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Abstract

In this thesis we study the feasibility of a system
to automatically detect suicidal and generally sus-
picious behavior from surveillance camera feeds in
order to assist in the prevention of suicides at rail-
way crossings. We design a system that is able to
detect several types of behavior by using computer
vision techniques such as object detection and mul-
tiple object tracking. We present an approach to
extract behaviors from detected person trajectories
and to classify these as being suspicious or not, with
the intent of sending alerts to camera operators to
notify them about railway crossings that need their
attention. The aim is to assist these camera opera-
tors in their surveillance work. We implement and
evaluate the performance of our system and discuss
potential areas where improvements to our system
can be made.

1 Introduction

1.1 Context and motivation

The main railway network in the Netherlands is
managed by ProRail, a private company with the
State of the Netherlands as its sole shareholder.
One of their tasks is to ensure the safety of the
railway infrastructure for everyone involved, which
includes keeping unauthorized people off the tracks
and other dangerous off-limits areas. There are
several measures in place for this, one of which is
camera surveillance. A major problem that ProRail
faces is people attempting suicide by train. There
are around 200 such cases each year (see Figure 1).
According to ProRail, these attempts occur mostly
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in somewhat secluded areas along the train tracks.
Since the tracks are largely fenced off, the most
easily accessible points of entry are railway crossings,
which have been found to have a high incidence of
suicide attempts [1].
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(a) Train-person collisions and deadly victims at railway
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Figure 1: Train-person collision and suicide statis-
tics in the Netherlands. [2]

There are 2477 crossings along the railway tracks
in the Netherlands [2]. A selection of crossings that
have been found to have the highest occurrence of
suicide attempts are monitored by security staff via
overhead cameras. At any time one or two specially
trained operators continuously monitor around 15
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1.2 Suspicious behavior 1 INTRODUCTION

to 20 crossings. In recent years high resolution pan-
tilt-zoom cameras have been installed (usually two
or more per crossing) that allow the operator to
move any camera around as needed. At the time
of writing there are 72 cameras in use. This has
been a successful strategy for preventing suicides
at these particular crossings. There are no official
exact numbers, but according to ProRail it is in the
order of several tens of prevented suicides per year
for this relatively small amount of cameras.

When suspicious behavior is detected by a camera
operator, trains on that particular section are im-
mediately informed by control room personnel that
an unauthorized person is on the tracks, at which
point the train driver will slow down significantly
to minimize risk. Authorities are contacted and
attempt to arrive on site in time to prevent serious
injury.
This manual monitoring is labor intensive and

psychologically demanding, which makes it infea-
sible to keep an eye on every railway crossing at
once all the time, so it is not a scalable solution for
surveilling all crossings. However, monitoring every
railway crossing at the same time would mean the
likely prevention of many more suicides, and in turn
prevent a serious amount of secondary damage such
as psychological trauma in witnesses and disruption
of train schedules. Thus, if at all possible, having
the capability to monitor all railway crossings could
be instrumental to ProRail in reducing the amount
of suicides and disruption of train schedules. Since
personnel capacity is limited, manual monitoring of
such a large amount of cameras is simply infeasible,
which means any practical solution would have to
be largely automated.

The state of computer vision currently allows for
the extraction of a wide array of interesting informa-
tion from images and videos. We can detect objects,
categorize them, track them and even detect spatio-
temporal events [3]. We could use these computer
vision techniques to develop a system that takes the
camera feed as input and returns a simple binary
indication whether or not potential suspicious be-
havior is detected. Many of the sub-problems for
this task are already solved, but to our knowledge
it has not yet been applied to this specific context.
Of course human oversight is still necessary for a
final judgment, but if the camera operators only
have to look at a camera when an interesting event
takes place instead of monitoring it all the time,
that would significantly reduce the workload, allow-
ing the operator to oversee more railway crossings
at once, and possibly increase the detection rate
since there won’t be a need to rely upon a human
looking at the right camera feed at the right time.
Hence, the focus of this thesis will be to research
the feasibility of a system to aid camera operators
in detecting suicidal behavior at railway crossings

as early as possible. More specifically, the novel
aspect will be analyzing and classifying behavior by
making use of existing techniques.

1.2 Suspicious behavior

While there are many types of behavior at railway
crossings that would be considered suspicious, such
as putting coins on the tracks, taking frontal photos
of trains, etc., the focus of this thesis will primar-
ily be on detecting early signs of suicidal behavior.
However, since our method is aimed at detecting
behavior that is simply out of the ordinary, many
of these other types of suspicious-but-not-suicidal
behavior will also be picked up.
There has been some research into suicidal be-

havior at train tracks [1, 4–6], but it appears that
many of the cues are vague and often the gut feeling
of camera operators plays a significant role in the
process of deciding what is suspicious, as revealed by
interviews with ProRail personnel. Many of these
vague cues could conceivably be detected by an AI,
but this is outside the scope of this thesis. One of
the more objectively measurable cues is the trajec-
tory of a person. Combined with information about
the scene, for example the barriers being open or
not and the location of train tracks, this gives a
significant amount of information, such as a person
waiting while no train is coming, a person walking
onto the tracks, etc. With this limited information
we will not be able to perfectly detect suspicious
behavior, but even a rough indication of anything
out of the ordinary is useful according to ProRail.
Hence, we will primarily focus on using the trajec-
tory of persons and environmental cues to determine
whether their behavior is suspicious.

1.3 Research questions

The main goal for ProRail is to find out whether an
automated monitoring system is feasible. Hence, in
this thesis our main research question is:

Is a real-time automated system to detect
suspicious behavior at railway crossings
technically feasible?

To make this more concrete, we break it up into
more specific sub-questions:

1. What is the accuracy of detection and
tracking of people?

2. What types of behaviors can we detect
based on trajectories and how well
can we detect these?

3. How quickly can we detect these be-
haviors?
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2 LITERATURE REVIEW

We determine the feasibility of a real-time auto-
mated vision-based system for analyzing and classi-
fying suspicious behavior at railway crossings. To
this end we perform a literature study (Section 2)
and design a general method (Section 3) for which
we develop a proof of concept. We evaluate the per-
formance of person detection, person tracking and
behavior analysis in our proof of concept by defin-
ing metrics and discussing the results (Sections 4
and 5). Finally, we will discuss potential future
work (Section 6).

2 Literature review
We review literature regarding three key aspects in
our task of suspicious behavior detection: object de-
tection, object tracking and detection of anomalous
behavior.

2.1 Object detection
Object detection is the task of detecting and lo-
calizing classes of objects in images or sequences
of images to gain semantic information about the
image. It has found widespread use in a variety of
domains as one of the fundamental building blocks
of computer vision. Some examples of the wide
array of application domains are surveillance, face
recognition, optical character recognition, pedes-
trian detection and vision systems for autonomous
vehicles.

History One of the earliest real-time object detec-
tors was the Viola-Jones algorithm [7], which relies
on hand-crafted Haar features to recognize semanti-
cally meaningful structures in images. Other early
approaches are Scale Invariant Feature Transform
(SIFT) [8] and Histogram of Oriented Gradients
(HOG) [9], which give feature descriptors that can
be used with machine learning techniques, for exam-
ple a Support Vector Machine (SVM) [10], to train
a classifier that can detect objects.

These approaches follow a traditional division of
sub-tasks in object detection:

• Region selection, where areas of an image that
may contain an object are selected. This is
usually done with a sliding window approach
that scans the whole image.

• Feature extraction, where some abstract repre-
sentation of the object in the region of interest
is computed.

• Classification, where a machine learning
method is trained to discriminate between fea-
ture representations in order to classify the
detected object as belonging to a certain class
of objects.

In recent years, object detectors based on Deep
Neural Networks (DNNs) [11] have exploded in pop-
ularity due to the widespread resurgence of neural
networks, in particular the Convolutional Neural
Network (CNN) [12]. Although the concept of arti-
ficial neural networks has been around since at least
the 1940s, research stagnated after the 1960s as it
was deemed an infeasible approach due to the com-
putational cost and large amounts of data necessary
to train neural networks. With the introduction
of back-propagation [13] in the 1980s, popularity
blossomed before declining again in the early 2000s.
By the late 2000s, breakthrough research [14, 15]
had renewed the interest in deep learning, as the
availability of large data sets such as ImageNet [16]
and the increased availability of massively parallel
computing power meant that it was now feasible for
DNNs to be competitive with traditional object de-
tection methods, as they could be trained on regular
hardware.

Neural networks Where the above mentioned
traditional models create a shallow hierarchy from
pixels to abstract features, limiting the amount of
semantic information that can be detected, CNN
based methods create much deeper hierarchies of
features, allowing for vastly more semantic expres-
siveness. CNNs learn feature representations di-
rectly from the source data, eliminating the need
for manually crafted features, which were a limiting
factor in the traditional models. Because of this,
they have a much greater capability for reducing
the dimensionality of computing problems [17].
Generally, there are two main types of architec-

ture within CNNs. First, there are those that mirror
the traditional approach where first regions of in-
terest are generated, which are then classified into
different categories. Examples of these types of
networks are R-CNN, Fast R-CNN, Faster R-CNN,
SPPnet, FPN and Mask R-CNN. The other type
of architecture does away with the two-stage pro-
cess and instead opts to unify the localization and
classification of object into a regression problem.
These include for example AttentionNet [18], SSD
and YOLO.

R-CNN [19] uses selective search [20] to generate
2000 region proposals, then uses a CNN to extract
deep feature representations for each region pro-
posal, after which linear SVMs are used to score
these feature representations. These scores are used
in a bounding box regression problem to adjust the
regions, after which non-maximum suppression is
applied to filter the resulting bounding boxes.
While R-CNN’s detection performance is a sig-

nificant improvement over traditional methods, it
comes at a high computational and space cost. It
is slow to train and the selective search for region
proposals takes too much time for the method to
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work in real-time.
SPPnet [21] improved on the performance of R-

CNN by applying Spatial Pyramid Matching [22].
Increased speed over R-CNN was achieved by ex-
tracting only a single feature map instead of the
expensive region proposal step in R-CNN.

Fast R-CNN [23] improves on R-CNN and SPPnet
with a more efficient training method that takes
advantage of feature sharing during training. Like
SPPnet, instead of generating 2000 region proposals
and doing a forward pass for each of them, images
are fed directly to the CNN to create a convolutional
feature map. The region proposals and an image
are now processed in a single forward pass. Fast
R-CNN introduces a region of interest (RoI) pooling
layer (similar to a single layer SPPnet) into which
the proposals are fed, which is then sent into a
fully convolutional layer for both classification and
bounding box regression. The SVM for classification
is replaced with a softmax layer.
The bottleneck in Fast R-CNN is the selective

search for region proposals. Faster R-CNN [24]
addresses this by replacing the selective search with
a Region Proposal Network (RPN). A convolution
feature map is generated and fed into the RPN to
generate anchors which are fed into the classification
and bounding box regression layers.
R-FCN [25] introduces position-sensitive score

maps and moves the fully convolutional layers to
before the RoI pooling, avoiding the need to apply
a per-region subnetwork hundreds of times as in
Fast/Faster R-CNN
In [26] the Feature Pyramid Network (FPN) is

proposed as a generic feature extractor with an ar-
chitecture consisting of a bottom-up pathway and a
top-down pathway with lateral connections, combin-
ing low resolution semantically strong features with
high resolution semantically weak features. FPN
can replace the feature extraction in other architec-
tures such as Faster R-CNN.

Mask R-CNN [27] extends Faster R-CNN by con-
currently predicting object masks and bounding
boxes, allowing pixel-level instance segmentation.
Additionally, Mask R-CNN can be generalized to
tasks such as human pose estimation.

Handling all the different components such as re-
gion proposal generation, feature extraction, classi-
fication and bounding box regression separately is a
bottleneck in real-time applications [17]. Single-shot
detectors unify these steps to reduce computational
cost.

YOLO (You Only Look Once) [28] unifies bound-
ing box prediction and classification in a single neu-
ral network, directly predicting class probabilities.
An image is divided into a grid where object bound-
ing boxes and confidence scores are predicted for
each grid cell. Detecting objects now requires only
a single pass through the pipeline, allowing for ex-

tremely fast processing speed, at the cost of accuracy,
as YOLO has difficulty dealing with small objects.
Single Shot MultiBox Detector (SSD) [29] ex-

tracts features using a VGG16 network [30] and
uses convolutional layers to make independent ob-
ject predictions from convolutional maps at different
scales. Similarly to YOLO, SSD discretizes the im-
age space, but unlike YOLO it does this at different
aspect ratios and scales, leading to better handling
of objects of various sizes.

YOLOv2 [31] improved upon YOLO by introduc-
ing batch normalization [32], anchor boxes, multi-
scale training, increased input resolution and using
smaller grid cells to better handle smaller objects for
increased accuracy and speed, as well as being able
to take different input image sizes, where lower input
sizes lead to faster processing but lower accuracy.

YOLOv3 [33] made incremental improvements to
YOLOv2, including the use of a deeper neural net-
work architecture for increased accuracy at the cost
of more processing speed. Predictions are done at 3
different scales, making it better at detecting small
objects. Objectness confidence is predicted using
logistic regression. Classes are predicted using logis-
tic classifiers, replacing the softmax classification of
YOLOv2.

Pedestrian detection Much research has been
done regarding the specific application of object
detection for pedestrian detection [34], for example
with approaches based on Haar-wavelet cascades
with AdaBoost [35], HOG with linear SVM [9] and
Neural Networks using Local Receptive Fields [36].
In recent years methods combining deep learning
with classical machine learning models seem to yield
the most successful results [37].
In [38] the use of Faster R-CNN for pedestrian

detection is investigated and an approach to pedes-
trian detection is proposed based on a combination
of RPN for region proposals and features and a
boosted forest [39] for classification.

Faster R-CNN based approaches are too slow for
real-time applications though, so [40] proposes a
single-stage pedestrian detection architecture called
ALFNet based on SSD by introducing Asymptotic
Localization Fitting, in which the anchor boxes of
SSD are evolved by a series of predictors to improve
detection results.

Occlusion awareness Occluded objects can be
difficult to detect. [41] proposes an add-on to Faster
R-CNN to handle partially occluded pedestrians
by employing an attention mechanism across the
CNN channel features to represent various occlusion
patterns in a single model, where occlusion patterns
are treated as specific combinations of body parts.
This allows for prediction of full bounding boxes for
only partially visible pedestrians.
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Object trackers may learn incorrect object ap-
pearance models when the object is occluded. [42]
proposes an occlusion detection method based on
an object’s color profile to prevent a tracker from
updating when the object is occluded.
An extension to single-stage detectors (e.g.

YOLO, SSD) for better handling of occluded pedes-
trians is proposed in [43], where the the output layers
of the neural network are updated to include the
prediction of part confidence scores, leading to an
occlusion-aware detection score and reducing false
negative detections. Secondly, a post-refinement
classifier is introduced to reduce false positive de-
tections.
In [44] a method is proposed for simultaneous

pedestrian detection and occlusion estimation by
employing a CNN consisting of two branches that
regress bounding boxes for full persons and visible
parts of persons, respectively. These two branches
complement each other to improve detection perfor-
mance.

Pose estimation In addition to just detecting
and localizing persons, it can be useful to also know
their pose. Techniques such as DeepCut [45], Deep-
erCut [46] and Mask R-CNN allow for detection
of keypoints in objects, e.g. body parts, that can
be used to construct structural representations of
objects, allowing for the estimation of the pose of
multiple humans in a scene. DensePose [47] goes
even further by estimating dense human poses that
represent the surface of a person.

2.2 Object tracking

Object tracking refers to the process of inter-frame
association of objects, e.g. following objects through-
out a video sequence. For our purposes we will only
consider the case of multiple object tracking (MOT).
We consider tracking in screen space, while for ac-
curate passive object tracking in 3D depth cameras
or stereo cameras are necessary [37].

Tracking by detection Tracking by detection
seems to be the most popular approach in multi-
ple object tracking, where the tracking system is
separate from the detection system [48].
Simple Online and Realtime Tracking (SORT)

[49] is one of such approaches where the object
detection part is delegated to an external process
and instead opts to focus solely on inter-frame as-
sociation of detections. It is aimed at real-time
applications, as opposed to batch-processing based
object tracking methods such as [50–59], utilizing
a CNN as a detection framework. The key compo-
nents of this approach are a Kalman filter [60] to
propagate track bounding boxes to the next frame,

approximating their motion with a constant veloc-
ity model, and a data association step based on the
Hungarian algorithm [61] to optimally match detec-
tions to existing tracks by building an assignment
cost matrix from a (gated) intersection-over-union
(IoU) distance between detections and predicted
bounding boxes. With this approach short term
occlusions can be handled, as the Kalman filter will
make continued predictions while a track has no
associations and the IoU distance helps to match
only detections with similar scale. New track hy-
potheses are initiated for any unmatched detections.
These are initially considered tentative until several
subsequent detections have been associated with
the track to mitigate the influence of false positive
detections. Tracks are deleted if no detections are
associated with it for a certain amount of frames.
Deep SORT [62] extends the SORT algorithm

with a deep association metric to incorporate ap-
pearance information in the matching process to
reduce identity switches, in addition to the motion
information handled by the Kalman filter. Motion
information is incorporated into the assignment cost
matrix by the use of a (thresholded) Mahalanobis
distance [63] to compare predicted Kalman states
with detections. Additionally, appearance informa-
tion is incorporated into the cost matrix by extract-
ing an appearance descriptor from detection patches.
A limited history of these descriptors is kept for each
track. When computing the cost of matching a de-
tection with a track, the (thresholded) minimum
cosine distance between the detection’s appearance
descriptor and the track’s descriptor history is taken.
This appearance based matching complements the
motion based matching and aids in recovering from
long-term occlusions. The motion and appearance
metric are then combined into an assignment cost
using a weighted sum.
The appearance descriptors are extracted by a

CNN trained to extract features that can be used for
nearest neighbor queries using the cosine similarity
metric [64].

The matching process is done through a cascade
of smaller problems, where detections are assigned
to tracks by solving the assignment problem using
the Hungarian algorithm in order of increasing track
age. Detections that remain unmatched after this
are assigned by IoU matching as in the original
SORT algorithm.

Recurrent YOLO [65] combines YOLO with Long
Short Term Memory (LSTM) [66] to extend YOLO
into the spatiotemporal domain. Objects are de-
tected using YOLO and, together with preliminary
location inferences, these are then sent to an LSTM
module at the end of the pipeline for tracking.
Tracktor++ [67] takes a different approach and

uses the bounding box regression part of an ob-
ject detector (specifically Faster R-CNN) to predict
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the object positions in the next frame, turning a
detector into a tracktor. This only works when
objects change only slightly from frame to frame.
To compensate for camera motion and low frame
rates this tracktor is extended with a motion model
consisting of camera motion compensation and a
constant velocity assumption. Additionally, short
term re-identification is applied using appearance
features.
Moving away from the tracking by detection

paradigm and instead opting to integrate detec-
tion and appearance embedding in a shared model,
the Joint Detector and Embedding model (JDE)
[68] introduces a near real-time single-shot deep
architecture to output detections and appearance
embeddings simultaneously using a single neural
network based on FPN.

2.3 Behavior detection

In the context of our problem domain, we are inter-
ested in finding suspicious behaviors in surveillance
videos. We discuss two types of techniques that
are relevant to this task: action recognition and
anomaly detection.

Action recognition Action recognition refers to
the process of detecting and classifying actions in
image sequences. [69] and [70] define action prim-
itives as atomic movements that can be described
at the limb level. Then actions are defined as a col-
lection of action primitives that describe a, possibly
cyclic, whole body movement. Activities are defined
as a number of subsequent actions.
After a period where holistic representations of

motion such as [71–73] were popular, in recent years
local and deep representations are favored instead
[74].
In local representations spatiotemporal interest

points are first detected [75–78], from which local
descriptors are extracted, for example edge and mo-
tion descriptors [79–82] or pixel pattern descriptors
[83–88], which are then aggregated to build discrim-
inative descriptors [82, 89–94].
[74] places deep learning architectures for action

recognition into four different categories: spatiotem-
poral networks, multiple stream networks, deep gen-
erative networks and temporal coherency networks.
Spatiotemporal networks extend CNN architec-

tures into the temporal domain by using 3D kernels
that operate on several adjacent frames [95–100]
to obtain descriptors that encode spatiotemporal
features.

Multiple stream networks are CNNs that, inspired
by the human visual cortex that processes object
attributes and object motion through separate path-
ways [101], handle appearance and motion informa-
tion in separate streams [102, 103].

Deep generative networks [66, 104–108] seek to
learn temporal structures in data without supervi-
sion, which is useful when there is little to no labeled
training data.
Temporal coherency networks [109–113] exploit

the assumption that motion and appearance do not
change abruptly between consecutive frames.

Anomaly detection In the context of video
surveillance, anomaly detection is the process of
identifying and localizing events that do not conform
to the norm. It can be considered an unsupervised
pattern recognition task [114]. Practical examples
of such tasks include detecting fights in crowds [115]
or traffic accidents [116].

Due to the sequential nature of video, deep learn-
ing architectures suitable for anomaly detection in
video surveillance include CNNs, Recurrent Neural
Networks (RNNs) and LSTMs [117]. Other deep
learning based methods include generative models
such as Variational AutoEncoders [118] Generative
Adversarial Networks [105] and Adversarial AutoEn-
coders [119] [114].
Since anomalies are by definition rare, it is usu-

ally difficult to obtain positive examples. There-
fore, state-of-the art techniques often learn reference
models of the normal situation in an unsupervised
way and compare regions of interest containing po-
tentially anomalous events with these during test-
ing, considering anything that deviates an anomaly.
Properties of these regions of interest can be rep-
resented in multiple ways. HOG and Histogram of
Optical Flow (HOF) [81] have been used to model
spatiotemporal properties of trajectories in video
data, but these cannot handle occlusions and have
high complexity [120]. CNNs have been successfully
employed in image classification, object detection
and action recognition, but they are slow in pro-
cessing speed and since it is a form of supervised
learning, large amounts of (positive and negative)
training data are necessary, which is a challenge
when positive examples are rare.

There has been much research into optimizing
CNNs so they can be of more practical use. [120]
proposes a real-time method for anomaly detection
and localization in crowded scenes using fully con-
volutional neural networks (FCNs). Using transfer
learning, a pre-trained supervised CNN is trans-
ferred into an unsupervised FCN for generating and
describing abnormal regions in videos.
It may be difficult or impossible to to define a

normal event that takes into account all possible nor-
mal behaviors [121], making it incorrect to assume
that all detected behaviors that deviate from what
is learned to be normal are an anomaly. Moreover,
the boundary between what behavior is anomalous
and what is normal is often ambiguous, which poses
a challenge for both conventional machine learning
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and deep learning approaches [122].
In [123] a deep learning approach to detect real-

world anomalies in surveillance videos is proposed.
Annotation is done at video level, eliminating the
need for temporal annotations, which is a costly
process. Videos are treated as bags of fixed-length
segments where at least one segment in a positive
bag Ba is assumed to contain an anomaly. In a
negative bag Bn none of the segments contain an
anomaly. A deep multiple instance learning (MIL)
model is applied to achieve a ranking between an
anomalous video Va and a normal video Vn using a
multiple instance ranking objective function:

max
i∈Ba

f(Vi
a) > max

i∈Bn

f(Vi
n)

where f(Vi
a) and f(Vi

n) are the predicted anomaly
scores for each video segment and the maximum
score is taken over all segments in each bag, enforc-
ing ranking only on the two segments with the high-
est score from each bag. Together with a sparseness
constraint to account for the fact that anomalous
segments in a bag are sparse and a smoothness con-
straint to make the anomaly score vary smoothly be-
tween segments, this forms a MIL ranking loss func-
tion l(Ba,Bn), which is used to create a complete
objective function L(W) = l(Ba,Bn) + λ3||W||F ,
where W represents model weights. This objective
function can be used by a deep learning network to
learn anomaly scores for video segments.

3 Methodology
In this section we discuss the data that is available
to us for development and testing and present a
design for a system to detect suspicious behavior.
The approach can roughly be divided into 3 main
steps:

• Detection of objects (persons, barrier states,
etc.).

• Tracking persons based on detections.

• Analysis of tracks to extract behaviors and
classifying these as suspicious or not.

3.1 Available data
ProRail has high resolution pan-tilt-zoom (PTZ)
cameras installed on their railway crossings, usually
from at least two different perspectives. This means
a high resolution video stream is available for analy-
sis. Since the camera parameters are static most of
the time (unless an operator is manually moving it
and thus also looking at the camera feed already),
we have not concerned ourselves with dealing with
moving cameras and have assumed a static camera
orientation and zoom level for the purpose of this

thesis. To limit the scope of this thesis we designed
our system to work with a single camera feed and
mostly in screen space, rather than world space. For
the development of our system, the available data
consists of 1080p 25 fps video files of a single railway
crossing. See Section 4.3 for data set extracted from
these videos that we use for evaluation.

3.2 List of suspicious behaviors

We identified a set of potentially suspicious behav-
iors which could be detected based on the trajectory
of persons. These are:

• Waiting while the barriers are open.

• Walking back and forth while the barriers are
open (i.e. turning and moving significantly into
another direction).

• Walking onto train tracks outside the permitted
area (see also Figure 4).

• Being on the train tracks while the barriers are
closed.

In order to detect these relatively abstract be-
haviors, we first focus on detecting a set of more
rudimentary behaviors which we can use to reason
about the intentions of a person:

• Start/stop moving.

• Enter/leave train tracks.

• Enter/leave forbidden area.

• Change direction (as well as moving a signifi-
cant distance into another direction).

3.3 Approach

To determine whether an automated system for
detecting suspicious behavior is possible, we design
and implement a proof of concept, of which we first
give a general outline.

3.3.1 Requirements and general design

The goal is to track people in a video stream and
analyze their trajectories in real time. Currently, the
prevailing paradigm for tracking objects is tracking-
by-detection ([62]), for which we need an object
detector in addition to an object tracker. We also
need some information about the environment, such
as the state of the barriers, for which we can use an
object detector as well. We design the system in a
modular way so that different components can be
substituted according to different needs (e.g. trade-
offs between speed and tracking performance). After
we have acquired the trajectories of persons, we need
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3.4 Environmental state detector 3 METHODOLOGY

to analyze and evaluate their behaviors, for which
we design a novel module.

We divide the system into 4 main modules (see
also Figure 2):
• An environmental state detector.

• A person detector.

• A person tracker.

• A behavior analysis and classification module.

We discuss these components in more detail in
the subsequent sections.

Figure 2: High level design outline

3.4 Environmental state
detector

The purpose of the environmental state detector
module (ESD) is to infer information about the
scene that is relevant to classifying the behavior of
persons and present it in a way that is usable in the
behavior detection and classification module. For
our purpose we limit this functionality to detecting
the state of the barriers. We consider 4 states:
closed, opening, open and closing.
Like the person detector (see the next section),

this module is built on an object detector (specif-
ically Tiny YOLOv3 [33]). While we discriminate
between opening and closing, the object detector
cannot see the difference, so the network is trained
to detect 3 different states: open, closed and transi-
tioning. Annotating the training data is done with
a specially built tool (see Section 4.2).
Each frame, the object detector gives a list of

detected barriers in a certain state. Since all bar-
riers in the scene should have the same state, we
sum all detections per state weighted by their con-
fidence score and use the highest scoring state as
the actual state. We keep track of the previous
state to determine whether a transitioning barrier
is either opening or closing. We smooth this tran-
sition process by requiring successive detections of
a certain state for a set amount of time before the
transition is finalized. This is done by gradually
increasing a score every frame when a different state
than the previous accepted state is detected and
the currently detected state is equal to last frame’s
detected state. If these conditions are not true the
score is decreased. When the score reaches a thresh-
old, the change is accepted and the score reset to

zero. This increment and threshold mechanism is
used in other components of our system as well,
as will be shown later. This approach makes the
barrier state detector robust to random detection
errors.

3.5 Person detector

The purpose of this module is to detect people in the
scene, either on foot or on a bicycle, and return a
bounding box for each person. We selected YOLOv3
[33] with a network pre-trained on the MS-COCO
data set [124] as our object detector because of its
speed and relatively good detection rates, making
it highly suitable for real-time applications. While
the MS-COCO set contains a large variety of object
classes, only the relevant classes are considered and
the rest is filtered out after a forward pass of the
network. Non maximum suppression is applied to
filter out duplicate detections. The final output of
this module is a list of detections consisting of a
bounding box, a label and a confidence score for
each detection.

Ignored detections Clearly visible persons are
detected well enough, but highly or often obscured
persons (such as those on the other side of the road,
intermittently occluded by vehicles) are not detected
very consistently by YOLOv3. Since there are mul-
tiple cameras per crossing, we assume these persons
will be better visible on one of the other cameras, so
we filter out all detections that are in low-visibility
areas by checking whether they are within an area
that is manually annotated to be ignored (see Fig-
ure 4). This reduces erratic detections which helps
the tracker and allows us to focus more on quality
tracks for behavior analysis.

Bicycles and dogs It can be useful to know if de-
tected persons are cyclists or are walking a dog, since
these could possibly provide clues to the intentions
of people. To this end we use the person detector to
also detect dogs and bicycles. Detected bicycles and
dogs are matched to the nearest person. Since these
objects are often rather small and their detection is
not very robust, there are many false negatives. To
counteract this we keep track of confidence scores
for each person indicating whether this person is a
cyclist or has a dog, respectively. These (clamped)
scores decrease each frame as long as there are no de-
tections, otherwise they are increased proportional
to the confidence of the detection.

3.6 Person tracker

To associate detections between frames to the same
person we employ an object tracker. We selected
Simple Online and Realtime Tracking with a Deep
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Association Metric (Deep SORT) as the tracker in
our system [62] since it is fast, simple, and has an
implementation readily available. It tracks objects
in screen space based on detected bounding boxes
and only needs a single camera feed, so it is suitable
for our needs. Since it was explicitly developed with
person tracking as a use case, in addition to the
tracker implementation, a pre-trained network for
feature extraction from image patches containing
persons is also available, which is exactly what we
need.

Deep SORT deletes tracks as soon as they go inac-
tive (when it goes for more than a certain amount of
subsequent frames without any matched detections),
so our tracker consists of a layer on top of it that
manages the tracks that Deep SORT outputs. The
output of Deep SORT is simply a bounding box
for every track at each frame. We are interested in
the sequence of all bounding boxes of a track, so
we record the output of Deep SORT in our track
manager. A history of all tracks is maintained along
with additional information for each track, such as
whether a dog or bicycle was associated with the
track.

For each frame of a track, along with the bounding
box, we record whether the sample was the result
of a detection, a prediction (by the Kalman filter
in Deep SORT) or an interpolation, as we delete
the previously predicted samples and replace them
with interpolated samples whenever we encounter
a new detected sample. While the predictions are
useful when there is no future information about
track’s position, filling gaps between detections with
interpolations yields more accurate results. To this
end we modified Deep SORT to indicate whether a
track sample was the result of a matched detection
or a prediction.

We also record whether the sample was occluded
or not (ideally this should be determined by some
kind of occlusion detection mechanism. However,
we currently determine this by whether the sample
was the result of a detection or not).

This approach makes it possible to later extend
the person tracker with more functionality, such as
smoothing of the trajectories or matching broken
tracks together, should the need arise.
After an update step, the tracker contains a list

of tracks with an indication for each track whether
it is currently active and when it was last updated.
Due to the way we implemented the update mecha-
nism, each track can contain a segment of predicted
samples at the "head" of the track, although these
predictions are replaced when a new detection is
matched to the track. Hence, when designing our
real-time behavior analysis system, we must con-
sider the fact that the newest samples might not be
accurate, and that samples in the recent past might
change.

3.7 Behavior Analysis
and Classification

Given a set of person trajectories in screen space,
we present a method to analyze their behaviors.
We roughly divide the approach into three parts.
First, we determine basic behaviors that are more
or less directly measurable: the velocity of a per-
son, whether a person is moving or not and if they
are currently located in any special zone. From
these basic behaviors we determine more complex
behaviors that become apparent over time, such as a
person changing direction or a person waiting for a
prolonged period of time for open barriers. Finally,
we analyze the detected behaviors and classify them
to achieve a binary indication of whether a person is
behaving suspiciously or not. Changes in behavior
are handled by an event manager that raises an alert
if something suspicious happens. See Figure 3 for a
schematic overview.

3.7.1 Basic behavior

Velocity estimation In order to determine
whether a person is moving we need to first de-
termine the velocity vt at time t. While the trajec-
tories are measured in screen space, directly using
distances in pixels to compute the velocity does not
work very well, as it gives skewed results due to
camera perspective and distortion. Instead, we use
a calibrated model of the camera (see Section 3.8)
to transform the screen space coordinates to world
space to compensate for perspective.
As the projection from screen space to world

space is not a one-to-one mapping, the result of
this is a ray instead of a point. We determine the
(3D) world space position by intersecting this ray
with a virtual plane. Since we use the centroids
of bounding boxes for positions and assume that
people are roughly 1.8m high, we place this virtual
plane parallel to and at 0.9m above the ground.
We assume all persons are on the ground, so we
ignore the height component of the (world) position
and proceed in the 2D plane. Together with the
known frame rate the world space position is used
to convert the displacement from pixels per frame
to an approximation in meters per second.
The velocity v̄t at frame t is then defined as a

moving average over the last nf frames:

v̄t =
1

n

t∑
i=t0

vi , t0 = max(0, t− nf ) , n = t− t0

This approach functions as a form of low pass filter-
ing and is aimed at getting a better representation
of the general direction the person is heading in
than by just computing the velocity from the dis-
placement between the last two frames.

9
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Figure 3: Schematic overview of the behavior detection and analysis module.

Figure 4: Manually annotated areas. Blue: ignored
detections, yellow: train tracks, red: forbidden area.

Movement A binary indication whether a person
is moving is determined as follows. Every frame the
state of the person’s behavior is updated. If the
speed at time t exceeds a certain threshold smin we
increase a variable move_score by some predeter-
mined rate rmove. If it does not we decrease it by
rstop. In both casesmove_score is clamped to (0, 1).
Ifmove_score hits 0 or 1 and the flag is_moving is
true or false respectively, then is_moving is flipped.
A history is kept of the state of is_moving at each
frame.

Presence in special areas To get a binary indi-
cation of a person being on the train tracks or in a
forbidden zone (e.g. on parts of the track that are
not part of the crossing), we first manually annotate
these special areas as polygons on the screen (see
Figure 4). We then check whether the bottom center
of the bounding box of the trajectory is inside one
of these polygons (under the assumption that this
point most accurately represents the position of the
feet of the person in question) and if so, we increase
the score for the person being in that type of area by
a rate renter. If the person is not in a specific area
type, the score for that area type is decreased by
rleave. In either case the score is clamped to (0, 1).
If the score hits 0 and the flag for being in that area

is true, we know the person has left the area and
flip the flag to false. Likewise, if the score hits 1
and the flag is false, we know the person entered
the area and flip the flag to true.

3.7.2 Complex behavior

Turn detection The method used to detect
whether a target has (significantly) changed direc-
tion is outlined in Algorithm 1. For every track, we
keep a running average d̄c (lines 5-7) and a moving
average d̄m (lines 8-15) of the direction over the last
nlb frames. We only update these when the target
is moving (obtained previously, as in Section 3.7.1)
and for the moving average we only look back as
long as the target is was moving. We do this to filter
out the noisy velocity measurements when a target
is not moving (or not moving much). With this
approach, d̄c represents the average direction be-
fore the target stopped moving and d̄m the average
direction after the target started moving again.

We then take the angle θ between d̄c and d̄m and
compare it to a threshold angle θmax (lines 16-20).
If the threshold angle is exceeded, then we know a
significant change in direction has occurred.
To smooth out jitter we then gradually increase

a "turning score" s, so that after δ seconds of suc-
cessive turn detections we consider the target to
have turned, at which point we reset s and d̄c so
that the running average corresponds to the current
direction again (lines 21-32).
An illustration of this process can be seen in

Figure 5
While direction changes while a person is stand-

ing still are ignored, this approach is not taking
into account how far a person moves. To filter out
detected turns where a person only moves around
slightly, we can set a minimum distance dmin for
a person to move before we consider the change in
direction significant.
The process for this is as follows: keep a binary

flag turn_queued that is initialized to false. When a
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Figure 5: Turn detection

Illustration of the turn detection algorithm in action. The top graph shows the angle of the velocity over time
with the frames where the target was not moving shaded in red. The bottom graph shows the running average
and the moving average of the direction, as well as the "turning score" and a thick vertical line when the score
reaches 1 and a turn event is issued. The areas shaded in light red are frames where the angle between the

running and moving average exceeded the threshold. Note that these values are circular (angles wrap around after
2π), hence the values at the vertical extremes of the graphs are the same.

turn is detected by Algorithm 1 and turn_queued
is false, remember the current world space posi-
tion p0 and the average direction d̄0 before the
turn and set turn_queued to true. Subsequently, if
turn_queued is true, the distance from the current
position to p0 > dmin and the angle between the
current direction and d̄0 > θmax, we issue the turn
detected event and reset turn_queued to false.
We can then combine the detection of a person

changing direction with the state of the barriers to
find out if a person is moving back and forth while
the barriers are open, which is suspicious.

3.7.3 Classification

From all the basic and more complex behaviors we
detected, we need to determine whether a person is
behaving suspiciously enough to warrant attention.

Initially, it might make sense to bundle all the be-
haviors into some kind of "suspiciousness score", al-
lowing for an ordering in the suspiciousness of differ-
ent combinations of behaviors to allow for some sort
prioritization where the "most suspicious" events
will be given precedence in a system with many
camera feeds, always directing the camera operators
towards the scenes that need the most attention at
any given time.
However, it it difficult to obtain such a score for

every combination (and duration) of events, so we

limit ourselves to a strictly binary classification to
indicate whether a scene warrants attention or not.
Every frame each person is checked for certain

combinations of state and actions. The following
combinations result in a high alert event being trig-
gered:

• A person has been inside a forbidden zone for
more than a certain amount of time.

• A person has not moved for a certain amount
of time while the barriers are open.

• A person has significantly changed direction
more than a certain amount of times (regardless
of barrier state).

• A person significantly changed direction while
the barriers were open.

• A person is on the train tracks while the barriers
are closed.

The high alert event is triggered only once, after
which a cool down period is entered where no new
high alert events can be triggered for that person.
This is to avoid sending out a flood of alert messages,
as it should be enough to send an alert only once
(with a timestamp indicating when the suspicious
behavior was detected).
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3.7.4 Event management

The purpose of this module is to collect the various
behavior events, log them and send out alerts to ex-
ternal systems that need to be notified of suspicious
behavior.

3.8 Camera calibration

In order to transform image space coordinates to
world space coordinates, we need a virtual model of
the real camera, containing its intrinsic and extrin-
sic parameters. The intrinsic parameters encompass
sensor dimensions and focal length, as well as lens
distortion. Extrinsic parameters describe the posi-
tion and orientation of the camera in world space.

We use [125] to model our camera. When param-
eters are known these can be set directly, as is often
the case with intrinsic parameters. In the case of
unknown extrinsic parameters, a collection of points
of known height can be used to fit a model of the
parameters using Metropolis Monte-Carlo sampling.
For example, we use the height of person detec-

tions and assume they are 1.8m tall with a standard
deviation of 0.1. Additionally, we manually indicate
a horizon line to help the fitting. Since we assume
a static camera position and orientation, this cali-
bration step only needs to be done once. See also
Figure 6.

Figure 6: Extrinsic camera parameters established
by providing a rough estimation and subsequently
using the known height of person detections to fit
a more accurate model. Visualized by a grid of
orthonormal direction arrows on the ground plane
in world space.

Generally, both intrinsic and extrinsic parameters
are known for surveillance cameras, thus the model
can be correctly calibrated a priori without the
need for the additional parameter fitting step. In
the case of PTZ cameras, although their extrinsic
and intrinsic parameters are variable (e.g. a varying
orientation and focal length, respectively), these
tend to be known by some feedback system, thus
they can be integrated into our method to update
the camera model on the fly.

4 Experiments

In this section we describe our software implementa-
tion of the system and discuss the parameters that
were used (Section 4.1), describe the data annota-
tion process (Section 4.2), present the evaluation
data set (Section 4.3), define metrics for quantitative
evaluation (Section 4.4) and describe our evaluation
methodology (Section 4.5).

4.1 Implementation

We briefly discuss our software implementation and
list the parameters used for the various components.

4.1.1 Experimental software platform

To experiment with different techniques and de-
velop a proof of concept we developed a software
implementation of our system in Python. Many
computer vision and machine learning techniques
have readily available implementations in the form
of Python libraries, which enabled relatively quick
development of features in our system. We make
use of OpenCV [126], particularly the DNN module,
which has a Darknet [127] backend that we use to
load the YOLOv3 models for our object detectors.
Video acquisition and processing is also provided by
OpenCV. Additionally, we use the implementation
of Deep SORT provided by the authors on GitHub,
which uses TensorFlow [128] to load the pre-trained
CNN model for feature extraction, which is also
provided. The model we use to estimate camera pa-
rameters and project coordinates from image space
to world space and vice-versa is provided as a library
by [125].

4.1.2 Parameters

The components of our system contain various pa-
rameters, as discussed below.

Object detection parameters The barrier
state detector CNN is a TinyYOLOv3 network
trained on our own data. The confidence thresh-
old is 0.5 and the threshold used for non-maximum
suppression is 0.3.

The person (and bicycle/dog) detector CNN is a
YOLOv3 network pre-trained on MS-COCO. The
confidence threshold for person detections is 0.5 and
the threshold used for non-maximum suppression is
0.4.

Both networks use an image size of 416x416 pixels.
These settings have been chosen as an educated

guess since estimating them systematically is outside
the scope of this thesis.
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Tracking parameters The Kalman filter in
Deep SORT has parameters that control the co-
variance of observations relative to the model. A
higher covariance in the observation matrix indi-
cates more uncertainty in the observation, a higher
covariance for the state indicates more uncertainty
in the model. A balance between these is important,
so that observations sufficiently influence the model
while still mitigating the effect of outliers in the
observations.
There are two weights that control the amount

of uncertainty in the model, one for the position
components and one for the velocity components
of the observation matrix. By default, the weight
for position is 1/20 and the weight for velocity is
1/160. While developing our implementation, in-
creasing these weights to 1/15 and 1/120 to increase
the uncertainty and relax the internal state’s influ-
ence initially seemed to improve tracking somewhat,
but after further testing on the entire data set this
turned out not make any significant difference based
on the metrics we use to evaluate tracking (see also
Section 4.4).
The maximum distance for IoU matching is left

at the default of 0.7, the maximum cosine distance
for feature comparison is set to 0.5, the length of the
feature gallery is set to 100, the maximum age of
tracks before they are deleted is set to 50 frames (2
seconds) and the initialization period where succes-
sive detection to track matches are necessary before
a track is confirmed is set to 10 frames (0.4 seconds).
The latter helps to reduce false positive tracks by
disregarding spurious detections.

Behavior analysis parameters The behavior
analysis module has several parameters to control
the delay for states to change. These values are
set to the following, chosen as seemingly reason-
able compromises between robustness and detection
speed:

• Moving/not moving change: 0.75 s.

• Enter area: 0.5 s.

• Leave area: 1.0 s.

• Waiting for open barriers: 3.0 s.

• On tracks while barriers are closed: 0.5 s.

• Change rate for turn detection: 0.67 s.

• Alert cool down: 3.0 s.

There are also some threshold values. The speed
threshold for movement is set to 0.35 m/s. As the
determination of velocity in world space is somewhat
inaccurate, this is chosen as a value that appears to
work well enough. The running average of the ve-
locity (v̄) is computed over the last nf = 25 frames.

The angle threshold in the turn detection that deter-
mines whether a change in direction was significant
enough (θmax) is set to 1

2π. The number of frames
considered in the moving average of the direction
(nlb) is set to 25. The distance a person needs to
move after turning before the turn is considered a
significant change in direction is set to 1.0 m. The
minimum number of significant turns to be con-
sidered suspicious is set to 2, although when the
barriers are open this is reduced to 1.

4.2 Ground truth annotation and
training

To create training data for the barrier state detection
network we developed a tool using Python and VLC
[129] to manually annotate barriers in videos of
railway crossings (see Figure 7). This tool allows a
user to add events (moments where the state of the
barrier changes) to the list on the right and create
a set of bounding boxes associated with each event.
These sets can be saved as presets and a preset can
be quickly assigned to a an event by selecting it
from the preset list below the event list, avoiding
the need to recreate the bounding boxes each time.
The event list can then be saved to a file and used in
a script to generate bounding boxes for the barriers
at any point in the video.

We annotated the barriers and their state with a
bounding box in 60 videos of a railway crossing in a
variety of different lighting conditions. We then used
a script to extract 5000 randomly selected training
images with annotations from these videos, which
were used to train a small neural network to be
able to detect the three different barrier states as
objects. While these videos are of the same railway
crossing, they are not the same videos as used in
our evaluation data set.

An existing tool called CVAT (Computer Vision
Annotation Tool) [130] was used to create ground
truth annotations for person trajectories in the form
a series of bounding boxes for each frame in the track.
Together with these bounding boxes we annotated
whether a person was moving, a cyclist and if he or
she was exhibiting suspicious behavior.

We did not need to manually train a network for
the person detector as persons, dogs and bicycles
exist in the MS-COCO data set, which allowed us
to use a pre-trained network. Feature extraction of
persons in the tracker is provided by a pre-trained
network provided by the authors of Deep SORT in
their repository on GitHub.

4.3 Evaluation data set

To evaluate the performance of the tracker, we se-
lected 50 video sequences containing a variety types
of persons under different lighting and weather con-
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Figure 7: Barrier state annotation tool

ditions (see Figure 8 for examples) and annotated
these with their trajectories. The set contains some
easy as well as challenging scenarios for the tracker.
In addition to that, we selected 6 video sequences
that contained interesting behavior for qualitative
analysis. See Table 1 for a listing of the videos and
a short description of the events happening in each
sequence.

4.4 Metrics
In this section we define metrics for evaluating
the performance of the person detector, the per-
son tracker and the behavior analysis.

4.4.1 Object detection metrics

At the basis of evaluating object detection algo-
rithms lies intersection-over-union (IoU), which
gives an indication of the amount of overlap be-
tween two bounding boxes.

IoU(A,B) =
A ∩B
A ∪B

We use this metric to determine if two bounding
boxes overlap more than some threshold, typically
set at IoU = 0.5. Using the IoU metric and given
the set of ground truth (GT) bounding boxes and
detection bounding boxes, we determine:

• The true positive (TP) detections. A detec-
tion is true positive if it is a correctly detected
ground truth box.

• The false positive (FP) detections. A detection
is false positive if no ground truth box overlaps
with the detection.

• The false negative (FN) detections. Undetected
ground truth boxes are counted as false nega-
tives.

Note that when multiple detections overlap the same
GT box, we count the detection with the highest
confidence as TP and the rest as FP.

From these we can compute the precision and re-
call values, which indicate the percentage of correct
detections and the percentage of ground truths that
were detected, respectively:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Precision and recall can be plotted against each
other over varying confidence thresholds to gain
insight in what settings work well. Increase the con-
fidence threshold and the number of false positives
(incorrect detections) will drop, at the cost of more
false negatives (missed detections). Decrease the
confidence threshold and the number of true posi-
tives (correct detections) will increase, at the cost
of more false positives. Hence, a higher confidence
threshold results in a higher precision, but lower
recall. The precision-recall graph gives an indication
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Figure 8: Some examples of the different lighting and weather conditions in the evaluation data set.

of what confidence threshold gives a good balance
between the two.
The average precision (AP) is defined as a

weighted average of the precision with the change
in recall value as weight:

AP =
∑
n

(Rn −Rn−1)Pn

with Pn and Rn the precision and recall at the nth
confidence threshold.
The mean average precision (mAP) is then de-

fined as the average of the AP with IoU ∈
{0.5, 0.55, ..., 0.95}.

4.4.2 Object tracking metrics

We use the metrics proposed by [131] (summarized
below) to evaluate the performance of our person
tracker, with the thresholds TROV = 15% and
TOV = 20%. For every video sequence, we deter-
mine:

• Correctly detected tracks (CDT). A ground
truth (GT) track is considered correctly de-
tected if the temporal overlap is larger than
TROV and spatial overlap is larger than TOV .
Multiple system tracks can meet the conditions
for one GT track.
• False alarm tracks (FAT). A system track does
not have sufficient temporal overlap with any
GT track, or it does not have sufficient spa-
tial overlap with any GT track, despite having
enough temporal overlap.
• Track detection failures (TDF). A GT track
is considered not to have been detected if it
does not have sufficient temporal overlap with
any system track, or it does not have sufficient
spatial overlap with any system track, despite
having enough temporal overlap.
• Track fragmentation (TF) shows the lack of

continuity of system track for a single GT track.
• ID changes (IDC shows the number of times a

system track changes the associated GT track.
• Average track closeness for the whole sequence
(CTM) and its standard deviation (CTD) is

an indication of how much the pairs of asso-
ciated GT tracks and system tracks spatially
overlap for the duration of their temporal over-
lap.
• Average track matching error (TMEMT) and

its standard deviation (TMEMTD) is a metric
to measure the positional error of system tracks.
It is an indication the distance errors between
the centroids of an associated GT track and
system track.
• Average track completeness (TCM) and its
standard deviation (TCD) indicate the time
span that a system track overlapped with a GT
track divided by the total time span of the GT
track.

Furthermore, we will identify and qualitatively
describe several particular tracking failures.

4.4.3 Behavior metrics

While many aspects of the behaviors are difficult to
annotate and quantitatively analyze, we can com-
pare the movement state and start/stop events of
ground truth tracks (GT) with that of associated
system tracks (ST). We define 3 metrics:

1. Precision and recall of start/stop events, mea-
sured in TP, FP and FN. This gives an indi-
cation of how much of the events are detected
within a given margin (time window).

2. Error of matched events (i.e. the time difference
between the GT and ST event). This gives an
indication of the lag between a start/stop event
happening and the event being detected.

3. Closeness of the movement state. While the
above metrics give an indication of how well
the changes are detected at the right time, this
metric gives an indication of how well the de-
tected movement state correlates with that of
the GT track regardless of matched events.

Additionally, we will qualitatively analyze what
aspects of the behavior analysis and classification
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work well, what aspects do not and illustrate these
with examples.

Matching tracks ST tracks are matched to GT
tracks, similarly to how we associate tracks for the
object tracking analysis. An ST track overlaps with
a GT track if it overlaps more than TROV = 15%
in time and more than TOV = 20% in space. The
normalized temporal overlap is determined by divid-
ing the length of the intersection of the two tracks
in time by the length of the union of the two tracks
in time. The average spatial overlap is determined
by taking the average IoU of the bounding boxes
of the two tracks for the length of time that they
intersect temporally. We then sort these by the
product of the normalized temporal overlap and the
average spatial overlap, so that the ST track that
most closely matches the GT track will always be
considered first.

Precision and recall To gain insight in how
much of the start/stop events are correctly detected,
we try to match ST events to GT events. For each
GT event, we search the sorted list of associated ST
tracks for matches. To allow for a margin of error
between the time tGT of the annotated event and the
time tST the event is detected we employ a threshold
Te to define a time window after tGT , as well as an
additional threshold Ts to account for inaccuracies in
the time of the annotated event. An ST event is con-
sidered correctly detected if −Ts ≤ tST − tGT ≤ Te.
Only the first event that satisfies this condition is
considered a match and counted as TP. Unmatched
ST events are counted as FP and any GT event
without matched ST event is considered FN. Preci-
sion is then computed as TP/(TP +FP ) and recall
as TP/(TP + FN).

Error The amount of time between matched GT
and ST events is expressed in the error metric. It
is computed by averaging the errors of all events in
the entire data set. Ideally, the error is zero.

Movement closeness The behavior analysis
module keeps track of the state of movement at
each frame. Although start/stop events might not
be correctly detected within the thresholds, this
does not mean the movement isn’t largely correctly
detected on a frame-by-frame basis, so it can give
a skewed idea of the performance. Therefore, we
use this metric as well to give an indication of how
much of the GT track’s movement state is correctly
covered based on the state per frame. Since multi-
ple tracks can be associated with a single GT track,
the best matching track gets priority when filling
in the state of the merged ST track. If the best
matching track does not cover a certain frame, then
the next best matching track is considered, and so

on. Some annotated tracks contain segments that
are occluded (for various lengths of time, from short
to rather long), so we disregard these sections when
computing how similar the two tracks are, which is
done by diving the number of frames where the GT
and ST states are equal by the length of time the
GT track is unoccluded. The average closeness of a
video sequence is computed by a weighted average
of the closeness of each GT track using the length of
the GT track as weights. The average closeness of
the whole data set is computed the same way, by a
weighted average of each track’s closeness using the
length of the track as weight. While computing the
closeness using the raw movement state as logged
by the behavior analysis module results in a single
value that is invariant to the threshold used for as-
sociating events, we can also evaluate the closeness
when using only the matched events, which does
change with changing thresholds.

4.5 Evaluation
To evaluate the performance of our system we use
the metrics defined in Section 4.4 for a quantitative
analysis of detection, tracking and the movement
detection component of the behavior analysis mod-
ule.

We qualitatively evaluate the performance of the
behavior analysis module by highlighting correctly
and incorrectly detected events.
The results of this evaluation are presented and

discussed in the next section.

5 Results and discussion
In this section we present the results of our experi-
ments, evaluate them and discuss their implications.
Our implementation has not been designed with

speed in mind, as it is only a proof of concept of
functionality. However, it does not rely on batch
processing and would theoretically be able to run in
real time if the implementations of the subsystems
are optimized well enough. Therefore, we will focus
on the quality of behavior detection, disregarding
processing time.

5.1 Environmental state detection
performance

Since the barrier state detector is trained to detect
only 3 different states of barriers as objects, with
data from the same crossing as our evaluation set,
the detections are of high quality and almost always
correct. Combined with the smoothed transitioning
the mechanism works almost without fail on our eval-
uation sequences. The only situation where it fails
is when the barriers are initially in a transitioning
phase, at which point the processed state defaults
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to opening, even though it might actually be closing.
The detector only detects a barrier state as open,
closed or transitioning and a previous open/closed
state is necessary to determine whether it’s opening
or closing. When the barriers finish the transitioning
phase the state is changed to the correct state (i.e.
open or closed). A more elaborate way of detecting
the barriers would be necessary to correctly han-
dle this situation (alternatively, it could be marked
as undetermined), although it does not seem very
consequential to the resulting behavior detection.

One drawback is that the network was not trained
to also detect the state of the lights, as this turned
out to be a useful piece of additional information
(see Section 6.7).

5.2 Object detection performance

Speed One of the bottlenecks on our implementa-
tion is object detection, taking up a large percent-
age of the processing time for each frame. During
development we circumvented this by caching the
detection results, after which the rest of our sys-
tem ran at speeds approaching real-time, despite
algorithmic and implementation inefficiencies.

Since YOLOv3 has been reported to run at around
30 frames per second achieving a mean average pre-
cision (mAP) of 30 on the COCO data set, it stands
to reason that by itself, given the right optimiza-
tions, YOLOv3 is capable of running in real-time.
At the time of writing, YOLOv3 has been super-
seded by YOLOv4 [132], which achieves reported
speeds of around 80 frames per second and achieving
an mAP of 43 on the same data set. This puts it
well within the realm of real-time object detection
using a conventional GPU.

Accuracy The precision and recall of our com-
plete data set is computed by determining the com-
bined TP, FP and FN for all frames in all 50 video
sequences by comparing the output of our person de-
tector with the annotated bounding boxes for each
frame. At IoU = 0.5 and a confidence threshold
of 0.5, there are 21683 TP, 4175 FP and 10533
FN detections. Hence, for our person detector,
Precision = 0.839 and Recall = 0.673.
The precision-recall curve can be found in Fig-

ure 9.
AP = 0.679 for IoU = 0.5 and mAP = 0.380 for

IoU ∈ {0.5, 0.55, ..., 0.95}. For an overview of the
precision-recall curves at all these IoU thresholds
see Figure 21.

Occlusions One issue we identified with the
YOLOv3 detector in particular is the way it presents
bounding boxes. It does not handle (partial) occlu-
sions very well and will give a bounding box around
only the detected parts of an object. This means
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Figure 9: Precision-Recall curve of our YOLOv3-
based person detector over different confidence
thresholds. Computed at two different IoU thresh-
olds for matching detections to GT bounding boxes.

the bounding box of a person will increasingly inac-
curately represent the person before disappearing.
This causes tracking problems, as explained in Sec-
tion 5.3.

Image quality One area where the object de-
tector seems to struggle is situations where visual
fidelity is low. Extreme video compression artifacts
due to fast motion, for example, can significantly re-
duce the image quality for some time (see Figure 10).
Low contrast between persons and the background
is another challenging situation for the detector (see
Figure 16).

Figure 10: Video compression artifacts. Left: a
train just passed by. Right: image quality stabilized
after a second or two.

False positives As detection is not perfect, false
positives are to be expected. The detector is only
calibrated to detect persons, bicycles and dogs, but
in some cases elements in the scene are incorrectly
detected as such. In our evaluation data set this
most often happens with parts of the barriers being
marked as persons (see Figure 11). When these
spurious detections are sporadic they do not present
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much of a problem, as the tracker has measures
in place to mitigate the influence of these spurious
detections. However, in some cases these false posi-
tive detections persist for several subsequent frames,
while the tracker has no way of knowing that these
are false positive. See also Section 5.3.

Figure 11: False positive detection.

Bicycles and dogs Associating dogs and bicycles
with persons works reasonably well in some scenes
with fine-tuned multipliers for the scores. However,
detection quality was too low for the mechanism to
be useful. It is likely that YOLOv3 is not able to
detect these objects reliably enough in our data set
to be able to give consistent results (especially the
dogs, which are small and often not clearly visible,
making them hard to detect). Therefore, we have
not considered the results of this mechanism further.
Perhaps a different detector and/or one trained on
a different data set might yield better results.

5.3 Person tracking performance

The performance of the tracker is analyzed by the
metrics defined in Section 4.4.2. An overview of the
results for all 50 annotated video sequences in our
data set can be found in Table 2.
Of the 75 GT tracks in the data set, 72 were

correctly detected. 2 tracks were not detected at
all. There were 20 track fragmentations, indicating
the amount of times a track is broken. Of the 121
detected tracks, 22 were considered to be a false
alarm track. 29 ID changes occurred.
In short, most GT tracks are detected correctly,

although their coverage is sometimes split over mul-
tiple partial ST tracks.

It is likely that tracker performance could be im-
proved with systematic estimation of optimal tracker
parameters, such as the Kalman filter weights, the
maximum distance in the similarity metric, the max-
imum IoU distance and the maximum age of tracks.
However, finding exactly the right combination of
settings was too complex for the scope of this thesis.

Figure 12: One track fragmentation due to train
passing by and several false alarm tracks (seq. 16).

False alarm tracks In several sequences more
ST tracks than GT tracks are detected, such as in
sequence 16 (see Figure 12). While some of these
extra ST tracks are the result of multiple tracks
covering a single GT track, for example because a
track is broken partway through, and thus partially
correct (these show up in the track fragmentation
(TF) metric), some ST tracks cannot be matched
to any GT track and are considered false alarm
tracks (FAT). These are often caused by a period
of consistent false positive detections. In this case
there are several tracks initialized and activated on
a part of the barriers that are being detected as
a person. These tracks that cannot be associated
with a GT track can potentially trigger false positive
alerts.

Due to the initialization period of 10 frames and
threshold of a minimum of 10 frames of track length
for tracks to be considered in the behavior analysis
and the evaluation, the number of FAT according to
our metrics is relatively low compared to the number
of false positive person detections. Although quite
many very short tracks are briefly picked up by the
tracker, as a track is initiated for every unmatched
detection, this does not influence behavior detection
greatly, as they are generally not confirmed and are
quickly deleted as soon as a single detection is missed
in the tentative period. If there happen to be enough
subsequent detection matches for an incorrect track
to be activated, it often does not exist long enough
to trigger any kind of warning. However, there is a
possibility that they do persist and do cause false
events to be detected (see Figure 13).

The longer this initialization period is, the longer
it takes for a real track to be activated. At the
same time, a longer initialization period makes it
less likely for false alarm tracks to occur, as there
needs to be an increasing amount of subsequent
false positive detections for it to be activated. Thus,
there is a trade-off here.

Partial occlusions Nearly all persons crossing
the tracks in either direction are at some point
partially occluded by a vertical beam. In many cases
the tracker has no problem with picking up the track
when the person reappears. However, depending on
the way the bounding box of the detection changes
in the frames leading up to complete occlusion, it
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(a) Seq. 4 (b) Seq. 15

Figure 13: False alarm tracks. FAT in (a) persists
long enough to trigger an alert for waiting while
barriers are open.

can also occur that a track is broken at the point of
occlusion. See Figure 14.

(a) Seq. 1 (b) Seq. 6

(c) Seq. 11 (d) Seq. 13

Figure 14: Successful (a, b) and unsuccessful (c, d)
handling of occluded part in track.

In some cases, partial occlusion involving multiple
persons can cause tracks to be broken and even as-
sociated with wrong detections (Figure 15), making
the remainder of the track completely inaccurate.

When tracks are lost because of partial occlu-
sions, this is usually because YOLOv3 gives bound-
ing boxes around the detected parts of a body,
which shrink when a person is more and more oc-
cluded. Deep SORT incorporates this shrinking of
the bounding box into the model of the motion of the
track that is updated by the Kalman filter. When
detections are then completely missed because oc-
clusion becomes too great, the Kalman filter will
predict highly inaccurate motion, making the IoU
based matching in Deep SORT unlikely to expect
a new detection for this track in (roughly) the cor-
rect place. The feature based matching, that takes
precedence over IoU based matching, can compen-
sate for this in many cases, but not always, as there
is also a maximum distance between the expected
position and a detection during the detection to
track association process.

Missed tracks Figure 16 shows a situation where
a person on a bike is waiting for a train to pass. The
weather is sunny, casting shadows and shining light
on a cobweb in front of the camera, making parts
of the image more blurred. This combination of
(locally) low contrast and lower image quality caused
the detector to be unable to detect the person before
she was already halfway across the tracks.

Lost tracks When a train passes in front of a
person waiting on the other side of the tracks, the
track is usually lost. A new track is initiated when
the person is visible again. This could be mitigated
by more powerful re-identification system (see Sec-
tion 6.4) that can match the previously lost track
with the newly initiated track. However, the impact
of these lost tracks is not that significant, as the
events we are interested in are not dependent on
these gaps in detection being bridged.

Broken tracks due to other causes (such as an un-
occluded track being lost due to detector or tracker
failure) could be more problematic, as the previ-
ous turn detection information will be lost with the
track. If a track is lost right after a person turned
around but before the turn was detected, this turn
will likely not be detected at all.

ID changes In several sequences one or more
ID changes occurred. For example, in sequence 8
(Figure 17a) a person on the pavement is occluded
while a cyclist is passing by. The track belonging
to the person on foot got matched to the cyclist
incorrectly. In sequence 9 (Figure 17b) a group
of people passed behind a beam, after which the
tracker matched the reappearing persons to the
wrong tracks, as the persons belonging to the tracks
were still occluded.

5.4 Behavior detection performance

We quantitatively evaluate the performance of the
movement detection based on the data set of anno-
tated video segments. We then qualitatively evalu-
ate the behavior detected in a selection of videos.

5.4.1 Movement

We use a threshold of Ts = 1 s to allow association
of ST events up to 1 second before the GT event
to compensate for annotation inaccuracies. The Te
threshold defining the window after the GT event
is varied from 0.5 s to 5 s. We achieve an average
movement closeness of 0.777 on our data set when
computed using the raw movement state from the
behavior analyzer, with a standard deviation of
0.260. For precision, recall and average error of
matched events, and average closeness computed
using only matched events, see Figure 22.
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(a) Two persons about to pass each
other.

(b) Bounding box of one person
shrinks due to partial occlusion. De-
tections are missed.

(c) Tracker is unable to keep the
track. Associates it incorrectly with
passing cyclist for a few frames.

Figure 15: Lost track due to partial occlusion making the detected bounding box smaller, causing the
Kalman filter to predict highly inaccurate motion. (seq. 21).

Figure 16: Person being in shadowy area and image
quality being low due to illuminated cobweb in front
of camera cause the detector to fail, making the
tracker unable to pick up the person correctly until
she becomes more visible (seq. 42).

(a) Seq. 8. (b) Seq. 9.

Figure 17: ID changes

The average closeness based on the raw state
is higher than that when using only the matched
events, although it starts to come close with larger
thresholds. Note that using only the matched events
to compute closeness can give a skewed result (see
Figure 23), as it potentially ignores many imperfec-
tions in the movement detection. Hence, using the
raw movement state gives a more accurate represen-
tation of the closeness of movement detection.

Examining the data, it appears that it often takes
a while for the first movement event to be detected,
sometimes quite long after the GT movement event
(see also Figure 18). This can be explained by the
compounded delays caused by the time it takes
for the track to be activated by the Deep SORT
tracker and then the time it takes for the behavior
analyzer to determine the movement state. Missed

first events can be exacerbated when a person is
initially standing still, as this is the initial movement
state of a new track, which means no state change
event will be generated for it.

When a track is already established it seems that
most movement change events are detected within a
second or so (see also the average error), which is in
line with expectations, as the delay to change move-
ment state and trigger the corresponding event is
set to less than a second. From the recall and preci-
sion graphs it would seem that after 2 seconds there
are not that many more events that are correctly
identified. This is also reflective of most events that
do have a match being within 2 seconds, whereas
beyond the 2 second threshold most of the extra
correctly detected events are the first movement
events of a track.
In practice, these missed startup events are not

very important, as we are not really interested in
detecting whether a person moves right after he or
she enters the frame, but rather what a person is
doing over time, when the track already had time
to establish.
Closeness is further brought down by track frag-

mentations. Although frames where the GT track is
occluded are not counted (and a lost ST track thus
has no influence), when the person does reappear,
there will be a gap caused by the initialization of
the new track and the detection of movement (that
is initially set to "not moving").
It appears that movement detection works ade-

quately, although it would benefit from better object
detection and tracking, as it would result in less lost
tracks and thus more accurate movement tracking.

5.4.2 Qualitative analysis of behavior detec-
tion

In this section we evaluate a number of videos con-
taining noteworthy events (some from the annotated
set, although behavior events are not annotated) by
presenting a graphical overview of all the events

20



5.4 Behavior detection performance 5 RESULTS AND DISCUSSION

Figure 18: Illustration of movement detection evaluation. The shaded areas indicate where the merged
ST track is equal the the GT track. Only these segments are used for computing the closeness. Matched
events are connected by a dotted line.

being detected and/or a detailed depiction of the
scene through screenshots.

Figure 19: Sequence 9.

Sequence 9 (Figures 19 and 24) shows a person
standing still next to the fence. 3 seconds after the
person stops the waiting for open barriers event is
detected, which triggers an alert. Just after the 12
seconds mark the person turns around and moves
very slightly, enough for a turn to be detected. How-
ever, she has not yet moved enough to pass the
distance threshold to trigger the direction change
event. The position of this turn is remembered
though, and the turn remains "queued", so that
when she does move far enough from the point of
turning at around 26 seconds the direction change
event is finally triggered.
In sequence 21 (Figures 15 and 25) two persons

pass each other. The track of one of the two persons
gets incorrectly matched to a a passing cyclist mov-
ing in the opposite direction, which causes a false
turned around with barriers open event to trigger.

In sequence 33 (Figures 20 and 26) a person starts
waiting because the warning lights are on, which is
the correct behavior. However, since our system is
not currently able to detect the state of the warning
lights and the barriers are still open, this triggers

Figure 20: Sequence 33.

the waiting for open barriers event, raising an alert.
The system behaves as designed, but this is clearly
not a desirable outcome. The person takes a few
steps back just before a train arrives, which is de-
tected as a direction change event at 38 seconds.
However, this correctly does not trigger an alert, as
the barriers are down.

The following sequences are the additional videos
outside of the annotated data set. We will go
through them and highlight interesting events.

In sequence 51 (Figures 27 and 30) a person walks
up to the train tracks and stands still for a few
seconds. About a second after the person appears
to have stopped moving the stopped moving event
is correctly detected. The person turns around
and starts walking back, which is detected quickly
and correctly. After the person has moved about
1 meter from where he turned around the moving
in different direction event is detected and since
the barriers were open, this also sends out a turned
around while barriers open event, which triggers
an alert. The person then starts moving backward
around without stopping, which is detected about
a second and a half later. After moving about 1
meter another moving in different direction event is
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detected. The person stops at the tracks again and
starts waiting a while. 3 seconds after the person
stopped moving the waiting for open barriers event
is detected, which does not trigger an alert, since
the person was already in a "hot" state. The person
turns around again and walks away.

All events in this sequence were correctly detected.
By design, the turned around event is not detected
when a person is standing still, so this event comes
after the started moving event, although visually
the person does turn around before moving.

In sequence 52 (Figure 31) a person starts waiting
while the barriers are open, which is correctly and
quickly detected, and raises an alert. Note that
the entering and leaving of the track area is also
correctly detected.

Sequence 53 (Figures 28 and 32) shows 2 persons
going in opposite directions and crossing each other
at the train tracks, where they stand still for a while
before continuing on their way. As one person is
occluded by the other, a track is lost, since Deep
SORT was unable to match a detection to the track
at that point (possibly due to an absence of detec-
tions). The predicted bounding boxes drifted too far
from the actual trajectory, which meant that Deep
SORT considered the person not a match when the
person did reappear. Although this track was lost,
a new track was initiated upon reappearance and all
events were correctly detected in a timely fashion.
Alerts were triggered since the two persons both
stood still while the barriers were open.

Sequence 54 (Figures 29 and 33) contains a police
officer walking along the train tracks right into a for-
bidden area at around 52 seconds. This is detected
almost immediately, only a few steps into the area.

Sequence 55 (Figure 34) depicts a night-time scene
with a person waiting for open barriers, which is
correctly detected.
In sequence 56 (Figure 35) a person walking a

dog crosses the tracks. The dog is briefly incorrectly
detected as a person, long enough for a track to be
initiated for it. The person turns around, which is
detected correctly, and walks up to the fence in a
shadowy area where he stands still for a while. The
size of the detections here fluctuates greatly, jump-
ing between nearly the whole person and only his
top half. This gives the movement detection a hard
time, as the person’s position (and thus velocity)
is determined based on the centroid of the bound-
ing box, which to the behavior analysis algorithm
now appears to be moving around. This is an issue
that could be solved by either better detections or
more smoothing of the trajectories. Interestingly,
due to these jittery bounding boxes, here we have a
situation where the person was (incorrectly at the
time) detected to have turned around, and only after
that was he detected to have stopped moving. The
bounding box centroid moved enough (more than 1

meter) from the point where the turn was detected,
which raised the moving in different direction event,
before the person was actually considered to be
moving again.
From our evaluation set, it appears that the be-

haviors we attempt to detect are mostly detected
correctly. It largely depends on the quality of the
tracks, as this is all the information about a person
that is available to the behavior analysis. Given de-
cent tracking quality, the behavior detection appears
to work quickly and accurately.
Broken tracks are not much of an issue, as long

as they remain relatively accurate during the pe-
riod they are active. It can occur that a track is
incorrectly matched to a different person (resulting
in an ID change), at which point highly inaccurate
behavior might be detected.

6 Future work
There are many areas of our method where function-
ality could be improved or extended. We discuss
some of these in this section.

6.1 Influence of detection quality
on tracking

The quality of detections greatly influences the per-
formance of the tracker (as described in [62]). Hence,
it could be interesting to experiment with different
detectors to see if they increase the detection rate.
As mentioned in Section 5.2, YOLOv3 is not

aware of occlusions. There are other detectors avail-
able that handle occlusions much more gracefully
and will infer the actual size and position of a person,
even though the person might be partially obscured
[41, 44]. Using one of these detectors instead would
likely significantly enhance the performance of the
tracker and result in less broken tracks. When de-
tection quality rises, the need to filter out detections
in difficult areas before sending them to the tracker
subsides as well, allowing for greater coverage per
camera.
Other ways to detect occlusions which can be

used to extend existing detectors and trackers have
also been proposed [42, 43].

A consideration is the performance of these algo-
rithms, as one of the key factors making YOLOv3
attractive is its speed, whereas many other trackers
with better detection quality, such as R-CNN based
methods, are slower, often dipping below what can
be deemed real-time.

6.2 Parameter optimization
There are many parameters in our system that in-
fluence the quality of object detections and object
tracking. For the most part we have simply set these
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to default values or to values that seemed to work.
It is very likely that with a systematic approach
to optimizing these parameters it is possible to in-
crease the performance of the object detection and
tracking algorithms we used. Especially the Deep
SORT tracker has parameters that greatly influence
how quickly tracks are picked up and deleted, how
the bounding box position is predicted in the ab-
sence of detections, how much appearance influences
matching and how far apart bounding boxes can be
to be considered a match.

Additionally, the various parameters of the behav-
ior analysis module can be tuned to taste, as real
world situations might call for different values (such
as the amount of time a person needs to stand still
before it it considered waiting)

6.3 Training

Training the person detector with a more specific
data set, e.g. based on footage from perspectives
typical for railway crossing cameras, will likely yield
better detection results (in this application) than
those from the network that was trained on just
MS-COCO, which is only a general data set. It is
possible to fine-tune the existing network trained
on MS-COCO with such a more specific data set
using transfer learning.

While the barrier state detector works well for our
evaluation set as it was trained on the same scene,
if it were to be used on different scenes, it would
need to be trained on a larger variety of railway
crossings.

6.4 Tracker post-processing

If tracking quality is not sufficient, additional post-
processing steps on the trajectories can be applied
to get better results.

Smoothing trajectories Depending on the
tracker and its parameters, jittery object detections
can lead to jittery trajectories. Taking the original
trajectory and applying a smoothing algorithm (e.g.
some variant of a Kalman filter [133] or a moving
average) can yield more realistic paths and less noisy
data for the behavior analysis to work with.
We implemented a post-processing smoothing

step over the tracks produced by Deep SORT using a
Kalman filter, which did result in visually smoother
trajectories, but found that it did not make a sig-
nificant difference in the behavior analysis, so we
deemed it redundant in our application, as it did
not aid in the actual tracking process.

Re-identification Tracks can get broken due to
occlusions. An additional re-identification step can

be applied to match currently active tracks to pre-
viously lost tracks, tying them to the same person.
Re-identification can be done by for example train-
ing a neural network to extract some set of features
from a person and defining a metric to compare
these features [64]. Deep SORT already employs
this technique, but only in the short term, until
the tracks reach their maximum age and are re-
moved from the tracker. It can be useful to apply
re-identification over longer periods of time, in order
to keep track of persons walking in and out of the
camera view, for example.

6.5 Handling PTZ cameras and
tracking in world space

Pan-Tilt-Zoom cameras have different characteris-
tics than regular static cameras. They come with a
different set of challenges such as dealing with cali-
bration, controlling PTZ parameters and estimating
ego motion [134]. The current system does not take
these into account.
Currently our tracking system works mostly in

screen space without any additional depth informa-
tion, which limits our ability to accurately track
people. Since there are usually at least two PTZ
cameras at each crossing, it is theoretically possible
to combine them to build a world space represen-
tation of the crossing and track people in three
dimensions, which would allow for more accurate
tracking, as well as being more robust to occlusions.
This way, more detailed information about per-

sons relative to the scene would available, which
should improve the chances of correctly detection
suspicious behavior. For example, it will be easier to
determine on which side of the barriers a person is,
or if there is a person hiding behind a raised barrier,
waiting for a train to arrive. Furthermore, the ve-
locity of persons, while already measured in a rough
approximation of the world space, can be more accu-
rately measured with depth information and when
the tracking is also done in world space, improving
the potential quality of the behavior detection.
In [135] a method is proposed to extract cam-

era calibration directly from the visual content of
the frames continuously and in real time, which is
then used to track targets in 3D world space. This
method could replace the Deep SORT tracker so
our behavior analysis method becomes invariant to
camera motion.

6.6 Detecting other cues

Given the widely successful application of deep learn-
ing in computer vision in recent years, it is likely
possible to apply a neural network to directly detect
a multitude of different cues that indicate strange
behavior from video data. One of the main chal-
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lenges in this is acquiring a large enough data set
with corresponding annotations of the cues to learn.
Types of cues one can think of are the act of smok-
ing a cigarette, types of clothing, gait and posture,
facial expression, etc. Should a system be available
that can detect these types of cues, it could be in-
tegrated in the behavior analysis module to bring
more nuance to the classification.

Pose estimation Going beyond simple object de-
tection, approaches such as [27, 46, 47] allow for
estimation of the pose of detected persons, which
could be included in the behavior analysis to gain a
more accurate idea of what a person is doing. For
example, a person sitting down can be considered
suspicious, which could be detected as such with
this approach.

6.7 Environmental state detector

The module that detects the state of the barriers
can be extended to give more detailed information
about the scene. For example, it would be useful
to train it to also detect whether the warning lights
are on. One practical use of this is the situation
where a person decides to start waiting as soon as
the warning lights come on but before the barriers
come down. This is expected behavior, but our
system is currently still likely to classify this as
suspicious since the person is technically waiting for
open barriers.

6.8 Areas of interest

In the current implementation, the areas that are of
interest such as the train tracks and its forbidden
zones are annotated manually. In the real world this
works for static camera positions, but it does require
calibration up front. However, in the case of moving
cameras, such as the PTZ cameras used by ProRail,
it would likely be useful to train a neural network to
detect these areas from any perspective and add this
to the ESD module for added flexibility. That way
the camera can change perspective without losing
track of the correct areas. This problem falls in
the class of semantic segmentation, where the pixels
in an image belonging to the same object class are
clustered together.

6.9 Other data sources

If other sources of data are available, such as the ap-
proach of trains or statistics about suicide attempts
this could be used to add nuance to the behavior
analysis and classification. For example, if suicide
attempts are more prevalent at certain times of day
according to the statistics, we could take this into

account when deciding if certain behavior is suspi-
cious, perhaps lowering some threshold for certain
behaviors to trigger an alert whereas such behavior
would otherwise not trigger an alert.

6.10 Machine learning-based
behavior classification

Our rule-based behavior classification module could
be replaced by a module based on machine learning.
Currently we employ some hard rules to make a
decision based on some combination of detected
behaviors. These rules are a limiting factor in the
decision making process, while the subject matter
is highly subtle. Being able to discriminate within a
vast set of subtle cues could be key in the usefulness
of a system such as this. Hence, it would make
sense to train a classifier on the behaviors to be able
to take into account all different combinations of
behaviors, incorporating more factors that might
be negating or increasing the suspiciousness than
what is feasible with hard rules. A traditional ML
approach such as SVM could be applied here, but
it would also make sense to train a neural network
architecture suitable for learning temporal events.

When going that route, though, it could also be of
interest to consider techniques such as [136], which
attempt to learn to detect abnormal events in video
data directly. Anomaly detection techniques could
also be used, for example using the trajectories of
persons and environment state as input.

6.11 Optimization and performance

There is room for many significant optimizations
in our software platform. Application of suitable
data structures for lookups will make the runtime
of the behavior analysis negligible, as it is not a
computationally expensive process algorithmically,
and the amount of tracks in a real world system
would remain relatively low since there are not many
active tracks at any given time (and old tracks can
be deleted).

Hardware acceleration exists for many deep learn-
ing tasks. For example, MXNet and Intel Open-
VINO allow for optimized neural networks to run at
very high speeds. OpenCV can be built with support
for the OpenVINO backend as well, to allow infer-
ence to be run on a GPU and other devices aimed at
parallel computation tasks. The bottlenecks in our
system (namely the object detector networks and
the feature extraction in Deep SORT) that currently
run using unoptimized implementations on the CPU
can be replaced with these optimized implementa-
tions, which would make them orders or magnitude
faster.
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7 CONCLUSION

7 Conclusion

In this thesis we presented an approach for real-time
suspicious behavior detection at railway crossings
by employing a tracking by detection framework in
combination with a single-stage CNN based object
detector to obtain screen space person trajectories
which are then projected into world space using a
calibrated camera model. We introduced a method
to extract basic motion- and location-based infor-
mation about a person’s behavior from these world
space trajectories, that together with the detected
state of the environment is used to classify a per-
son’s behavior as being suspicious or not. Events
are sent out when behavior state changes and alerts
are triggered when specific conditions are met.

In addition to presenting the general design of our
approach, we implemented and evaluated a proof
of concept to investigate person detection, person
tracking and behavior detection quality using a com-
bination of YOLOv3 and Deep SORT. We found
that tracking people using this combination works
reasonably well, although better detections would
benefit the tracking quality and the tracker would
benefit from some kind of occlusion detection sys-
tem. These techniques are relatively lightweight and
have no problems running in real-time, provided an
adequately optimized implementation that utilizes
hardware acceleration is used.
Given the continued advancements in object de-

tection and deep learning in general (see for exam-
ple the gains YOLOv4 [132] made over YOLOv3),
person detection should likely not be considered
a limiting factor in our system. Multiple object
tracking remains challenging, and while Deep SORT
produces usable results with a very efficient ap-
proach, there are still significant gains to be made
in tracking quality.
The behavior analysis and classification system

adequately detects the behaviors listed in Section 3.2
within a reasonable amount of time and with only a
few errors, some of which can be corrected without
much extra work. Other errors are strictly the result
of the tracker making mistakes, such as swapping
identities between persons. The method itself is not
computationally expensive and run time is negligible
relative to the much more compute intensive tasks
of object detection and tracking.

In conclusion, our system can detect several types
cues for suspicious behavior based on the trajec-
tories of persons. Highly performant methods are
available for all the components that constitute our
architecture, making it possible for such a system to
run in real-time, thus making it suitable for surveil-
lance applications.
While still relatively basic, we hope that our

method can help prevent suicides at railway cross-
ings and provide a basis for more accurate and

nuanced behavior detection in the future.
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A ALGORITHMS

A Algorithms

A.1 Behavior analysis

Algorithm 1: Turn Detection
1 def UpdateTurnDetection(t, v,moving, θmax, nlb, δ, dt,dc, nc, s):

Data: t = current frame index
v = {v̄0 . . . v̄t}
moving = {is_moving0 . . . is_movingt}
θmax = angle threshold
nlb = number of frames to look back for moving average
δ = delay time in seconds
dt = time since last update
dc = cumulative direction
nc = number of cumulative direction samples
s = turn score
Result: Updated internal state variables dc, nc and s, Turn Detection Event

2 begin
3 turn_detected← False
4 if moving[t]:

/* direction running average */
5 dc ← dc + v[t]/‖v[t]‖
6 nc ← nc + 1

7 d̄c ← dc/nc
/* direction moving average */

8 dm ← (0, 0)
9 nm ← 0

10 i← t
11 while i ≥ max(0, t− nlb) and moving[i]:
12 dm ← dm + v[i]/‖v[i]‖
13 nm ← nm + 1
14 i← i− 1

15 d̄m ← dm/nm
/* threshold angle */

16 if ‖d̄c‖ > 0 and ‖d̄m‖ > 0:
17 d̂c ← d̄c/‖d̄c‖
18 d̂m ← d̄m/‖d̄m‖
19 θ ← arccos(clamp(d̂c · d̂m,−1, 1))
20 turn_detected← θ > θmax

/* delay the turn detection */
21 r ← dt/δ
22 if turn_detected:
23 s← s+ r
24 else:
25 s← max(0, s− r)
26 turn← NO_TURN_DETECTED

/* reset turn score and direction running average */
27 if s ≥ 1:
28 s← 0
29 dc ← (0, 0)
30 nc ← 0
31 turn← TURN_DETECTED

32 return turn,dc, nc, s
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B ADDITIONAL RESULTS (TABLES)

B Additional results (tables)

B.1 Data set
Below is an overview of the evaluation data set.

# Len Time Wthr/lghtng Events Notes
1 00:27 07:00 Medium con-

trast
Single person walking away from the camera.

2 00:23 08:40 Medium con-
trast

Cyclist on pavement coming towards camera. Cyclist on
road moving away from camera.

3 00:11 08:40 Medium con-
trast

Cyclist on pavement moving away from camera

4 00:50 09:20 Medium con-
trast

Single person walking away from camera.

5 01:38 09:40 Medium /
high contrast

Elderly person with rollator moving towards camera.

6 00:43 11:40 Medium /
high contrast

Single person walking towards camera. Barriers closing at
end.

7 01:06 12:20 Medium /
high contrast

Cyclist on pavement moving toward camera, overtaking a
single person moving toward camera that waits for closed
barrier while train passes before he continues on his way.

8 01:17 13:00 Medium /
high contrast

Single person moving away from camera. Waits for closed
barriers while train passes. Barriers close again when he
is crossing the track.

9 00:31 13:40 Medium con-
trast

Single person waiting in front of the fence. Group of 6
people passing her. First person walks back in the other
direction.

Person standing
still is suspicious.

10 00:34 14:20 Medium con-
trast

Single person walking toward the camera. Cyclist on the
road moving away from camera.

11 00:22 15:00 Medium con-
trast

Person initially waiting for barriers on other side of the
road. Walks towards the camera after barriers open.
Cyclist on road moving away from camera.

12 00:33 15:00 Medium con-
trast

Single person walking toward camera.

13 00:53 20:00 Low /
medium
contrast

Barriers initially closed. Persons walks up and waits on
camera side before crossing when barriers open.

14 00:32 21:00 Low /
medium
contrast

Single person carrying skateboard walking towards cam-
era. Gets on skateboard at the end.

15 00:34 21:20 Dark.
Monochrome

Person moving away from camera. Barriers start closing
as soon as person is on tracks.

16 01:12 22:00 Dark.
Monochrome.

Person with dog waits for closed barriers on other side.
Train passes and person crosses tracks.

17 00:20 07:40 Medium /
high contrast

One person on pavement and one cyclist on road moving
away from camera.

18 00:22 08:20 Medium /
high contrast

One person crossing tracks as barriers start closing. Mov-
ing away from camera.

19 00:34 08:30 Medium /
high contrast

Barriers initially closed. After barriers open, one person
and two cyclists (on the road) cross tracks.

20 00:23 09:40 Medium con-
trast

Person with dog moving toward camera. Cyclist moving
away from camera.

21 00:41 10:20 Medium /
high contrast

Two persons moving in opposite directions, crossing each
other. Cyclist moving away from camera. Person moving
away from camera takes right turn after barriers.

22 00:12 10:40 Medium /
high contrast

Person running toward camera.

23 00:22 11:00 Medium /
high contrast

Person with cell phone moving toward camera.

24 00:30 14:00 Bright. High
contrast

Person with dog moving toward camera. Two persons on
scooters moving away from camera on road.

Shadowy areas
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B.1 Data set B ADDITIONAL RESULTS (TABLES)

# Len Time Wthr/lghtng Events Notes
25 00:54 16:20 Bright. High

contrast
Barriers initially closed. Person on other side walks up to
barriers and waits behind pole (occluded). Moves toward
camera when barriers open.

Shadowy areas

26 00:26 16:20 Bright. High
contrast

Person walking toward camera with bicycle in hand Shadowy areas

27 00:20 17:20 Bright. High
contrast

Person walking toward camera. Barriers start closing as
person is on tracks. Person starts running.

Shadowy areas

28 00:31 21:00 Dark.
Monochrome

Person walking away from camera.

29 00:31 22:20 Dark.
Monochrome

Person walking toward camera.

30 01:24 12:00 Rainy.
Medium
contrast.

Person waiting for barriers on camera side while train
slowly passes. Crosses tracks after.

Water droplets on
camera.

31 00:13 12:00 Rainy.
Medium
contrast.

Person on mobility scooter moves towards camera on
pavement.

32 00:34 12:20 Rainy.
Medium
contrast.

Person with umbrella moves away from camera. Cyclist
on road moves away from camera.

33 01:10 13:20 Medium con-
trast

Person on other side of tracks starts waiting when warning
lights come on but before barriers start closing. Train
passes. Person crosses tracks. Cyclist moves away from
camera.

34 00:58 14:00 Medium con-
trast

Person waits for closed barriers on camera side while
train passes. Crosses when barriers open. Scooter with 2
persons moves away from camera.

35 00:24 14:20 Medium con-
trast

Person in high-visibility clothing moving towards camera.

36 00:55 15:40 Medium con-
trast

Barriers start closing as person walks up on other side
and sits behind pole (occluded). Train passes. Person
gets up and crosses tracks. Cyclist moves away from
camera.

37 00:23 17:00 Medium con-
trast

Cyclist moving away from camera. Person pushing baby
carriage moves away from camera.

38 00:19 17:00 Medium con-
trast

Person moving toward camera.

39 00:16 17:40 Medium con-
trast

Person running away from camera.

40 00:28 20:00 Low contrast Person with 2 dogs moving away from camera and turning
right after barriers

41 00:37 10:00 Medium con-
trast

Person moving away from camera. Overlaps with per-
son moving toward camera and pushing a stroller before
turning right.

42 00:41 10:40 High contrast Cyclist on pavement approaches closed barriers from other
side. Waits for train to pass and crosses tracks on bike.

Shadowy areas.
Visible cobweb in
front of camera.

43 00:26 11:00 High contrast Person walking away from camera. Cyclist on road mov-
ing away from camera.

Shadowy areas.
Cobweb in front
of camera.

44 00:22 11:20 High contrast Person with dog moving toward camera. Shadowy areas
45 00:28 13:40 High contrast Person moving toward camera. Shadowy areas
46 00:31 14:20 High contrast Person waiting for closed on camera side while train

passes. Barriers open and person moves away from cam-
era. Cyclist moves away from camera.

Shadowy areas.
Train passes.

47 00:27 16:00 Very high
contrast

Initially two cyclists halfway across the tracks moving
away from the camera. Person with baby stroller mov-
ing toward camera. Cyclist moving away from camera.
Scooter moving away from camera, overtakes cyclist.

Shadowy areas

48 00:18 18:20 High contrast Person moving toward camera. Shadowy areas
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B.1 Data set B ADDITIONAL RESULTS (TABLES)

# Len Time Wthr/lghtng Events Notes
49 00:29 18:40 High contrast Person waiting for barriers to open. Moving away from

camera. Starts running after crossing tracks.
50 00:27 19:00 High contrast Person coming from path on right parallel to tracks.

Turns left and crosses tracks.
51 00:25 13:40 Medium con-

trast
Person walks up to the tracks, looks along the tracks,
walks back a couple of meters, then walks back to the
tracks where he waits a little while before turning around
again and going back the way he came.

Suspicious

52 00:41 07:40 Medium /
high contrast

Person moving away from camera starts waiting for open
barriers for a while before crossing the tracks.

Suspicious

53 00:52 14:40 High contrast Two persons crossing each other at the tracks and talking
to each other for a while while standing still on the tracks.

Shadowy areas.
Suspicious

54 01:02 20:00 Low /
medium
contrast

Police on the scene. Two persons with dogs crossing the
tracks side by side. Police officer walking along the train
tracks into forbidden area.

Should trigger
alert

55 00:52 23:00 Dark.
Monochrome

Person walking up to the train tracks and waiting there
for a while before crossing.

Suspicious

56 00:34 15:00 High con-
trast.

Person with dog coming from path behind tracks. Crosses
tracks and moves back a bit, standing still next to the
fence while looking out over the tracks.

Suspicious

Table 1: Summary of the video sequences in the evaluation data set, showing for each sequence the length
of the video in seconds, the time of day the video takes place, the weather and lighting conditions, a short
description of the events and some notes about the video if applicable. Entries 1-50 are the annotated
evaluation set. Entries 51-56 are not annotated but contain interesting behaviors.
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B.2 Tracker performance B ADDITIONAL RESULTS (TABLES)

B.2 Tracker performance

Sequence GT ST CDT FAT TDF TF IDC CTM CTD TMEMT TMEMTD TCM TCD
1 1 1 1 0 0 0 0 0.74 0.08 8.82 4.91 0.93 0.00
2 2 3 2 0 0 0 0 0.34 0.08 273.32 169.78 0.87 0.09
3 1 1 1 0 0 0 0 0.72 0.13 11.57 8.29 0.87 0.00
4 1 2 1 1 0 0 0 0.78 0.12 6.95 5.86 0.96 0.00
5 2 3 2 0 0 1 0 0.73 0.14 9.58 8.10 0.74 0.12
6 1 2 1 1 0 0 0 0.79 0.11 5.22 5.02 0.89 0.00
7 2 4 2 0 0 2 1 0.59 0.09 52.95 44.17 0.26 0.13
8 2 3 2 0 0 0 2 0.57 0.17 138.01 93.52 0.73 0.18
9 7 7 7 0 0 2 12 0.16 0.10 225.30 126.36 0.85 0.15
10 2 2 2 0 0 0 0 0.48 0.08 177.52 83.46 0.85 0.00
11 2 3 2 0 0 1 1 0.66 0.12 78.18 38.03 0.80 0.28
12 1 1 1 0 0 0 0 0.80 0.15 6.18 6.46 0.98 0.00
13 1 2 1 0 0 1 0 0.79 0.09 13.23 8.29 0.70 0.00
14 1 2 1 0 0 0 0 0.75 0.12 7.42 7.03 0.98 0.00
15 1 3 1 2 0 0 0 0.49 0.05 77.73 18.27 0.96 0.00
16 1 5 1 3 0 1 0 0.75 0.11 7.56 7.45 0.48 0.00
17 2 3 2 1 0 0 0 0.72 0.08 9.73 6.30 0.99 0.02
18 2 3 2 1 0 0 1 0.51 0.12 185.94 49.14 0.92 0.06
19 3 4 3 0 0 1 6 0.29 0.09 157.04 90.25 0.82 0.18
20 2 3 2 1 0 1 1 0.40 0.24 122.54 149.98 0.73 0.20
21 2 4 2 1 0 1 1 0.36 0.16 198.14 194.73 0.71 0.06
22 1 1 1 0 0 0 0 0.69 0.12 11.11 6.05 1.00 0.00
23 1 1 1 0 0 0 0 0.77 0.08 7.42 5.38 1.00 0.00
24 1 5 1 3 0 1 0 0.42 0.20 47.52 32.84 0.31 0.00
25 1 3 1 1 0 0 0 0.76 0.13 11.48 9.04 0.32 0.00
26 1 2 1 0 0 0 0 0.55 0.13 16.93 9.82 0.96 0.00
27 1 2 1 0 0 1 0 0.68 0.18 11.96 10.04 0.42 0.00
28 1 1 1 0 0 0 0 0.77 0.08 7.82 6.15 0.85 0.00
29 1 2 1 0 0 1 0 0.83 0.06 5.71 3.39 0.49 0.00
30 1 1 1 0 0 0 0 0.79 0.07 11.74 6.99 0.99 0.00
31 1 2 1 0 0 0 0 0.60 0.21 21.67 21.48 0.92 0.00
32 2 1 1 0 1 0 2 0.54 0.11 106.83 73.24 0.50 0.71
33 2 3 2 0 0 1 0 0.69 0.09 73.18 43.10 0.59 0.05
34 1 2 1 1 0 0 0 0.78 0.11 7.66 5.36 1.00 0.00
35 1 1 1 0 0 0 0 0.83 0.06 5.74 3.45 0.96 0.00
36 1 2 1 1 0 0 0 0.48 0.08 165.62 108.22 1.00 0.00
37 1 3 1 1 0 1 0 0.57 0.27 28.86 42.16 0.74 0.00
38 1 1 1 0 0 0 0 0.82 0.09 6.55 7.03 0.98 0.00
39 1 1 1 0 0 0 0 0.68 0.10 9.00 5.62 0.87 0.00
40 1 2 1 0 0 0 0 0.69 0.18 12.72 12.04 0.58 0.00
41 2 3 2 0 0 1 0 0.50 0.17 64.74 52.59 0.68 0.01
42 2 4 0 2 1 0 0 0.00 0.00 0.00 0.00 0.00 0.00
43 2 3 2 0 0 1 1 0.44 0.09 188.42 94.23 0.52 0.05
44 1 1 1 0 0 0 0 0.77 0.09 9.25 7.67 1.00 0.00
45 2 2 2 0 0 0 0 0.76 0.12 6.71 6.50 0.51 0.48
46 1 3 1 2 0 0 0 0.51 0.08 82.11 36.81 0.97 0.00
47 2 3 2 0 0 1 1 0.36 0.20 127.90 97.85 0.27 0.09
48 1 2 1 0 0 1 0 0.72 0.15 12.67 14.31 0.58 0.00
49 1 1 1 0 0 0 0 0.77 0.14 11.07 7.79 0.99 0.00
50 1 2 1 0 0 0 0 0.78 0.17 9.28 10.38 0.70 0.00

Table 2: Tracker performance, showing for each video sequence the number of ground truth tracks (GT),
detected system tracks (ST), correctly detected tracks (CDT), false alarm tracks (FAT), track detection
failures (TDF), track fragmentation (TF), ID changes (IDC), average track closeness in the sequence
(CTM), track closeness deviation (CTD), track matching error of the sequence (TMEMT), track matching
error deviation (TMEMTD), average track completeness (TCM) and track completeness deviation (TCD).
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8 ADDITIONAL RESULTS (FIGURES)

8 Additional results (figures)

8.1 Object detection

Figure 21: Precision-Recall curve of our YOLOv3-based person detector over different confidence
thresholds at 10 different IoU thresholds. Markers indicate the point where the confidence threshold is >
0.5. APIoU@0.5 = 0.679 and mAP = 0.380.

8.2 Behavior analysis

Figure 22: Recall, precision, average error and average closeness of movement of persons detected by the
behavior analysis module. For reference: the average closeness based on the raw movement state is 0.777.
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8.2 Behavior analysis 8 ADDITIONAL RESULTS (FIGURES)

(a) Using raw states as logged by behavior analysis.

(b) Using only matched events gives higher closeness than using raw state,
incorrect detections are unmatched and thus ignored.

(c) Using raw states as logged by behavior analysis.

(d) Using only matched events gives lower closeness than using raw state
since there was no event matched at all, even though there is significant
overlap.

Figure 23: Two examples of discrepancy between using raw state and matched start/stop events when
computing closeness. Note that when using only matched events, it ignores the parts where movement is
incorrectly detected, as well as parts where the track was lost and a new track was initiated. The shaded
areas indicate whether the merged ST track is equal to the GT track or not at those frames.
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8.2 Behavior analysis 8 ADDITIONAL RESULTS (FIGURES)

Figure 24: Events in sequence 9.

Figure 25: Events in sequence 21.
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8.2 Behavior analysis 8 ADDITIONAL RESULTS (FIGURES)

Figure 26: Events in sequence 33. A train passes at 40 s, occluding the person, hence the lost track.

Figure 27: Events in sequence 51.

34



8.2 Behavior analysis 8 ADDITIONAL RESULTS (FIGURES)

Figure 28: Events in sequence 53.

Figure 29: Events in sequence 54.
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8.2 Behavior analysis 8 ADDITIONAL RESULTS (FIGURES)

(a) Detected events with frame number.

(b) Person stops at tracks. (c) After 1.2 s stop event is
detected.

(d) Person turns around. (e) In about a second the
turn is detected.

(f) Person moved signifi-
cantly after direction change
was detected. Barriers are
open, so high alert event is
triggered.

(g) Person quickly turns
around without stopping.

(h) Turn is detected after 1.6
s.

(i) Second significant direc-
tion change is detected.

(j) Person stopped moving. (k) After waiting a few sec-
onds, waiting for open bar-
riers event is detected, but
cool down period for previ-
ous high alert has not ex-
pired, so another alert isn’t
triggered.

(l) Third turn detected. (m) Third siginificant direc-
tion change detected.

Figure 30: Detailed description of events in sequence 51.
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8.2 Behavior analysis 8 ADDITIONAL RESULTS (FIGURES)

(a) Detected events with
frame number.

(b) Person starts waiting
while barriers are open.

(c) After three seconds a
waiting for open barriers
event is detected and an
alert is triggered.

(d) Person continues on his
way, crossing the tracks, and
the high alert event cools
down.

Figure 31: Evaluation sequence 52.

(a) Events. (b) Two persons about to cross each
other.

(c) One person is occluded by the
other. Detected bounding box gets
smaller until track is lost.

(d) New track is initiated. Persons
stop moving.

(e) Within 3 seconds waiting for open
barriers event is detected and alert
is triggered.

(f) Other person stopped moving a
little later. Also triggers an alert.

Figure 32: Evaluation sequence 53.
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8.2 Behavior analysis 8 ADDITIONAL RESULTS (FIGURES)

(a) Police officer walking at brisk pace along tracks. (b) Enters forbidden zone, which is promptly detected.

Figure 33: Evaluation sequence 54.

(a) Detected events with
frame number.

(b) Person appears to stop
moving.

(c) Stop event is detected (d) 3 seconds after the per-
son was detected to have
stopped moving an alert was
triggered because the barri-
ers were open.

Figure 34: Evaluation sequence 55.

(a) Person turned around
while barriers were open.
Alert triggered.

(b) Bounding box size is very
jittery.

(c) Despite the last turn be-
ing detected too early due
to the jittery detections, the
first turn was correctly de-
tected and the alert was trig-
gered.

(d) Events.

Figure 35: Evaluation sequence 56.
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