a2Ā+ B̄ + b2C̄ bC̄
0 bC̄ C̄


where a, b ∈ R and Ā, B̄, C̄ are such that hα ∈ [g]β.

62



8.4 The quasi-convergence classes for SL(2,R)

Consider G the Lie group SL(2,R) and g0 a left invariant metric on G. Let β be a Milnor
frame for the pair (G, g0) with dual frame ω = (ω1, ω2, ω3). The matrix of the structure
constants for the case of SL(2,R) is given by

σ =

 −1 0 0
0 −1 0
0 0 1

 .

Let g be a one parameter family of left invariant metrics on SL(2,R) such that g(0) = g0.
Relative to the Milnor frame β the family g can be written in a diagonal form as

g = Aω1 ⊗ ω1 +Bω2 ⊗ ω2 + Cω3 ⊗ ω3

where A,B and C are functions of time. The sectional curvatures are

K (β2 ∧ β3) =
(B − C)2 − A(3A+ 2B + 2C)

ABC
,

K (β3 ∧ β1) =
[A− (B − C)]2 − 4B(B − C)

ABC
,

K (β1 ∧ β2) =
[A+ (B − C)]2 + 4C(B − C)

ABC
.

So the Ricci flow equation is equivalent to the system

d

dt
A = 4

(B − C)2 − A2

BC
,

d

dt
B = 4

(A+ C)2 −B2

AC
,

d

dt
C = 4

(A+B)2 − C2

AB
.

Unlike the case of the Iso(E2) or Iso(E1
1) there are not any known conserved quantities for

the Ricci flow. The next Lemma describes the properties of the solutions to the Ricci flow
equation.

Lemma 8.4.1. The solutions to this system of equations satisfy the following properties:

• A decreases monotonically to A∞ > 0

• Both B and C grow asymptotically with rate 8t

• B and C approach each other exponetially, |B − C| ≤ Ke−kt for some constants
K, k > 0

Proof. The proof of this result can be found in [11] or in [9] (in the later the authors use a
certain normilization to describe the solution to the Ricci flow equation).
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Just like the case of the Ricci flow for the Heisenberg group, SL(2,R) develops a pancake
degeneracy, that is one direction of the metric converges to a real number while the other two
directions expand to infinity. In contrast with the Heisenberg group case, the two directions
that expand to infinity approach each other exponentially. If we fix a Milnor frame β for g
we get the following lemma

Lemma 8.4.2. The class [g]β for an SL(2,R)-metric is a 2-parameter family.

Proof. The proof of this result is lengthy and does not follow from direct computations like
in the other cases. We refer [11] for the full proof.

We are now going to compute the quasi-convergence class for a left invariant Ricci flow
on SL(2,R).

Theorem 8.4.3. The quasi convergence class of any left invariant metric g on SL(2,R) can
be described as

[g] = [g]β

where [g]β is the quasi-convergence class of g for a fixed Milnor frame β. In particular every
quasi-convergence class is a 2-parameter family.

Proof. Suppose that h, g are two left invariant Ricci flows on SL(2,R). Let α, β be Mil-
nor frames for h and g respectively. That is gβ is diagonal and corresponds to the initial
data gβ(0) = (A0, B0, C0) and hα is diagonal and corresponds to the initial data hα(0) =

(Ā0, B̄0, C̄0). Recall that in the case of SL(2,R) we have that σ =

 −1 0 0
0 −1 0
0 0 1

 We will

compute the Lie algebra of the stabilizer group Gσ as in the previous cases. That is we have
to determine the all the 3×3 matrices X that satisfy the equation − tr(X)+Xσ+(Xσ)T = 0.
So we have

− tr(X)

 −1 0 0
0 −1 0
0 0 1

+X

 −1 0 0
0 −1 0
0 0 1

+

X
 −1 0 0

0 −1 0
0 0 1

T

= 0

Therefore we get

− tr(X)

 −1 0 0
0 −1 0
0 0 1

 =

 X11 +X22 +X33 0 0
0 X11 +X22 +X33 0
0 0 −X11 −X22 −X33

 ,

Xσ =

 X11 X12 X13

X21 X22 X23

X31 X32 X33

 −1 0 0
0 −1 0
0 0 1

 =

 −X11 −X12 X13

−X21 −X22 X23

−X31 −X32 X33


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and

(Xσ)T =

X
 −1 0 0

0 −1 0
0 0 1

T

=

 −X11 −X21 −X31

−X12 −X22 −X32

X13 X23 X33


Thus we get X13 = X23, X23 = X32, X21 = −X12 and X11 = X22 = X33 = 0. So the Lie
algebra of the stabilizer

Lie(GL(3,R)σ) =


 0 X Z
−X 0 Y
Z Y 0

 : where X, Y, Z ∈ R


This Lie algebra is isomorphic to the Lie algebra of SL(2,R) thus the stabilizer group Gσ

is isomorphic with the group SL(2,R) embedded in GL(3,R). Let S ∈ Gσ be the matrix
corresponding to the change of frame from α to β. Then S has the form:

S =

 x −y 0
y x 0
0 0 1

 u 0 w
0 1 0
w 0 u

 1 0 0
0 a b
0 b a

 =

 xu xwb− ya xwa− yb
yu xa+ ywb xb+ ywa
w ub ua


where x2 + y2 = 1, u2 − w2 = 1, u > 0 and a2 − b2 = 1, a > 0. So hβ = SThαS. This 3 × 3
matrix hβ = SThαS has columns e1, e2, e3 where

e1 =

 x2u2Ā+ y2u2B̄ + w2C̄
(xwb− ya)xuĀ+ (xa+ ywb)yuB̄uwbC̄

(xwa− yb)xuĀ+ (xb+ ywa)yuB̄ + uwaC̄


e2 =

 xu(xwb− ya)Ā+ yu(xa+ ywb)B̄ + uwbC̄
(xwb− ya)2Ā+ (xa+ ywb)2B̄ + u2b2C̄

(wxa− yb)(xwb− ya)Ā+ (xa+ ywb)(xb+ ywa)B̄ + u2abC̄


e3 =

 xu(xwa− yb)Ā+ yu(xb+ ywa)B̄ + uwaC̄
(wxa− yb)(xwb− ya)Ā+ (xa+ ywb)(xb+ ywa)B̄ + u2abC̄

(xwa− yb)2Ā+ (xb+ ywa)2B̄ + u2a2C̄


now h ∈ [g] if and only if every term in the following sum converges to zero.

|h− g|2g =
(x2u2Ā+ y2u2B̄ + w2C̄ − A)2

A2

+
((xwb− ya)2Ā+ (xa+ ywb)2B̄ + u2b2C̄ −B)2

B2

+
((xwb− yb)2Ā+ (xb+ ywa)2B̄ + u2a2C̄ − C)2

C2

+ 2
((xwb− ya)xuĀ+ (xa+ ywb)yuB̄ + uwbC̄)2

AB

+ 2
((xwa− yb)xuĀ+ (xb+ ywa)yuB̄ + uwaC̄)2

AC

+ 2
((xwa− yb)(xwb− ya)Ā+ (xa+ ywb)(xb+ ywa)B̄ + u2abC̄)2

BC
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Suppose that every term in the sum converge to zero. Looking at the first term

(x2u2Ā+ y2u2B̄ + w2C̄ − A)2

A2
→ 0

Since both B̄ and C̄ diverge to infinity while Ā converge to to a positive constant Ā∞ (Lemma
8.4.2) we have that the coefficients of B̄ and C̄ must be zero. So y2u2 = w2 = 0 and in
particular w = 0. Also, using that u2 − w2 = 1, u > 0 and w2 = 0 we get that u = 1 so
y = 0. Furthermore, using that x2 + y2 = 1 we get x2 = 1 i.e. x = ±1. Hence, if this term

goes to zero we get (Ā−A)2

A2 → 0 . Now looking at the last term

2
((xwa− yb)(xwb− ya)Ā+ (xa+ ywb)(xb+ ywa)B̄ + u2abC̄)2

BC
= 2

abB̄ + abC̄

BC

we get that 2a2b2 (B̄+C̄)2

BC
→ 0. But B and C go to infinity with rate 8t (Lemma8.4.2) so the

ratio (B̄+C̄)2

BC
converge to a positive number ρ > 0. As a result, in order this term to converge

to zero we must have ab = 0. Using that a2 − b2 = 1, a > 0 we get that b = 0 and a = 1.
Finally looking at the second term,

((xwb− ya)2Ā+ (xa+ ywb)2B̄ + u2b2C̄ −B)2

B2
=

(B̄ −B)2

B2
→ 0

and the third term,

((xwb− yb)2Ā+ (xb+ ywa)2B̄ + u2a2C̄ − C)2

C2
=

(C̄ − C)2

C2
→ 0

we conclude that hα ∈ [g]β that is the diagonal part of h with respect to the Milnor frame
α quasi-converge to the diagonal part of g with respect to the Milnor frame β. Thus,

Se =

 1 0 0
0 1 0
0 0 1

 and hα ∈ [g]β or in other words [g] ⊂ [g]β. Since the other inclusion

always holds we get [g] = [g]β.
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9 Further suggestions and remarks

In our work we gave an alternative characterization of the quasi-convergence classes for left
invariant Ricci flows which enable us to compute the quasi-convergence classes for Ricci flow
on SL(2,R). Due to lack of time, we could adapt this characterization in the more general
setting of homogeneous Ricci flows. We hope that this work will help in the understanding
of the large time behaviour for general collapsing solutions. During our research there were
number of interesting questions that came out. One of them is that in every example that
we have consider, the group Gσ we computed always contains the group that we study. We
do not consider this as a mere coincidence but we couldn’t derive a proof of this observation.
Another question that can be asked is on what extend can we generalize this study to higher
dimensional Ricci flows. The behaviour of Ricci flow equation for dimension strictly larger
that 3 is a challenging area of research. Few things have been understood about singular or
collapsing solutions to the Ricci flow equation in dimension greater that 3. We hope that
our work will help the investigation of the long-time behaviour for the Ricci flow in higher
dimensions.

67



References

[1] Ben Andrews and Christopher Hopper. The Ricci flow in Riemannian geometry: a
complete proof of the differentiable 1/4-pinching sphere theorem. springer, 2010.

[2] Simon Brendle and Richard Schoen. Manifolds with 1/4-pinched curvature are space
forms. Journal of the American Mathematical Society, 22(1):287–307, 2009.

[3] Manfredo Perdigao do Carmo. Riemannian geometry. Birkhäuser, 1992.
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