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“Science can be a beautiful tool for discovery, only if it is allowed to dispassionately acknowl-
edge when a more complete picture is emerging.”

Kelly Brogan, MD
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Applied Model-Based Clustering of Functional Data - Distinguishing Between
Phenotypes of Early Knee Osteoarthritis

by Sara Altamirano

Context: OA is ranked as the 11th highest contributor to global disability and its prevalence
is increasing. By gaining a better understanding of OA heterogeneity, we can potentially con-
tribute to the design of clinical trials, prevention strategies, and treatments. To the best of our
knowledge, MBCFD has not been attempted to derive knee OA phenotypes. MBCFD treats the
data as curves which can potentially allow us to see complex trends not detected by traditional
distance-based clustering algorithms.
Objective: The study aimed to improve OA heterogeneity understanding by testing an MBCFD
method’s ability to derive clinically-relevant and statistically-significant phenotypes and to as-
sess its performance vis-a-vis a method widely used in the scientific literature.
Methods: This work is based on the CRISP-IDM method. We identified widely-used algo-
rithms in the literature to derive knee OA phenotypes, as well as their characteristics and derived
phenotypes. We selected an appropriate MBCFD algorithm and, through iterative data explo-
ration steps with domain experts, we identified clinically-relevant phenotypes with MBCFD as
well as computed the statistical significance between the groups. Subsequently, we compared
the performance of the MBCFD method to HCA.
Results: MBCFD was able to detect clinically-relevant and statistically-significant knee OA
phenotypes for the univariate case. However, for the multivariate case, the phenotypes were
clinically relevant but no statistical significance was found between the groups. In addition,
MBCFD outperforms HCA in the univariate case but not in the multivariate case.

https://www.uu.nl/masters/en/business-informatics
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1

Introduction
Osteoarthritis (OA) is the most common form of arthritis; it is a heterogeneous disease charac-
terized by multi-tissue failure in joints and the knee is among the most affected joints (Murphy
et al., 2011). Its prevalence is increasing due to the aging population as well as increasingly
widespread risk factors, especially obesity and a sedentary lifestyle. Risk factors of OA can
be divided into individual factors such as age, gender and diet, and joint-level factors such as
injury and malalignment. All risk factors can interact in a complex manner contributing to the
heterogeneity of the disease (Palazzo et al., 2016). According to the Global Burden of Disease
2010 study, hip and knee OA were ranked as the 11th highest contributor to global disability
(Cross et al., 2014). Vos et al. (2017) estimates that more than 300 million people around the
world suffer from OA and Prieto-Alhambra et al. (2014) investigated over three million people
from Catalonia, Spain and reported incidence rates of clinically defined OA of 6.5, 2.1, and
2.4/1000 person-years for knee, hip, and hand, respectively.

In 2019, the United Nations announced that the world population could grow to around 8.5
billion in 2030, 9.7 billion in 2050, and 10.9 billion in 2100. In 2018, for the first time in his-
tory, persons aged 65 years or over worldwide outnumbered children under age five. Projections
indicate that by 2050 there will be more than twice as many persons above 65 as children under
five. Overall, the world’s population is growing older due to increasing life expectancy and
falling fertility levels (United Nations, Department of Economic and Social Affairs, Population
Division, 2019). These figures combined potentially represent millions of new symptomatic
OA patients as the population grows older, which may be an underestimate as lifestyles, envi-
ronments, and comorbidities keep changing, and prevalence of obesity is still increasing.

As evidenced by the aforementioned figures, OA is a considerable burden on the world’s
economy and the healthcare system. In the United States alone, direct and indirect annual costs
for OA have been estimated to be over 98 billion US dollars (Brown et al., 2006). In addition,
the indirect cost of absenteeism was estimated at approximately 10.3 billion US dollars (Kotlarz
et al., 2010). In Spain, the costs of knee and hip OA were of more than 4.7 billion euros in 2007,
comparable to 0.5% of the Gross National Product that year (Loza et al., 2009).

Knee OA is an increasingly prevalent joint disease in the Netherlands as well. In 2018,
there were nearly 1.5 million people with an OA diagnosis from their general practitioners
(GP). Approximately, 65% were female patients and 47% were identified as having OA in the
knee. In 2017, expenditure on care for OA amounted to 1.2 billion euros (Osteoarthritis 2019).

In recent years, the concept of OA heterogeneity has been gaining acceptance whereas eti-
ological mechanisms are thought to vary between people with OA, resulting in differences in
clinical presentation and disease course (Van Spil et al., 2020). OA disease heterogeneity may
be most perceptible and relevant in the beginning stages of OA as different etiologic processes
may accumulate and coalesce over time in patients (Driban et al., 2010). Moreover, this early
phase of the disease is likely also the most opportune moment to achieve life-altering modifica-
tion of the disease course when symptoms are more manageable and less evident. Additionally,
the causes of the disease may be easier to identify in early stages as complications arise over
time and symptomatology forms an intertwined network increasingly more difficult to untangle.

OA is a heterogeneous condition described by a variety of clinical features, bio chemical
markers, radiographic findings, and different outcomes. No disease-modifying treatment for
OA exists, and it is thought that personalization of treatment is required to optimize interven-
tions specifically targeted at subgroups of patients. The main symptoms of knee OA are pain,
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stiffness, and loss of function, leading to reduced mobility and quality of life. In general, peo-
ple start experiencing OA symptoms at a median age of 55 years and live 26 years with the
condition (Losina et al., 2013).

The disease course of OA is typically slow, but varies between people and is largely unpre-
dictable (Van Spil et al., 2012). Treatment for both knee and hip OA is symptomatic and usually
moderately effective, as no solution influencing the disease course is currently available. Con-
sequently, knee OA is one of the main indications for knee replacement surgery (Conaghan et
al., 2010).

In general, treatment recommendations for OA are designed to provide patients with relief
of their symptoms, mostly pain. Regrettably, not all patients with OA react uniformly to pain
treatments, resulting in the implementation of a mix of interventions aiming for relief which in-
creases the likelihood of adverse health effects and the cost burden on the patient and healthcare
system (Kovac et al., 2008).

Although the exact cause of OA remains poorly understood, a number of likely relevant
pathobiological and pain mechanisms have been determined (Wesseling et al., 2009). The rel-
evance of these mechanisms might vary between patients because distinct phenotypes "share
distinct underlying pathobiological and pain mechanisms and their structural and functional
consequences" may exist (Van Spil et al., 2020, p. 1). As mentioned above, the concept of OA
heterogeneity has been gaining renewed interest recently in the pursuit of disease-modifying
treatment options. Indeed, there are no effective disease-modifying drugs for knee OA, in large
part because clinical trials have treated all knee OA as the same disease, disregarding etiology
or risk factors (Nelson et al., 2019).

Until recently, it has been asserted that OA patients’ specific attributes are not clinically con-
sidered and treatment options are limited with scarce evidence, particularly for patient-specific
interventions (Deveza and Loeser, 2018). Latterly, the development of a number of novel po-
tential treatments with diverse mechanisms of actions has reignited the need to define homoge-
neous groups to personalize treatment given predetermined OA phenotypes and achieve better
treatment outcomes (Tonge, Pearson, and Jones, 2014; Karsdal et al., 2016). Appropriately, it
has been suggested that tailoring interventions for subgroups of patients, the goal of Precision
Medicine, could increase the positive outcomes of treatment and find a more cost-effective so-
lution with less adverse effects (Bruyere et al., 2015; Deveza et al., 2017; Driban et al., 2010;
Van Spil, 2012).

Consequently, a subgroup of patients with similar OA characteristics can represent an OA
phenotype. In general, a phenotype has been defined as a set of observable characteristics of
a subject resulting from environmental and genetic factors. In the medical field, prognostic
phenotyping is the identification of subgroups that are more likely to reach a specific outcome
within a determined period. Identifying prognostic phenotypes is a crucial aspect of designing
personalized OA treatments. The optimal manner in which to create phenotypes of OA patients
and their clinical value is still under active investigation and is fundamental for the advancement
of OA research (Deveza, Nelson, and Loeser, 2019). It is hypothesized that since etiological
mechanisms are less entangled early in the disease course (e.g., symptoms of knee OA can begin
to appear two or three years before the first instance of radiographic OA), phenotypes could be
predicted early in the disease course (Whittle et al., 2016).

Electronic Health Records (EHR) are becoming increasingly more popular and researchers
are turning to machine learning methods to be able to mine large amounts of data. Machine
learning methods are a new addition to the OA phenotyping field; a variety of methods have
been applied to medical data in the last few years for the purpose of identifying phenotypes,
most commonly hierarchical cluster analysis (HCA), k-means, latent class analysis (LCA) and
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logistic regression (Deveza et al., 2017). High-quality datasets are required to obtain mean-
ingful results. When referring to machine learning, we use the words method and algorithm
interchangeably throughout.

Finding meaningful groups in longitudinal data is an unsupervised learning problem be-
cause these data do not contain labels (e.g., etiologic mechanisms and progression subgroups
are not observed) and previously undetected patterns are being explored. In addition, longi-
tudinal data can essentially be treated as time series or as functions. Clustering functional
data is a difficult task because the data fundamentally live in an infinite dimensional space
which represents a challenge for traditional multivariate statistics. We used the CHECK (Co-
hort Hip and Cohort Knee) dataset (Wesseling et al., 2014) for our analysis. Since CHECK
data were collected longitudinally over ten years, we believe the time continuum should be
considered in the analysis. Data from CHECK are available upon request to all researchers at
http://check-onderzoek.nl.

The precise issue this pioneering research addressed was to investigate whether functional
data analysis (FDA) can contribute to derive clinically-relevant and statistically-significant knee
OA phenotypes, specifically by using a model-based clustering for functional data (MBCFD)
method. Additionally, we compared MBCFD results to a traditional clustering method (which
ignores time) widely used in the literature for knee OA phenotyping. A detailed discussion
of the problem statement can be found in chapter 2. This research contributes to OA sci-
ence since currently we do not have generally-accepted measures to subtype the disease which
is deemed highly importantfor developing disease-modifying OA interventions (Deveza and
Loeser, 2018).

Research Approach
Phenotypes are observable characteristics of an organism above the molecular level, distin-
guished by direct observation or finer methods (Johannsen, 1911). If phenotypes are detected
or predicted early in the disease course and these are related to the etiological mechanisms of
disease this would allow medical practitioners to personalize treatment, design more specific
trials, and recommend tailored prevention strategies. Effective strategies to prevent or treat OA
are actively anticipated to help give an answer to OA patients as they would aid in lessening
the impact of the disease at the individual level (e.g. pain and disability) and at the societal
level (e.g. direct and indirect healthcare costs and productivity). When identifying phenotypes
with medical records, subgroups are created by clustering similar patients together. Moreover,
when using longitudinal data, the patients’ trajectories can be taken into account and this is
particularly useful for a progressive condition.

Finding phenotypes of early OA in the CHECK dataset is a data mining problem. Thus, the
CRISP-IDM method developed by Menger et al. (2016) has been selected for this investigation.
CRISP-IDM is an adaptation of the CRISP-DM method (Chapman et al., 2000), applicable
to exploratory, iterative, and interactive data analysis in healthcare. Moreover, MBCFD tech-
niques are appropriate for longitudinal, high-dimensional, heterogeneous data as is the case
with the different clinical and radiographic assessments made over time for OA patients within
the CHECK cohort. In order to answer our research questions (detailed below), first we con-
ducted a literature review to understand the current state of the art, specifically which methods
are being used, which characteristics have been found relevant and which MBCFD methods
are available for analysis. The method selection was based on interpretability, flexibility and
ability to handle multivariate data. After selecting an MBCFD method, we used it to identify
trajectories (i.e., clusters) in the data considering the dimension of time. In order to determine

http://check-onderzoek.nl
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if the findings were clinically relevant, we graphically evaluated results in the context of pre-
viously found/proposed phenotypes within and outside of the CHECK cohorts with the help of
clinical experts next to criteria of statistical fit and group size. Solutions using different sets
of (multivariate) longitudinal outcomes combining different radiographic and clinical outcomes
over time were explored and final solutions selected with the help of OA experts. The results
of both methods were compared by using similarity metrics such as the Adjusted Rand Index
(ARI) and statistical significance tests applied to baseline characteristics of the clusters such as
gender, body mass index (BMI), age, and biochemical markers. Lastly, we present the extent of
the contribution of the MBCFD method to detect clinically-relevant and statistically-significant
phenotypes.

FIGURE 1: Overview of research approach.

Motivation
To the best of our knowledge, there has been no research conducted to date on whether any
method that belongs to the FDA field of study can contribute to finding knee OA phenotypes.
Previous work with CHECK data shows that patient phenotypes can be found. However, the
work was based on a single or limited set of parameters and typically not the full 10-year follow-
up. Therefore, the potential impact of these phenotypes on prognostication and treatment deci-
sions is still limited. The majority of the studies used distance-based cluster analysis methods
(see Appendix A). With our research, we intend to demonstrate that an MBCFD method can be
useful to detect clinically-relevant and statistically-relevant phenotypes and to assess the per-
formance vis-a-vis a clustering method widely used in the scientific literature.. In addition,
by gaining a better understanding of OA heterogeneity (i.e., different phenotypes), we could
potentially contribute to the design of clinical trials, prevention strategies, and treatments.
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Research Aim
To define our research aim, we used the template defined by Wieringa (2014) because it is useful
to "identify missing pieces of information . . . needed to bound your research problem" (p .16).
The research aim is stated as follows:

• This research aims to improve OA phenotype understanding

• by testing an MBCFD method’s ability to derive knee OA phenotypes and comparing to
a clustering method’s results to determine which method yields better performance

• that satisfies clinical relevance and statistical significance criteria

• in order to provide insights on the associations of OA parameters in individuals with
symptoms of early-stage OA and potentially contribute to society by impacting trial de-
sign and the development of personalized prevention and treatment strategies for OA.

Research Questions
To address our research aim, the research is structured with a main research question (MRQ):

MRQ: To what extent can model-based clustering for functional data (MBCFD) con-
tribute to derive clinically-relevant and statistically-significant knee OA phenotypes?

Methods which belong to the MBCFD category can deal with data presented in the form
of functions or curves and take into account the progression through time otherwise ignored by
distance-based methods. By including the dimension of time and modeling the data as curves,
we expect that an MBCFD method can contribute to derive the phenotype of an OA patient by
yielding better performance than the most commonly-used method in scientific studies. We de-
fine performance by means of clinical relevance criteria and statistical significance between the
derived groups’ baseline characteristics. Clinically-relevant phenotypes can be distinguished
based on differences between patients in the extent and course of their disease, the longitudinal
associations between structural and/or clinical OA-related parameters, and markers of underly-
ing etiologic mechanisms. Statistical significance can be determined by hypothesis testing to
understand if our findings are unlikely to have happened by chance.

The MRQ is answered by the following four subquestions (SQs):

• SQ1: Which are the most commonly-used methods in the literature being used to
derive phenotypes from knee OA data?
We reviewed existing methods in the scientific literature to catalog the research conducted
thus far. We computed the frequency to determine the top three methods. In addition, we
created a list of the features used in these studies (SQ1.1) and which phenotypes were
discovered. Lastly, we reviewed the literature to investigate which MBCFD methods are
available for the analysis (SQ1.2).

SQ1.1: Which are the characteristics used for identifying knee OA phenotypes?

SQ1.2: Which are MBCFD methods that can be used for deriving knee OA pheno-
types?



List of Tables 6

• SQ2: How well does the selected MBCFD method perform at identifying clinically-
relevant and statistically-significant knee OA phenotypes?
Based on the answers from SQ1, we performed the analysis with the selected MBCFD
method and assessed the clinical relevance and statistical significance of the discovered
subgroups. The input of domain experts was used to determine the clinical relevance of
the subgroups throughout the interactive modeling and evaluation iterations’ unstructured
interviews. Statistical significance was explored with appropriate hypothesis testing.

• SQ3: How does the MBCFD method perform compared to a non-functional cluster-
ing method?
We performed clustering analysis with the most common method discovered when an-
swering SQ1 and then compared the results with MBCFD clusters by assessing clinical
relevance, statistical significance, and dissimilarity between clusters.

Research Methods
In order to approach our research problem, the CHECK (Wesseling et al., 2014) data set has
been chosen. CHECK is a population-based cohort study of 1002 subjects with symptoms of
knee and/or hip OA, with none to minimal radiographic signs at baseline. Over a ten year
period, these individuals were followed for OA-related symptoms, physical, and radiographic
signs. In addition, biochemical markers were obtained at baseline. CHECK has an especially
low loss to follow-up given a targeted retention program (Wesseling et al., 2014).

We believe that an MBCFD method can be used to derive clinically relevant knee OA phe-
notypes and that this method outperforms HCA. To answer our research questions, we applied
the CRISP-IDM method’s six phases: domain understanding, data understanding, general data
preparation, modeling and evaluation, inferential analysis, and deployment, which can be seen
in Figure 1. These phases were implemented as follows:

1. Domain Understanding
This phase spreads across chapters 1, 2 and 3 and consists of understanding the con-
text, the problem at hand, project goals and requirements via the organization of topics
and themes and conducting meetings with domain experts in context. In addition, we
conduct the literature review to understand the state of the art. Meetings with domain
experts are held to understand the specific problem and potential research gaps. Forth-
with, potential research questions can be derived from the topics and themes which are
required for choosing relevant data sources and the general data preparation phase. Un-
der these circumstances, a list of topics arises which are subsequently categorized into the
themes. Priority levels can be assigned to topics and/or themes. The motive behind the
identification of topics is to discover information leading to potential analyses that can be
conducted. Lastly, the outcome of this phase is a list of topics and themes.

2. Data Understanding
This phase can be found in chapter 3 and consists of investigating the identified research
themes from the previous phase. Understanding the data requires the selection of relevant
data sources, and gaining lawful access to these data. Accordingly, data sources are
summarized into data files that contain the source, name, type, structure, and number of
records. The sources can stem from diverse internal and external repositories. Lastly, the
outcomes of this phase are a description of the data and a data file table with a list of data
sources/entities with types, structure, and number of records.
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3. General Data Preparation
This phase can be found in chapter 3 and refers to the preprocessing of the data to convert
it into the appropriate format for exploratory analysis, and storing the data into a database.
The most relevant steps in preparing the data are organizing, transforming, cleaning, in-
tegrating, sampling, reducing and/or discretizing the data. The outcome of this phase is
clean and understandable data sets ready to be consumed by the next phase.

4. Modeling and Evaluation
This phase can be found in chapters 3 and 4. It is interactive in nature since several it-
erations have to be performed when, with the aid of data visualization software, the data
is modeled and presented to medical experts who provide their feedback to be used for
the subsequent iteration. These iterations or cycles can widely vary in number. With the
guide of experts in the field of OA and their direct feedback, we aim to reach a consensus
on the clinically-relevant phenotypes derived with the MBCFD and traditional clustering
methods. The outcomes of this phase are the selected and prepared database, visualiza-
tions, and feedback from domain experts.

5. Inferential Analysis
This phase can be found in chapters 3 and 4 and refers to testing hypotheses and statis-
tical significance, making inferences about the data. We aim to discover the statistically-
significant characteristics of the derived phenotypes by comparing the baseline character-
istics of each cluster such as BMI, age, and biochemical markers.

6. Deployment
During this phase, the implementation of results that were obtained and confirmed occur.
After debating the results with involved domain experts, a consensus is reached, which
increases the prospect of success. The deployment phase focuses on the implementation
of results, which in our case will take the form of a scientific article, a process-deliverable
diagram (PDD), and this thesis report. The PDD is created to detail the phases, activities,
and deliverables (concepts) of our solution and guide researchers through similar projects
in the future.

CRISP-IDM is complemented by the consensus-based framework for conducting and re-
porting OA phenotype research developed by Van Spil et al. (2020). This framework entails
reporting recommendations with regards to general study characteristics, study population, data
collection, statistical analysis, and appraisal. We focused on some of the recommendations
regarding statistical analysis. The research is being performed at the Rheumatology and Clin-
ical Immunology Department of University Medical Center Utrecht (UMCU) in Utrecht, The
Netherlands.

We began by investigating machine learning methods commonly used in the literature for
knee OA phenotypes. Then, we defined the characteristics used in the respective analyses.
Moreover, we investigated potential MBCFD methods and selected funHDDC. By following the
CRISP-IDM method, we fulfilled six phases which included 30 iterations of data exploration in
which we determined that funHDDC can detect clinically-relevant and statistically-significant
knee OA phenotypes for the univariate case. However, for the multivariate case, results were
limited to clinical relevance. Lastly, by comparing to results from HCA clusters, we determined
that funHDDC outperforms HCA in the univariate case but not in the multivariate case.

Our contributions can be summarized as follows:
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• we used early-stage OA data - which could be better suited to conduct phenotype research
as opposed to established or end-stage OA (Whittle et al., 2016)

• we used longitudinal (10-year) data versus shorter follow-up times

• we used parameters from different domains such as clinical, imaging, demographic and
biochemical markers data; which may be useful to define phenotypes (Deveza, Nelson,
and Loeser, 2019)

• we explored the performance of MBCFD for deriving knee OA phenotypes and compared
to a commonly-used method in literature studies

• the research was performed with the assistance of researchers who are familiar with the
CHECK cohort, OA etiology and clinical practice, and required analytical methods

Thesis Outline
The remainder of this thesis is structured as follows. First, to provide necessary background
knowledge and to put the problem in context, chapter 1 presents the related work. Next, chap-
ter 2 describes the precise issue the research addresses in more detail, shows the relevance of
the problem and highlights the research gap. Subsequently, chapter 3, presents the solution,
chapter 4, the results and discussion, and chapter 5, the conclusion. Appendix A showcases
studies that investigated knee OA phenotypes. Appendix B details the steps taken during the
data exploration steps of CRISP-IDM. Appendix C presents the baseline characteristics tables
with statistical significance results. Appendix D contains clustering evaluation plots and tables.
Lastly, appendix E presents examples of the code used in the project. The thesis outline is
represented in Figure 2.

FIGURE 2: Overview of thesis outline.
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Chapter 1

Related Work
Recently, the concept of osteoarthritis (OA) heterogeneity has been gaining acceptance as eti-
ological mechanisms vary between OA patients causing differences in symptomatology and
disease progression. There is significant variation in disease prognosis between patients, with
some patients enduring progression while others remain stable (Karsdal et al., 2015). Moreover,
it is plausible that heterogeneity is most perceptible in early-stage OA. Thus, the highest oppor-
tunity to provide personalized medicine is most likely early in the disease course. Moreover,
at this stage, symptoms are less severe and no significant joint damage has yet occurred, thus
treatment might be more effective. Additionally, etiological mechanisms might be explicitly
different between patients early in the disease course and less so later, as progressively more
factors converge over time. These phenomena may have an inconsistent impact on patients’ re-
actions to treatments, and potentially provide clarification for the lack of success of OA clinical
trials (Bruyere et al., 2015). Better understanding of the entire range of factors that are im-
plicated in OA heterogeneity is essential to advance the consolidation of knee OA phenotypes
(Deveza et al., 2017), which are the observable (i.e., distinguishable by inspection) character-
istics of an individual (Johannsen, 1911) resulting from a combination of environmental and
genetic factors (Deveza, Nelson, and Loeser, 2019).

The literature evidences that few studies have attempted to define a multidimensional strat-
ification of phenotypes, and there is myriad research opportunities in testing the prospective
validity of the subgroups using longitudinal outcomes (Deveza et al., 2017). Appendix A sum-
marizes prospective studies investigating potential knee OA phenotypes based on the systematic
literature review by Deveza et al. (2017) as well as an updated list of studies from 2018 to 2020.

Current and future research need to continue to explore potential phenotyping methods as
these may be the answer to improving palliative treatment and creating interventions that im-
prove the quality of life for homogeneous subgroups considering the heterogeneous nature of
OA. The importance of continuing to explore existing and not-yet-discovered phenotypes can-
not be stressed enough as this could change the course of OA health care by guiding personal-
ized, life-changing, and disease-modifying interventions.

Identifying potential relevant literature was performed by searching particular keywords on
Google Scholar and PubMed. An initial set of articles is selected by reviewing the title and
abstracts of the first 100 results. The 100-article set was subsequently reviewed in depth which
led to the exclusion of tangential material. Eventually, through the use of backward and forward
snowballing (Wohlin, 2014), additional materials were identified.

1.1 Osteoarthritis
OA is defined as:

Definition (Osteoarthritis).
The most common chronic joint disease (Bijlsma, Berenbaum, and Lafeber, 2011), char-
acterized by pain, functional disability, and limited quality of life (Arden and Nevitt,
2006).



Chapter 1. Related Work 10

OA can be characterized by joint symptoms, by structural pathology such as evidenced on
X-rays or by their combination. The prevalence of OA is increasing due to the aging population
and widespread obesity (Bijlsma, Berenbaum, and Lafeber, 2011). Moreover, OA is a progres-
sive disease that can affect all joint structures and lead to joint failure by impacting articular
cartilage, subchondral bone, synovium, meniscus, muscle, capsule, and ligaments (Bruyere et
al., 2015). OA may occur due to a broad spectrum of factors such as trauma, hereditability, and
biomechanical and metabolic issues; multiple mechanisms can play a part in the perception of
pain (Castañeda et al., 2014). In general, OA develops progressively over several years, how-
ever, symptoms can remain stable for long periods. Figure 1.1 shows an illustration comparing
a healthy knee with a knee affected by OA. The pathogenesis of OA is regarded to be a com-
bination of factors and to be different between patients, although the mechanisms of genesis
and progression remain unidentified, some predisposing risk factors have been identified for
both knee and hip OA. For the occurrence of the disease, these are common risk factors: age,
physical activity, body mass index, obesity, previous injury, intense sport activities, and genet-
ics. On the other hand, for the progression of the disease, age, and intense sport activities are
common risk factors. However, pain and loss of function are the main clinical features that lead
to treatment (Bijlsma, Berenbaum, and Lafeber, 2011).

FIGURE 1.1: Illustration of knee osteoarthritis. From Blausen.com staff (2014).
"Medical gallery of Blausen Medical 2014". WikiJournal of Medicine (2): 10.

Knee OA can make it difficult to do many daily common activities, such as walking or ex-
ercising, as the cartilage in the knee can progressively wear away causing the space between
the bones to diminish in size. In a clinical setting, the diagnosis of OA is usually based on clin-
ical complaints and subsequently confirmed by radiographic evaluation of structural damage
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(Bedson and Croft, 2008). There are three treatment modalities: non-pharmacological, phar-
macological, and surgical. In many cases, these modalities are used in combination to tailor
treatment to specific scenarios. Furthermore, since pain is multi-factorial, it is also affected
by comorbidities, such as sleeping problems, loneliness, and mood disorders; therefore, im-
provement of mental and emotional wellbeing is of utmost importance (Geenen and Bijlsma,
2010).

1.1.1 Early Symptomatic OA
For prevention and early intervention purposes, it is crucial to diagnose OA at an early stage
and identify its prognostic signs (Wesseling et al., 2014). However, OA is typically diagnosed
at a late stage when structural damage is considered irreversible and, therefore, treatment fo-
cuses mostly on relieving pain (White et al., 2010). To understand the disease process and
for the development of satisfactory disease-modifying treatment alternatives for OA patients, a
greater emphasis has to be made on identifying potentially high risk individuals so measures
can be taken to prevent irreversible damage. In early OA, pain and stiffness could mask other
symptoms, treatment should therefore focus on decreasing pain and stiffness and on the main-
tenance and betterment of functional abilities. Correspondingly, prevention of progression of
joint damage and improvement of quality of life should be the aim (Bijlsma, Berenbaum, and
Lafeber, 2011). By identifying clinically-relevant phenotypes, trial design and the development
of tailored prevention and targeted treatment strategies can be positively impacted in order to
identify more efficacious solutions (Deveza et al., 2017).

1.1.2 OA Phenotypes
OA phenotypes are defined as:

Definition (Osteoarthritis Phenotypes).
"Subtypes of OA that share distinct underlying pathobiological and pain mechanisms
and their structural and functional consequences" (Van Spil et al., 2020, p. 4).

Discovering knee OA phenotypes requires employing clustering techniques to identify clus-
ters of individuals with similar characteristics with the long-term goal of personalizing patient
management (Pinto et al., 2015). Deveza et al. (2017) performed a systematic literature re-
view to identify which features are important for phenotyping knee OA and found that clinical
phenotypes are investigated more frequently, followed by laboratory, imaging and etiologic
phenotypes. Additionally, the authors found eight studies that defined subgroups based on out-
come trajectories (pain, function and radiographic progression trajectories) with only five stud-
ies including characteristics from multiple domains. Evidence was found to suggest that pain
sensitization, psychological distress, radiographic severity, body mass index (BMI), muscle
strength, inflammation, and comorbidities are related to clinically distinct phenotypes. Gender,
obesity and other metabolic irregularities, pattern of cartilage damage, and inflammation may
be involved in describing distinct structural phenotypes. A handful of studies researched the
phenotypes’ external validity or their potential validity using longitudinal outcomes.

Previous studies have grouped OA patients into phenotypes from diverse perspectives by
using different sets of characteristics to determine phenotypes, such as experimental pain sen-
sitivity (Cardoso et al., 2016), imaging (Roze et al., 2016), biochemical markers (Zhang et
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al., 2014; Van Spil et al., 2012), comorbidities (Murphy et al., 2011) and clinical characteris-
tics (Knoop et al., 2011). These studies used trajectories of clinical or structural progression
(outcome-based definitions) or baseline characteristics with the subsequent association of the
phenotypes with outcomes.

Multiple methods have been employed to identify OA phenotypes, such as logistic regres-
sion (Nelson et al., 2013), HCA (Iijima et al., 2015; Cardoso et al., 2016), expert opinion
(Castañeda et al., 2014), k-means clustering (Knoop et al., 2011; Elbaz et al., 2014), latent
class analysis (Kittelson, Stevens-Lapsley, and Schmiege, 2016; Waarsing, Bierma-Zeinstra,
and Weinans, 2015), and principal component analysis (Meulenbelt et al., 2007; Heard et al.,
2013). However, HCA is the most common method besides pre-defined phenotypes. Appendix
A provides a summary of the findings from Deveza et al. (2017) by means of an overview of
the phenotype research performed in prospective studies investigating knee OA characteristics
and outcomes as well as the baseline variables that more frequently predicted worse trajectory
outcomes. Baseline variables that seem to predict worse outcomes included high BMI, lower
education, more severe symptoms and radiographic disease at baseline, psychological factors,
and presence of other comorbidities including accompanying hip pain. Appendix A presents
characteristics, authors, features, methods, and phenotypes discovered. There are three main
categories observed in grouping the data: clinical, imaging (radiography), and laboratory. For
clinical data, the methods used for discovering phenotypes are hierarchical clustering, k-means
clustering, latent class analysis, and expert opinion. The characteristics used for grouping the
data relate to pain, knee joint alignment, metabolic profile, comorbidities, gait parameters, psy-
chological profiles, and mechanistic factors. The phenotypes found range from two to five in
number. More details can be seen in Table A.1. For imaging data, the methods used for finding
subgroups are expert opinion and latent class analysis. The characteristics explored relate to
imaging features, knee chondrocalcinosis, knee joint compartment, and MRI-detected denuded
bone areas. The phenotypes found range from two to four in number. More details can be seen
in Table A.2. Lastly, for laboratory data, the methods used are expert opinion, principal compo-
nent analysis, and k-means. The characteristics relate to biochemical market patterns, synovial
fluid, inflammation, and markers of bone and cartilage metabolism. More details can be seen in
Table A.3.

To complement the Deveza et al. (2017) study, we performed a semi-systematic literature
review (Snyder, 2019) to close the knowledge gap and discover what additional research has
been conducted from January 2018 to March 2020 regarding the use of machine learning for
finding knee OA phenotypes. We identified relevant articles and abstracts in a search of PubMed
and Google Scholar for English language journal articles. An additional resource screened was
the CHECK research website 1. The search strategy for PubMed can be seen in Table 1.1. The
search terms were based on the keywords used by Deveza et al. (2017).

TABLE 1.1: Search Strategy (PubMed).

# Search strategy Results
1 (OA/) OR (OA, knee/) 26,277
2 arthrosis 33,682
3 (osteoarthr*) OR (osteo-arthr*) 15,603
4 (degenerative) AND (arthritis) 866
5 phenotype* 83,494
6 (subgroup*) OR (sub-group*) 47,199

1https://www.check-onderzoek.nl/publication-presentation/scientific-publications/
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Table 1.1 continued from previous page
# Search strategy Results
7 (subtype*) OR (sub-type*) 33,928
8 (subset* OR sub-set*) 34,669
9 (subpopulation*) OR (sub-population*) 9,141
10 cluster* 74,749
11 Phenotype/ 107,388
12 (knee/) OR (OA, knee/) 26,277
13 1 or 2 or 3 or 4 41,801
14 12 and 13 9,959
15 5 or 6 or 7 or 8 or 9 or 10 or 11 281,113
16 14 and 15 744
17 limit 16 to humans 448
18 limit 17 to "review" articles 30
19 17 not 18 418

Overall, 418 and 961 records were found on PubMed and Google Scholar, respectively.
Studies were eligible if they:

• Have the goal of identifying knee OA phenotypes

• Use a machine learning algorithm

The titles and summaries of the first 250 records sorted by best match from PubMed were
screened. Similarly, the titles and summaries of the first 250 results from Google Scholar were
screened. After the initial screening of titles and summaries, 167 abstracts were reviewed and
52 studies were selected. Subsequently, after assessing articles for eligibility, 29 articles were
excluded for not meeting the eligibility criteria. For the set of 20 studies that met the selec-
tion criteria, the methods used were cluster analysis, regression analysis, DWD, latent class
analysis, principal component analysis, hierarchical cluster analysis, latent class growth anal-
ysis, group-based trajectory modeling, and support vector machine. The characteristics relate
to pain, clinical and radiographic measures, biochemical markers, synovial fluid, quality of
life, depression, biomechanical measures, comorbidities, and gene expression. The number of
phenotypes found ranged from two to six. Table A.4 in Appendix A shows the characteris-
tics, author, features, methods, and phenotypes of the 20 articles that met the selection criteria.
The process and results from the semi-systematic literature review can be seen in the PRISMA
(Moher et al., 2009) flowchart in Figure 1.2.

1.2 Answers to Research Questions SQ1 and SQ1.1
Our first research subquestion poses the following:

1.2.1 SQ1: Which are the most commonly-used methods in the literature
being used to derive phenotypes from knee OA data?

To answer SQ1, we extracted the most commonly-used methods used for deriving knee OA
phenotypes from the scientific literature. We computed the frequency of the methods based on
a total of 46 studies. The top methods are:
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FIGURE 1.2: PRISMA flowchart describing the literature review of OA pheno-
type methods from 2018 to 2020.

1. Hierarchical cluster analysis (HCA) (24%). HCA, as the name states, seeks to build a hi-
erarchy of clusters based on similarity within clusters and dissimilarity between clusters.
HCA typically uses a distance matrix to determine the groups. More details about this
method can be found in section 1.3.1.

2. Latent class analysis (LCA) (15%). LCA is a model-based clustering approach that iden-
tifies unobserved classes by grouping multivariate data into latent classes recognizing
hidden patterns (using conditional probability) that associate the observations (Vermunt
and Magidson, 2002).

3. k-means (9%) and logistic regression (9%). k-means is a hard clustering approach since
each observation can belong only to one cluster or partition. Logistic regression uses a
logistic function to model discrete (e.g., 0/1) data.

All commonly used methods belong to the unsupervised learning category, with the exception of
logistic regression which is a supervised classification method. HCA has some advantages over
k-means because it does not need a priori specification of the number of clusters and provides a
graphical, tree-based representation of the groupings, called a dendrogram.

SQ1 has two further subquestions: SQ1.1 and SQ1.2. We answer SQ1.2 in section 1.3.3.
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1.2.2 SQ1.1: Which are the characteristics used for identifying knee OA
phenotypes?

From Deveza et al. (2017) and our semi-systematic literature review, we can list the following
characteristics:

• pain

• psychological profiles

• comorbid-symptoms
profile

• clinical characteristics

• knee joint alignment

• metabolic profile

• gait parameters

• mechanistic factors

• knee chondrocalcinosis
(i.e., calcium pyrophos-
phate build up in the
joints)

• MRI-detected denuded
bone areas

• imaging

• knee joint compartment

• biochemical markers

• inflammatory profile

• synovial fluid profile

• gene expression

• quality of life

• depression

• functional capacity

• comorbidities

Therefore, the most frequently-used characteristics in OA phenotype research are pain,
imaging measures (X-ray), clinical measures, biochemical markers, and gene expression.

In addition, Dell’Isola et al. (2016) found, through qualitative analysis, six main sets of variables
that suggest the existence of six phenotypes:

(i) chronic pain in which central mechanisms (e.g. central sensitisation) are promi-
nent; (ii) inflammatory (high levels of inflammatory biomarkers); (iii) metabolic
syndrome (high prevalence of obesity, diabetes and other metabolic disturbances);
(iv) bone and cartilage metabolism (alteration in local tissue metabolism); (v) me-
chanical overload characterised primarily by varus malalignment and medial com-
partment disease; and (vi) minimal joint disease characterised as minor clinical
symptoms with slow progression over time. (p. 1)

Two of the closest works to our research come from Deveza et al. (2019) and Nelson et al.
(2019). On the one hand, Deveza et al. (2019) analyzed 2-year data (n = 1,014) from the
Osteoarthritis Initiative (OAI) and applied latent class growth analysis (LCGA) to identify tra-
jectories using demographic, clinical and radiographic data. LCGA is a model-based clustering
method useful for finding "groupings of individuals who share similar longitudinal data patterns
to determine the extent to which these patterns may relate to variables of interest" (Berlin, Parra,
and Williams, 2014, p. 3) which makes this method appropriate for discovering phenotypes by
finding homogeneous subpopulations within the overall heterogeneous population. However,
as is the case with any statistical method that uses discrete data as input, we must be very cau-
tious when discretizing continuous measures to reasonably ensure the resulting values do not
imply a significant loss of information. This limitation could be overcome when using an FDA
method since the information between time points remains a part of the ecosystem. Perhaps
Latent Profile Analysis is better suited for phenotype research since it can handle continuous
data. Another limitation of Deveza et al. (2019) could be the use of 2-year data for a slowly
progressive disease. The question remains whether two years’ worth of data is enough for ac-
curately representing progression and inferring phenotypes. On the other hand, Nelson et al.
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(2019) used 10-year demographic, imaging, and biochemical data (n = 597) from the Founda-
tion for the National Institutes of Health (FNIH) Osteoarthritis (OA) Biomarkers Consortium.
Nelson et al. (2019) applied Distance-Weighted Discrimination, a supervised distance-based
learning method that allows maximal separation of data points by class and treats each vector
of features as a single data object. In contrast to this approach, we are applying an MBCFD
method without having any prior knowledge on the group labels and using early-stage OA data
instead of established OA data. Additionally, we are transforming each variable’s discrete data
points into functions, which could allow us to see complex trends not detected by traditional
distance-based clustering algorithms.

1.3 Unsupervised Machine Learning
Machine Learning (ML) is a subfield of Artificial Intelligence (AI) which relies on experience-
based computational methods to optimize task performance or derive accurate predictions (Mohri,
Rostamizadeh, and Talwalkar, 2018). A typical example of ML is predicting the class of an un-
seen observation based on a set of pre-labeled random observations. However, not all data are
labeled in real-world applications and this is where unsupervised learning has its role.

Unsupervised learning is defined as:

Definition (Unsupervised Learning).
Unsupervised learning is a set of statistical tools suitable for a scenario where we only
have a set of features X1,X2, ...,Xp measured on n observations but we are not aiming for
prediction due to the absence of response variable Y . "The goal is to discover interesting
things about the measurements on X1,X2, ...,Xp." (James et al., 2013, p. 373)

Unsupervised learning is a subfield of machine learning that focuses on processing data
that have not been classified with a ground truth label. The goal of unsupervised learning is
to model the implicit structure of the data to learn more about it without receiving feedback.
Unsupervised learning algorithms can have many applications in different fields. Examples of
unsupervised learning methods are clustering data points via similarity metrics and dimension
reduction or feature selection. Two of the most commonly used unsupervised machine learning
methods are principal component analysis (PCA) and cluster analysis. Regardless of the method
chosen to conduct the analysis, the biggest challenge in unsupervised machine learning can be
to assess whether results are relevant to the domain since we do not know the true answer, thus
it is recommended to pair these analyses with subject-area expertise to contribute to the validity
of the findings (Deveza, Nelson, and Loeser, 2019). Moreover, it is also challenging to assess
the results since there are no widely accepted validation tools (James et al., 2013).

1.3.1 Cluster Analysis
Cluster analysis is an unsupervised machine learning method which is defined as:
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Definition (Cluster Analysis).
An unsupervised machine learning method with the goal of "finding meaningful groups
in the data. The purpose (of cluster analysis) is to find groups whose members have
something in common that they do not share with members of other groups" (Bouveyron
et al., 2019, p. 1).

Clustering is useful for exploratory data analysis as it identifies patterns in unlabeled data
by systematically grouping objects (Aghabozorgi, Shirkhorshidi, and Wah, 2015). Examples of
systematic grouping of objects date back to the 1700s with the taxonomy of Linneaus where
he classified and labeled organisms. In the 1990s, there was an increased interest in clustering
emerging data such as genetic microarray data, barcode data, websites, medical images, among
many others (Bouveyron et al., 2019). For the history of cluster analysis before the 1990s, see
Blashfield and Aldenderfer (1988).

The majority of the prior clustering methods were algorithmic and heuristic in nature, find-
ing latent groups in the data by extracting measures of similarity between objects from their
observed attributes, e.g., age, height, gender (Bouveyron et al., 2019). As definitions of sim-
ilarity vary from one clustering mechanism to another, usually the concept of similarity relies
on distance. There are several well-known types of distance, such as the Euclidean or Man-
hattan distances, but the underlying idea is that the data points should end up in clusters that
are dissimilar between and similar within. The discovery of clusters in data sets using pattern
similarity is extensively relevant when unearthing actionable insights. An example of an appli-
cation is when using clustering in DNA micro-array analysis by means of expressing patterns
of thousands of genes. These data are arranged in matrix form where each row is a different
gene, columns represent samples (i.e., tissue) and the values in the cells describe an observed
data point. Since particular genes contribute to specific diseases, researchers aim to find which
genes are expressed, thereby providing a phenotype for a sample. This application’s basis is
grouping observations which have consistent behaviors (Wang et al., 2002). A challenge to
overcome with clustering techniques is finding new similarity models to group longitudinal
data since well-known distance measures may not fully capture the relationships among the
objects with the caveat that sequence integrity is ignored in the analysis.

Clustering has been studied thoroughly for decades as cluster analysis was first introduced
by Driver and Kroeber (1932) in the anthropological sciences. The latest clustering and classi-
fication research has focused on Bayesian regularization methods, non-Gaussian model-based
clustering, cluster merging, variable selection, semi-supervised classification, robust classifica-
tion, clustering of functional data, text, and images, and co-clustering (Bouveyron et al., 2019).
More recently, cluster analysis has evolved to encompass model-based clustering given the di-
versity of the data, new scientific questions, and very large data sets.

Hierarchical Cluster Analysis

Hierarchical cluster analysis (HCA) was developed to overcome some of the disadvantages that
accompany partitional-based clustering methods such as k-means as they usually require a priori
definition of K number of clusters. HCA was designed with a more flexible approach in mind
for clustering the data points. HCA can be categorized into agglomerative and divisive methods.
The agglomerative approach starts by creating singleton clusters with only one data point per
cluster and continues adding two clusters at a time to create a bottom-up hierarchy of clusters. In
contrast, the divisive approach starts with one all-encompassing cluster and divides it continu-
ously into two groups creating a top-down hierarchy of clusters (Aggarwal, 2014). HCA results
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are presented in the form of a tree-like diagram which represents the distance-based associa-
tions between data points. Figure 1.3 shows an example of applying agglomerative hierarchical
clustering to a sample dataset (created by the author) with 20 patients and their yearly BMI over
10 years. The resulting dendrogram shows the hierarchical relationship between the patients.
Each leaf of the dendrogram represents one of the 20 patients. When we move up the tree, the
leaves start joining together to form branches, the lower these joins happen, the more similar
the groups of patients are to each other. Observations that join later (up the tree) are the most
different. The vertical axis represents the height of the joins and indicates the similarity between
two observations. In other words, we read the similarity between two observations based on the
exact location on the vertical axis where branches containing those two observations are joined
first (James et al., 2013).

A challenge to overcome with HCA methods is that Gaussian mixture models typically
result in clusters with convex geometric shape (e.g., when using Euclidean distance) which
might not be ideal when attempting to cluster trajectories or non-convex shapes. The construct
of similarity between a pair of observations can be extended by developing the concept of
linkage. The four most common types of linkage (complete, average, single, centroid) and
their definitions can be found in Table 1.2. Ward distance (Ward, 1963), which computes the
minimum within-cluster variance, is also available.

FIGURE 1.3: Example of a cluster dendrogram.

TABLE 1.2: The four most commonly used types of linkage in hierarchical clus-
tering, adapted from James et al., 2013, p. 395.

Linkage Description

Complete
Maximal intercluster dissimilarity. Compute all pairwise dissimilarities
between the observations in cluster A and the observations in cluster B,
and record the largest of these dissimilarities.
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Single

Minimal intercluster dissimilarity. Compute all pairwise dissimilarities
between the observations in cluster A and the observations in cluster B,
and record the smallest of these dissimilarities. Single linkage can result
in extended, trailing clusters in which single observations are fused
one-at-a-time.

Average
Mean intercluster dissimilarity. Compute all pairwise dissimilarities
between the observations in cluster A and the observations in cluster B,
and record the average of these dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean vector of length
p) and the centroid for cluster B. Centroid linkage can result in undesirable
inversions.

Clustering Evaluation

Unsupervised clustering can be difficult to evaluate due to the lack of ground truth labels. If
ground truth labels are available, then supervised evaluation methods can be used (James et al.,
2013). For example, one can compile a confusion matrix and calculate metrics such as accuracy,
sensitivity, or specificity (Aggarwal, 2014). Conversely, despite the lack of ground truth labels
in unsupervised problems, some factors that can be evaluated are clustering tendency, number
of K optimal clusters, and clustering validity (Han, Pei, and Kamber, 2011). Moreover, inter-
cluster statistical significance tests can performed.

Statistical significance. In the field of inferential statistics, hypothesis testing provides
methods to extract information from a representative sample to draw conclusions about a pop-
ulation. Hypothesis testing requires a null hypothesis (i.e., stating there is no effect or that the
effect was due to chance) and an alternative hypothesis (i.e., there is an effect). We test statis-
tical significance to understand if our findings are unlikely to have happened by chance. When
the null hypothesis is rejected, we can state we have discovered significant results. When we
fail to reject the null hypothesis, we do not achieve statistical significance. Typically, hypothesis
testing is performed by setting a threshold for the p-value, known as α or level of significance,
and decide there is statistical significance by rejecting the null hypothesis when p-value ≤ α .
Usually α is set at 0.05 (Black, 2019).

There are several hypothesis tests that fit into two main categories: parametric and non-
parametric tests. Since we do not wish to make any assumptions about the population, we
focus the scope of this study on non-parametric tests. When the objective is to understand the
difference between the means of the clusters, analysis of variance is appropriate. The choice of
test will also depend on the type of data. One-way ANOVA, developed by the statistician Ronald
Fisher, is a parametric test and its non-parametric equivalent is the Kruskal-Wallis rank sum test
which was developed in 1952 by W. Kruskal and W. Wallis. The Kruskal-Wallis rank sum test
is used to investigate whether three or more samples originate from the same populations with
no assumption about population distribution. Moreover, the rank-based Kruskal-Wallis rank
sum test assumes group independence and random selection of observations. The hypotheses
according to the Kruskal-Wallis rank sum test are:

H0 : the populations are identical.

H1 : at least one of the populations is different.
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The equation used to compute the K statistic is:

K =
12

n(n+1)

(
c

∑
j=1

T 2
j

n j

)
−3(n+1),

where c is the number of groups, n is the total number of items, Tj is the total of ranks in a
group, n j is the number of items in a group, and with K ≈ χ2 with df = c−1.

Clustering tendency attempts to ascertain whether the data contains uniformly distributed
points (random structure), otherwise the clusters identified may not be meaningful. In other
words, the clustering tendency represents the clusterability of the data at hand. To address this
problem, a statistical test for spatial randomness of a variable called Hopkins statistic (Hopkins
and Skellam, 1954) can be used to measure the probability of the data being generated by a
uniform data distribution. The Hopkins statistic is calculated as:

H =
∑

n
i=1 yi

∑
n
i=1 xi +∑

n
i=1 yi

, (1.1)

where n is the number of sample points from the distribution, y is the distance between
each data point and uniformly randomly distributed data points, and x is the distance between a
randomly chose data point and its nearest neighbor in N. If N were uniformly distributed, then
the Hopkins statistic equation denominator elements would be similar, making H approximately
0.5. On the contrary, if N were highly skewed then ∑

n
i=1 yi would be considerably smaller than

∑
n
i=1 x,i, making H approximately 0 (Han, Pei, and Kamber, 2011). Consequently, if H < 0.5,

it is improbable that N has statistically significant subgroups (Tan, Steinbach, and Karpatne,
2019).

Number of K optimal clusters is quite an important parameter in the analysis since missing
the optimal K could mean loss of granularity by obscuring subgroups if K is too low or repre-
senting each data point as a cluster if K is too high. There are two well-known approaches to
finding the optimal K, one is via domain knowledge and the other is a data-driven approach.
Domain knowledge might be enough when the prior expert knowledge clearly gravitates to-
wards a specific number of clusters. However, this is not always the case. If domain knowledge
is not sufficient, then there are distance-based options to finding the optimal K which focus on
compactness (how close are the objects within a cluster) and separation (how apart is a cluster
from the others). There is a myriad of distance-based metrics used to measure compactness and
separation, such as the elbow method, the average silhouette method, and the gap statistic. The
elbow method focuses on within-cluster variance whereas the average silhouette method Fox
(1991) is formulated by considering intra- and inter-cluster distances. The gap statistic "uses
the output of any clustering algorithm (e.g. k-means or hierarchical), comparing the change in
within-cluster dispersion with that expected under an appropriate reference null distribution"
(Tibshirani, Walther, and Hastie, 2001, p. 1).

From the perspective of a model-selection problem, traditional approaches to select the
number of clusters include the Akaike information criterion (Akaike, 1974), the Bayesian in-
formation criterion (Schwarz, 1978), and the integrated completed likelihood criterion (ICL)
(Biernacki, Celeux, and Govaert, 2000). However, for mixture models, the most common crite-
rion is BIC which is proportional to AIC, but it tends to penalize complex models more heavily,
gravitating towards selecting simpler models. The BIC can be computed with the maximum
log-likelihood value, the number of model parameters, and the number of observations, which
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the criterion uses to penalize the log-likelihood via model complexity. Then, the model max-
imizing the criterion is chosen. The following equation computes the BIC for fitted model
objects for which a log-likelihood value can be obtained:

BIC = l
(
θ̂
)
− m

2
× log(n) , (1.2)

where l
(
θ̂
)

is the maximum log-likelihood, m is the number of model parameters, and n is
the number of observations (Schmutz et al., 2020). Maximum likelihood estimation finds the
parameters that best fit the data by maximizing the probability of observing that data. Thus,
"the most reasonable values for θ are those for which the probability of the observed sample is
largest" (Hastie, Tibshirani, and Friedman, 2009, p. 31).

Clustering quality refers to how well the clustering exercises have performed and can be
characterized by diverse measures. For distance-based clustering, the optimal groups have min-
imal intra-cluster distance and maximal inter-cluster distance. There are two main approaches
to define clustering quality: extrinsic measures which require ground truth labels and intrinsic
measures do not require ground truth labels. Extrinsic methods qualify clustering quality by
satisfying the following criteria: (i) cluster homogeneity, (ii) cluster completeness, (iii) rag bag,
and (iv) small cluster preservation. Extrinsic measures are out of the scope of our work because
they require ground truth labels. Intrinsic measures evaluate clustering results by assessing
the separation and compactness of clusters (Han, Pei, and Kamber, 2011). A similarity met-
ric for objects in the data is the silhouette coefficient (Kaufman and Rousseeuw, 2009), which
measures cohesion (within-cluster distance) and separation (between-cluster distance). This co-
efficient can be computed for any distance-based clustering exercise. The silhouette coefficient
of n ∈ N is defined as:

s(n) =
b(n)−a(n)

max[a(n),b(n)]
. (1.3)

The resulting value ranges from −1 to 1. The value of a(n) represents the cohesion of
the cluster where smaller values mean more compact clusters. Moreover, b(n) represents the
degree of separation, where largest values mean more separation. Hence, when s(n) reaches 1,
it means that the cluster which contains n is compact and separated from other clusters, which
is usually the goal. In contrast, when s(n) is negative, it can be interpreted as n being closer to
objects in other clusters than same-cluster members (Han, Pei, and Kamber, 2011).

Another measure used to assess agreement between two clustering exercises is the adjusted
Rand index (ARI). The Rand index is defined as:

Rand =
a+d

T
, (1.4)

where a is the number of pairs of observations belonging to the same cluster, and b is the
number of pairs of observations not belonging to the same group in both clustering exercises. T
is the total number of pairs. The values of the Rand index range between 0 and 1, with 1 meaning
perfect agreement. However, the Rand index largely depends on the number of clusters in the
two clustering exercises being compared. To overcome this challenge, the ARI was proposed
by Hubert and Arabie (1985) adjusting for the chance grouping of elements and it is defined as:

ARI =
Rand - Expected (Rand)

1−Expected(Rand)
, (1.5)
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where Expected (Rand) is the mean of Rand given the hypothesis that the two clustering
exercises are independent (Qannari, Courcoux, and Faye, 2014). The ARI should be interpreted
as follows: ARI >= 0.90 excellent recovery; 0.80 =< ARI < 0.90 good recovery; 0.65 =< ARI <
0.80 moderate recovery; ARI < 0.65 poor recovery (Tellaroli et al., 2018). More details about
the ARI can be found in Hubert and Arabie (1985).

1.3.2 Functional Data Analysis
Functional Data Analysis (FDA) is defined as:

Definition (Functional Data Analysis).
Functional Data Analysis extends classical multivariate statistical methods by perform-
ing statistical analysis with data represented by curves (i.e., functions) varying over a
continuum (Jacques and Preda, 2014a; Jacques and Preda, 2014b).

A functional datum is a continuous function x(t) of a variable observed over some inter-
val such as time (Ramsay, 1982). Thus, functional data is represented by a set of curves ob-
served through time instead of discrete data points. These curves belong to a theoretic infinite-
dimensional space (Ferraty and Vieu, 2006). However, it difficult to model such data since the
observations are supposed to exist in an infinite-dimensional space but in reality one only has
curves observed from a finite-dimensional space. Moreover, probabilistic model-based methods
do not directly help with clustering due to the lack of a definition for the probability density of
a functional random variable (Delaigle and Hall, 2010). For this reason, distances cannot be
computed in this context hence distance-based methods are not applicable. However, if curves
are represented in a finite-dimensional space then clustering algorithms for finite-dimensional
data can be utilized. Consequently, reconstruction of data from discrete observations into their
functional form is often the first step in FDA. (Jacques and Preda, 2014a).

The concept of FDA was born with Ramsay (1982) where the author acknowledged the
work (only available in French) of Cailliez and Pagès (1976) and Dauxois and Pousse (1976) as
inspiration for transforming traditional data analysis into the "language of functional analysis."
Additionally, a functional datum is described as each observation where subjects are paired with
variables and each pair has a data point recorded in time per a data collection experiment.

FDA is further described as the field that "deals with the analysis and theory of data that
are in the form of functions, images, and shapes, or more general objects" (Wang, Chiou, and
Müller, 2016, p. 2). According to Ramsay and Silverman (2005), the goals of FDA are to
showcase data in manners that add value to analysis and underline its attributes, as well as study
latent patterns and variation.

For instance, one or more measures can be observed for patients during a finite period. Once
converted into their functional form, each of these curves are considered as a single observation
which can be summarized as an average curve over a period of time. Therefore, the variation
between curves can be measured for comparison (Ramsay, 1982), with methods such as model-
based clustering. To recapitulate, one of the main advantages of functional data is that one
individual is considered as a curve (or set of curves) and not a vector of points as in multivariate
statistics. Thus, functional data analysis allows the dependency between discrete data points in
time to be kept.

An example of functional data comes from the CanadianWeather dataset which can be found
in the FDA package in R and contains daily temperature and precipitation data from 35 different
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locations in Canada, averaged over 1960 to 1994. Figure 1.4 represents the mean temperatures
of four Canadian weather stations (Prince Rupert, Montreal, Edmonton, and Resolute) plotted
as smoothed curves that we assume generated them.

FIGURE 1.4: Mean temperatures at four Canadian weather stations.

Functional data are increasingly prevalent. Instances of functional data can be produced by
optical tracking equipment, electrical measurements, astronomy observations, signal process-
ing, and weather data. As mentioned above, these data are of infinite dimension which is why
analysis is more arduous and demanding than multivariate or high dimensional data. In the mul-
tivariate context, functional data "refers to a set of several functions or times series describing
the same individual" (Bouveyron et al., 2019, p. 358).

On the one hand, classical cluster analysis could yield useful for processing multivariate
functional data, but the functional nature of the data makes the task difficult as the data live in
an infinite-dimensional space. Furthermore, the main disadvantage of the classical approach is
that the underlying continuity of the data is ignored, which is essential to accurately represent
functional data as we do not want to assume nothing happened between sampled points (Ram-
say, 1982). On the other hand, another classical response is to utilize a family of functions to
represent the data but this approach is highly inflexible because of the dependency on a limited
number of parameters as many datasets are too complex to be fully represented with parametric
models. Therefore, the use of piecewise polynomials or splines has been a major development
as they can use breaks to allow when curves need to have sharp peaks or valleys or an abrupt
change of level. Breaks in splines make it possible to have more flexibility in representing the
data (Hastie, Tibshirani, and Friedman, 2009).

Clustering methods help understand system behavior but come with disadvantages when
handling functional data as most clustering methods for functional data apply multivariate tech-
niques to the discretized curves or use distance-based algorithms (Bouveyron et al., 2019). Ad-
ditional challenges of working with functional data are estimating functional data from noisy or
categorical samples, regularization and smoothness, and measures of variation and confidence
in estimates (Yao, Müller, and Wang, 2005).
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With the ever-increasing computing and storage capacity, many fields have begun to collect
and store massive amounts of data in the form of time series such as credit card records, stock
prices, temperature, and biological measurements. Technically, functional data can be seen
as multivariate time series. The main difference between functional data analysis (FDA) and
time series analysis (TSA) is in the representation of data points. For FDA, each observation
is represented by a curve, whereas for TSA the atomic observation is an individual time point.
Therefore, TSA’s goal is to analyze temporal dependence between data points and predict new
time points. Instead, FDA attempts to find common patterns between the curves (i.e., clustering)
or response variables in regression models (Ramsay and Silverman, 2005).

Model-Based Clustering for Multivariate Functional Data

There is copious research that present clustering for univariate functional data, such as James
and Sugar (2003), Bouveyron and Jacques (2011), Jacques and Preda (2013), and Bouveyron,
Côme, and Jacques (2015). However, we require an MBCFD algorithm which can handle
multivariate functional data. A large part of the earlier work on multivariate functional data
analysis focused on a variation of k-means, such is the work of Singhal and Seborg (2005)
where they modify k-means to cluster multivariate time-series data using similarity factors; Ieva
et al. (2013) use multivariate functional k-means with different distance options; Tokushige,
Yadohisa, and Inada (2007) extend existing crisp and fuzzy k-means clustering algorithms to
the multivariate functional data case; Zambom, Collazos, and Dias (2019) explore hypothesis
testing k-means by clustering curves with different degrees of smoothing. Moreover, functional
principal component k-means was developed by Yamamoto (2012) with the purpose of seeking
"the subspace that is maximally informative about the clustering structure in the data" (p. 1).

However, the latest developments in FDA have presented efficient model-based clustering
methods for functional data. Model-based clustering is defined as:

Definition (Model-based Clustering).
"Model-based clustering is a principled approach to cluster analysis, based on a proba-
bility model and using standard methods of statistical inference. The probability model
on which it is based is a finite mixture of multivariate distributions" (Bouveyron et al.,
2019, p. 15).

Model-based clustering involves the following elements: (1) model: based on a finite mix-
ture probability model, (2) estimation method: systematic statistical method for model param-
eters estimation, and (3) method for classification: systematic method for classifying the ob-
servations conditionally on the model (Bouveyron et al., 2019). Mixture modeling assumes
that the data is sampled from a population described by a probability density function which is
"characterized by a parameterized model taken to be a mixture of component density functions;
each component density describes one of the clusters" (Hastie, Tibshirani, and Friedman, 2009).

A model-based approach utilizes particular models for clustering and attempts to optimize
the fit between the data and the model by maximum likelihood or Bayesian approaches. Recent
breakthroughs in functional data analysis have facilitated the development of model-based tech-
niques for clustering functional data. We adopted the classification of functional data clustering
methods and their respective definitions (see Figure 1.5) from Jacques and Preda (2014a):

• Raw data methods: these methods consist of clustering directly the curves on the basis of
their evaluation points.



Chapter 1. Related Work 25

• Distance-based methods: these methods use clustering algorithms based on specific dis-
tances for functional data. Notice that, depending on the way these distances are com-
puted, these methods can be related to either raw data or filtering methods.

• Filtering methods: these methods first approximate the curves into some basis of func-
tions and second perform clustering using the basis expansion coefficients.

• Adaptive methods: these methods consider that the functional representation of data is
depending on clusters, and perform simultaneously dimensionality reduction and clus-
tering. Thus, depending on its cluster membership, an observation (a curve) could have
different representations.

FIGURE 1.5: Segmentation of different clustering methods for functional data
adapted from Jacques and Preda (2014a), p. 238.

1.3.3 SQ1.2: Which are MBCFD algorithms that can be used for deriving
knee OA phenotypes?

To answer our research question, we focused on the adaptive methods category. Adaptive meth-
ods are model-based clustering methods for functional data. In this category, the basis expansion
coefficients are treated as random variables with cluster-specific probability distribution instead
of parameters as in filtering methods. Put differently, the probability of cluster membership
can be estimated for each observation for all clusters. Most adaptive methods use probabilistic
clustering of basis expansion coefficients or functional principal component analysis scores.

We focused our options on the two most recent adaptive model-based clustering methods:
funFEM and funHDDC. Functional PCA and latent mixture models are used as well as model
estimation by Expectation-Maximization (EM) in both methods. We evaluated funFEM and
funHDDC based on flexibility, interpretability and ability to handle multivariate data. We define
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these criteria as: (i) flexibility: ability of the method to adjust its parameters, (ii) interpretability:
access to model results and possibility to easily visualize resulting clusters, (iii) ability to handle
multivariate data: option to use univariate and multivariate data.

funFEM. This model was developed by Bouveyron, Côme, and Jacques (2015) and is based
on a discriminative functional mixture (DFM) model. funFEM models variables within each
discriminative functional subspace separately. The goal is to produce a straightforward visual-
ization of the clusters to be able to compare the discovered patterns. funFEM can be considered
an extension of discriminative latent mixture (DLM) models into the functional case. In DLM
models, the latent subspace is the one that maximizes the separation between clusters hence
common to all groups. In funFEM, the data is represented via basis functions, then the most
discriminative space is found and the maximum likelihood is obtained with an EM algorithm.

funFEM is well-equipped in terms of flexibility and interpretability, however, it is not yet
designed to handle multivariate functional objects.

funHDDC. Clustering in high-dimensional spaces is complex because high-dimensional data
typically live in different low-dimensional subspaces hidden in the original space. Bouveyron,
Girard, and Schmid (2007) developed a method based on the Expectation-Maximization algo-
rithm called High-Dimensional Data Clustering (HDDC) which estimates the specific subspace
and the intrinsic dimension of each group. Bouveyron and Jacques (2011) expanded HDDC
to the functional case with funHDDC which assumes a parsimonious cluster-specific Gaussian
distribution for basis expansion coefficients. Then, Jacques and Preda (2014b) proposed Fun-
clust, the first model-based clustering algorithm for multivariate functional data. Funclust is a
Gaussian mixture model based on multivariate functional principal component analysis (MF-
PCA), defined and estimated by a variation of the EM algorithm. The main advantage of this
method is that the dependency between the curves is included in the analysis through MFPCA.
Funclust is quite flexible given its probabilistic modeling but it has the limitation of only mod-
eling a proportion of the variance and thus part of the information is missed. Furthermore,
Schmutz et al. (2020) adapted funHDDC to the multivariate case by using a "functional latent
mixture model which fits the data into group-specific functional subspaces through a multi-
variate functional principal component analysis" (Schmutz et al., 2020, p. 1). funHDDC over-
comes the limitation of Funclust by modeling all non-null variance principal components thus
all information is considered. Moreover, the funHDDC method assumes that the scores of the
functional principal components have Gaussian-distributed and cluster-specific parameters and
uses Expectation-Maximization to infer/select the best model. The choice of hyper-parameters
is achieved through embedded model selection.

Consequently, we selected funHDDC as our MBCFD method to derive knee OA pheno-
types due to its flexibility, interpretability, and ability to handle multivariate data. Up to now,
only Funclust (Jacques and Preda, 2014b) and funHDDC are able to handle multivariate data
(Bouveyron et al., 2019). With funHDDC being built upon Funclust, it would be redundant to
consider both methods.

funHDDC is flexible since it allows us to select between six levels of model parsimony,
adjust the number of EM iterations, test several numbers of clusters at the same time, choose
from three criteria for model selection (BIC, ICL and slope heuristic), among other parameters.
The interpretability of the results when plotted as line charts allow us to see three dimensions,
namely time, trajectory (i.e., direction or slope) and measurement. In addition, the results of
funHDDC show the number of dimensions for each cluster, the mean of each cluster in the
original space, the proportion of individuals in each cluster, the maximum log-likelihood, the
log-likelihood at each iteration, the posterior probability for each individual to belong to each
cluster, the clustering partitions, BIC score, ICL score, and number of parameters estimated.
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funHDDC uses basis functions, which are like functional building blocks, to model the vari-
ables through time by reconstructing them into curves. One of the advantages of using a basis
function system is that we do not take noise into account. The linear combination of the basis
functions is called a basis function expansion. In the same way, a basis system is a linear com-
bination of the monomial basis functions with their respective coefficients. Since polynomials
are limited in their flexibility in modeling complex functional shapes, Fourier series and splines
are widely used to overcome this limitation. Thus, a basis system can be modeled via Fourier
series for periodic data and b-splines for non-periodic data. These two systems are supple-
mented by the monomial and constant basis systems. Fourier series and b-splines can usually
handle the vast amount of analysis problems, though there are other systems available such as
the exponential basis for exponential functions, polygonal basis for straight-line segments, and
the power basis for a sequence of noninteger powers of an argument t (Ramsay, Hooker, and
Graves, 2009).

Multivariate functional principal component analysis (MFPCA) was first proposed in Ram-
say and Silverman (2005) as an extension of PCA for functional data to the multivariate case
by concatenating the coefficients in a basis expansion into a vector and then performing regular
PCA on the concatenated vectors. However, Schmutz et al. (2020) sustain that this approach
has the limitation of modeling only a proportion of principal components, therefore, missing a
considerable portion of the information. For this reason, the funHDDC algorithm by Schmutz
et al. (2020) overcomes this obstacle by modeling all principal components with non-null vari-
ance resulting in an improved clustering exercise based on a Gaussian model-based clustering
method which manages the dependency between functional variables.
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Chapter 2

Problem Statement
In data mining problems, a patient can be represented by their Electronic Health Records (EHR).
In order to find knee OA phenotypes, we can use EHR data to create groups that are similar
within and different between each other. EHR data can be categorized as functional data as it
is evidenced in the form of quantitative measurements evolving through time. In the univariate
case, functional data X is represented by a single curve where t represents the time:

X(t)ε R∀t ε [0,T ] (2.1)

A patient is typically represented by more than one characteristic and data on these char-
acteristics is collected in a clinical, trial or laboratory setting. Therefore, the corresponding
multivariate functional data, or set of n p-variate curves, can be written as:

X = X(t)tε[0,T ] with X(t) = (X1(t), ...,X p(t))′ ε Rp, p≥ 2 (2.2)

In reality, the functional expressions of the curves are not known and it is only feasible
to have discrete observations at a finite vector of times available. Consequently, it would be
required to convert these discretely observed values into a function Xi

j(t) computable for the
desired time argument t ε [0,T].

Table 2.1 shows the terminology used, i.e., the variables and their meaning.
In other words, functional data can be seen as multivariate data with order (a continuum) in

its dimensions. Therefore, patients’ observations through time could be considered as functions
because each curve is the observation of a measure/variable over a finite period of time. After
all, time is a crucial dimension to consider because it could allow us to identify more complex
disease patterns and often goes ignored in similar analyses. Functional data can keep the time
dependency between data points by converting vectors of discrete data points into curves thus
allowing information between sampling points to remain in the analysis.

Consequently, we aim to determine whether an MBCFD method improves the discovery of
phenotypes versus a non-functional, more traditional clustering approach, namely HCA. The
technical problem can be stated as:

Problem Statement.

Given a set of objects X in an p-dimensional space, we want to identify K clusters
with a model-based clustering of functional data algorithm that outperforms hierarchical
cluster analysis in terms of clinical relevance and statistical significance.

Our research clusters structured data features with the expected output in the form of statistically-
significant and clinically-relevant subgroups. In order to derive phenotypes from structured
data, we specifically investigate using an MBCFD method because of its flexibility in interpre-
tation, its ability to maintain the continuity information between multivariate sampling points,
and to assess whether a functional data clustering method performs better at identifying pheno-
types than hierarchical cluster analysis, a very commonly used algorithm for detecting pheno-
types. However, the only way to compare unsupervised clustering algorithms is to apply them
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TABLE 2.1: Terminology used to describe univariate/multivariate functional data.

Variable Meaning
X Data represented by curves
t Time
T Endpoint of time interval
p Number of dimensions
n Number of curves

on data with ground truth labels so that we are able to estimate the percentage of error for each
algorithm. Given that we do not have access to data with ground truth labels, we can focus on
statistical significance and clinical relevance between the groups of both exercises.

In summary, we expect to find statistically-significant, clinically-relevant subgroups in the
data that differ in disease course (10-year trajectories) and etiological mechanisms (features)
through the use of an MBCFD algorithm that outperforms a traditional clustering approach.
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Chapter 3

Solution
This experiment was conducted at the Rheumatology and Clinical Immunology Department of
the University Medical Center Utrecht (UMCU) in The Netherlands. As a university medical
center, the UMCU is tasked with performing research, which makes it appropriate for conduct-
ing this experiment. The dataset used for analysis is from the Cohort Hip and Cohort Knee
(CHECK) study. Medical experts and researchers familiar with CHECK, OA etiology and sta-
tistical analysis were consulted throughout the process. The method used for the experiment is
CRISP-IDM which is described in a subsequent section and in detail throughout this chapter.

3.1 Data: Cohort Hip and Cohort Knee (CHECK)
CHECK, an initiative of the Dutch Arthritis Foundation, is a multi-center 10-year prospective
cohort study of 1002 individuals with signs of early symptomatic OA of hip or knee, aged 45-65
years, and without a previous consultation for these complaints or with a first consultation no
longer than six months ago to their primary care physician. Participants who potentially fulfilled
the inclusion criteria were asked to join the study when visiting their physicians. Moreover,
participants were recruited through newspapers, ads, and through the Dutch Arthritis Founda-
tion1 web site. The participating centers’ medical ethics committees approved the study and all
participants signed informed consent forms. Patients with other conditions that could explain
their symptoms were excluded. Other exclusion criteria were comorbidities that impeded phys-
ical evaluation or 10-year follow up, presence of malignancy in the last five years and Dutch
language proficiency (Wesseling et al., 2014). Participants were evaluated clinically through
regular examinations and questionnaires, radiographically via knee and hip radiographs, and
biochemically with collection of plasma, serum, and urine samples (Van Spil et al., 2012). Par-
ticipants were divided into two groups: annual and variable, depending on the severity of their
symptoms with patient with more serious symptoms visiting the centers each year and patients
with milder symptoms visiting at years 0, 2, 5, 8 and 10. The aim of the study was to help
improve knowledge regarding early OA.

CHECK data were collected at ten general and university hospitals in The Netherlands, lo-
cated in semi-urbanized regions. The participating centers were Erasmus Medical Center Rot-
terdam, Kennemer Gasthuis Haarlem, Leiden University Medical Center, Maastricht Univer-
sity Medical Center, Martini Hospital Groningen/Allied Health Care Center for Rheumatology
and Rehabilitation Groningen, Medical Spectrum Twente Enschede/Ziekenhuisgroep Twente,
Reade, Center for Rehabilitation and Rheumatology, St Maartenskliniek Nijmegen, University
Medical Center Utrecht, and Wilhelmina Hospital Assen. The participating centers’ medical
ethics committees approved the study and all participants signed informed consent forms (Wes-
seling et al., 2014).

1https://reumanederland.nl/

https://www.umcutrecht.nl
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3.2 CRISP-IDM Method
The CRoss-Industry Standard Process for Data Mining (CRISP-DM) method was conceived in
1996 by DaimlerChrysler, SPSS, and NCR (Chapman et al., 2000). CRISP-DM organizes the
data mining process into six phases: business understanding, data understanding, data prepara-
tion, modeling, evaluation, and deployment. CRISP-DM is broadly considered to be one of the
best knowledge discovery methods in data mining, in part because it seamlessly includes orga-
nizational aspects of data mining. The method chosen to perform the OA phenotype research,
CRISP-IDM (Menger et al., 2016), is a specification of the CRISP-DM method applicable to
exploratory and interactive data analysis in healthcare and potentially other fields. Menger et al.
(2016) adapted the CRISP-DM method with the goal in mind to do exploratory data analysis
that integrates domain experts (particularly in the healthcare industry), and created the CRoss-
Industry Standard Process for Interactive Data Mining (CRISP-IDM) method (see Figure 3.1)
by introducing three modifications: 1) aggregating the modeling and evaluation phases into one
iterative phase, which requires the involvement of domain experts; 2) separating the data prepa-
ration phase into general and specific. The general data preparation will be part of the modeling
phase and the specific data preparation will be part of the evaluation phase, and 3) adding an op-
tional inferential analysis step necessary to bring exploratory analysis results and/or generated
hypotheses into practice with sufficient statistical confidence.

A brief overview of the phases is as follows, more in-depth information is provided in the
subsequent sections.

1. Domain understanding: the initial phase consists of understanding project objectives and
requirements through the organization of topics, themes and their priorities by interview-
ing domain experts in context.

2. Data understanding: starts with initial data collection and follows with activities that en-
able familiarity with the data, identifying data quality issues, and noticing some insights.
This phase requires the selection of relevant internal and external data sources such as
Electronic Health Records (EHR), imaging data, laboratory results, census data, etc.

3. General data preparation: relates to the preprocessing of the data to convert it into the
appropriate format for exploratory analysis. The most relevant tasks in preparing the
data are transforming, cleaning, integrating, reducing, and discretizing the data (Zhang,
Zhang, and Yang, 2003).

4. Modeling and evaluation: an interactive data visualization tool is used to involve domain
experts in modeling the data, which enables immediate feedback. This phase consists of
five iterative activities (see Figure 3.1). The double-sided arrow between the specific data
preparation and set up visualization activities denote the interactive back-and-forth that
takes place inside this phase.

5. Inferential analysis: this phase is optional (depends on the project’s analysis needs and
data available) and aids in implementing exploratory results or generated hypotheses with
sufficient statistical confidence.

6. Deployment: focuses on the implementation of results transforming them into daily prac-
tice.

The following sections provide an in-depth description of the execution of the experiment
per each of CRISP-IDM’s phases.
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FIGURE 3.1: Overview of the CRISP-IDM method, adapted from Menger et al.
(2016, p. 3).

3.3 Domain Understanding
In order to become acquainted with the objectives and requirements of the project, two UMCU
medical experts were regularly consulted, as well as the main supervisor of this work from
Utrecht University. Additionally, two statistical analysis experts were consulted at the beginning
and at the end of the project. Meetings with medical experts allowed the mapping of themes and
topics. Themes are needed for selecting relevant data sources and general data preparation. A
total of seven topics were identified after the meetings with experts, which can be seen in Table
3.1. These seven topics were grouped into three themes, namely ’state of the art’, ’method
performance’, and ’relevant phenotypes’. The topics are also the basis for defining our research
questions which can be seen in the Introduction section of this thesis. The prioritization was
determined by the contribution of each topic to the MRQ. The ’state of the art’ theme relates
to the current research being performed to discover OA phenotypes and requires data from the
literature review. The ’method performance’ theme relates to how well the selected MBCFD
method performs at identifying phenotypes from the CHECK data and in comparison with a
widely-used method in the scientific literature. Lastly, the ’relevant phenotypes’ theme pertains
to detecting statistically-significant and clinically-relevant phenotypes. The second and third
themes require data from CHECK which is further explained in the Data Understanding phase.
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TABLE 3.1: The seven topics identified during the domain understanding phase
along with their corresponding theme and priority.

Topic Theme Priority
Current and most common methods for
discovering knee OA phenotypes State of the art 2

Which characteristics (groups of features)
are used for deriving knee OA phenotypes? State of the art 2

Which Model-based Clustering of
Functional Data (MBCFD) algorithms are
suitable for the analysis?

State of the art 1

Performance of selected MBCFD
algorithm Method performance 1

Comparison of MBCFD algorithm with
method widely used in the literature Method performance 2

Detect statistically-significant phenotypes Relevant phenotypes 1
Detect clinically-relevant phenotypes Relevant phenotypes 1

Clinically-Relevant Phenotypes. We define clinically-relevant phenotypes as those that
are represented by different trajectories between features and/or present upward or downward
trajectories. In addition, it is also considered interesting when two or more phenotypes show
progression in one feature but have different progression in another feature. We define progres-
sion as trajectories with either upward or downward trends. According to domain expertise, we
are most interested in finding increasing or decreasing progression over time and the synergistic
effect when combining features, e.g., when a lateral feature increases over time but its medial
counterpart decreases or remains the same. Figure 3.2 shows examples of what could be deemed
as clinically-relevant phenotypes by domain experts for multivariate scenarios. Moreover, it is
essential to maintain the number of clusters low so phenotypes can be described and used in
further research. Lastly, it would not practical nor relevant to have a large number of clusters,
however, we need enough clusters to represent progression. The least relevant phenotypes are
ones where we see either high, moderate, or low constant levels (i.e., straight trajectories with
no upward or downward trends). Additionally, since we are interested in finding inter-feature
differences, the same behavior (i.e., trend) for all features is deemed as not interesting.

The clinical relevance criteria can be summarized as:

(i) Different inter-cluster feature trajectories

(ii) Upward/downward trajectories

(iii) Multi-feature different behavior

(iv) Balanced number of clusters

3.4 Data Understanding
Each of the previously identified themes requires selecting and accessing relevant data sources.
Relevant English-language articles will be used as the data source for the ’state of the art’
theme and presented in chapter 1 of this thesis. However, the literature review is not considered
input for the technical analysis, thus it is not be reflected in Table 3.2. In the case of the
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FIGURE 3.2: Examples of trajectories of clinically-relevant phenotypes.

’method performance’ and ’relevant phenotypes’ themes, we are using the CHECK dataset
which is described on the CHECK Research website and access can be requested through the
online archiving system EASY of Data Archiving and Networked Services (DANS). The data
is provided in comma-separated values (CSV) format. Even though a subset of CHECK data
was collected at the UMCU, other medical centers participated in the study, therefore CHECK
data is considered an external source. All acquired data entities and their type, structure, and
number of records are listed in Table 3.2 and described below. Baseline characteristics for
CHECK participants are shown in Table 3.3. Additionally, Tables 3.4, 3.5, 3.6, and 3.7 present
a summary of collected data during 10 years in all participants (A) and in the subgroup (S) of
the annual visiting group of CHECK for the four different categories: questionnaires, clinical
assessment, radiographic assessment and biochemical markers. Subjects with mild symptoms
visited the medical centers at years 0, 2, 5, 8 and 10 and subjects with significant symptoms
visited the medical centers annually. For an in-depth description of the CHECK study, see
Wesseling et al. (2014).

TABLE 3.2: Acquired data entities with type, structuredness, and number of
records.

Data entity Type Structured/
unstructured

Number
of records

Questionnaires Continuous, discrete Structured 11,022
Clinical assessment Continuous, discrete Structured 11,022
Radiographic assessment Continuous, discrete Structured 5,010
Biochemical markers Continuous, discrete Structured 1,002

https://www.check-onderzoek.nl/
easy.dans.knaw.nl
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TABLE 3.3: Baseline characteristics of CHECK participants.

Characteristic N(%)
Age in years, mean (sd) 56 (5)
Females, n (%) 792 (79)

Post menopausal, n (%) 475 (77)
Caucasian, n (%) 976 (98)
BMI in kg/m2, mean (sd) 26 (4)
Academic or higher vocational education, n (%) 267 (28)
Physical activity (more than 30 minutes) for three
times a week or more, n (%) 524 (54)

Smoking every day, n (%) 90 (9)
N: number of subjects; sd: standard deviation

3.4.1 Questionnaires and Clinical assessment
Clinical variables in the CHECK study were collected via self-reported questionnaires, medical
history questions and physical examination by a health practitioner. Self-reported question-
naires evaluated hip and knee symptoms, hand symptoms, pain severity, coping, health-related
quality of life, leisure activities and employment, economic consequences, social support and
comorbidities (Wesseling et al., 2014). Summaries for the questionnaires and clinical assess-
ment data can be seen in Tables 3.4 and 3.5.

TABLE 3.4: Summary of collected questionnaires data from CHECK, adapted
from Wesseling et al. (2014).

Questionnaires data/year 0 1 2 3 4 5 6 7 8 9 10
Demographics A S A S S A S S A S A
SF-36: Short-Form 36-item health
status survey A S A S S A S S A S A

EQ5D: EuroQol (Quality of Life) A S A S S A S S A S A
WOMAC: Western Ontario and
McMaster Universities Osteoarthritis
Index

A S A S S A S S A S A

NRS for pain intensity (numerical
rating scale) A S A S S A S S A S A

Comorbidity list A S A S S A S S A S A
Health care use A S A S S A S S A S A
Pain Coping Inventory list A A A A A
Social Support scale A A A A A
Lifestyle: tobacco and alcohol use A A A A A
AUSCAN: Australian Canadian
Osteoarthritis Hand Index A

ICOAP: Measure of Intermittent
and Constant Osteoarthritis Pain A S A

A: all participants; S: subgroup or annual visiting group
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TABLE 3.5: Summary of collected clinical assessment data from CHECK,
adapted from Wesseling et al. (2014).

Clinical assessment data/year 0 1 2 3 4 5 6 7 8 9 10
Knee examination

Palpable warmth A S A S S A S S A S A
Refill test A S A S S A S S A S A

Bony tenderness A S A S S A S S A S A
Patella grinding test A S A S S A S S A S A

Range of motion: flexion/extension A S A S S A S S A S A
Crepitus A S A S S A S S A S A

Hip examination
Range of motion: flexion/internal/
external rotation/adduction/abduction A S A S S A S S A S A

Hand examination
DIP/PIP bony enlargements A S A S S A S S A S A
CMC I bony enlargements S S A S A
Soft tissue swelling MCP I-V S S A S A
Deformity CMC I, DIP, PIP S S A S A
A: all participants; S: subgroup or annual visiting group

3.4.2 Radiographic Data
The severity of knee and hip osteoarthritis is scored according to the Kellgren and Lawrence
(K&L) scale (0-4) with grade 0 signifying no presence of OA and grade 4 signifying severe
OA (Kellgren and Lawrence, 1957). Separate features of the knee and hip were scored on
other radiographs according to Altman and Gold (2007) and Burnett et al. (1994), both on a
0–3 scale. The radiographs were independently scored by five experienced observers. Read-
ers scored all consecutive radiographs simultaneously with a known sequence, but blinded to
the clinical status. Interobserver variability was tested resulting in moderate to substantial in-
terobserver agreement (Wesseling et al., 2014). Lastly, Knee Images Digital Analysis (KIDA)
assessed more comprehensive quantitative parameters on radiographs (Marijnissen et al., 2008)
and were measured without knowing the sequence of the radiograph. A summary of collected
radiographic assessment data can be seen in Table 3.6.

TABLE 3.6: Summary of collected radiographic assessment data from CHECK,
adapted from Wesseling et al. (2014).

Radiographic assessment data/year 0 1 2 3 4 5 6 7 8 9 10
Knee: unilateral posterior-anterior
fixed exion view (both knees) A A A A A

Knee: unilateral lateral view
(both knees) A A A A A

Knee: bilateral skyline view (supine) A A A A
Hip: anterior-posterior pelvis view A A A A A
Hip: unilateral faux profile view (both hips) A A A
Hand: bilateral posterior-anterior view A
Lumbar spine: lateral view (supine) A
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Table 3.6 continued from previous page
Radiographic assessment data/year 0 1 2 3 4 5 6 7 8 9 10
A: all participants; S: subgroup or annual visiting group

3.4.3 Biochemical Markers Data
Markers of cartilage, bone and synovial metabolism were collected to enhance understanding of
mechanisms of progression. Blood and urine samples were acquired from each subject adhering
to a standardized protocol at all participating centers. A systematic review of the biochemical
markers in knee and hip OA was the foundation for formulating the set of biochemical mark-
ers to be garnered at baseline (Van Spil et al., 2010). A summary of collected biochemical
assessment data can be seen in Table 3.7.

TABLE 3.7: Summary of collected biochemical assessment data from CHECK,
adapted from Wesseling et al. (2014).

Biochemical assessment data/year 0 1 2 3 4 5 6 7 8 9 10
DNA A
Plasma A A A
Serum A A A
Urine A A A
Biochemical markers A
A: all participants

3.5 General Data Preparation
The data was provided in CSV format as a long dataset with 573 columns (variables) and 11,022
rows. Each subject has been anonymized by means of a subject identification number (NSIN).
All data processing was performed in the Rstudio Integrated Development Environment (IDE)
with the R language (version 3.6.2) (R Core Team, 2013). RStudio includes a console, syntax-
highlighting editor, diverse support tools and workspace management capacity. R is an open
source language widely used for statistical analysis.

In order to convert all variables to the appropriate format for exploratory data analysis, the
following actions were taken:

1. Checked the minimum, maximum, range, mean/median, standard deviation, and number
of missing values for all variables to identify inconsistencies.

2. Converted variables to appropriate data types with functions such as as.factor(), as.integer(),
and as.numeric() from the base package.

3. Replaced characters such as commas with dots (e.g., "5.5" instead of "5,5") with the
pattern matching and replacement function gsub() from the base package.

4. Removed negative and out-of-scale values where appropriate (e.g., when measuring joint
space narrowing distances, negative values are considered errors, thus removed from the
dataset). These outliers were most likely generated due to human error.

5. Converted binary variables from 1/2 to 0/1

https://rstudio.com/
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Testing Normality. During the fifth phase of CRISP-IDM, Inferential Statistics, we performed
hypothesis testing to understand whether the derived clusters have a statistically-significant dif-
ference in inter-cluster means. For this purpose, we visually inspected the data by creating
histograms of variables per year and applied the Shapiro-Wilk test to the data to learn if it is
normally-distributed. We used the shapiro.test function from the stats package (R Core
Team, 2019) in R. As we can see from the results in Table 3.8, the data is not normally dis-
tributed as the p-values < 0.05, hence, indicating the data considerably deviate from a normal
distribution. Thus, given the data is not normally distributed, it is recommended to use the
Kruskal-Wallis test to ascertain statistical significance.

TABLE 3.8: Shapiro-Wilk test results for normality.

Data/p-values WOMAC
Pain

WOMAC
Function

WOMAC
Stiffness KIDA OA Scoring

Baseline 6.54E-15 1.86E-16 2.79E-15 3.99E-08 1.67E-68
Year 1 3.84E-16 4.28E-18 6.96E-16 2.77E-11 4.66E-68
Year 2 6.49E-17 1.16E-18 1.11E-16 6.95E-11 5.63E-68
Year 3 6.52E-19 8.32E-21 2.39E-17 3.29E-08 4.33E-67
Year 4 4.36E-18 1.14E-19 2.97E-17 4.69E-07 4.33E-67
Year 5 3.54E-18 1.08E-17 3.41E-16 4.46E-10 1.00E-59
Year 6 1.98E-17 2.57E-18 3.13E-18 9.31E-14 2.19E-56
Year 7 1.04E-18 3.54E-19 5.83E-18 7.40E-18 2.56E-51
Year 8 8.00E-20 1.20E-19 2.21E-19 1.91E-18 6.03E-51
Year 9 1.61E-20 2.27E-19 2.10E-19 8.90E-20 6.03E-51
Year 10 1.21E-19 2.36E-19 9.50E-19 2.58E-44 4.07E-44

Clustering Tendency. We aimed to learn whether the data might contain meaningful insights.
One way to do this is by understanding if the data were generated from a uniform distribution
(i.e., meaningful results would not be found). For this purpose, we used the get_clust_tendency
function from the factoextra package (Kassambara and Mundt, 2020) in R to compute the H
statistic with sample size n = 100. As we can see from table 3.9, the results suggest the data
does not contain uniformly-distributed data as H > 0.5.

In addition, with the graph argument from the get_clust_tendency function set to TRUE,
we plotted the dissimilarity matrix based on Euclidean distance and reordered the data points
resulting in a ordered dissimilarity matrix. The ordered dissimilarity images can be visualized
in Appendix D, Figure D.1. By assessing the plots, we can detect the clustering tendency by
counting the number of square-shaped dark blocks along the diagonal (Kassambara and Mundt,
2020). The darker the squares, the more well-separated the clusters (Bezdek and Hathaway,
2002).

TABLE 3.9: Hopkins statistic test results.

Sample data WOMAC
Pain

WOMAC
Function

WOMAC
Stiffness KIDA OA Scoring

n=20 0.69 0.73 0.67 0.82 0.80
n=50 0.73 0.76 0.69 0.79 0.81
n=100 0.72 0.76 0.67 0.81 0.81
n=200 0.72 0.75 0.67 0.80 0.80
Average 0.71 0.75 0.68 0.80 0.81

The outcome of the General Data Preparation phase was a clean and understandable dataset
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ready for analysis. At this stage, only general data preparation requirements were clear to
the data scientist, thus specific data preparation tasks were executed during the specific data
preparation iterations in the modeling and evaluation phase.

3.6 Modeling and Evaluation
The modeling and evaluation phase encompasses the following five interactive activities: select
data, specific data preparation, setup visualizations, explore data and results. Since our investi-
gation is explorative in nature, the close collaboration of the data scientist and domain experts
is executed throughout the iterative activities of this phase in weekly meetings. The domain
experts are needed to guide the analysis with their domain expertise by, for instance, recom-
mending subsets and combinations of features that make clinical sense. Subsequently, the data
scientist modifies the R scripts or creates new scripts depending on the results of the last activity
of this phase. Once the scripts are finalized, the data scientist proceeds to create a document
with the visualizations and pertinent information to discuss with the domain experts during the
next iteration. We explain in further details activities two through four of this phase in the next
sections, as we only have one main data source we do not have to change this selection (first
activity). We dedicate separate subsections for the specific data preparation for each algorithm.

3.6.1 Specific Data Preparation
Specific Data Preparation for MBCFD

This sub-activity consists of preparing the functional data objects (i.e., converting discrete ob-
servations into curves), specifying the basis system, and running the funHDDC algorithm.

Preparing the functional data. The following R packages were used: dplyr by Wickham
et al. (2020), reshape by Wickham (2007), base included in R, imputeTS by Moritz and
Bartz-Beielstein (2017), fda by Ramsay et al. (2018), and funHDDC by Schmutz, Jacques, and
Bouveyron (2019). Table 3.10 shows the packages, functions and their specific utilization/steps.
The fda package contains the object class fd which is used to represent functional data objects
as a finite linear combination of basis functions by creating a list of class fd which stores
the basis functions and individual coefficients for each curve (Happ-Kurz, 2020; Ramsay et al.,
2018). Moreover, Listings 3.1 and E.1 respectively show the pseudocode and R code of an
example of the data preparation for radiographic variable: left knee sky view patellofemoral
osteophyte. Figure 3.3 presents how the WOMAC Pain data is visualized after it has been
reconstructed into its functional form. Once the functional data objects have been created, the
basis system needs to be specified and the funHDDC algorithm needs to be run.

TABLE 3.10: Specific data preparation packages and functions used for the
model-based clustering of functional data algorithm.

Package Function Utilization/steps

dplyr select

Select specific variables to create an individual
dataframe for each variable which contains
three dimensions: the subject identification
number (NSIN), the year and the corresponding
continuous or discrete value. This step results
in a long dataframe with three columns.



Chapter 3. Solution 40

Table 3.10 continued from previous page
Package Function Utilization

reshape cast

Cast the long dataframe into the reshaped or
aggregated form we desire: a wide dataframe
where each column is one year and each row
is a patient. Depending on data availability,
we may have one, five, and up to eleven years
of data.

base is.na
Subset rows with a maximum of three
NAs per row.

imputeTS na_interpolation
Use linear interpolation to replace remaining
missing values per row.

base intersect
Create an index of the intersection of the
prepared dataframes of all variables.

fda smooth.basis

Construct a functional data object by
smoothing data using a roughness penalty.
We construct one functional data object per
variable. This allows for the combination of
a set of coefficients with the specified basis
system.

funHDDC funHDDC
Cluster multivariate functional data into
group-specific functional subspaces.

−S e l e c t year , id , v a r i a b l e from main d a t a f r a m e
−Save i n t o new f u n c t i o n a l d a t a f r a m e f o r v a r i a b l e
−Cas t t h e f u n c t i o n a l d a t a f r a m e i n t o rows f o r o b s e r v a t i o n s and
columns f o r each y e a r
−S e l e c t rows from f u n c t i o n a l d a t a f r a m e t h a t have a maximum of
t h r e e m i s s i n g v a l u e s
−Per fo rm rowwise l i n e a r i m p u t a t i o n f o r t h e f u n c t i o n a l d a t a f r a m e
−Save i n t o new f u n c t i o n a l d a t a f r a m e f o r v a r i a b l e
−C r e a t e i n d e x c o n t a i n i n g t h e l i s t o f o b s e r v a t i o n s
− I n t e r s e c t i n d e x wi th o t h e r v a r i a b l e s t o c r e a t e m u l t i v a r i a t e
i n d e x
−S u b s e t t h e f u n c t i o n a l d a t a f r a m e wi th m u l t i v a r i a t e i n d e x
−C r e a t e f u n c t i o n a l d a t a o b j e c t w i th ( p r e v i o u s l y c r e a t e d ) b a s i s
sys tem

LISTING 3.1: Pseudocode for specific data preparation.

Specifying the Basis System. As stated in chapter 1, there are a few options for basis systems.
Recall that a basis system is a linear combination of the monomial basis functions with the
coefficients from the functional data. Examples of basis systems are Fourier series, b-splines,
exponential, power, and polygonal bases. Figure 3.4 illustrates the shape the data would take
after smoothing them into the chosen basis system. After careful consideration, we decided
that exponential (Figure 3.4.D.) and power (Figure 3.4.E.) bases do not apply in our case be-
cause we do not have exponential functions nor a sequence of powers as our data. That left us
with the choice of Fourier series (Figure 3.4.A.), b-splines (Figure 3.4.B.) or polygonal (Figure
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FIGURE 3.3: WOMAC Pain data reconstructed into their functional form.

3.4.C.) bases. We explored these three options along with the domain experts and concluded
that a polygonal basis is the most suitable choice since Fourier series model periodic data (e.g.,
weather data following a full cycle each year) and b-splines are not convenient when we are
trying to identify the peaks and valleys in the functional data since the curves are smoothed at
the knots. Put another way, with a Fourier series basis our data would have to follow a complete
cycle each year which is not the case for a slowly progressive disease. On the other hand, with a
b-splines basis (see Figure 3.4.B.) represented by the seven functions of the third degree corre-
sponding to three interior knots (placed at years 2, 5, and 8) shown as dotted vertical lines over
the interval [0,10], are too smooth to capture the peaks. Using a polygonal basis allows us to
capture the straight line trajectory between periods, without obscuring the peaks and valleys in
the data. There are more options for basis systems but the creators of the fda package have not
considered them common enough to include them in the code (Ramsay, Hooker, and Graves,
2009).

We specify the basis system (see Listing E.2) by using the create.polygonal.basis func-
tion from the fda package and pass the argvals argument with the location of the join points
(e.g. at years 0, 2, 5, 8, and 10). argvals is defined as "a strictly increasing vector of argument
values at which line segments join to form a polygonal line" (Ramsay et al., 2018, p. 55).

Running the funHDDC algorithm. The funHDDC algorithm is based on a functional latent mix-
ture model that fits the data into group-specific functional subspaces (i.e., features and values
best describing the group) via multivariate functional principal component analysis (MFPCA).
The algorithm assumes the number of curves contained in each cluster can be described into
a low dimensional functional latent subspace particular to each group, such that dk < R,k =
1, ...,K where d are the intrinsic dimensions and K is the number of clusters. The goal is to
cluster the observed multivariate functional curves X1, ...,Xn into K homogeneous groups. The
model requires functional data objects for the data argument, the model(s) to be tested and the
number of clusters K. The number of clusters K to test can be defined a priori or an estimation
procedure can be summoned by defining a range for K as in Listing E.3. For a complete list of
funHDDC arguments, please refer to Schmutz, Jacques, and Bouveyron (2019).



Chapter 3. Solution 42

FIGURE 3.4: Illustration of five options of basis systems created with the fda
package.

TABLE 3.11: Arguments passed to the funHDDC function, adapted from
Schmutz, Jacques, and Bouveyron (2019).

Arguments Explanation
data In the multivariate case: a list of functional data objects.
K The number of clusters (a single number, a set or a range)

model

The chosen model among ’AkjBkQkDk’, ’AkjBQkDk’,
’AkBkQkDk’, ’ABkQkDk’, ’AkBQkDk’, ’ABQkDk’.
’AkjBkQkDk’ is the default. Multiple models can be
tested at the same time.

The package funHDDC proposes six different models, varying in levels of parsimony. The
default model is named ak jbkQkdk from which five submodels are derived depending on the
constraints applied on the parameters, resulting in more parsimonious models. Table 3.12 lists
the definitions for each of the model parameters.

TABLE 3.12: funHDDC model parameters.

Parameter Definition
a Values of first diagonal elements of covariance matrix
k Each of the clusters; instance of K
j Number of observations
b Values of last diagonal elements of covariance matrix

Q
Orthogonal matrix containing the basis expansion coefficients
of the eigenfunctions

d Number of dimensions for each cluster
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Furthermore, funHDDC uses the EM (Expectation-Maximization) algorithm for inference
of the model parameters. By default, 20 initializations of the EM algorithm are performed
and the solution which maximizes the log-likelihood is presented. The expectation (E) step
computes the conditional expectation of the complete log-likelihood using current parameters.
The maximization (M) step maximizes the expected complete log-likelihood conditionally on
the posterior probabilities estimated during the E step.

The final cluster result for an observation x(t) is obtained by estimating its probability of
belonging to each K cluster through the latent mixture model. Basically, funHDDC clusters
multivariate functional data by projecting them into low dimensional subspaces. The projections
are achieved by applying MFPCA to each cluster iteratively (Schmutz et al., 2020).

The code used to run the funHDDC algorithm can be seen in Listing E.3. The function prints
the name of the models tested and the options chosen for the algorithm, the complexity of
the model chosen (i.e., the number of free model parameters), and the Bayesian Information
Criterion (BIC) score which can aid model selection. In this case, BIC is to be maximized since
it is defined as 2LogLik− k ln(n) where k is the number of parameters and n is the number of
observations. Put differently, BIC is a negative number, thus we are searching for the maximum
score (i.e., smallest negative number). In addition, the function prints the name of the best
model according to the BIC criterion and the recommended number of clusters. An example
of the output can be seen in Figure 3.5. Furthermore, several additional parameters can be
extracted from the output, such as the proportion of individuals in each cluster (prop), the
posterior probability for each individual belonging to each cluster (posterior), the clustering
partition (class), the BIC scores, among others. For a full list of values obtained from running
funHDDC, please see Schmutz, Jacques, and Bouveyron (2019).

FIGURE 3.5: Example of output of the funHDDC algorithm.

3.6.2 Setting Up Visualizations
This activity encompasses using the previously prepared data and creating descriptive visual-
izations. It is advised to start with simple visualizations and moving to more complex graphics
later in the iterations. In order to show the results in an interpretable way, line chart plots were
selected. Listing E.4 shows an example of how to create the graphical representation of cluster
mean groups using the plot function from the graphics package (R Core Team, 2013). Fig-
ure 3.6 presents the resulting line chart which represents the five clusters’ mean values for the
variable WOMAC Pain (wmpyns).
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FIGURE 3.6: Example of visualization.

3.6.3 Exploring the Data
During this activity, discussions repeatedly take place among domain experts themselves and
with the data scientist. The objective is to understand the information presented and decide on
next steps of analysis, such as including or excluding features, different feature combinations,
different machine learning algorithms, etc. In total, 28 iterations of data exploration occurred.
During the iterations, mainly the selection and combination of features, use of basis systems,
and number of clusters were explored. Appendix B shows the steps, outcomes, and participants
of each iteration. Note that the data exploration iterations were mainly led by domain experts
in terms of feature selection and clinical relevance. The data scientist typically lacks knowl-
edge of the clinical domain but contributes by facilitating the understanding and application of
the algorithms and the visualizations by writing the scripts and creating/presenting the plots.
Nonetheless, team effort was needed to achieve the overall objectives and answer the research
questions.

After consensus was reached for the last funHDDC clusters (during the last iteration), the
comparison with the HCA exercise was performed.

Hierarchical Cluster Analysis. In order to create the HCA clusters, we used the dist, hclust,
and cutree functions from the stats package (R Core Team, 2019). Listing E.5 shows the
script used for the HCA analysis and Listing 3.2 shows the pseudocode. We executed the
following steps:

1. We created a matrix with all the data points used in the funHDDC exercise. We used ex-
actly the same data, which is already sampled (i.e., maximum of two data points missing)
and with missing values imputed with linear interpolation.

2. We computed the distances with Euclidean method with the dist function and stored the
resulting distance measures in an object of class dist.
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3. We fed the distance matrix into the hclust function, and selected the agglomeration
method within the method argument. The choices are "ward.D2", "single", "complete",
"average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid"
(= UPGMC). According to Hastie, Tibshirani, and Friedman (2009), given strong clus-
tering tendency (as observed by Hopkins statistic in our case), since each of the clusters
would be well-separated from the other, single, complete and average linkage methods
yield similar results. The Ward method is the most commonly used in the literature for
clustering knee OA phenotypes. Thus, we explored the Ward and average linkage meth-
ods.

4. We proceeded to use the cutree function to select the number of clusters we wished to
inspect. We can plot the HCA dendrogram with the plot function and visually select the
desired number of clusters by deciding on a particular dendrogram height which specifies
the order in which the clusters were joined. However, in our case, we selected the same
number of clusters as was decided during data exploration for the funHDDC clusters.

5. We plotted the group means for each feature set.

6. We visually inspected the graphical representation of cluster means for funHDDC and
HCA clusters to compare for clinical relevance.

P r e p a r e t h e d a t a as a m a t r i x
Compute E u c l i d e a n d i s t a n c e
C r e a t e dendrogram wi th d e s i r e d l i n k a g e method
P l o t dendrogram
Cut dendrogram t r e e a t d e s i r e d number o f c l u s t e r s K
C r e a t e l i s t o f members p e r c l u s t e r
S e l e c t sample wi th ( p r e v i o u s l y c r e a t e d ) o b s e r v a t i o n s i n d e x
C r e a t e d a t a f r a m e wi th s u b j e c t i d and c l u s t e r membership
C r e a t e d a t a s e t w i th i d and c l u s t e r s i n c l u d e d
Compute means o f c l u s t e r s

LISTING 3.2: Pseudocode for computing HCA clusters.

3.7 Inferential Analysis
Depending on the type of data at hand (e.g., continuous, discrete, binary, nominal, ordinal),
we can perform different statistical tests to determine the statistical significance of the derived
phenotypes. As stated in the Related Work chapter, if the data were normally distributed we
could use the one-way ANOVA test. However, from the previously performed visual inspection
of the data and Shapiro-Wilk test results (see Table 3.8), we determined the data is not normally
distributed. Consequently, in order to compute the inter-cluster statistical significance, we used
the Kruskal-Wallis rank sum test.

In addition, to estimate the agreement between cluster membership identified by funHDDC
and HCA, we used the adjusted Rand index (ARI).
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3.8 Deployment
The deployment phase commonly focuses on implementing the results discovered in the mod-
eling and evaluation and inferential analysis phases. However, transforming the results into
daily practice is a long process that falls outside the scope of this thesis. Therefore, we adapted
this phase to encompass the communication of the analysis and results via a thesis report and a
scientific article. Additionally, Figure 3.7 presents a Process-Deliverable Diagram (PDD) (Van
De Weerd and Brinkkemper, 2009) which is a diagram that describes a process through the use
of phases, activities, sub-activities and concepts. Concepts are deliverables resulting from the
activities. Our PDD was created to detail our solution’s phases, activities and deliverables and
guide researchers through similar projects in the future.
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FIGURE 3.7: Process-Deliverable Diagram of solution using CRISP-IDM
method.
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Chapter 4

Results and Discussion
After conducting CRISP-IDM’s phases beginning with domain understanding and ending with
deployment, in this chapter we present our results and answer research questions SQ2, SQ3,
and MRQ. Additionally, we used the consensus-based framework by Van Spil et al. (2020) as a
checklist of the reporting recommendations for statistical analysis, specifically for the following:
(i) availability of a pre-specified statistical analysis plan, (ii) analytical approach (supervised
or unsupervised) and rationale, and (iii) criteria for clinical relevance and/or applicability and
whether these were predefined.

4.1 Datasets: CHECK
After performing 28 iterations of data exploration, the domain experts estimated that clinically-
relevant results were found. Five main groups were reached: WOMAC Pain, WOMAC Func-
tion, WOMAC Stiffness, KIDA, and OA Scoring. The first three groups are univariate and the
latter two are multivariate scenarios.

The final set of features included in the analysis can be seen in Table 4.1. The number of
records before sampling and imputation with linear interpolation were 1,002 for subjects and
2,004 for knees. Four variables for the KIDA analysis were created by computing the respective
means of the femur and tibia measures: Lateral and Medial Osteophytes, and Lateral and Medial
Bone Density.

Domain expertise was used to decide to cluster WOMAC measures at the subject level (not
available at knee level) and radiographic measures (i.e., KIDA and OA Scoring) at the knee
level. The rationale behind this decision is that joints within a patient may have a different
underlying OA etiology (e.g., no OA in one joint and OA in another joint), which implicates
having a different phenotype for each joint. In addition, as ‘left’ and ‘right’ knees are inter-
changeable regarding phenotypes in a patient (the designation is arbitrary in this context), it
was deemed that clustering at joint level makes the most clinical sense.

TABLE 4.1: Final list of features included in the analysis.

Name Explanation Scale Years
available

Records
after
sampling
and
imputation

Percentage
data lost to
sampling

Questionnaire data: WOMAC - at subject level

wmpyns
WOMAC Pain:
standardized
pain scale

0-100 All (0-10) 819 18%

wmfuns

WOMAC Function:
standardized
physical
functioning
scale

0-100 All (0-10) 819 18%
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Table 4.1 continued from previous page

Name Explanation Scale Years
available

Records
after
sampling
and
imputation

Percentage
data lost to
sampling

wmstfs
WOMAC Stiffness:
standardized
stiffness scale

0-100 All (0-10) 820 18%

Radiographic variables: Knee Images Digital Analysis (KIDA) - at knee level

OsteophyteLatmm
Lateral Osteophytes:
mean of femur and
area

R≥0 in mm2 0,2,5,8,10 1888 6%

OsteophyteMedmm
Medial Osteophytes:
mean of femur and
tibia area

R≥0 in mm2 0,2,5,8,10 1888 6%

MeanLatJSWmm
Lateral Joint Space
Width (mean) R≥0 in mm 0,2,5,8,10 1889 6%

MeanMedJSWmm
Medial Joing Space
Width (mean) R≥0 in mm 0,2,5,8,10 1888 6%

BDMeanLatmmAl
Lateral Bone Density:
mean of femur and
tibia area

R≥0 in mmAl 0,2,5,8,10 1846 8%

BDMeanMedmmAl
Medial Bone Density:
mean of femur and
tibia area

R≥0 in mmAl 0,2,5,8,10 1846 8%

Combined: 1788 11%
Radiographic variables: OA Scoring (skyline views) - at knee level

K_SKY_SCL
Knee sky
patellofemoral
sclerosis

0,1,2,3 0,2,5,8,10 1788 11%

K_SKY_JSN
Knee sky
patellofemoral
narrowing

0,1,2,3 0,2,5,8,10 1877 6%

K_SKY_OST
Knee sky
patellofemoral
osteophytes

0,1,2,3 0,2,5,8,10 1873 7%

Combined: 1788 11%

4.2 Analysis
In order to understand how well a MBCFD method performs at identifying clinically-relevant
and statistically-significant phenotypes, we selected funHDDC based on its ability to handle
multivariate functional data, interpretability, and flexibility in modeling the data since it uses
adaptive basis expansion systems. Jacques and Preda (2014b) proposed the first model-based
algorithm for functional data which has the advantage of incorporating the dependence among
curves into the analysis. However, it was not until Schmutz et al. (2020) that this method was
expanded to the multivariate case by using a functional latent mixture model with MFPCA. In
addition, we selected HCA as the method to compare with funHDDC since, according to the
answer of SQ1, 24% of the surveyed literature that aimed to find knee OA phenotypes used
HCA as their primary method.

In order to evaluate the clinical relevance, we utilized the previously described list of four
criteria: (i) different inter-cluster feature trajectories, (ii) upward/downward trajectories, (iii)
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multi-feature different behavior, (iv) balanced number of clusters. For the univariate case, only
the second and fourth criteria apply.

For the evaluation of statistical significance, we chose the Kruskal-Wallis rank sum test to
determine if there are statistically-significant differences between the derived clusters for the 21
baseline characteristics listed in Table 4.2.

TABLE 4.2: Meaning of baseline characteristics.

Variable Meaning
1 Lft_T0 Age, mean± sd
2 RAS Race, white %
3 SEXE Sex, female %
4 BMI Body Mass Index (kg/m2), mean±sd
5 Menopauze_01 Menopause, no. (% post)
6 Leptinengml Leptine (ng/ml), mean±sd
7 Adiponectineugml Adiponectine (ug/ml), mean±sd
8 Resistinengml Resistine (ng/ml), mean±sd
9 CTXIugmmol CTX-I (ug/mmol) (C-terminal telopeptide of collagen I), mean±sd

10 uNTXInMBCEmmol N-terminal telopeptide of collagen I (nM BCE/mmol), mean±sd
11 sPINP Aminoterminal propeptide of type I procollagen, mean±sd
12 sOC Osteocalcin mean±sd
13 sC12C sC1,2C (collagen of type I and II), mean±sd
14 CTXIIngmmol CTX-II (ng/mmol) (C-terminal telopeptide of type II collagen), mean±sd
15 sCS846 Chondroitin sulphate 846, mean±sd
16 sCOMPUl sCOMP (µg/ml) (cartilage oligomeric matrix protein), mean±sd
17 sPIIANP Collagen N-propeptide of type IIA, mean±sd
18 sHA Hyaluronic acid, mean±sd
19 sPIIINP N-terminal propeptide of type III procollagen, mean±sd
20 hsCRP High-sensitivity C-reactive protein, mean±sd
21 BSE Erythrocyte sedimentation rate, mean±sd

Lastly, one way to compare unsupervised clustering models is to apply them on data for
which we know the solution (i.e., with ground truth labels) so that we are able to estimate the
percentage of error for each model and select the best, based on which model made less errors.
However, we do not have access to ground truth CHECK data. Put differently, if we had a gold
standard dataset, we could compute metrics such as RMSE (root mean squared error) which
tells us the difference between the values of the predictions and the estimates. Moreover, metrics
like the Silhouette index (see section 1.3.1 which computes intra- and inter-cluster distances is
only useful to compare distance-based models. Formally, a definition for distance in functional
statistics does not exist. In addition, we could compute the observed distances between the
mean curves of the clusters by discretizing the data, however, it is difficult to determine which
clusters to compare because the associations between the groups in both clustering exercises are
not always clear.

Thus, we used the adjusted Rand index (ARI) to evaluate agreement between the funHDDC
and HCA clustering exercises. We used the ari function from the CrossClustering package
which computed the ARI and the confidence interval.
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4.2.1 WOMAC Pain Phenotypes
The WOMAC questionnaire features are available at the subject level (i.e., no measurements
were taken at joint level during data collection) were initially considered to be clustered to-
gether, however, we did not find any combination of features or number of clusters where the
trajectories were different between features and clusters. For example, if WOMAC Pain was
increasing, so was WOMAC Function, and this finding is not deemed as clinically relevant as it
contradicts clinical intuition and previous findings. Following, when we clustered these features
separately, we were able to find interesting trajectories, thus it was decided to keep WOMAC
features separately in the analysis.

Clinical Relevance

The domain expertise decision for WOMAC Pain clusters was to evaluate five phenotypes that
agreed with the funHDDC’s selection of best number of clusters by BIC score. The WOMAC
Pain clusters derived were named as: (i) increasing pain, (ii) constant high pain, (iii) constant
low pain, (iv) constant moderate pain, and (v) initial high then moderate pain. Figure 4.1 shows
the final five funHDDC clusters in comparison with HCA clusters using the Ward and average
linkage methods.

The funHDDC clusters complied with the two clinical relevance criteria for the univariate
case: (ii) upward/downward trajectories (cluster one and five), and (iv) balanced number of
clusters as funHDDC was able to find progression patterns in the K=5 solution, whereas HCA
shows some progression at K=5 and K=8 but not as marked as funHDDC. Five clusters were
deemed as a relevant number of clusters by domain experts.

The HCA clusters with Ward method did not comply with either of the two clinical relevance
criteria, as no meaningful upward/downward trajectories were found in the K=5 solution. The
K=8 solution presents a downward trajectory for cluster eight, however, the K=8 solution does
not comply with the balanced number of clusters criterion.

For the HCA exercise with average linkage method, clusters are discarded since the trajec-
tories do not make clinical sense. Moreover, OA is a slowly progressive disease that does not
show such erratic behavior. In general, the average linkage method is frequently used (Hastie,
Tibshirani, and Friedman, 2009), however, this method might not be appropriate for cluster-
ing longitudinal data since it creates round-shaped clusters due to using the average distance
between all pairs of observations. Additionally, cluster membership for the K=5 scenario was
highly imbalanced with cluster one having 92% of all subjects. For funHDDC results, the clus-
ter with the most members is cluster three with 39% of all subjects.

Statistical Significance

Descriptive statistics for each of the five clusters can be found in Appendix C, Table C.1 for
funHDDC clusters and Table C.6 for HCA clusters. We evaluated the 21 baseline characteristics
listed in Table 4.2.

Age (Lft_T0) and collagen type I and II (sC12C) were found to be statistically significant
(p ≤ 0.05). The average posterior probabilities for the funHDDC clusters were 0.94 for 819
members. Table D.1 shows the posterior probabilities for funHDDC clusters in detail.
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FIGURE 4.1: WOMAC Pain clusters for MBCFD and HCA.

Clustering Validation

In order to measure the similarity between the funHDDC and HCA clustering exercises, we
computed the ARI. The resulting ARI was < 0.65 indicating poor recovery, with confidence
interval [0,0].

4.2.2 WOMAC Function Phenotypes
Clinical Relevance

The domain expertise decision for WOMAC Function clusters was to evaluate five pheno-
types that agreed with the funHDDC’s selection of best number of clusters by BIC score. The
WOMAC Function clusters derived were named as: (i) constant high functional limitation, (ii)
constant low functional limitation, (iii) increasing functional limitation, (iv) constant moder-
ate functional limitation, and (v) fluctuating moderate functional limitation. Figure 4.2 shows
the final five funHDDC clusters in comparison with HCA clusters using the Ward and average
linkage methods.

The funHDDC clusters complied with the two clinical relevance criteria for the univariate
case: (ii) upward/downward trajectories (cluster three and five), and (iv) balanced number of
clusters as funHDDC was able to find progression patterns in the K=5 solution, whereas HCA
shows some progression at K=5 and K=8 but not as marked as funHDDC.

The HCA clusters with Ward method partially complied with the two clinical relevance
criteria, as a downward trajectory was found in the K=5 solution, but no upward trajectory was
detected. The K=8 solution presents an upward trajectory for cluster five but not as pronounced
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as funHDDC. Moreover, the K=8 solution does not comply with the balanced number of clusters
criterion as the clinically-relevant number was decided at five.

For the HCA exercise with average linkage method, cluster membership for the K=5 sce-
nario was highly imbalanced with cluster two having 90% of all subjects. For funHDDC results,
the cluster with the most members is cluster four with 39% of all subjects.

Statistical Significance

Descriptive statistics for each of the five clusters can be found in Appendix C, Table C.2 for
funHDDC clusters and Table C.7 for HCA clusters. We evaluated the 21 baseline characteristics
listed in Table 4.2.

Collagen N-propeptide of type IIA (sPIIANP) was found to be statistically significant (p
≤ 0.05). The average posterior probabilities for the funHDDC clusters were 0.94 for 819 mem-
bers. Table D.1 shows the posterior probabilities for funHDDC clusters in detail.

Clustering Validation

In order to measure the similarity between the funHDDC and HCA clustering exercises, we
computed the ARI. The resulting ARI was < 0.65 indicating poor recovery, with confidence
interval [0,0].

FIGURE 4.2: WOMAC Function clusters for MBCFD and HCA.
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4.2.3 Overlap between WOMAC Pain and WOMAC Function
We can observe in Figure 4.3 that WOMAC Pain and WOMAC Function funHDDC clusters
do not overlap. This was the reason to cluster them separately even though the initial plan was
to cluster Pain and Function together. These results were deemed very interesting by domain
experts and further research will be pursued to investigate these phenomena. For example, the
stacked bar chart shows that subjects with increasing pain do not necessarily show increasing
problems with functional limitation, which would be the clinical expectation.

FIGURE 4.3: Overlap between WOMAC Pain and WOMAC Function clusters
for MBCFD analysis.

4.2.4 WOMAC Stiffness Phenotypes
Clinical Relevance

The domain expertise decision for WOMAC Stiffness clusters was to evaluate five pheno-
types that agreed with the funHDDC’s selection of best number of clusters by BIC score. The
WOMAC Stiffness clusters derived can be named as: (i) constant moderate stiffness, (ii) fluctu-
ating then high stiffness, (iii) decreasing stiffness, (iv) high then moderate stiffness, (v) constant
low stiffness. Figure 4.4 shows the final five funHDDC clusters in comparison with HCA clus-
ters using the Ward and average linkage methods.

The funHDDC clusters complied with the two clinical relevance criteria for the univariate
case: (ii) upward/downward trajectories (cluster two, three and four), and (iv) balanced number
of clusters as funHDDC was able to find significant progression patterns in the K=5 solution,
whereas HCA shows significant progression at K=8.

The HCA clusters with Ward method did not comply with either of the two clinical rele-
vance criteria, as no meaningful upward/downward trajectories were found in the K=5 solution.
The K=8 solution presents a downward trajectory for cluster four and an upward trajectory for
cluster six, however, the K=8 solution does not comply with the balanced number of clusters
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FIGURE 4.4: WOMAC Stiffness clusters for MBCFD and HCA.

criterion as funHDDC presents upward/downward trajectories with fewer number of clusters
(K=5).

For the HCA exercise with average linkage method, cluster membership for the K=5 sce-
nario was highly imbalanced with cluster two having 75% of all subjects. For funHDDC results,
the cluster with the most members is cluster four with 40% of all subjects.

Statistical Significance

Descriptive statistics for each of the five clusters can be found in Appendix C, Table C.3 for
funHDDC clusters and Table C.8 for HCA clusters. We evaluated the 21 baseline characteristics
listed in Table 4.2.

Aminoterminal propeptide of type I procollagen (sPINP) and erythrocyte sedimentation rate
(BSE) were found to be statistically significant (p ≤ 0.05). The average posterior probabilities
for the funHDDC clusters were 0.89 for 820 members. Table D.1 shows the posterior probabil-
ities for funHDDC clusters in detail.

Clustering Validation

In order to measure the similarity between the funHDDC and HCA clustering exercises, we
computed the ARI. The resulting ARI was < 0.65 indicating poor recovery, with confidence
interval [0,0].



Chapter 4. Results and Discussion 56

4.2.5 KIDA Phenotypes
Clinical Relevance

The domain expertise decision for KIDA clusters was to evaluate eight phenotypes that agreed
with the funHDDC’s selection of best number of clusters by BIC score. The domain expertise
expectation was to find distinction between lateral and medial phenotypes, however, we only
found this distinction on osteophytes. All clusters had increasing lateral joint space width (JSW)
and decreasing medial JSW. The KIDA clusters derived can be named as: (i) Low osteophytes,
moderate bone density (ii) increasing bone density, (iii) low bone density, (iv) increasing lateral
osteophytes, low medial osteophytes, moderate bone density, (v) increasing lateral and medial
osteophytes, low medial JSW, high lateral JSW, increasing bone density; (vi) moderate bone
density, (vii) high bone density, (viii) slightly increasing bone density. Figures 4.5 and 4.6 show
the final eight funHDDC clusters in comparison with HCA clusters using the Ward and average
linkage methods.

The funHDDC clusters complied with the four clinical relevance criteria for the multivariate
case: (i) different inter-cluster feature trajectories (lateral and medial osteophytes), (ii) upward/-
downward trajectories (present in all features), (iii) multi-feature different behavior (lateral and
medial osteophytes). Even though eight clusters could be considered a high number, during
the evaluation with domain experts, eight clusters were deemed acceptable. From our literature
review, we found that six is the highest reported number of knee OA phenotypes. However, this
is still under domain expertise discussion.

The HCA clusters complied with the four clinical relevance criteria for the multivariate case:
(i) different inter-cluster feature trajectories (lateral and medial osteophytes, lateral and medial
JSW), (ii) upward/downward trajectories (present in all features), (iii) multi-feature different
behavior (lateral and medial osteophytes), and (iv) balanced number of clusters. Eight clusters
were deemed as a relevant number of clusters by domain experts.

It is quite interesting to find that HCA (unlike funHDDC) was able to detect a constant if not
slightly decreasing trajectory for lateral JSW, however, the caveat being that the eight cluster
is rather small (n=18 knees). Thus, this insight cannot be yet be reported as significant. In
this exercise, HCA found interesting trajectories, hence, it cannot be confirmed that funHDDC
outperforms HCA in clinical relevance.

For the HCA exercise with average linkage method, clusters were discarded since the trajec-
tories do not make clinical sense. For the HCA exercise with average linkage method, cluster
membership for the K=8 scenario was highly imbalanced with cluster one having 98% of all
subjects. For funHDDC results, the cluster with the most members is cluster six with 23% of
all subjects.

Statistical Significance

Descriptive statistics for each of the five clusters can be found in Appendix C, Table C.4 for
funHDDC clusters and Table C.9 for HCA clusters. We evaluated the 21 baseline characteristics
listed in Table 4.2 and found no statistically-significant differences between the groups. The
average posterior probabilities for the funHDDC clusters were 0.96 for 1788 knees. Table D.1
shows the posterior probabilities for funHDDC clusters in detail.

Clustering Validation

In order to measure the similarity between the funHDDC and HCA clustering exercises, we
computed the ARI. The resulting ARI was < 0.65 indicating poor recovery, with confidence
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interval [0,0].

FIGURE 4.5: KIDA Lateral clusters for MBCFD and HCA.

4.2.6 OA Scoring Phenotypes
Clinical Relevance

The domain expertise decision for OA Scoring clusters was to evaluate six phenotypes that
agreed with the funHDDC’s selection of best number of clusters by BIC score. The OA Scor-
ing clusters derived can be named as: (i) Moderate osteophytes, (ii) low sclerosis, (iii) all low
features, (iv) increasing osteophytes, (v) highly increasing sclerosis, increasing JSN, high osteo-
phytes, (vi) high osteophytes. Figure 4.7 shows the final six funHDDC clusters in comparison
with HCA clusters using the Ward linkage method for K=6 and K=8.

The funHDDC clusters complied with the four clinical relevance criteria for the multivariate
case: (i) different inter-cluster feature trajectories (cluster four), (ii) upward/downward trajec-
tories (clusters two, four and five), (iii) multi-feature different behavior (cluster four), and (iv)
balanced number of clusters as six phenotypes have been previously reported in the literature
and six clusters were deemed relevant by domain experts.

The HCA clusters complied with the four clinical relevance criteria for the multivariate
case: (i) different inter-cluster feature trajectories (all clusters except cluster four), (ii) upward/-
downward trajectories, (iii) multi-feature different behavior (all clusters except four), and (iv)
balanced number of clusters as six phenotypes have been previously reported in the literature
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FIGURE 4.6: KIDA Medial clusters for MBCFD and HCA.

and six clusters were deemed relevant by domain experts. It is interesting to find that HCA was
able to detect significant progression for two of the three features. Thus, it cannot be confirmed
that funHDDC outperforms HCA in clinical relevance for the OA Scoring exercise.

For the HCA exercise with average linkage method, clusters were discarded since the trajec-
tories do not make clinical sense (not shown in Figure 4.7). For the HCA exercise with average
linkage method, cluster membership for the K=6 scenario was highly imbalanced with cluster
one having 93% of all subjects. For funHDDC results, the cluster with the most members is
cluster one with 29% of all subjects.

Statistical Significance

Descriptive statistics for each of the six clusters can be found in Appendix C, Table C.5 for fun-
HDDC clusters and Table C.10 for HCA clusters. We evaluated the 21 baseline characteristics
listed in Table 4.2 and found no statistically-significant differences between the groups. The
average posterior probabilities for the funHDDC clusters were 0.99 for 1788 knees. Table D.1
shows the posterior probabilities for funHDDC clusters in detail.

Clustering Validation

In order to measure the similarity between the funHDDC and HCA clustering exercises, we
computed the ARI. The resulting ARI was < 0.65 indicating poor recovery, with confidence
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interval [0,0].

FIGURE 4.7: OA Scoring clusters for MBCFD and HCA.

4.3 Answers to Research Questions SQ2, SQ3 and MRQ
Overall, we can state that funHDDC outperformed HCA in terms of clinical relevance and
statistical significance for the univariate case, but not for the multivariate case. Table 4.3 shows
a summary of these results per variable group. In the following sections, we provide an answer
to the remaining research questions: SQ2, SQ3 and MRQ.

4.3.1 SQ2: How well does the selected MBCFD method perform at iden-
tifying clinically-relevant and statistically-significant knee OA phe-
notypes?

In order to answer this question, we look at the top half of Table 4.3. funHDDC complies with
the clinical relevance criteria for our five variable groups. However, in statistical significance, it
only performs well for the univariate case (i.e., two, one and two statistically-significant base-
line characteristics for WOMAC Pain, Function and Stiffness, respectively) as no differences
between the groups were found for the multivariate case. As a reminder to the reader, the input
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of domain experts was used to determine the clinical relevance of the subgroups throughout the
interactive modeling and evaluation iterations’ unstructured interviews.

TABLE 4.3: Results per variable group with regards to clinical relevance and
statistical significance.

Group Clinical Relevance Criteria Statistically-Significant Characteristics
funHDDC Clusters

Univariate (ii) (iv)

WOMAC Pain X X
Age (Lft_T0);
collagen of type I and type II (sC12C)

WOMAC Function X X Collagen N-propeptide of type IIA (sPIIANP)

WOMAC Stiffness X X
Aminoterminal propeptide of type I procollagen
(SPINP);
Erythrocyte sedimentation rate (BSE)

Multivariate (i) (ii) (iii) (iv)
KIDA X X X X None found
OA Scoring X X X X None found

HCA Clusters
Univariate (ii) (iv)
WOMAC Pain x x None found
WOMAC Function p p None found
WOMAC Stiffness x x None found
Multivariate (i) (ii) (iii) (iv)
KIDA X X X X None found
OA Scoring X X X X None found
The clinical relevance criteria are: (i) different inter-cluster feature trajectories, (ii) upward/
downward trajectories, (iii) multi-feature different behavior, (iv) balanced number of clusters.
The checkmark indicates compliance, the x mark indicates non-compliance and p indicates partial
compliance.

4.3.2 SQ3: How does the MBCFD method perform compared to a non-
functional clustering method?

The selected MBCFD algorithm, funHDDC, outperforms HCA in clinical relevance in the uni-
variate case due to its ability to detect upward/downward trajectories not picked up by HCA at
all or only at a higher number of clusters. In terms of statistical significance, funHDDC’s clus-
ters presented two, one and two baseline characteristics that showed a significant difference,
respectively. On the other hand, HCA’s clusters did not show statically-significant differences.

Regarding the multivariate case, funHDDC performed similarly to HCA for clinical rel-
evance and statistical significance. However, domain experts chose to pursue the funHDDC
clusters.

One of the reasons funHDDC might have outperformed HCA is that it uses MFPCA sep-
arately per cluster, thus it is better equipped to model time-dependent trajectories that can be
represented by the eigenfunctions as it assumes that data live in subspaces of different dimen-
sions. Another advantage is funHDDC’s modeling flexibility as it tries different combinations
of model parameters and compares them by BIC score. On the other hand, HCA only has two
parameters that can be modified: linkage method and distance method. Even though we testes
two linkage methods (i.e., Ward and average), we only experimented with Euclidean distance.
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One drawback of HCA is that it tends to form spherical clusters, which is not ideal when trying
to model trajectories.

funHDDC is a clustering method that relies on a probabilistic model, thus contrary to some
other methods it does not follow any assumption on data normality. Therefore, we can use this
method on both normal and non-normal data. The only "strong" hypothesis of funHDDC is that
the dataset contains independent individuals.

4.3.3 MRQ: To what extent can model-based clustering for functional
data contribute to derive clinically-relevant and statistically-significant
knee OA phenotypes?

In general, the extent to where MBCFD can contribute to derive knee OA phenotypes is full
for the univariate case, but it is limited to clinical relevance in the multivariate case. On the
one hand, for the univariate case, MBCFD yields better performance in deriving clinically-
relevant and statistically-significant knee OA phenotypes than HCA. Concerning clinical rele-
vance, MBCFD complied with the criteria by detecting upward/downward trajectories not iden-
tified by HCA whatsoever or only at a higher number of clusters. Moreover, MBCFD was able
to detect five statistically-significant characteristics between the phenotypes whereas HCA did
not detect any statistically-significant differences between the groups. On the other hand, for
the multivariate case in both clustering exercises, the phenotypes were clinically relevant by
complying with the criteria, but no statistical significance was found between the groups.

4.4 Threats to Validity
In this section, we discuss identified threats to the validity of this experiment, including mitiga-
tion strategies. The threats are presented according to the four different types of validity based
on Wohlin et al. (2012).

Construct validity refers to the understanding of the constructs included in the research.
The main threat for us is the misinterpretation of concepts related to functional data analysis,
particularly model-based clustering of functional data (MBCFD), and OA, such as OA hetero-
geneity, phenotypes and constructs specific to the domain. The main risk lies in combining
these two fields such that the results from the study remain valid. To mitigate these threats,
we involved experts from both domains. In addition, when performing the semi-systematic
literature review, we mimicked the search strategy from experienced researchers in knee OA
phenotypes. We also followed three of the reporting recommendations for statistical analy-
sis from the consensus-based framework for conducting and reporting osteoarthritis phenotype
research by Van Spil et al. (2020).

Another threat in this category is related to whether tests used measure what they are in-
tended to measure. Unfortunately, in unsupervised learning, it is not possible to measure ac-
curacy nor is it designed to predict future phenotype membership. The results are informative
but not definitive. Thus, we used statistical tests such as Hopkins statistic to determine whether
we had potentially meaningful insights in the data, Kruskal-Wallis rank sum test to see if there
were statistically-significant differences between the groups, and ARI metric to check the over-
lap between the two clustering exercises.

Internal validity focuses on how systematic error is minimized and how the experiments
were conducted. In terms of our literature search, the main threat is potential bias and subjec-
tive interpretation when examining available literature by the author. To mitigate this issue we
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began with studies performed with the same data and purpose, performed a semi-systematic
literature search following an expert-designed search strategy, and received the guidance of do-
main experts. To increase coverage, we used forward and backward snowballing to identify
additional papers. However, the inclusion of additional databases could have yielded comple-
mentary insights. With regards to our experiments, different experts were involved throughout
the data exploration steps, each with their own expertise and/or clinical intuition. In order to
mitigate potential bias, we surveyed the literature to corroborate findings from similar previous
studies. However, the risk still remains for oversight or recalibration of model parameters or
statistical testing. Moreover, all experiments were conducted in a specific setting; if the setting
suffers changes (e.g., involve other domain experts), our results might differ in, for example,
number of clusters.

External validity threats relate to the generalizability of the results. The knee OA pheno-
types were derived from the CHECK dataset, thus the results are generalizable to a similar pop-
ulation with regards to its characteristics. In terms of the contribution of the MBCFD method,
we found that it is superior in the univariate case and very similar in the multivariate case. How-
ever, these results depend on the evaluation of domain experts as well as statistical tests with
a particular set of features. Working with different experts and applying different tests, might
yield different results. In addition, further qualitative and quantitative analysis with a different
dataset might facilitate other analytical and statistical generalizations.

Another potential threat is the subject population as inclusion/exclusion criteria of the CHECK
study required the subjects to be 45 to 65 years old and ability to understand the Dutch language.
The final CHECK cohort is composed of 79% females and 98% Caucasian. Hence, these find-
ings might not be generalizable to a population with a non-Caucasian male majority.

Reliability refers to the consistency of measurements and dependence on particular re-
searchers. We present the premise that if the same experts and researchers were to conduct
the experiment again, it would yield similar results. In terms of mitigation strategies, we fol-
lowed instructions from the software packages and specific seeds were set at the beginning
of experiments. Additionally, the same set of subjects/knees and features were used for both
clustering exercises. Regarding the semi-systematic literature review, if the PRISMA flowchart
were to be replicated, it should produce similar results.
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Chapter 5

Conclusion
Osteoarthritis (OA) is the most common form of arthritis; it is a heterogeneous disease charac-
terized by multi-tissue failure in joints and the knee is among the most affected joints. Although
the exact cause of OA remains poorly understood, a number of likely relevant and distinct patho-
biological and pain features have been identified. The relevance of these mechanisms might
vary between patients because distinct phenotypes share distinct underlying mechanisms with
different structural and functional consequences. Accordingly, the concept of OA heterogeneity
has been gaining renewed interest recently in the pursuit of disease-modifying treatment op-
tions. Indeed, there are no effective disease-modifying drugs for knee OA, in large part because
clinical trials have treated all knee OA as the same disease, disregarding etiology or risk fac-
tors. In this thesis, we used the CRISP-IDM method to investigate whether an MBCFD method
can contribute to derive clinically-relevant and statistically-significant knee OA phenotypes and
whether this method outperforms traditionally-used HCA. By gaining a better understanding
of OA heterogeneity (i.e., finding different phenotypes), we could potentially contribute to the
design of clinical trials, prevention strategies, and treatments.

By following the phases and activities of the CRISP-ISM method, we were able to create
a set of deliverables that helped us find answers to our research questions. First, we aimed to
determine which are the most commonly-used methods in the scientific literature being used to
derive knee OA phenotypes and discovered that the most widely used methods are HCA, LCA,
k-means, and logistic regression. Therefore, we selected HCA to compare with the MBCFD
method. Additionally, we investigated the characteristics or features used in knee OA pheno-
type studies as well as potential MBCFD algorithms which can be used for the same purpose.
We discovered the characteristics can be grouped as pain, radiographic measures (X-ray), clin-
ical measures, biochemical markers, and gene expression. Regarding the potential MBCFD
algorithms which can be used to cluster phenotypes, we compared two adaptive model-based
clustering methods and decided to choose funHDDC based on its flexibility, interpretability, and
ability to handle multivariate data. Through MFPCA and a functional latent mixture model, fun-
HDDC considers the possibility that data can exist in subspaces with different dimensions and
the dependency of data points through time. The use of basis function systems allows for the
flexible representation of the data as curves and the management of missing data.

Overall, we present two main contributions to the knee OA phenotype field. The first con-
tribution is the finding that an MBCFD algorithm (i.e., funHDDC) was able to detect clinically-
relevant and statistically-significant knee OA phenotypes for the univariate case. However, for
the multivariate case, the phenotypes were clinically relevant but no statistical significance was
found between the groups. The second contribution we found, when comparing an MBCFD
method to the widely-used HCA, was that funHDDC outperforms HCA in the univariate case
but not in the multivariate case. However, when pursuing clinically-relevant phenotypes during
the data exploration phase, we evidenced that achieving a good solution can be complicated
and subjective. The main reason behind this challenge is the lack of ground truth labels in
unsupervised learning, which is why clustering is typically used in the exploratory stages of a
data mining project. Therefore, the contribution of the derived phenotypes should be further
investigated in the context of the domain.
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5.1 Limitations
The CHECK cohort contains 573 variables. However, due to the nature of functional data
analysis, we were limited to data available longitudinally. For example, it would have been
interesting to include data on pain per knee but joint-specific pain scales are not available for the
10-year period in the CHECK cohort. Moreover, the CHECK cohort contains some limitations
regarding race (98% of subjects were Caucasian) and gender (79% of subjects were female).
Thus, we can only generalize results to similar populations.

Regarding the iterative unstructured interviews, we received extensive feedback from do-
main experts for the funHDDC clusters in comparison to the HCA clusters. Clinical relevance
was evaluated with knowledge of previous literature, CHECK, and clinical expertise. However,
there is a degree of subjectivity that might cause differences in findings across studies using
similar approaches. In addition, most of the feedback was related to decisions about the selec-
tion/combination of features, the number of clusters and progression detected, which was also
used for the HCA clusters. However, more combinations of features could have been tested as
well as parameters for funHDDC and HCA such as other linkage methods and distances.

5.2 Future Work
After completion of this study, we identified interesting opportunities for future research.

• Study how HCA performs with other linkage methods such as single and centroid, as well
as other distance such as Gower and Minkowski

• Compare funHDDC performance with latent class analysis and/or latent profile analysis

• Try an ensemble models approach with a mixed data type clustering algorithm and include
non-longitudinal features

• Validate clusters in labeled data

• Try consensus clustering with bootstrapping to validate funHDDC clusters

• Investigate the proportion of variance explained for each of the clusters found to under-
stand their contribution to the trajectories and specific differences between the groups.
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OA Phenotypes in the Literature

TABLE A.1: Clinical phenotypes, adapted from Deveza, et al. (2017)

Characteristic Source Features Method Phenotypes

Pain Cardoso et al., 2016

Pressure pain, heat pain,
temporal summation of
heat pain, cold pain, and
temporal summation of
mechanical pain

HCA

1) Low sensitivity to pain
2) Average pain sensitivity
3) High TS of pressure pain
4) Cold pain sensitivity
5) Heat pain sensitivity and
TS

Egsgaard et al., 2015

WOMAC subscales,
Lequesne index,
QoL (EQ-5D);
pain catastrophizing,
QST measures
(PPT, TS and CPM),
CIM, CIIIM, CRP
and CRPM

HCA

1) Low sensitivity to pain
2) Early phase sensitization
3) Presence of pain
sensitization
4) Presence of pain
sensitization and
catastrophizing

Osgood et al., 2015

Pain pressure threshold
(knee and
elbow), DNIC, low-
threshold
mechano-receptive
function, cold
allodynia (knee and
elbow)

HCA

1) Peripheral and central
sensitization with
dysfunctional DNIC
2) None or central sensitization
and intact DNIC
3) Peripheral sensitization and
dysfunctional DNIC
4) None or peripheral
sensitization and intact DNIC

Frey-Law et al., 2016

Heat thresholds and
tolerance, punctate pain
intensity, pressure
pain thresholds, and
noxious heat
temporal summation

HCA

1) Low pain sensitivity
2) Average pain sensitivity
3) High temporal summation
4) High heat and pressure
pain
5) High punctate pain

Psychological
profiles Cruz-Almeida et al., 2013

Depression, coping
strategies (positive and
negative),
hypervigilance/general
reactivity/arousability,
dispositional optimism,
affect (positive and
negative), attention to
pain and general anger

HCA

1) High optimism, low
negative affect
2) Low positive affect
3) Low optimism
4) Somatic sensitivity/pain
hypervigilance

Comorbid
symptoms
profile

Jenkins and McCoy, 2015
Pain, fatigue and
depressive symptoms HCA

1) High depressive symptoms,
low pain
2) Average scores of pain,
fatigue and depression

Murphy et al., 2011

Knee pain, depression,
fatigue, sleep problems,
and total burden of
somatic symptoms

HCA

1) High levels of depression,
pain, fatigue, illness burden
and sleep problems
2) Intermediate levels of
depression, moderate fatigue
and illness burden, low pain
and sleep problems
3) High levels of sleep
problems and low severity
of other symptoms

Hoogeboom et al., 2012

Joint-pain comorbidity
(presence vs absence
on more than half of the
days in the past month)

Pre-defined

1) No joint-pain
comorbidities
2) Presence of joint
pain
comorbidities
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Table A.1 continued from previous page
Characteristic Source Features Method Phenotypes

Clinical
characteristics Knoop et al., 2011

KLG, BMI, muscle
strength (mean score of
right and left quadriceps
and hamstring strength),
and depression

k-means

1) Minimal joint disease
2) Strong muscle
3) Non-obese and week
muscle
4) Obese and week
5) Depressive

Kittelson et al., 2016

KLG, BMI, quadriceps
strength, palpation
tenderness (medial joint
line, lateral joint line and
pes anserine bursa), pain
with patellar grind test,
comorbidity status (0-12),
number of pain sites
(0-13), presence of
depression, and pain
catastrophizing

LCA

1) Higher levels of
comorbidity
2) Higher knee joint
sensitivity
3) Higher levels of
psychological distress
and number of pain
sites
4) Mild OA

Knee
joint
alignment

Iijima et al., 2015

Static varus and varus
thrust (4 groups based
on presence/absence of
each feature)

Pre-defined

1) No varus
2) Varus thrust only
3) Static varus only
4) Static varus and varus
thrust

Metabolic
profile Lee et al., 2015

Presence of obesity
(BMI >= 27.5 kg/m2)
and metabolic
abnormality
(>= 2 metabolic risk
factors)

Pre-defined

1) Metabolically healthy
normal weight
2) Metabolically abnormal,
normal weight
3) Metabolically healthy
obesity
4) Metabolically
abnormal obesity

Sowers et al., 2009

Pain pressure threshold
(knee and elbow), DNIC,
low-threshold
mechano-receptive
function, cold allodynia
(knee and elbow)

Pre-defined

1) Non-obese, no metabolic
clustering
2) Non-obese with metabolic
clustering
3) Obese without metabolic
clustering
4) Obese with metabolic
clustering

Gait
parameters Elbaz et al., 2014

WOMAC subscales,
Lequesne index,
QoL (EQ-5D);
pain catastrophizing,
QST measures
(PPT, TS and CPM),
CIM, CIIIM, CRP
and CRPM

k-means
cluster
analysis
followed
by CART

1) Stride length <115
2) - Stride length 105-115, or
- Stride length 95-105 and
cadence >65
3) - Stride length 85-95,
or - Stride length 95-105
and cadence <=65, or - Stride
length 80-85 and cadence >65
4) - Stride length <=80,
or - Stride length 80-85
and cadence <=65

Mechanistic
factors Roze et al., 2016

Metabolic syndrome
profile or active and
lean profile

Pre-defined
1) Metabolic syndrome
2) Active and lean
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TABLE A.2: Imaging phenotypes, adapted from Deveza, et al. (2017)

Characteristic Source Features Method Phenotypes

Knee
chondrocalcinosis Abhishek et al., 2016

Chondrocalcinosis
(presence/absence
in the index joint)

Pre-defined

1) Absence of
chondrocalcinosis
2) Presence of
chondrocalcinosis

MRI-detected
denuded bone
areas (dAB)

Cotofana et al., 2013

dAB presence,
location
(peripheral vs
central), size
(<=or >10% of
respective cartilage
plate) and type
(cartilage loss vs
intra-
chondralosteophyte)

Pre-defined

1) No dAB
2) Peripheral
dAB
3) Central dAB

Imaging features
(MRI cartilage
measures
andradiographic
features) and
clinical
symptoms

Waarsing et al., 2015

Quantitative MRI
measures of
cartilage
thickness/volume
and dAB; semi-
quantitative
radiographic scores:
KLG,osteophytes,
JSN, cysts, sclerosis,
chondrocalcinosis
and attrition (per
compartment for
the tibia and femur);
WOMAC pain and
function,VAS pain
(past month and
past week), knee
baseline symptom
status

LCA

1) No dAB
independent of
KLG
2) Minor dAB
(medial compartment)
3) Larger dAB with
increasing KLG
(lateral compartment)
4) Larger dAB with
increasing KLG
(medial compartment)

Knee joint
compartment Peat et al., 2012

Presence/absence
of radiographic PF
joint OA (skyline
KLG >= 2 or lateral
osteophytes >= 1)
and/or TF joint OA
(postero-anterior
KLG >= 2 or posterior
osteophytes >= 1)

Pre-defined

1) Isolated PF OA
2) Combined PF/TF
OA
3) Isolated TF OA

Sharif et al., 2006

Presence/absence of
radiographic PF joint
OA (one or both PF
joints KLG >2 but
both medial TF joints
KLG <3) and/or TF
joint OA (one or both
medial TF joints
KLG >2 but both PF
joints scores <3)

Pre-defined

1) Predominant PF
OA
2) Predominant TF
OA
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TABLE A.3: Laboratory phenotypes, adapted from Deveza et al. (2017)

Characteristic Source Features Method Phenotypes

Biochemical
marker patterns Meulenbelt et al., 2007

Bone markers:
s-OC, u-CTX-I;
collagen markers:
u-CTXII, s-PIIANP,
s-COMP, u-TIINE;
synovium and
inflammation markers:
u-Glc-Gal-PYD,
s-hsCRP; BMI and age

PCA

1) High CTX-I,
CTX-II, osteocalcin,
GlceGal-PYD and
TIINE
2) High hsCRP and
BMI
3) High PIIANP,
COMP and age

Inflammatory
profile Siebuhr et al., 2014

Levels of serum hsCRP
and serum CRPM Pre-defined

1) Low hsCRP and
CRPM
2) Low CRP and
high CRPM
3) High hsCRP
and low CRPM
4) High hsCRP
and CRPM

Cytokine/
chemokine
profile
(synovial fluid)

Heard et al., 2013
30 cytokines/chemokines
(synovial fluid)

PCA and
k-means

1) Group 1
2) Group 2
3) Group 3
(groups not
described)

Serum
biochemical
markers of
bone
metabolism

Berry et al., 2010a
PINP, osteocalcin, CTX-I,
NTX-I and ICTP Pre-defined

1) Low PINP
2) High PINP
3) Low osteocalcin
4) High osteocalcin

Serum
biochemical
markers of
cartilage
metabolism

Berry et al., 2010b COMP, PIIANP and C2C Pre-defined

1) Low cartilage
biomarkers (COMP,
PIIANP and C2C)
2) High cartilage
biomarkers

Profile of gene
expression in
peripheral
blood
leukocytes

Attur et al., 2011 Cohort HCA

1) Cytokine
overexpressors
2) Cytokine
underexpressors
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TABLE A.4: OA phenotype research from 2018 to 2020

Characteristic First author, year Features Method Phenotypes

Pain Vongsirinavarat et al., 2020

Activity limitation
variables:
maintaining a
standing position,
stair climbing
time and walking
time

Two-step
cluster
analysis,
regression
analysis

1) No disability
2) mild disability
3) moderate disability
4) severe disability

Mixed
(demographic,
clinical,
radiographic
and biomarkers)

Nelson et al., 2019

Varied (n=73):
demographic,
clinical,
radiographic,
biochemical
markers

DWD,
DiProPerm,
k-means,
t-SNE,
PCA

Progressors and
non-progressors

Pain Carlesso et al., 2019

Psychological
factors (pain
catastrophizing,
depressive
symptoms),
sleep, WSP, and
QST measures
of pain
sensitization
(PPT, TS)

LCA,
logistic
regression

1) Low-to-moderate
proportion of PP
sensitivity and
facilitated TS
2) Low/absent
proportion of PP
sensitivity and
facilitated TS
3) High proportion
of PP sensitivity
and moderate
proportion of
facilitated TS
4) Low proportion
of PP sensitivity
and high proportion
of facilitated TS.

Pain Glicksberg et al., 2019
Pain and genetic
factors

PCA,
Bayesian
Gaussian
mixture
model for
clustering
analysis,
regression
analysis,
logistic
association
analysis

1) Stable
2) Worsening
3) Progressively
worsening

Synovial fluid Carlson et al., 2019
Synovial fluid
(1362 metabolite
features)

HCA,
PLS-DA,
logistic
regression,
PCA

Four distinct subgroups
of donors in early and
late stage disease that
may be representative
of metabolomic
synovial phenotypes

Pain Runhaar et al., 2018 NRS (pain scale) LCGA

1) Always high pain
2) Always low pain
3) Decreasing pain
4) Fluctuating high pain

Mixed
(demographic,
clinical,
radiographic
and biomarkers)

Pan et al., 2020

Baseline blood
pressure, glucose,
triglycerides
and HDL
cholesterol;
MetS, knee
X-ray, WOMAC
pain

Group-based
trajectory
modelling
for pain
trajectories,
multi-nominal
logistic
regression
for analysis.

1) Minimal pain
2) Mild pain
3) Moderate pain
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Table A.4 continued from previous page
Characteristic First author, year Features Method Phenotypes

Mixed
(demographic,
clinical, and
radiographic)

Pan et al., 2019

Sex, BMI,
emotional
problems,
education level,
comorbidities,
number of painful
sites and knee
structural
pathology

LCA,
linear
regression

1) High prevalence of
emotional problems
and low prevalence
of structural damage
2) High prevalence of
structural damage and
low prevalence of
emotional problems
3) Low prevalence of
emotional problems
and low prevalence
of structural damage

Quality of life
and health-related
characteristics

Törmälehto et al., 2019

Health-related quality
of life, patient-related
characteristics,
incidence of knee
replacement (KR) and
prevalence of pain
medication

Group-based
trajectory
modeling,
multinomial
logistic regression,
Cox regression
and generalized
estimating
equation models

1) No change
2) Rapidly worsening
3) Slowly worsening
4) Improving quality
of life

Depression and
pain Rathbun et al., 2020

20-item Center for
Epidemiological
Studies Depression
Scale

LCA

1) Asymptomatic
2) Catatonic
3) Anhedonic
4) Melancholic

Functional
capacity Bieleman et al., 2019

Functional capacity
evaluation LCA

1) Weak giving away
2) Stable and able
3) Strong with decline

Pain Schiphof et al., 2019 NRS LCGA

1) Always high pain
2) Always low pain
3) Decreasing pain
4) Fluctuating high
pain
5) More knee pain
6) More hip pain

Biomarkers
(blood-based) Zhao et al., 2018 Gene expression data

Support vector
machine

1) Group A:
degenerative OA
with
glycosaminoglycan
biosynthesis and
apoptosis
2) Group B:
related to Graft versus
host disease and
antigen processing
and presentation

Demographics,
biomechanical Young-Shand et al., 2020

Demographics (age,
gender, BMI),
biomechanical
severity (gait speed,
gait angle, OA
severity)

PCA, HCA

1) High functioning
males
2) Older stiff-kneed
males
3) Slower stiff-kneed
females
4) High functioning
females

Demographics,
pain,
comorbidities

Munugoda et al., 2020

Ambulatory activity,
body mass index,
knee pain, and
comorbidities

LCA

1) Normal/overweight
participants with higher
AA, lower pain and
lower comorbidities
2) Overweight
participants with lower
AA, mild pain and
higher comorbidities
3) Obese participants
with lower AA, mild
pain and higher
comorbidities

Gene expression Soul et al., 2018
2692 differentially
expressed genes HCA

1) Group A
2) Group B
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Table A.4 continued from previous page
Characteristic First author, year Features Method Phenotypes

Demographic,
clinical,
radiographic

Deveza et al., 2019

WOMAC pain,
radiographic JSN,
pain duration,
TKR family history,
obesity

LCGA

1) Stable
2) Moderate cartilage
loss
3) Substantial cartilage
loss

Macrophage
phenotype and
gene expression
in synovial tissue

Wood et al., 2019
Gene expression
of synovial
macrophages

tSNE
1) cOA macrophages
2) iOA macrophages

Pain and
function Lee et al., 2018

WOMAC pain,
WOMAC function

Group-based
trajectory
modeling
(PROC TRAJ)

1) Lower-Early
Improvement
2) Moderate-Early
Improvement
3) Higher-Delayed
Improvement
4) Higher-No
Improvement

Biochemical
markers Karsdal et al., 2019

Biochemical markers
of bone, cartilage,
soft tissue, synovial
metabolism

CART, Poisson
regression

1) OA control: high
cartilage degradation
and synovial
inflammation
2) OA control: low
cartilage degradation
3) RPOA type-2: high
cartilage degradation
and synovial
inflammation
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Data Exploration Steps

TABLE B.1: Iterations of data exploration describing steps taken, outcomes, and
participants.

Iteration Steps taken Outcome

1
Discussion of dataset: meaning
of values, potential inclusion and
combinations of features

List of preliminary features

2

Discussion of dataset’s
characteristics, potential
hypotheses, work plan and
visualization examples

Recommendation of literature and algorithms to review

3
Cleaning of dataset, discussion of
inclusion of features Dataset ready to be used

4

Preliminary exploration of
funHDDC algorithm with four
variables and b-splines basis
system

Understanding of mechanisms of funHDDC

5
Extension of funHDDC algorithm
to use 21 variables (n=824)

With 21 variables, funHDDC suggests using K=3
No meaningful trajectories were found

6
Exploration of different number
of basis functions and breaks for
b-splines basis system

Understanding of mechanisms of b-splines basis
system and implications
for our model

7
Exploration of alternatives of
data imputation

Choice of linear imputation and keeping observations
with at least two data points in time

8

Discussion of descriptive
statistics table with 36 baseline
characteristics for the 3 clusters
of 21 variables

No meaningful insights were found

9

Discussion of Clusters with
WOMAC (3) and ICOAP (2)
subscales
For NRS (only) clusters: ran the
K=3:8 solution at knee-level

No meaningful trajectories found

10
Exploration of the influence of
data imputation: n=944 vs n=594
subjects for 8 KIDA variables

Data imputation flattens the curves and draws some of
the clusters together

11

Discussion of clusters from
clinical data with removal of
data from patients when they
had a knee replacement
(n=795), K=3:8

Model suggested using K=6 by BIC score
No meaningful trajectories found

12
Discussion of clusters with
radiographic data at knee level
(n=2,004). K=3:8 explored

Some potentially meaningful trajectories were found,
suggesting it could be interesting to perform analysis
at knee level, needs further discussion

13
Exploration of pain clusters with
NRS variables for left and right
knee. K=3:8 explored

Model suggested K=5 by BIC score

14
Presentation of WOMAC pain
clusters at patient level (no data
available specific to joints)

Model suggested K=8
Similar trajectories found for K=6,7 solutions
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Table B.1 continued from previous page
Iteration Steps taken Outcome

15
Discussion of WOMAC pain
and radiographic (KIDA and
scoring) clusters at knee level

Model suggested K=8

16

MFPCA was performed on the
original set of 21 variables to
evaluate which method to use
for feature selection

Expert opinion was regarded as the best choice

17
A different set of radiographic
variables (14) were evaluated at
subject level (n=893)

Model suggested K=6

18

Exploration of 36 baseline
characteristics of subjects in
WOMAC pain clusters. In
addition, the overlap between
WOMAC pain and radiographic
clusters was discussed

Radiographic clusters 1,2, and 5 have the largest
intersection with WOMAC pain cluters (these are also
the largest clusters). No meaningful relation was
found

19
Discussion of results of analysis
of variance of WOMAC pain
clusters

Significant results were found for biomarkers:
Leptinengml and BSE with one-way ANOVA

20

The first HCA exercise was
performed with average linkage
method with a new dataset
of posterior probabilities of
radiographic and WOMAC pain
clusters

No meaningful groups were found, needs further
analysis

21

Discussion of clustering
exercise for seven radiographic
variables at subject level with
absolute difference between
right and left knee as values

No meaningful trajectories were found

22
Discussion of WOMAC pain and
function clusters with data from
all ten years including baseline

K=5 solutions was deemed as potentially clinically
relevant with five distinct trajectories

23
Evaluation of using different
basis systems Selection of polygonal basis as preferred

24

Discussion of radiographic
clusters at knee level with
different combinations of KIDA
and OA scoring variables:
1) KIDA (no BD) + Scoring OA
2) KIDA (with BD) + Scoring OA
3) KIDA (no BD)
4) KIDA (with BD)
5) KIDA Osteophytes
6) KIDA Joint Space Width
7) KIDA Bone Density
8) Scoring OA
9) KIDA Lateral
10) KIDA Medial

Exercise #1 potentially presents a cluster with
progressive MeanLatJSW, further analysis needed
Request of calculating the mean between femur and
tibia osteophytes to use as new variable
Request of calculating the mean between femur and
tibia bone density to use as new variable
Exercise #8, the K=6 solution is preferred

25
Discussion of WOMAC pain
and WOMAC function clusters,
as well as their overlap

Meaningful trajectories were found.
Potentially interesting overlap results which need
further analysis

26
Discussion of MFPCA analysis
performed on Exercise #1 from
iteration 23

The first principal component explains 43% of the
proportion of variance
No clear contribution from the variables seen for
cluster seven of MeanLatJSW
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Table B.1 continued from previous page
Iteration Steps taken Outcome

27

Discussion of radiographic
clusters at knee level with
different combinations of KIDA
and OA scoring variables:
1) KIDA + Scoring with BD
lateral and medial
2) KIDA + Scoring without BD
3) KIDA with BD lateral and
medial
4) KIDA without BD
5) Scoring OA K=6 preferred
6) WOMAC Stiffness

Exercise #3, K=8 is preferred
Exercise #6, K=4 then 5 preferred
Requested descriptive statistics tables for Exercise #1
from iteration 24

28

Presentation of new analysis with
WOMAC stiffness as a new
exercise. Computed newly
aggregated variables for KIDA
analysis with the mean of femur
and tibia for osteophytes and
bone density.

Selected the following exercises:
1) WOMAC pain K=5
2) WOMAC function K=5
(included overlap chart)
3) WOMAC stiffness K=5
4) KIDA with 4 new variables: osteophytes and BD
(lateral and medial), and MeanJSW (lateral and
medial)
5) OA Scoring: sclerosis, JSN, and osteophytes
Exercise #1 of iteration 24 will no longer be pursued

As a final step, we prepared the HCA clusters and compared to funHDDC results during two sessions.
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Appendix C

Baseline Characteristics for MBCFD and HCA Clusters

TABLE C.1: Baseline characteristics of WOMAC Pain MBCFD clusters

# Variable Cluster 1 (n=66) Cluster 2 (n=77) Cluster 3 (n=315) Cluster 4 (n=312) Cluster 5 (n=48) p-value
1 Lft_T0 55.05 ± 4.97 55.93 ± 5.57 55.86 ± 5.16 56.22 ± 5.29 55.34 ± 5.3 0.05
2 RAS 98.41 96.05 97.47 98.74 97.87 NA
3 SEXE 79.37 78.95 80.06 78.23 72.34 NA
4 BMI 26.86 ± 4.05 25.58 ± 3.38 26.16 ± 4.09 26.18 ± 4.08 25.06 ± 3.18 0.70
5 Menopauze_01 31 (78) 37 (79) 148 (77) 154 (79) 23 (85) NA
6 Leptinengml 18.57 ± 18.04 16.03 ± 14.06 17.84 ± 17.67 16.37 ± 15.08 13.32 ± 10.76 0.90
7 Adiponectineugml 11.08 ± 5.56 11.98 ± 6.12 12 ± 6.76 12.02 ± 7.34 11.35 ± 5.2 0.44
8 Resistinengml 3.76 ± 1.38 3.91 ± 1.41 3.82 ± 1.42 3.75 ± 1.08 3.28 ± 0.89 0.82
9 CTXIugmmol 186.23 ± 132.63 180.56 ± 134.78 180.32 ± 115.76 178.77 ± 113.54 184.39 ± 120.6 0.56

10 uNTXInMBCEmmol 43.11 ± 19.81 41.45 ± 19.85 41.76 ± 20.23 41.71 ± 21.1 39.75 ± 15.81 0.28
11 sPINP 43.01 ± 15.65 46.8 ± 20.06 46.27 ± 19.33 45.11 ± 19.31 49.22 ± 25.42 0.30
12 sOC 13.67 ± 4.13 14.65 ± 6.83 14.58 ± 7.58 14.08 ± 5.75 14.22 ± 5.75 0.84
13 sC12C 0.28 ± 0.6 0.19 ± 0.07 0.2 ± 0.26 0.23 ± 0.46 0.2 ± 0.12 0.02
14 CTXIIngmmol 206.28 ± 118.27 211.92 ± 122.92 223.58 ± 120.13 229.96 ± 139.86 198.62 ± 106.39 0.48
15 sCS846 76.56 ± 57.48 71.24 ± 33.51 75.7 ± 40.6 82.03 ± 60.41 78.36 ± 44.95 0.47
16 sCOMPUl 8.34 ± 1.38 8.72 ± 2.55 8.77 ± 2.48 8.78 ± 2.16 9.14 ± 2.5 0.43
17 sPIIANP 1408.6 ± 382.87 1414.75 ± 594.83 1488.18 ± 610.74 1597.82 ± 854.89 1505.97 ± 622.34 0.92
18 sHA 30.83 ± 21.4 30.76 ± 18.84 33.11 ± 28.47 35.27 ± 25.44 32.3 ± 31.01 0.91
19 sPIIINP 4.23 ± 1.11 4.24 ± 1.06 4.29 ± 1.39 4.33 ± 1.15 4.45 ± 1.03 0.98
20 hsCRP 2.68 ± 3.94 3.66 ± 6.4 3.09 ± 6.5 2.62 ± 3.29 2.44 ± 3.54 0.70
21 BSE 10.32 ± 7.91 9.74 ± 7.16 10.31 ± 8.18 9.46 ± 6.52 9.39 ± 7.37 0.33
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TABLE C.2: Baseline characteristics of WOMAC Function MBCFD clusters

# Variable Cluster 1 (n=80) Cluster 2 (n=274) Cluster 3 (n=37) Cluster 4 (n=323) Cluster 5 (n=105) p-value
1 Lft_T0 56.21 ± 5.51 56.11 ± 5.19 56.3 ± 5.01 55.72 ± 5.16 55.55 ± 5.72 0.80
2 RAS 95 98.19 100 98.14 97.06 NA
3 SEXE 85 79.78 75.68 77.09 77.45 NA
4 BMI 25.9 ± 4.31 26.15 ± 4.14 26.73 ± 4.29 26.21 ± 3.9 25.76 ± 3.55 0.52
5 Menopauze_01 43 (83) 135 (78) 16 (76) 148 (77) 49 (78) NA
6 Leptinengml 17.42 ± 16.52 16.43 ± 15.48 17.53 ± 17.55 17.92 ± 17.06 14.36 ± 12.88 0.76
7 Adiponectineugml 12.46 ± 7.09 11.74 ± 6.31 11.82 ± 6.11 11.72 ± 7.18 12.29 ± 6.66 0.54
8 Resistinengml 3.68 ± 1.02 3.87 ± 1.46 3.8 ± 1.19 3.73 ± 1.24 3.63 ± 1 0.43
9 CTXIugmmol 180.23 ± 95.47 169.21 ± 98.81 172.16 ± 79.73 187.36 ± 127.64 190.4 ± 156.73 0.58

10 uNTXInMBCEmmol 42.59 ± 18.66 41.24 ± 21.95 41.76 ± 14.65 41.21 ± 19.5 42.8 ± 20.48 0.68
11 sPINP 43.18 ± 14.93 44.87 ± 20.99 44.18 ± 14.25 47.73 ± 19.9 45.25 ± 19.38 0.13
12 sOC 13.42 ± 4.78 14.12 ± 7.49 13.81 ± 4.37 14.62 ± 5.97 14.71 ± 7.02 0.17
13 sC12C 0.32 ± 0.8 0.23 ± 0.45 0.16 ± 0.05 0.19 ± 0.1 0.18 ± 0.07 0.15
14 CTXIIngmmol 240.3 ± 173.38 216.19 ± 119.49 238.21 ± 136.36 226.34 ± 123.01 205.56 ± 116.28 0.50
15 sCS846 87.15 ± 79.66 76.72 ± 44.68 88.38 ± 44.75 77.02 ± 51.39 73.32 ± 34.61 0.30
16 sCOMPUl 8.87 ± 2.17 8.71 ± 2.39 8.83 ± 1.86 8.85 ± 2.37 8.56 ± 2.28 0.81
17 sPIIANP 1536.68 ± 570.26 1528.22 ± 848.74 1721.94 ± 1029.74 1513.2 ± 571.28 1368.4 ± 524.07 0.05
18 sHA 36.49 ± 28.8 33.49 ± 23.74 37.62 ± 25.3 32.65 ± 28.2 33.84 ± 25.39 0.70
19 sPIIINP 4.41 ± 1.32 4.27 ± 1.06 4.33 ± 1.18 4.37 ± 1.39 4.12 ± 1.04 0.71
20 hsCRP 2.35 ± 2.78 2.9 ± 4.64 3.09 ± 4.18 3.25 ± 6.46 2.24 ± 2.68 0.41
21 BSE 9.05 ± 6.17 10.13 ± 8.19 11.29 ± 7.37 9.9 ± 7.21 9.53 ± 6.5 0.54

TABLE C.3: Baseline characteristics of WOMAC Stiffness MBCFD clusters

# Variable Cluster 1 (n=325) Cluster 2 (n=91) Cluster 3 (n=89) Cluster 4 (n=126) Cluster 5 (n=189) p-value
1 Lft_T0 56.16 ± 5.22 55.45 ± 5.19 56.18 ± 4.97 55.08 ± 5.36 56.11 ± 5.42 0.30
2 RAS 97.53 97.75 98.88 96.83 98.44 NA
3 SEXE 81.17 77.53 79.78 76.19 76.56 NA
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Table C.3 continued from previous page
# Variable Cluster 1 (n=325) Cluster 2 (n=91) Cluster 3 (n=89) Cluster 4 (n=126) Cluster 5 (n=189) p-value
4 BMI 26.15 ± 4.13 26.22 ± 3.87 25.85 ± 4.01 25.98 ± 3.69 26.28 ± 4.05 0.90
5 Menopauze_01 156 (76) 44 (77) 40 (78) 57 (77) 95 (81) NA
6 Leptinengml 17.45 ± 17.07 16.6 ± 15.13 15.5 ± 13.75 17.15 ± 15.34 16.63 ± 16.17 0.97
7 Adiponectineugml 11.91 ± 6.79 11.82 ± 6.58 11.72 ± 6.65 11.54 ± 6.42 12.12 ± 7.13 0.99
8 Resistinengml 3.65 ± 1.06 3.57 ± 0.99 3.99 ± 1.5 3.74 ± 1.11 3.94 ± 1.63 0.17
9 CTXIugmmol 183.81 ± 136.59 159.7 ± 90.89 194.23 ± 122.53 178.24 ± 91.54 179.11 ± 110.48 0.33

10 uNTXInMBCEmmol 41.32 ± 22.37 37.46 ± 15.35 44.12 ± 21.42 41.55 ± 16.27 42.84 ± 20.03 0.14
11 sPINP 44.34 ± 17.73 40.98 ± 15.14 48.06 ± 21.01 47.02 ± 20.29 48.91 ± 22.61 0.05
12 sOC 14.15 ± 6.77 13.24 ± 4.71 14.58 ± 6.15 14.43 ± 6.2 14.89 ± 7.1 0.38
13 sC12C 0.19 ± 0.08 0.19 ± 0.1 0.27 ± 0.61 0.2 ± 0.12 0.26 ± 0.62 0.27
14 CTXIIngmmol 219.49 ± 120.56 215.33 ± 118.03 242.09 ± 158.26 226.03 ± 141.11 218.4 ± 118.11 0.81
15 sCS846 76.71 ± 42.31 83.47 ± 55.55 78.81 ± 71.87 79.18 ± 63.98 76.15 ± 38.94 0.50
16 sCOMPUl 8.54 ± 2.23 9.12 ± 2.51 8.85 ± 2.77 8.6 ± 2.04 9.07 ± 2.33 0.09
17 sPIIANP 1537.12 ± 872.35 1581.17 ± 619.01 1473.33 ± 598.5 1510.3 ± 500.84 1453.29 ± 542.23 0.48
18 sHA 33.67 ± 24.69 33.43 ± 25.96 33.31 ± 21.14 36.31 ± 35.88 32.18 ± 23.67 0.93
19 sPIIINP 4.29 ± 1.17 4.27 ± 1.01 4.36 ± 1.21 4.42 ± 1.54 4.27 ± 1.19 0.90
20 hsCRP 3.26 ± 6.6 2.88 ± 3.89 2 ± 2.67 2.57 ± 3.93 2.96 ± 4.23 0.47
21 BSE 11.01 ± 8.26 9.67 ± 7.69 7.95 ± 5.71 9.3 ± 6.88 9.47 ± 6.37 0.01

TABLE C.4: Baseline characteristics of KIDA MBCFD clusters

# Variable Cluster 1 (n=378) Cluster 2 (n=283) Cluster 3 (n=199) Cluster 4 (n=134) Cluster 5 (n=61) Cluster 6 (n=407) Cluster 7 (n=99) Cluster 8 (n=227) p-value
1 Lft_T0 55.93 ± 5.38 55.76 ± 5.11 55.91 ± 5.02 57.15 ± 5.07 56.85 ± 5.94 55.78 ± 5.22 55.17 ± 4.76 55.92 ± 5.34 0.46
2 RAS 98.68 98.23 94.97 97.76 96.72 98.03 98.99 97.36 NA
3 SEXE 75.13 82.33 80.4 78.36 75.41 81.57 75.76 77.09 NA
4 BMI 26.15 ± 4.22 25.84 ± 3.93 25.57 ± 3.85 26.29 ± 3.84 26.25 ± 3.97 26.35 ± 3.85 25.92 ± 4.24 26.29 ± 3.95 0.81
5 Menopauze_01 174 (74) 136 (77) 96 (77) 72 (89) 31 (82) 189 (77) 40 (73) 106 (77) NA
6 Leptinengml 17.21 ± 17.05 16.82 ± 14.67 15.34 ± 13.58 16.02 ± 14.77 14.73 ± 13.8 18.56 ± 17.62 14.27 ± 14.45 17.59 ± 17.14 0.93
7 Adiponectineugml 12.11 ± 7.29 11.82 ± 6.35 12.14 ± 6.59 13.19 ± 6.73 10.21 ± 6.81 11.57 ± 6.42 12.52 ± 7.48 11.03 ± 6.01 0.18
8 Resistinengml 3.81 ± 1.15 3.63 ± 1.09 3.84 ± 1.35 3.66 ± 1.23 3.56 ± 1.08 3.8 ± 1.16 3.79 ± 1.27 3.88 ± 1.79 0.08
9 CTXIugmmol 175.41 ± 121.34 184.49 ± 114.72 180.39 ± 115.64 182.67 ± 117.73 161.72 ± 123.62 178.37 ± 108.22 188.11 ± 127.03 178.25 ± 134.78 0.63

10 uNTXInMBCEmmol 40.57 ± 18.83 43.8 ± 22.1 42.14 ± 22.55 45.52 ± 18.32 38.34 ± 20.23 40.29 ± 19.75 41.56 ± 19.42 38.75 ± 19.07 0.46
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Table C.4 continued from previous page
# Variable Cluster 1 (n=378) Cluster 2 (n=283) Cluster 3 (n=199) Cluster 4 (n=134) Cluster 5 (n=61) Cluster 6 (n=407) Cluster 7 (n=99) Cluster 8 (n=227) p-value
11 sPINP 46.36 ± 20.47 46.05 ± 17.95 45.29 ± 19.69 46.7 ± 18.87 39.86 ± 14.73 46.26 ± 21.62 49.44 ± 25.92 44.31 ± 21.35 0.96
12 sOC 14.08 ± 6.67 14.33 ± 6.7 14.9 ± 6.97 14.83 ± 5.43 12.99 ± 4.52 14.28 ± 5.93 14.71 ± 8.43 14.04 ± 7.41 0.75
13 sC12C 0.19 ± 0.1 0.24 ± 0.51 0.26 ± 0.65 0.23 ± 0.49 0.17 ± 0.06 0.21 ± 0.3 0.24 ± 0.57 0.21 ± 0.33 0.39
14 CTXIIngmmol 218.36 ± 127.64 224.98 ± 131.47 217.78 ± 124.43 241.05 ± 132.41 219.6 ± 119.47 225.15 ± 133.86 212.56 ± 109.42 213.96 ± 122.68 0.47
15 sCS846 79.19 ± 52.34 75.3 ± 31.67 79.36 ± 50.85 78.49 ± 33.6 72.18 ± 44.56 76.5 ± 48.68 75.73 ± 36.1 83.25 ± 73.79 0.96
16 sCOMPUl 8.86 ± 2.39 8.47 ± 2.16 8.61 ± 2.4 8.9 ± 2.25 8.62 ± 2.27 8.81 ± 2.34 8.41 ± 2.32 8.79 ± 2.1 0.91
17 sPIIANP 1499.07 ± 722.25 1447.04 ± 591.1 1535.6 ± 808.19 1513.24 ± 608.02 1297.33 ± 460.71 1520.72 ± 680.21 1552.32 ± 573.37 1609.47 ± 904.72 0.27
18 sHA 33.02 ± 25.2 33.33 ± 24.08 31.79 ± 21.48 35.51 ± 20.03 28.73 ± 18.32 32.89 ± 23 36.87 ± 46.88 33.93 ± 29.57 0.37
19 sPIIINP 4.35 ± 1.3 4.28 ± 1.1 4.28 ± 1.12 4.31 ± 1.04 4.23 ± 0.88 4.34 ± 1.15 4.47 ± 2.14 4.16 ± 1.04 0.78
20 hsCRP 2.72 ± 3.94 2.69 ± 3.67 3.25 ± 10.11 2.07 ± 2.19 2.93 ± 2.96 3.21 ± 5.11 3.18 ± 6.39 2.93 ± 4.68 0.56
21 BSE 9.67 ± 8.2 10.42 ± 6.89 8.96 ± 6.99 8.87 ± 6.92 8.95 ± 5.99 10.53 ± 7.64 9.95 ± 6.86 9.27 ± 6.82 0.66

TABLE C.5: Baseline characteristics of OA Scoring MBCFD clusters

# Variable Cluster 1 (n=517) Cluster 2 (n=259) Cluster 3 (n=292) Cluster 4 (n=409) Cluster 5 (n=81) Cluster 6 (n=230) p-value
1 Lft_T0 55.97 ± 5.1 56.35 ± 5.12 55.82 ± 5.35 55.56 ± 5.17 55.9 ± 5.5 56.3 ± 5.48 0.53
2 RAS 98.84 96.14 96.92 98.53 96.3 97.39 NA
3 SEXE 77.76 76.06 81.85 81.42 70.37 79.13 NA
4 BMI 26.12 ± 3.9 26.39 ± 3.77 25.67 ± 3.62 25.98 ± 4.08 26.42 ± 4.15 26.39 ± 4.53 0.72
5 Menopauze_01 252 (78) 118 (80) 143 (76) 190 (73) 40 (87) 101 (81) NA
6 Leptinengml 17.34 ± 17.05 18.07 ± 16.46 16.07 ± 15.01 15.99 ± 14.58 17.21 ± 16.8 17.65 ± 17.09 0.27
7 Adiponectineugml 11.7 ± 6.77 11.43 ± 6.12 12.11 ± 6.51 12 ± 6.81 10.84 ± 5.6 12.38 ± 7.39 0.79
8 Resistinengml 3.72 ± 1.3 3.81 ± 1.26 3.69 ± 1.16 3.85 ± 1.17 3.66 ± 1.21 3.84 ± 1.55 0.79
9 CTXIugmmol 175.24 ± 116.03 185.5 ± 121.92 173.51 ± 102.6 183.89 ± 128.58 186.45 ± 122.86 177.55 ± 120.54 0.86

10 uNTXInMBCEmmol 40.83 ± 20.03 42.26 ± 20.72 41.35 ± 20.03 42.08 ± 21.05 40.63 ± 15.98 40.22 ± 19.78 0.92
11 sPINP 44.67 ± 20.92 46.37 ± 19.86 47.45 ± 18.71 46.2 ± 20.52 44.46 ± 15.81 46 ± 23.43 0.71
12 sOC 14.06 ± 6.65 14.53 ± 6.82 14.32 ± 5.44 14.23 ± 6.7 14.54 ± 6.95 14.61 ± 7.32 0.73
13 sC12C 0.21 ± 0.37 0.21 ± 0.36 0.24 ± 0.5 0.23 ± 0.43 0.19 ± 0.07 0.22 ± 0.39 0.10
14 CTXIIngmmol 221.25 ± 127.87 236.03 ± 141.56 213.07 ± 118.82 230.57 ± 128.5 221.52 ± 140.18 202.84 ± 114.28 0.71
15 sCS846 79.86 ± 65.09 74.33 ± 29.11 77.68 ± 47.78 76.11 ± 37.19 79.86 ± 30.74 80.86 ± 55.16 0.42
16 sCOMPUl 8.79 ± 2.31 8.62 ± 2.12 8.68 ± 2.21 8.77 ± 2.56 8.64 ± 2.28 8.66 ± 2.08 0.08
17 sPIIANP 1444.64 ± 642.76 1558.31 ± 729.2 1626.28 ± 894.72 1469.98 ± 698.75 1492.32 ± 545.2 1536.4 ± 601.22 0.90
18 sHA 31.59 ± 23.6 38.35 ± 34.95 32.23 ± 21.76 32.32 ± 24.07 39.92 ± 24.26 31.96 ± 26.85 0.60
19 sPIIINP 4.27 ± 1.14 4.35 ± 1.62 4.35 ± 1.1 4.33 ± 1.13 4.16 ± 1.12 4.29 ± 1.19 0.28
20 hsCRP 3.02 ± 6.39 2.9 ± 3.8 2.55 ± 4.57 2.82 ± 5.86 2.47 ± 3.26 3.35 ± 4.43 0.49
21 BSE 9.45 ± 7.65 10.09 ± 7.11 9.44 ± 6.76 9.89 ± 7.42 10.14 ± 8.27 10.28 ± 7.15 0.98
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TABLE C.6: Baseline characteristics WOMAC Pain HCA clusters with Ward linkage method

# Variable Cluster 1 (n=92) Cluster 2 (n=248) Cluster 3 (n=200) Cluster 4 (n=136) Cluster 5 (n=143) p-value
1 Lft_T0 56.07 ± 5.67 55.93 ± 5.21 56.03 ± 5.01 55.8 ± 5.33 55.67 ± 5.44 0.97
2 RAS 95.65 97.58 98 100 97.2 NA
3 SEXE 77.17 77.02 79 82.35 79.02 NA
4 BMI 26.26 ± 4.67 26.03 ± 3.96 26.26 ± 4.16 26.3 ± 3.73 25.87 ± 3.63 0.80
5 Menopauze_01 44 (73) 114 (78) 89 (74) 76 (85) 68 (79) NA
6 Leptinengml 17.97 ± 17.98 15.65 ± 14.64 18.25 ± 17.92 17.22 ± 15.21 16.23 ± 14.97 0.77
7 Adiponectineugml 11.85 ± 6.89 11.25 ± 6.14 12.34 ± 7.25 12.59 ± 7.44 11.61 ± 6.32 0.63
8 Resistinengml 3.72 ± 1.11 3.79 ± 1.52 3.84 ± 1.19 3.75 ± 1.22 3.63 ± 1.05 0.53
9 CTXIugmmol 186.8 ± 135.1 171.17 ± 98.73 187.02 ± 141.05 174.99 ± 87.7 187.17 ± 128.57 0.89

10 uNTXInMBCEmmol 41.57 ± 18.25 41.62 ± 22.85 41.69 ± 20.07 41.15 ± 16.59 41.76 ± 20.05 0.96
11 sPINP 43.94 ± 17.47 45.12 ± 21.43 46.53 ± 21.28 47.25 ± 17.05 46.09 ± 17.43 0.27
12 sOC 13.79 ± 5.05 14.04 ± 6.49 14.74 ± 7.91 13.98 ± 4.78 14.82 ± 6.62 0.33
13 sC12C 0.24 ± 0.46 0.24 ± 0.47 0.18 ± 0.07 0.19 ± 0.12 0.23 ± 0.48 0.18
14 CTXIIngmmol 217.48 ± 156.38 218.43 ± 126.05 217.96 ± 112.08 223.84 ± 119.84 235.59 ± 136.43 0.41
15 sCS846 76.2 ± 31.55 72.48 ± 30.66 80.6 ± 52.92 80.14 ± 65.63 82.6 ± 66.27 0.46
16 sCOMPUl 8.45 ± 2.3 8.71 ± 2.39 8.83 ± 2.37 9.14 ± 2.4 8.65 ± 2.09 0.23
17 sPIIANP 1500.35 ± 660.32 1523.51 ± 799.45 1542.13 ± 718.66 1550.16 ± 628.13 1419.07 ± 556.6 0.35
18 sHA 39.34 ± 34.84 32.94 ± 22.21 33.64 ± 24.66 32.58 ± 21.58 32.37 ± 32.04 0.53
19 sPIIINP 4.18 ± 1.15 4.26 ± 1.08 4.32 ± 1.09 4.41 ± 1.33 4.37 ± 1.55 0.64
20 hsCRP 2.66 ± 3.98 2.87 ± 4.46 2.96 ± 4.29 2.94 ± 3.67 3.05 ± 8.19 0.61
21 BSE 8.97 ± 5.7 10.64 ± 8.61 9.7 ± 7.18 9.71 ± 7.04 9.75 ± 6.66 0.89

TABLE C.7: Baseline characteristics WOMAC Function HCA clusters with Ward linkage method

# Variable Cluster 1 (n=69) Cluster 2 (n=186) Cluster 3 (n=188) Cluster 4 (n=202) Cluster 5 (n=174) p-value
1 Lft_T0 55.58 ± 5.75 55.69 ± 5.03 55.94 ± 5.28 56.06 ± 5.34 56.03 ± 5.26 0.92
2 RAS 95.65 97.85 98.4 98.02 97.7 NA
3 SEXE 78.26 77.96 81.91 79.21 75.86 NA
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Table C.7 continued from previous page
# Variable Cluster 1 (n=69) Cluster 2 (n=186) Cluster 3 (n=188) Cluster 4 (n=202) Cluster 5 (n=174) p-value
4 BMI 25.81 ± 4.06 25.89 ± 3.96 26.18 ± 3.93 26.28 ± 4.04 26.3 ± 4.07 0.64
5 Menopauze_01 34 (79) 87 (80) 88 (71) 101 (80) 81 (82) NA
6 Leptinengml 17.44 ± 19.87 15.7 ± 15.14 17.04 ± 15.04 16.97 ± 15.46 17.77 ± 17.05 0.58
7 Adiponectineugml 12.55 ± 7.59 11.84 ± 6.46 11.47 ± 6.31 11.93 ± 6.96 12 ± 7.03 0.90
8 Resistinengml 3.74 ± 1.3 3.76 ± 1.56 3.91 ± 1.31 3.66 ± 1.06 3.71 ± 1.08 0.47
9 CTXIugmmol 178.44 ± 87.35 172.73 ± 98.81 167.84 ± 101.12 201.93 ± 146.55 176.84 ± 125.68 0.14

10 uNTXInMBCEmmol 42.28 ± 17.87 41.49 ± 23.35 41.16 ± 20.66 43.26 ± 19.15 39.9 ± 18.15 0.24
11 sPINP 43.53 ± 13.6 44.37 ± 20.42 45.76 ± 21.09 47.5 ± 18.88 46.48 ± 19.89 0.22
12 sOC 13.98 ± 4.88 13.69 ± 6.39 14.5 ± 7.7 14.76 ± 6 14.37 ± 6.36 0.21
13 sC12C 0.19 ± 0.09 0.25 ± 0.55 0.19 ± 0.07 0.24 ± 0.51 0.19 ± 0.09 0.64
14 CTXIIngmmol 225.21 ± 160.55 223.98 ± 127.14 215.31 ± 111.19 233.16 ± 134.11 213.58 ± 121.74 0.76
15 sCS846 77.02 ± 30.08 73.21 ± 31.39 81.73 ± 53.16 79.22 ± 57.72 77.66 ± 60.97 0.43
16 sCOMPUl 8.74 ± 2.18 8.74 ± 2.46 8.77 ± 2.25 8.78 ± 2.35 8.78 ± 2.33 0.97
17 sPIIANP 1582.05 ± 710.88 1545.22 ± 960.55 1526.75 ± 595.99 1494.99 ± 623.76 1451.52 ± 536.74 0.74
18 sHA 35.02 ± 28.78 33.4 ± 22.99 32.72 ± 26.07 35.95 ± 27.63 31.79 ± 27.32 0.66
19 sPIIINP 4.45 ± 1.21 4.28 ± 1.14 4.29 ± 1.07 4.26 ± 1.32 4.37 ± 1.37 0.60
20 hsCRP 2.61 ± 3.65 2.83 ± 4.84 3.78 ± 8.01 2.61 ± 3.52 2.54 ± 3.07 0.36
21 BSE 9.48 ± 6.76 9.98 ± 8.51 10.71 ± 7.84 9.35 ± 6.4 9.77 ± 6.93 0.60

TABLE C.8: Baseline characteristics WOMAC Stiffness HCA clusters with Ward linkage method

# Variable Cluster 1 (n=113) Cluster 2 (n=240) Cluster 3 (n=164) Cluster 4 (n=256) Cluster 5 (n=47) p-value
1 Lft_T0 55.44 ± 5.3 56.2 ± 5.49 56.01 ± 5.29 55.8 ± 5.03 55.72 ± 5.29 0.82
2 RAS 98.23 98.33 96.95 97.27 100 NA
3 SEXE 79.65 77.92 76.22 80.86 78.72 NA
4 BMI 26.29 ± 3.94 26.36 ± 4.11 25.94 ± 3.91 25.99 ± 3.99 25.96 ± 3.98 0.75
5 Menopauze_01 51 (72) 112 (77) 80 (82) 129 (79) 20 (77) NA
6 Leptinengml 17.1 ± 15.48 16.98 ± 15.77 16.98 ± 15.32 16.76 ± 17.06 16.59 ± 16.04 0.96
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Table C.8 continued from previous page
# Variable Cluster 1 (n=113) Cluster 2 (n=240) Cluster 3 (n=164) Cluster 4 (n=256) Cluster 5 (n=47) p-value
7 Adiponectineugml 11.06 ± 6.38 12.07 ± 7.23 12.17 ± 6.85 11.97 ± 6.57 11.25 ± 6.01 0.59
8 Resistinengml 3.77 ± 1.13 3.87 ± 1.55 3.67 ± 1.15 3.72 ± 1.13 3.73 ± 1.15 0.67
9 CTXIugmmol 172.44 ± 89.33 178.33 ± 121.05 180.51 ± 124.74 187.68 ± 128.8 166.84 ± 76.14 0.97

10 uNTXInMBCEmmol 40.79 ± 16.07 41.75 ± 19.22 40.39 ± 19.83 42.96 ± 23.72 39.06 ± 12.71 0.90
11 sPINP 45.45 ± 17.83 46.55 ± 20.45 45.26 ± 20.73 46.21 ± 19.66 43.19 ± 14.65 0.95
12 sOC 13.59 ± 5.29 14.46 ± 6.53 14.08 ± 5.18 14.67 ± 7.83 14.12 ± 4.93 0.81
13 sC12C 0.26 ± 0.55 0.24 ± 0.55 0.19 ± 0.09 0.19 ± 0.09 0.21 ± 0.12 0.28
14 CTXIIngmmol 230.26 ± 150.55 223.77 ± 129.64 216.19 ± 118.86 221.63 ± 120.17 217.82 ± 127.23 0.98
15 sCS846 78.15 ± 62.36 76.52 ± 39.87 76.4 ± 34.32 76.99 ± 48.79 95.62 ± 103 0.52
16 sCOMPUl 8.62 ± 2.3 8.93 ± 2.31 8.9 ± 2.33 8.65 ± 2.38 8.46 ± 2.21 0.38
17 sPIIANP 1443.1 ± 493.27 1494.77 ± 719.45 1577.51 ± 774.91 1504.32 ± 731.72 1570.55 ± 504.08 0.58
18 sHA 34.13 ± 34.82 33.94 ± 24.82 35.31 ± 24.36 31.37 ± 23.07 38.24 ± 33.13 0.21
19 sPIIINP 4.41 ± 1.6 4.23 ± 1.19 4.28 ± 1.2 4.35 ± 1.1 4.34 ± 1.17 0.81
20 hsCRP 2.59 ± 4.15 2.99 ± 4.21 2.83 ± 3.74 3.2 ± 7.06 1.96 ± 1.91 0.86
21 BSE 8.52 ± 6.48 10.2 ± 7.55 9.22 ± 6.22 10.84 ± 8.35 9.33 ± 6.36 0.11

TABLE C.9: Baseline characteristics of KIDA HCA clusters with Ward linkage method

# Variable Cluster 1 (n=261) Cluster 2 (n=131) Cluster 3 (n=63) Cluster 4 (n=277) Cluster 5 (n=418) Cluster 6 (n=529) Cluster 7 (n=91) Cluster 8 (n=18) p-value
1 Lft_T0 55.49 ± 5.02 56.39 ± 5.18 55.89 ± 5.82 55.92 ± 4.91 56.07 ± 5.35 55.89 ± 5.3 56.23 ± 5.63 57.11 ± 4.17 0.29
2 RAS 96.55 97.71 96.83 98.19 98.33 98.11 96.7 94.44 NA
3 SEXE 79.31 79.39 77.78 76.17 79.19 79.58 80.22 77.78 NA
4 BMI 25.85 ± 3.94 25.95 ± 4.09 26.79 ± 3.76 26.3 ± 3.8 26.25 ± 3.98 26.07 ± 4.18 25.4 ± 3.54 26.33 ± 3.36 0.23
5 Menopauze_01 119 (76) 59 (80) 34 (87) 123 (78) 196 (74) 252 (76) 50 (83) 11 (100) NA
6 Leptinengml 16.05 ± 14.82 15.45 ± 15.72 16.95 ± 13.7 18 ± 16.91 17.4 ± 16.32 17.56 ± 17 13.24 ± 11.96 16.83 ± 16.39 0.47
7 Adiponectineugml 11.92 ± 6.75 11.18 ± 5.75 11.14 ± 5.23 11.73 ± 7.46 12.15 ± 6.83 11.83 ± 6.42 12.37 ± 7.3 10.46 ± 4.59 0.76
8 Resistinengml 3.75 ± 1.3 3.65 ± 1.09 3.59 ± 1.16 3.84 ± 1.36 3.81 ± 1.08 3.79 ± 1.4 3.52 ± 1.21 4.06 ± 1.56 0.63
9 CTXIugmmol 188.96 ± 132.88 164.71 ± 94.27 150.54 ± 82.59 191.43 ± 114.28 181.14 ± 119.82 174.45 ± 116.72 174.62 ± 142.98 176.63 ± 109.49 0.97

10 uNTXInMBCEmmol 43.93 ± 22.43 37.89 ± 15.92 39.92 ± 14.6 43.22 ± 22.4 40.84 ± 18.84 40.66 ± 20.22 39.1 ± 19.44 45.81 ± 19.97 0.88
11 sPINP 46.47 ± 21.69 43.94 ± 22.97 40.79 ± 14.12 48.16 ± 21.31 47.26 ± 22.62 44.88 ± 18.1 44.03 ± 16.53 41.41 ± 16.1 0.56
12 sOC 14.45 ± 6.81 13.54 ± 6.29 12.76 ± 6.17 14.69 ± 5.86 14.66 ± 7.68 14.14 ± 6.33 14.23 ± 5.52 14.11 ± 4.18 0.92
13 sC12C 0.25 ± 0.58 0.19 ± 0.1 0.18 ± 0.07 0.22 ± 0.44 0.22 ± 0.3 0.21 ± 0.28 0.3 ± 0.82 0.18 ± 0.07 0.83
14 CTXIIngmmol 220.05 ± 129.35 220.39 ± 120.13 223.02 ± 90.96 222.71 ± 150.04 222.17 ± 117.91 220.51 ± 126.29 221.42 ± 129.31 265.26 ± 164.23 0.85
15 sCS846 79.7 ± 48.09 84.9 ± 59.55 70.14 ± 22 75.19 ± 30.39 77.72 ± 42.52 78.7 ± 63.3 73.21 ± 41.39 84.5 ± 49.99 0.46
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Table C.9 continued from previous page
# Variable Cluster 1 (n=261) Cluster 2 (n=131) Cluster 3 (n=63) Cluster 4 (n=277) Cluster 5 (n=418) Cluster 6 (n=529) Cluster 7 (n=91) Cluster 8 (n=18) p-value
16 sCOMPUl 8.66 ± 2.27 8.66 ± 2.2 8.63 ± 2.32 8.58 ± 2.11 8.76 ± 2.38 8.86 ± 2.33 8.53 ± 2.44 8.42 ± 1.94 0.33
17 sPIIANP 1485.63 ± 828.13 1632.48 ± 804.61 1455.52 ± 553.33 1479.01 ± 571.62 1538.69 ± 628.7 1525.13 ± 788.04 1348.6 ± 510.49 1432.74 ± 491.27 0.33
18 sHA 32.24 ± 21.14 34.56 ± 19.93 30.71 ± 17.56 31.88 ± 24.45 33.04 ± 29.94 35.42 ± 28.77 29.52 ± 17.34 31.99 ± 23.56 0.27
19 sPIIINP 4.24 ± 1.15 4.41 ± 1.11 4.43 ± 1.12 4.33 ± 1.15 4.35 ± 1.44 4.28 ± 1.14 4.18 ± 1.21 4.08 ± 0.69 0.49
20 hsCRP 3.06 ± 8.88 2.44 ± 3.08 2.88 ± 3.43 2.91 ± 4.82 2.96 ± 4.99 2.87 ± 4.29 2.84 ± 3.99 3.26 ± 3.73 0.12
21 BSE 9.48 ± 7.11 8.5 ± 6.34 9.63 ± 7.46 9.17 ± 7.04 10.64 ± 7.48 9.72 ± 7.66 9.92 ± 6.63 13.82 ± 9.84 0.66

TABLE C.10: Baseline characteristics of OA Scoring HCA clusters with Ward linkage method

# Variable Cluster 1 (n=678) Cluster 2 (n=341) Cluster 3 (n=227) Cluster 4 (n=214) Cluster 5 (n=237) Cluster 6 (n=91) p-value
1 Lft_T0 55.94 ± 5.17 55.82 ± 5.14 55.66 ± 5.4 55.89 ± 5.36 56.51 ± 5.29 55.89 ± 5.12 0.70
2 RAS 99.12 96.48 97.36 95.79 98.31 96.7 NA
3 SEXE 79.5 78.59 77.97 80.84 80.17 69.23 NA
4 BMI 25.88 ± 3.85 26.33 ± 3.71 26.4 ± 4.22 25.66 ± 3.77 26.46 ± 4.49 26.23 ± 4.2 0.70
5 Menopauze_01 331 (75) 147 (76) 103 (75) 107 (79) 112 (81) 44 (86) NA
6 Leptinengml 15.78 ± 14.69 18.01 ± 16.54 18.65 ± 17.81 16.1 ± 15.27 17.8 ± 17.53 17.49 ± 17.42 0.92
7 Adiponectineugml 12.13 ± 6.69 11.08 ± 6.53 10.5 ± 6.1 12.94 ± 6.85 12.78 ± 7.42 10.84 ± 5.23 0.49
8 Resistinengml 3.72 ± 1.25 3.83 ± 1.2 3.8 ± 1.31 3.76 ± 1.2 3.82 ± 1.48 3.74 ± 1.26 0.49
9 CTXIugmmol 180.36 ± 117.76 188.39 ± 131.59 169.28 ± 109.02 169.17 ± 100.08 179.9 ± 125.4 182.97 ± 118.58 0.91

10 uNTXInMBCEmmol 41.54 ± 21.01 41.91 ± 20.3 39.87 ± 18.04 42.2 ± 20.78 40.93 ± 20.26 39.95 ± 16.22 0.79
11 sPINP 45.87 ± 19.93 45.61 ± 19.38 44.51 ± 23.96 47.61 ± 18.11 46.77 ± 23.46 43.98 ± 14.96 0.77
12 sOC 14.28 ± 6.73 14.55 ± 7.17 13.79 ± 6.02 14.14 ± 5.05 14.7 ± 7.23 14.13 ± 6.44 0.54
13 sC12C 0.22 ± 0.37 0.19 ± 0.25 0.25 ± 0.54 0.25 ± 0.58 0.19 ± 0.09 0.25 ± 0.59 0.60
14 CTXIIngmmol 227.94 ± 132.23 226.15 ± 138.78 221.17 ± 106.78 215.8 ± 127.18 205.62 ± 115.39 218.09 ± 131.94 0.93
15 sCS846 78.41 ± 59.62 77.69 ± 46.09 79.02 ± 40.7 74.56 ± 28.44 79.39 ± 54.22 77.82 ± 24.87 0.29
16 sCOMPUl 8.8 ± 2.41 8.74 ± 2.26 8.54 ± 2.02 8.71 ± 2.34 8.76 ± 2.19 8.48 ± 2.31 0.62
17 sPIIANP 1483.74 ± 732.03 1577.71 ± 804.05 1439.19 ± 526.9 1539.5 ± 804.6 1549.26 ± 606.95 1465.24 ± 500.47 0.28
18 sHA 32.07 ± 23.64 34.03 ± 27.72 33.22 ± 32.01 33.16 ± 22.44 33.93 ± 27.28 37.95 ± 22.06 0.97
19 sPIIINP 4.27 ± 1.1 4.26 ± 1.32 4.47 ± 1.44 4.48 ± 1.2 4.24 ± 1.19 4.08 ± 1.08 0.86
20 hsCRP 2.49 ± 3.99 3.16 ± 4.26 3.99 ± 10.09 2.49 ± 4.72 3.27 ± 4.32 2.2 ± 2.6 0.78
21 BSE 9.46 ± 7.48 10.15 ± 7.53 10.58 ± 7.87 9.06 ± 6.37 10.17 ± 7.03 9.46 ± 7.1 0.92
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Appendix D

Clustering Evaluation

FIGURE D.1: Ordered Dissimilarity Plots.
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FIGURE D.2: Clustering evaluation with elbow method for HCA clusters.
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FIGURE D.3: Clustering evaluation with average silhouette coefficient for HCA
clusters.
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FIGURE D.4: Dendograms for HCA clusters.
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TABLE D.1: Posterior probabilities of funHDDC clusters

WOMAC Pain WOMAC Function WOMAC Stiffness KIDA OA Scoring
Cluster 1 0.93 0.96 0.92 0.94 0.99
Cluster 2 0.96 0.94 0.88 0.94 0.98
Cluster 3 0.96 0.92 0.86 0.98 1.00
Cluster 4 0.92 0.93 0.88 0.96 0.99
Cluster 5 0.91 0.92 0.93 0.97 1.00
Cluster 6 0.95 0.98
Cluster 7 0.95
Cluster 8 0.95
Average 0.94 0.94 0.89 0.96 0.99
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Appendix E

Listings

K_SKY_OST_li_data <− CTidy %>%
d p l y r : : s e l e c t ( year , n s in , K_SKY_OST_li ) %>%
as . d a t a . f rame ( )

# C a s t i n g t h e K_SKY_OST_li d a t a and t h e n s e l e c t i n g on ly y e a r
columns ( l e a v i n g o u t n s i n )
recasted_K_SKY_OST_li <− c a s t ( d a t a = K_SKY_OST_li_data ,
n s i n ~ year , v a l u e = ’ K_SKY_OST_li ’ ) %>%

d p l y r : : s e l e c t ( " 0 " , ’2 ’ , ’5 ’ , ’8 ’ , ’ 1 0 ’ ) %>% as . d a t a . f rame ( )
# NA i m p u t a t i o n o f K_SKY_OST_li
ind_K_SKY_OST_li_impute <−
which ( rowSums ( i s . na ( recasted_K_SKY_OST_li ) ) <= 3)
# C r e a t e new d a t a f r a m e wi th <=3 NAs , which w i l l be used f o r
# l i n e a r i n t e r p o l a t i o n
X_K_SKY_OST_li_Max3NAs <−
as . d a t a . f rame ( recasted_K_SKY_OST_li [ ind_K_SKY_OST_li_impute , ] )
# Compute l i n e a r i n t e r p o l a t i o n on t h e d a t a f r a m e wi th a t
# l e a s t 2 d a t a p o i n t s p e r row ( Maximum 3 NAs )
X_K_SKY_OST_li_Max3NAs_inter <−
as . d a t a . f rame ( n a _ i n t e r p o l a t i o n ( ( t ( X_K_SKY_OST_li_Max3NAs ) ) ,
o p t i o n = " l i n e a r " ) )
# C r e a t e i n d e x
ind_K_SKY_OST_l i_inter <−
which ( rowSums ( i s . na ( t ( X_K_SKY_OST_li_Max3NAs_inter ) ) ) == 0)
# T r a n s p o s e
K_SKY_OST_li_inter <−
as . d a t a . f rame ( t ( X_K_SKY_OST_li_Max3NAs_inter ) )
# C r e a t e i n d e x by i n t e r s e c t i n g 2 v a r i a b l e s
i n d _ r a d i o _ 1 8 <− Reduce ( base : : i n t e r s e c t ,
l i s t ( ind_KROsteophyteFemurLatmm_inter ,
ind_K_SKY_OST_l i_inter ) )
# S u b s e t t h e v a r i a b l e wi th t h e i n d e x we j u s t c r e a t e d
X_K_SKY_OST_li_inter <− K_SKY_OST_li_inter [ i n d _ r a d i o _ 1 8 , ]
# C r e a t e f u n c t i o n a l d a t a o b j e c t w i th p r e v i o u s l y c r e a t e d b a s i s
# sys tem
fd18_K_SKY_OST_li <− smooth . b a s i s ( a r g v a l s = c ( 0 , 2 , 5 , 8 , 1 0 ) ,
y = t ( X_K_SKY_OST_li_inter ) , f d P a r o b j = p o l y B a s i s ) $ fd

LISTING E.1: Example of code for specific data preparation for K_SKY_OST_li
variable.
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p o l y B a s i s <− c r e a t e . p o l y g o n a l . b a s i s ( a r g v a l s = c ( 0 , 2 , 5 , 8 , 1 0 ) )
LISTING E.2: Example of code used for creating the polygonal basis.

res_poly_WOMAC <− funHDDC ( l i s t ( fd1_wmpyns , fd2_wmfuns ,
fd3_wmst f s ) , model=c ( " AkjBkQkDk " , " AkjBQkDk " , " AkBkQkDk " ,
"AkBQkDk " , " ABkQkDk " , "ABQkDk " ) , K=c ( 3 : 8 ) )

LISTING E.3: Example of code used for running the funHDDC algorithm with
three variables, testing all model variations, and testing a range of K from three to

eight clusters.

# V a r i a b l e : fd1_wmpyns , model : res_poly_WOMAC
s e l e c t 1 <−
fd ( fd1_wmpyns$coefs [ , which ( res_poly_WOMAC$class = = 1 ) ] ,
fd1_wmpyns$bas is )
s e l e c t 2 <−
fd ( fd1_wmpyns$coefs [ , which ( res_poly_WOMAC$class = = 2 ) ] ,
fd1_wmpyns$bas is )
s e l e c t 3 <−
fd ( fd1_wmpyns$coefs [ , which ( res_poly_WOMAC$class = = 3 ) ] ,
fd1_wmpyns$bas is )
s e l e c t 4 <−
fd ( fd1_wmpyns$coefs [ , which ( res_poly_WOMAC$class = = 4 ) ] ,
fd1_wmpyns$bas is )
s e l e c t 5 <−
fd ( fd1_wmpyns$coefs [ , which ( res_poly_WOMAC$class = = 5 ) ] ,
fd1_wmpyns$bas is )
## P l o t each of t h e c u r v e s
p l o t ( mean . fd ( s e l e c t 1 ) , c o l =" o ra ng e " , y l im =c ( 0 , 1 0 0 ) , l t y =1 ,
lwd =3 , y l a b = "Mean Values " ,
main = " S t a n d a r d i z e d WOMAC Pa in S c a l e " )
l i n e s ( mean . fd ( s e l e c t 2 ) , c o l =" p a l e g r e e n 2 " , l t y =1 , lwd =3)
l i n e s ( mean . fd ( s e l e c t 3 ) , c o l =" navy " , l t y =1 , lwd =3)
l i n e s ( mean . fd ( s e l e c t 3 ) , c o l =" p u r p l e " , l t y =1 , lwd =3)
l i n e s ( mean . fd ( s e l e c t 3 ) , c o l =" r e d " , l t y =1 , lwd =3)

LISTING E.4: Example of code used for plotting graphical representation of the
groups mean curves for WOMAC Pain variable.

# P r e p a r e t h e d a t a a s a m a t r i x
HCA_wmpyns_data <− as . m a t r i x ( wmpyns_in te r )
co lnames ( HCA_wmpyns_data ) <− c ( " ye a r _0 " , " ye a r _1 " , " ye a r _ 2 " ,
" ye a r _3 " , " ye a r _4 " , " ye a r _ 5 " , " ye a r _ 6 " , " ye a r _ 7 " , " ye a r_ 8 " ,
" ye a r _9 " , " yea r_10 " )
# C a l c u l a t e E u c l i d e a n d i s t a n c e
d i s t a n c e _ m a t r i x _ w m p y n s <− d i s t ( HCA_wmpyns_data )
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# C l u s t e r dendrogram wi th d e s i r e d l i n k a g e method
hc_wmpyns_w2 <− h c l u s t ( d i s t ance_ma t r ix_wmpyns ,
method = " ward . D2 " )
# P l o t dendrogram
p l o t ( hc_wmpyns_w2 , hang = −1, main = " Dendrogram f o r WOMAC
p a i n HCA" )
# Cut dendrogram t r e e a t d e s i r e d number o f c l u s t e r s K
hc_wmpyns_members <− c u t r e e ( hc_wmpyns_w2 , 5 )
# C r e a t e l i s t o f members p e r c l u s t e r
a l l _ w m p y n s _ n s i n s <− c a s t ( d a t a = wmpyns_data , n s i n ~ year ,
v a l u e = ’wmpyns ’ ) %>% d p l y r : : s e l e c t ( ’ n s in ’ ) %>% as . d a t a . f rame ( )
# S e l e c t sample wi th i n d e x : ind_wmpyns_ in t e r
a l l _ w m p y n s _ n s i n s <− a l l _ w m p y n s _ n s i n s [ ind_wmpyns_ in te r , ]
# C r e a t e d a t a f r a m e wi th s u b j e c t ID and c l u s t e r membership
h c a _ m e m b e r s _ c l u s t e r s <− d a t a . f rame ( " n s i n " = a l l_wmpyns_ns ins ,
" c l u s t e r " = hc_wmpyns_members )
# C r e a t e d a t a s e t w i th ID and c l u s t e r s i n c l u d e d
HCA_wmpyns_data_with_nsins <− as . d a t a . f rame ( HCA_wmpyns_data )
HCA_wmpyns_data_wi th_ns ins$ns ins <− h c a _ m e m b e r s _ c l u s t e r s $ n s i n
HCA_wmpyns_da t a_wi th_ns in s$c lus t e r s <−
h c a _ m e m b e r s _ c l u s t e r s $ c l u s t e r
# C a l c u l a t e c l u s t e r means
hca_wmpyns_c lus te r_means <−
a g g r e g a t e ( HCA_wmpyns_data_with_nsins ,
l i s t ( h c a _ m e m b e r s _ c l u s t e r s $ c l u s t e r ) , mean )
# S e l e c t on ly columns wi th means and t r a n s p o s e d a t a f r a m e
hca_wmpyns_c lus te r_means <− t ( hca_wmpyns_c lus te r_means [ , 1 : 1 2 ] )
# Remove c l u s t e r number
hca_wmpyns_c lus te r_means <− hca_wmpyns_c lus te r_means [−1 ,]
# P l o t c l u s t e r means
p l o t ( hca_wmpyns_c lus te r_means [ , 1 ] , c o l =" o ra ng e " , x l im =c ( 1 , 1 1 ) ,
y l im =c ( 0 , 1 0 0 ) , l t y =1 , lwd =3 , x l a b = " t ime " , y l a b = "Mean Values " ,
main = " S t a n d a r d i z e d WOMAC Pa in S c a l e " , t y p e = " l " )
l i n e s ( hca_wmpyns_c lus te r_means [ , 2 ] , c o l =" p a l e g r e e n 2 " , l t y =1 ,
lwd =3)
l i n e s ( hca_wmpyns_c lus te r_means [ , 3 ] , c o l =" navy " , l t y =1 , lwd =3)
l i n e s ( hca_wmpyns_c lus te r_means [ , 4 ] , c o l =" p u r p l e " , l t y =1 , lwd =3)
l i n e s ( hca_wmpyns_c lus te r_means [ , 5 ] , c o l =" r e d " , l t y =1 , lwd =3)
g r i d ( nx = NULL, ny = NULL, c o l = " l i g h t g r a y " , l t y = " d o t t e d " )
l i n e s ( hca_wmpyns_c lus te r_means [ , 6 ] , c o l =" l i g h t b l u e " , l t y =1 , lwd =3)
l i n e s ( hca_wmpyns_c lus te r_means [ , 7 ] , c o l =" b l a c k " , l t y =1 , lwd =3)
l i n e s ( hca_wmpyns_c lus te r_means [ , 8 ] , c o l =" p ink " , l t y =1 , lwd =3)
g r i d ( nx = NULL, ny = NULL, c o l = " l i g h t g r a y " , l t y = " d o t t e d " )

LISTING E.5: Example of code used for HCA for WOMAC Pain variable.
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