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1 Introduction

Distributions are subbundles of the tangent bundle of a manifold. Many problems in control theory
can be modelled using distributions. An easy example of this is a coin rolling on a table (adapted
from [3]).

The position of the coin can be described as (x, y, θ) ∈ R2 × S1. Here, the first two coordinates
(x, y) ∈ R2 indicate the position of the coin on the table, and the last coordinate θ ∈ S1 describes
the direction of the coin. We use S1, because we remember heads and tails. Intuitively, it is clear
that the motion of the coin is restricted. The change in position has to be proportional to the
direction, since the coin can only move in the direction it points to.

Concretely, if γ(t) = (x(t), y(t), θ(t)) is a path describing the movement of the coin, then the
change in position (x′(t), y′(t)) has to be proportional to the direction (cos(θ(t)), sin(θ(t))). This
means that γ has to satisfy any of the following equivalent conditions:

� det

(
x′(t) cos(θ(t))
y′(t) sin(θ(t))

)
= sin(θ(t))x′(t)− cos(θ(t))y′(t) = 0.

� γ∗α = 0 for the 1-form α = sin(θ)dx− cos(θ)dy.

� γ is tangent to ξ = ker(α) = 〈cos(θ)∂x + sin(θ)∂y, ∂θ〉 .

As we can see, ξ is a subbundle of the tangent bundle T (R2 × S1), so ξ is a distribution on
R2 × S1. Moreover,

[cos(θ)∂x + sin(θ)∂y, ∂θ] = sin(θ)∂x − cos(θ)∂y.

Especially,
〈cos(θ)∂x + sin(θ)∂y, ∂θ, [cos(θ)∂x + sin(θ)∂y, ∂θ]〉 = X(R2 × S1).

The distribution ξ on R2 × S1 is an example of a bracket-generating distribution, meaning that
the set of vector fields on the manifold can be spanned by bracket expressions of vector fields in
the framing of the distribution. Chow’s Theorem 3.13 tells us that if a manifold is endowed with a
bracket-generating distribution, we can connect any two points on the manifold by a path tangent
to the distribution ([8], [3]). In the case of the rolling coin, this means that the coin can roll to any
point on the table, as is intuitively clear.

When studying distributions, it is often useful to look at the vector fields tangent to the distri-
bution, instead of looking at the distribution directly. Vector fields provide more useful operations,
the Lie bracket chief among them. Bracket-generating is one of the properties of distributions which
is defined through Lie brackets.

In this thesis, we will also study filtered structures, which is a filtration of the tangent bundle
by distributions which behaves well with respect to the Lie bracket ([9]). A filtered structure
is of the form ξ1 ⊂ · · · ⊂ ξm = TM , where the ξi are distributions. Under some additional
regularity conditions (weak regularity), a bracket-generating distribution can generate a special
case of a filtered structure. In general, the lowest-order distribution ξ1 does not generate the other
distributions in the filtered structures. An example of a filtered structure on R2 × S1 is given by
ξ1 ⊂ ξ2 ⊂ ξ3 with

ξ1 = 〈cos(θ)∂x + sin(θ)∂y + ∂θ〉
ξ2 = 〈cos(θ)∂x + sin(θ)∂y, ∂θ〉
ξ3 = T (R2 × S1).
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In particular, ξ1 does not generate ξ2 or ξ3.
For a filtered structure, the growth of the filtration and the behaviour with respect to the

Lie bracket can be packed into one algebraic object, called the nilpotentisation. It is given by
ξ1 ⊕ ξ2/ξ1 ⊕ · · · ⊕ ξm/ξm−1. When restricted to a point, it is a Lie algebra.

Given a filtered structure, we can induce a local distance function by privileged coordinates,
which is a weighted system of coordinates centred at a point, where the weighting is induced by
the filtered structure ([9]). Through an open cover of the manifold, we can combine local distances
on the sets in the cover to create a global distance function on the manifold. The creation of this
global distance function is one of the original contributions of this thesis.

In Chapters 5 and 6, we will study the tangent cone of a manifold with a filtered structure. The
tangent cone appears when we ‘stretch’ the distances to infinity, while one point remains fixed ([8],
[6]). One would expect that by this zooming in process, we would lose all structure, but Mitchell’s
Theorem tells us otherwise. The main contribution of this thesis is a version of Mitchell’s Theorem
for filtered structures, Theorem 5.19. (The usual version of Mitchell’s Theorem, Theorem 5.18, is
stated in terms of weakly regular bracket-generating distributions. [8]) It tells us that the tangent
cone exists for a manifold with a filtered structure, and that it is equal to the simply-connected Lie
group with Lie algebra the nilpotentisation at the point.
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2 Distributions

In this chapter, we will study distributions and their properties, laying the foundation for the rest
of the thesis. Instead of looking at a distribution directly, we will often study the set of vector fields
tangent the distribution, which have more useful operations. The most important operation will be
the Lie bracket of vector fields.

For a distribution ξ, we can study the growth of the set Γ(ξ) of vector fields tangent to the
distribution with respect to the Lie bracket, giving us the associated Lie flag. The two extremes
in behaviour with respect to the Lie bracket are involutive distributions and bracket-generating
distributions. For the former, Γ(ξ) forms a Lie algebra subalgebra of the Lie algebra of vector fields
on the manifold. In the latter case, Γ(ξ) generates the set of all vector fields on the manifold.

Under certain regularity conditions, the associated Lie flag induces a notion of curvature, an
analogue of curvature for the Riemannian setting. As with Riemannian curvature, it measures how
far removed one is from the flat case. In the case of distributions, the flat case is an integrable (or
involutive) distribution. In the case of Riemannian metrics, it is the Euclidean case.

In Section 2.7 we will introduce the notion of filtered structures, which is a filtration of the
tangent bundle through distributions. This will be useful in later chapters, since it removes the
assumption of the lowest-order distribution generating the rest of the filtration.

This chapter is based on [3] and chapters 2 and 4 of [8] (for distributions), [9] (for filtered
structures), and [10] and chapter 3 of [4] (for the Campbell-Baker-Hausdorff formula). For more on
Pfaffian systems, see [12]. For more on the Campbell-Baker-Hausdorff Formula, see [4] and [10].

2.1 Distributions, an introduction

Let us restate the definition of a distribution.

Definition 2.1. Let M be a smooth manifold. A distribution is a subbundle ξ ⊂ TM . The rank
of ξ is the dimension of its fibres.

From the introduction we know that the model of the rolling coin on the table is an example of
a distribution. Another example is the following:

Example 2.2 (Martinet distribution). Consider the smooth manifold R3(x, y, z). Then

ξ = ker(dy − z2dx) =
〈
∂x + z2∂y, ∂z

〉
is a distribution, called the Martinet distribution. It has rank 2. 4

It is useful to look at the vector fields tangent to a given distribution, which have more useful
operations. These tangent vector fields can tell us more about the properties of a distribution.

Definition 2.3. Let (M, ξ) a manifold endowed with a distribution. Then Γ(ξ) ⊂ X(M) the set of
all smooth vector fields on M tangent to ξ.

As we will show shortly, the set Γ(ξ) is a C∞(M)-module, which is defined as follows:

Definition 2.4. A C∞(M)-module is a set V endowed with multiplication V × V → V, (v, w) 7→
v+w and scalar multiplication C∞(M)×V → V, (f, v) 7→ fv such that (V,+) is an abelian group,
and such that for all v, w ∈ V, f, g ∈ C∞(M) we have
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� f(gv) = (fg)v

� (f + g)v = fv + gv

� f(v + w) = fv + fw.

Proposition 2.5. Let ξ a distribution on M . Then Γ(ξ) is a C∞-module of vector fields on M .

Proof. Let X,Y ∈ Γ(ξ), f ∈ C∞(M). Using the usual addition of vector fields and multiplication
with smooth functions, we have (X + Y )p = Xp + Yp for all p ∈ M , and (fX)p = f(p)X(p). By
the properties of these operations, it is enough to prove that X + Y, fX ∈ Γ(ξ). Note that for all
(p, v) ∈ ξ, we have (X+Y )p(v) = Xp(v) +Yp(v) = 0, and (fX)p(v) = f(p)Xp(v) = 0, which proves
our assertion.

From this proposition, it follows that there is a natural map which sends distributions on M to
C∞-modules of vector fields on M given by ξ 7→ Γ(ξ).

Definition 2.6. Let Γ a C∞-module of vector fields on M . Let

Γ(p) = {Xp : X ∈ Γ}

the evaluation at p ∈ M . Then Γ is of pointwise constant rank if there is k ∈ N such that
dim(Γ(p)) = k for all p ∈M .

Because ξ is a subbundle of TM , the set Γ(ξ) is of pointwise constant rank. Moreover, if M is a
closed manifold, we can recover a distribution from a C∞(M)-module of vector fields of pointwise
constant rank by evaluating at every point.

2.2 The associated flag

One of the most useful operations for studying distributions is the Lie bracket of vector fields. Since
X(M) is a Lie algebra, we may look at the behaviour of Γ(ξ) with respect to the Lie bracket.

Bracket expressions will allow us to write iterated Lie brackets in a more convenient manner.

Definition 2.7. A bracket expression of length 1 is a string of the form ”a1”, which has
the formal variable a1 as input. A bracket expression of length i + j is a string of the form
”[A(a1, . . . , ai), B(ai+1, . . . , ai+j)]”, where A(−) and B(−) are bracket expressions of length i, j
respectively.

The following lemma tells us that we can reduce any bracket expression into a linear combination
of bracket expressions of a nicer form, namely [, B(−)]. This result will be very useful later.

Lemma 2.8. Let A(−) be a bracket expression of length i whose entries are vector fields. Then
we can write it as linear combination of bracket expressions of the form [, B(−)], with B(−) a
bracket-expression of length at most i− 1.

Proof. If i = 0, 1, 2 the statement is trivial.
For i = 3, we have two options. Either A(−) is of the form [, B(−)] for B(−) a bracket expression
of length 2, or A(−) is of the form [[, ], [, ]]. Using the Jacobi-identity, we have:

[[X,Y ], [Z,W ]] = [Z, [W, [X,Y ]]] + [W, [Z, [X,Y ]]].

For i ≥ 4, the result follows from similar computations, namely through repeatedly applying the
Jacobi identity until we have the desired result.
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By keeping track of the lengths of bracket expressions, the Lie bracket gives rise to the associated
Lie flag. This will be a useful object for describing infinitesimal properties of the distribution.

Definition 2.9. The associated Lie flag of a distribution ξ is defined as a sequence of C∞(M)-
modules

Γ(1)(ξ) ⊂ Γ(2)(ξ) ⊂ Γ(3)(ξ) ⊂ · · · ⊂ X(M)

where
Γ(i)(ξ) = 〈Ai(X1, . . . , Xi) : X1, . . . , Xi ∈ Γ(ξ)〉C∞(M)

with Ai(−) ranging over all bracket expressions of length at most i. Here, the brackets indicate the
span over C∞(M).

Note that Γ(1)(ξ) = Γ(ξ).
We return to our previous example of the Martinet distribution. For this distribution, it is easy

to calculate the associated Lie flag.

Example 2.10 (Martinet distribution). Consider again the Martinet distribution on R3(x, y, z),
which is given by

ξ = ker(dy − z2dx) =
〈
∂x + z2∂y, ∂z

〉
.

We have:

[∂z, ∂x + z2∂y] = 2z∂y

[∂z, [∂z, ∂x + z2∂y]] = 2∂y.

It follows that Γ(2)(ξ) has rank 3 everywhere, except at the hypersurface {z = 0} where it has rank
2, so Γ(2)(ξ) is not a distribution. Moreover, Γ(3)(ξ) = X(M). 4

As we see in the example above, Γ(i)(ξ) may not correspond to a distribution. This motivates
us to define the following:

Definition 2.11. A distribution ξ is weakly regular if for all i, Γ(i)(ξ) is the C∞(M)-submodule
of vector fields which is tangent to a distribution, which we will call ξ(i).

For a general distribution ξ, we have by definition that Γ(1)(ξ) ⊂ Γ(2)(ξ) ⊂ · · · ⊂ X(M). It
is possible that the subsets remain strict, and that the sequence Γ(1)(ξ) ⊂ Γ(2)(ξ) ⊂ . . . keeps
growing. On the other hand, it is also possible that the sequence ‘stops’ at some point, i.e. we have

Γ(1)(ξ) ⊂ Γ(2)(ξ) ⊂ · · · ⊂ Γ(m)(ξ) = Γ(m+1)(ξ) = · · · ⊂ X(M).

This is the case when ξ stabilises.

Definition 2.12. Let (M, ξ) a manifold endowed with a distribution. Then ξ stabilises if there
exists m ∈ N such that Γ(i)(ξ) = Γ(m)(ξ) for all i ≥ m.

There is a link between a distribution being stabilising and being weakly regular, as we see in
the following lemma.

Lemma 2.13. Let (M, ξ) a manifold endowed with a distribution. If ξ is weakly regular, then it
stabilises.
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Proof. Suppose that the Lie flag does not stabilise, i.e. for every m there is i > m such that
Γ(i)(ξ) 6= Γ(m)(ξ). By definition, Γ(m)(ξ) ⊂ Γ(i)(ξ), so it follows that rank(Γ(m)(ξ)) < rank(Γ(i)(ξ)).
This means that for every k ∈ N there is i such that rank(Γ(i)(ξ)) ≥ k. However, Γ(i)(ξ) is the
C∞(M)-module tangent to the distribution ξ(i), and therefore ξ(i) ⊂ TM , so rank(Γ(i)(ξ)) =
rank(ξ(i)) ≤ dim(M). This leads to a contradiction. So, there is m ∈ N such that Γ(i)(ξ) = Γ(m)(ξ)
for all i ≥ m.

Having established this link, we can introduce the notion of a growth vector. As the name
suggests, it is a vector which measures how a weakly regular distribution grows with respect to its
associated Lie flag.

Definition 2.14. The growth vector of a weakly regular distribution ξ is the vector

(rank(ξ(1)), rank(ξ(2)), . . . , rank(ξ(m)))

where m is the step in which the associated rank stabilises.

2.3 Differential systems

Even when a distribution ξ is not weakly regular, not all is lost. The modules Γ(i)(ξ) in the
associated Lie flag are still reasonably well-behaved. For example:

Lemma 2.15. The Γ(i)(ξ) are locally finitely generated as C∞(M)-modules.

Proof. We will prove the statement by induction on i.
As a bundle, ξ is trivial over any ball U ⊂ M . So there exists a local framing {X1, . . . , Xk} ⊂

X(U). Any vector field tangent to ξ can then be expressed as X =
∑k
j=1 fjXj for some smooth

functions fi : U → R. Hence, Γ(1)(ξ) is locally finitely generated.
Next, suppose that Γ(i−1)(ξ) is finitely generated over U , and let {Y1, . . . , Ym} ⊂ X(U) a local

framing for Γ(i−1)(ξ). By lemma 2.8, any bracket expression of length i can be written as a linear
combination of bracket expressions of the form [, B(−)] with B(−) a bracket expression of length
i− 1. So, X ∈ Γ(i)(ξ) can be written as

X =

m∑
j=1

k∑
l=1

fjYj + gjl[Xl, Yj ]

for some smooth functions fj , gjl : U → R. Hence, Γ(i)(ξ) is locally finitely generated.

This motivates the following definition:

Definition 2.16. A differential system is a locally finitely generated C∞(M)-module of vector
fields.

2.4 For completeness: Pfaffian systems and annihilators

So far, we have looked at distributions and the tangent bundle. But we can define a very similar
construction for the cotangent bundle, namely Pfaffian systems. Apart from being analogous to
distributions, there is a direct correspondence between distributions and Pfaffian systems. But first,
let us give a definition of a Pfaffian system.
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Definition 2.17. A Pfaffian system I on a manifold M is a subbundle of T ∗M .

As we have alluded to before, Pfaffian systems arise naturally from distributions through the
annihilator of a distribution.

Example 2.18. Let ξ be a distribution on a smooth manifold M . The annihilator of ξ is the set

ξ⊥ = {ω ∈ T ∗M : ω(v) = 0, ∀v ∈ ξ}.

Especially, it is a Pfaffian system. 4

Let I be a Pfaffian system. Then we denote by Γ(I) its space of sections, which is a C∞(M)-
submodule of Ω1(M). On this space we can define similar (and dual) notions to Γ(ξ), the space of
sections of a distribution ξ.

Definition 2.19. Given a Pfaffian system I, its dual flag is given by

Γ(1)(I) ⊃ Γ(2)(I) ⊃ . . .

where Γ(1)(I) = Γ(I), and we define inductively

Γ(i)(I) = {α ∈ Γ(i−1)(I) : dα(ω,−) ∈ Γ(i−1)(I), ∀ω ∈ I⊥}.

Analogous to the growth vector of a weakly regular distribution, we can define the dual growth
vector.

Definition 2.20. Given a Pfaffian system I, its dual growth vector is the vector

(corank(Γ(1)(I)), corank(Γ(2)(I)), . . . , corank(Γ(m)(I)))

where m is the step in which the dual flag stabilises.

Note that the dual growth vector may change with the point.
The following lemma shows that the annihilator provides a duality between distributions and

Pfaffian systems.

Lemma 2.21. If ξ is a weakly regular distribution, then (Γ(i)(ξ))⊥ = Γ(i)(ξ⊥).

Proof. We prove the statement by induction on i. For i = 1, we have

(Γ(1)(ξ))⊥ = Γ(ξ)⊥ = Γ(ξ⊥) = Γ(1)(ξ⊥).

Now suppose the statement is true for i − 1. We then have α ∈ Γ(i)(ξ⊥) if and only if dα(v,−) ∈
Γ(i−1)(ξ⊥) for all v ∈ Γ(ξ) by definition. So, if and only if dα(v, w) = 0 for all w ∈ Γ(i−1)(ξ), because
(Γ(i−1)(ξ))⊥ = Γ(i−1)(ξ⊥) by the induction hypothesis. By Cartan’s magic formula, we therefore
have 0 = dα(v, w) = α([v, w]). Because Γ(i)(ξ) is spanned by all elements of the form [v, w] for
v ∈ Γ(ξ) = Γ(1)(ξ) and w ∈ Γ(i−1)(ξ), it follows that α ∈ Γ(i)(ξ⊥) if and only if α ∈ (Γ(i)(ξ))⊥.

If ξ is weakly regular, the dual growth vector of ξ⊥ is equal to the growth vector of ξ. Generally,
the two might differ. This happens for example in the Martinet distribution.
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Example 2.22 (The Martinet distribution). As we have seen before, the Martinet distribution is
the distribution

ξ = ker(dy − z2dx) =
〈
∂x + z2∂y, ∂z

〉
on the manifold R3(x, y, z). Its annihilator is

ξ⊥ =
〈
α = dy − z2dx

〉
.

We will show that if d(gα)(v, w) = 0 for all v, w ∈ Γ(ξ), then g = 0.
Because ξ is bracket-generating, we have that g must be zero in {z 6= 0}. By continuity, we then
have that g must also be zero in {z = 0}. Hence, Γ(1)(ξ⊥) = 0. On the other hand, we have

[∂z, ∂x + z2∂y] = 2z∂y.

Therefore, Γ(1)(ξ⊥) 6= (Γ(1)(ξ))⊥. 4

2.5 Some relevant cases

Both the associated Lie flag and the growth vector are differential invariants of a distribution. The
two extreme cases are given by involutive distributions and bracket-generating distributions. For
the former, the set of all smooth vector fields tangent to the distribution forms a Lie algebra. In
the latter, the smooth vector fields tangent to the distribution generate the set of all vector fields
on the manifold.

Definition 2.23. A distribution ξ is involutive if Γ(i)(ξ) = Γ(1)(ξ) for all i.

Equivalently, a distribution is involutive if Γ(ξ) is a Lie subalgebra of X(M).

Definition 2.24. Let ξ be a distribution, with rank(ξ) = k. Then ξ is integrable if there exist
local coordinates (x1, . . . , xk, xk+1, . . . , xn), where ξ is given as the kernel of dxk+1, . . . , dxn.

Integrable distributions are foliations.

Definition 2.25. A foliation of dimension k on a manifold M is a partition F of M into disjoint,
connected, immersed submanifolds of dimension k such that for every point p ∈M there is a chart
(U, φ) with p ∈ U and φ(U) a k-dimensional cube in Rn. For every N ∈ F , we have either N∩U = ∅,
or N ∩U is a countable union of k-dimensional slices of the form xk+1 = ck+1, . . . , xn = cn. Lastly,
a submanifold N ∈ F is called a leaf.

Example 2.26. The collection of tangent spaces to the leaves of a foliation forms an involutive
distribution on M . 4

The following theorem is an important and useful result (which we will not prove here).

Theorem 2.27 (Frobenius). A distribution is involutive if and only if it is integrable.

For a proof of Frobenius’s Theorem, see [5].
It is immediate that an integrable distribution is involutive. The other direction is harder to

prove.
On the other end of the spectrum of distributions are the bracket-generating distributions. In

that case, X(M) is completely generated by bracket-expressions of vector fields in Γ(ξ).

Definition 2.28. A distribution ξ is bracket-generating if there is an integer m such that
Γ(m)(ξ) = X(M).

Thus, if ξ is bracket-generating, Γ(ξ) generates X(M) as an algebra.
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2.6 Curvatures

As we have seen before, the associated Lie flag is comprised of bracket-expressions of elements in
Γ(ξ), and thus measures the non-integrability and weak regularity of a distribution ξ. If ξ is weakly
regular, the Lie bracket induces a well-defined morphism

Γ(i)(ξ)× Γ(j)(ξ)→ Γ(i+j)(ξ).

Before we can define the morphism, we have to check that the Lie bracket is well-behaved with
respect to the grading.

Lemma 2.29. Let X ∈ Γ(i)(ξ), Y ∈ Γ(j)(ξ). Then [X,Y ] ∈ Γ(i+j)(ξ).

Proof. The Lie bracket is bilinear, so we may assume without loss of generality thatX = A(X1, . . . , Xi)
and Y = B(Y1, . . . , Yj). Here, A(−), B(−) are bracket expressions of length at most i, j respect-
ively, and X1, . . . , Xi, Y1, . . . , Yj ∈ Γ(ξ). Then [A(−), B(−)] is a bracket expression of length at
most i+ j, and therefore

[X,Y ] = [A(X1, . . . , Xi), B(Y1, . . . , Yj)] ∈ Γ(i+j)(ξ).

Since the Lie bracket is a derivation, we get the following result:

Lemma 2.30. The Lie bracket yields a well-defined bundle morphism

Ω(i,j)(ξ) :
(
ξ(i)/ξ(i−1)

)
×
(
ξ(j)/ξ(j−1)

)
→ ξ(i+j)/ξ(i+j−1).

It is called the (i, j)-curvature.

Proof. It suffices to show that the map

Γ(i)(ξ)× Γ(j)(ξ)→ Γ(i+j)(ξ)→ Γ(i+j)(ξ)/Γ(i+j−1)(ξ)

is C∞(M)-linear. Here, the second map is the quotient.
Let X ∈ Γ(i)(ξ), Y ∈ Γ(j)(ξ), and f a smooth map. We have

[X, fY ] = df(X)Y + f [X,Y ].

Since df(X)Y ∈ Γ(j)(ξ) ⊂ Γ(i+j)(ξ), we have

[X, fY ] ≡ f [X,Y ] mod Γ(i+j−1)(ξ).

By a similar computation, [fX, Y ] ≡ f [X,Y ] mod Γ(i+j−1)(ξ). Hence, the map above is linear.

We know from Lemma 2.8 that any bracket expression A(−) of length i can be reduced to a
linear combination of bracket expressions of the form [, B(−)] where B(−) is a bracket expression
of length i− 1. This behaviour of bracket expressions translates to curvatures in the following way:

Lemma 2.31. All curvatures are determined by the ones of the form

Ω(1,i)(ξ) : ξ(1) ×
(
ξ(i)/ξ(i−1)

)
→ ξ(i+1)/ξ(i).

10



Proof. By Lemma 2.8, we can write any bracket expression A(−) of length i as a linear combination
of bracket expressions of the form [, B(−)], where B(−) is a bracket expression of length i− 1.

The assumption of weak regularity is necessary for the curvatures to be well-defined. However,
the rank of the curvature may vary with the point.

Example 2.32. Consider the manifold R5(x1, x2, y1, y2, z) endowed with a distribution ξ given by

ξ = ker(dz − y1dx1 − f(y2)dx2) = 〈∂y1 , ∂y2 , ∂x1
+ y1∂z, ∂x2

+ f(y2)∂z〉 ,

with f : R → R such that f is identically zero on the region {y2 ≥ 0}, and strictly increasing
otherwise. The only non-trivial Lie brackets are:

[∂y1 , ∂x1
+ y1∂z] = ∂z

[∂y2 , ∂x2
+ f(y2)∂z] = f ′(y2)∂z.

We see that ξ is bracket-generating and weakly regular. In particular, Ω(1,1) has maximal rank
(namely, 4) if y2 < 0, but rank 2 if y2 ≥ 0. 4

2.7 Filtered structures

As we have seen, a weakly regular, bracket-generating distribution induces a filtration of the tangent
bundle through a sequence of distributions.

In Chapter 5 of the thesis, we will use filtered structures for weighted analysis. In Chapter 6, we
will state and prove a version of Mitchell’s Theorem for filtered structures, the main contribution
of this thesis.

Definition 2.33. Let M be a manifold. A filtered structure on M is a sequence of distributions
ξi on M with ξi ( ξi+1 for i = 1, . . . ,m− 1 such that

ξ1 ⊂ ξ2 ⊂ . . . ξm = TM

and [Γ(ξi),Γ(ξj)] ⊂ Γ(ξi+j).

Weakly regular bracket-generating distributions generate a special case of a filtered structure,
in which the lowest-order distribution generates the other distributions in the filtered structure.
Generally, this is not the case.

Example 2.34. Let (M, ξ) be a manifold endowed with a weakly regular, bracket-generating
distribution. Let ξi be the distribution corresponding to Γ(i)(ξ), and let m be the step for which
the Lie flag stabilises. Then

ξ = ξ1 ⊂ · · · ⊂ ξm = TM

is a filtered structure on M . 4

We can think of vector fields as differential operators of order 1 acting on functions. In that
manner, we can compose them to yield higher-order differential operators. When we use filtered
structures, however, we want to regard certain vector fields as higher order operators. In some
analytic settings, this will allow us to define calculi of differential operators in which the notion of
ellipticity is different from the usual one.

11



Definition 2.35. Let X ∈ X(M). Then X has order −i if X ∈ Γ(ξi), but X /∈ Γ(ξi+1). We write:
ord(X) = −i.

Let rank(ξi) = ni. In particular nm = n, because ξm = TM . Moreover, let X1, . . . , Xn be a
framing of TM such that X1, . . . , Xni is a framing of ξi. Then by definition, we have

ord(X1) = · · · = ord(Xn1
) = −1

ord(Xn1+1) = · · · = ord(Xn2
) = −2

...

ord(Xnm−1+1) = · · · = ord(Xn) = −m.

We write −ai = ord(Xi).

Remark 2.36. If ξ1 ⊂ · · · ⊂ ξm is generated by a weakly regular bracket-generating distribution
ξ, then the order of X = A(X1, . . . , Xn1

) is related to the length of A. Indeed, ord(X) = −a if
and only if the bracket-expression A has length a and cannot be reduced to a linear combination
of bracket-expressions of length strictly smaller than a.

Normally, a Lie bracket is a differential operator of order 1, because it is a vector field. Even
though it is a sum of operators of order 2, cancellations take place. By definition, a bracket
expression is an iterated Lie bracket. 4

Similar to weakly regular distributions, we can also define the curvature for filtered structures.

Lemma 2.37. The Lie bracket yields a well-defined bundle morphism

Ω(i,j) : (ξi/ξi−1)× (ξj/ξj−1)→ ξi+j/ξi+j−1

called the (i, j)-curvature.

Proof. As in the proof of Lemma 2.30, it suffices to prove that the map

Γ(ξi)× Γ(ξj)→ Γ(ξi+j)→ Γ(ξi+j)/Γ(ξi+j−1)

is C∞-linear, where the second map is just the quotient map. So, let X ∈ Γ(ξi), Y ∈ Γ(ξj) and let
f ∈ C∞(M). We have

[X, fY ] = df(X)Y + f [X,Y ]

and df(X)Y ∈ Γ(ξi) ⊂ Γ(ξi+j), and therefore

[X, fY ] ≡ f [X,Y ] mod Γ(ξi+j−1).

By a similar argument, we have [fX, Y ] ≡ f [X,Y ] mod Γ(ξi+j−1). Hence, the map is C∞(M)-
linear.

For a distribution ξ we have that Γ(ξ) generates all Γ(i)(ξ), and therefore all curvatures are
determined by ones of the form Ω(1,i)(ξ), as we have seen in Lemma 2.31. However, in the case of a
filtered structure, Γ(ξ1) in general does not generate all Γ(ξi), and therefore Ω(1,i) do not necessarily
generate all curvatures.
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2.8 Graded Lie algebras

We want to put curvatures together into an algebraic object which is easier to deal with. This will
be the nilpotentisation of a distribution. First, we need to introduce the notion of a graded Lie
algebra.

Definition 2.38. A graded Lie algebra is a Lie algebra (V, [, ]) such that

� V is a graded vector space with decomposition

V = ⊕mi=1Vi ⊕ V∞

for some non-negative integer m.

� The Lie bracket is compatible with the grading: any bracket expression involving V∞ is zero,
and [Vi, Vj ] ⊂ Vi+j .

A Lie algebra is nilpotent if any sufficiently long bracket expression is zero. A graded Lie algebra
is a special case of a nilpotent Lie algebra. More explicitly, we have:

Definition 2.39. A Lie algebra (V, [, ]) is nilpotent if there is m ∈ N such that

A(v1, . . . , vi) = 0

for all v1, . . . , vi ∈ V , and A(−) a bracket expression of length i > m.

Lemma 2.40. A graded Lie algebra (V, [, ]) is nilpotent.

Proof. We prove by induction. By definition, we have [Vi, Vj ] ⊂ Vi+j . Now, suppose that for B(−)
a bracket expression of length i− 1, we have

B(Vj1 , . . . , Vji−1
) ⊂ Vj1+···+ji−1

.

Let A(−) a bracket expression of length i. Without loss of generality, we may assume that A(−) =
[, B(−)], where B(−) is a bracket expression of length i − 1. Indeed, by a similar argument as
Lemma 2.8, any bracket expression A(−) of length i is a linear combination of bracket expressions
of the form [, B(−)], where B(−) is a bracket expression of length i− 1.

We then have

A(Vj1 , . . . , Vji) = [Vj1 , B(Vj2 , . . . , Vji)]

⊂ [Vj1 , Vj2...ji ]

⊂ Vj1+···+ji .

Especially, if A(−) is a bracket-expression of length i > m, we have

A(Vj1 , . . . , Vji) = 0.

Hence, V is nilpotent.
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Remark 2.41. We can also build a graded Lie algebra with negative grading. In that case, it is a
Lie algebra (V, [, ]) such that

V = ⊕m2
i=−m1

Vi ⊕ V∞
for some non-negative integers m1, m2. The Lie bracket then is compatible as before, i.e. any
bracket expression involving V∞ is zero, and [Vi, Vj ] ⊂ Vi+j . However, it is not necessarily nilpotent.
Since v ∈ V can have negative or positive grading, we can keep increasing or decreasing the grade
of a bracket expression so that we never land in V∞. 4

We will classify all Lie algebras of dimensions 2 and 3.

Example 2.42 (Heisenberg algebra). The first non-trivial example of a graded Lie algebra appears
in dim(V ) = 3, which is the Heisenberg algebra. It is defined by the relation [e1, e2] = e3. We
can choose many gradings, all of which are of the form:

gr(e1) = i, gr(e2) = j, gr(e3) = i+ j.

4

Proposition 2.43. Let (V, [, ]) a graded Lie algebra, with dim(V ) = 3. Then V is either trivial or
isomorphic to the Heisenberg algebra.

Proof. If (V, [, ]) has no non-trivial bracket expressions, then it is trivial.
Suppose (V, [, ]) has one non-trivial bracket expression.

Claim 1. By possibly changing the basis, we have [e1, e2] = e3.

Proof. Suppose [e1, e2] is not linearly independent from e1, e2. Then [e1, e2] = λe1 + µe2 for some
λ, µ ∈ K (where K = R or C depending on whether V is a real or complex vector space). We have

[e1, λe1 + µe2] = µ[e1, e2]

and similarly
[e2, e3] = −λ[e1, e2].

However, we have by the Jacobi identity that

[e1, [e1, e2]] = [e1, [e2, e1]]− [e2, [e1, e1]]

= [−e1, [e1, e2]]

= −[e1, e3]

and therefore [e1, [e1, e2]] = 0. By a similar calculation, it follows that [e2, [e1, e2]] = 0. It follows
that µ = λ = 0. However, this contradicts the assumption that [e1, e2] is non-trivial. Hence, by
possibly changing the basis we have [e1, e2] = e3.

So, V is isomorphic to the Heisenberg algebra.
Now, suppose that (V, [, ]) has two or more non-trivial bracket expressions. By possibly changing

the basis, we have [e1, e2] = e3 and [e2, e3] 6= 0. If gr(e1) = i and gr(e2) = j, then gr(e3) = i+ j by
the first bracket expression. However, then

gr([e2, e3]) = gr(e2) + gr(e3) = i+ 2j > i+ j.

This contradicts the grading. So, (V, [, ]) is either trivial or isomorphic to the Heisenberg algebra.
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Example 2.44 (Engel algebra). In dim(V ) = 4 there is a non-trivial graded Lie algebra defined
by [e1, e2] = e3, [e1, e3] = e4, called the Engel algebra. Again, there are many possible gradings,
all of which are of the form:

gr(e1) = i, gr(e2) = j, gr(e3) = i+ j, gr(e4) = 2i+ j.

4

Proposition 2.45. Let (V, [, ]) a graded Lie algebra with dim(V ) = 4. Then V is either trivial,
isomorphic to the Engel algebra, or can be decomposed into the Heisenberg algebra and a trivial
part.

Proof. If (V, [, ]) has no non-trivial bracket expressions, then it is trivial.
Suppose (V, [, ]) has one non-trivial bracket expression. Then by possibly changing the basis, we

have [e1, e2] = e3. So, V can be decomposed into the Heisenberg algebra and a trivial part.
Suppose (V, [, ]) has two non-trivial bracket expressions. By possibly changing the basis, we

have [e1, e2] = e3 and [e1, e3] = e4. So V is isomorphic to the Engel algebra.
Now suppose that (V, [, ]) has three or more non-trivial bracket expressions. Then by possibly

changing the basis, we have [e1, e2] = e3 and [e1, e3] = e4, and some other non-trivial bracket
expression. By the linearity of the Lie bracket, the last non-trivial bracket expression is either [e2, e3]
or [ek, e4] for k ∈ {1, 2, 3}. If gr(e1) = i and gr(e2) = j, then gr(e3) = i+ j and gr(e4) = 2i+ j. If
[ek, e4] 6= 0 for k ∈ {1, 2, 3}, then

gr([ek, e4]) = gr(ek) + gr(e4) > 2i+ j

which contradicts the grading. If [e2, e3] 6= 0, then gr([e2, e3]) = i + 2j. It follows that i = j = 1,
and [e2, e3] = λe4 for some λ ∈ R \ {0}. Then we have

0 = λ[e1, e3]− [e2, e3] = [λe1 − e2, e3].

In that case, we should change the basis to e1, λe1 − e2, e3, e4. In that case, (V, [, ]) is isomorphic
to the Heisenberg algebra.

So, (V, [, ]) is either trivial, isomorphic to the Engel algebra, or it can be decomposed into the
Heisenberg algebra and a trivial part.

We will now take the notion of a graded Lie algebra to a bundle-theoretical framework.

Definition 2.46. A weak bundle of graded Lie algebras is a pair (L→M, [, ]) satisfying

� L→M is a graded vector bundle, i.e. L = ⊕mi=1Li ⊕ L∞.

� The bracket [, ] is an antisymmetric tensor from L to L such that it turns the fibres of L into
graded Lie algebras. Moreover, the pairing [, ] depends smoothly on the base point in M .

If (L → M, [, ]) is locally trivial (i.e. modelled on a single Lie algebra), it is called a bundle of
graded Lie algebras.
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2.9 Nilpotentisation

Given a distribution on a manifold, we can pack the information given by the growth vector and
the curvatures into a single algebraic object, as we alluded to before. This is the nilpotentisation.
We can do the same for filtered structures.

Definition 2.47. Given (M, ξ) a manifold with a weakly regular distribution. Let m ∈ N the
minimal integer such that Γ(m)(ξ) = Γ(i)(ξ) for all i ≥ m. The nilpotentisation associated to ξ is
the weak bundle of graded Lie algebras given by

L(ξ) = ⊕mi=1Li(ξ)⊕ L∞(ξ)

where L1(ξ) = ξ(1), Li(ξ) = ξ(i)/ξ(i−1), and L∞(ξ) = TM/ξ(m). Here, the Lie bracket is the
curvature.

Similarly, given M a manifold endowed with a filtered structure ξ1 ⊂ · · · ⊂ ξm. The nilpo-
tentisation associated to the filtered structure is the weak bundle of graded Lie algebras given
by

L(ξ1 ⊂ · · · ⊂ ξm) = ⊕mi=1Li(ξ1 · · · ⊂ ξm),

where L1(ξ1 ⊂ · · · ⊂ ξm) = ξ1 and Li(ξ1 ⊂ · · · ⊂ ξm) = ξi/ξi−1.

In general, the nilpotentisation is just a weak bundle of graded Lie algebras.

Definition 2.48. A distribution ξ is regular if the nilpotentisation L(ξ) is a bundle of graded Lie
algebras.

Similarly, a filtered structure ξ1 ⊂ · · · ⊂ ξm is regular if L(ξ1 ⊂ · · · ⊂ ξm) is a bundle of graded
Lie algebras.

2.10 Lie group multiplication: the Campbell-Baker-Hausdorff formula

As we have seen, the nilotentisation is a weak bundle of graded Lie algebras. In particular, this
means that the restriction of the nilpotentisation to a point is a graded Lie algebra. Lie’s Third
Theorem (see [2]) there exists a corresponding simply-connected Lie group whose Lie algebra is
the nilpotentisation at a point. More generally, Lie’s Third Theorem states that for any finite-
dimensional real Lie algebra, there exists a corresponding simply-connected Lie group.

More concretely, let g a Lie algebra. Then the elements of the corresponding Lie group G are
given by exp(X) for X ∈ g. Given X, Y ∈ g we want to find Z ∈ g such that

exp(X) exp(Y ) = exp(Z)

in order to define the group multiplication. The Campbell-Baker-Hausdoff Formula then gives an
explicit solution for Z = log(exp(X) exp(Y )).

Theorem 2.49 (Campbell-Baker-Hausdorff formula). The solution Z for exp(X) exp(Y ) = exp(Z)
can be written as a formal series of bracket expressions of X and Y . The first few terms of the
series are

log(exp(X) exp(Y )) = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + . . .
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See [4] and [10] for an explicit formula of the series, and a proof.
In the case of a nilpotent Lie algebra g, this series is always finite. Therefore, the series converges

over the whole Lie algebra. Hence, the space underlying the Lie group is Euclidean. This means
that, as a space, the Lie group is equal to the Lie algebra, which is a Euclidean space.

For ξ a weakly regular bracket-generating distribution, the Lie group with Lie algebra L(ξ)(p)
is a Carnot group.

Definition 2.50. A Carnot group is a Lie group with a graded Lie algebra of the form g = ⊕mi=1Vi,
where every Vi is spanned by bracket expressions of elements of V1.
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3 Some control theory: the endpoint map and Chow’s The-
orem

In this chapter we prove Chow’s Theorem 3.13, which tells us that for a manifold with a bracket-
generating distribution, we can connect any two points on the manifold by a path tangent to the
distribution. We have seen this before in the rolling coin example in the Introduction (Chapter 1):
the coin could reach any point on the table because the distribution modelling the coin’s movement
was bracket-generating.

We will prove Chow’s Theorem using an endpoint map, which is defined in Section 3.2. An
endpoint map sends an L2-function to a point in M . The endpoint map is a control problem, in
which the L2-function dictates the path. It returns the endpoint of the path. For Chow’s Theorem,
we will use a specific version of the endpoint map using the flows of vector fields in the framing of
the distribution and commutators of those flows. These paths are all tangent to the distribution,
and will approximate the flows of bracket expressions of those vector fields. So, to prove Chow we
will create an explicit path.

In section 3.4, we will define the Carnot-Carathéodory distance. Similar to a Riemannian
distance, it measures the distance between two points on a manifold by shortest paths. In the
Carnot-Carathéodory distance, however, we restrict to paths tangent to the distribution. Hence, it
measures the distance between two points through geodesics which are tangent to the distribution.
It is not a Riemannian distance, although it does arise from one. If two points cannot be connected
by a path tangent to the distribution, their Carnot-Carathéodory distance is infinite. By Chow’s
Theorem, we can connect any two points by a path tangent to the distribution, as long as the
distribution is bracket-generating. Therefore, the Carnot-Carathéodory distance between any two
points is always finite for a bracket-generating distribution.

This chapter is based on [8] (chapter 2), [1] and [3]. For more on Carnot-Carathéodory metrics,
see [7].

3.1 Flows

We will first discuss the relationship between the flow of a bracket expression of vector fields and
the commutator of the corresponding flows.

Definition 3.1. Let X be a vector field. Then we will write φtX for the flow of X.

Let us start with the easiest case of a bracket expression, namely one of length 2. For two vector

fields X, Y we can approximate the flow of [X,Y ] by the commutator of flows
[
φ
√
t

X , φ
√
t

Y

]
.

Proposition 3.2. Let X, Y ∈ X(M) be two vector fields. Then φt[X,Y ] = [φ
√
t

X , φ
√
t

Y ] + o(t).

Proof. We will show that φt
2

[X,Y ] = [φtX , φ
t
Y ] + o(t2), using local coordinates. Let p ∈ M . W first

consider the Taylor expansion of φt
2

[X,Y ](p) around t = 0, which is

φt
2

[X,Y ](p) = φt=0
[X,Y ](p) + t2[X,Y ]p + o(t2).
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On the other hand, we have by partial differentiation that

d

dt

∣∣∣∣
t=0

[φtX , φ
s
Y ](p) =

d

dt

∣∣∣∣
t=0

φtX ◦ φsY ◦ φ−tX ◦ φ
−s
Y (p)

= Xp − φsY ◦Xp ◦ φ−sY (p) + o(t2).

Differentiating again, we get

d

ds

∣∣∣∣
s=0

Xp − φsY ◦Xp ◦ φ−sY (p) + o(t2) = [X,Y ]p + o(s2).

Hence, we have

[φtX , φ
t
Y ](p) =

[
φt=0
X , φt=0

Y

]
(p) + t2[X,Y ]p + o(t2)

= φt=0
[X,Y ](p) + t2[X,Y ]p + o(t2).

Hence, φt
2

[X,Y ] = [φtX , φ
t
Y ] + o(t2), and therefore φt[X,Y ] =

[
φ
√
t

X , φ
√
t

Y

]
+ o(t).

We can generalise this result for bracket expressions of arbitrary length.

Proposition 3.3. Let A(−) a bracket-expression of length i, and let X1, . . . , Xi ∈ X(M) be vector
fields on M . Then we have

φtA(X1,...,Xi)
= A

(
φt

1/i

X1
, . . . , φt

1/i

Xi

)
+ o(t).

Proof. We will prove the statement by induction. For i = 1, the result is trivial. In Proposition
3.2, we proved the case for i = 2. Now, suppose that the result holds i − 1. By Lemma 2.8,
we can write A(−) as a linear combination of bracket-expressions of the form [, B(−)] for B(−)
a bracket-expression of length i − 1. Without loss of generality, assume that A(X1, . . . , Xi) =
[X1, B(X2, . . . , Xi)] for some bracket-expression B(−) of length i−1. By the induction hypothesis,
we have

φtB(X2,...,Xi)
= B

(
φt

1/(i−1)

X2
, . . . , φt

1/(i−1)

Xi

)
+ o(t).

Therefore, we have

A(φtX1
, . . . , φtXi) =

[
φtX1

, B
(
φtX2

, . . . , φtXi
)]

=
[
φtX1

, φt
i

B(X2,...,Xi)
+ o(ti−1)

]
=
[
φtX1

, φt
i

B(X2,...,Xi)

]
+ o(ti).

Let p ∈M . As in the previous proposition, we will use the Taylor expansion at t = 0. We have[
φtX1

, φs
i−1

B(X2,...,Xi)

]
(p) =

d

dt

∣∣∣∣
t=0

φtX1
◦ φs

i−1

B(X2,...,Xi)
◦ φ−tX1

◦ φ−s
i−1

B(X2,...,Xi)
(p)

= (X1)p − φs
i−1

B(X2,...,Xi)
◦ (X1)p ◦ φ−s

i−1

B(X2,...,Xi)
(p) + o(t2).
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Differentiating again, we get

d

ds

∣∣∣∣
s=0

(X1)p − φs
i−1

B(X2,...,Xi)
◦ (X1)p ◦ φ−s

i−1

B(X2,...,Xi)
(p) + o(t2)

= [X1, B(X2, . . . , Xi)]p + o(si)

= A(X1, . . . , Xi)p + o(si).

So, we have φt
i

A(X1,...,Xi)
= A(φtX1

, . . . , φtXi)+o(ti), and therefore φtA(X1,...,Xi)
= A(φt

1/i

X1
, . . . , φ

t/i
Xi

)+

o(t).

With this, we can now define the endpoint map.

3.2 The endpoint map

Given (M, ξ) a manifold with a distribution, and p ∈M . We can ask which points on the manifold
we can reach through a path tangent to the distristibution which starts at p. Chow’s Theorem 3.13
tells us that if ξ is bracket-generating, then we can reach any point in the manifold through such a
path. In order to prove Chow’s Theorem, and to solve the question which points we can reach by
a path tangent to the distribution, we will first look at which points near p we can reach by a path
tangent to ξ. For this, we will use a special version of the endpoint map.

In this section, we let {X1, . . . , Xk} a framing of ξ centred at p. We write φti for the flow of Xi

at time t.

Definition 3.4. The endpoint map based at p is the map

L2([0, 1],Rk)→M

u 7→ x(1)

where x(t) is the unique solution of the local control problem given by{
ẋ(t) =

∑k
i=1 ui(t)Xi(x(t))

x(0) = p.

As we said, we are specifically interested in paths which are tangent to the distribution. By
choosing u carefully, we can create such paths through solving the control problem. We know from
the framing that we can reach the points of the form q = φtii (p). We can express these explicitly
using the endpoint map as follows:

Definition 3.5. Let γtii : [0, 1]→ Rk with

γt11 (t) = (t1, 0, . . . , 0)

γt22 (t) = (0, t2, 0, . . . , 0)

...

γtkk (t) = (0, . . . , 0, tk).

Then φtii (p) = x(1), where x(t) is the solution of{
ẋ(t) =

∑k
j=1

(
γtii
)
j

(t)Xj(x(t)) = tiXi(x(t))

x(0) = p.
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We can even reach the points of the form q =
[
φti, φ

t
j

]
(p). In order to do this, we first define

the commutator of paths.

Definition 3.6. Let u, v : [0, 1] → Rk be paths, given by u(t) = (u1(t), . . . , uk(t) and v(t) =
(v1(t), . . . , vk(t)). We define the concatenation of paths as follows:

u � v(t) =

{
2u(t) if t ∈ [0, 12 ]

2v(t) if t ∈ [ 12 , 1].

We define the commutator of paths as

[u, v] = u � v � (−u) � (−v).

Remark 3.7. The concatenation of paths is not the same as the usual concatenation in algebraic
topology for the product in the fundamental group or the fundamental groupoid. In the definition
of the concatenation of paths we are adding a dilation, because these paths are the derivatives of
the paths which are of interest to us. The derivatives do get dilated when we run over the path
faster. 4

In the next proposition, we see how the commutator of flows can be described as a solution of a
differential equation involving the commutator of paths. We will later use a generalisation of this
to define the endpoint map.

Proposition 3.8. The commutator of flows [φti, φ
t
j ](p) equals x(1), where x(s) is the solution to

the differential equation {
ẋ(s) =

∑k
l=1[γti , γ

t
j ]l(s)Xl(x(s))

x(0) = p.

Proof. We have
γti � γ

t
j � γ

−t
i � γ−tj = ((γti � γ

t
j) � γ

−t
i ) � γ−tj ,

and therefore

γti � γ
t
j � γ

−t
i � γ−tj (s) =


γ8ti (8s) if s ∈ [0, 18 ]

γ8tj (8s− 1) if s ∈ [ 18 ,
1
4 ]

γ−4ti (4s− 1) if s ∈ [ 14 ,
1
2 ]

γ−2tj (2s− 1) if s ∈ [ 12 , 1].

In order to get a reparametrisation of the integrated path, we reparametrise and rescale this path
as follows:

γ(s) =


γ4ti (4s), if s ∈ [0, 14 ]

γ4tj (4s− 1) if s ∈ [ 14 ,
1
2 ]

γ−4ti (4s− 2) if s ∈ [ 12 ,
3
4 ]

γ−4tj (4s− 3) if s ∈ [ 34 , 1].

Hence, [φti, φ
t
j ](p) is indeed a solution of

ẋ(s) =

k∑
l=1

[γti , γ
t
j ]l(s)Xl(x(s)),

where x(0) = p.
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We can generalise this result for bracket expressions of any length:

Proposition 3.9. Let A(−) a bracket expression of length i, then A(φtj1 , . . . , φ
t
ji

)(p) = x(1), where
x(s) is the solution of the differential equation{

ẋ(s) =
∑k
j=1A(γtj1 , . . . , γ

t
ji

)j(s)Xj(x(s))

x(0) = p.

Proof. We prove by induction. It follows by Proposition 3.8 that the statement is true for bracket
expressions of length 2.

Now suppose the statement is true for bracket expressions of length i−1. By a similar argument
as Lemma 2.8 we can write A(−) as a linear combination of bracket expressions of the form [, B(−)],
with B(−) a bracket expression of length i − 1. Without loss of generality, assume that A(−) =
[, B(−)]. We have

[γtj1 , B(γtj2 , . . . , γ
t
ji)](s) =


γ8tj1 (8s) if s ∈ [0, 18 ]

B(γ8tj2 , . . . , γ
8t
ji

)(8s− 1) if s ∈ [ 18 ,
1
4 ]

γ−4tj1
(4s− 1) if s ∈ [ 14 ,

1
2 ]

B(γ−2tj2
, . . . , γ−2tji

)(2s− 1) if s ∈ [ 12 , 1].

To obtain a reparametrisation of the integrated path, we reparametrise and rescale as follows:

γ(s) =


γ4tji (4s) if s ∈ [0, 14 ]

B(γ4tj2 , . . . , γ
4t
ji

)(4s− 1) if s ∈ [ 14 ,
1
2 ]

γ−4tj1
(4s)(4s− 2) if s ∈ [ 12 ,

3
4 ]

B(γ−4tj2
, . . . , γ−4tji

)(4s− 3) if s ∈ [ 34 , 1].

So then A(φtj1 , . . . , φ
t
ji

)(p) = [φtj1 , B(φtj2 , . . . , φ
t
ji

)](p) is the solution of the differential equation

ẋ(s) =

k∑
j=1

A(γtj1 , . . . , γ
t
ji)j(s)Xj(x(s))

with x(0) = p.

3.3 Chow’s theorem

We now come to the main result of this chapter, which is Chow’s Theorem. It tells us that for M a
smooth manifold, endowed with a bracket-generating distribution ξ, we can connect any two points
on the manifold by a path tangent to the distribution.

The following remark tells us that the bracket-generating condition is indeed necessary.

Remark 3.10. In general, we cannot connect any two points on a manifold by a path tangent to the
distribution. For example, the result does not hold for an involutive distribution. If ξ is involutive,
then Frobenius’s Theorem 2.27 tells us it is also integrable. This means that the paths tangent to
ξ through a fixed point p ∈M form a smooth immersed manifold of dimension k = rank(ξ), which
is called the leaf through p. Then, if q ∈M does not lie on the leaf through p, we cannot connect
them via a path tangent to ξ. 4
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Before we state Chow’s Theorem, we first define a special case of the endpoint map. We restrict
the input of paths u so that we can only use paths which are concatenations of paths using the
framing of the distribution. This allows us to only move in directions which are tangent to the
distributions.

Definition 3.11. Let (M, ξ) a manifold of dimension n with a bracket-generating distribution of
rank k, and let p ∈ M . Let X1, . . . , Xk be a framing of ξ around p. For k + 1 ≤ i ≤ n, let
Xi = Ai(X1, . . . , Xk) such that X1, . . . , Xn forms a framing of TM around p. Here Ai are bracket
expressions of length ai. Write

φti =

{
φtXi if 1 ≤ i ≤ k
Ai

(
φt

1/ai

X1
, . . . , φt

1/ai

Xk

)
if k + 1 ≤ i ≤ n.

Then the endpoint map adapted to the framing X1, . . . , Xn is defined as:

ψ : Rn →M

(t1, . . . , tn) 7→ φtnn ◦ · · · ◦ φ
t2
2 ◦ φ

t1
1 (p).

Remark 3.12. This is a special case of the original endpoint map. Indeed, we can write it as a
control problem, where ψ(t1, . . . , tn) = x(1) is the solution to{

ẋ(t) =
∑n
i=1 u(t)Xi(x(t))

x(0) = p

with

u(t) =

k∑
i

γtii (t) +

n∑
j=k+1

Aj

(
γ
t
1/aj
j

1 , . . . , γ
t
1/aj
j
n

)
(t).

Through this, we effectively reduce the domain of the original endpoint map to a finite-dimensional
subspace, which we identify with Rk. The domain of the original endpoint map was L2([0, 1],Rk),
which is an infinite-dimensional space. 4

Theorem 3.13 (Chow). Let (M, ξ) be a manifold of dimension n with a bracket-generating distri-
bution of rank k. Then any two points p, q ∈M can be connected by a path tangent to ξ.

Proof of Theorem 3.13. Let X1, . . . , Xn and φt1, . . . , φ
t
n be as in Definition 3.11. By Proposition

3.3, φtj = φtXj + o(t).

We claim that for any j, the points p and φtj(p) can be connected by a path tangent to ξ. Indeed,
for j ≤ k, the flow lines of φtj are tangent to ξ. If j > k, then φtj(p) can be reached from p by
flowing iteratively along each element in the bracket expression that defines φtj .

We use the endpoint map ψ at p. For any point p′ ∈M , the flows φtXj (p
′) at p′ are C∞-functions

in the variable t. Therefore, for j = 1, . . . , n we have that φtj(p
′) are also C∞-functions, since they

are either a vector field flow at p′, or a bracket-expression of flows at p′. It follows that ψ is also
C∞, since it is the composition of C∞-functions. Moreover, ψ∗(∂/∂tj)|(t1,...,tn)=(0,...0) = Xj for

j = 1, . . . , n. By the inverse function theorem, ψ is a C∞-diffeomorphism near the origin. By
construction, p can be connected to any point in the image of ψ with a path tangent to ξ. We can
construct an endpoint map for any point p ∈ M , so any two points in M can be connected by a
piecewise linear map tangent to ξ.
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For an alternative proof of Chow’s Theorem, see [8].
A direct consequence of Chow’s Theorem is the following:

Corollary 3.14. Let (M, ξ) be a manifold with a bracket-generating distribution. Let p, q ∈ M ,
and let γ a path connecting p and q. Then for every ε > 0, there is a path γε tangent to ξ which
connects p and q, and ||γ − γε||sup < ε.

Proof. Let ε > 0. Let γ : [0, 1]→M, γ(0) = p, γ(1) = q. Divide [0, 1] into intervals of length 1/Nε
for some integer Nε > 1/ε.
For every i ∈ {0, . . . , Nε − 1}, let Ui ⊂ M be a neighbourhood of γ([i/Nε, (i + 1)/Nε]) such that
for all p1 ∈ γ([i/Nε, (i+ 1)/Nε]), p2 ∈ U2 we have ||p1 − p2|| < ε. Then ∪Nε−1i=0 covers γ([0, 1]), and
every Ui is a manifold with bracket-generating distribution ξ|Ui .
By Chow’s Theorem, we can connect the points γ(i/Nε), γ((i+ 1)/Nε) ∈ Ui with a path γ̃i tangent
to ξ|Ui . Concatenating these paths, we get a path γε = γ̃0 ∗ · · · ∗ γ̃Nε−1 which connects γε(0) = p
and γε(1) = q, which is tangent to ξ, and such that ||γ − γε||sup < ε.

The following example shows that the result of Chow’s Theorem can hold without the assumption
that the distribution is bracket-generating.

Example 3.15. Consider R3(x, y, z) with distribution

ξ = ker(dz + f(y)dx) = 〈∂x − f(y)∂z, ∂y〉 ,

where f : R→ R such that f(y) = 0 if y ≤ 0, and f ′(y) > 0 if y > 0. We have

[∂x − f(y)∂z, ∂y] = f ′(y)∂z.

Hence, ξ is a foliation on {y ≤ 0}, and is bracket-generating on {y > 0}.
Consider two points (x, y, z) and (x′, y′, z′) with y, y′ ≤ 0. We will show that we can connect

these points by a path tangent to ξ.
Start at (x, y, z) and then move to (x, 0, z) via a straight path (which is contained in the leaf).

Then move from (x, 0, z) to (x′, 0, z′) on {y ≥ 0} via Chow’s theorem. Lastly, move from (x′, 0, z′)
to (x′, y′, z′) via a straight path, which is contained in the leaf. 4

3.4 A note on Carnot-Carathéodory metrics

Given a manifold with a distribution, we can ask which pairs of points we can connect through
paths tangent to the distribution. As we have seen in Chow’s Theorem, we can connect any two
points by a path tangent to the distribution if the distribution is bracket-generating. However, this
is not true in general. The Carnot-Carathéodory is defined as the infimum over all paths tangent
to the distribution which connect a given pair of points. If this distance is infinite, no such paths
exist.

Definition 3.16. Let (M, ξ) be a manifold endowed with a distribution, and let g be a Riemannian
metric on M . The Carnot-Carathéodory distance between two points p, q ∈M is defined as

dc(p, q) = inf
γ∈Cp,q

{length(γ)},

where Cp,q is the set of all curves tangent to the distribution ξ which join p, q. Here, length(γ)
indicates the length with respect to g.
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In the case of a bracket-generating distribution, then dc(p, q) is always finite. This follows
directly from Chow’s Theorem 3.13. As we mentioned in Section 2.10, there is a Carnot group whose
Lie algebra is the nilpotentisation at the point. Given a Riemannian metric g on the manifold, we
can endow the first level ξ of the nilpotentisation with the metric g, and thus build a bundle of
Carnot groups.

Control theory deals with understanding the paths that minimise the Carnot-Carathéodory
distance. For more one these minimising paths, see [8] Chapters 1 and 3 and Appendix E.
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4 Weighted analysis

Given a filtered structure on a manifold, we can introduce weights to the vector fields on M to
partly ‘remember’ the structure of the nilpotentisation. The filtration at the bundle level given by
a filtered structure defines a filtration at the level of sections.

As we mentioned before in Section 2.7 in the discussion before Definition 2.35, the order of
vector fields, that we can think of vector fields as differential operators of order 1. However, in the
context of filtered structures, we regard certain vector fields as higher-order differential operators.

Concretely, if ξ1 ⊂ · · · ⊂ ξm is a filtered structure on a smooth manifold M , we say that
X ∈ X(M) has weight i if X ∈ Γ(ξi) and X /∈ Γ(ξi+1). Using the notion of weight, we can define
the order of smooth functions on M , by keeping track of the weights of the vector fields for which
the directional derivative of the function vanishes.

Furthermore, we will introduce the notion of privileged coordinates, which are coordinate func-
tions on the manifold which ‘remember’ the filtered structure. This will give another (equivalent)
way to calculate the order of a function.

Lastly, we will define dilations with respect to the privileged coordinates, and introduce the
notion of homogeneous vector fields. This will allow us to find a basis for the nilpotentisation.

So, let M a smooth manifold of dimension n, and let ξ1 ⊂ · · · ⊂ ξm = TM a filtered structure.
Let ni the rank of the distribution ξi. In particular, nm = n. We can choose a framing X1, . . . , Xn

of TM such that for all i we have that X1, . . . , Xni is a framing of ξi.
This chapter is based on [1], [6], and chapters 2 and 8 of [8] (distributions) and [9] (filtered

structures).

4.1 Nonholonomic derivatives, orders

Using the vector fields in the framing, we can introduce nonholonomic derivatives. It is a kind
of directional derivative, but one which remembers the order of the vector fields which define the
direction.

For all i, let the integer ai be such that Xi ∈ Γ(ξai) and Xi /∈ Γ(ξai+1).

Definition 4.1. Let p ∈ M and let f be a smooth function defined on a neighbourhood of p. A
nonholonomic derivative of f of order a is defined as

Xi1 . . . Xijf

where ai1 + · · ·+ aij = a.

Using the notion of nonholonomic derivatives, we can define the order of smooth functions at a
point.

Definition 4.2. The order of f at p is greater than or equal to s if all nonholonomic derivatives of
f of order smaller than or equal to s− 1 vanish at p. We write ordp(f) ≥ s. Moreover, ordp(f) = s
whenever ordp(f) ≥ s but not ordp(f) ≥ s+ 1.

We can also define the order of differential operators and vector fields. For differential operators,
we can express it in the vector fields of the framing.

Proposition 4.3. If D is a linear differential operator, we can write D as

D =
∑
α

cαX
α1
1 . . . Xαn

n
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where the sum is taken over all multi-indices α = (α1, . . . , αn), and cα ∈ C∞(M,R) is non-zero for
finitely many terms.

Definition 4.4. A vector field X has order greater than or equal to −s whenever X ∈ Γ(ξs). We
write ord(X) ≥ −s. Moreover, ord(X) = −s whenever ord(X) ≥ −s but not ord(X) ≥ −s+ 1.

A differential operator D has order greater than or equal to −s if for all α such that cα 6= 0 we
have

∑n
i=1 αiai ≤ s. We write ord(D) ≥ −s. Moreover, ord(D) = −s whenever ord(D) ≥ −s but

not ord(D) ≥ −s+ 1.

Remark 4.5. A vector field X has weight i if and only if ord(X) = −i, meaning there is a direct
connection between weight and order. 4

4.2 Privileged coordinates

In this section, we will define privileged coordinates. It is a coordinate system, centred at a point p
on the manifold, which ‘remembers’ the filtered structure. More specifically, it remembers weight.
Using the privileged coordinates, we will show how they relate to the framing of the filtered struc-
ture, and use them to define a local distance function. This distance function will allow us to
measure the distance between the base point p and points near p. If a metric is fixed, this will
function as an approximation of the Carnot-Carathéodory metric for filtered structures.

Definition 4.6. Let x1, . . . , xn be a system of coordinates centred at p. Then x1, . . . , xn are
privileged if ordp(xi) = ai and dx1, . . . , dxn form a basis of T ∗pM adapted to the filtered structure,
meaning that dx1, . . . , dxni form a basis of Γ(ξi)(p) for all 1 ≤ i ≤ n.

Let x1, . . . , xn be a system of privileged coordinates. By possibly changing the order of the
indices and rescaling, we may assume that Xixi(p) = 1. Fixing a metric g on the manifold, we can
choose Xi to be orthonormal for g. In that case, the xi are roughly orthogonal.

Proposition 4.7. We can express Xi in these privileged coordinates as follows:

Xi =
∂

∂xi
+
∑
j s.t.
aj≥ai

Bji
∂

∂xj

where Bji is a smooth function with ordp

(
Bji

)
≥ aj − ai.

Proof. First, let us start with a naive expression, namely

Xi =
∂

∂xi
+
∑
j 6=i

Bji
∂

∂xj
.

We will prove that Bji ≡ 0 whenever aj < ai.

Claim 2. The order of Bji at p is greater than or equal to aj − ai.

Proof. By definition, ordp(xj) = aj , and therefore Xi1 . . . XikXixj(p) = 0 whenever ai1 + · · ·+aik +
ai ≤ aj − 1. Therefore,

Xi1 . . . XikB
j
i (p) = ((Xi1 . . . Xik)(Xixj)) (p) = 0

whenever ai1 + · · ·+ aik ≤ aj − ai − 1. Hence, ordp

(
Bji

)
≥ aj − ai.
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If aj ≥ ai, we are done.

Now, let aj < ai. Since Bji is smooth, we always have ordp

(
Bji

)
≥ 0. Because x1, . . . , xn are

privileged coordinates, we have ord
(

∂
∂xj

)
= −aj . We have for

ord

(
Bji

∂

∂xj

)
≥ ordp

(
Bji

)
+ ord

(
∂

∂xj

)
≥ 0− aj
> −ai.

If Bji 6≡ 0, we have Bji
∂
∂xj
∈ Γ(ξai+1) \ Γ(ξai). But then Xi ∈ Γ(ξai+1) \ Γ(ξai), so ord(Xi) > ai

which is a contradiction. Hence, Bji ≡ 0 whenever aj < ai. So indeed,

Xi =
∂

∂xi
+
∑
j s.t.
aj≥ai

Bji
∂

∂xj
.

Definition 4.8. The local distance function at p induced by the privileged coordinates
x1, . . . , xn is

dp(p, q) = d(0, (x1, . . . , xn)) = |x1|+ · · ·+ |xi|1/ai + · · ·+ |xn|1/m

where q lies in the domain of the privileged coordinates x1, . . . , xn.

Note that the local distance function is not equivalent to the usual distance. It measures the
shortest distance with respect to (the weighting induced by) the filtered structure, which means
that growth in certain directions is not linear. Moreover, it is truly local. Since it is defined by a
system of privileged coordinates, it can only measure the distance from p to a point q in the domain
of the system of privileged coordinates. We cannot measure from p to any point on the manifold.

The local distance function satisfies the triangle inequality (for norms).

Proposition 4.9. For any q1, q2 ∈M we have

dp(p, q1 + q2) ≤ dp(p, q1) + dp(p, q2).

Proof. By definition, we have

dp(p, q1 + q2) = d(0, (x1 + y1, . . . , xn + yn))

= |x1 + y1|+ · · ·+ |xi + yi|1/ai + · · ·+ |xn + yn|1/m.

Claim 3. For all 1 ≤ i ≤ n, we have |xi + yi|1/ai ≤ |xi|1/ai + |yi|1/ai .
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Proof. We have |xi + yi|1/ai ≤ |xi|1/ai + |yi|1/ai if and only if

|xi + yi| ≤
(
|xi|1/ai + |yi|1/ai

)ai
=

ai∑
j=0

(
ai
j

)
|xi|(ai−j)/ai |yi|j/ai .

Note that we always have

|xi + yi| ≤ |xi|+ |yi|

≤
ai∑
j=0

(
ai
j

)
|xi|(ai−j)/ai |yi|j/ai .

Therefore, we always have |xi + yi|1/ai ≤ |xi|1/ai + |yi|1/ai .

From the claim, it follows that

dp(p, q1 + q2) =

n∑
i

|xi + yi|1/ai

≤
n∑
i=1

|xi|1/ai + |yi|1/ai

= dp(p, q1) + dp(p, q2).

Lastly, we will define a weighted norm, which is similar to the usual notion of a norm, but it is
required to ‘behave well’ with respect to dilations, which are defined as follows for a general graded
metric space:

Definition 4.10. Let (V, d) be a graded metric space. Then a dilation on V are functions function
δ : V → V for r > 0 such that for every x, y ∈ V we have d(δrx, δry) = rd(x, y).

Definition 4.11. A weighted norm on Rn (as a graded vector space) is a continuous function
|| · || such that ||x|| > 0 for all x 6= 0, for all x, y we have ||x + y|| ≤ ||x|| + ||y|| and such that
||δtx|| = t||x|| for all t > 0.

Example 4.12. Two examples of weighted norms are

||x|| =
n∑
i=1

|xi|1/ai

and
||x|| = sup

i
|xi|1/ai .

4

Remark 4.13. Any two weighted norms are equivalent, since they are a finite distortion of each
other. 4
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4.3 Privileged distances, and the order of functions

We will now take a step back from the local distance function, to consider the privileged distances,
of which the local distance function is an example. These are distance functions which behave well
with respect to the order. Using privileged distances, we can give another definition of the order of
a smooth function. We will show that the local distance function is a privileged distance, providing
a new order for smooth functions. We will prove that this is equivalent to our earlier definition of
order.

Definition 4.14. A distance function d is privileged if for all smooth functions f around p and
for all q in the domain of f , we have

ordp(f) ≥ s⇔ |f(q)| = O(d(p, q)s).

An alternative way of defining the order of a smooth function is to define it through privileged
coordinates.

Definition 4.15. Let f a smooth function defined in a neighbourhood of p. Then f has order s
with respect to d whenever |f(q)| = O(d(p, q)s) but |f(q)| 6= O(d(p, q)s+1). Here, d is a privileged
distance function.

The next example shows that two privileged distance functions do not necessarily have to be
equivalent.

Example 4.16. Consider R as a weighted vector space, of weight 1. Now, consider two sequences
(pi)i∈N and (qi)i∈N with

pi =
1

22i
, qi =

1

22i + 1
2

.

Let f : R→ R be a continuous function such that

f(pi) =
1

22i
, f(qi) =

1

22i+1 − 1
2

.

Especially, we have
pi > qi > pi+1 = p2i ,

and we have
pi = f(pi) > f(qi) > f(pi+1) = pi+1.

Now, let d be the Euclidean metric, which is a privileged distance function at 0. Then f∗d is also
a privileged distrance function, with

f∗d(0, pi) = |pi|, f∗d(0, qi) =
1

22i+1 − 1
2

.

To check that f∗d is privileged, it is enough to check that x = O(f∗d(0, x)) for all x ∈ R,
since any smooth function can be described by its Taylor series at 0. We have pi = O(f∗(0, pi)),
because f(pi) = pi. Moreover, we have qi = O(f∗d(0, qi)) because f(qi) < qi. Therefore, we have
by continuity of f that x = O(f∗d(0, x)) for all x close to zero.

Although both d and f∗d are privileged distances, they are not equivalent. We have limi→∞ f(qi)−
q2i → 0, which implies that f∗d(0, qi) is more or less

√
qi, which is clearly very different from

|qi| = d(0, qi). 4
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We will show that the definition of order with respect to the local distance function is equivalent
to our earlier definition of order (which was defined through nonholonomic derivatives). In order
to prove this, we will first show that the local distance function, which arises from a system of
privileged coordinates, is a privileged distance function.

Proposition 4.17. The local distance function induced by privileged coordinates is privileged, i.e.
ordp(f) ≥ s if and only if

|f(x1, . . . , xn)| = O
((
|x1|+ · · ·+ |xi|1/ai + · · ·+ |xn|1/m

)s)
.

Proof. Without loss of generality, assume that Xixj(p) = δij . Let f a smooth function defined in
a neighbourhood of p. Let

∑
α cαx

α the Taylor expansion of f in the privileged coordinates, with
α = (α1, . . . , αn) varying over all multi-indices.

Claim 4. We have

Xαxβ(p) =

{
1 if α = β

0 otherwise.

Especially, we have ordp(x
α) =

∑n
i=1 αiai =: w(α).

Proof. We can calculate explicitly. We have

Xαxβ(p) =

(
∂

∂x1

)α1

. . .

(
∂

∂xn

)αn
xβ1

1 . . . xβnn (p)

=

{
1 if α = β

0 otherwise.

From this, it follows immediately that ordp(x
α) = w(α).

It follows from the claim and the Taylor expansion of f that Xαf(p) = cα. Therefore, ordp(f) ≥
s if and only if cα = 0 whenever w(α) ≤ s−1. Especially, ordp(f) ≥ s if and only if cα = 0 whenever
α = (β1, . . . , βi/ai, . . . , βn/m) with β another multi-index and

∑n
i=1 βi = w(α) ≤ s− 1.

Claim 5. We have ordp

((
x1 + · · ·+ x

1/ai
i + · · ·+ x

1/m
n

)s)
= s.

Proof. We have(
x1 + · · ·+ x

1/ai
i + · · ·+ x1/mn

)s
=

∑
α s.t.

α1+···+αn=s

xα1
1 . . . x

αi/ai
i . . . xαn/mn .

Moreover, we have

ordp

(
xα1
1 . . . x

αi/ai
i . . . xαn/mn

)
=

n∑
i=1

(αi/ai) · ai =

n∑
i=1

αi.

Hence, we have

ordp

 ∑
α s.t.

α1+···+αn=s

xα1
1 . . . x

αi/ai
i . . . xαn/mn

 = s.
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From the claim, it follows that ordp(f) ≥ s if and only if

|f(x1, . . . , xn)| = O
((
|x1|+ · · ·+ |xi|1/ai + · · ·+ |xn|1/m

)s)
.

Now, we can prove that the order of a smooth function at a point is the same under the old
order of smooth functions, and with respect to the local distance function.

Lemma 4.18. The two definitions of order are equivalent.

Proof. Let f a smooth function defined on a neighbourhood of p. By Proposition 4.17 we have that
all nonholonomic derivatives of of f of order ≤ s− 1 vanish at p if and only if

|f(x1, . . . , xn)| = O
((
|x1|+ · · ·+ |xi|1/ai + · · ·+ |xn|1/m

)s)
.

Moreover, there is a nonholonomic derivative of f of order s which does not vanish at p if and only
if

|f(x1, . . . , xn)| 6= O

((
|x1|+ · · ·+ |xi|1/ai + · · ·+ |xn|1/m

)s+1
)
.

Hence, the two definitions of order are equivalent.

4.4 Dilations and homogeneity

In this section, we will use privileged coordinates to define dilation at a point. Dilations are
somewhat similar to scalar multiplications, but they remember the grading. Using dilations, we
will define homogeneity of vector fields and smooth functions, and will construct a homogeneous
approximation for vector fields. This will ultimately allow us to use the framing of a filtered
structure to create a basis for the nilpotentisation.

Once again, let M be a manifold endowed with a filtered structure ξ1 ⊂ · · · ⊂ ξm = TM .

Definition 4.19. A dilation induced by a system of privileged coordinates x1, . . . , xn at
the point p is a function δpr with r > 0, which satisfies

(δpr )
∗

(x1, . . . , ξi, . . . , xn) = (rx1, . . . , r
aixi, . . . , r

mxn).

For a smooth function f , the dilation δpr satisfies

(δpr )
∗
f(x1, . . . , xi, . . . , xn) = f(rx1, . . . , r

aixi, . . . , r
mxn).

Definition 4.20. Let X ∈ X(M) be a vector field on M of order −s. Then X is homogeneous
at p if (δpr )∗X = r−sX. Similarly, a smooth function f on M of order a is homogeneous at p if
(δpr )∗f = raf .

Note that the privileged coordinates are homogeneous, in particular.

Proposition 4.21. Let X, Y ∈ X(M) homogeneous of order −s1, −s2 respectively. Then [X,Y ]
is homogeneous as well.
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Proof. We calculate:

(δpr )∗[X,Y ] = [(δpr )∗X, (δpr )∗Y ]

= [r−s1X, r−s2Y ]

= r−(s1+s2)[X,Y ].

We can decompose a vector field into homogeneous parts.

Proposition 4.22. Let X a vector field of order −s at p. Then we can write

X = X(−s) +X(−s+1) + · · ·+X(−1) +X(0) +X(1) + . . .

where X(i) is a homogeneous vector field with ordp
(
X(i)

)
= i.

Proof. We calculate the decomposition inductively. First, we define

X(−s) = lim
r→0

rsδ∗rX.

Because ordp(X) = −s, we have X(−s) 6= 0. Moreover, ordp
(
X −X(−s)) ≥ −s + 1 whenever

X 6= X(−s). So, we can calculate

X(−s+1) = lim
r→0

rs−1δ∗r

(
X −X(−s)

)
.

We have X(−s+1) is either homogeneous at p of order −s + 1 or zero. Continuing in this manner,
we define for general i ≥ −s that

X(i) = lim
r→0

r−iδ∗r

(
X −X(−s) −X(−s+1) − · · · −X(i−1)

)
.

By induction, we have X(i) either zero or homogeneous at p of order i. Hence, we have

X = X(−s) +X(−s+1) + · · ·+X(−1) +X(0) +X(1) + . . .

Remark 4.23. In the case of the trivial grading, this is just the usual Taylor expansion. 4

We can define X̂ = X(−s), with ordp(X) = s. By the following lemma, we can equivalently

define X̂ = limr→0 r
s(δpr )∗X.

Lemma 4.24. We have for all i ≥ −s that

lim
r→0

rs(δpr )∗X(i) =

{
X(−s) if i = −s
0 otherwise.
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Proof. Because X(i) is homogeneous of degree i, we can calculate explicitly

lim
r→0

rs(δpr )∗X(i) = rs+iX(i) =

{
X(−s) if i = −s
0 otherwise.

The following proposition shows that the map X 7→ X̂ is well-behaved with respect to the Lie
bracket. When we will later prove that X̂1, . . . , X̂n generates a finite-dimensional nilpotent Lie
algebra (which is isomorphic to the nilpotentisation), this ensures that bracket expressions still
respect the grading (which is especially important in the case of a filtered structure arising from
a bracket-generating distribution). It is remarkable that these homogeneous vector fields produce
such a Lie algebra, since most pairs of vector fields generate infinite-dimensional Lie algebras.

Proposition 4.25. Let X, Y ∈ X(M) two vector fields, with order −s1, −s2 respectively. If
[X̂, Ŷ ] 6= 0, then

[̂X,Y ] = [X̂, Ŷ ]

and [̂X,Y ] is homogeneous of order −(s1 + s2).

Proof. We can expand the vector fields in their homogeneous parts, i.e.

X = X(−s1) +X(−s1+1) + . . .

and
Y = Y (−s2) + Y (−s2+1) + . . . .

By definition, X̂ = X(−s1) and Ŷ = Y (−s2). Therefore,

[X̂, Ŷ ] =
[
X(−s1), Y (−s2)

]
.

Moreover, we have

[X,Y ] =

 ∞∑
i=−s1

X(i),

∞∑
j=−s2

Y (j)


=

∞∑
i=−s1

∞∑
j=−s2

[
X(i), Y (j)

]
.

Particularly, we have

[X,Y ](l) =
∑
i+j=l

[
X(i), Y (j)

]
.

Since [X̂, Ŷ ] 6= 0, we have

[X,Y ] = [X,Y ](−(s1+s2)) + [X,Y ](−(s1+s2)+1) + . . .

and [X,Y ](−(s1+s2)) =
[
X(−s1), Y (−s2)

]
. Especially, we have

[̂X,Y ] =
[
X(−s1), Y (−s2)

]
=
[
X̂, Ŷ

]
.
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Remark 4.26. Let us consider (M, ξ) a manifold endowed with a bracket-generating distribution.
Let X1, . . . , Xk a framing of ξ. By definition, there are Xk+1, . . . , Xn with Xi = Ai(X1, . . . , Xk)
such that X1, . . . , Xn form a framing of TM . By the previous proposition, we have that X̂i =

Ai

(
X̂1, . . . , X̂k

)
. 4

The next lemma shows that applying the map X 7→ X̂ to the framing of the filtered structure,
gives a basis for the nilpotentisation.

Proposition 4.27. The Lie algebra spanned by X̂1, . . . , X̂n is the nilpotentisation of ξ1 ⊂ · · · ⊂ ξm.

Proof. For every i, we have that X1, . . . , Xni is a framing of ξi. Therefore,

X1 mod (Γ(ξi−1)), . . . , Xni mod (Γ(ξi−1))

spans Γ(ξi)/Γ(ξi−1). Since X1, . . . , Xni−1 ∈ Γ(ξi−1), it follows that for all 1 ≤ j ≤ ni−1

Xj ≡ 0 mod (Γ(ξi−1))

and therefore
Xni−1+1 mod (Γ(ξi−1)), . . . , Xni mod (Γ(ξi−1))

span Γ(ξi)/Γ(ξi−1). We have dim(Γ(ξi)/Γ(ξi−1)) = ni − ni−1, so the above is indeed a basis for
Γ(ξi)/Γ(ξi−1).
Similarly, X̂ni−1+1, . . . , X̂ni are linearly independent, and are homogeneous of weight i. Let Γ̂i be

spanned by X̂ni−1+1, . . . , X̂ni as a vector space over R. If [X̂i, X̂j ] 6= 0, then [X̂i, X̂j ] is homogeneous

of order −(ai + aj). Therefore, we have
[
Γ̂i, Γ̂j

]
⊂ Γ̂i+j .

As a vector space, Γ(ξi)/Γ(ξi−1) is isomorphic to Γ̂i, by

Xj mod (Γi−1) 7→ X̂j .

Moreover, Γ̂1⊕· · ·⊕Γ̂m is isomorphic as a graded Lie algebra to the nilpotentisation of ξ1 ⊂ · · · ⊂ ξm.

Therefore, this construction of the Lie algebra of homogeneous vector fields does not depend on
the choice of a framing of the filtered structure up to isomorphism.

4.5 Global distance

We have seen before how we can construct a local distance function on a manifold endowed with
a filtered structure. We can also construct a global distance function. We do this by taking the
infimums over the lengths of concatenations of the integral curves of frames, where the distance on
each integral curve is given by the degree of a vector field. This gives a Manhattan-style distance,
since we are only allowed to move along curves tangent to the framing.

More specifically, let (M, ξ1 ⊂ ξm) be a manifold endowed with a filtered structure. We can
cover M by open balls Ui with i ∈ I for some indexing set I, i.e. M ⊂

⋃
i∈I Ui. Choose the balls

small enough so that for every i ∈ I there is a framing Xi
1, . . . , X

i
n of the filtered structure on Ui,

with Xi
1, . . . , X

i
nj a framing of ξj for j = 1, . . . ,m. Similar to Section 3.2, we want to reach any

point on the manifold through concatenations of integral curves of the framing.
Let us first define the length of a flow curve.
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Definition 4.28. Let X ∈ X(M) of order −s, and let φtX be the time t flow of X. Then the length
of φtX is given by

length
(
φtX
)

= |t|1/s.

We can extend this definition to concatenations of vector fields.

Definition 4.29. Let X1, . . . , Xk ∈ X(M) of orders −s1, . . . ,−sk respectively. Then the length
of φt1X1

◦ · · · ◦ φtkXk is given by

length
(
φt1X1
◦ · · · ◦ φtkXk

)
= length

(
φt1X1

)
+ · · ·+ length

(
φtkXk

)
= |t1|1/s1 + · · ·+ |tk|1/sk .

Remark 4.30. For the Xi
j we have in particular that length

(
φt
Xij

)
= t1/aj . 4

Using this, we can define a global distance as the infimum over all paths which are concatenations
of the flows of the vector fields in the framing over Ui.

Definition 4.31. The global distance d associated to the framing X1, . . . , Xn on M is defined
as

d(p, q) = inf
φ∈Cp,q

{length(φ)}

where Cp,q is the set of paths which are concatenations of φt
Xij

for i ∈ I and 1 ≤ j ≤ ni.

The global distance depends on the choice of framing, since that is what dictates which directions
we are allowed to take.

Lemma 4.32. The global distance is a metric, i.e. for any p, q, r ∈M the global metric satisfies

1. d(p, q) = 0 ⇐⇒ p = q

2. d(p, q) = d(q, p)

3. d(p, q) ≤ d(p, r) + d(r, q).

Proof. If p = q then it is trivially true that d(p, q) = 0. Now, suppose that d(p, q) = 0. Let C ′p,q be
the set of all paths connecting p and q. Then we have

0 = d(p, q) = inf
φ∈Cp,q

{length(φ)} ≥ inf
φ∈C′p,q

{length(φ)} ≥ 0.

Therefore, p = q. So, d(p, q) = 0 ⇐⇒ p = q.
Moreover, we have

d(p, q) = inf
φ∈Cp,q

{length(φ)}

= inf
φ∈Cq,p

{length(−φ)}

= inf
φ∈Cq,p

{length(φ)}

= d(q, p).
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Lastly, let Cp,r,q ⊂ Cp,q be the subset of paths which flow through r. We then have

d(p, q) = inf
φ∈Cp,q

{length(φ)}

≤ inf
φ∈Cp,r,q

{length(φ)}

≤ inf
φ∈Cp,r, ψ∈Cr,q

{length(φ) + length(ψ)}

= inf
φ∈Cp,r

{length(φ)}+ inf
ψ∈Cq,r

{length(ψ)}

= d(p, r) + d(r, q).

We will leave it as an open question to further define the properties of this global distance. For
example, if a filtered structure arises from a bracket-generating distribution, it is unclear how it
relates to the Carnot-Carathéodory distance.
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5 The tangent cone

In this section, we will define the tangent cone to a metric space. For a metric space (X, d) and a
point x0 ∈ X, its tangent cone at x0 appears when we stretch the distances to infinity, while the
position of the point x0 remains the same.

In order to properly define the tangent cone, we first need to define the Gromov-Hausdorff
distance, which measures the distance between two metric spaces. This in turn allows us to define
the limit of a sequence of metric spaces, which is what the tangent cone is, if it exists.

Although one would expect that the tangent cone forgets all structure, Mitchell’s theorem will
show us that this is not the case. Indeed, for a manifold endowed with a filtered structure, the
tangent cone exists, and is equal to the Lie group whose Lie algebra is the nilpotentisation of the
filtered structure at a point.

Lastly, we will construct an explicit group product on the tangent cone, using dilations and
privileged coordinates. Being a Lie group, the tangent cone has a group structure. It is not clear
at the start, however, how the group structure relates to the filtered structure.

This chapter is based on [1], [7] and chapter 8 of [8].

5.1 Dilations

Before we do anything else, we will consider the following two definitions. These notions will be
used throughout this chapter, and it is useful to know what exactly these mean.

Definition 5.1. A pointed metric space is a pair (X,x0), where X is a metric space and x0 ∈ X.
The point x0 is called the base point.

The next definition is a restatement, and expansion, of Definition 4.10.

Definition 5.2. Let (X, d) a metric space, and r > 0. An r-dilation is a map δr : X → X such
that d(δr(x), δr(y)) = rd(x, y) for all x, y ∈ X.
If (X,x0) is a pointed metric space, then we require that the r-dilation fixes the base point, i.e.
δr(x0) = x0.

5.2 Convergence of metric spaces

In this section, we will define the Gromov-Hausdorff distance, which measures the distance between
two metric spaces. First we define the Hausdorff distance, which measures the distance between two
subsets of a metric space. This allows us to define the Gromov-Hausdorff distance by measuring the
distances between embeddings of two metric spaces into another (larger) metric space. Moreover,
we will define what it means for two metric spaces to converge. We will use this to check whether
the tangent cone exists.

In order to define the Hausdorff distance, we will need the following definition.

Definition 5.3. Let (X, d) a metric space, and A ⊂ X. Then the δ-neighbourhood of A is the
set

Nδ(A) = {x ∈ X : ∃a ∈ A such that d(x, a) < δ}.

Definition 5.4. Let (X, d) a metric space, A, B ⊂ X. Then the Hausdorff distance between A
and B is

dH(A,B) = inf{δ : A ⊂ Nδ(B), B ⊂ Nδ(A)}.
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We can generalise the concept of Hausdorff distance to measure the distance between two ‘ab-
stract’ metric spaces, by embedding them into a larger metric space while remembering their sizes
through preserving the distances on the images.

Definition 5.5. Let (X, dX), (Y, dY ) be two metric spaces. An isometric embedding is an
embedding f : X → Y such that f∗dY = dX , i.e. f preserves distances.

Definition 5.6. Let (X, dX), (Y, dY ) two metric spaces. Then the Gromov-Hausdorff distance
between X and Y is defined as

dGH(X,Y ) = inf dH(i(X), j(Y )),

where the infimum is taken over all metric spaces (Z, dZ) and isometric embeddings i : X → Z and
j : Y → Z (i.e. all spaces Z for which such isometric embeddings exist).

The above definition of a Gromov-Hausdorff space is rather impractical when doing computa-
tions. Lemma 5.8 will provide an easier alternative through the notion of compatible metrics.

Definition 5.7. Let (X, dX), (Y, dY ) be metric spaces. Then metric d on the disjoint union X
∐
Y

is compatible if d|X = dX and d|Y = dY .

Lemma 5.8. Let X, Y be metric spaces. We have

dGH(X,Y ) = inf{d(X,Y ) : d compatible on X
∐

Y }.

Proof. Define δ = inf{d(X,Y ) : d compatible on X
∐
Y }. Let d be a compatible metric, and let

i : X → X
∐
Y and j : Y → X

∐
Y be isometric embeddings. By definition of the Gromov-

Hausdorff metric, we have dGH(X,Y ) ≤ d(i(X), j(Y )). Hence, dGH(X,Y ) ≤ δ.
On the other hand, let i : X → Z and j : Y → Z be isometric embeddings into a metric space

(Z, dZ). If i(X) ∩ j(Y ) = ∅, then X
∐
Y ∼= i(X) ∪ j(Y ), so the restriction of dZ to i(X) ∪ j(Y )

gives a metric d on X
∐
Y such that d(X,Y ) = dZ(i(X), j(Y )) ≥ δ.

Now consider the case that i(X) ∩ j(Y ) 6= ∅. For ε > 0, define Iε = [0, ε]. On Z × Iε, we define
the metric

d((x, t), (y, s)) =
√
dZ(x, y)2 + |t− s|2.

Embed X into Z × Iε by i0(x) = (i(x), 0), and embed Y into Z × Iε by jε(y) = (j(y), ε). Then
i0(X) ∩ jε(Y ) = ∅, and

d(i0(X), jε(Y )) =
√
dZ(i(X), j(Y ))2 + ε2 ≥ δ.

Letting ε→ 0, we have dZ(i(X), j(Y )) ≥ δ.
Thus, dGH(X,Y ) ≥ δ. Hence, dGH(X,Y ) = δ.

When two compact metric spaces are isometric, we already know the Gromov-Hausdorff distance.

Proposition 5.9. Let X, Y be compact metric spaces. If X and Y are isometric, then dGH(X,Y ) =
0.

Proof. If X and Y are isometric, there is a bijective isometry f : X → Y . So, f(X) = Y . By
definition, for every A ⊂ Y , we have N0(A) = A. Especially, we have

dGH(X,Y ) ≤ dH(f(X), Y ) = 0.
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Now that we can measure the distance between two metric spaces, we can define convergence
for metric spaces.

Definition 5.10. Let {Xi} a sequence of metric spaces. They converge to a metric space (Y, dY )
if dGH(Xi, Y )→ 0 as i→∞.

Although the definition above is natural, it is not as useful when a sequence of metric spaces
converges to an unbounded metric space. Intuitively, the sequence of intervals {(−i, i)}i∈N should
converge to R. However, since R is unbounded, we have limi→∞ dGH((−i, i),R) = ∞. In the case
of pointed metric spaces, it therefore is useful to introduce a new notion of convergence.

Definition 5.11. Let (Xi, xi) a sequence of pointed metric spaces. It converges to a pointed
metric space (Y, y) if for every r > 0, the r-balls around xi in Xi converge to the r-balls around y
in Y .

The notion of an approximate isometry will be useful when proving that a sequence of metric
spaces converges. An approximate isometry will allow us to find an upper bound for the Gromov-
Hausdorff distance in some cases.

Definition 5.12. A map f : A → Y satisfying the assumptions of Lemma 5.13 is called an
approximate isometry, or a (δ, εX , εY )-isometry, between X and Y .

Lemma 5.13 (Approximate isometry criterion). Let X, Y be metric spaces, A ⊂ X, and f : A→ Y
not necessarily continuous, δ > 0 such that for all a1, a2 ∈ A

|dY (f(a1), f(a2))− dX(a1, a2)| ≤ δ.

Suppose that there are εX , εY > 0 such that for the metric dX we have x ∈ NεX (A) for all x ∈ X,
and for the metric dY we have y ∈ NεY (f(A)) for all y ∈ Y . Then

dGH(X,Y ) ≤ max{εX , εY }+ δ/2.

Proof. We will define a compatible metric d on X
∐
Y . For x ∈ X, y ∈ Y define

d(x, y) = inf
a∈A
{dX(x, a) + dY (f(a), y)}+ δ/2.

We first check that the triangle inequality holds, so that d is indeed a metric. Let x1, x2 ∈ X, y ∈ Y .
We check that d(x1, y) + d(y, x2) ≥ d(x1, x2). We have

d(x1, y) + d(y, x2) = inf
a1∈A
{dX(x1, a) + dY (f(a1), y)}

+ inf
a2∈A
{dX(x2, a2) + dY (f(a2), y)}+ δ.

On the other hand, we have

d(x1, x2) = dX(x1, x2) ≤ dX(x1, a1) + dX(a1, a2) + dX(a2, x2).

By assumption, we have

dX(a1, a2) ≤ dY (f(a1), f(a2)) + δ

≤ dY (f(a1), y) + dY (y, f(a2)) + δ.

40



Hence,
d(x1, x2) ≤ dX(x1, a1) + dY (f(a1), y) + dY (y, f(a2)) + dX(a2, x2) + δ.

Taking the infimum over all a1, a2, we get that d(x1, x2) ≤ d(x1, y) + d(y, x2).
Now, let x ∈ X, y1, y2 ∈ Y . We check that d(y1, x) + d(x, y2) ≥ d(y1, y2). We have

d(y1, x) + d(x, y2) = inf
a1∈A
{dX(x, a1) + dY (f(a1), y1)}

+ inf
a2∈A
{dX(x, a2) + dY (f(a2), y2)}+ δ.

On the other hand, we have

d(y1, y2) ≤ dY (y1, y2)

≤ dY (y1, f(a1)) + dY (f(a1), f(a2)) + dY (f(a2), y2).

By assumption, we have

dY (f(a1), f(a2)) ≤ dX(a1, a2) + δ

≤ dX(a1, x) + dX(x, a2) + δ.

Hence,
d(y1, y2) ≤ dY (y1, f(a1)) + dX(a1, x) + dX(x, a2) + dY (f(a2), y2) + δ.

Taking the infimum over all a1, a2, we get that d(y1, y2) ≤ d(y1, x) + d(x, y2).
So, d is indeed a metric.
By assumption, for all x ∈ X, there is a ∈ A such that dX(a, x) < εX . We have

d(x, a) ≤ dX(a, x) + δ/2 < εX + δ/2.

So X ⊂ Nδ1(Y ) for the metric d, where δ1 = εX + δ/2. Similarly, for every y ∈ Y , there is a ∈ A
such that dY (f(a), y) < εY . We have

d(a, y) ≤ dY (f(a), y) + δ/2 < εY + δ/2.

So Y ⊂ Nδ2(X) for d, where δ2 = εY + δ/2. So by Lemma 5.8, we have

dGH(X,Y ) ≤ max{δ1, δ2} = max{εX , εY }+ δ/2.

5.3 The tangent cone and Mitchell’s theorem

Using the tools from the previous section, we can now properly define the tangent cone. Moreover,
we will formulate Mitchell’s Theorem, which shows how the tangent cone of a manifold endowed
with a filtered structure and the nilpotentisation are related.

Definition 5.14. Let (X,x0) a pointed metric space, with metric d. Then its tangent cone is
given by limλ→∞(X,x0, λd), if the limit exists.

Our goal for the next few sections is to prove the following theorem:

Theorem 5.15 (Mitchell’s theorem for filtered structures). Let (M, ξ1 ⊂ · · · ⊂ ξm) a manifold
endowed with a filtered structure, and p ∈ M . Let X1, . . . , Xn be a framing of TM such that
X1, . . . , Xni is a framing of ξi for i = 1, . . . ,m. Let d be the global metric associated to X1, . . . , Xn.
Then the tangent cone of (M, ξ1 ⊂ · · · ⊂ ξm) at p exists for d, and is equal tot he simply-connected
Lie group with Lie algebra L(ξ1 ⊂ · · · ⊂ ξm)(p), the nilpotentisation at p.
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5.4 Continuous expansion property

To prove Mitchell’s theorem, we will need the notion of the continuous expansion property. If a
metric space has this property, it means that the δ-neighbourhood of a ball of radius ε looks like
we would expect, namely a ball of radius δ + ε. In Lemma 5.17 we will show how we can use this
property to prove that the tangent cone exists.

Definition 5.16. A metric space X has the continuous expansion property at a point x ∈ X
if Nδ(B(x, ε)) = B(x, δ + ε) for all δ, ε > 0.

The continuous expansion property holds for Riemannian metrics, Carnot-Carathéodory metrics
and global metrics for a manifold with a filtered structure (because they are all defined by lengths
of curves). It may fail, however, for discrete metric spaces.

Lemma 5.17. Let (X,x0) a pointed metric space with metric d0 that admits dilations δr. Suppose
that d is a metric defined in a d0-neighbourhood U of x0, and |δ∗r (d − d0)| = o(r) uniformly on U
as r → 0. If both d and d0 have the continuous expansion property at x0, then the tangent cone of
(X,x0) exists and is equal to (X, d0, x0).

Proof. Let Br(ε), B0(ε) be the ball of radius ε around x0 with respect to the metric (1/r)d, d0
respectively. By assumption, for all x1, x2 ∈ U we have

|d(δrx1, δrx2)− d0(δrx1, δrx2)| ≤ f(r)

for some function f such that f(r)/r → 0 as r → 0. Since the δr are d0-dilations, we can rewrite
the estimate above as

|(1/r)d(δrx1, δrx2)− d0(x1, x2)| ≤ f(r)/r.

Let h(r) = f(r)/r. By the estimate above, δr is an approximate isometry between B0(ε) and Br(ε).
Setting x1 = x0 gives

|(1/r)d(x0, δrx2)− d0(x0, x2)| ≤ h(r).

So, δr(B0(ε − h(r)) ⊂ Br(ε) and Br(ε − h(r)) ⊂ δr(B0(ε)). Take A = δ−1r (Br(ε)) ∩ B0(ε) as the
domain of δr. We then have that B0(ε−h(r)) ⊂ A and Br(ε−h(r)) ⊂ δr(A). From the continuous
expansion property, it follows that δr is a (h(r), h(r), h(r))-approximate isometry, and therefore
dGH(Br(ε), B0(ε)) ≤ 3h(r)/2. Since h(r)→ 0 as r → 0, the result follows.

5.5 Metrics on the Lie group with Lie algebra the nilpotentisation

First, consider (M, ξ) a manifold with a weakly regular, bracket-generating distribution, and let
p ∈ M . Then L(ξ)(p) is a Lie algebra associated to a Carnot group G. We can apply left-
multiplication by elements of the Carnot group on ξ(1)(p) ⊂ L(ξ)(p) to extend it to all of G. By
taking the Riemannian metric g on ξ(1)(p), we can extend it by left-invariance to all of G, which
gives us a Carnot-Carathéodory metric.

Now, let (M, ξ1 ⊂ · · · ⊂ ξm) a manifold with a filtered structure, and p ∈ M . Then L(ξ1 ⊂
· · · ⊂ ξm)(p) is a Lie algebra for a simply-connected Lie group G. Applying left-multiplication
by elements of the Lie group on L(ξ1 ⊂ · · · ⊂ ξm)(p) lets us extend it to all of G, providing a

left-invariant filtered structure ξ̂1 ⊂ · · · ⊂ ξ̂m on G. With this, we can create a global metric on G
by taking a framing of the filtered structure ξ̂1 ⊂ · · · ⊂ ξ̂m.
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5.6 Mitchell: the proof

Finally, we can prove Mitchell’s theorem. First, we will state and prove the regular version of
Mitchell’s Theorem, which is the original version. After that, we will prove Mitchell’s Theorem for
filtered structures, which is an original contribution of this thesis.

Theorem 5.18 (Mitchell, regular version). Let (M, ξ) a manifold endowed with a bracket-generating,
weakly regular distribution, and p ∈ M . The tangent cone at p exists for the Carnot-Carathéodory
metric, and is equal to the Carnot group with a left-invariant Carnot-Carathéodory metric and with
graded Lie algebra L(ξ)(p), the nilpotentisation of ξ at p.

Proof. Let {X1, . . . , Xk} be a framing of ξ around p. Because ξ is bracket-generating, there exist
Xk+1, . . . , Xn given by Xj = Aj(Xij1

, . . . , Xijaj
), such that {X1, . . . , Xn} span X(M). Here Aj(−)

is a bracket expression of length aj . Let m the step for which the Lie flag stabilises. By possibly
rearranging the order, assume that ak+1 ≤ ak+2 ≤ · · · ≤ an = m. For j ≤ k, let aj = 1.

For j ≤ k, let φtj = φtXj , the flow of Xj . For j > k, let φtj = Aj

(
φ
t/aj
X
i
j
1

, . . . , φ
t/aj
X
i
j
aj

)
. As in Chow’s

Theorem, we define the endpoint map ψ based at p:

ψ : Rn →M

(t1, . . . , tn) 7→ φtnn ◦ · · · ◦ φ
t2
2 ◦ φ

t1
1 (p).

The ti are privileged coordinates. For r > 0 we define the dilation

δr(t1, . . . , tj , . . . , tn) = (rt1, . . . , r
aj tj , . . . , r

mtn).

Let u ∈ L2([0, 1],Rk). Let x(t) be a solution to the control problem

ẋ(t) =

k∑
j=1

uj(t)Xj(x(t)), x(0) = 0,

and let x̂(t) be a solution to

˙̂x(t) =

k∑
j=1

uj(t)X̂j(x̂(t)), x̂(0) = 0.

We have Xj = X
(−aj)
j + X

(−aj+1)
j + . . . , and X

(−aj)
j = X̂j . Hence, we can write Rj = Xj − X̂j ,

and ordp(Rj) > −aj . Therefore we have

k∑
j=1

uj(t)Xj =

k∑
j=1

uj(X̂j +Rj),

and ordp(Rj) > −1. Let d be the Carnot-Carathéodory distance associated with ξ, and let d0
be the Carnot-Carathéodory distance associated with ξ̂, which is the distribution with framing
X̂1, . . . , X̂k. We have |xj(t)− x̂j(t)| ≤ Ct2 for some constant C, so d0(x(t), x̂(t)) ≤ Ct1+1/m, so

|δ∗t (d− d0)| = O(t1+1/m) = o(t).
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So by Lemma 5.17 we have that the tangent cone exists and is equal to the Lie group with Lie
algebra the nilpotentisation at p.

Theorem 5.19 (Mitchell for filtered structures). Let (M, ξ1 ⊂ · · · ⊂ ξm) be a manifold endowed
with a filtered structure, and let p ∈ M . Then the tangent cone at p exists for the global metric
associated with the filtered structure, and is equal to the simply-connected graded Lie group with
left-invariant global metric and with Lie algebra L(ξ1 ⊂ · · · ⊂ ξm)(p), the nilpotentisation of the
filtered structure at p.

Proof. LetX1, . . . , Xn be a framing of TM around p adapted to the filtered structure, i.e. X1, . . . , Xni

is a framing of ξi for 1 ≤ i ≤ m. We define the endpoint map ψ based at p as:

ψ : Rn →M

(t1, . . . , tn) 7→ φtnXn ◦ · · · ◦ φ
t1
X1

(p).

Then the ti are privileged coordinates. For r > 0 we define the dilation

δr(t1, . . . , ti, . . . , tn) = (rt1, . . . , r
aiti, . . . , r

mtn),

where ai is the weight of Xi. Let u ∈ L2([0, 1],Rn). Let x(t) be a solution to the control problem

ẋ(t) =

n∑
i=1

ui(t)Xi(x(t)), x(0) = 0,

and let x̂(t) be a solution to

˙̂x(t) =

n∑
i=1

ui(t)X̂i(x̂(t)), x̂(0) = 0.

We have Xi = X
(−ai)
i + X

(−ai+1)
i + . . . , and X

(−ai)
i = X̂i. Hence, we may define Ri = Xi − X̂i,

and ordp(Ri) > −ai. Therefore, we have

n∑
i=1

ui(t)Xi =

n∑
i=1

ui(t)(X̂i +Ri).

Let d be the global distance associated with ξ, and let d0 be the global distance associated with ξ̂,
the filtered structure arising from X̂1, . . . , X̂n. We have |xi(t)− x̂i(t)| ≤ Ctai+1 for some constant
C, so d0(x(t), x̂(t)) ≤ Ct1+1/m, so

|δ∗t (d− d0)| = O(t1+1/m) = o(t).

So by Lemma 5.17, the tangent cone exists and is equal to the simply-connected Lie group with Lie
algebra L(ξ1 ⊂ · · · ⊂ ξm)(p).
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6 The tangent cone as a group

In this section we will offer a geometric interpretation interpretation of the group structure of the
tangent cone, and see how it arises from the filtered structure on the manifold. As we have seen
in Mitchell’s Theorem, the tangent cone is the Lie group whose Lie algebra is the nilpotentisation
of the filtered structure at the base point. The nilpotentisation at the base point induces a group
multiplication on the tangent cone. In this section we will show that the group multiplication arises
from the dilations associated to the filtered structure.

We construct a group product by mimicking the standard construction for constructing a group
product on a smooth manifold. Here, we think of vectors as equivalence classes of paths, and of
vector fields as equivalence classes of (time-dependent) flows. The group operation then is the
composition of flows, which at equivalence class level is addition.

We will explicitly define a group multiplication on the tangent cone by defining a group mul-
tiplication on equivalence classes of paths on the manifold which are rectifiable at the origin and
which start at the base point. A path is rectifiable at t = 0 when its growth is at most linear near
the origin, measured with respect to the local distance function induced by privileged coordinates.
(It therefore must behave well with respect to the dilations.) Since every element of the tangent
cone can be embedded in one of the equivalence classes of rectifiable paths, the group multiplication
for the rectifiable paths is also a group multiplication on the tangent cone.

This chapter is based on [6] and [7], which state the results in terms of distributions. We adapted
these results to suit filtered structures. For a global perspective on the tangent cone, see [11].

6.1 Rectifiable paths and rectifiable families

Let us start by giving an explicit definition for paths rectifiable at t = 0, and what it means for
them to be equivalent. As we have said before, our main goal for this section is to find a group
multiplication on the equivalence classes of these rectifiable paths.

As a reminder, the local distance function is defined as follows:

Definition 6.1. The local distance function at p induced by the privileged coordinates
x1, . . . , xn is

dp(p, q) = d(0, (x1, . . . , xn)) = |x1|+ · · ·+ |xi|1/ai + · · ·+ |xn|1/m

where q lies in the domain of the privileged coordinates x1, . . . , xn.

Instead of using the local distance function, one could do the same construction with the global
distance function.

Definition 6.2. A smooth path γ(t) on M with γ(0) = p is rectifiable at t = 0 if

dp(p, γ(t)) ≤ Ct

as t→ 0 for some positive constant C, where dp is the local distance function.

Definition 6.3. Let γ1(t), γ2(t) two smooth paths on M with γ1(0) = γ2(0) = p. Then γ1(t) and
γ2(t) are equivalent at p if

t−1dp(p, γ1(t)− γ2(t))→ 0

as t→ 0.
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Lemma 6.4. The tangent cone of M at p is the set of equivalence classes of all smooth paths γ
with γ(0) = p which are rectifiable at t = 0.

In order to define a group product on the equivalence classes of smooth paths rectifiable at
t = 0, we will need the notion of a family of segments rectifiable at t = 0 for which we can define
a product. Families of segments rectifiable at t = 0 are a collection of paths rectifiable at t = 0
under some additional conditions. Similar to equivalence of rectifiable paths, we can also define
equivalence of families of segments rectifiable at t = 0. Later, we will show that the equivalence
classes of families of rectifiable segments only depend on the equivalence classes of the rectifiable
paths which represent them, and therefore defines a product on equivalence classes of rectifiable
paths, and therefore the tangent cone.

Definition 6.5. A family of segments rectifiable at t = 0 is a smooth map

F : M × I →M

where I is an open neighbourhood of 0 ∈ R, such that

1. F(p, 0) = p for all p ∈M

2. t 7→ F(p, t) is uniformly rectifiable at t = 0 for all p ∈M , i.e. for every compact neighbourhood
K ⊂M of p there is a constant CK > 0 and a compact neighbourhood IK ⊂ I of 0 such that
for all (q, t) ∈ K × IK

dq(q,F(q, t)) ≤ CKt.

Definition 6.6. The product of two families F1, F2 of segments rectifiable at t = 0 is defined as

F1 ◦ F2(p, t) = F1(F2(p, t), t).

If F1 : M × I1 →M and F2 : M × I2 →M , then F1 ◦ F2 : M × (I1 ∩ I2)→M .

By Lemma 6.4, we can embed any representative of an element of the tangent cone in a family
of segments rectifiable at t = 0. This means that if the product respects equivalence, then it defines
a product on the tangent cone. First, let us check that the product of two families of segments
rectifiable at t = 0 is a family of segments rectifiable at t = 0.

Lemma 6.7. Let F1, F2 two families of segments rectifiable at t = 0. Then F1 ◦ F2 is a family of
segments rectifiable at t = 0.

Proof. We check that F1 ◦ F2 satisfies all conditions in the definition of a family of segments
rectifiable at t = 0.

Because F1 and F2 are smooth, it follows that F1 ◦ F2 is also smooth.
We have for all p ∈M that

F1 ◦ F2(p, 0) = F1(F2(p, 0), 0) = F1(p, 0) = p.

Lastly, we check that t 7→ F1 ◦ F2(p, t) is uniformly rectifiable for all p ∈ M . By definition, for
all compact neighbourhoods K ⊂M of p there is a constant CK > 0 and a compact neighbourhood
IK ⊂ I of 0 such that for all (q, t) ∈ K × IK we have

dq(q,F2(q, t)) ≤ CKt.
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Now, let L = F2(K × IK). Because F2 is continuous and F2(K × {0}) = idK , we have that
L is a compact neighbourhood of p. By definition, there is a constant CL > 0 and a compact
neighbourhood IL ⊂ I of 0 such that dq(q,F1(q, t)) ≤ CLt for all (q, t) ∈ L× IL. In particular,

dF2(q,t)(F2(q, t),F1(F2(q, t))) ≤ CLt

as t→ 0. Because dq depends smoothly on the point q, there is a constant C ′L such that

dq(q,F1(F2(q, t), t)−F2(q, t)) ≤ C ′Lt

as t→ 0. So, we have for all (q, t) ∈ K × (IK ∩ IL) that

dq(q,F1 ◦ F2(q, t)) = dq(q,F1(F2(q, t), t))

= dq(q,F2(q, t)−F2(q, t) + F1(F2(q, t), t))

≤ dq(q,F2(q, t)) + dq(q,F1(F2(q, t), t)−F2(q, t))

≤ CKt+ C ′Lt

= (CK + C ′L)t

as t→ 0.

We also have the notion of equivalence, which is a similar notion to the equivalence of paths
rectifiable at t = 0.

Definition 6.8. Two families F1, F2 of segments rectifiable at t = 0 are equivalent if

t−1dF1(p,t)(F1(p, t),F2(p, t))→ 0 as t→ 0

uniformly on compact sets on the domain of F1 ◦ F2. We denote the equivalence by F1 ∼ F2.

6.2 Weighted norms

We will now return more explicitly to the filtered structure, using dilations and privileged coordin-
ates. Ultimately, this will provide a more concrete way of checking whether a smooth path is
rectifiable at t = 0, through checking its behaviour with respect to privileged coordinates, and
giving a more coordinate-based approach.

From now on, we will once again assume that M is a manifold of dimension n, endowed with
a filtered structure ξ1 ⊂ · · · ⊂ ξm = TM . Let ni = rank(ξi), and let X1, . . . , Xn a framing of TM
such that X1, . . . , Xni is a framing of ξi. Lastly, let −ai be the order of Xi.

Given K ⊂ M a compact neighbourhood of p, we can choose a neighbourhood U ⊂ Rn such
that the map

expp : x 7→ exp

(
n∑
i=1

xiXi

)
(p)

is a diffeomorphism from U to its image expp(U) for all p ∈ K. Furthermore, if we fix the point
p ∈ K, we can define

δpt expp(x) = expp(δt(x))

for all t for which the right-hand side is defined. Now, let

ξpi = (expp)ξi.
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Moreover, let
ξpi,t = δtξ

p
i

and
ξpi,∞ = lim

t→∞
δtξ

p
i = lim

t→∞
ξpi,t.

Note that ξp1 ⊂ · · · ⊂ ξpm is filtered structure on Rn which corresponds to the grading introduced
by the original filtered structure.

For the rest of this section, we assume that ||x|| = supi |xi|1/ai . Moreover, we will write || · ||t
when we want to indicate that the norm-distance is with respect to the framing δ∗tX1, . . . , δ

∗
tXn.

Note that || · ||t = || · ||. Moreover, we write || · ||∞ for the weighted norm with respect to the framing
of the nilpotentisation. To indicate the base point, we write || · ||pt or || · ||p∞ or || · ||p.

Lemma 6.9. We have limt→∞||x||t = ||x||∞.

Proof. This follows from the fact that limr→∞ r−aiδ∗r = X̂i for all i = 1, . . . , n.

In the following proposition, we show that the weighted norms are well-behaved when the base
point p varies over a compact subset.

Proposition 6.10. Given ε > 0 and K ⊂ M compact, there is δ > 0 such that for every p ∈ K
and 0 < t < δ we have

(1− ε)||x||p∞ ≤ t−1||δ
p
t x||p ≤ (1 + ε)||x||p∞.

Proof. Fix p ∈ K. We have
||x||t

t||δt−1x||
= 1.

Because limt→∞ ||x||t = ||x||∞ we have

t−1||δtx||
||x||∞

= 1.

6.3 The weighted norm and rectifiability

Because expp : U → expp(U) distorts distances by a bounded factor, we can use the norm-distance
to check whether a curve is rectifiable at the origin through its behaviour with respect to expp and
the dilations.

Corollary 6.11. Let γ a curve in expp(U) ⊂M with γ(0) = p. Then γ(t) is rectifiable at t = 0 if
and only if (expp)

−1δpt−1γ(t) has a limit in Rn as t→ 0. Let this limit be x0. Then x0 is the unique
element in Rn such that t 7→ expp δtx is equivalent to t 7→ γ(t).

Proof. We have

||(expp)
−1δpt−1γ(t)|| = ||δt−1(expp)

−1γ(t)||
∼ t−1dp(p, γ(t))
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as t → 0, where ∼ means distortion by a bounded factor. If γ(t) is rectifiable at t = 0, then
dp(p, γ(t)) is bounded as t→ 0. Therefore, supi |t−ai(expp)

−1γ(t)|1/ai is bounded as t→ 0. Write
xi(t) = ((expp)

−1γ(t))i. Then we have xi(t) = taiyi(t) for all i, where yi is a smooth function. So
limt→0 yi(t) = yi(0).

Lastly, assume that x, x0 are elements of Ra such that

t−1dp(p, expp(δtx)− expp(δtx
0))→ 0

as t→ 0. Then ||x− x0||∞ = 0, so x = x0.

The following lemma shows that there are explicit correspondences between paths and families
of segments rectifiable at t = 0 and smooth paths in U . Especially, we can express paths rectifiable
at t = 0 and families of segments rectifiable at t = 0 as smooth paths or functions on the manifold.

Lemma 6.12. Let x(t) be a smooth path in U with x(0) = 0, and let γ(t) = expp(x(t)). Then the
following holds:

1. γ(t) is smooth, and γ(0) = p

2. γ(t) is rectifiable at t = 0 if and only if limt→0 δ
p
t−1γ(t) = limt→0 exp(δt−1x(t))(p) exists.

3. Let F be a family of segments rectifiable at t = 0. Then limt→0(expp)
−1δt−1(F(p, t)) = x0(p)

exists, and we have
(expp)

−1F(p, t) = δt(x
0(p) + tx1(p, t)),

where x0(p), x1(p, t) are smooth functions. Conversely, any family F(p, t) satisfying this
condition is a family of segments rectifiable at t = 0.

4. Set F0(p, t) = expp δtx0. Then F ∼ F0.

5. The map F 7→ F0 is constant on equivalence classes.

Proof. The first three assertions follow from Corollary 6.11.
We have

t−1dp(p,F(p, t)−F0(p, t)) = t−1dp(p, expp(δt(x
0 + tx1))− expp(δtx

0))

∼ ||x0 + tx1 − x0||∞ → 0

as t→ 0.
Next, suppose F1, F2 are two families of segments rectifiable at t = 0 such that F1 ∼ F2. For

i = 1, 2 we have Fi ∼ F0
i , and therefore F0

1 ∼ F0
2 . So, we have

t−1||δt(x01(p)− x02(p))||p∞ = ||x01(p)− x02(p)||p∞ → 0

as t→ 0. So for all p we have x01(p) = x02(p).

The following two lemmas will allow us to prove that the product on families of segments
rectifiable at t = 0 provides a product on the equivalence classes of paths rectifiable at t = 0, and
therefore a product on the tangent cone.

Lemma 6.13. The product of families of segments rectifiable at t = 0 respects equivalence.
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Proof. Let F1, F2 be two families of segments rectifiable at t = 0. By the previous lemma, we have
Fi ∼ F0

i with
F0
i (p, t) = expp(δtx

0
i ) and Fi(p, t) = expp(δt(x

0
i + x1i )).

It suffices to prove that
t−1dp(p,F1 ◦ F2(p, t)−F0

1 ◦ F0
2 (p, t))→ 0

as t→ 0 uniformly on compact sets in M . We have

F1 ◦ F2(p, t) = expp(δt(x
0
1 + tx11 + x02 + tx12))

and
F0

1 ◦ F0
2 (p, t) = expp(δt(x

0
1 + x02)).

So, we have

t−1dp(p,F1 ◦ F2(p, t)−F0
1 ◦ F0

2 (p, t))

∼ ||δt−1(δt(x
0
1 + tx11 + x02 + tx12)− δt(x01 + x02))||∞

= ||x01 + tx11 + x02 + tx12 − (x01 + x02)||∞
= ||tx11 + tx12||∞ → 0

as t → 0 on compact sets on M . Here, ∼ signifies distortion with a bounded factor. Hence,
F1 ◦ F2 ∼ F0

1 ◦ F0
2 . Because equivalence is transitive, the result follows.

Lemma 6.14. Let x1(t), x2(t), y1(t), y2(t) be paths rectifiable at t = 0 with xi(0) = yi(0) = p0.
Assume x1 ∼ x2 and y1 ∼ y2. Let F1, F2, G1, G2 be families of segments rectifiable at t = 0 with
Fi(p0, t) = xi(t) and Gi(p0, t) = yi(t). Then

t−1dp0(p0,F1 ◦ G1(p0, t)−F2 ◦ G2(p0, t))→ 0

as t→ 0.

Proof. Set
ζi,p = lim

t→0
δt−1 exp−1p Fi(p, t),

so F0
i = expp(δtζi,p). Similarly, set

ηi,p = lim
t→0

δt−1 exp−1p Gi(p, t)

so that G0i = expp(δtηi,p). It suffices to prove that

t−1dp0(p0,F0
1 ◦ G01(p0, t)−F0

2 ◦ G02(p0, t))→ 0 (1)

as t→ 0.
Because x1(t) = F1(p0, t) is equivalent to x2(t) = F2(p0, t), we have ζ1,p0 = ζ2,p0 , i.e. F0

1 (p0, t) =
F0

2 (p0, t). Similarly, we have η1,p0 = η2,p0 , so G01(p0, t) = G02(p0, t). Let p = p(t) = expp0(δtη1,p0) =
expp0(δtη2,p0). Then equation 1 is equal to

dp0

p0, δp0t−1

exp

δt n∑
j=1

(ζ1,p)jXj

 ◦ expp0(δtη1,p0)− exp

δt n∑
j=1

(ζ2,p)jXj

 ◦ expp0(δtη2,p0)

 .
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We have

δp0t−1 exp

δt n∑
j=1

(ζi,p)jXj

 ◦ expp0(δtηi,p0)

= δp0t−1 exp

δt n∑
j=1

(ζi,p)jXj

 ◦ exp

δt n∑
j=1

(ηi,p0)jXj

 (p0)

= exp

 n∑
j=1

taj (ζi,p)jδt−1Xj

 ◦ exp

 n∑
j=1

taj (ηi,p0)jδt−1Xj

 (p0).

As t → 0, we have tajδt−1Xj → X̂j on some neighbourhood of p0. Therefore, as the expression
above approaches

exp

 n∑
j=1

(ζi,p0)jX̂j

 ◦ exp

 n∑
j=1

(ηi,p0)jX̂j

 (p0)

as t→ 0. Hence,
t−1dp0(p0,F0

1 ◦ G01(p0, t)−F0
2 ◦ G02(p0, t))→ 0

as t→ 0.

By the previous two lemmas, it follows that:

Theorem 6.15. Let x1(t), x2(t) be equivalent smooth paths in M rectifiable at t = 0. Let F1, F2

be families of segments rectifiable at t = 0 with Fi(p, t) = xi(t). Then the equivalence class of
F1 ◦F2(p, t) depends only on the equivalence classes of x1(t) and x2(t), and hence defines a product
of elements of the tangent cone at p.
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