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Abstract

In this thesis we look at the implementation of the ice shelf melt plume parametrisation
developed by Lazeroms into a hybrid SIA+SSA ice sheet/shelf model IMAU-ICE. To test the
melt plume model, we use a the synthetic enbayment setup from the MISMIP+ experiments
to observe the behaviour of an buttressed marine ice sheet when it undergoes melt driven
retreat. We show the original two-dimensional implementation of Lazeroms causes spuri-
ous numerical wiggles irregularities to appear on the ice draft. With modi�cations to the
algorithm we show that the melt plume parametrisation can be e�ectively used as a tool
to determine sub-shelf basal melt without causing irregular ice geometries. However we
only show that the parametrisation works in this idealised test setup, we strongly suggest
that more work needs to be done to evaluate the plume parametrisation in more realistic
setups.
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1. Introduction

In recent years the interest to more accurately model the interaction between marine ice sheets
and the underlaying ocean has grown (Favier et al. 2019; Levermann et al. 2020). In part this
is due to the recognition that many of the out�ow glaciers and shelves on the western side of
Antarctica are susceptible to destabilisation and grounding line retreat due to basal melt by a
warming Arctic ocean (Parizek et al. 2013). This process, much more than a changing SMB due
to climate change, has been a large factor of uncertainty in attempts to estimate Antarctica’s
contribution to sea level rise (Oppenheimer et al. 2019).

In most model studies where a form of marine basal melt is included, this is mostly done
through a simple temperature �eld driven melt rate or through a parametrised form of recon-
structed melt �elds based on the observed melt rates of the geometry you are interested in
(Beckmann and Goosse 2003; Pollard and DeConto 2012). The reality is however that to the
best of our understanding melt is simply not only temperature driven and that using recon-
structed melt �elds is �ne for present day conditions but it serves as a severe limitation if we
want to study marine ice sheets in a changing climate.

It is therefore worthwhile to include better melt physics inside our model because this area
can be improved. However the actual physics behind sub-shelf melt is complex. When fresh
water gets released either at the ice-ocean interface due to temperature driven melt or at the
grounding line due to some sub-glacial water stream, this injection of fresh water is often more
buoyant then the saltwater environment. This initial volume of fresh water then travels up the
ice draft while developing into a turbulent environment interacts both with the ice interface
and the surrounding ocean. This plume travels down the ice draft till it has either reached the
open ocean surface or when the plume hits a strati�ed layer which can cause the plume to lose
its buoyancy, which means that it detaches from the ice shelf. In both cases the plume will mix
out again into its ocean environment (Jenkins 1991).

The development of these plumes is, however, di�cult to model, because it requires running a
�ne ocean model which also contains data about the subshelf geometry. Furthermore, coupling
such an ocean model to an ice sheet model to get an ice draft which has a dynamic feedback
between geometry and melt is a very computationally expensive and is often an unavailable
resource for modellers.

A way forward is to use the one-dimensional melt plume model of ibid. which has been
further simpli�ed by Lazeroms et al. 2018 through a parametrisation of its ODE’s. Our goal
in this thesis is to take the parametrisation made in Lazeroms et al. 2019 and implement and
improve upon it. The reason why we think we can improve upon it, is because in the origi-
nal paper a very basic extension for the parametrisation to two-dimensional space was done:
Lazeroms suggested a very simple mapping which transferred two-dimensional plumes to a
one-dimensional parameter space; however, this mapping function was not tested by Lazeroms
inside a model with dynamic feedback between the plume model and the shelf geometry.

4



2. UPP Model Description

The melt plume parametrisation is derived from a set of ordinary di�erential equations describ-
ing the growth of a plume of buoyant meltwater under the ice draft and how, as it grows and
extends towards the surface, creates a melt rate distribution underneath the ice shelf. This
original set of ODE’s was described and evaluated by Jenkins 1991; In essence this set of ODE’s
describes a one-dimensional melt plume which originates from the ice shelf’s grounding line.
Equation (1) describes how the plume’s velocity (U ), thickness (D), temperature (T ) and salin-
ity (S) develop along-side the ice draft as a function of distance from the grounding line X .
Variables with a ‘b’ subscript, e.g., Tb denote the temperature at the ice-ocean interface whilst
the ones with an ‘a’ subscript indicate ambient ocean properties. Finally, � indicates the ice
draft slope alongside the plume path. Note that the equations describe a stable state and it is
therefore an implicit assumption that the adjustment time of the plume is far shorter than that
of the shelf’s response.

)(UD)
)x

= ė + ṁ, (1a)

)(U 2D)
)x

= D
Δ�
�0
g sin � − CdU 2, (1b)

)(TUD)
)x

= Ta ė + Tbṁ − C1/2d ΓTU (T − Tb), (1c)

)(SUD)
)x

= Sa ė + Sbṁ − C1/2d ΓSU (S − Sb). (1d)

Important parameters and constants in eq. (1) are the entrainment rate ė and the meltwater
production rate ṁ, Δ� buoyancy of the plume with respect to ocean environment, gravitational
acceleration g, the turbulent drag coe�cient Cd and the turbulent exchange coe�cients for tem-
perature and salinity C1/2d ΓT and C1/2d ΓS .1 A schematic overview of the plume and its quantities
we have displayed in �g. 1a.

To create a closed set of equations Jenkins used a linear relationship for the entrainment rate
as function of local slope in the form:

ė = E0U sin �,

where E0 is a dimensionless scaling constant. This equation e�ectively indicates that entrain-
ment grows as a function of velocity and that the plume cannot entrain when the ice draft slope
is a �at surface.

For the equation of state describing plume buoyancy Jenkins used a linearised variant

Δ�
�0

= �S(Sa − S) − �T (Ta − T ),

where the constants �S is the haline contraction coe�cient and �T is the thermal expansion
coe�cient.

1Values for all constant and other parameters are given in a table found in the appendix.
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The �nal properties needed to create a closed problem are the boundary conditions at the
ice-ocean interface. In this case, two are required:

C1/2d ΓTU (T − Tb) = ṁ(
L
cw

+
ci
cw
(Tb − Ti)) , (2a)

Tf = �1S + �2 + �3zb . (2b)

Here eq. (2a) is the balance equation which describes how the melt �uxes are balanced at
the ice-ocean interface and eq. (2b) described the linearised relationship of the freezing point
temperature Tf at the ice draft as dependent upon environmental salinity (S), local depth (zb)
and with scaling denoted by these � coe�cients.

With these boundary conditions and the system of equations in eq. (1) we can use a numerical
solver in conjunction with a given ice shelf geometry to �nd the solution to the plume properties
and therefore also the melt rate along the ice draft. However, solving these equations inside
a model at each time step is a computational intensive process and is too costly to do on any
large scale.

2.1. Parametrisation of UPP

A solution proposed by Lazeroms et al. 2018 and Lazeroms et al. 2019 is to use a parametrisation
of the ODE’s of Jenkins. This is possible because most ice draft con�gurations lead to a melt
rate which shows a certain self similarity which can be used to construct a melt parametrisation
which does not require us to iteratively �nd a solution to a set of ODE’s.

Lazeroms in these two papers proposes two di�erent methods to describe the basal melt with
a parametrisation. In the �rst he used a 11th order polynomial to express the self similarity
which melt curves seem to share; however, this method is quite error prone and inside a later
addendum up to the �fth digit of this polynomial was given so as to get similar results to the
ones found in the �rst paper. In the latter paper (ibid.) this problem was solved by proposing
a semi-analytical description of the self similar part. This implementation is not only less
error-prone, but is also more elegant to implement.

This melt parametrisation we write as:

ṁ = �(�, Ta, Sa)M(X̂ ), (3)

where we have split the parametrisation into � , a tuning parameter,  the melt ampli�cation
factor and M(X̂ ) the self-similar melt curve, which we have plotted in �g. 1b. This curve is
dependent on a single non-dimensional distance factor X̂ which is given by the formula

X̂ =
(zb − zgl )�3

Ta − Tf (Sa, zgl ) [
1 + C� (

E0 sin �
C1/2d ΓTS + c� + E0 sin �)] . (4)

Here X̂ is primarily dependent on the depth of the grounding line zgl , ice draft depth zb , ambient
sub-shelf ocean temperature Ta and the adjusted freezing point Tf . Furthermore there is a weak
dependence of X̂ on the local slope, however this contribution is relatively small and has little

6



impact therefore on determining X̂ . Finally the melt curve function is given by:

M(X̂ ) =
√
2
4 [3(1 − X̂)

4/3
− 1] [1 − (1 − X̂)

4/3

]

1/2

(5)
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Figure 1: (a) Schematic overview of the plume quantities involved in de�ning the plume. (b)
Dimensionless melt curve in the melt parametrisation as dependent upon the rescaled
X̂ coordinate as given by eq. (5). X̂ = 0 corresponds to the grounding line and X̂ = 1
is the location at the far �eld near the shelf edge. Vertical axis is unitless, but de�nes
the sign of the melt and contains part of the non-linear plume response as it develops
a turbulent boundary layer travelling down the ice draft slope.

From �g. 1b, the de�nition of the dimensionless X coordinate and certain assumptions about
the behaviour of melt plumes we can deduce a few properties of the melt. (1) It is an a priori
assumption that a plume can only travel upward; this means that zgl ≤ zb along the melt path
and that nominator in eq. (4) is always positive or zero. (2) Valid values for the denominator
can only be positive this means that melt can only happen when the local ocean temperature
is higher than the freezing point temperature at the sheet-shelf base, i.e., Ta > Tf . (3) The
di�erence between grounding line depth and ice draft is the main determining factor for the
location on the dimensionless melt curve; whilst the di�erence between ambient ocean and
grounding line freezing temperature determines how much compacted the curve becomes, i.e.,
the warmer the ocean, the more spread out the melt curve and vice versa. (4) There is only a
weak dependence of the melt curve shape on the ice draft slope; as the terms involved are all
much smaller than one.

Finally we have the melt ampli�cation factor in this parametrisation  which is expressed
as:

 =

√
�SSag
�3(L/c)3 (

1 − c�1C1/2d ΓTS
Cd + E0 sin � )(

C1/2d ΓTSE0 sin �
C1/2d ΓTS + c� + E0 sin �)

3

(Ta − Tf ,zgl)
3 . (6)

We here see that the actual strength of the melt is determined by the local slope which the plume
experiences and the melt temperature available when we compare local ocean temperatures to
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the freezing point temperature at the grounding line. As before, a table with entries to all the
constants can be found in the appendix.

A short note on the tuning parameter � , inside this thesis we have treated � as being equal
to 1. We did this because we had no interest in tuning our model runs to get close to each
other in providing similar results; however, in applications where you want to tune the melt to
observed melt it is handy to denote where the tuning parameter comes into play and that we
do not tune the model by changing one of the given constants, e.g., the entrainment rate E, but
by way of a multiplicative factor to the calculated melt rate.

3. Extension to 2D

The previous set of ODE’s and parametrisation of this equation were derived for a one-dimensional
plume, however if we want to apply this melt model to two-dimensional ice sheet models and
not just �ow line models, we need to determine an extension to the parametrisation which
makes it applicable to two-dimensional models.

Such an extension to two dimensions is possible though how this can be done has no def-
inite answer. For the parametrisation to work in 2D we need to determine appropriate one-
dimensional projections for the grounding line depth (zgl ) and local slope (�) at every point
under the shelf.

Lazeroms presented in his paper a way to do this, however there are also di�erent methods
available to �nd local slope and grounding line depth. In this section we cover di�erent methods
we used to calculate the required �elds for the melt parametrisation.

In the end out goal is to outline and test di�erent two-dimensional setups with the plume
parametrisation to see whether we can apply plume melt in con�guration where there is active
feedback between shelf geometry and melt rate. We deem a method successful if it is able to
describe basal melt without causing the ice geometry to destabilise due to numerical errors.

3.1. Lazeroms Method

The method described in Lazeroms et al. 2019 consists of generating a one-dimensional map-
ping of a two-dimensional parameter space. We do this through casting multiple plumes and
then averaging out their properties to �nd the local slope and grounding line depth which is
applicable for our two-dimensional melt calculation. Lazeroms method starts by looking from
a certain point under the shelf in sixteen �xed directions.

For each plume the following immediate check is done: we need to be sure that the direction
the plume is originating from is sloped downwards, i.e., that the plume did not need to sink
to reach the current sub-shelf point. To do this check we calculate the upstream derivative
looking from the downstream point this derivative is used as the local slope associated with this
speci�c plume and we demand as a criterion that this slope must be greater than zero. If not,
we reject this plume and continue with the other possible plumes. If, however, the plume does
lope downwards to a grounding line, we continue processing the plume with the algorithm.

The next step consists of back tracing along the plume direction till we either �nd a grounded
ice point or we �nd the outer limits of our domain. In the latter case we again reject the plume,
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Figure 2: Schematic sketch of the two con�gurations of grounding line point and how we
interpolate using the default Lazeroms scheme to �nd the position of the grounding
line point in between the �rst �oating and last grounded ice sheet point.

in the previous one we take the height of the bedrock of this last grounded ice sheet point to
which the plume backtraced. Note this found value is not yet the grounding point depth.

A �nal important step in this part of the plume model, is to interpolate the �nal position of
the grounding line. We do this because the grid discretisation causes the true position of the
grounding line to lie somewhere in between the last grounded-ice point and the �rst �oating-ice
point. The interpolation algorithm uses either one of these di�erent methods to interpolate the
grounding line position

We interpolate along the bed if the ice draft of the �rst �oating point lies deeper than the
bed position of the last grounded-ice point using a linear interpolation formula where:

zgl =
1
2 (ℎb,gl + ℎb,gl+1) .

For points where the opposite is true, i.e., the �rst �oating-ice point lies higher than the last
grounded-ice point; we do a linear interpolation along the ice draft in the following manner:

zgl =
1
2 (ℎd,gl + ℎd,gl+1) .

The speci�c geometric con�guration of the grounding line associated with each case, we have
shown in �g. 2.

As a �nal check we need to determine if the interpolated grounding line is further below
sea level than the initial ice draft point from which the plume was traced. If not, we reject this
plume, otherwise we accept the plume.

When all sixteen direction have been traced we simply average them with equal weights
where we only average over the valid directions. If no valid directions were found we set the
grounding line depth to the local ice draft depth and the local slope to zero, this equivalent to
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setting the melt at this shelf point to zero.

zgl (x, y) =
1

Nvalid(x, y)
∑
validn

zn,gl (x, y), (7a)

�(x, y) =
1

Nvalid(x, y)
∑
validn

�n(x, y). (7b)

This is the algorithm as was presented in Lazeroms et al. 2019, however, when we imple-
mented this algorithm as is, we noticed some major shortcomings. We had found that taking
only sixteen plume directions to get a one-dimensional projection of a two-dimensional prob-
lem is in practise quite coarse and carried with it a number of numerical artefacts due to poor
sampling. To generate smoother grounding line and local slope �elds, the �rst extension we
made is to go from a sixteen plume average to a N plume one. In section 5 we cover in more
detail the problems we identi�ed and how our solutions impacted the results.

3.2. Full Path Tracing

To get to a parametrisation that can calculate the parameter average of N plumes, we need
to make an extension upon how the plume paths were traced. In section 3.1 we recursively
stepped into sixteen di�erent directions to see whether the paths allowed for valid plumes. The
great bene�t of only using sixteen directions is that it enables us to simply pass through the
grid at regular intervals of Δx and Δy in grid index coordinates. When we have N possible
plumes we cannot use this stepping algorithm.

We instead use the Bresenham algorithm (Bresenham 1965) which determines the best way
to discretise a line on a �nite grid where the line’s deviation from the continuous ‘real’ line is
kept at a minimum. See appendix B for an explanation of this algorithm.

The validation criterion stays very much the same, i.e., local slope of a plume at grid point
must always be directed downward in the direction of the plume origin. We also keep the rule
that if no valid slopes are found that we pick the parameters in such a way that local melt is
guaranteed to be zero.

Besides tweaking how many plumes we take into account, there is also some liberty to be
taken with how both the grounding line is interpolated and how local slope is determined. In
section 3.1 we explained that grounding line is interpolated along either ice draft or bed to a
halfway point and that local slope of the ice draft is simply the one-sided derivative coming
from the grounding line position. However we can present some alternatives.

3.2.1. Floatation Interpolation of the Grounding Line

For the grounding line, the interpolation can be improved by instead of looking for a halfway
point, we can use a linear interpolation using the �oatation criterion. (We follow a similar setup
as in Gladstone et al. 2010 eq. 9. ). We start by looking at the �rst grounded grid point and
�rst �oating shelf point from which the plume originates. We know that ice must start �oating
somewhere in between these two points. We can denote this fractional position as:

�gl =
xgl − xsℎeet

ΔX
.
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We also use the following equation of state, which says that ice thickness and bedrock depth
below sealevel can be interpolated in the following manner:

�iHi(�gl ) = −�wHb(�gl ), (8a)
Hi(�gl ) = Hi,sheet (1 − �gl) + Hi,shelf�gl , (8b)
Hb(�gl ) = Hb,sheet (1 − �gl) + Hb,shelf�gl . (8c)

The subscripts indicate whether the value is taken as the last grounded or �rst �oating grid
point. We can now combine and rearrange eq. (8) to yield an expression for �gl .

�gl =
�iHi,sheet + �wHb,sheet

�i (Hi,sheet − Hi,shelf) + �w (Hb,sheet − Hb,shelf)
. (9)

With this fractional position we can then either interpolate along the ice draft or bedrock to
�nd the ice draft at the subgrid grounding line position. The criterion for choosing which
interpolation to do are the same as with the base Lazeroms method described in section 3.1.

3.2.2. Slope Calculation

The other possible part of the algorithm we can modify, is the calculation of the local slope. In
the algorithm as proposed by Lazeroms et al. 2018 one-sided derivatives were used, however
both higher-order and di�erently orientated derivatives can be used. The reason why we want
to change this derivative, is because the local slope �eld is rather coarse and tends to exacerbate
irregularities inside the ice draft geometry.

We therefore try out in this thesis four di�erent methods for calculating local slope for each
plume: (1) downstream one-sided derivatives, (2) central-derivatives, (3) higher-order central
derivatives and (4) ‘Mean least square’ polynomial gradient to see whether an improvement
can be made to the smoothness of the local slope �elds.

Methods 1 and 2 are simple and use standard numerical de�nitions. Method 3 uses central
gradients where also grid points at distance i = ±2 are taken into account. Here we follow the
method presented in Fornberg 1988 to calculate the appropriate weights for this scheme to �nd:

�Hd,ei =
1
12 (Hd,ei−2i − 8Hd,ei−i + 8Hd,ei+i − Hd,ei+2i) , (10)

where we have taken the derivative in the direction ei . Note for all these algorithms that because
the plumes can also side-step we need to calculate this di�erence also for directions which step
in both directions. Numerically we do this by stepping concurrently in two directions and
then in the slope calculation to use Euclidean distance between cells as derivative denominator.
So the direction ei does not need to be aligned to only the x or y direction but it can also be
orientated along the diagonal.

Then we have the �nal method 4, here we use a ‘Mean Least Squares’ routine to calculate
the x and y gradient of a �tted polynomial. The more detailed mathematics we have described
in appendix C; the short version is that the local gradients in this method are stored as part of
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a coe�cient vector c⃗. From this we can extract the x and y gradient in the following manner:

)H
)x

(xi , yi) = c2 (xi , yi) , (11a)

)H
)y

(xi , yi) = c3 (xi , yi) . (11b)

To then determine the gradient in the direction p⃗ out of which the plume originates we
combine the x and y directional gradient eq. (11) in the following manner:

)H
)p⃗

=
)H
)x

(xi , yi) cos(�p) +
)H
)y

(xi , yi) sin(�p), (12)

here �p is the angle between the �rst backtraced point and the starting point.

3.3. Reverse-Lagrangian flow

Another completely di�erent take on determining plume path properties is by doing a reverse-
Lagrangian simulation of grounding line particles at every shelf grid point. Here the central
assumption is that the dominant plume is aligned with the ice velocities inside the ice, this means
that backtracing along a �ow direction also gives us the orientation and origin of predominate
plume which should inform melt parameter properties at the grid point of interest.

To do the Lagrangian backtracing we take the velocity �eld inside the ice at a time n to
calculate the melt at time n + 1. We next use an Adam-Bashforth scheme to do the Lagrangian
advection with the form:

x⃗n+2 = x⃗n −
3
2
dt v⃗n(x⃗n+1) +

1
2
dt v⃗n(x⃗n) + N⃗ (v⃗n), (13)

here dt is dynamically determined by looking at the largest possible time step2 that would not vi-
olate the CFL condition at any sub-shelf grid point. Note that unlike the usual Adams-Bashforth
method, we do not use a varying velocity, because of our assumption that the development of
the plumes is instant when compared to the adjustment time of �ow inside the ice. Another
important remark is that to get the �rst advected position, we cannot use the scheme in eq. (13),
for the �rst step we use a simple Euler forward advection scheme.

The �nal term in eq. (13), N⃗ is a Brownian motion drift term which causes especially points
at shelf areas with low velocity to experience some drift. We do this because in our initial
investigation we found that many ice points are backtraced to the same grounding line when
you go farther away from the ice shelf grounding line. To arti�cially smooth out the resulting
grounding line depth �eld and also to incorporate the uncertainty of the plume origin for
points which are further away from any grounding line, we have added Brownian motion in
the following manner:

x⃗bn+1 = x⃗n+1 + 2U⃗

√
3 |�t |K
2

, (14)

where K is the di�usivity and U⃗ is a uniformly distributed two-dimensional vector sampled
from the range [−0.5, 0.5]. To incorporate the e�ect that we are less certain about the origin of

2Because we are backtracing the �ow time steps are implicitly taken as a negative number.
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the plume when we are further away from the shelf, we make the di�usivity K dependent on
the local slope under the shelf. The assumption here is that local slope is larger close to the
grounding line than it is in the far-away �eld.

K =
Kmax√

1 + (�/10−3)2
. (15)

At present this slope dependent di�usivity is done in an ad hoc fashion where we primarily
calibrated the constants and sensitivities in eq. (15) to cause a visible smoothing of the resultant
grounding line depth �eld. Therefore we do not presume that this di�usivity is scaled to some
unknown parameter though the addition of Brownian motion was justi�ed by postulating that
back tracing shelf ice velocities does not have to correspond to the actual paths the melt plumes
take. So we keep in mind that the calibration of the di�usivity is dependent on setup and the
desired amount of smoothing and not a detailed analysis of actual melt rates versus model melt
rates.

We now run the solver of eq. (13) until we are either in a grid point which the model recognises
as being grounded or when we violate any of the plume conditions which we also gave in
section 3.1, i.e., local slope must go up from the plume to the grid point. This condition of local
slope we calculate by taking the ice draft at the centre grid point and then calculate its gradient
with respect to the bi-linearly interpolated ice draft of the �rst advected point.

Note that while we are backtracing we also mark grid points we pass as being associated
with the plume that goes to the position we started from. This is done to later average out
multiple plume properties at grid points to give us smoother results.

When we have reached a grounded grid point we again use the interpolation devised by
Lazeroms in section 3.1 for grounding line interpolation or the one based on the �oatation
criterion in section 3.2 to determine the subgrid position of the grounding line. Note that these
schemes use the grid values at integer coordinates. So the �nal and penultimate coordinates of
the backtracing scheme are �rst rounded to their nearest integer positions before these other
interpolations are used. The result of this �nal interpolation is treated as usual and must have a
lower position below sea-level than the ice draft point where the backtracing started, otherwise
we �x the melt for the coordinate at zero.

A �nal problem that we can encounter is that plume cannot be backtraced to a grounded ice
point within a reasonable amount of time, or melt plume paths which, due to the Brownian
motion, escape the model grid. In the interest of model run time, we simply ignore these points
and set the melt to zero at the points where this occurs. This does not cause a real problem,
because this only happens near the model boundary where melt is usually already negligible.

3.4. Overview

This combination of grounding line, slope algorithms and sub-grid interpolation schemes leaves
us with a net sum of 11 con�gurations. In the next section, section 4 we cover more in depth the
speci�cs of the setup, now we would like to present a table of the possible melt con�guration
we can combine.
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Grounding Line Algorithm Slope Method Interpolation Method Section
Lazeroms’ 16 Directions one-sided mid point section 5.1

Full Tracing

one-sided mid point section 5.2
�oatation -

central lo mid point section 5.3
�oatation -

central ho mid point -
�oatation -

MLS mid point section 5.4
�oatation -

Lagrangian one-sided mid point section 5.5
�oatation -

Table 1: The evaluated melt setup con�gurations is this thesis. For explanation of the grounding
line algorithms see sections 3.1 to 3.3. The slope methods are highlighted in section 3.2.2
and the di�erence between mid point and �oatation interpolation for the grounding
line is explained in section 3.2.1.

In this thesis, however, we shall not present all these combinations one-by-one. Far more
helpful is to zoom on into the most e�ective setup inside the current model, and highlight other
setups’ shortcomings with respect to one we found to be the most well performing.

As we show in section 5 and later discuss, the full tracing method with central, higher order
slope gradient calculation gives the best results in this model setup. We try to make this case by
contrasting certain options, e.g., the slope method, and show why central gradients can be seen
as an improvement over the default one-sided gradients employed in the original algorithm.

Certain experiment names in table 1 we have printed in bold. These are the experiments
we are going to present in section 5, the way in which we are going to present these results is
mainly by building up to the full-tracing, central derivatives method, starting from the original
Lazeroms algorithm and iteratively show how we changed this and the subsequent e�ect this
change then had on the model output results.

4. Test Setup to Evaluate Model Melt

4.1. Model

We run and test these setups with IMAU-ICE, a hybrid SIA+SSA model where the simpli�ed SIA
and SSA approximations are solved separately from each other on a regular grid and combined
together as the ice velocity when updating the ice thickness. We furthermore run this model
on a lower resolution grid (8 km by 8 km) which enables us to do experiments on a mesoscale
temporal range within a reasonable time frame.

Note that because we run this model on a regular, lower resolution grid we have problems to
accurately resolve the point at which grounded ice becomes a �oating shelf. We call this exact
position the grounding line. This leads to the problem detailed in Pattyn et al. 2012 were it is
shown that during a marine ice sheet retreat scenario the unresolved grounding line responds
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inadequately which disallows the marine ice sheet to retreat. We therefore use the solution
which Schoof 2007 proposed and which is also implemented in Pollard and DeConto 2012 where
we resolve the position of the grounding line on a subgrid scale and use ice �ow continuity
equation there to more accurately resolve the ice �ux across the grounding line.

Inside the model we describe the deviatoric stresses �ij inside the ice through strain rates Dij
by using Glen’s �ow law in the following manner:

�ij = A−1/nD
1
n−1
e Dij , (16)

whereDe is the second scalar invariant of the strain rate. At the bottom we use a Weertman-type
sliding law for basal frication inside our experiments which is given by the formula:

�b = − (�igHi�−2)
1
m |∇ℎs |2 (17)

at all grounded grid points.
Further important assumptions are that the ice is isothermal and thermostatic;3 so we have

no evolution of the temperature due to friction and basal heating inside the ice. We also simplify
basal sliding by applying a Weertman-type sliding law at all grounded points and the rheology
of ice we prescribe for the whole ice mass with one uniform value which we use as a tuning
parameter to get to our initial state which we have described in section 4.2.

4.2. Test Geometry

The setups within the model are then evaluated in a MISMIP+-like setup. The MISMIP+ setup,
like the other MISMIP experiments, allow for more sensible model intercomparison studies by
focussing in on speci�c mechanics inside an ice model. The MISMIP+ setup is especially useful
for us, because the geometry is designed to test the ice model’s capabilities to simulate the e�ect
of melt on embayment area with an ice shelf that experiences strong buttresing e�ects from
the two banked areas and also rests on a retrograde slope. In �g. 3d we show the importance
of this side wall buttressing in our �nal model setup. We see here the e�ect buttressing has
on impeding ice �ow for �oating ice. The bright red colours correspond the �oating ice that is
completely buttressed.

The geometry of the MISMIP+ is bounded inside the x domain in between 0 and 640 km and
in between −40 and +40 km in the y domain. The original larger setup was �rst described by
Gudmundsson 2013. We also ignore bedrock adjustment to due the presence of the ice mass.
The geometry we describe in the following manner:

zb(x, y) = max [Bx (x) + By (y), zb,deep] , (18a)
x̃ = x/x̄ , (18b)

Bx (x) = B0 + B2x̃2 + B4x̃4 + B6x̃6, (18c)

By (y) =
dc

1 + e−2(y−wc )/fc
+

dc
1 + e2(y+wc )/fc

. (18d)

3Ice temperature is set to 263.2 K everywhere.
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In �g. 3a we have given a plot of eq. (18c) where we have applied the condition that the depth of
the bedrock is not allowed to drop below −720 m. Note that from x = 350 km to x = 500 km the
central �ow line contains a retrograde slope. Also note the steep side walls in �g. 3b which cause
the strong buttressing of the �oating ice inside the enbayment area. The resulting geometry
given by eq. (18a) we have shown in �g. 3c

Additional boundary conditions which are applied in this setup is that at the top and bottom
y boundary there is a free slip condition being applied. At the left x boundary we apply a no-slip
condition and at the ice front on the right side of the domain we have unrestricted out�ow,
simulating the presence of a calving front.

We �rst run this model with a resolution ofΔx = Δy = 8 km without any melt to a stable state.
Like in the MISMIP+ paper we require that a stable state be found where the grounding line
rests at 450 km from the left model border. To �nd this stable state we tweak the ice rheology
parameter till we have a con�guration which has this stable grounding line position. In �gure
�g. 4 we show the �nal stable velocity magnitude and the shape of the ice sheet/shelf along the
central �ow line inside the model.4

In subsequent runs which use this initial ice geometry as a starting point, all the ice param-
eters will stay the same. However, for the plume melt to be calculated, we also need to give
appropriate values to the ambient ocean temperature and salinity (Ta and Sa in eq. (1)). In
this test setup we keep these �elds simple by supposing that the ocean inside and around the
embayment is isothermal and isohaline. We de�ne two types of oceans, i.e., a warm and a cold
ocean. Most of the times we only evaluate the warm ocean, but at certain times we also want
to study the model’s behaviour when a lesser melt forcing is applied.

Warm Cold
Temperature −1.0 ◦C −2.0 ◦C
Salinity 34.6 PSU

Table 2: Ambient ocean properties inside the model during the runs where melt is being calcu-
lated with the plume model.

Also note that we assume that there is no salt inside the ice draft’s melt �uxes, i.e., Sb = 0.

4We refer to the appendix for the used rheology parameter.
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Figure 3: The MISMIP+ bedrock geometry. (a) The function B(x) show casing the bedrock
pro�le along the central section of the domain. (b) The shape of the side walls given
by the function B(y), (c) the shape of the computational domain and (d) the relative
importance of the e�ect of ice buttressing inside the embayment area for �oating ice.
The unit is dimensionless, with 0 corresponding to an free �oating ice shelf and 1 to
a fully impeded ice shelf.
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Figure 4: (a) The velocity magnitude in the model after a stable state was achieved with central
�ow line (dashed green line) plotted. (b) The ice geometry and velocity along the
central �ow line inside the enbayment.

5. Results

5.1. Lazeroms Method

We �rst present the calculation of the melt parameters (grounding line depth and local slope)
and the melt itself for the ice geometry after it had reached a stable state. In �g. 5 we show these
�elds. In these pictures the grey areas indicate the presence of a grounded ice sheet. When we
look at the grounding line �eld, we notice that it does not appear to be very smooth. For sure,
some irregularities are due to the fact that on a �nite grid you always get some artefacts, but
this roughness seems to be a result of the method we use to determine to this �eld, because if
we now look at the slope �eld we see similar patterns.

This roughness can have signi�cant e�ects on the melt rate calculation, because the melt
rate response is highly non linear, a good example of this is how the dimensionless melt curve
responds non-linearly to a linear growth of distance between grounding line and ice draft. This
means that the melt rate which we have obtained in �g. 5 may distort the ice draft with noise
and that noisy pattern which is now transferred to the shelf geometry will then undergo more
ampli�cation when we redo the plume path calculations.

Also note that the melt rates are not the highest at the �rst point after the grounding line for
the furthest inset of the enbayment but a point after that. This is in part caused by the fact that
the melt optimum is found some distance away from the grounding line, so we often see that
even though slopes are the largest at, or very near the grounding line; the highest amount of
melt is found some distance removed from this point.

We test whether we can use this method by running a 1 kyr simulation of the melt-shelf
feedback in the MISMIP+ setup to see whether the melt calculated by this algorithm causes a
stable retreat of the grounding line. As can be seen in �g. 6a the shelf geometry at di�erent time
slices is irregular near the grounding and the shelf is at many times at the calving thickness
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(a) (b)

(c)

Figure 5: Plume grounding line depth, slope and melt calculation using the original Lazeroms
method for the ice geometry after a stable state was reached. Grey colouration indi-
cates a non-shelf grid cell.

criterion inside the model, which we have here represented by the dashed red line. So we observe
at a model run’s start a very quick, but also non smooth melting of the shelf. Furthermore
over time we get these isolated patches of ice which are cut o� from the main shelf by being
surrounded by ice below the calving thickness. At present we have not yet found a solution
to this problem, for we often saw in these enbayment experiments that these holes appeared
inside the ice mainly in the horizontal direction, but that there was still a continuous ice bridge
extending from the enbayment’s sides to the semi-detached ice mass. We opted therefore to let
these features remain and let them be an indicator of how melt e�ects the whole shelf.

However, the quick and irregular dissolving of the shelf may also be due to us applying too
dominant a melt rate; to check for irregularities appearing at lower melt rates we use a colder
ocean as a melt driver and redo the experiment. In �g. 6b you can again see a few snapshots
of the ice geometry. We observe that we still have a spiky melt pattern appearing near the
grounding line which causes the sub-shelf geometry to become rough.
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Figure 6: Geometry slices of the model setup along the central �ow line. (See dashed green line
in �g. 4.) In (a) we have run the original Lazeroms setup with an isothermal oceanic
forcing of −1.0 ◦C for 1000 years. In (b) we have run the same Lazeroms setup but now
with an isothermal oceanic forcing of −2.0 ◦C.

5.2. Full Tracing Method – One-side Plume Derivatives

One of the important causes of the irregularities which appeared in the grounding line and local
slope �elds which we discussed in the previous section, is that with the Lazeroms method we
have a high chance of undersampling the grounding line. What we mean by this is as follows:
with sixteen directions to determine local variables for grounding line and slope we encounter
two problems. (1) Because we follow along these sixteen directions to eventually �nd a plume
origin point on the grounding line, the distance in between sampling points steadily increases
as we go further away from the point of origin. This is problematic if we have large variations
in depth along the grounding line, for a simple shift in point of origin may then mean that we
sample the grounding line in a completely di�erent way.

(2) Another di�culty is determining the local slope of a plume. Like we said before, local
slope is determined through calculation of the downstream di�erences looking from the plume
direction to the starting point. This means that we use one of the sixteen directions to determine
where we sample the grid. However, this is problematic because not all grid step sizes exist on
the same stencil. In �g. 7 we see that we have a central square around the point of origin for the
�rst eight directions (grid cells with a solid circle), but that the other eight directions pointers
step with a larger footprint (grid cells with a hollow circle). This means that when we calculate
the gradients for these �nal eight directions we do not calculate the gradients on a cell edge of
the point of origin, but the gradient somewhere inside the interior grid stencil. What this means
is that you get a sampling bias for plumes which have a local steep gradient and this can lead
to a melt ampli�cation which due to the shelf-melt feedback leads to further exacerbation of
this local steepness. In the end, these one-sided gradients make the melt scheme very sensitive
to local saddle points in the ice draft.

The full tracing method we described 3.2 is meant to solve these two issues by not only taking
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Figure 7: Step and gradient stencil used by Lazeroms method and the full tracing method. The
Lazeroms method uses for a single of the sixteen plumes one of either hollow or solid
circles as a stepping pattern to backtrace to the grounding line. (See section 3.1.) The
full tracing method only uses one of the solid interior grid steps during its backtracing
procedure, furthermore it can vary its step direction after each taken back step. (See
appendix B.)

into account all valid grounding line points, which solves the undersampeling issue (1) but also
by using a grid stepping algorithm which can only step to its eight adjacent neighbours we
calculate local slope always on the boundary of the interior cell.

To show how this change has e�ected the o�ine calculated grounding line depth and local
slope �elds, we have followed the same procedure as in section 5.1. If we now compare �g. 8
to �g. 5 we see that the both the grounding line �eld and the local slope contain a lesser
amount of noise and appear smoother. Note also that the grounding line depth inside the main
enbayment has not only become more uniform, but it has also deepened for most points inside
the enbayment.

Next we look at how the melt feedback e�ects the ice geometry. In �g. 9 we can see that the
the problem of irregular geometry has actually worsened if we compare it to �g. 6a. We see
in the new results that irregularities appear alongside the ice draft and that in the end these
spikes become these isolated ice islands. The number but also longevity of these instabilities
has increased if we compare the new results to the results of the Lazeroms method in �g. 6a.
The reason why with more plumes the result has become more unstable must then be explained
as a consequence of using one-sided gradients in the direction of the grounding line.

For with more possible plumes the probability has also increased that you �nd valid plumes
even when the geometry becomes unstable. And this melt stays signi�cant enough that even
though ice is essentially a thin �lm of deformable material that is mainly governed by di�usivity
and that inside IMAU-ICE even isolated ice patches experience this di�usivity. The fact that we
then get these sustained ice irregularities means that the melt is strong and persistent enough
to create the permanent �xtures we observe in �g. 9.

Another important di�erence with the Lazeroms method is that the grounding line has
undergone slightly less of a retreat.
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(a) (b)

(c)

Figure 8: UPP grounding line depth, slope and melt calculation using the full-tracing method
with one-sided gradients for the ice geometry after a stable state was reached. Grey
colouration indicates a non-shelf grid cell.

5.3. Central Gradients

In section 5.2 we have suggested that using all valid grounding line points and taking only
local gradients into account at cell borders would smooth out the variable �elds and cause less
spikes to appear inside the ice draft. However, in a dynamical application we still have feedback
which causes unrealistic behaviour inside the algorithm. A possible reason why this happens
is because the parametrisation is not self-dampening. If we turn back to the melt description,
we said that only sections of the ice draft which were upwardly sloped from the plume origin
were taken as valid melt plumes. A problem with this is that once an ice spike starts to appear
as a lowering of the ice, the point to the right of this depression will not experience any melt,
because the slope is in the wrong direction. However, the point which is deepening more
quickly than the surrounding points will experience melt ampli�cation, for a larger gradient
in ice geometry will cause the entrainment and thus the melt to also increase. This means that
a steeper slope always leads to more melt which causes the slope to further steepen, i.e., the
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Figure 9: Dynamic feedback response of the full-tracing method with one-sided gradients di-
rected along the plume path from the grounding line outward at di�erent time slices.
The model was run for 1 kyr.

entrainment driven melt is essentially a positive feedback loop. We need, therefore, a way to
dampen this behaviour of the plume parametrisation as not to lead to a run-away melt e�ect.

A technical solution we suggest is to use central gradients. The bene�t of using central
gradients is that these are less sensitive to local saddle points inside the ice draft which is
something that would smooth out the melt output. Also, unlike the one-sided gradients which
were calculated on the central cell’s borders, central gradients are always evaluated at the cell
centre. This also means that when we average the individual plumes we average quantities
which are de�ned on the same point instead of at di�erent points along the cell border.

In this section we present the central gradient method with a 3x3 stencil (lower order) and
not the higher order central gradient method with a 4x4 stencil. This is done because the higher
order stencil cannot be applied too close to the border and with our small domain we would
like to include as many possible grid cells. Furthermore, during testing of this larger stencil the
increase in accuracy did not lead to signi�cantly di�erent results we had obtained using the
smaller central gradients stencil.5

We �rst run the model in an o�ine fashion and in �g. 10a we have displayed the calculated
average local slope of the plumes on a static ice geometry. A notable di�erence with �g. 8 is
that the local slope is much smoother; even when calculated just for the initial ice geometry.
Furthermore, when we look at the �rst �oating ice points furthest inside the enbayment we
also notice that the local slope with central gradients is not greatly reduced like it was in the
case of one-sided derivatives.

Now we run the model with dynamic feedback between melt and geometry. In �g. 10b we

5See section 3.2.2 for the central di�erence weights associated with a 4x4 stencil.
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can clearly see that we have practically removed the creation of spurious melt peaks which
both appeared in section 5.1 and section 5.2. Furthermore, the problem of isolated ice islands
has almost been completely solved because we now have a shelf which monotonically thins to
the calving thickness. A problem area which we can still identify in this result is how near the
grounding line we have such concentrated melt that at many time slices a local maxima of the
ice draft is found close to the grounding line point. This sometimes causes the ice thickness
here to be close or even at the calving criterion.

Also note that the amount of grounding line retreat we observe in �g. 10b is di�erent from
both the Lazeroms method �g. 6a as the full tracing method with one-sided gradients in �g. 9.
This shows that the dynamic interaction between melt and corresponding grounding line retreat
is complicated process even within a simple test setup.
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Figure 10: The results of (a) the local slope calculation of the initial geometry with central
gradients and (b) time slices from the model run with the full tracing method and
central gradients.

5.3.1. Floatation Criterion

One additional variation we have not yet discussed, is the usage of a di�erent interpolation
criterion to �nd the grounding line. As we had explained in section 3.2.1 we could use a
�oatation criterion interpolation. Again we look down the central �ow line of the model and
in �g. 11a we show how the position of the grounding line di�ers as dependent on these two
methods.

We observe that the �oatation interpolation in this setup causes a more rapid retreat of the
grounding line during most moments, but that retreat behaviour overall is very similar to the
to default interpolation scheme.

Besides looking at the position of the grounding line, it is interesting to look at how the
total melt has changed by switching interpolation algorithms. On the right of �g. 11 we have
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Figure 11: The position of the grounding line (a) and the total subshelf melt rate (b) for a full trac-
ing with central derivatives setup where either a half-way or �oatation interpolation
was applied for every plume.

displayed the total melt over the shelf area in Gt/yr. We notice that in general the melt pulses for
the �oatation scheme happen earlier, but they are not stronger than the melt pulses observed
with the halfway method.

5.4. MLS Gradients

Another available option to determining the local gradients is instead of using �nite di�erence
on a grid to determine a gradient, we can use a �tted 2nd order polynomial surface to the ice
draft to determine the local slope. The bene�t as with central gradients is that this method
better estimates the gradient at saddle points and it the gradient is also fully localised at the
grid cell centre where we want to sample the local slope.

In �g. 12 we have plotted the sideways pro�le along the central �ow line of the ice geometry
at di�erent time slices. As we can see the ice draft is far less noisy than with methods using a
one-sided gradients. However, the pro�le does contain more noise than the model run where
we used central gradients. A big di�erence in between the results of this method with the one
in �g. 10b is that near the grounding line we do not have a ice cavity inside the shelf.

We also remark upon the fact that the retreat of the grounding line exhibits similar behaviour
to what we saw in �g. 10b with a grounding line resting at 350 km along side central �ow line.

5.5. Lagrangian Method

The �nal method we tried out was the Lagrangian reverse �ow tracing method. In �g. 13a
we show the determined grounding line depth by backtracing points along the shelf velocity
after the model was initialised to a stable state geometry. We �rst note that the �eld is far
more uniform than �g. 5a and also more uniform than the smoother results of �g. 8a. This
is because the backtraced plumes are in this setup completely aligned with the �ow which
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Figure 12: Melt simulation for 1000 years within a −1 ◦C isothermal ocean with full tracing and
MLS gradients.

is predominantly in the horizontal direction. This also means that even shelf points mainly
outside the central enbayment area have plumes associated to them which according to the
Lagrangian method originated somewhere from the back deep waters of the enbayment area.

Next we run the model with this Lagrangian method. In �g. 13b we see a situation very
similar to �g. 9 developing: namely a very irregular retreat of the grounding line with spikes
embedded inside the ice draft geometry.

5.6. An Overview

In the previous sections we have presented some of the combinations of algorithms and shown
a qualitative analysis of each method on not only the smoothness of the parameter �elds at the
start of model execution, but also on the stability of the dynamic feedback between melt and
shelf geometry. As a �nal analysis we present in �g. 14 on the left the total melt rates in Gt/yr
under the shelf of the discussed methods and on the right for the same set the total mass of ice
remaining inside the model.

Here we notice a couple of things. (1) The total observed melt rate of the Lagrangian setup
peaks to higher values than all other methods. (2) We have a high amount of initial melt in
all setups of around −50 Gt/yr, but after approximately a 100 years the methods tend to a melt
rate of −20 Gt/yr. (3) Melt happens with bursts: if we take a closer look at a line, e.g. the red
line, then we notice that after a period of lower melt of around −15 Gt/yr we quickly jump up
to melt rates of −25 Gt/yr and then we quickly return to period of lesser sustained melt. We
suggest this is related to the fact that the shelf structure quickly thins in all cases to the calving
thickness. This not only means that there is less ice available, but also that the local ice draft
slope has become shallow over the largest part of the shelf, e.g., in �g. 12 we note that after 200

26



(a)

0 100 200 300 400 500 600
X (km)

500

0

500

1000

1500

2000

He
ig

ht
 (m

)

time = 10.0 yr
time = 260.0 yr
time = 510.0 yr
time = 760.0 yr
time = 1000.0 yr

(b)

Figure 13: (a) Calculated grounding line depth for the initial stable state geometry after a stable
state was reached. (b) Melt simulation for 1000 years within a −1 ◦C isothermal ocean
with Lagrangian backtracing and one-sided gradients.

years we have a steep slope at the grounding line but for the remainder of the shelf this slope
quickly �attens out.

If we now look to the total ice mass above �oatation we notice mainly that even though
the Lagrangian method has higher peak melt rates, that this does not mean that it has a lesser
amount of ice inside the model than the central and MLS full-tracing methods. We noticed that
with the standard Lazeroms and one-sided full-tracing method we have a far more signi�cant
loss of ice. That we can have a higher loss of ice mass but no signi�cant di�erence in shelf
melt, must mean that inside these two runs more of the ice is �oating and �owing out of the
domain. This we can see in �g. 15a where both these methods are also associated with the
quickest retreat of the grounding line. So the increased ice �ux at the model’s calving front also
contributes to loss of ice mass in these two scenario’s.

Another important aspect of �g. 15a is that each method we tried also exhibited a di�erent
amounts of grounding line retreat over the same amount of time. This is an important property
to keep in mind because as we saw in �g. 14 even though similar melt rates are observed for
each method, there were di�erences in observed total ice mass loss. Theses losses are closely
related to the patterns observed in �g. 15a, therefore we note that the impact which the basal
melt has on grounding line retreat is far larger in terms of sea level rise than when we look at
�g. 14a. We also note that outside of central �ow line, in �g. 15b, that the �nal grounding line
positions for all methods are vertically aligned at the back of the enbayment. This shows that
for even methods with a large noise amount of numerical noise, e.g., the Lazeroms method, the
grounding line stills retreats in a stable fashion.

One important aspect of using a model with a coarse resolution where the position of the
grounding line cannot be accurately tracked is that we get to the situation we observe in �g. 15a
where the retreat does not happen smoothly but in jumps. This erratic retreat of the grounding
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Figure 14: (a) The total subshelf melt rate in Gt/yr. (b) The total ice mass above �oatation inside
the model domain in Tt.

line may be part of the reason why the shelf-melt feedback is prone to instabilities because the
melt is very dependent on shelf geometry.
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Figure 15: (a) Grounding line position of di�erent methods inside the central �ow line of the
model during a 1 kyr model run. (b) The �nal grounding line position for the evalu-
ated experiments at the end of the model run with bedrock elevation in metres above
present day sea level given by the contour lines. Colours of the pips used in (b) match
those used in �gure (a).

6. Discussion

Throughout this thesis we explored the plume melt parametrisation as described by Lazeroms
et al. 2019 with a extension to accommodate for two-dimensional geometries. We used for out
test geometry the MISMIP+ setup which was desgined for models to be compared on their
ability to simulate a retreating grounding line in a strongly buttresed enbayment area.

During testing, we found out that the default Lazeroms method of taking sixteen plume
directions to construct a two-dimensional grid provided non-smooth parameter �elds even on
a static geometry. When we then applied the melt dynamically and allowed feedback to occur
to the shelf geometry, we noticed that during the retreat the shelf geometry became irregular
seeing as how sharp ice pro�le spikes were found close to the grounding line. We checked
whether at a lower temperature forcing the melt-shelf feedback would become less noisy, but
though the overall melt rate was lower, the resultant ice draft pro�le remained noisy.

We suggested three main avenues along which we could generate smoother parameter �elds
used to determine the plume-driven melt. (1) Increase the number of directions you sample
plumes from. (2) Change how local slope is de�ned. (3) Backtrace plumes along the ice velocity
�eld.

We showed that increasing the number of plumes did increase the smoothness of the ground-
ing line �eld, but that the melt from this algorithm still caused the ice draft to become irregular
and that in this setup the melt was more sustained. This e�ect led to what we saw in �g. 9 were
the di�usive �ow of ice could not smooth out the melt-driven spikes in the ice draft which was
something we did observe to a lesser extent in the original algorithm at �g. 6a.

So we further adjusted this algorithm by also changing how local slope was calculated for
every plume at a grid cell: instead of using down-stream gradients evaluated at a cell border, we
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used central derivatives which are evaluated at the centre of a grid cell. This seemed to greatly
increase the smoothness of the retreating ice draft and e�ectively removed spike formation
during the coupled feedback simulation.

The other gradient scheme using a ‘mean least squares’ �t also showed that we also acquire
accurate local slope gradients by way of �tting a second order polynomial surface with a 3x3
stencil at every grid point. This method also showed that this melt scheme is very sensitive to
where and how you calculate your gradients. In general is seems that both central gradients
and polynomial surface gradients give acceptable results but both still cause some unwanted
features inside the ice draft geometry to appear as we discussed in section 5.3 and section 5.4
respectively.

We furthermore looked at the interpolation algorithm of the grounding line position. We
compared Lazeroms’ assumption that the grounding line position lies at the halfway point in
between the last-grounded and �rst �oating grid point to a linear interpolation algorithm that
is derived from the �oatation balance of ice. We determined in section 5.3.1 that switching
interpolation algorithms did cause some shift in the model’s response, but that this is response
was minor when compared to e�ects of, e.g., a change in slope algorithm caused.

However using the ice velocity �eld to backtrace the plume origin to some point at the
grounding line proved to not increase the stability of the melt feedback because the resultant
ice draft contained many spikes. Also in practise the Lagrangian method was also undesirable
because it is far more computationally expensive than all other methods and therefore seems
to be unsuitable for larger scale setups.

7. Conclusion

In short the original Lazeroms parametrisation of a one-dimensional melt plume can be e�ec-
tively implemented inside a model, but the original sixteen plume averaging procedure which
Lazeroms proposed to extend the plume model to be applicable to a two-dimensional ice shelf
tended in our model to lead to an unstable ice draft geometry.

The solution we had found was to, instead of just using a possible sixteen plume average, to
try and trace from a given point to all valid grounding line points. We also proposed that to
determine local slope we should use central gradients or a 2nd order polynomial �t to the ice
draft.

These additions seemed to be quite e�ective at increasing the smoothness and stability of
the plume-based melt model coupled to a dynamic ice draft. We would like to end of this thesis
with some possible roads of inquiry wherewith this setup can be further tested and explored.

8. Outlook

While we have explored many di�erent options and combinations of constructing valid 2D
�elds for the UPP melt scheme there are still many more options to explore, e.g., in determining
plume properties for a grid cell we average over all valid plumes, assigning equal weight to
each plume. However, the argument could be made that plume from deeper waters have more
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melt potential than shallow plumes and should therefore be assigned in higher weight in the
averaging procedure.

Furthermore because we have run these model setups at relatively low resolution, we not only
have to contend with a grounding line that is not accurately resolved, but also the shelf geometry
near the grounding line consists of only a couple of grid points. This may be problematic for
applying the melt scheme near the grounding line because the melt strength is dependent on
ice draft slope which is a quantity which varies signi�cantly near this region. It would therefore
be of interest to see whether higher resolution runs would signi�cantly alter the melt patterns
or e�ect the stability of the melt schemes

It is also important to note that we have not tried these procedures inside an Antarctic
ice model, but only in a small and idealised test setup. We would therefore suggest that for
better comparisons these di�erent methods should be compared inside a full model setup to
see whether the di�erent plume schemes can lead to signi�cant di�erences in ice loss.

We also saw that the gradient methods are very important in assuring the stability of the
resultant melt feedback on the shelf. While we think that both central gradients as well as
polynomial gradients give good results and can also be used inside a full marine ice-sheet setup,
it may yet be fruitful to test whether increasing the polynomial stencil or using other gradient
selection criteria would increase model stability.

In the end, we have shown that inside a simple enbayment setup we can use the parametrised
form of Jenkin’s melt plume model which was meant for a one-dimensional setup inside a two-
dimensional environment. The modi�cations we proposed for acquiring grounding line depth
and local slope have signi�cantly increased the stability of the melt-shelf feedback in our model
and we think that the current setup is worth exploring inside a larger marine ice-sheet model.
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A. Constants
Symbol Parameter Name Value Unit

g Gravitational acceleration 9.81 m2/s
E0 Entrainment coe�cient 3.6 × 10−2 unitless
Cd Drag coe�cient 2.5 × 10−3 unitless
�1 Freezing point salinity coe�cient −5.73 × 10−2 ◦C
�2 Freezing point o�set 8.32 × 10−2 ◦C
�3 Freezing point depth coe�cient 7.61 × 10−4 ◦Cm−1

C1/2d ΓT Thermal Stanton number 1.1 × 10−3 unitless
C1/2d ΓS Haline Stanton number 3.1 × 10−5 unitless
L Latent heat of ice fusion 3.35 × 105 J kg−1
c Speci�c heat capacity of ocean water 3.974 × 103 J kg−1 ◦C−1

ci Speci�c heat capacity of ice 2.009 × 103 J kg−1 ◦C−1

�S Haline contraction coe�cient 7.86 × 10−4 unitless
�S Thermal expansion coe�cient 3.87 × 10−5 ◦C−1

C� Slope correction parameter 0.6 unitless
�i Ice density 9.00 × 102 kg/m3

�w Sea water density 1.00 × 103 kg/m3

Kmax Maximal di�usivity 5 × 10−4 m2/s
m Friction law exponent 3 unitless
n Glen’s exponent 2 unitless

ℎcalving Calving Thickness 100 m
a Accumulation Rate 0.3 m/yr
A Ice Rheology 6.6 × 10−24 s−1Pa−3
�2 Weertman Sliding Constant 7.624 × 106 Pa m−1/3 s1/3

Ta,warm Warm Ambient Ocean Temperature −1.0 ◦C
Ta,cold Cold Ambient Ocean Temperature −2.0 ◦C
Sa,warm Warm Ambient Ocean Salinity 34.6 PSU
Sa,warm Cold Ambient Ocean Salinity 34.6 PSU
Ti Ice Temperature 263.2 K

A.1. Compounds

Symbol Expression Value
c�1 L/c

C1/2d ΓTS
�T
�SSa 2.0 × 102

c�2 −�1�T /�S 2.8 × 10−3
c� c�2/c�1 1.4 × 10−5

B. Bresenham Algorithm

The algorithm works by trying to best follow the standard mathematical description of a line,
which is given by

y = ax,
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when can write this more explicitly in that the slope is determined by the gradient of going
from y0 → y1 over x0 → x1, which means that the previous statement can be written as

(x1 − x0)(y − y0) − (y1 − y0)(x − x0) = 0,

where a = dy/dx , dy = y1 − y0 and similarly dx = x1 − x0. Any error that then comes becomes
of that x and y in your discretisation are not exactly on the ideal line we can write as:

e = dx (y − y0) − dy (x − x0).

Now we now that the next step is an integer step in either x , y or on the diagonal. The errors
associated with each respective step are then given by:

exy = (y + 1 − y0)dx − (x + 1 − x0)dy = e + dx − dy,
ex = (y + 1 − y0)dx − (x − x0)dy = exy + dy,
ey = (y − y0)dx − (x + 1 − x0)dy = exy − dx.

We have now de�ned the change in error growth as interdependent variables, with the addi-
tional information that the �rst diagonal step produces an error of ex0+1,y0+1 = dx − dy we can
make the following line algorithm on a discretised grid:

1. Calculate ex0+1,y0+1

2. Determine exy

3. See whether exy + ex > 0, if so step in the x direction

4. See whether exy + ey < 0, if so step in the y direction

5. If point P (x1, y1) not reached, go to 2 and do the same loop for the new position

C. Mean Least Squares

The question we ask ourselves when doing a ‘Mean Least Squares’ (MLS) �t is how we can
minimise the function

min
f ∈∏d

m

∑
i
w (∣ x⃗i − x⃗c ∣) ∣ f (x⃗i − x⃗c) − fi ∣2,

where w is a weight function only dependent on the Euclidean distance of a point x⃗ to the
centre of the point where you want to apply the polynomial �t. Next f is a polynomial of
degree m with d total free dimensions.In our case we want a polynomial �t which has m = 2
and d = 2, which is given by the prototypical descriptor:

f (x, y) = c1 + c2x + c3y + c4x2 + c5xy + c6y2.

In general we can write f also as
f (x⃗) = b(x⃗)T c,
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where b(x⃗) = [b1(x⃗), ..., bk(x⃗)]
T is the polynomial basis vector and c are the polynomial co-

e�cients. For the polynomial surface we want to solve b(x, y) = [1, x, y, x2, xy, y2]
T and

c = [c1, c2, ..., c6]T .
We can obtain a general solution by solving the problem ∇cE = 0 for the error function

E = ∑i ∣ f (x⃗i) − fi ∣2 which decomposes to the problem where di =∣ x⃗i − x⃗c ∣:

)c1E = 0 ∑i 2b1w(di)(x⃗i) [b(x⃗i)T c − fi] = 0
)c2E = 0 ∑i 2b2w(di)(x⃗i) [b(x⃗i)T c − fi] = 0

⋮
)ckE = 0 ∑i 2b2w(di)(x⃗i) [b(x⃗i)T c − fi] = 0

This system of equations we can rewrite in matrix formation into:

∑
i
2w(di)b(xi) [b(x⃗i)T c − fi] = 2∑

i
[w(di)b(xi)b(x⃗i)T c − w(di)b(xi)fi] = 0⃗

which we can rearrange into the following form:

∑
i
w(di)b(xi)b(x⃗i)T c = ∑

i
w(di)b(xi)fi .

This is solved for c as

c =
[
∑
i
w(di)b(xi)b(x⃗i)T ]

−1

∑
i
w(di)b(xi)fi .

We next de�ned A = ∑i w(di)b(xi)b(x⃗i)T . Now, because we are on a regular grid, we can make
use of the fact that we only need to calculate A for a stencil of a given size and then the resulting
matrix should hold for all points except for at the boundaries.

Finally we need a weight function. We use an exponential function in the form of

w(di) = e−
kdi
R ,

where k is a smoothing factor and R is a distance factor. For k we use a value of 8 and for
the distance value we use the Euclidean distance from top left to bottom right cell corner
(R ≈ 11 km).

D. Open Data

In the interest of providing open data for others to look at, we have provided a link to an archive
containing the model runs we analysed inside this thesis. https://www.dropbox.com/
s/ydhfimuzxjxwrv7/thesis.runs.meltplume.03072020.tar.xz?dl=0
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