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1. Introduction

1.1. Motivation

This section will outline the motivation behind the current research. It is twofold
as two distinct problems gave rise to the research questions.

1.1.1. Oddity.ai

At Oddity.ai, a deep learning pipeline for violence detection was developed to help
video surveillants detect fights more quickly [1], [2]. The system constantly scans
live video feeds and notifies the operator if an incident is detected. This pipeline
has proven to be functional in commercial, real-life scenarios. It is hypothesised
that its performance will improve further if a larger dataset would be available.
However, footage of street violence captured by surveillance cameras is not only
scarce but also privacy-sensitive, especially with recent European privacy legisla-
tion. This means that collecting more surveillance video footage is not a viable
option.

Simulation can offer an alternative when the real thing is not available. For
example, when a physics experiment is too expensive to carry out, a simulation
can deliver an approximation of the results for a much lower price. An additional
advantage is that the simulated world is fully under the control of the researcher.
Because it is not possible to gather enough videos of violence, simulation might
offer a solution for Oddity.ai. This is how the idea of synthetic video footage for
training a better violence recognition system came about.

1.1.2. Dutch National Police

The Dutch National Police is interested in the retroactive identification of burglars
on surveillance footage. They could then determine whether the criminal explored
the neighbourhood in advance. These criminals often have a disguised appear-
ance and the camera circumstances are often rough (for example, bad lighting
conditions or low resolution). Thismakes it difficult to automatically identify crim-
inals from video using common biometrics such as their face. Currently, video
footage is inspected by investigators who try to identify the criminal manually.
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This is a very labour-intensive process.
Research shows that people can be identified by their way of walking (their

gait), which is directly visible from surveillance video. Many recent gait recogni-
tion proposals are grounded in deep learning and this shows great promise [3],
[4]. This raises the question of how we can acquire sufficient data to train these
deep learning models. As the Dutch National Police is looking to recognise gaits
on very varied video footage, the dataset used for training must be very diverse
as well.

A large and robust dataset for gait recognition could be constructed using the
same solution as proposed for Oddity.ai. Motion capture footage of people walk-
ing would be the source motion of the video generation process. A large num-
ber of videos of people walking, with all kinds of environments and appearances,
would be the resulting output.

This scenario is simpler than the violence use case, as there is always just a
single subject and the source motion does not need to be extracted frommonoc-
ular video. Evaluation of the pipeline on this distinct task could provide valuable
information about the pipeline in general.

1.1.3. Combining the two problems

In this work, both violence detection and gait recognition will be addressed. A
pipeline for the generation of synthetic video footage of human motion will be
proposed. The pipeline can take videos containing example motion as input. The
motion will be extracted from the video and stored in an intermediate format. Mo-
tion data recorded with a motion capture suit can also be taken as input directly,
skipping the motion extraction. The pipeline generates datasets that can be used
to train machine learning models for activity recognition tasks that are invariant
to environment and appearance changes.

Researchwill be done into a pipeline for the twoproblems, however, the broader
context of activity recognition from video will be kept in mind. This means that
generic solutions to the arising problems are preferred over solutions that are tai-
lored to gait or violence.

1.2. Background

In this section, some introductory background on the problemwill be given to build
up to the formalisation that is given in Section 1.3.
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1.2.1. The Case for Violence Detection

The automatic detection of rare or anomalous activities (activities of which few
examples are available [5]) from video has the potential to be very useful for so-
ciety. The seconds or minutes that can be saved by automatically and instantly
detecting someone suffering from a stroke in a retirement home could save lives,
for example. Automatically recognising fights in city streets enables authorities
to react earlier and minimise damage suffered by the attacked.

Currently, a growing number of security cameras is being deployed but hu-
man surveillants are still often watching the video feeds. Having humans in place
to monitor all feeds all the time is expensive and they are prone to making mis-
takes. They might miss an incident (due to a large number of video streams) or
get distracted and they cannot react instantly. Human surveillants are also un-
desirable for privacy reasons. No matter how well-trained, humans are inherently
biased, which hinders objective analysis, and are equippedwith a (biological) face-
recognition system. Additionally, human personnel is relatively costly compared
to a computer-based system. In short, human surveillants are not optimal at all.

A computer-based automated detection system would be able to recognise
rare activities quicker and, because of its digital nature, can dispatch alarm sig-
nals right into the appropriate communication systems. With these systems in
place, human personnel would no longer be required to monitor all video feeds.
They could be used to review the fragments for which an alarm was dispatched.
And because only the video features needed for activity recognition are processed
(instead of the entire video, as human surveillants do), such a system would also
be benficial for privacy.

1.2.2. The Case for Gait Recognition

Many surveillance cameras are not actively monitored but are recording so that
footage can retroactively be consulted in case an incident took place. Currently,
police investigatorsmanually inspect every minute of the footage to solve a crime
or build a file on a suspect. The suspect is already known at this stage but often
hours of footage needs to be inspected manually to find this specific person. The
same arguments against human personnel as mentioned earlier apply here; they
have some severe shortcomings regarding this task.

A computer-based system could be beneficial here as well. Firstly, this sys-
tem takes a video of the suspect walking and calculates a representation of their
gait. It then goes over the available surveillance footage, detects all people and
calculates their gait representations. For each of the gait representations, its dis-
tance to the suspect’s gait representation is calculated. Then the footage is cut
into portions if it were not already and is sorted on these distances. The police
investigators are presented with this sorted list and will find the suspect in the
first section of the list, saving a lot of time.
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1.2.3. Deep Learning

The past few years, computer vision has been dominated by upcoming machine
learning methods. Machine learning methods model a target function between
input and output variables that is visible in the data. The estimated function is
used to predict the output variable given some unseen input.

The foundation for modern computer vision was laid with the invention of bi-
ologically inspired convolutional neural networks (CNNs) [6] and the demonstra-
tion that greatly increasing the number of neural network layers can boost per-
formance dramatically [7]. In the computer vision subfield of activity recognition,
currently most state-of-the-art models are based on deep learning and convolu-
tional neural networks [8].

DEEP LEARNING

The subfield of machine learning that focusses on many-layered artificial
neural networks.

Activity recognition and gait recognition are complex tasks. To accurately
model these tasks, a complex model is required. To get an accurate picture of
what the tasks look like, a lot of data with representative examples are required
to learn from [9]. Also, a large and diverse dataset is required to avoid overfitting
when working with complex models.

This is in line with recent computer vision work, most of which is grounded in
deep learning. A recent trend is the construction of larger and larger datasets for
computer vision tasks [10]–[13].

Instead of this supervised learning manner, for which labelled data is required,
alternative learning paradigmsare increasingly popular. These include semi-supervised
learning, which brings unsupervised learning techniques to cope with scarcely la-
belled datasets, and self-supervised learning, which does not require any labelled
data at all. The supervised learning paradigm is still predominant, however.

1.2.4. Dataset Synthesis

Recently, synthetic dataset construction has gained attention because of its po-
tential answer to the data requirements of deep learning. Dataset synthesis is
the construction of entire datasets without obtaining the data points by mea-
surement. This differs from data augmentation, which expands an existing base
dataset (e.g. using extrapolation), as every instance in a synthetic dataset is en-
tirely constructed. Computer vision research is a field that is especially interested
in the use of synthetic data because large amounts of representative data for real-
world tasks is often hard to gather.
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SYNTHETIC DATA

Data that is not acquired by direct measurement but that is deliberately
constructed.

Dataset synthesis can not only easily increase the amount of available training
data but automatic annotation and labeling of data is also among the advantages.
Annotations or labels provide additional information about the scenes in images
and they are used as target output for many computer vision tasks. Take for ex-
ample the task of segmentation, in which a two-dimensional image of a scene is
given and a partitioning of the distinct objects in the scene needs to be estimated.
Segmentations can then be used for reasoning about the object in a picture. The
segmentation task is often approached as a supervised machine learning task.
This means that the ground truth partitioning is used as guidance during training,
and thus needs to be available. Figure 1.1 is an example of a natural image (left)
and two annotations for segmentation tasks (middle and right). When construct-
ing training datasets for these tasks, a segmentation has to be created manually
for every image. This process is known as image annotating and it is a very time-
consuming and expensive exercise. With data synthesis, the ground truth anno-
tations could be generated just as easily as the image itself, as all details about
the scene would be known.

Figure 1.1: Example annotations for segmentation tasks, taken from the Pascal VOC
dataset [14]

Dataset synthesis could thus play a role in answering the hunger for data that
deep learning methods have, by significantly lowering the cost of collecting large
datasets. A lot of research into constructing synthetic datasets for computer vi-
sion tasks has already been conducted [15]–[19]. The majority of research pro-
poses an explicit rendering pipeline to construct synthetic data. This involves col-
lecting virtual (3D) models, combiningmodels and environments into scenes, ani-
mating the scene, applying domain randomisation and rendering this virtual scene
into images or video footage. In contrast to this explicit rendering pipeline ap-
proach, some research proposes learning a generative model. Synthetic datasets
could be constructed by sampling from the generative model. The generative ad-
versarial network architecture is the most promising direction for such generative
models but it is still not mature enough to create convincing video footage. More
on this approach can be found in subsection 2.5.2 of the Literature Study.
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DOMAIN RANDOMISATION

Varying environment or appearance variables during training to stimulate
generalisability outside of training.

1.3. Objective

The following research question will guide this research.

MAIN RESEARCH QUESTION

Can training data, that is synthesised using motion data that is captured
from alternative sources, improve the classification performance of deep
learning-based activity recognition systems?

Alternative sources heremeans data froma different domain than the test data
is from. An example would be to use violence fromHollywoodmovies to generate
synthetic data to train a violence detection model for CCTV footage.

This main research question can be split into the following subquestions:

• ResearchQuestion 1: Withwhat accuracy canwecapturemotion fromvideo
footage using pose estimation techniques?

• Research Question 2: Does training with synthetic data increase perfor-
mance?

• Research Question 3: Do domain randomisation techniques applied to the
extracted motion improve classifier performance?

For the answer to Research Question 1, state-of-the-art pose estimation tech-
niques will be investigated and compared. The performance of themotion extrac-
tor will bemeasured using an errormetric on the 3DPoses in theWild Dataset [20],
the only real in-the-wild 3D poses dataset with a large amount of video footage.
We will also use the Kinetics-400 Dataset as extended by Arnab, Doersch and Zis-
serman [21] as a second evaluation metric. The poses in this dataset are some-
what less strong as they are automatically generated by themethod of the authors
but due to the large amount of video data, it could still provide valuable insights.
The limitations of using pose estimation to extractmotion fromvideo for synthetic
data generation will be discussed and addressed.

Research Question 2 will be answered by training and assessing the perfor-
mance of the systems in question (violence detection and gait recognition). A
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multitude of datasetswill be generated for these training sessions. These datasets
will differ in 1) the amount of synthetic data that is added to the base dataset,
which consists of only real videos, and 2) the proportion of real videos and syn-
thetic videos. The area under the curve of the receiver operating characteristic
(ROC-AUC) will be used as a comparative classification performance measure as
it is a classification threshold-independent measure of discrimination capacity.

For Research Question 3, different sets of synthetic data will be generated
using different applications of domain randomisation. The variables that will be
varied are the background plane, texture (clothing, hair style and skin colour), body
shape and camera angle. For the violence detection task, the number of actors in
a scene will also be varied. An ablation study will be done to gain insight into the
causal effects of the randomisation of these variables.

1.4. Methods

Toanswer themain question of this research, an artefact has to be created (namely
a data synthesiser). This is a problem in and of itself. Because of its practical na-
ture the design science paradigm is adopted. Design science is outcome-focused,
the goal is to design a useful artefact through research and development.

This research will follow the Design Science Research Methodologies as out-
lined by Peffers et al [22], who define the research process as consisting of six
distinct steps:

1. Problem identification and motivation
The research problem is outlined, it is motivated why it is a problem and the
value of a solution is explained. A short introductory exploration of the prob-
lem is offered in Section 1.2. The problem is formalised into research ques-
tions in Section 1.3. More elaborate background on the problem is given in
Chapter 2 with a literature study.

2. Definition of the objectives for a solution
Domain knowledge and the outcomes of the previous step are used to de-
termine objectives for a solution that should be met for it to be successful.
The objectives for a solution, based on the literature study in Chapter 2, are
given in Chapter 3.

3. Design and development
The actual designing and building of the artefact is done. The objectives
from the previous step are used as guidelines. In Chapter 4 the design and
development are described.

4. Demonstration
The artefact is demonstrated and it is shown how it solves the problem.
This can be done using e.g. a case study, simulation or proof. This work will
not feature a dedicated Demonstration chapter but examples can instead be
found in the next chapter. A demonstration will also be given at the defence
of this work.
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5. Evaluation
The artefact is empirically compared with the objectives. This provides an
exact measurement of its effectiveness. In this section, measurements to
answer the research questions will also be provided. The evaluation can be
found in Chapter 5.

6. Communication
The results fromall previous steps are conveyed to an audience. The entirety
of this thesis is that communication. The aggregation of the results from
previous steps and limitations of this study will have a place in Chapter 6:
Discussion.
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2. Literature Study

This chapter will shed light upon relevant work in the research areas of interest.
First, computer vision, in general, will be covered in Section 2.1. The rise of convo-
lutional neural networks and deep learning for computer vision will then be dealt
with (Sections 2.2 and 2.3) and action and activity recognition will be discussed
in depth (Section 2.4). After the stage has been set, the jump will be made to lit-
erature on data synthesis in Section 2.5. Pose estimation will be explored as it is
a component of the theorised solution, in Section 2.6.

2.1. Computer Vision

Computer vision, concerned with giving computers a full understanding of image
content, has always held an important place within artificial intelligence research.
Traditionally, computer vision has approached image processing as a problem
that requires a lot of prior knowledge to be programmed into the solution [23].
Low-level operations, such as edge extraction and specific convolutions, are com-
bined thoughtfully and deliberately to gain a high-level understanding.

The past few decades, computer vision has largely shifted towards a feature-
based and data-driven approach. Biologically inspired convolutional neural net-
works and advancements in hardware were the driving forces behind this shift.
The focus moved from designing representations towards automatically learning
from examples.

This shift did not only take place within computer vision research but it oc-
cured in the whole of the artificial intelligence field. Progress booked with the
representation-based approach to AI, also called symbolic or GOFAI (”Good Old-
Fashioned Artificial Intelligence”), stagnated and the subsymbolic (or connection-
ist) approach gained popularity in research. More detailed background and dis-
cussion of this dichotomy can be found in AI literature of a more philosophical
nature [24].

2.2. Convolutional Neural Networks

In 1980, Kunihiko Fukushima published his work on the Neocognitron [25]. In-
spired by earlier research by Hubel and Wiesel on the human visual nervous sys-
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tem, he developed a neural network model that could self-organise such that it
recognises stimulus patterns.

Hubel andWiesel found that the visual primary cortex consisted of simple cells
and complex cells and that these are organised hierarchically [26]. Simple cells
respond to oriented edges in a specific receptive field, complex cells integrate
(also called ”pooling”) multiple simple cells and are able to respond to patterns
within a larger receptive field. An important aspect of this is that nearby cells in
the cortex represent nearby regions in the visual field. Analogous to these find-
ings, Fukushima proposed a neural network model. This model has an initial layer
of S-cells, responding to local, spatial patterns in the input (modifiable parameter
determine how they response exactly), and a subsequent layer with C-cells that
integrates active S-cells from the previous layer. Pairs of S-cell layers and C-cell
layers are stacked to form a complete model. The Neocognitron has been suc-
cesfully applied by Fukushima to the task of digit recognition.

Figure 2.1: A schematic representation of the Neocognitron, where U0 represents the im-
age input and the following layers contain alternately S-cells and C-cells. Figure from [25]

Almost a decade later, in 1989, Yann LeCun succesfully applied the backprop-
agation algorithm to train a network that is very much like the Neocognitron [27]
and achieved good classification results on a digit recognition task [6].

BACKPROPAGATION

Widely used algorithm for training neural networks given a loss function.
Backpropagation computes the gradient of the model parameters with re-
spect to the loss function. Thismakes it possible to find themodel parame-
ters that minimise the loss function, using gradient optimisation methods.

The kind of neural network described by LeCunn is characterised by the use of
convolution and pooling operations, and it was properly dubbed the convolutional
neural network. Convolution layers iterate over each item in the input and add
them to their local neighbours, weighted by a small matrix called the kernel. This
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works analogous to the S-cells and effectively applies a filter to the input. Each
kernel that the convolution layer applies to the input results in an activation map.
The most important benefit of this is that CNNs can take the spatial geometry of
the input data into account.

After a convolution layer, a pooling layer often follows. Pooling layers take a
featuremap and downsample it (e.g. by replacing 2x2 patches of amatrix by their
maximum value, halving the size of the matrix). This keeps the computational
load within bounds, introduces a non-linearity into the function that the network
models and improves the networks invariance to deformation of the input.

Figure 2.2: The architecture of LeNet-5, the convolution neural network as proposed by
LeCun in [6]. Figure from [28]

LeCun applied his convolutional neural network, named LeNet-5, to digit recog-
nition, just like Fukushima, and achievedgood results because of the spatial aware-
ness of CNNs. The digit recognition models were widely deployed in postal ser-
vices to recognise ZIP codes. However, interest in CNNs beyond digit recognition
declined as they were relatively computationally costly.

2.3. Deep Learning

Although neural network research was already somewhat revitalised with CNNs,
at the beginning of the millennium it was still computationally infeasible to ap-
ply the techniques to larger and more demanding problems such as natural im-
age classification. This changed when researchers started using a graphics pro-
cessing unit (GPU), combined with highly optimized implementations, to more ef-
ficiently train models. This allowed for more and more layers to be added to mod-
els (hence deep learning) while maintaining computational feasibility. The work
of Ciresan from 2010 was among the first to show a significant performance gain
in an image classification task with the use of a deeper model trained using a
GPU [29]. With AlexNet, an 8-layer deep CNN, the biggest blow for deep learning
was struck [30]. It achieved state-of-the-art performance on the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) in 2012 by a very large margin. This
shifted the attention of the whole computer vision field towards deep CNNs and
also sparked interest for deep learning outside of computer vision.
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With this significant increase in the number of layers, these deep neural net-
works gained more capacity to learn from raw input data, automating the feature
extraction process. Deep neural networks can take very large amounts of rawdata
(such as raw pixel data of images) as input. They perform sufficient operations
on them to allow the formation of abstract representations.

2.4. Action and Activity Recognition

The computer vision subfield of action and activity recognition is concerned with
the detection and classification of human actions and activities in video footage.

ACTIVITY

Refers to a subsequent number of actions [31], [32], where each action con-
sists of action primitives, i.e. movements that can be described at the limb
level. For example, the activity ”110 metres hurdling” consists of ”jumping
a hurdle”, which in turn consists of action primitives ”bending right knee”,
among others.

2.4.1. Representation Based vs. Deep Networks Based

In a survey on action recognition methods by Herath, Harandi and Porikli [33], a
taxonomical breakdown of the solutions found in literature is offered. This break-
down follows the symbolic vs. subsymbolic divide we saw before in Section 2.1.

1. Representation based solutions
Solutions that are based on the handcrafted extraction of information. A fur-
ther distinction between holistic and local representation based solutions is
made. The first extract representations of the global state of the body struc-
ture, shape and movement. The latter are concerned with the extraction of
a variety of local representations, using e.g. edges, corners and points of
interest.

2. Deep networks based solutions
Solutions that use a deep convolutional neural network to recognise actions
and activities in a data-driven fashion.

We are only interested in the deep networks based solutions for this work as
the research problem arises from the data-driven nature of deep learning, some-
thing that the representation based solutions do not suffer from. According to an
analysis by Herath, Harandi and Porikli, the state-of-the-art solutions of both types
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perform equally well. This is somewhat surprising as deep learning-based solu-
tions for many other computer vision tasks do outperform representation based
solutions. However, a lack of sufficient training data is among the possible factors
limiting the performance of deep learning models for activity recognition, accord-
ing to Herath et al. Work published after this survey seems to support this thesis,
see e.g. [12], [34] for research in which larger datasets are successfully used.

Different approaches to creating deep network architectures for activity recog-
nition are discussed byHerath et al. They have in common that they try to combine
the spatial awareness of CNNs with a temporal (i.e. time) aspect. Because ac-
tivities take place over time, they cannot be recognised from a single image or
video frame. Qualified methods for activity recognition should thus properly take
the sequence of frames into account, and not just a single frame at a time. Sev-
eral network architectures that take the temporal aspect of activities into account
have been proposed. We follow the categorisation of Herath, Harandi and Porikli
in the following summary.

1. Spatiotemporal networks introduce convolutional layers that also extract
features over the time axis, with convolutional filters (or kernels) that ex-
tend to a third dimension, for time. This operation is called a 3D convolution
as opposed to the original 2D convolution that only spans spatial dimen-
sions. The number of frames that the network accepts is hardwired into the
network structure as it is one aspect of the filter size.

2. Multiple stream networks are inspired by the distinction between appear-
ance and motion found in our brain, expressed as the ventral and dorsal
streams. Two distinct networks, one for object recognition and one for mo-
tion recognition, are combined into a single output score. The object recog-
nition network is a fairly regular CNN that takes single frames as input. The
motion recognition network is also CNN based but getsmultiple optical flow
fields as input.

3. Deep generative models try to learn the underlying distribution of data and
can be used in an unsupervised setting. Especially the auto-encoding net-
work, that contains a bottleneck to compress the feature representation, is
a popular generative model.

4. Temporal coherency networksmodel the coherency between individual frames
in a video. The intuition behind this architecture is that sudden and abrupt
motions are less likely. The applications of generative models and temporal
coherency networks to activity recognition are limited and they are mostly
used in conjunction with other architectures.

5. Long short-term memory networks have an architecture that allows for in-
formation to be persistant over several inputs (i.e. have some sort of short-
term memory). What part of the input should be remembered for a while is
also learnt and is referred to as the long termmemory of the LSTM network.
LSTM units are often incorporated in existing network architectures to add
a temporal component.
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2.4.2. Violence Recognition

Violence recognition is a niche case of activity recognition and it offers some ad-
ditional challenges to overcome. Because violent behaviour is socially controver-
sial, less training data is readily available than for other behaviours. Even though
training data for activity recognition can be found organised in publicly available
datasets, these contain no or few examples of violence. An additional difficulty is
that violence can be both an individual act as well as interactive behaviour. This is
in contrast to e.g. running, which is always individual, or hugging, which is always
interactive.

2.5. Data Synthesis

Recent research indicates that limited available datamight be themain bottleneck
for current deep learning-based computer vision solutions. Sun et al (2017) [9] and
Hestness et al (2017) [35] for example, show that an increase in dataset size can
lead to significantly increased performance. Synthetic data has been shown to be
a very promising way to address this bottleneck [36]. The usage of synthetic data
for computer vision problems goes back to the late 1980s [37] and early 1990s
[38], according to an extensive survey on the topic byNikolenko [19]. It startedwith
data synthesis for more low-level problems, such as optical flow estimation or
stereo image matching, and progressed to higher-level problems, such as object
detection.

Most of the proposed synthetic datasets for computer vision are constructed
with low-level computer vision tasks in mind. Examples of such tasks are depth
estimation and semantic segmentation. To our knowledge there is no work that
looks into constructing synthetic video datasets for violence detection. There is
one work on the use of synthetic data for gait recognition, that of Charalambous
and Bharath from 2016 [39]. The authors use motion-captured data of people
walking to generate large amounts of video footage of simulated humans walking
under different kinds of environment and appearance circumstances. However,
the pipeline proposed by Charalambous and Bharath 1) does not extend to multi-
ple people in one scene, 2) has only 26 motion sources and 3) does not function
from end to end automatically. The current work does address these limitations.
Although Charalambous and Bharath call this data augmentation, we consider this
to be a case of data synthesis as the authors do not have a base dataset of videos
that could be used as-is for their problem but instead have motion-captured data.

The extension to synthetic people, according to the survey by Nikolenko [19],
makes sense for privacy reasons, because of the complexity of manually anno-
tating humans and because of biases in current datasets. However, he notes,
synthetic three-dimensional models of humans are especially hard to create and
because human-related tasks already play such a large role in computer vision,
there already exist good large datasets. This limits the use of synthetic humans
in normal scenarios, limiting it to specific edge cases for which no good datasets
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exist. An alternative is to use simpler methods to extend these existing datasets.
For example, Enzweiler and Gavrilla [40] change colours of clothing and the 2D
body shape of pedestrians to complement an existing dataset.

2.5.1. Domain Adaptation and the Reality Gap

For this work, we are interested in the use of synthetic data to train a model that
will be used for inference in real-world scenarios. Synthetic data and real-world
data have different origins so their distributions are not the same. To use synthetic
data, we now first have tomake the following assumption: whatever is learnt from
the synthetic data is also applicable to real-world data. The research of this as-
sumption is known as transfer learning (TL) and its researchers are interested in
all scenarios where knowledge learnt from solving one problem is applied to an-
other problem. In TL, the problem space where the knowledge is gained is called
the source domain and the problem space where the knowledge is to be applied is
called the target domain. In our specific case, the target domain is recognition on
real-world surveillance video and the source domain is recognition on synthetic
data. Labelled data is not available in the target domain but we can create it for
the source domain, as we control the data synthesis process. The availability of
labels in only the source domain makes the proposal of this work and instance of
transductive transfer learning (see Figure 2.3).

Domain adaption is concernedwith the transformation of the source domain to
increase its similarity with the target domain. The goal is to increase the likelihood
that knowledge learnt in the source domain is applicable to the target domain.
This process is referred to as unsupervised domain adaptation when the labels in
the target domain are not known, as is the case with this work’s topic of interest.

Usually it is necessary to determine how related a task is in both domains be-
fore domain adaptation should be considered. With synthetic data as the source
domain, we have a fair amount of control over the source domain. We thus fabri-
cate a source domain that is as related to the target domain as possible, decreas-
ing the amount of work left for domain adaptation to a minimum.

Training on synthetic data to perform some action on real data, is also referred
to as a sim-to-real transfer in recent literature [42], [43]. Figuring out how to con-
struct synthetic data such that it can be used for a sim-to-real transfer, is closing
the reality gap. Here the reality gap refers to the discrepency between the simu-
lated data and the real data. There is sufficient and diverse work to be found on
closing the reality gap for deep learning methods.

A recent survey by Wilson and Cook (2019) [44] is used as a main guide for
definitions and directions as we take a closer look at the field of unsupervised
domain adaption. Wilson and Cook identify the following distinct approaches:

• Domain-invariant feature learning
Promote the learning of a domain-invariant representation of relevant fea-
tures from the training data. For example, a dogs versus cows classifier
might pick up the environment (e.g. is the animal indoors or in ameadow) as
ameaningful indicator because the training data shows cows in themeadow
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Figure 2.3: An overview of different types of transfer learning. Figure from Pan and Yang
(2009) [41].

disproportionately often. If the trained classifier was used by a veterinary of-
fice to classify animals in the waiting room, it will be wrongly biased towards
dogs because of the indoor environment. Domain-invariant feature learning
tries to prevent this behaviour and can be divided further into:

– Divergence-based
Define a measure of domain divergence, often some sort of statisti-
cal test or correlation measure is picked. In the intermediate layers of
the classifier, try to minimise this divergence measure along with the
primary classification error.

– Reconstruction-based
Train a single network on two tasks simultaneously: classifying labelled
source data and reconstructing target data. The learnt representation
captures information about the classification as well as the target do-
main.

– Adversarial-based
A domain-classifier that tries to determine which domain is behind a
given representation is added as an adversarial to the network that per-
forms themain task. This can also be achieved by directly adding a do-
main confusion loss that acts as an adversarial. TheDomain-Adversarial
Neural Network [45] is a notable example of this.

• Domain mapping
Map the input data from the source domain to make it look like it came
from the target domain before it is used as input to the classifier. This is
often done using a generative adversarial network (GAN), in which a genera-
tive model is trained against a discriminative opponent in a game-theoretic
setting. The GAN architecture is discussed in more detail in Section 2.5.2.
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Simpler visual processing is also suggested [42].

• Normalization statistics
Use techniques like batch normalisation to adapt an already-trained network
to a different domain by changing the batch norm weights when applying
to a different domain. The benefits of using this approach seem limited,
according to Wilson and Cook.

• Ensemble methods
Train multiple instances of a model with different initialisations to filter out
source domain specific errors.

An alternative to domain adaptation for synthetic data is controlled domain
randomisation. This is the intentional application of random permutations to the
synthetic source data, in order to force the model to focus on the item of inter-
est. In Tremblay et al (2018) [46] for example, synthetic cars are rendered on
top of random backgrounds. Random flying shapes are added, the lighting and
viewpoint are randomised and random textures are applied to all objects. They
show that this randomisation in training data can improve the test performance
of an object detection model that is to detect cars. This makes intuitive sense.
A model that works in all of the random environments generated, will likely also
work in the environment of the real world. By training on a variety of values for
environment variables and keeping the motion constantly clear, the features that
will be extracted will become invariant for those environment variables.

2.5.2. Generative Adversarial Networks

More recently, a trend of using generative models to create synthetic data has
emerged. A model is generative when it directly estimates the distribution of data
from training examples. Especially generative adversarial networks (GANs), intro-
duced by Goodfellow et al. in 2014 [47], have been a popular model architecture
in recent literature. GANs build upon the general concept of generative models
and the success of deep discriminative models. Instead of training just a genera-
tive model, the authors propose training a generative model (the generator) and a
discriminative model (the discriminator) simultaneously, in a game-theoretic set-
ting. The discriminator is tasked with deciding whether a given data instance is
real or synthesised by the generator. The generator has to generate samples and
maximise the probability that the discriminator wrongly classifies these samples.

Recent work by Clark, Donahue and Simonyan presents a state-of-the-art video
generating model, DVD-GAN [48]. Their model is able to generate video of un-
precedented high resolution (256x256) and length (up to about 2 seconds). The
videos do have some sort of temporal consistency but that ismostly on the frame-
level. It is hard to identify the contents of most videos and for those videos that
do seem to make sense are still absurd (see Figure 2.4 for example frames).
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Figure 2.4: Frames from videos generated by DVD-GAN, cherry-picked by the authors.
Figure from Clark, Donahue and Simonyan (2019) [48].

2.5.3. Procedural Synthesis

Although the idea of a single generative model that could take care of the entire
data synthesis process is compelling, this research will not take such a direction.
The current state of video generating GANs, along with the immense amount of
training data and computational resources they require, make them unfit for our
purposes. Most data synthesis research implements some sort of explicit and
composable synthesis process that makes use of video rendering software.

Chen et al (2016) built a simple model for the generation of images with syn-
thetic humans in randomised (but plausible) poses and with randomised clothing
textures [49]. Their approach is as follows. First a statistical model was built from
3D poses recorded by a motion capture system. Samples were drawn from this
model and then textured using real images of clothing, also in an automatic fash-
ion. The textured human models were finally rendered using Blender and com-
posed onto random background images. In total 5,099,405 images with 10,556
different human models in them were rendered. They demonstrate that the use
of synthetic data created this way, aids the performance of CNN-based 3D pose
estimators significantly. Without the use of complex physical simulations, but
textures instead, their approach is also very scalable.

Varol et al have shown the potential of synthetic data for the recognition of hu-
mans from video [15]. The SURREAL (Synthetic hUmans foR REAL tasks) dataset
that they constructed, contains videos of synthesised humans composited onto
2D images. The synthesised humans are textured human models that perform
actions that were recorded with a motion capture suit before. The 2D background
images are stills of various scenes and seem to just be there as some sort of
noise, as the synthesised humans are not placed into the scenes in a way that
makes spatial sense (see Figure 2.5). It is also shown in the paper by Varol et
al that is possible to train models on this synthetic dataset that can accurately
estimate human depth and semantic part segmentation.

Doersch and Zisserman, in their work from 2019 [42], show the full potential
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Figure 2.5: Frames from videos in the SURREAL dataset. Figure from [15].

of this dataset. They let their model first extract motion information (optical flow
and 2D joint keypoints) from videos before it executes its primary task (e.g. 3D
pose estimation). Note that this is a case of domain mapping, as touched upon in
the previous subsection. They find that their model is able to bridge the reality gap
even better with this additional step in between. The network, trained on just the
preprocessed SURREAL dataset, is even able to perform on par with state-of-the-
art 3D pose estimation networks, that are all trained on real, manually annotated
data.

The work by De Souza et al (2017) aims to solve a problem that is very simi-
lar to the problem stated in our work [50]. They propose a procedural generation
process for videos ”to train deep action recognition networks” on. The Unity 3D
modelling and rendering environment with the Puppet Master plugin by RootMo-
tion are used to render the scenes. This commercial plugin offers some realistic
looking humanmodels with preprogrammed behaviours and ragdoll physics. The
authors use actions from the CMU MOCAP database [51] and hand-designed ac-
tions bought on the Unity Asset Store. A hand-designed, and thus pretty limited,
virtual world is used as the environment in which the human models are playing
out the actions. The virtual camera levitates behind and above the main charac-
ter, following the movements of the model. The Procedural Human Action Videos
(PHAV) dataset that they produce with this method contains 39,982 videos with
over 1000 examples for each of the 35 action categories. A limitation of this work
with regard to rare activity recognition is that it uses the CMU MOCAP database
as the origin of all motions. This dataset does not contain many rare activities.

Mason, Vejdan and Grijalva (2019) [52] discussmethods to generate synthetic
data ”on the fly”, meaning that it gets synthesised when it is needed, at training
time. The largest advantage of such an approach is that data does not need to be
stored on disk between synthesising and training. The data synthesis parameters
(such as the specific viewpoint or action) can also be more easily tweaked to the
specific needs of the current problem, as it is an active part of the training process.
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Figure 2.6: Left are frames from the generated videos with actions pushing, kicking a ball,
hugging while walking and getting hit by a car. Right is an aerial overview of the entire
hand-designed virtual world used by De Souza et al to place the models in. Both figures
from De Souza et al [50].

2.5.4. Human Models

To generate photorealistic imagery of humans, renderable, 3D models of human
bodies are required. Most research that implements a synthetic human genera-
tion solution, uses some sort of parametric human body model, of which many
are available [53].

SCAPE (ShapeCompletion andAnimation of People) [54] is a pioneeringmodel
proposed by Anguelov et al in 2005. It generates a high-quality mesh of a human
body given the position of 16 body keypoints. The model is learnt from real body
scans and separately accounts from body shape and pose deformation. SCAPE
is used in a lot of research and spawned a variety of models that are based on it.

Figure 2.7: Examples of SMPL model fits to a limited number of keypoints (blue) and full
ground truth poses (grey). Figure adapted from [55].

SMPL (A SkinnedMulti-PersonModel) [55] is amore recent (2015) bodymodel
that is also learnt from body scans. Themodel is fit to the desired shape and pose
by tweaking a 10 shape parameters and 23 pose parameters. It is significantly
faster to run than SCAPE and fits are also closer to ground-truth than the SCAPE
fits [53]. SMPL is freely available for research purposes and is the most popular
parametric body model in recent literature.
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2.6. Pose Estimation

The research area of pose estimation tries to accurately extract the position and
stance of one or multiple persons from imagery. This is done by estimating the
(relative) position of a number of keypoints or human body joints. Because mul-
tiple poses in sequence compose into activities, pose estimation allows human
activities to be extracted from existing videomaterial. Pose estimation could thus
supply us with a larger amount of motion data than current motion-capture-based
datasets. If we curate the source video material for the wanted motion, we could
end up with a motion dataset through pose estimation.

The pose estimation technique needs tomeet certain requirements to achieve
this goal. First of all, it needs to estimate three-dimensional poses from a two-
dimensional image. This is an inherently harder problem than 2D pose estimation
because a 2D pose can have several possible 3D pose explanations. The 2D im-
age thus contains ambiguity regarding the 3D pose. The estimated poses also
need to be temporally coherent, meaning that it must be physically plausible for
an estimated pose to follow the pose estimated for the previous frame. Lastly, the
technique should work on imagery from a single viewpoint. Performance capture
e.g. for virtual character animation is a common application of certain pose es-
timation techniques and for these purposes a studio setup with multiple camera
viewpoints is workable. For the extraction ofmotion from single viewpoint videos,
a monocular pose estimation technique thus is required.

2.6.1. Impact of Deep Learning

Since half a decade, all new and well-performing pose estimation methods are
based on deep learning techniques. This began with Google’s DeepPose, by To-
shev and Szegedy (2014) [56], which first proposed to use deep convolutional neu-
ral networks for this task. DeepPose achieved state-of-the-art performance on
several pose datasets, including the Leeds Sports Pose (LSP) dataset with 2,000
images [57], the Frames labelled In Cinema (FLIC) dataset with 5,003 images [58]
and theMPII Human Pose dataset with around 25,000 images of over 40,000 peo-
ple [59]. Chronologically, improvements include Stacked Hourglass Networks by
Newell, Yang and Deng (2016) [60] and Convolutional Pose Machines by Wei et al
(2016) [61], both of which improved upon the state-of-the-art with innovative archi-
tectures. DeepCut by Pishchulin et al (2016) [62] also set a new best performance
while also able to estimate the poses of multiple people in a single image. Open-
Pose by Cao et al (2018) [63] is a pose estimator with a very good and performant
open-source implementation. This implementation is widely used in academia
and industry. DensePose by Güler et al (2018) [64] estimates dense correspon-
dances between 2D input images and a 3D human body. This means that every
human body pixel in the image is mapped to a coordinate of a human model. Re-
search on pose estimation in crowds is also popular, see for example Golda et al
(2019) [65]. This is challenging because of the huge amount of people to track
and the many occlusions.
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All of the methods mentioned above estimate pose or pose keypoints in two
dimensions.

2.6.2. 3D Pose Estimation

To increase the randomisation optionswhen synthesising data from the extracted
motion, 3D pose information needs to be available. With this information avail-
able, accurate 3D human models that allow for randomisation of body shape can
be used. Three-dimensional information also allows for a modification of cam-
era perspective, rendering the activity from different viewing angles. However, ex-
tracting 3D poses from2D images is significantly harder than extracting 2D poses.
This is mainly because of the larger size of 3D pose space and the possible 3D
ambiguity of a 2D pose.

There are several common evaluation datasets for 3D pose estimation. The
HumanEva-I dataset [66] contains 7 videos of 4 subjects performing 6 actionswith
ground-truth 3D poses. The Human3.6M dataset [17] aims to significantly extend
existing datasets and contains lots of pose-annotated videos (3.6M refers to the
number of video frames). However, these videos are all still in a laboratory setting,
limiting its utility for estimation in-the-wild. The authors also extend the dataset
to mixed reality by rendering 3D models on video backgrounds, to address this
limitation. However, the resulting dataset is limited in size and the movements
are still limited by the laboratory setting in which they were recorded. The Max
Planck Institut Informatik 3D Human Pose dataset (MPI-INF-3DHP) [67] offers
more diversity in poses, human appearance, clothing, occlusion, viewpoints and
environments. This makes it a better dataset for in-the-wild 3D pose estimation
(i.e. pose estimation outside of a controlled environment). The 3D Poses in the
Wild dataset (3DPW) [68] contains 60 annotated video sequences recorded with
a moving camera in various environments. This makes it the biggest and most
challenging dataset for the evaluation of in-the-wild pose estimation methods.

The first fully deep learning-based approach to 3D human pose estimationwas
proposed by Li and Chan in 2014 [69]. Theirmodel regressed from the input image
to the 3D pose directly.

Instead of direct estimation by regression, others found that there is a lot of
information about 3D pose embedded in the 2D pose. Bogo et al (2016) [71] used
DeepCut [62] to estimate 2D joints and then fitted the 3D SMPL body model [55]
to match the 2D keypoints. They called this framework SMPLify and showed that
it achieves state-of-the-art performance. Chen and Ramanan (2017) [72] take a
different but similar approach. Using Convolutional Pose Machines [61] they first
estimated 2D pose keypoints from the image. From a predefined collection of
3D poses, a large number of 2D poses were rendered (i.e. the 3D poses were
’flattened’, viewed from a variety of angles). Using a Nearest Neighbour model,
the estimated 2D pose could then be associated with a 3D pose by matching.
This approach led to state-of-the-art results again. Estimating 3D pose via a 2D
pose is also referred to as lifting the 2D pose to 3D.

Zhou et al (2017) [73]went back to direct regression again. They state that a lot
of depth information is lost by only using an estimated 2D pose for 3D pose esti-
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Figure 2.8: Overview of the BodyNet architecture. Note the intermediate 2D pose, 2D
segmentation and 3D pose losses that allow for tight supervision. The volumetric shape
that is estimated is used to fit a SMPL model. Figure from [70].

mation. However, available datasets in 2017 were either annotated with 2D poses
or were annotated with 3D poses but situated in a lab environment, making them
unsuitable for in thewild tasks. Zhou et al introduced aweakly-supervised transfer
learning solution that partially overcomes the limitations of current datasets.

Kanazawa et al (2018) [74] and others have tried to estimate 3D pose and
body shape at the same time, by estimating SMPL parameters from it, with HMR
(Human Mesh Recovery). This is not a direct pose regression technique but the
pose can be inferred from the fitted SMPL model. Varol et al [70] have noted that
the mapping between human shape and pose and the body model parameters
is currently too hard to learn well. With BodyNet, they propose an alternative: a
fully trainable neural network to directly estimate 3D human body shape, not just
the parameters of a body model. The network is supervised intermediately by 2D
pose, 2D body part segmentation and 3D pose. The final result of the network is
a volumetric estimate of the human body shape and pose, see Figure 2.9 for their
architecture. Varol et al use this estimate to fit a SMPL model instance, outside
of the network structure.

Kolotouros et al [75] proposed SPIN, which combines the twomain paradigms:
lifting 2D poses and directly regressing 3D poses. SPIN first regresses a 3D fit and
subsequently uses this as a starting point for the iterative process of fitting a 3D
pose to 2D joints.

2.6.3. Temporal Pose Estimation

All methods discussed so far focus on pose estimation on single images. To
extract actions and activities from video, however, the estimated poses need to
make sense from frame to frame. As it turns out, simply applying 3D pose esti-
mation methods to videos causes jitter in the output poses, making the extracted
activities less physically plausible. There is also additional information present
in a sequence of poses. Previous and next frames can remove pose ambiguity
from a certain frame because the transitions must be physically plausible. There
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thus is a need for taking the temporal coherency between frames of a video into
account in terms of motion and body shape.

Figure 2.9: Demo of the MonoPerfCap system. Figure from [76].

A lot of work in this area has focused on a controlled setting where multiple
cameras are available, for example Fusion4D by Dou et al (2016) [77]. The authors
have properly dubbed this performance capture as this seems to be the primary
goal of much research in this direction: offering a motion performance capture
solution e.g. for themovie industry. Xu et al [76] andHabermann et al [78] were the
first to take the leap to monocular video but still focused on performance capture
very much. This means that their approaches require a 3D body scan of the actor
in the video to use during the process.

Peng et al (2019) [79] have added a reinforcement learning component to solve
temporal incoherencies in capturedmotion. They use a standard 3D pose estima-
tion pipeline to extract raw motion from video. Reinforcement learning is used to
make a simulated virtual character imitate the rawmotion while being subject to a
physics system. This not only smoothens the motion, as the physics do not allow
the character to stutter but also allows for the environment or the character to be
modified and the motion to be adapted to it in a physically plausible manner. Ac-
curacy of the fit is traded for plausibility within the physical simulation, however.
This approach is also quite computationally intensive, as is requires an entire mo-
tion policy to be learnt using reinforcement learning for every motion, on top of
the usual pose estimation.

Wang et al (2019) [80] introduced 3D human pose machines that are able to
self-supervise. Self-supervision is a feedback signal that does not rely on manu-
ally created labels for the data. The self-supervision by Wang et al is realised by
first making an initial 3D pose guess along with a direct 2D pose estimate. It is
assumed that this estimated 2D pose is accurate. The 3D pose guess is then pro-
jected to a 2D pose, which is compared to the direct 2D pose estimate. Feedback
from this comparison allows the 3D pose estimate to be further refined. Here the
projected 2D pose is the signal and the results from the comparison is the self-
supervision. The 2D-to-3D module also contains long short-term memory (LSTM)
layers that capture the temporal dependency of the frames. Amajor benefit of the
3D human pose machines is their lightweight architecture, allowing them to run
near real-time. See Figure 2.11 for an overview of their architecture.

In research by Pavvlo et al (2019) [81], a one-dimensional dilated convolution
over 2D pose estimations for all frames is used to catch the temporal aspect.
This means that first for each frame a 2D pose is estimated and then 2D poses
for multiple frames are combined by the dilated convolutional layer to make a 3D
pose estimation. See Figure 2.12 for a schematic view of the architecture. The
authors report competitive performance both in terms of accuracy (state-of-the-
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Figure 2.10: Left: overview of the SFV framework by Peng et al (2019) [79]. A pose estima-
tor extracts motion from video and a simulated character is learnt to imitate the motion
using reinforcement learning. Right: comparison between motions generated by differ-
ent stages of their pipeline. From top to bottom: the input footage, estimated 3D poses,
estimated 2D poses and imitated motion. Both figures from Peng et al.

art on several tasks) and cost-efficiency. All video frames do need to be available
beforehand, which is a limitation for real-time purposes but not ours.

A similar method is proposed by Arnab, Doersch and Zisserman (2019) and is
based on bundle-adjustment, the problem of reconstructing a 3D scene frommul-
tiple 2D views of that scene [21]. The authors argue that the overall body shape
of a person does not change throughout the video and multiple views throughout
the video can provide useful information about this shape. Their method initially
also estimates the 2D pose for each frame. After this, all estimates are taken
together, at once, by the bundle-adjustment component and an optimised estima-
tion is formed.

Human Mesh and Motion Recovery (HMMR), as proposed by Kanazawa et al
(2019) [82], directly estimates a temporally coherent 3D pose sequence from 2D
images. A window of frames is compressed into a representation of human dy-
namics, which is used to predict the current poses as well as past and future
changes to the pose. As usual, 3D ground truth is used to calculate loss during
training. HMMR can also train using a 2D reprojection error if 3D ground truth is
not available (but 2D is).

The VIBE method by Kocabas, Athanasiou and Black [83] uses a simple CNN
plus recurrent neural network architecture to generate 3D meshes. They trained
this generator network with an adversarial motion discriminator, in a GAN-like
manner. This discriminator has access to a dataset of motion capture data to
determine whether a motion is genuine. The large dataset of motion capture data
is an attempt to capture the space of possible human motions. This seems to be
an essential part as the rest of the VIBE architecture is very simple.

All beforementioned temporally coherent methods take just a single pose into
account. This can be partially solved by cropping the video around a single person
and recombining the pose estimates afterwards. Kocabas, Athanasiou and Black
[83] have taken this approach for their demo of VIBE and are thus able to estimate
the 3D pose ofmultiple people in a single video. However, they do not estimate the
3D spatial relation between each of these people, just the scale and translation as
seen from the original camera viewpoint. This makes it impossible to construct a
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Figure 2.11: Overview of the 3D human pose machine architecture. Note the comparison
of 2D poses for self-supervision and the two LSTM layers for temporal dependencies.
Figure from Wang et al [80].

Figure 2.12: Schematic view of the dilated temporal convolution of Pavllo et al. By tak-
ing past, current and future 2D pose estimates into account, long term dependencies are
taken into account. Figure from Pavllo et al [81].

correct and complete 3D scene from the estimated poses.
All beforementioned methods also cannot estimate the spatial relations be-

tween people. Most methods estimate scale and translation parameters for a
weak-perspective camera. This allows a rendered 3Dmesh to be scaled and trans-
lated in such a way that it overlays the person in the original video but does not
allow for accurate 3D scene reconstruction.

Mehta et al (2019) [84] propose a method that is able to estimate multiple
temporally coherent 3D poses from a video and localise these estimates in 3D
space. They do so by showing a checkerboard at the beginning of the video to
calibrate the camera parameters, exploiting any visible ground plane in the video
and estimating a fixed height for each person when they first appear in frame.
This does require the camera to be stationary. At the time of writing, the paper by
Mehta et al was not yet published and was still undergoing changes. The authors

27



Figure 2.13: Schematic view of the VIBE architecture. SMPL parameters are estimated
per frame of the input video using a network with a temporal compontent. The generator
is trained in an adversarial manner against a motion discriminator that has access to a
motion capture archive. Figure from Kocabas, Athanasiou and Black [83].

did not want to discuss further details or share code before publication so an
exact reproduction of their method was not possible.
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3. Solution Objectives

With the exploration of existing literature taken into account, the following objec-
tives to guide the design process and to evaluate its result can now be defined.
These objectives are to be met by the data synthesis solution to be evaluated on
the research questions.

3.1. Input/Output

The pipeline should be able to take monocular video files as well as motion cap-
ture files as input. This objective finds its origin in the different use cases of
the pipeline. For Oddity.ai, the input should be videos of violence. Copyright-free
videos of violence are abundantly present on the internet, while motion-captured
violence data is rare. The pipeline should be able to leverage themotion present in
such videos. For the Dutch National Police, however, the input could be direct mo-
tion capture data of people walking, to train a gait recognition model on. These
are easy to find in existing motion capture databases and easy to manipulate.
This eliminates the need to the extract motion from monocular video, a process
that introduces uncertainty about the motion data. Performance-wise this is also
beneficial, of course, as no motion extraction needs to take place.

The input files should be accompanied by their respective target labels. For
the violence detection use case, this denotes for each video whether it contained
violence or not. For the gait recognition use case, each person should be tagged
with a unique label. The pipeline should take this annotation into account and
should label synthetic videos with the right class. It should be possible to cre-
ate synthetic videos in which just a single class of motion is present or in which
motions from multiple classes are combined.

The pipeline output should be a set of videos. The resolution of these videos
should be a parameter of the pipeline. References must exist from the synthetic
output videos to the sourcemotion and the corresponding target label. With these
references in place, an annotated dataset is formed of which each video can be
traced back to its origin motions.
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3.2. Performance

Since the pipeline will be based on deep learning techniques, a graphics process-
ing unit is required to be present in the host system. To keep the barrier to entry as
low as possible and to promote usability and reproducibility, it should be feasible
to generate a dataset using the pipeline on a consumer-grade GPU.

The pipeline should be able to generate at least several hours of novel synthetic
video at a minimum resolution of 640x360 pixels in less than 48 hours. This is
based on the fact thatmost popular video datasets for activity recognition contain
at least several hours worth of footage. Take for example the UCF101 dataset [85]
with about 27 hours in total, Hollywood2 [86] with 20 hours, KTH Human Activity
Recognition [87]with almost 3 hours. More recent, commonly used datasets, such
as Kinetics-700 [12], Sports1M [88] andHACS [89] contain in the order of hundreds
of hours of video.

3.3. Accessibility and Reproducibility

To ensure accessibility and reproducibility, the pipeline should work with as much
publicly available research results and software as possible. This means that
the reference implementation as offered by this research should use off-the-shelf
components with licences that allow anyone to use them for research purposes.
These components include amachine learning framework, a rendering engine and
a 3D human body model.
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4. Design and Development

This chapter describes the overall design of the pipeline, goes into detail on all
components and motivates design choices.

4.1. Overview

At the highest abstraction level, the pipeline consists of two phases. These are
the motion extractor phase and the video synthesiser phase. During the motion
extractor phase videos are processed by a pose estimator to estimate humanmo-
tions that will be used in the synthetic videos. During the video synthesiser phase
extracted motions are combined into scenes that are rendered to videos. These
phases can be ran through standalone, to just extract motion or just synthesise
videos frommotion (pre-extracted or pre-existing, such asmotion-captured data),
or in sequence, to first extract motion from video and then synthesise new video
containing those motions. See Figure 4.1 for a schematic overview.

Video Synthetic
Dataset

Motion
Capture
Data

Multi-Person
Tracking

3D Pose
Estimation

Pose
Smoothening

Scene Construction RenderingOpenpose

Extractor Synthesiser

YOLOv3

MaskRCNN

Temporal
SMPLify

Motion
Sampler

SMPL Human
Model

Randomiser
Blender

VIBE

Figure 4.1: Schematic overview of the synthetic data pipeline. The motion extractor and
video synthesiser phases are visible in respectively blue and yellow. Within each phase,
subphases and important components are visible.

The Python implementation of the pipeline can be found in a private repo1 to
which access is granted upon request.

1https://github.com/oddity-ai/SYDAMO
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4.2. Motion Extractor

The selection of a pose estimation technique is guided by the literature study in
Section 2.6. A major requirement is for the cost-effectiveness of the technique
to be reasonable, i.e. finding the right balance between motion plausibility and
estimation speed. Plausible motions are of course preferred but the performance
objective (in terms of speed) as stated in the previous chapter, should also bemet.

Reinforcement learning-based techniques, such as those of Peng et al (2019)
[79] are at the motion plausibility end of this tradeoff but are too slow for our
speed objective. Peng et al use an ensemble of pose estimators and train a rein-
forcement learning policy per motion, making their method orders of magnitude
slower. Of the other methods we report on, VIBE, being the most recent one, is
chosen as its authors report improvements over some earlier methods. It is quick,
accurate and accounts for temporal consistency. An additional benefit of VIBE is
that it directly regresses towards pose and shape parameters for the SMPLhuman
body model (see Subsection 2.5.4 for more details on SMPL). This means that no
additional step is required to get from estimated 3D pose to a human body mesh.

As mentioned in the literature study, a limitation of all 3D pose estimation
methods that are described, is that they fit the pose of just a single person. The
authors of VIBE implemented a demo in which they use a multi-person tracker to
crop the video into parts that all contain just a single person. These video parts are
then fed to VIBE and 3Dposes are estimated. We adopt thismethod in our pipeline
too. Specifically, YOLOv3 [90], MaskR-CNN [91] and Openpose [63] are supported
to find crops in the video. YOLOv3 and MaskR-CNN both are widely used object
detectors. Both detect multiple classes of objects but our pipeline only uses the
human class detections as the basis for crops. Openpose is an open-source pose
estimation library that can estimate 2D poses of multiple people at once. VIBE
optionally uses the extracted 2D poses to further optimise the estimated SMPL
parameters. This is done by extending the SMPLify method of Bogo et al (2016)
[71], as touched upon in Section 2.6. Temporal SMPLify, as the authors call it, also
optimises the fitted SMPL model using constraints for a smooth pose and con-
sistent shape over time. However, insignificant improvement of pose plausibility
when using Temporal SMPLify is reported.

VIBE’s demo implementation also provides a renderer that shows the esti-
mated poses over the original video. However, the poses are first rendered in-
dividually and then translated and scaled back onto the original video using the
crop dimensions as found using YOLOv3, MaskR-CNN or Openpose. This leads
to a convincing render of multiple poses on the 2D plane of the original video. But
actually, no real spatial information on how different poses relate to each other is
known. This cannot be expected since the input to VIBE is just the single person
crop, so no real understanding of the entire scene can be formed.

To guarantee a constant framerate for the extracted motions from different
source videos, each source video is first converted to have a framerate of 24
frames per second. All motions that are directly obtained from motion capture
suits throughAMASSare also converted to 24 frames per second by subsampling.
Typical motion capture framerates are high enough to allow for accurate interpo-
lation to 24 frames per second. For example, all recordings in the CMU MOCAP
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person

Figure 4.2: An example of the two first steps in themotion extraction processwith YOLOv3
or MaskR-CNN. First, all people in the video are detected and crops are made. Then, for
each of these crops a 3D mesh is fitted using VIBE.

database are captured at 120 Hz, which subsamples perfectly to 24 frames per
second.

4.3. Video Synthesiser

4.3.1. Modelling and Rendering Environment

As seen in Subsection 2.5.3, procedural synthesis approaches currently have ma-
jor benefits over alternative methods such as the use of GANs to generate video
(see Subsection 2.5.2). To implement such explicit and procedural video synthe-
sis, 3D modelling and video rendering software is required. The most important
capabilities are the composition of scenes in 3D, including the manipulation of a
3D human model, the animation of the human models in those scenes and the
rendering of a video of the scene. To ensure the accessibility objective of the
pipeline, all software must also be free for anyone to use.

After looking into Cinema4D [92], Unity [93], Unreal Engine [94], 3ds Max [95]
and Blender [96], the latter turned out to be the best option for this research. First
of all, Blender integrates 3D modelling and video rendering into a single piece of
software. Blender also lends itself very well to scripting. Its user interface is built
on top of a Python API that is entirely available to the user 2. All Blender function-
ality can be used via this API and a Python script. Another major advantage of
Blender is its open-source nature, which lowers the barrier to entry enormously.
This could also be amain reasonwhy Blender is themost widely used 3D software
in related research, judging from our literature study (see Subsection 2.5.3).

2https://docs.blender.org/api/current
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4.3.2. Motion Sampling

Each synthetic video that is to be generated, is in essence a subset of the (ex-
tracted) motions. How these subsets should be obtained from the set of all avail-
able motions depends on the use case of the synthetic dataset.

For the use case of gait recognition, for example, only one motion should be
present at a time. For the use case of violence detection, multiple motions could
be present and the subset size does not always have to be the same. The max-
imum size of the motion subset thus is made configurable. For each synthetic
video, a subset size is sampled from a uniform distribution U(1,m)wherem is the
configurable maximum number of motions per video.

Each motion file is annotated with a class. When m > 1, motions of different
classes could be present in the synthetic video’s motion subset. It depends on
the use case of the synthetic dataset whether this is desired or not. How the
synthetic video should be annotated, can also differ from use case to use case.
Thismotivates a generalisation to three class combination strategies of which one
can be used at a time:

1. Pure
Only motions of the same class are selected and combined into a scene.
The synthetic video naturally is annotated with that class.

2. Mixed
Motions are combined regardless of their class. The synthetic video is an-
notated with all classes that are present in the scene.

3. Dominant
Motions are combined regardless of their class. The synthetic video is anno-
tated with the class name of the dominant class, if it is present. Otherwise
it gets annotated with all classes that are present in the scene. Note that
this can also be achieved with the mix strategy and postprocessing of the
annotations.

Consider our use cases again. For gait recognition m = 1 so these strategies
do not cause different output. For violence detection the dominant strategy will
be used for the violence class: when a violent motion is included, the entire video
should be marked violent. These strategies cover alternative use cases as well
since the mixed strategy can easily be combined with a mapping from present
classes to the desired class annotation. E.g. classes throw punch and being
punched might both be present in a given video and this could be annotated with
punch using a simple association mapping.

4.3.3. Body Model

Based on the literature study on body models in Subsection 2.5.4, the SMPL body
model is the most obvious choice because of its speed, physical plausibility and
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popularity in literature. With VIBE as the preferred backbone of our motion extrac-
tor, this choice is confirmed, as VIBE directly estimates a SMPL model fit.

The SMPL model is parametrised by Θ, which consists of θ for the pose and
β for the shape. Specifically, θ ∈ R72 and each triplet is a rotation vector in the
axis-angle representation. The first rotation vector indicates the global rotation of
the body. The remaining 23 rotation vectors denote the rotation of each of the 23
joints. These do not include joints in hands and feet, which are thus always in the
same pose. β ∈ R10 for the 10 shape coefficients that were obtained from body
scan data. Unlike the 23 joints, which are manually determined and anatomically
grounded, the shape coefficients do not have an intuitivemeaning because of their
origins from data.

AXIS-ANGLE REPRESENTATION

A common representation of rotation in 3D Euclidian space. Given a unit
vector (vector of length 1) e that indicates the direction of the axis of rota-
tion and θ that indicates the amount of rotation, the axis-angle representa-
tion equals θe. Sometimes this is also written as a vector of length 4 where
the first 3 items are e and the last item is θ.

On the project website of SMPL3 the 3D model is provided in the FBX format,
which is a widely used file format for storing 3D models, and which is supported
by Blender [97]. The 3D model includes all SMPL joints organised in a kinematic
tree. This means that the rotation of joints higher up the tree cause lower joints to
also move along. For example, rotating the right shoulder joint causes the elbow
joint to change location.

With Blender, this body model can be painted using texture image maps and
a shader. The texture image map is an image whose pixels mapped to certain
regions of the body model. We build upon SURREAL [15] and use their texture
maps to paint our body models. These include maps that are extracted from the
CAESAR body scans as well as new body scans. The faces in these textures have
all been anonymised by replacing them with the average CAESAR face and then
correcting the colour for the skin colour according to the rest of the body. In total
there are 930 body textures that our pipeline will uniformly sample from.

4.3.4. Animation

The extracted motions contain SMPL pose and shape parameters for each time
step. This determines the maximum length of the animation. The SMPL FBX
model has function B_S that maps shape coefficients β to a deformation of the
model mesh built-in. This makes it straightforward to apply body shapes from
the (extracted) motion files. The pose parameters are converted from axis-angle
representation to full rotation matrices using Rodrigues’ formula. These rotation

3https://smpl.is.tue.mpg.de/downloads
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Figure 4.3: The SMPL body model imported in Blender. The top-right pane shows the
kinematic tree of model joints.

matrices are then applied to each joint in the SMPL model and keyframes are set
in Blender to create an animation.

RODRIGUES’ FORMULA

Formula (named after Olinde Rodrigues) to rotate any vector v using a ro-
tation in axis-angle representation.

vrot = v cos θ + (e× v) sin θ + e (e · v)(1− cos θ) ,

where v is a vector in R3, e is a unit vector that indicates the direction of
the axis of rotation and θ is the amount of rotation.

In this phase, itmight also be useful to apply a smoothing algorithm to the pose
data. Motion capture data can be noisy and the extractedmotions from VIBE also
contain data distortions. We resort to the findings of Poppe, Van Der Zee, Heylen
and Taylor (2014) [98] and optionally apply a moving median filter to the rotation
matrices. As suggested by Poppe et al, we implemented this filter with a modest
window size of 0.25 seconds.

Applying the right translation, along with the animation of the joint rotations as
mentioned above, would make the animation convincingly realistic. This makes
intuitive sense. For example, ’jumping’ expresses not only in explosively stretching
the knee joints but also in moving through space vertically.

A major limitation of the motion extraction phase, however, is the lack of infor-
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mation about the location of the persons in the scene’s 3D space. When multiple
motions are extracted from a single video, it is not known how these relate to
each other spatially because there is no real 3D understanding of the scene in the
source video. Per individual person a 2D translation and scale, in terms of the di-
mensions of the source video from which the motion is extracted, is estimated by
VIBE. This can be used to project the estimated 3D mesh back onto that original
source video such that is overlaps the source person. Though the 2D translation
and scale do convey some limited amount of information about the 3D transla-
tion (the scale could be interpreted as the missing depth axis), more information
is required for a real and accurate 3D translation animation. This means that the
translational motion information is not captured correctly. The earlier example
of ’jumping’ thus cannot be accurately implemented as there is no access to the
vertical translation details.

However, a complete lack of translation is undesirable as it is unnatural for all
actors in a scene to notmove around. For this reasonwemade a fewassumptions
aboutmovement and placement of themodels to allow the algorithmic generation
of random walks, which will be used for the translation animations.

Movement and Placement Assumption 1: We assume all models can be per-
manently placed on the same ground plane without invalidating the motions (i.e.
without the essence of the motions as described by joint rotation being lost). We
think this is reasonable because most people spend by far most of the time with
at least one foot on the ground in real life.

Movement and Placement Assumption 2: We assume the models can move
around the scene semi-randomly without invalidating the motions. Under certain
constraints for physical plausibility, such as momentum and a range of possible
speeds, we think this is also reasonable.

Movement andPlacementAssumption 3: We assumeacertain collision avoid-
ance tendency of the models to prevent them from walking through each other.

The randomwalk generation procedure is as follows. Eachmodel in the scene
is first assigned coordinates x0 and z0 of an initial location on the ground plane,
where z0 ∼ U(0, 5) and x0 ∼ U(−x′, x′), where x′ is an approximation of the field of
view of the 45◦ perspective camera as in Equation 4.1 to ensure that the models
are always in view. No random jumps or falls are generated.

x′(z) = 0.375z + 1.6 (4.1)

Initial horizontal speeds are sampled: vx0 , v
z
0 ∼ N (0, 0.005). Then for each

animation time step t after t = 0 the coordinates xt and zt are updated with a
delta value, see Equations 4.2 and 4.3.

xt = xt−1 +∆xt (4.2)

zt = zt−1 +∆zt (4.3)

If a collision with anothermodel happens after the coordinate update, it is tried
again. The delta values are sampled fromanormal distribution centred around the
speed values with a very small standard deviation that increases with the number
of tries, see Equations 4.4 and 4.5 where n is the number of tries thus far.
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Figure 4.4: Randomwalks generated by our algorithm. Left: 5 randomwalkswith collision
avoidance. Right: 15 random walks without collision avoidance. Note how the camera
field of view becomes visible by the limits of the random walks.

∆xt ∼ N (µ = vxt−1, σ = 0.0025 ∗ (1 + (n mod 10))) (4.4)

∆zt ∼ N (µ = vzt−1, σ = 0.0025 ∗ (1 + (n mod 10))) (4.5)
This way models either speed up or slow down to avoid collisions. At each

time step, the speed values are also updated.

vxt ∼ N (vxt−1, 0.0005) (4.6)

vzt ∼ N (vzt−1, 0.0005) (4.7)
The speed values also approach 0 when the model approaches the borders

of the visible part of the ground plane in order to prevent the from disappearing
off-screen.

Figure 4.4 depicts someexamples of randomwalks generated by the described
algorithm.

4.3.5. Background Images

In Subsection 2.5.3 it became clear that it is not necessary to place synthetic hu-
mans in convincing 3D scenes if the purpose of the data is to train a deep learning
model with a human-centred task such as activity recognition or pose estimation.
This is apparent in SURREAL [15] in particular. In this work synthetic humans
are rendered on top of images and the results achieved with human recognising
CNNs trained on the synthetic dataset are very competitive. The point made is
that realistic and diverse background images increase robustness of the trained
models and that these models do not develop a spatial understanding of scenes
they are presented with anyway. In SURREAL it is theorised that any effort to cre-
ate convincing 3D scenes and to realistically place the human models in there, is
not needed to achieve competitive performing human-centred models.
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The LSUN dataset [99] is used by Varol et al for SURREAL. This dataset con-
tains roughly 10 million images of 10 scene categories. Only the kitchen, living
room, bedroom and dining room categories are used and all images with humans
are removed, which leaves around 400,000 images remaining.

Figure 4.5: Collage of some scenes found in the Places dataset. Figure from [100].

Our pipeline is built to use any dataset of background images. For our evalu-
ation experiments, a subset of the Places database [100] is used. This database
also consists of roughly 10 million images but is more diverse with a total of 434
scene categories. We took the evaluation subset of Places, which contains 22
thousand images, to generate our evaluation videos with. All backgrounds were
processed by a multi-person detector and those with people depicted were ex-
cluded from our synthesis pipeline.

4.3.6. Virtual Camera

To create video footage of the 3D scenes, a virtual perspective camera is placed
in the scene. The camera is equipped with a lens that has a field of view between
45◦ and 55◦, which rougly equals a focal length of 30− 38mm. This ranges from a
slightly wide to a standard lens, which is common for surveillance cameras.

The camera is tilted 0◦ to 15◦ downwards, the exact angle is determined ran-
domly for each synthetic video. This is motivated by the fact that most surveil-
lance cameras are located on poles or are attached to buildings, pointing slightly
down. When the tilt angle increases, the vertical position of the camera also in-
creases slightly, such that all body models are always in view. The amount of
variation in the camera tilt angle can be set using a pipeline parameter.

4.3.7. Scene Lighting

In real life, lighting conditions are endlessly different, depending on timeandplace.
There aremany light sourceswith a large variety of strengths and at a large variety
of distances of the subjects in a scene. The sun is often responsible for a major-
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ity of available light but reflections of sunlight via objects in a scene also play a
big part in lighting subjects. Indoors artificial sources of light also take a part in
lighting. This results in an extremely complex and interconnected collection of
variables that determine the exact lighting.

In our modelling environment simplifications have to be made for the sake of
technical feasibility and interpretability. The first variation-introducing component
is a brightness adaptation mechanism take partly takes the background image
into account, as an analogy for the environmental influences in the real world.
The second component is a mechanism to change the position or direction of the
lighting. Two options, or lightmodes, that implement thesemechanisms but differ
in the number of lights, the range in which they are positioned and the range of
their brightness are implemented.

Figure 4.6: Visualisations of the two light modes. Left is the ambient light mode. Right is
the direct light mode. In both the camera and body model are also visible.

The first mode, referred to as the direct light mode, two lights are placed high
up in the air. This is motivated by the fact that most scenes are lit by a primary
light source that is high up in the air, such as a lamp or the sun. The primary light in
this mode has a light-emitting power of 12500 ∗ l watt, where l is the average pixel
value of the background image and 0 ≤ l ≤ 1. This light is positioned on the same
Y-axis as the camera, with x = 0, always just behind the human model with z = 6
and in the air with y = 15. The secondary light in this mode has a light-emitting
power of (0.75∗l+0.2∗r+0.05)∗20000watt, where r is a uniformly sampled random
value between 0 and 1. This can be thought of as consisting of three components:
0.75 ∗ l makes sure that this light adapts to the background, 0.2 ∗ r is a random
variation and 0.05makes sure that it is never totally dark. The coordinates for this
light are determined as follows: x ∼ U(−12, 12), z ∼ U(−12,−2), y ∼ U(9, 19).

The second mode, referred to as the ambient light mode, is motivated by the
fact thatmostmodern surveillance cameras are equippedwith high dynamic range
(HDR) [101], [102]. HDR is a technique that combines a slightly underexposed
shot and a slightly overexposed shot into a single frame to combat loss of detail
that can occur when there is toomuch contrast (such as hard shadows caused by
bright lights) in a scene. By smartly combining themost detailed regions of differ-
ently exposed shots, as much detail as possible is combined into the final image.
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This process balances out the sharp light conditions and effectively lowers the
contrast.

To simulate HDR in our modelling environment, two grids of 3 by 3 lights are
placed before and after the human model (as seen from the camera). The grids
are deformed a bit such that a semi-spherical formation of lights around the sub-
ject is formed. See Figure 4.6 for a visualisation of the lights in 3D space. All
lights have a light-emitting power of (0.5 ∗ l + 0.5) ∗ 500 watt, where l again is the
average pixel-brightness of the background image. These lights thus have amore
constant light-emitting power than the lights in the direct light mode. Light is also
coming from all directions because of their numbers and placement.

Figure 4.7: Renders of the same human model under the two different light conditions.
Left is the ambient light mode, right is the direct light mode.

In Figure 4.7 the two light modes as seen from the camera’s perspective can
be compared. Note the increase in contrast and sharper shadows in the direct
mode compared to the ambient mode. The is especially visible on the neck, legs
and the area around the chest and armpit.

All lights in bothmodes are omnidirectional lights as offered by Blender, mean-
ing that they shine equally bright in all directions. The difference in performance
that these two light modes result in will be evaluated in Chapter 5.
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5. Evaluation

In this chapter the experiments that are performed to evaluate the data synthe-
sis pipeline are introduced and discussed. These experiments are guided by Re-
search Questions 1-3. The importance of variance in all available parameters of
the pipeline is investigated using an ablation study. In this study variance in the
value of one pipeline variable at a time is brought to a minimum. The resulting
synthetic data is then used to train a model and the trained models are compared
to draw causal conclusions about values of the pipeline parameters. The impact
that synthetic data can have on activity recognition performance is also experi-
mentally assessed. This is done by training a model several times on datasets
that differ in their composition of real and synthetic data.

As introduced in Chapter 1, gait recognition and violence detection are the two
experimental cases chosen to evaluate on. Gait recognition is considered first
because it is simpler than violence detection in several key aspects: just a single
person is involved and motion capture data is readily available. It will function as
the subject of our ablation study. Violence detection will be considered as a real-
life and production-ready test of the benefits of using synthetic data for training
purposes. Here we will evaluate the impact synthetic data can have on an already
high-performance deep learning system.

The results and discussions of both experiments serve to answer the main
research question in Chapter 6.

5.1. Gait Recognition

This section provides more details on the task of gait recognition in preparation
for its use in the ablation study.

5.1.1. Objective

At the Dutch National Police, a common search task is to find a suspect in a large
set of surveillance footage in order to make a reconstruction of the suspected
crime. The objective of this work is to create a deep learning model that assists
with this search task. The model should find a unique gait representation of each
person visible in the footage. This should be invariant of clothing that the person
wears, the lighting condition of the scene, the camera angle or the backgrounds
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of the scene itself. By comparing the unique gait representation of the suspect
with those of the people visible on the surveillance footage, the list of all footage
can be sorted. This work will be focussed on training the model using synthetic
data and not the search task as a whole.

5.1.2. Model architecture

The model we propose is a hybrid between an action recognition and pose de-
tection architecture. We refer to this model as GaitNet. Video clips are passed
through both an action recognition component and a pose detection component.
The resulting features are combined and passed through two fully-connected lay-
ers. The last of these layers is the classifying layer, which can be removed in order
to get a feature representation that could be used as the gait representation. See
Figure 5.1 for a conceptual overview of the proposed GaitNet architecture.
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Figure 5.1: Conceptual overview of the GaitNet architecture.

As theoretic background on the architecture is not relevent for the synthetic
data generation pipeline itself, it has not been discussed in Chapter 2. Therefore
this will be done shortly here.

The 18-layer deep, ResNet-inspired R(2+1)D network proposed by Tran et al
(2018) [34] takes place as the action recognition component in our network. This
network makes use of (2+1)D convolutional units, which serve as drop-in replace-
ments of 3D convolutional units (see Section 2.4) but decompose them into sepa-
rate spatial and temporal steps. This decomposition has two advantages. Firstly,
an extra non-linearity can be added between the two convolutions, increasing the
complexity of the functions that can be estimated by the network. Secondly, it
has been shown experimentally by Tran et al that the decomposition is beneficial
for optimisation during training, leading to faster convergence. Further reasons
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to choose R(2+1)D are its excellent performance as reported by the authors and
that fact that it takes RGB frames as input, not requiring heavy preprocessing. The
instance of R(2+1)D that is used in ourmodel has been pretrained on Kinetics-400.

txdxd

1xdxd

tx1x1

Figure 5.2: Conventional 3D convolution (a) compared to (2+1)D convolution (b). The filter
size component t refers to the temporal dimension and d refers to the spatial dimensions.
Figure adapted from Tran et al (2018) [34]

(2+1)D CONVOLUTION

A spatiotemporal convolutional unit that consists of a spatial convolution
and a temporal convolution. The spatial convolution is implemented as
a 3D convolution where the time dimension of the filter has size 1. The
temporal convolution is implemented as a 3D convolutionwhere the spatial
dimensions of the filter are 1. See Figure 5.2 for a schematic comparison
with the conventional 3D convolution.

The second component of our model, the pose estimator, is made up of a two-
stack hourglass model as proposed by Newell, Yang and Deng (2016) [60], which
is also touched upon in Section 2.6. This is a simple and performant 2D pose
estimator based on convolutional layers. The convolutions map the input image
down to a low dimensional space and then up again to estimation joint locations,
forming a pose. Useful features still need to be extracted from theses poses and,
on top of that, the stacked hourglassmodel estimates poses on a frame-by-frame
basis. This motivates the two (2+1)D convolutions our model applies on the esti-
mated poses over time. After this a max pooling operation and a fully-connected
layer are applied.
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5.1.3. Source Motion

Motion capture recordings from the CMU MOCAP database [51] are used as the
source for the synthetic video generation. Each recording in the database is an-
notated with the action performed and the subject that performed the action. We
collected recordings of the ’walking’ action for 13 subjects that had more than 1
of these recordings and 2 additional subjects with only one such recording. This
results in 43 motion capture recordings of 15 distinct subjects that function as
the base motion for synthetic data generation. The first 30 recordings were used
to generate training data and the last 13 recordings were used to generate test
data. To provide at least one recording of all 15 different subjects in both sets, the
test set was complemented with two recordings from the train set. Unfortunately,
the CMU database does not contain enough ’walk’ data to keep these two sets
strictly disjunctive. There is thus slight overlap between the source motion data
of the train set and test set, which should be taken into account when analysing
model performance. See which exact recordings were used in Table 5.1.

Subject

2

5

6

7

8

12

15

32

35

38

39

74

83

90

114

Recordings (train)

1

1

1

1,2,3

1,2,3

1,2

1,2,9

1

1,2,3

1

1,2,3

1,2

27,28,29

22

13,14

Recordings (test)

2

1*

1*

6

6

3

14

2

4

2

4

20

30

23

15

Table 5.1: Overview of all CMUMOCAP recordings used and the division between record-
ings that were used for the train and test set. Note that recordings with an asterisk are in
both the train and test set.

As the motion capture data from CMU is marker-based and our data synthesis
pipeline requires SMPL pose parameters, a conversion step is required. Loper,
Mahmood and Black (2014) [103] introduced MoSh, the go-to method for finding
SMPL pose and shape parameters from body markers. AMASS, which stands
for Archive of Motion Capture as Surface Shapes, by Mahmood et al (2019) [104]
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provides a unified database of many motion capture datasets which have already
been converted to SMPLparameters usingMoSh. Wemadegrateful use of AMASS
to get the 43 CMU MOCAP motions as SMPL pose and shape parameters.

5.1.4. Video Synthesis

The retrieved motion capture data was put through our synthetic data pipeline
with base configuration settings as can be found in Table 5.2. Generating 750
videos of maximum 150 frames (less if the motion data is shorter) at a resolution
of 640x360 pixels took about 5 hours using an NVIDIA Tesla K80 GPU. For the
ablation study, this base configuration was adjusted slightly several times to cre-
ate more datasets. Details on the tweaked parameters can be found in the next
section.

Parameter name

Tracking method

Max. number of frames per video

Max. number of persons per video

Dataset size

Render height

Render width

Class combine strategy

Moving median smoothing

Original body shape

Value

YOLOv3

150

1

750

360

640

Pure

False

True

Table 5.2: Base configuration parameter values used for the gait recognition data gener-
ation.

5.1.5. Data Preprocessing

The synthetic videos need to go through preprocessing to make them fit as input
for the GaitNet model.

The two pretrained components, the pose estimator and the R(2+1)D model,
require the videos to be cropped to respectively 256x256 and 224x224 pixels. The
human models move through the scene (caused by the random walk algorithm)
but for the gait recognition to work they should always be visible in the square
crop. To realise this, the YOLOv3 multi-object tracker is employed to find crops
around on the human model. Additionally, we ran a pose estimator to find the
location of the pelvis joint and centred the crops on it. This way all humanmodels
are always positioned in the center of the crops, which we think is beneficial for
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Track person

Crop around pelvis

Original
video

Preprocessed
clips

Get 16 frame clips

Figure 5.3: Conceptual overview of the data preprocessing done for GaitNet. Original
videos as generated by our pipeline are inputted and clips of 16 frames long, tightly
cropped around the subject and centred on the pelvis are the output.

GaitNet performance. The scale of the crop as estimated by YOLOv3 is smoothed
using a Savitzky–Golay filter with a large window size. We save all crops with a
resolution of 224x224 and upsample them again to 256x256 during the forward
pass of the pose estimator component to prevent duplicate saves.

The R(2+1)D model is trained on videos of 16 frames long. Accordingly, with
the last preprocessing step 16 frame clips from the full-length cropped video are
extracted. Each clip overlaps the previous clip with 2 frames.

The size of generated datasets is measured in number of videos, which re-
sults in some datasets containing slightly more frames than others. Also, dur-
ing the preprocessing phase the multi-object tracker does not always detect a
human in the synthetic videos. These two combined result in small differences
in preprocessed dataset sizes. In total the amount of 16 frame clips in the dif-
ferent datasets is: 5130 for the full dataset, 5191 for the background sample
limit dataset, 5204 for the clothing sample limit dataset, 4912 for the direct light
dataset, 5187 for the static camera angle dataset, 4922 for the random body
shape dataset and 1695 for the test dataset. These deviations are relatively lim-
ited.

5.2. Ablation Study

To investigate the causal effects of single components on the results of the pipeline
as a whole, we perform an ablation study. Removing just one component of our
pipeline at a time and comparing the results with the baseline, where all com-
ponents are present, allows for causal statements to be made about that single
component. Thismethod is especially useful when dealingwith unwieldy systems
such as deep learning models, which generally are expensive to train.

At severalmoments in the synthesis pipeline some sort of variety is introduced
in the synthetic videos. It is theorised that this variety grounds the videos in reality
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by closing the reality gap (see Subsection 2.5.1). The amount of variety at all
of these moments is controlled using pipeline parameters. These parameters,
5 in total, will be subject of the ablation study. In the following subsection, the
parameters are introduced. For each parameter, it is made clear what its default
value is and what value the parameter takes when it is removed, in terms of the
ablation study on gait recognition.

A dataset is generated for each of the 5 parameter removals and one dataset
is generated in which all parameters are present. The latter dataset is referred
to as the full dataset and it acts as the baseline to compare ablations with. A
test dataset with 250 videos is also generated using the novel test set of mocap
data, as introduced in Subsection 5.1.3. This test dataset is generated with the
same pipeline parameters as the full dataset. It is used to assess the ability of the
trained model instances to generalise to novel situations.

Twomodel instances are also trainedon subsets of the full dataset (250 videos
and 500 videos). The performance of these models is compared with each other
and baseline to make statements about the impact of changing the amount of
synthetic training data.

This results in a total of 8 model instances that are trained and compared.

5.2.1. Parameters

Backgrounds As seen in Subsection 4.3.5, our pipeline renders synthetic hu-
mans on static background images, just as related literature does. Our hypoth-
esis is that a large variety of diverse backgrounds increases the robustness of
trained models in real-life scenarios where the backgrounds are very diverse and
might sometimes be challenging. To test this hypothesis, a synthetic dataset is
generated in which only 5 unique background images are used to sample from.
All other datasets for gait recognition use the entire collection of backgrounds to
sample from.

Clothing Consistent with other literature, our pipeline applies textures to the syn-
thetic humans to make them appear clothed. We hypothesise that a large variety
of diverse textures increases the robustness of trained models in real-life scenar-
ios where people wear all kinds of different clothing and have a variety of skin
tones. A dataset in which just a single body model texture is used and thus all
human models seem to wear the same clothing and have the same skin tone, is
generated to test this hypothesis. All other datasets are generated using the entire
collection of textures to sample from.

Lighting Direct light conditions are common in real life, in case of bright sun-
shine or a single ceiling light. However, the ambient light mode looks more like
the footage produced by most modern surveillance cameras and has more detail.
We therefore theorise that the ambient light mode will lead to better performance.
A dataset with the direct light mode is generated to assess this theory. All other
datasets use the ambient light mode.
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Camera tilt We think a varying camera tilt improves performance as the human
models are now viewed from a variety of angles. This reflects real-life scenarios
where surveillance cameras are places under different angles. To analyse this, a
dataset is generated where the camera tilt angle is always 0◦. All other datasets
use the range between 0◦ and 15◦ to sample camera tilt from.

Body shape By default, our pipeline randomly samples a body shape from the
CEASAR dataset of body scans for each human model in the scene. The original
body shape of the actor that performed themotion is thus not used. We think that
this would increase performance for many use cases, such as violence detection,
as models trained on this synthetic data get more invariant for body shape.

However, this is different for gait recognition. Because one does not lose or
gain weight as easily as one changes clothes, body shape could still be an im-
portant indicator for identification. This is especially true for our use case at the
Dutch National Police, where the investigation timeline is short and rules out any
significant weight change of the persons of interest.

We generate one dataset in which body shape is randomly sampled for each
human model to test this. All other datasets apply the original body shape of the
actor in the CMUMOCAP recording, as estimated by MoSh during the conversion
to SMPL parameters.

5.2.2. Experiment Results

All instances are trained using 5-fold cross-validation to obtain a reasonable ap-
proximation of the prediction accuracy of the model instance on the data it is
trained on. With cross-validation, each fold is trained on a different k−1

k
of the

data and tested against the other 1
k
, where k is the number of folds. By taking

the mean prediction accuracy over all folds, the prediction accuracy over the en-
tire dataset is approached while still being able to use all data for training. After
cross-validation, the model is trained on the entire dataset from scratch to obtain
the trained model instance that is used for testing on the full set and the test set.
Training of a single GaitNet instance took about 24 hours on an NVIDIA Tesla K80
GPU, including training the 5 folds.

Prediction accuracy is measured as top 1 and top 5, denoted as T1 and T5
respectively. Top 1 represents the accuracywithwhich the true identity is correctly
classified asmost probable, and top 5 represents the accuracy with which the true
identity is in top 5 most probable classifications. The top 5 accuracy is reported
because it gives a coarser but more forgiving picture of the classification ability.

In Table 5.3 the prediction accuracies of all instances on the various datasets
can be found and compared.
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Instance Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean Full T1 Full T5 Test T1 Test T5

Full 37,52% 42,11% 35,87% 37,91% 39,77% 38,64% - - 7,26% 36,62%

Body 37,87% 32,99% 35,16% 41,06% 35,06% 36,43% 5,48% 31,28% 4,90% 34,93%

Camera 39,40% 36,22% 38,57% 36,93% 36,84% 37,59% 4,99% 35,25% 13,98% 46,16%

Background 28,49% 29,96% 26,59% 31,02% 26,49% 28,52% 10,16% 38,60% 9,85% 36,96%

Clothing 44,48% 43,61% 40,06% 47,74% 45,96% 44,37% 6,02% 34,95% 10,03% 37,55%

Light 34,59% 33,67% 33,10% 32,28% 34,83% 33,69% 9,61% 39,64% 3,89% 30,72%

Full-250 11,92% 17,73% 20,06% 22,45% 10,79% 16,59% 4,35% 26,38% 2,18% 28,73%

Full-500 18,51% 16,47% 12,97% 25,40% 17,52% 18,17% 2,51% 22,90% 4,19% 24,86%

Table 5.3: Prediction accuracy of all trained model instances. Columns Fold 1-5 contain
the prediction accuracy for each fold during 5-fold cross-validation. Column Mean con-
tains the mean of these fold accuracies, which approaches the prediction accuracy of the
instance trained on the entire dataset. Column Full contains the prediction accuracy of
the trained model instances on the full dataset, which functions as baseline. This is omit-
ted for the model instance trained on this same dataset, the cross-validation mean is to
be used. Column Test contains the prediction accuracy of the trained model instances
on the test dataset, which contains videos with of novel motions.

5.2.3. Experiment Discussion

Training accuracy Themean prediction accuracy of all cross-validation folds ap-
proaches the performance of an instance on the dataset it is trained on. However,
because we are interested in the effect of ablations in the synthetsis process on
the performance of trained models on the baseline data, comparing the cross-
validation mean accuracy does not lead to very valuable insights as it concerns
different datasets. Still, differences between the different instances are clearly
visible.

Randomising body shape leads to a decrease in accuracy. This is expected as
body shape no longer carries identification information in this dataset, thus mak-
ing the identification task harder. Removing the camera tilt also leads to a slight
decrease in accuracy. This is not expected as we hypothesised that removing
variation here would make the task easier. However, with a difference of just 1%,
this is negligible. The accuracy of the instance with less background images has
a significantly lower accuracy and this is also not expected. It could be explained
by the fact that there are still 5 backgrounds in the dataset, which could lead to the
model falsely associating background elements with person identities. We deem
this very likely. We theorise that completely removing variety in the background
images would instead increase training accuracy as the background images no
longer serve as distractors. The clothing instance sticks out as the only instance
with a higher prediction accuracy than the full instance. Intuitively, it does make
sense that taking away the clothing and skin tone distractors makes the identi-
fication task easier, as the gait features stand out more with other variables re-
maining constant. The instance trained on videos generated with the direct light
mode has a harder time fitting and this is also expected, as the direct light mode
causes visual obstacles such as hard shadows that make the task harder. On the
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other hand it could be theorised that the higher contrast on the humans created
by the direct light mode might make it easier to separate the models from the
background, making the task easier. However, the results seem to indicate the
opposite.

The Full-250 and Full-500 instances both are significantly less accurate than
the Full instance with 750 videos. This is expected as an increase in the amount
of training data of good quality generally leads to performance improvements,
especially when dealing with complex tasks such as gait recognition.

Test on full dataset Prediction accuracy on the full dataset indicates how well a
trained instance performs despite the ablation in its training data. For the instance
that is also trained on the full dataset, we take the cross-validationmean accuracy
as the prediction accuracy on the full dataset.

Many instances have such low accuracy scores that they should be compared
to the expected accuracywhenguessing randomly. Take a naivemodel that knows
the number of classes in the data. It would obtain a T1 test accuracy score of
1
15

= 6.66% and a T5 test accuracy score of 5
15

= 33.33%. This is very compara-
ble with some of the reported scores. Only the light and background instances
perform better than this T1 and T5 accuracy. The camera and clothing instances
perform better than the baseline on just the T5 accuracy.

The prediction accuracy of every ablation instance against the full dataset is
significantly lower than the prediction accuracies found using cross-validation.
The variance in prediction accuracies is also quite high, with a standard deviation
of 11,01% for the T1 accuracy. We can conclude from this that the model does
not perform well with any of these ablations and that there is overfitting going on.
Judging from the performance on the training, overfitting seems likely.

Comparing the different ablations shows that camera tilt, body shape and
clothing limit perform worst. We could conclude that it is essential to randomise
camera tilt and clothing texture in order to train models that are invariant to this.
The body shape ablation instance was theorised to learn a representation that
was more body shape invariant. It might as well have done this but the other in-
stances still score higher, possibly just by using the identity information present
in body shape as expected. The ablations with which themodel performs best are
the background limit and the direct light mode. The background instance might
perform better because it is distracted less by all the different background images
during training and could find better gait features that way. The data preprocess-
ing used for GaitNet might play a role here, as the crop moves over the video,
creating the illusion of a moving background. We can conclude from this that the
light mode and background ablations have the least negative impact on perfor-
mance. The prediction accuracies of the Full-250 and Full-500 instances surprise
with the instance trained on less data actually performing better.

The differences of these instances with guessing accuracy are at most 7,32%
(T1) or 12,83% (T5). These are not very large so any conclusions should be taken
with a grain of salt as all results could still fall in the margin of error.

Test on test dataset Performance on the test dataset represents the ability of
a trained model instance to extend to novel motions, as the videos are generated
with new mocap data.
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When comparing these results with the accuracies in the full column, many
instances trade ranks. Some instances perform better on the full dataset than on
the test dataset. These instances can be explained to be overfit on the underlying
mocap data used for the training datasets and thus also for the full dataset. How-
ever, some instances perform better on test than on full. This cannot be explained
as intuitively.

The background instance is the only instance that remains constant with only
a slight decrease in accuracy, as would be expected when testing on novel data.
For the instances trained on less training data there also is no surprise in the ac-
curacies.

Just as with the test on the full dataset, not all accuracies are above the score
a naive random guesser would obtain. Because the mocap data behind the test
dataset is perfectly balanced, this score is 6,66%. Only the full, camera, back-
ground and clothing instances are higher than this. One could argue that this
baseline should compensate for the mocap data overlap between the test data
and train data. This would result in a baseline accuracy score of 7,69%, if the
model could always recognise the two known underlying mocapmotions through
the synthetic video. All beforementioned instances still perform better, except for
the full instance that is comparable to this baseline.

See Figure 5.4 for the confusion matrices of all 6 ablation instances tested
on the testset. Seeing the unbalanced predictions, it is immediately clear that the
models are overfit. Themodels all predict just a few subjects and ignore all others.
Which subjects they predict, does differ from model to model.

5.3. Violence Detection

Violence detection is taken as a real-life and production-ready test of the benefits
of using synthetic data for training purposes. This section provides details on the
task of violence detection and the approach to add synthetic data to the pipeline.

5.3.1. Objective

Themain objective is to improve the detection performance of the violence detec-
tion pipeline by complementing the dataset with synthetic data.

We conduct several additional experiments to gain further insight in the influ-
ence of injecting the dataset with synthetic data. We are interested in the change
in performance when adding synthetic data compared to the change in perfor-
mance the same amount of real data would make. Understanding this relation is
key when generating synthetic data instead of collecting real data is considered.
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Figure 5.4: Confusion matrices of all 6 ablation instances tested on the testset.
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5.3.2. Pipeline Architecture

This subsection described the violence detection pipeline as proposed by Van der
Lugt (2019) [2] and as being used in production at Oddity.ai.

The violence detection pipeline consists of a region proposal algorithm (RPA), a
basemodel that functions as feature extractor and a temporal module that results
in a classification. See Figure 5.5 for a conceptual overview of the pipeline.

φRegion
Proposal

Base
Model

Temporal
Module

Subsequence Motion samples ClassificationFeatures

Figure 5.5: Conceptual overview of the Oddity.ai machine learning pipeline for violence
detection.

Region Proposal Algorithm The first component of the pipeline is the region pro-
posal algorithm. This algorithm is used to find regions of interest in the input video,
i.e. spatial crops around violence, in order to increase the detection efficiency of
the network. Without an RPA suboptimal situations could arise when violence
happens only in a small region of the input image. The main assumption behind
the RPA is that violence always expresses itself as substantial movement. The
algorithm expects sequences of a fixed number of frames as input, meaning that
longer videos are sliced into subsequences before applying the RPA. In the RPA, a
motion volume is computed over the input based on difference in pixel brightness.
See Figure 5.6 for an example visualisation of the calculation of a motion-volume.
Themotion volume is treated with various simple image transforms to compute a
motion intensity threshold and to get a clear segmentation of the motion-volume
from the background. These steps are all basic image operations with fast im-
plementations, which is essential to keep the entire pipeline running in real-time.
The minimum bounding box around this segmentation is used to crop the subse-
quence into a motion sample, which is the input for the next stage. More details
on the RPA can be found in the work by Van der Lugt (2019) [2].

Base Model The base model is built upon the Two-Stream Inflated 3D ConvNet
(I3D) by Carreira and Zisserman (2017) [12]. This is a very deep CNN for video
classification trained on the Kinetics dataset. By stripping the classifying layer
away and using the layer before as output, I3D is turned into an automatic video
feature extractor. These features, denoted as ϕ in Figure 5.5, are inferred for every
motion sample and then passed on to the temporal module.

TemporalModule The temporalmodule effectively smoothes the feature-activations
of the base model over time and captures temporal patterns in these activations.
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Figure 5.6: Example application of the maximum mean difference operation on a set of
frames, resulting in a motion-volume. Figure taken from Van der Lugt (2019) [2]

The ability to capture these temporal patterns improves the violence-detection ac-
curacy. This temporal modelling is achieved by using an LSTM layer, which is the
main component of the temporal module. The LSTM activations are passed on
to a fully-connected layer for the final violence or non-violence classification.

5.3.3. Source Motion from Video

The source motions used to generate synthetic videos of violence can be ex-
tracted from a large variety of videos. The following section walks through all
sources we tried and treated for motion extraction.

Combat sports Violence is omnipresent in many combat sports. Most of these
sports are centred around one-on-one fights in either a cage or on a (delimited)
soft mat. Examples are boxing, kickboxing, karate, wrestling, Judo and Mixed
Martial Arts. Many of these sports put a limit on the allowed movements or only
allow a set of techniques. This naturally also puts a limit on the usability of these
motions for our purposes because these techniques are most likely not represen-
tative of violence as seen on the streets.

Mixedmartial arts (MMA) is known for its combination of elements frommany
other disciplines and its freestyle-like appearance. It is also very popular and large
events such as the Ultimate Fighting Championship attract millions of viewers.
This diversity in fighting technique and the availability of video footage makes
MMA a suitable candidate for motion extraction.

Computer games Fighting, combat and crime are among themost popular com-
puter game genres. For example, Grand Threft Auto V has a player count of 71
million [105], Call of Duty: Warzone has 50 million [106] and Counter-Strike: Global
Offensive has 46 million [107]. Video game footage is generated on-the-fly by
game engines that can nowadays produce almost photorealistic imagery. The
potential amount of data available for motion extraction thus is enormous. How-
ever, many games have limitations that prevent us from extracting representative
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Figure 5.7: Left: screenshot of Street Fighter V gameplay. Figure from Ars Technica [108].
Right: screenshot ofMafia 3 gameplay. Figure from YouTube [109].

motion from them.
First of all, the characters need to look and behave realistically for the mo-

tion extractor to work properly. The movements they make need to be physically
plausible and the characters should not shrink, grow or distort. Games such as
Street Fighter V contain characters that are out of proportion and that can move
in unrealistic ways and the game contains exaggerated visual effects such as ex-
plosions on impact of a punch. See Figure 5.7 for a screenshot of the gameplay
of this game.

Secondly, the fighting characters in the video game footage must be unoc-
cluded for the motion extractor to function properly. This means the game user-
interface should not overlap and the characters must not be partially out of view.
See Figure 5.7 for an example of the game Mafia 3, where the main character is
always out of view from the middle down.

Action movies Fights are common in movies and the Action film genre centres
entirely around this. However, most movies depict fight scenes very stylistically.
Quick cameramovements and large amounts of motion blur are deliberately used
to give scenes a fast appearance. Major occlusions and quick cuts between dif-
ferent takes are common, and are sometimes even used deliberately to obscure
the fact that the fight is not real. The bodies of the actors are often not com-
pletely visible. We found that these factors combined make it very hard to find
fight scenes that do meet our requirements for good motion extraction. An ad-
ditional limitation of gathering material from movies is the relatively high cost of
buying movies, certainly when only the violent parts of the whole movie are of
interest, and the fact that finding all violent segments is time-consuming.

Violence datasets There exist precompiled sets of violent videos readily avail-
able to download. These are interesting candidates for our case.

The Violent Scenes Dataset by Demarty, Penet, Soleymani and Gravier (2015)
[110] contains segments of violence from 32 movies and 86 short web videos
such as Saving Private Ryan and Pulp Fiction. The Movie Fight dataset by Nievas,
Suarez, Garcia and Sukthankar (2011) [111] is a similar dataset with violent seg-
ments from movies. The videos in these datasets suffer from the same visual
limitations as mentioned before as they are extracted from movies. See Figure
5.8 for an example of an incorrectly estimated pose when the entire bodies of
people are not visible.
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Figure 5.8: Frame of video newfi83 from theMovie Fight dataset with estimated bounding
boxes and 3D poses overlapped. The video shows the actors from the pelvis up, resulting
in incorrect pose estimation.

Violent Flows by Hassner, Itcher, and Kliper-Gross (2012) [112] contains 246
videos from YouTube. The dataset is meant to reflect real-world scenarios of vi-
olence erupting in crowded places. However, the videos are so crowded that nei-
ther of the multi-person trackers in our motion extractor is able to confidently find
people in them. See Figure 5.9 for screenshots of a few videos in Violent Flows.

Figure 5.9: Screenshots of 4 videos from the Violent Flows dataset of violence in crowds.

TheHockey Fight dataset, also byNievas, Suarez, Garcia andSukthankar (2011)
[111], contains 1000 videos of violence outbreaks in hockey matches of the Na-
tional Hockey League. Many videos do not show the full bodies of the subjects,
which makes motion extraction impossible. When the full body is visible, the
multi-person tracker often locates only the people with least occlusions. See the
first rowof Figure 5.10 for an examplewhere the bounding boxes found by YOLOv3
are projected onto the original frame. This error propagates through to the 3D
pose estimator component. Additionally, this component seems to suffer from
the low resolution of the videos. It is unable to consistently determine a persons
height and the location of joints, resulting in jitter. See the last row of Figure 5.10
for a number of frames (in order but with gaps of 5 frames in between) with the
estimated 3D pose as a SMPLmesh projected onto them. The jitter in height, pose
and position of joints is clearly visible here.

The UCF-Crime dataset is created for anomaly detection in surveillance videos
and contains 1900 videos of criminal behaviour, divided into several categories.
All videos have a resolution of 320 × 240 pixels. The Fighting category contains
50 videos, which are processed by our motion extractor. However, the accuracy
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Figure 5.10: Frames of a video from the Hockey Fight dataset in which the error modes
of the multi-person tracker (first row) and the 3D pose estimator (last row) are visible.

and overall quality of the motions extracted from the dataset is lower than we ex-
pected. Presumably the low resolution of the videos is at the root of this problem.
Many videos also contain heavy occlusions, increasing the number of errors in the
extracted motions. See Figure 5.11 for example stills of extracted motions pro-
jected onto the original videos. Many of these examples are not accurate enough
for the violence to even be recognisable by the human eye or contain clear errors
due to occlusions.

Figure 5.11: Stills of 3D pose estimates for 6 videos from the Fighting category of the
UCF-Crime dataset projected onto the original videos.

Collecting videos Violence is often recorded anduploaded to popular video shar-
ing platforms such as LiveLeak or Reddit, where the terms of usage do not pro-
hibit such content. We scraped videos with titles and descriptions containing at
least one term from (fight, violence, violent, aggression, aggressive, assault, attack,
rage) and one term from (cctv, cctv footage, security camera, security, surveil-
lance camera, surveillance, caught on camera). The terms in the first list should
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find videos with violence and the terms in the second list should ensure the videos
are recorded with a static camera.

Using this strategy a large number of videos can be collected. However, most
of them suffer from the same problems as mentioned before: many (large) oc-
clusions and low resolution. This direction was not pursued any further than a
shallow analysis.

Homemade videos Nowadays recording video at high resolution is easier than
ever with the built-in cameras of mobile devices. This opens the door for a do-it-
yourself approach to solving the problems met above. By acting out violent ac-
tions ourselves and recording themwe can guarantee that there are no occlusions
and the resolution is high enough. The Movement and Placement Assumption 1
(introduced in Subsection 4.3.4) allows us to record these actions individually as
they will be mixed anyway. This is a major benefit for the prevention of occlusions
and also aminimum requirement, as in practice themotion extractor is not able to
function sufficiently on video footage in which multiple people are visible. It also
allows us to record violent actions without hurting each other.

We recorded 58 videos of various violent and neutral (non-violent) actions per-
formed by 5 actors. These actions include a variety of punches, hits, slaps, kicks,
pushes and smashes. The videos duration mean is 8.28 seconds with a standard
deviation of 5.08 seconds. See Figure 5.12 for still frames of 12 of the videos.

Figure 5.12: Stills of the videos we recorded for motion extraction.

Applying the motion extractor to these videos and projecting the estimated
3D poses back onto the original videos allows for a qualitative analysis of the
estimations. See Figure 5.13 for still frames of 6 of the videos with the estimated
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3D poses. Compared to the estimations done on different sources as discussed
above, the errors are noticeably smaller. The estimation of global body pose and
orientation is practically always correct. Errors only seem to occur when quick
motions cause motion blur and at the hands and feet.

Figure 5.13: Stills of 3D poses estimated by our pipeline projected onto the original videos.
Errors are circled with a dotted red line.

5.3.4. Motion Capture Data

Additional motion capture data is used to complement the motion set extracted
from videos and make it more diverse. Just as with gait recognition, the large
CMU MOCAP dataset is used to collect mocap data from. The actions that are
used include a large amount of walking, running and jogging, but also bending,
stretching, jumping and climbing. The violent actions are all labelled as boxing.
The CMU set also includes actions such as striking or punching but these are
all single strikes at a very low speed. As these are very unrealistic they are not
included. See Table 5.4 for which CMU recordings were used.

The extractedmotion andmocap data are mixed and treated exactly the same
except for the smoothing, which is not applied to mocap data.
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Subject

1

2

5

6

7

8

9

10

Recordings

1,2,3,5,6,7,8,9,11

1,2,3,4

1,2,3,4,5,6,7,9,10,11,

12,13,14,15,16,17,18,

19, 20

1

1,2,3,4,5,6,7,8,9,10,

11,12

1,2,3,4,5,6,7,8,9,11

1,2,3,4,5,6,7,8,9,10

11,12

4

Subject

12

13

15

17

32

35

38

39

74

83

90

114

Recordings

1,2

17,18

1,3,9,13

10

1

1,2,3

1

1,2,3

1,2

27,28,29

22

13,14

Table 5.4: Overview of all CMU MOCAP recordings used for the generation of synthetic
videos for violence detection.

5.3.5. Video Synthesis

Themotions extracted fromvideo andmotion capture recordingswere put through
our synthetic data pipeline with the configuration settings as can be found in Ta-
ble 5.5. We generated 6000 videos of maximum 250 frames at a resolution of
640x360 pixels in 4 runs of 1500 videos each. In total this took about 40 hours
using an NVIDIA Tesla K80 GPU. This is significantly quicker than collecting this
amount of data manually. See Table 5.5 for the exact parameter values used.

Figure 5.14 shows example frames of the generated videos.
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Figure 5.14: Still frames of 9 of the 6000 generated videos.

Parameter name

Tracking method

Max. number of frames per video

Max. number of persons per video

Dataset size

Render height

Render width

Class combine strategy

Moving median smoothing

Original body shape

Light mode

Camera angle variation

Value

YOLOv3

250

3

1500

360

640

Dominant (”violence”)

True

False

Ambient

15°

Table 5.5: Configuration parameter values used for the violence detection data genera-
tion. This configuration was used 4 times to generate a total of 6000 videos.

5.3.6. Data Preprocessing

The first component of the pipeline, the region proposal algorithm, is not trainable
so all data (real and synthetic videos) is passed through the RPA only once and the
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motion samples are saved to be used for all training sessions. A total of 44,704
motion samples are generated in this phase.

Following this, all motion samples need to be classified as being an example
of either violence or neutral. The following steps are taken to achieve this.

1. Before generation: The source videos for the motion extractor and motion
capture data are annotated on a per-frame basis with violence or neutral.

2. During generation: Minumum bounding boxes around every human model
are calculated for every frame, these are mapped from 3D object space to
2D camera space and saved along with the generated video.

3. After RPA: For every motion sample the bounding boxes (from 2.) are used
to determine which motions are visible and the annotations (from 1.) are
used to determine whether they demonstrate violent actions. If there is no
overlap, a motion sample is classified as neutral. Otherwise, it is staged for
manual review.

The manual reviewal of these motion samples is necessary because the RPA
might select a region that does not show the movement that is essential for the
violence classification. For example, the RPA might select a region showing only
the legs of a punching model but from the legs it might not be visible that per-
son is indeed throwing punches. Further automation is possible but the (more
philosophical) questions of what constitutes violence and how small a crop can
get before violence is no longer recognisable as violence have to be answered for
it to be feasible. The need for this manual reviewal is a major limitation as it is
labour and time-consuming.

Next, the two classes are balanced to the same proportions as the dataset
containing real examples as obtained by Oddity.ai by removing 5,731 randomly
selected neutral motion samples. The resulting set contains 32,846 neutral and
6,127 violence synthetic motion samples. See Figure 5.15 for examples of the
generated motion samples.
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Figure 5.15: Still frames of 16 arbitrary fully processed motion samples. Motion sample
classification is colour coded with red for violence and green for neutral.

5.3.7. Training and Testing

Parameters and duration The training parameters of the entire model are taken
directly from practice at Oddity. This consists of finetuning the pretrained I3D
weights of the base model independently and then training solely the temporal
module. These work well in their experience and are not the subject of study for
this thesis. For more information on the training of the Oddity.ai model see Van
Der Lugt (2019) [2]. The time needed to train a single instance varies between 2
and 4 days on a Tesla K80 GPU, depending on the size of the training set that is
used.

Datasets We use the default training set used at Oddity.ai as the baseline for
our experiments. This dataset contains 51,517 neutral and 9,770 violence motion
samples and is collected manually from real videos over the course of 2 years.

The synthetic dataset resulting from the data preprocessing phase, as de-
scribed above, contains 32,846 neutral and 6,127 violence motion samples This
is 63% of the number of motion samples that are in the real dataset.

Testing the trained models happens against the default testing set that is in
use at Oddity. This testing set contains 4,815 neutral and 666 violence motion
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samples, which is roughly 9% of the size of the default training set. All motion
samples come from surveillance footage that is not in the training set.

5.3.8. Instance naming

The different datasets and the instances trained on these datasets are labelled
R{real}-S{synthetic}, where {real} is a number between 0 and 100 that refers to the
proportion of real data that is in this dataset and {synthetic} is a number between
0 and 63 that refers to the amount of synthetic data in this dataset as a proportion
of the real dataset size. For example, R50-S50 is a dataset that contains 50% of
the real dataset and an equal amount of synthetic data.

When extra clarity is needed, the icons , and are used to indicate
datasets with respectively only real data, a mix of real and synthetic data and only
synthetic data.

5.3.9. Experiment Results

Table 5.6 reports the amount of real data, synthetic data and theROC-AUCscore of
the trained instance on the real testing set for all instances that were created. All
instances maintain the proportion between violence and neutral motion samples
of the complete real dataset of Oddity.ai (i.e. the proportion found in R100-S0).
Figure 5.16 visualises the changing dataset size, the changing proportions of syn-
thetic and real data and the maintained proportion of violence and neutral motion
samples for three example instances.

R50-S0 30,644 (50%)

R70-S0 42,901 (70%)

R50-S50 30,644 (50%)

Real samples Synthetic samplesInstance

R70-S30 42,901 (70%)

R100-S63 61,287 (100%)

R0-S63 0

R100-S0 61,287 (100%)

0

0

30,644 (50%)

18,386 (30%)

38,973 (63%)

38,973 (63%)

0

ROC

92,02%

93,79%

93,30%

93,93%

93,53%

88,16%

95,18%

Table 5.6: Amount of real motion samples and amount of synthetic motion samples for
every dataset instance and the ROC-AUC score achieved by the model instances trained
on these datasets.
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R50-S0

R100-S0

R50-S50

Violence

Neutral

Real

Synthetic

61,28730,644 49,0300

Figure 5.16: Visualisation of three example instances. Note that the dataset size changes,
the proportion of synthetic and real data changes but the proportion of neutral and vio-
lence motion samples remains the same for all instances.

5.3.10. Experiment Discussion

Establishing a baseline The first step in discussing the different instances is
establishing the baseline. Instances R50-S0, R70-S0 and R100-S0 serve this pur-
pose.

R50-S0 92,02%

R70-S0 93,79% (+1,77%)

R100-S0 95,18% (+3,16%)

AUCInstance

Table 5.7: Baseline instances and their ROC-AUC scores.

Amount of data

RO
C-
AU
C

R50-S0 R70-S0 R100-S0

92,02%

93,79% (+1,77%)

95,18% (+3,16%)

Figure 5.17: ROC-AUC scores of baseline instances plotted against their training set size.

In Table 5.7 the ROC-AUC scores of these instances are repeated. Figure 5.17
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plots the scores against the amount of data in the instances. From these scores
and the graph we can see that:

1. R70-S0 performs better than R50-S0,

2. R100-S0 performs better than R70-S0, and

3. the performance increase decreases with more data.

This is entirely as expected and establishes the baseline.

Synthetic data adds value Nextwe complement the baseline instanceswith syn-
thetic data. Instances R50-S50, R70-S30 and R100-S63 are the result of this.

R50-S0 92,02%

R50-S50 93,30% (+1,28%)

R70-S0 93,79%

AUCInstance

R70-S30 93,93% (+0,14%)

R100-S0 95,18%

R100-S63 93,53% (-1,65%)

Table 5.8: Synthetic complement instances and their ROC-AUC scores.

The ROC-AUC scores of these instances can be found in Table 5.8. From these
scores we can see that:

1. R50-S50 performs better than R50-S0,

2. R70-S30 performs better than R70-S0, and

3. R100-S63 performs worse than R100-S0.

Points 1. and 2. indicate that adding synthetic data increases performance.
This is not the case for 3, where performance decreases.

Between R100-S63 and other instances no changes to any (hyper)parameters
have been made. The cause for this decrease thus surely lies in the addition of
more synthetic data. This means that the synthetic data is biased in a way that is
not completely representative of real data, or at least of the testing set, and that
fitting the model on a lot of this biased data impairs its performance on real data.

Synthetic data is thus a partial substitute for ”missing” real data, but eventually
it will impede performance.
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Compared to real data Instances with equally sized training sets but different
proportions between real/synthetic data are compared. This leads to insight in
the value of synthetic data relative to real data.

R50-S50 93,30% (-1,88%)

AUCInstance

R70-S30 93,93% (-1,25%)

R100-S0 95,18%

Table 5.9: Instances with equally sized training sets but different proportions between
real/synthetic data and their ROC-AUC scores.

The ROC-AUC scores of instances R50-S50, R70-S30 and R100-S0 are repeated
in Table 5.9. From these scores we can see that:

1. R70-S30 performs better than R50-S50, and

2. R100-S0 performs better than R70-S30.

Points 1. and 2. indicate that using real data instead of synthetic data leads
to better performance. This is as expected. Real data contains more predictive
information than synthetic data.

Only synthetic data Instance R0-S63 is trained solely on synthetic data, it thus
has never seen a real example of violence. Its ROC-AUC score of 88,16%, which
can be found in Table 5.10, is significantly worse than any other instance. This is
in line with our previous finding that synthetic data is not as valuable as real data.

AUCInstance

R50-S0 92,02%

R0-S63 88,16% (-3,86%)

Table 5.10: ROC-AUC scores of the R0-S63 instance, which is trained on only synthetic
data, and the R50-S0 instance for comparison.

However, it is significantly better than the ROC-AUC score a random guesser
would obtain: 50%.

This indicates that there is indeed information to be learnt from the synthetic
data that can be used to solve the real-world task.
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Testing on synthetic data The same experiment can also be conducted in re-
verse. Instance R100-S0 is trained solely on real data. In Table 5.11 its ROC-AUC
score when tested on the entire synthetic dataset of R0-S63 can be found.

R100-S0 81,15%

AUC on synthetic dataInstance

Table 5.11: ROC-AUC score of the R100-S0 instance tested on the synthetic dataset (R0-
S63).

The result is in line with the test of R0-S63 on the real testset: the synthetic
data and real data overlap but also differ.

Finetuning R0-S63 We further investigated R0-S63 as a prior for further training
by fine-tuning it with real data. During this fine-tuning all layers but the last fully-
connected classifier are being frozen. All hyperparameters are kept the same, just
as with other training sessions. This way representations learnt on the synthetic
data are preserved but the classification layer is adapted to real data. This is a
form of supervised domain adaptation, as seen in Chapter 2.

We found that fine-tuning R0-S63with 10% of real data (R10-S0) improved clas-
sification performance with 1,28% to 89,44%. Fine-tuning with 30% of real data
(R30-S0) improved performance with 2,19% to 90,35% and fine-tuning with 50% of
real data (R50-S0) improved performance further to 90,95% (+2,79%). See Table
5.12 for all ROC-AUC scores.

AUCInstance

88,16%

R10-S0

R30-S0

R0-S63 +

R0-S63

R0-S63 +

89,44% (+1,29%)

90,35% (+2,19%)

R50-S0R0-S63 + 90,95% (+2,79%)

Table 5.12: ROC-AUC score of the R0-S63 instance and the instance when it is fine-tuned
with real data.

This shows that R0-S63 has learnt solid representations, both in the spatial,
I3D-based base model as well as in the temporal LSTM layer, that can be put to
good use on real data by only tweaking the classification layer.

Analysis of misclassifications Misclassification of testing set motion samples
was inspected for every instance. This is especially interesting for R100-S0, R100-
S63 and R0-S63. See Figure 5.18 for an overview of still frames of the top-10
misclassifications (loss-based) of the mentioned instances.
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R100-S0

R100-S63

R0-S63

Figure 5.18: Single frames of the top-10misclassifications for R100-S0, R100-S63 and R0-
S63. Order from left-to-right, top-to-bottom. Red dots indicate a ground truth of violence,
green dots neutral.

Note how the top-10 lists of R100-S0 and R100-S63 share 6 motion samples.
The top-10 ofR0-S63only shares 4motion sampleswith that ofR100-S0 andR100-
S63 combined. When extending to top-50, this trend still holds.

Instances R100-S0 and R100-S63 thus consistently make different mistakes
than R0-S63, where the base of real data lacks. This can be interpreted as an
expression of the reality gap (see Subsection 2.5.1). The synthetic data does not
contain sufficient information to seamlessly apply transfer learning.

Analysis of probability estimates The distributions of estimated probabilities on
the testing set are compared for different instances. See Figure 5.19 for different
plots of these distributions.
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R0-S63
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Model output

Model output Model output

R50-S0
R50-S50

Figure 5.19: Estimated probability distributions for instances R100-S0 vs. R100-S63, R50-
S0 vs. R50-S50 and R0-S63. Kernel density estimation with a bandwidth of 0,015 is used
to smoothen the counts. Note that distributions of estimated probability of neutral are
reported. Distributions of estimated probability of violence can be inferred from these.

First, we treat the comparison of the distributions of R100-S0 and R100-S63
as can be found at the top left of Figure 5.19. It is apparent that R100-S63 has
more weight towards the center and R100-S0 is more extreme in the estimated
probabilities. This is interpreted as R100-S0 being able to separate neutral and
violence samples better and more confidently than R100-S63. This corresponds
to the performance analysis above.

In the distributions of R50-S0 and R50-S50 the same pattern is visible but here
it is in favour of the latter. This also corresponds with the performance measure-
ments in terms of the ROC-AUC score.

Finally, we consider the distribution ofR0-S63 at the bottomof Figure 5.19. The
rough distribution and the lack of weight towards the lower end are remarkable.
It seems this model is less able to confidently predict violence.
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6. Discussion

This chapter recaps the research problems, interprets the achieved results, dis-
cusses their implications and limitations and sheds light onto possible future re-
search directions. Finally, a conclusion is drawn from the whole work.

6.1. Research Problem

The data synthesis pipeline as proposed by this work is a solution to answer the
Main Research Question as defined in Chapter 1:

MAIN RESEARCH QUESTION

Can training data, that is synthesised using motion data that is captured
from alternative sources, improve the classification performance of deep
learning-based activity recognition systems?

In Chapters 2, 3 and 4 the following subproblems of answering the Main Re-
search Question emerged, each with their own challenges:

1. Multi-person tracking and pose estimation to reliably extract spatiotemporal
human motion data from video.

2. Combiningmotions into scenes using randomvariables and heuristics grounded
in reality.

3. A powerful modelling and rendering environment.

These subproblems have all be addressed with this work, resulting in a power-
ful and versatile pipeline to generate synthetic video data for activity recognition
related tasks.

ResearchQuestions 1-3, that underlie theMainResearchQuestion, have guided
the evaluation experiments in Chapter 5. The results of these experiments and
their implications are discussed in the next section. The Research Questions are
answered in Section 6.4.
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6.2. Discussion of Results

6.2.1. Design and Development

Solution Objectives The design and development of the synthetic data genera-
tion pipeline has culminated in a working implementation that meets all Solution
Objectives as defined in Chapter 3. First of all, the pipeline takes videos as well as
motion capture data as input and outputs synthetic videos. It is also able to run on
consumer-grade hardware, even though our tests were run on professional data
center GPUs. Lastly, the pipeline is also able to generate at least several hours
of synthetic videos at a resolution of 640x360 within 48 hours. The design and
development can thus genuinely be called a success.

Limitations Outside of the solution objectives, however, some limitations can be
found.

First of all, the motion extractor is able to locate persons in 2D pixels space
but unable to estimate a persons location in 3D space. This is caused by the one-
person-at-a-time nature of current 3D pose estimation models that does not take
environment into account at all. Inherently this lack of spatial information directly
causes a major limitation of our pipeline: interactions between people cannot be
replayed, as location and orientation of those people are key.

In the video synthesiser, this led to the three Movement and Placement As-
sumptions (see Subsection 4.3.4). These do not solve the interaction limitation
from above but rather accept it and work with it. The assumptions serve as a
guide for the generation of randommovement and placement, as a complete lack
of movement is even less realistic than generatedmovement. With this approach,
all extracted motions can be combined with all others, instead of just motions
from the same sources.

A major limitation of the random walk generation algorithm, in turn, is that it
does not take pose motion into account at all. Because of this, awkward situa-
tions where pose motion contradicts the generated random walk can arise. For
example, a model can have pose motion extracted from a person standing still
applies while it is moved around by the generated random walk or the other way
around.

The scene lighting modes are another limitation of the pipeline implementa-
tion. Two light modes were implemented, one inspired by direct sunlight and one
by ambient studio light. The lighting conditions in the real world are endlessly
varied and ideally, this is captured by our implementation. Compared to the other
limitations of this work, we theorise this to be of minor importance.

Lastly, all limitations of the 3Dpose estimationmodel in use, VIBE, seep through
to our pipeline. VIBE achieves state-of-the-art results on multiple benchmarks
but subjective analysis of in-the-wild application shows multiple common errors.
There ismuch temporal stutter and errorswhen the video resolution is low or there
is an occlusion happening. More details on this can be found in Subsection 5.3.3.
The implication of this limitation is that inaccuratemotions end up in our synthetic
videos.
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These limitations all decrease the realism of the synthetic data, thus poten-
tially preventing the closing of the reality gap.

6.2.2. Gait Recognition

TheDutchNational Police is interested in recognising gait fromsurveillance footage.
As an early investigation to that goal, this work implemented a deep learning clas-
sifier, GaitNet, and used synthetic data to train it. Building such a system is a
challenge in and of itself but our main focus is on the use of this task for an ab-
lation study on pipeline parameters. The next subsection discussed that ablation
study.

The synthetic data used for training and testing of GaitNet was generated us-
ing motion capture recordings of multiple subjects walking. This testing set used
was generated with motion capture data that was not used in the training set, to
reliably assess the generalisability to never-seen-before motions.

The trainedmodels did not performwell on the subject classification task. The
model that performed best on the test set achieved a classification accuracy of
13,98% and a top 5 accuracy of 46,16%, compared to the baseline accuracies of
6,66% and 33,33%. We suspect all models have been overfitted.

However, the main system task envisioned by the Police is ordering a list of
surveillance footage clips on the likelihood that it contains a given person, such
that an investigator thatworks from top to bottomfinds relevant clipsmore quickly.
This is very much more forgiving than classification, as any improvement in mak-
ing distinctions between people adds value to the end-user. That is why, even
though the classification accuracy in itself is not exceptional, we consider this
proof-of-concept successful.

6.2.3. Ablation Study

The ablation study as described in Section 5.2 investigates causal effects of sin-
gle components of the pipeline. Variation of background, clothing, lighting, cam-
era tilt and body shape were all brought to a minimum one by one and a dataset
was generated for each of these ablations using the motion capture data col-
lected for GaitNet. A GaitNet instance was then trained on this dataset and tested
against two testing sets. The gait recognition task served as the working example
for the ablation study but other tasks would also have sufficed.

Testing showed that all ablations had a negative impact on prediction accu-
racy. This means that all 5 tested areas of variation in synthetic data are benefi-
cial for the performance of models trained on that data. This is a valuable insight
as it confirms the effectiveness of domain randomisation.
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6.2.4. Violence Detection

To assess the impact of synthetic data on a real-life and production-ready deep
learning activity recognition system, the task of violence detection was consid-
ered. Thiswas done at Oddity.ai, where a state-of-the-art violence detectionmodel
is developed and brought into production.

After the ablation study, where only motion capture recordings were used, the
entire pipeline is now deployed. The synthetic videos were based on both motion
capture recordings as well as videos of violence taken from different domains,
from which the motion was extracted. However, the motion extractor posed se-
vere difficulties when processing real-life surveillance videos with complex inter-
actions, occlusions or low resolution. To proceed, we recorded videos of actors
pretending to engage in violent interaction in-house. This gave us complete con-
trol and this allowed us to prevent occlusions and ensure high video resolution.
The use of these videos is a major limitation, though, as the violence is acted out
and not real. Its usage thus compromises the realism of the synthetic data.

Using the generated synthetic data and the existing Oddity.ai training set, we
constructed several datasets with different amounts of real and/or synthetic data.
These datasets include:

• Datasets of different sizes without any synthetic data at all, to establish a
baseline.

• Datasets equal in size but with different real/synthetic proportions, to com-
pare the value of synthetic data with that of real data.

• Datasets with the same amount of real data but different amounts of syn-
thetic data, to assess the absolute difference in performance when comple-
menting a dataset with additional synthetic data.

Model instances were trained on these datasets and their performance was
measured against a testing set containing only real videos. The experiments
showed the following:

1. Complementing real data with synthetic data does improve model perfor-
mance up to a point,

2. The same amount of real data is more valuable than synthetic data.

3. The synthetic data used for violence detection is biased but relevant resp-
resentation can be learnt from it.

It is to be expected that real data is more valuable, performance-wise, but this
should, of course, be seen in light of the performance-cost tradeoff. Synthetic
data is significantly cheaper to acquire than real data. Depending on the exact
cost of real data collection, which differs for each use case, this performance-
cost tradeoff is worth it. This is certainly the case for violence detection, where
data collection is not only costly but also legally and ethically questionable.
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The bias in the synthetic data that led to performance decrease when adding
a large amount of synthetic data can be explained by the limitations found Sub-
section 6.2.1 above. These are all limitations that could prevent the reality grap
from being closed. We deem the interaction limitation and errors through VIBE
as the most contributing causes. However, these are both beyond our scope and
reach to solve. Improvements to the random walk generation algorithm and light
modes remain.

Our fine-tuning experiment showed that representations learnt on the synthetic
data are solid though and can be put to good use by adapting the classification
layer using small amounts of real data. This does also indicate that there is room
for improvement on the domain randomisation side as fine-tuning is a domain
adaptation technique.

Overall, the results achieved with this experiment are very satisfactory. The
theorised positive value synthetic data can have, is now empirically backed up
and our pipeline has proven itself.

6.3. Future Research

The synthetic data pipeline as proposed in this work has achieved very promising
results in experimental and production environments. Still, there is ample room
for additional research. A few key areas to explore further rise up from this work.

First, further research to a good random walk generation algorithm is required
when trying to close the reality gap further. It is not evident how a realistic po-
sition and movement distribution can be found to sample random walks from.
Ideally this would be grounded in real-world position and movement data. What
this real-world data looks like differs for each use case of the pipeline, so this will
compromise versatility. Research into the heuristic use of pose motion for more
realistic randomwalk generation is also promising. Here themain challenge again
is keeping the pipeline versatile and applicable to a wide range of problems.

Second, research into spatiotemporal scene understanding is required. The
3D pose estimation techniques reviewed in this work estimate a single person
at a time, disregarding all spatial relations between people. This has as implica-
tion that interactions between people cannot accurately be reconstructed as their
relative position and orientation is unknown. Insights from scene understanding
achieved in e.g. self-driving car research [113], [114] or the field of depth esti-
mation [115] might be combined with the known location of people in 2D pixel
space to estimate their depth. Novel research might also be conducted into a 3D
pose estimation model that directly regresses to multiple spatial-interdependent
poses.

Third, we found annotation of synthetic data samples to be amajor bottleneck
when generating big datasets. Due to random (spatial) cropping and (temporal)
splitting, it is not always evident if a cropped clip should still be classified as an
example of the activity of interest. This was especially the case in our violence
detection experiment. Further research into leveraging the synthetic nature of the
generated data for the automatic annotation is desirable. A starting point could
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be Snorkel by Ratner et al (2017) [116], who propose a framework to programmat-
ically label training data.

Lastly, broader research into the bias in the synthetic data and how to further
close the reality gap is desirable. There is a wide variety of factors that can in-
fluence this and investigating their impact requires even more extensive research
than our ablation study. Existing domain randomisation factors might have intro-
duced bias but the absence of a yet unknown factor might also be the root cause.
A possible direction thus is the theorisation and implementation of more visual
realism, such as using moving backgrounds instead of static images or a higher
fidelity body model.

6.4. Conclusions

Innovation of deep learning models for activity recognition has rapidly driven the
required amount of training data up due to increasingly complex models. Many
difficulties can arise when collecting such large amounts of data, especially with
the recent tightening of privacy legislation. For human activity recognition, this
certainly poses a problem.

In academia, the automatic generation of synthetic data for training purposes
has been put forward as a solution for data scarcity but research into synthetic
video data is limited. With this work we propose a powerful and versatile pipeline
for the generation of synthetic data for a multitude of activity recognition tasks. It
is able to process motion capture recordings but also videos containing activities
of interest, from which the spatiotemporal motion data will be extracted using
pose estimation techniques. However, motion extraction from video turned out
to be limited because of the state of current research in that field. A multitude of
scenes containing the collected motions are algorithmically generated and using
domain randomisation techniques the reality gap with real videos is closed. Do-
main randomisation adds variance to a number of parameters, which in our case
include: actor gender, actor body shape, actor clothing style, scene lighting con-
ditions and scene background. Finally, Blender is used to build the scenes in 3D
space and render them into videos.

As subjects of evaluation experiments, we considered the cases of gait recog-
nition and violence detection, where data collection has proven difficult. Our abla-
tion study on the gait recognition task showed that all proposed domain randomi-
sation techniques used at data generation time led to increased classifier perfor-
mance. Using synthetic data we were also moderately capable of identifying peo-
ple by their gait. Experimentation with the violence detection model also showed
that synthetic data can successfully be used to improve model performance. We
achieved this by complementing real datasets with synthetic data. This is an im-
portant result as synthetic data is significantly cheaper than real data and is com-
pletely privacy-preserving. However, we did find the synthetic data to be biased,
leading to a performance decrease when increasing the amount of synthetic data.

Concluding, we have proposed a powerful and versatile synthetic video data
generation pipeline in this work and have been able to affirm our research ques-
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tions with it.
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