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Abstract

The Art Gallery problem is a famous problem in the field of Computational Geometry.

The variant of the problem discussed in this thesis is defined as follows: given a polygon

(possibly with holes) P , the goal is to find the smallest set of point guards G ⊂ P such

that every point p ∈ P is at least seen by one of the guards g ∈ G. A guard g sees a

point p ∈ P if the segment pg is contained in P .

We discuss the practical implementation of the vision-stable iterative algorithm that

is used to solve this famous visibility problem. This algorithm has theoretical guarantees,

as shown by Hengeveld and Miltzow [17], in a paper written during this thesis. Aside

from the vision-stable iterative algorithm, two of its subroutines were implemented as

well. One of these algorithms is used to compute weak visibility polygons [1] and the

other is used the answer weak visibility queries [16]. This is the first algorithm for the

Art Gallery problem that both has theoretical guarantees and works arguably well in

practice. The main question that we answer is whether the iterative algorithm is feasible

in practice. We performed tests to measure the running time of the algorithm, and show

that it does perform quite well practically. Additionally, several experiments using the

practical implementation are discussed, answering questions about the running time of the

algorithm such as the standard deviation, sensitivity to input parameters and workload

distribution.

Art Gallery Thesis 2020 2



CONTENTS

Contents

1 Introduction 4

2 The Ingredients 8

2.1 Preliminary concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Computing the visibility polygon of a segment . . . . . . . . . . . . . . . . . 13

2.3 Computing the visibility polygon of a point . . . . . . . . . . . . . . . . . . . 16

2.4 Shortest path map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Practical Algorithms for the Art Gallery problem 21

3.1 Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Stony Brook 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Turin 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.3 Braunschweig 2010/2012 . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.4 Campinas 2013 (1) and (2) . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.5 Braunschweig 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.6 Campinas and Braunschweig 2013 . . . . . . . . . . . . . . . . . . . . 28

3.2 Comparing the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 The iterative algorithm 30

4.1 Speedup methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Experiments 41

5.1 Practical running time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 The effect of the speedup methods . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Critical witness sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Converge to the optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.6 Distribution of CPU usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Discussion and Future research 52

A Intermediate Arrangements 56

Art Gallery Thesis 2020 3



1. INTRODUCTION

1 Introduction

The Art Gallery problem is a widely studied, complex problem in the field of Computational

Geometry [3, 8, 20, 22]. In this problem, the goal is to guard an art gallery by using as few

guards as possible. Geometrically, the art gallery is translated to a polygon P (possibly with

holes) while the guards are translated to points within the polygon. We say a guard g can see

a point p ∈ P if the segment pg is contained within P . The guards are allowed to be anywhere

inside the polygon. The goal is then to find a set G ⊆ P such that every point p ∈ P is seen

by at least one guard g ∈ G. Section 3 describes the Art Gallery problem in more detail.

Over the years, many practical algorithms have been introduced that attempt to efficiently

find optimal solutions for this problem [4, 6, 11, 15, 18, 24, 25]. They work well in practice

but offer no running time upper bounds. It is difficult to find such an upper bound because

the solution space of the Art Gallery problem is continuous, making it hard to discretize. The

practical algorithms presented so far often use heuristics to select candidate variables for an

integer program which then finds candidate solutions. Afterwards, it is checked whether the

candidate solution is optimal. If not, more candidate variables are added, and the IP is run

again. Section 3.1 offers a more detailed review of these practical approaches. While this

process works well in practice for many input polygons, these algorithms may run forever.

Given these algorithms, it is not even clear if the Art Gallery problem is decidable. Only one

algorithm that shows that the Art Gallery problem decidable has been published for the Art

Gallery problem [12]. However, this algorithm uses algebraic methods. These methods are

impractical for the Art Gallery problem because of the large number of variables that would

have to be taken into account.

In this thesis, a practical implementation of a new algorithm is discussed. This algorithm

is called the vision-stable iterative algorithm and relies on the computation of different types

of visibility and several other subroutines. These subroutines and several more important

concepts are discussed in Section 2. As the name of the algorithm suggests, it is based on

the concept of vision-stability. To understand what vision-stability is, we imagine a version

of the Art Gallery problem in which guards have either enhanced or diminished vision. We

enhance the vision of the guards by letting them look “around the corner” by an angle of

δ. We diminish vision of guards having their vision be more “blocked” by a corner by an

angle δ. To explain this in more detail, consider the visibility polygons showcased in Figure 1.

The visibility polygon of a point p inside a polygon P consists of the region of P visible

from p. A more detailed definition of visibility and visibility polygons is given in Section 2.

Using enhanced and diminished guards we can define the vision-stability. We say a polygon

has vision-stability δ if the size of an optimal solution using δ-enhanced guards is the same

as the size of an optimal solution using δ-diminished guards. Note that if a polygon has

vision-stability δ, it also has vision-stability δ′ for all δ′ < δ.
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1. INTRODUCTION

(a)
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(b)

p

(c)
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Figure 1: In (a), p is a normal guard and vis(p) is shown in green. Next to it, (b) shows a

δ-enhanced guard p. The parts in darker green are added to its visibility polygon. The figure

in (c) contains vis−δ(p), the parts removed from its visibility polygon are shown in red.

The vision-stable iterative algorithm can be used to find an optimal solution for every

vision-stable polygon [17].

From now on, we will refer to the vision-stable iterative algorithm simply as the iterative

algorithm. The second part of the name of the algorithm comes from the fact that it solves

the Art Gallery problem in iterations. At the end of every iteration, we use an IP to find

intermediate solutions for an arrangement A inside P . These solutions act as lower bounds to

the optimal solution. One of the reasons these are lower bounds is that aside from point-guards

we also allow solutions that use face-guards. Once we have found such a ”degenerate” solution

using faces, we make sure that we update A and split the faces in question so that we cannot

use them in the next iteration. Figure 2 shows three example iterations of the iterative

algorithm and how the arrangement A inside P changes.

As Hengeveld and Miltzow [17] describe, the way we split faces is what guarantees the

decidability of the iterative algorithm. Section 4 provides a more detailed description of the

iterative algorithm, the IP we use and the way we use the subroutines from Section 2 to

compute the necessary visibilities. Furthermore, Section 4.1 describes two ways in which

practical speedup of the iterative algorithm can be achieved.

In this thesis, we answer the question of whether this algorithm is practically feasible. To

that effect, the iterative algorithm was implemented in practice, including all of its subroutines

and speedup methods. This was achieved using C++ and CGAL [23], a computational

geometry library. The C++ source files of this implementation can be found at https://

github.com/simonheng/AGPracticalWithPerformance. The code provided in the repository

consists of C++ source and header files, in addition to a Visual Studio solution file. Bear in

mind that the code is dependent on CGAL version 4.13.1 [23], IBM ILOG CPLEX version

12.10 [5], the boost library and Libxl version 3.9.0.0 (used to read and write excel result
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1. INTRODUCTION

(a) (b) (c)

Figure 2: In (a) we create the initial arrangement by using the reflex vertices. We find a

degenerate solution using 1 face-guard. In (b), we have split that face-guard from the previous

iteration. We find another degenerate solution by using one of the new faces. In (c), we

again split a face. Now, we cannot find a solution of size 1 anymore because all faces of the

arrangement are too small. The IP finds an optimal solution using 2 point-guards.

files). In order to be able to compile and run the project, the above dependencies must

be installed. Additionally, a video was created to further explain one of the subroutines.

The video is publicly available on YouTube via https://youtu.be/CFs8wPbmjlU. To answer

the question about practical feasibility and several other sub-questions about the algorithm,

various experiments were conducted. These experiments are described in Section 5. Through

these experiments, we found that we can use the algorithm to find optimal solutions for smaller

to medium-sized input polygons with reasonable running times. We also compare the running

times found to one of the existing practical algorithms for the Art Gallery problem [11]. We

show that we are not far behind their running times, confirming the practical feasibility of

the iterative algorithm. Moreover, upon closer examination of our results, we found that

the median of our running times is often lower than the average. For many polygons, the

iterative algorithm finds the solution in a very efficient manner. Some polygons, in particular

polygons with low vision-stability, are more difficult for the algorithm. This re-affirms the

importance of this theoretical concept. Furthermore, Hengeveld and Miltzow [17] show that

the size of the IPs that we solve in the iterations can be bound by the vision-stability,

showing that the running time of the iterative algorithm depends on δ. Moreover, because

solving an IP, in theory, takes exponential running time, this means that this dependence is

theoretically exponential. However, note that the running time of IP solvers is much faster

than exponential in practice. Section 5.1 discusses the running times and the correlations

between the vision-stability and the running times in more detail. In Section 5.5 we show that

not only we find solutions for solvable polygons, but that the iterative algorithm provides an

iteratively improving set of solutions to a polygon with irrational guards [2]. We demonstrate
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1. INTRODUCTION

this by computing the Hausdorff distance of the optimal solution of the polygon with irrational

guards to the solutions found at the end of every iteration. Plotting these distances per

iteration on a logarithmic scale (see Figure 27) shows that the iterative algorithm converges

to the optimal solution in an exponential manner.

In a different experiment, discussed in Section 5.3, we show that several random factors

of the iterative algorithm cause there to be a large standard deviation in its running times,

even for the same polygon. Finally, we test the effects of the speedup approaches described

in Section 4.1 and show that they have a large effect on the running time of the iterative

algorithm.

The results found in all of these experiments confirm that the iterative algorithm is one

of its kind, as it is the first algorithm for the Art Gallery problem has a theoretical running

time upper bound (for vision-stable polygons) and works arguably well in practice. More

discussion about the results of this thesis and some suggestions concerning future research

can be found in Section 6.
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2 The Ingredients

In order to find solutions for the Art Gallery problem, the iterative algorithm must answer

different types of visibility queries. To achieve this, many different subroutines are necessary.

This section will discuss and analyze these various subroutines. To start off, Section 2.1 will

discuss some preliminary concepts. Sections 2.2 and 2.3 will discuss two algorithms that can

be used to compute two types of visibility polygons. Finally, Section 2.4 will discuss a method

of answering segment-point visibility queries.

2.1 Preliminary concepts

In order to understand the subroutines that we discuss later on, we must first define some

concepts.

Visibility polygons. To define visibility polygons, we must first introduce the concept of

visibility between two points in a polygon P . When we talk about a polygon P , we define

P as all points in the interior and the boundary of the polygon. The visibility we will deal

with is limited to two-dimensional visibility. A point q is visible from another point p if the

segment pq does not intersect any obstacles. A point q is visible from a segment s if q is

visible from any of the points in s. We can now define visibility polygons. Given a polygon P

and a point p ∈ P , the visibility polygon vis(p) is made up by all the points in P that are

visible from p. Similarly, the visibility polygon vis(s) for a polygon P and a segment s ∈ P
is defined as all the points in P that are visible from s. This type of visibility polygon is

called a weak visibility polygon. These weak visibility polygons are useful because they let us

compute the visibility polygons of larger shapes. Given an arrangement of line segments with

a boundary polygon P, we can compute the visibility polygon of the faces of the arrangement

by combining the weak visibility polygons of each of the boundary edges of the faces. Why

this is relevant for the Art Gallery problem will be discussed in Section 4.

Figure 3 includes examples of vis(p) and vis(s). The blue outline shows the original simple

polygon P , while the green outline is the resulting visibility polygon. In this case, s and p are

both in the interior of P .

Beams, pockets and doors. We will discuss several notions that are important in the

context of the first subroutine. The first concept we will define is the concept of beams. Given

a segment s = ab in P , a beam emanating from s is a segment pq, contained in P , drawn

from any point p in s to a point q in the interior or on the boundary of P . The beams of a

segment s are relevant when we want to compute vis(s) because any point that they touch

belongs to vis(s), given our definition of visibility. These beams from s might create pockets

in P , which are maximal regions from P that are not in vis(s), which means that they are
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(a) (b) (c)

p

s

Figure 3: Includes (a) a polygon P , (b) an example of vis(p) in P and (c) an example of vis(s)

in P .

cut off by one of the beams from s. The particular beam that separates a pocket from vis(s)

is called a unique maximal beam, and the part of the beam that borders with the pocket is

called a door. Since the door is not part of the pocket, pockets can be seen as objects that are

part open and part closed. If a pocket is to the left of its beam it can be called a left pocket.

Otherwise, it is a right pocket. At most two doors have an endpoint on any given edge in P

[1]. This is because any edge contains at most one endpoint of a door from a left pocket and

right pocket. Figure 4 shows a beam pq from the edge ab and a left pocket in gray, with as

door the segment lq.

A segment ab has a left half-plane and a right half-plane noted LHP(ab) and RHP(ab).

These half-planes consist of the areas to the left and the right of
←→
ab respectively, where

←→
ab is

the line obtained by extending ab to infinity on both sides. Figure 4 shows the left and right

half-planes of the segment cd. According to this definition LHP(ab) = RHP(ba). If pq is a

beam with p on an edge ab of P and q on an opposing edge de of P , it is called a proper beam

if if pq ⊂ LHP(ab) and pq ⊂ LHP(de). Moreover, pq is called the rightmost beam between ab

and de if it is a proper beam and, among all other proper beams, p is as close to b as possible

and q is as close to d as possible.

The right support of a beam pq is a reflex vertex r of P such that r ∈ pq and the edges

meeting at r are both contained in RHP(pq). The left support l of a beam pq is defined

analogously. The beam pq in Figure 4 is an example of a rightmost beam between the segments

ab and de, with left and right support l and r. Finding the rightmost beam is a key factor

when computing vis for a segment.

A subroutine to find the rightmost beam is provided in [1]. This subroutine takes as input

the vertices v0, v1...vn−1 of a polygon P in counter-clockwise order and an index i, such that

v0v1 and vivi+1 are opposing edges. The output of the algorithm is the rightmost beam of
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a

b
c

d

q

p

r
l

e

RHP (cd)

LHP (cd)

Figure 4: This figure shows an example of a (rightmost) beam pq between the edges ab and

de contained in P with left and right support vertices l and r. The blue area is a pocket with

a door lq. Additionally, the left and right half-planes of the edge cd are shown in gray.

between the segment s = v0v1 and the edge vivi+1, expressed through the indices of its right

and left support vertices. The subroutine finds the right and left supports by splitting P into

two parts, one part being the vertices between v1 and vi, and the other part being the vertices

between vi + 1 and vn. The vertices inside the right half of P are used as candidates for the

right support while the vertices on the left half of P are used as candidates for the left support.

The candidate vertices are tested by checking if there is a proper beam from v0v1 to vivi+1

that intersects both candidate vertices. If no proper beam can be made from v0v1 to vi+1, the

subroutine returns NULL. If the rightmost beam from v0v1 to vi+1 does not intersect any

vertices (the entire segment vi+1 is visible from v0v1), the right and left supports returned are

v1 and vi+1 respectively. A limitation of this subroutine is that it requires the segment for

which we are computing the rightmost beam to be an edge in P , i.e., it requires s to be a

boundary segment. Section 2.2 will discuss how this subroutine is used when computing vis(s).

Additionally, we will explore the way we can overcome this limitation and compute vis(s)

when s is an interior segment, which is a segment that lies within P (see ab in Figure 4).

Shortest paths, funnels and merging. Section 2.4 introduces a method that uses paths

within a polygon to answer visibility queries between segments and points. We will later

show how, given the shortest paths between a segment and a point, we can check whether

the segment can see the point. A shortest path between two points p and q in a polygon is

the shortest sequence of points a, a0, . . . , ak, b such that all points in the sequence are inside

or on the boundary of the polygon. We will denote the shortest path from p to q as π(p, q).

Figure 5 (a) gives an example of such a shortest path. Another concept that we will use
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2. THE INGREDIENTS

is is the concept of funnels. A funnel can be seen as the set of all shortest paths between

a segment s and a point p. Figure 5 (b) shows such a funnel. One can represent a funnel

between a segment s = ab and a point p by using π(a, p) and π(b, p), which combined with s,

is the boundary of the funnel. Given a funnel, we can test whether or not p is visible from s.

If the paths π(a, p) and π(b, p) have no overlapping vertices ab can see p. This is shown in

Figure 5 (b). In some cases, π(a, p) and π(b, p) can have one overlapping vertex such that

ab can still see p (Figure 5 (c)). This happens when the ray from p to the first overlapping

point intersects ab. If the funnel has more than one overlapping vertex, s can never see p

(Figure 5 (d)).

p

p
p

p

q

a a

a

bb

b

(a) (b) (c) (d)

Figure 5: Includes (a) an example of a shortest path π(p, q) in which point p does not see q,

(b) an example of a funnel in which point p is visible from the segment s = ab, (c) an example

of a funnel in which point p is visible from the segment s = ab and where the funnel has one

overlapping vertex and (d) an example of a funnel between a segment s = ab and a point p

where p is not visible from s.

Given a chord of the polygon c = ab and two points p and q on opposing sides of c we can

find π(p, q) by merging the funnels from p to c and q to c. Theoretically, these funnels can be

merged using an algorithm that runs in O(logm), where m is the number of vertices of the

boundary of the funnels. However, the merging funnels subroutine that was implemented as

part of this thesis uses a linear-time method. In practice, the funnels that were merged in

the practical implantation were rarely very large. The linear-time method that was used is

similar to existing methods that are used to find the convex hull of a polygon. We merge the

two funnels by building two candidate shortest paths, one on the side of a and one on the

side of b. We will run through the construction of the a−side path. Note that the second

path is constructed similarly, in a mirrored fashion. We start in the middle, at point a. We

then connect a with its two adjacent points in π(a, p) and π(a, q). We then check the position
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2. THE INGREDIENTS

of the middle points, now a, to the line between its two adjacent points. The position of

the middle point compared to its adjacent point tells us whether or not this point should be

included in the shortest path. Figure 6 shows how we do this. We keep adding points to the

candidate shortest path, sometimes removing them until we run out of points on the a-side of

the funnels. Meanwhile, we do the same for the b-side. We build both candidate paths in an

alternating fashion so that we do not waste too much time on an incorrect shortest path.

p

q

a b

(a) (b) (c) (d)

q

a b

p

q

a b

p

q

a b

p

Figure 6: We see an example of how a funnel merge procedure is handled. In (a), we have the

two funnels. In (b) we test the position of point a compared to the line of its adjacent points.

Point a is to the left of the line, so we remove it from the chain. Then, in (c), we add p to the

chain and again compare the middle point to the line of its adjacent points. The middle point

is to the right of the line, thus we keep it in the chain. The final figure (d) shows the resulting

shortest path. The path on the b-side is found to be invalid after only one positional check.

a

bp

q

Figure 7: This figure shows an edge case. The funnel contains two reflex vertices of P ,

on opposing sides. The shortest path resulting from the funnel merge contains both reflex

vertices.

Most of the time, the shortest paths will be either on the a-side or the b-side of the funnels.

If this is the case, then the previously described algorithm functions correctly. However, there
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are some cases in which this does not happen. Such a case is shown in Figure 7. In this

case, the path is on both the a-side and b-side of the funnels because the funnels contain two

opposing reflex vertices. We detect this case when after the procedure, we did not find a

working shortest path on either the a-side or b-side of the funnels. In this case, we can find

the path by merging two parts on both sides.

2.2 Computing the visibility polygon of a segment

Algorithm 1 is an algorithm taken from [1] that can be used to compute vis(v0v1). This

algorithm assumes that v0v1 are vertices of P and are both convex. This means that this

algorithm shares the same limitation as the rightmost beam subroutine, but is even more

restrictive. We will first discuss how this algorithm works and then we will explore how to

overcome these restrictions. This algorithm was implemented from scratch using C++ and

CGAL as part of the first phase of this thesis.

Algorithm 1 Computing vis(v0v1)

1: report v0, v1
2: i← 1
3: while i < n− 1 do
4: (R,L)← FindRightmostBeam(i)
5: if L = i+ 1 then
6: report vi+1

7: Let s be the point on v0v1 closest to v0 that can see vi+1

8: if s ∈ LHP(vi+1vi+2) then
9: i← i+ 1

10: else
11: Let x be the point where −−−→svi+1 exits P
12: i← the first vertex of the edge containing x
13: report x
14: end if
15: else
16: Let q be the intersection point between vivi+1 and −−−→vRvL
17: report q, vL
18: i← L
19: end if
20: end while

The algorithm builds up vis(v0v1) by iterating through the vertices of P in a counter-

clockwise manner. At the very beginning, v0 and v1 are added to vis(v0v1) because they are

trivially visible from v0v1. For each edge vivi+1, where i starts at 1, the rightmost beam

between v0v1 and vivi+1 is computed. In the pseudo code, these supports are saved by their

index in P as the integer variables R and L. If the right and left support found are not NULL,

Art Gallery Thesis 2020 13
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two cases are identified, and points are added to vis(v0v1) based on these cases. These cases

are illustrated in Figure 8.

v1v0 , p

(a)

vi, vRvi+1, vL , q

s v1v0 , p

vi, vR

, s

vi+1, vL , q

x

vi

v1v0 p, s

vi+1 q

(b) (c)

vR

vL

Figure 8: The different cases the algorithm will encounter. In (a) we see an example of Case

1, when s ∈ LHP(vi+1vi+2). Next to it, in (b) we see an instance of Case 1, but now s is not

in LHP(vi+1vi+2). Finally, (c) shows Case 2.

The first case occurs when the left support is equal to vi+1 (lines 6 – 15). This case is

shown in Figure 8 (a) and Figure 8 (b). When the vertex vL is equal to vi+1 we know that vi+1

is visible from v0v1 and thus vi+1 is added to vis(v0v1). To find what else is visible we must

use a point s that we set to be the point on v0v1, closest to v0 that can see vi+1. This can be

achieved by using a subroutine that computes point to edge visibility, using vi+1 as the point

and v0v1 as the edge. This subroutine is also discussed in [1] and works by checking whether

v0vi+1 or v1vi+1 intersects with any vertices in P . If it does, the visible region of vi+1 on v0v1

is updated. To find s we simply let it be the left bound of this visibility region because that

is the closest visible point to v0. Based on the location of s we decide whether another point

should be added to the output. If s is within LHP(vi+1vi+2) we can simply increment i and

check the next rightmost beam. This is shown in Figure 8 (a) where s is on the the extended

line ←−−−−→vi+1vi+2 and thus s ∈ LHP(vi+1vi+2) . However, if s is not within LHP(vi+1vi+2) we can

add another point to vis(v0v1). The point we can add is a point x where the ray svi+1 exits

P . This point is added because we know that the beam sx is a door to a right pocket. We

cannot see this right pocket, but we might be able to see the rest of edge that x is on, so i

is updated to be the source this edge. This is illustrated in Figure 8 (b), showing the right

pocket in blue and the beam sx in red. That concludes the steps taken for the first case.

In the second case (lines 16 – 21), the left support L found by the rightmost beam

subroutine is larger than i+ 1. We then let q be the intersection point between the segment

vivi+1 and the ray vRvL, where R and L are the right and left supports of the rightmost beam.
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Because the rightmost beam has these left and right supports, we know that the points in the

pocket with the door vLq are not visible. This is shown in Figure 8 (c). This means that we

can add q and vL to vis(v0v1) and update i to L because we can skip the vertices between

vi+1 and vL. Once the loop is finished, the output will contain the correct visibility polygon

of v0v1 in P .

The O(mn) complexity of this algorithm comes from the fact that every call to lines 5, 12

and 17 take O(n) time and the outer loop will iterate at most m times. This is because in

every iteration when there exists a rightmost beam, at least one vertex is added to the output

polygon and vertices are never removed.

As mentioned before, this algorithm only works when s is a boundary segment with convex

vertices. We will now address when we want to compute vis(s) for s when s is either an

interior segment or when s is a boundary segment with one or two reflex vertices. The idea is

to split the original polygon P into multiple polygons by extending the segments and then use

the above algorithm on each of the separate polygons. We must then combine these results in

a smart way as to not have repeating vertices. This will only work if we split the polygons in

a way such that the part of s in the new polygon is a boundary edge with convex vertices.

Sometimes this part of s will simply be a point. We can then use the algorithm discussed in

the next section to compute the visibility polygon for that point.

b′

P1

a b

(a)

a′
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b′
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b
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b
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b
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P3

a′

P3

P2
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Figure 9: Three images with example splits for P when computing vis(s) for s = ab

Figure 9 shows several example splits for a polygon P when computing vis(s) for s = ab.

In this figure, the splits are achieved by either extending a, b or both. The new polygons

should have the correct vertices in the right order. For example in Figure 9 (a), P2 should

have, besides several original vertices, v0 = a, v1 = b, v2 = b′, v12 = a′ while P2 should have

v0 = b, v1 = a, v2 = a′, v7 = b′. The visibility polygon of P1 in Figure 9 (b) is computed
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using the point visibility algorithm because the only point of s in P1 is b. The same goes

for P1 in Figure 9 (c) but then for point a. Figure 9 (d) demonstrates that it is sometimes

necessary to split the original polygon into four new polygons.

2.3 Computing the visibility polygon of a point

An apt algorithm to compute the visibility polygon for a point p in a simple polygon was

introduced in 2013. This algorithm was developed in order to make a practical solution to

the Art Gallery problem more viable. Practical testing of this solution showed that most

computation time was spent computing the visibility polygon of points. To overcome this the

authors of [7] decided to develop an algorithm that can compute the point visibility polygons

in a more efficient manner. More about this practical solution to the Art Gallery problem can

be found in Section 3.1.5.

The algorithm is called triangular expansion and works for simple polygons with or without

holes. The worst-case time complexity of the algorithm is O(n2), but in practice, much better

results are achieved. The algorithm is composed of a pre-processing stage and a computation

phase. The pre-processing stage consists of triangulating the polygon. Theoretically, this can

be done in O(n) for polygons without holes and O(n log n) for polygons with holes, but in the

practical implementation of CGAL [23] an algorithm with a worst-case running time of O(n2)

is used. Similarly to the second part of the algorithm, this pre-processing phase also performs

much better in practice.

T

l p

r

Figure 10: This figure shows an example of how the view of a point p might be restricted in a

triangle from the triangulation of P . In this case, two reflex vertices l and r restrict the view.

The parts of triangle T that p cannot see are highlighted in blue.

The computation phase starts by finding the triangle of the triangulation in which p is

located. This is done by performing a simple walk. The edges of P in this triangle are added

to vis(p) because they are visible. For every other edge in the triangulation, a recursive

procedure is done that expands the view of p through that edge into the next triangle. This

initially just restricts the view using the two endpoints of the edge but as the recursion

Art Gallery Thesis 2020 16



2. THE INGREDIENTS

proceeds, the view may be further restricted. This happens if, between p and the new triangle,

one or two reflex vertices blocks the view from p. An example of this is shown in Figure 10

below with l and r being the left and right reflex vertices blocking the view.

In this case, vis(p) is updated to reflect this restriction. If p is between l and r like in the

figure, the recursion might split into two instances. As there are n vertices, the recursion might

be split into n calls which then iterate O(n) triangles. This suggests a worst-case complexity

of O(n2). However, a true split into two visibility cones that may reach the same triangle

independently can happen only at a hole of P . This means that the worst case is O(nh) where

h is the number of holes. For simple polygons, the running time is linear. Furthermore, [7]

performed experiments showing that, in practice, the triangular expansion method performed

much better than the state of the art methods for visibility polygon computation.

2.4 Shortest path map

Technically, we could use the above two methods to answer all types of visibility queries. Given

the visibility polygon of a candidate point or segment, all we have to do to check visibility

is to compute whether or not the target point lies within this visibility polygon. Using the

triangular expansion method for point-point visibility is very fast in practice. However, as

shown in the previous section, the algorithm to compute this weak visibility polygon has a

running time of O(n2). As we will be doing large amounts of visibility queries, relying on

the above method would be inefficient. This creates the need for a faster way of computing

segment-point visibilities. Such a method was introduced in 1987 [16]. This method includes

pre-processing the polygon P by computing all shortest paths between all pairs of vertices.

Given a chord c = ab and a point p, we let m be the size of the funnel, i.e., the size of

π(a, p) and π(b, p). Then, given this shortest path map, we can use it in combination with

a triangulation of the polygon to answer segment-point visibility queries in O(logm) time.

However, note that in our implementation, we actually solve them in O(m) time because of

the way in which the merge routine was implemented. We know that m� n, and that m is

often rather low. This is because, in practice, the shortest paths will not be very complicated,

as a result of the weak visibility polygon tree that we used (see Section 4.1). The fact that

m is often low means that the linear time funnel merge method is still rather efficient in

practice. This then means that using the shortest path map is much more efficient than using

the O(n2)-running time technique described in Section 2.2.

Building the shortest path map. To build the shortest path map inside a polygon P ,

we need a triangulation of P . As mentioned in Section 2.3, CGAL[23] has a method available

for triangulating polygons. This is what is used in the practical implementation of this

pre-processing step. Once we have access to the triangulation, we can begin building the

shortest paths. First, we build all shortest path from one vertex to all others. Then, we repeat
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this for every other vertex to build the complete map. To find all shortest paths from a vertex

v to all other vertices, we find the triangle Tv that contains v. We then traverse the adjacency

tree of the triangulation, starting at Tv, building the paths. The shortest path between two

vertices of the same triangle is trivial: it is the triangle edge. All other shortest paths we

can find by iteratively merging funnels. To find the shortest path of two vertices in adjacent

triangles, we must merge the funnels. The funnels that we are merging are actually the two

triangles themselves, with the diagonal that they share as the edge that both funnels have in

common. Figure 11 (a) and (b) show an example of this.

v s

(a) (b) (c) (d)

v v v

u u u u

s

w w

Figure 11: While building the map, we perform funnel merges to find shortest paths. In (a) and

(b) we show that to find π(v, u) between two vertices v and u in adjacent triangles, we merge

two simple triangle funnels. In (c) and (d) we show that to find π(v, w) between two vertices

v and w in non-adjacent triangles, we can use the paths computed so far (π(v, u), π(v, s)) to

find the necessary funnels for merging.

As we traverse the triangulation tree, we will reach triangles that are not adjacent to

Tv. However, since we have already build up the shortest path up and to this point, we can

use the already pre-computed shortest paths to continue. Figure 11 (c) and (d) show the

funnels that we then need to merge. Note, that while building the map, at least one of the

two funnels will always be a simple triangle. After we finish building the shortest path map

from v, we must do this for every other vertex of P . For every vertex, we must traverse the

complete triangulation of P . At every stage, we are performing a merge, which theoretically

can be done in logarithmic time. This means that the running time complexity of building the

shortest path map is O(n2 log n). In our implementation, it means the running time is O(n3).

Furthermore, since we are storing paths between all vertices of the polygon, this indicates a

memory usage of O(n3). However, this is not a very accurate upper bound. In practice, the

running time and memory usage are much lower because paths are not generally very complex.
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Moreover, the use of the weak visibility polygon tree, described in Section 4.1, eliminates

the need for computation and storing of many paths inside the polygon. Using the concept

discussed in that section, [17] proves that the running time and memory use of the shortest

path map depend on another parameter of the weak visibility polygon tree, thus giving a

tighter upper bound on both of these aspects of the data-structure.

Computing visibilities using shortest paths. As mentioned before, the goal of using

the shortest path data-structure was to be able to check whether a segment s = ab can see a

point p in logarithmic time. To achieve this, we must construct the funnel between s and p.

This involves finding π(a, p) and π(b, p). Let us explore how we find the shortest path from

π(a, p) using the shortest path map. Finding π(b, p) can be done the same way. First we

locate the triangles Ta and Tp in the triangulation that contain a and p respectively. If a and

p are both vertices, we can use the shortest path map to find π(a, p) in O(1). If one of the

two points is a vertex and the other is not, we must perform one funnel merge. Let’s say a

is a vertex and p an point inside Tp. Both funnels share as target edge the diagonal of Tp

that faces Ta. We can easily identify this diagonal using the triangulation tree. The funnel

from p to this diagonal is a simple triangle. The boundary of the second funnel consists of

the shortest paths from a to the vertices of this diagonal. We can find these paths by looking

inside the pre-computed map. Finally, we merge these funnels, finding π(a, p). The hardest

case is when both a and p are interior points of their triangles. In that case, we must merge

three funnels. We again identify the diagonal from Tp that faces Ta. We then find the shortest

path from a to this diagonal. This time, we cannot simply look up these paths. Instead,

for each path, we must perform an additional funnel merge. Both merges share the triangle

funnel Ta. To find the second funnel for both merges, we must look up the shortest paths

between each of vertices of the two identified diagonals of Ta and Tp. Doing this, we will

obtain four paths. These four paths are the boundaries of the second funnels necessary for the

funnels. Once we have obtained the two paths from the diagonal of Ta to p, we can perform

the final merge, similarly as in the previous case.

Once we compute both the π(a, p) and π(b, p), we can answer the visibility query. Only if

the paths of the funnel have less than two overlapping points, s can see p, as shown in Figure 5.

Locating a point in a triangulation, using existing methods in CGAL, has an average running

time of O(
√
n). However, in our algorithm, we will do this only once for every point. We

then save the triangle together with the point in a data-structure. This means that after we

have located the points once, subsequent lookups can be done in O(1). This is why we do not

consider this when discussing the running time of the visibility queries. To solve the queries

all we have to do is a constant number of funnel merges and O(1) lookups. This means that

the total running time of each visibility query amounts to O(logm), or O(m), in the case of

our implementation. As before, m is the number of vertices of the funnels that we need to
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merge.
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3 Practical Algorithms for the Art Gallery problem

This section will give a definition of the Art Gallery problem and will then explore and

compare various algorithms that aim to solve it. We will explore five different algorithms and

their results.

The Art Gallery problem bears this name because when the problem was originally

sketched it was described as the problem of determining the minimum number of guards

necessary to keep an eye on all of the paintings in an art gallery. A challenging part of the

problem was that this art gallery might be awkwardly constructed with all kinds of corners

and winding passages. The translation of this problem to a geometrical problem treats the art

gallery as a polygon P and the guards as points and their visibility polygon as the area that

they are guarding. Several variants of this problem exist and are studied. The most general

definition of the problem states that the both interior and boundary of the polygon should be

guarded and that guards are allowed to be placed anywhere inside or on the boundary of the

polygon. Variants of the problem can be constructed by either changing what needs to be

guarded or changing where the guards may be located. For instance, we can relax the problem

by only requiring the boundary of the polygon to be guarded. Another example may be only

allowing guards to be placed on the vertices of the polygon, simplifying the problem. We

will focus on the complex, general variant of the Art Gallery problem. This variant is more

complicated because the candidate set of guards now becomes exponentially large. Compare

this to the easier vertex guard variant which has a candidate set size of n, the set of vertices

of P . Below we properly define the variant that we will be using.

We are given a polygon P , with or without holes, in the plane with vertices V and |V | = n.

We assume that P does not self intersect. If for a set G ⊂ P , vis(G) = P holds, G is called a

guard set of P and a g ∈ G is called a guard.

The Art Gallery problem then asks for such a guard set G of minimum size. We call a

point a guard candidate if we consider adding it to a guard set G, and we call a point a witness

when we use it as a certificate for coverage. The different variants of the Art Gallery problem

can also be defined as an Integer Linear Program (IP), where C is the set of candidate guards

that we can choose from and W the set of witnesses that we need to guard. The IP is shown

below.

AGP (C,W ) = min
∑
c∈C

J c K (1)

s.t.
∑

c∈vis(w)∩C

J c K ≥ 1, ∀w ∈W (2)

J c K ∈ {0, 1}, ∀c ∈ C (3)
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We use a binary variable J c K = 1 when we use the candidate guard c ∈ C to guard one

of the witnesses and J c K = 0 otherwise. This is essentially a set cover problem in which we

attempt to minimize the sum of the variable J c K thus minimizing the number of guards we

pick from the guard candidate set C. The second line of the IP is the constraint which makes

sure that all witnesses are guarded. It states that for every witness w ∈W there should be

at least one guard candidate c from C in vis(w) for which J c K = 1. If the guard candidate

c ∈ vis(w) it implies that w ∈ vis(c) because visibility is a symmetric function.

The variant of this problem that we are interested in is when both C and W are equal to

(all the points in) P . For this problem, we have an infinite number of variables and constraints

because with infinite precision there are infinitely many points in P . We will denote this

variant as AGP (P, P ), the variant that only considers vertex guards as AGP (V, P ) and the

variant in which only the boundary needs to be guarded as AGP (P, ∂P ).

Chvátal [8] proved the ”Art Gallery Theorem” in 1975, stating that bn/3c guards are

sometimes necessary but always sufficient. The proof is based on the fact that if you

triangulate and then 3-colour P you can put a guard near every vertex of the least popular

colour, providing a solution that is always valid. Various variants of the Art Gallery problem,

including AGP (P, P ), were proven to be NP-hard. Recently, AGP (P, P ) was even shown to

be ∃R-complete [3]. AGP (V, P ) has been shown to be in NP while AGP (P, P ) has not yet

been shown to be in NP because it is unknown if there is a polynomial-size representation of

the point guard locations. Furthermore, AGP (P, P ) being ∃R-complete strongly implies it is

not in NP unless ∃R = NP.

In [13], Eidenbenz et al. established a lower bound of the achievable approximation ratio

for the AGP (P, P ) for polygons with holes. They found a lower bound of Ω(log n), as well as

establishing that the Art Gallery problem is an APX-hard problem. In [11] several algorithms

solving various variants of the Art Gallery problem were compared. In the sections below

we will summarize the results of this survey pertaining to the AGP (P, P ) variant. Both

algorithms for simple polygons and polygons with holes will be considered.

3.1 Timeline

In this section, we will discuss seven different algorithms and explore the way they work. We

will go through them chronologically. The seven different algorithms we will discuss are:

1. The oldest algorithm which uses a heuristic approach and is among the first experimented

with for this variant of the problem. The algorithm was developed in Stony Brook in

2007. [4]. (Section 3.1.1)

2. An algorithm developed in Turin in 2011 [6] with had good results for smaller sized

polygons. (Section 3.1.2)

Art Gallery Thesis 2020 22



3. PRACTICAL ALGORITHMS FOR THE ART GALLERY PROBLEM

3. The Braunschweig 2012 algorithm [15] which is an improvement over an earlier version

[18] from 2010 that could not handle integer solutions. (Section 3.1.3)

4. The first version of the Campinas 2013 algorithm [24] which can efficiently find optimal

solutions for simple polygons without holes. (Section 3.1.4)

5. The second (journal) version of the Campinas 2013 algorithm [25] which can efficiently

find optimal solutions for simple polygons with holes. (Section 3.1.4)

6. An improvement of the Braunschweig 2012 algorithm published in 2013 with much

better results than the previous versions. (Section 3.1.5)

7. The resulting algorithm of a collaboration between the universities of Braunschweig and

Campinas in 2013, combining the results of the previous years. (Section 3.1.6)

3.1.1 Stony Brook 2007

Among the first to attempt to create a solver for AGP (P, P ) were Amit et al. [4] in 2007.

The algorithms that the authors presented were more of a heuristic approach rather than

an exact one. Several strategies were explored, all following a similar setup. A large set G

of guards is picked following a heuristic such that P is guarded by G. Afterwards, guards

are removed one by one from G following a priority function µ. The authors considered 16

different combinations of choices to construct G and to use µ. The most successful approach

was when G was chosen to consist of all the vertices of P and several additional points. To find

these additional points the edges of the polygon were extended to create a new arrangement.

From each face in this arrangement, one point is picked and added to G. The function µ is

then chosen such that it gives priority to guards that can see the most positions in G that are

not yet guarded. Experiments were done with this algorithm on 40 input sets of polygons

with up to 100 vertices. The solutions were found to be within factor 2 of the optimum while

the most successful strategy found the optimal solution 12 out of 37 times.

3.1.2 Turin 2011

The lack of a practical algorithm that could be used to compute near-optimal solutions for

the complex AGP (P, P ) led to the development of this algorithm in Turin in 2011 [6]. It is

based on an earlier algorithm from 2008 by the same author which could find solutions for

the AGP (P, ∂P ) variant when only the boundary needs to be guarded. The first step of the

2011 algorithm consists of finding multiple optimal solutions for the AGP (P, ∂P ) by using the

2008 algorithm as a subroutine. These solutions are then tested to check whether they also

offer a solution for the AGP (P, P ) variant. The authors of [6] claim that if such a solution

exists it is automatically also a near-optimal solution for AGP (P, P ). There are cases that a
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correct solution is not among the ones found for the AGP (P, ∂P ) variant. When this occurs,

a greedy search is done starting from one of the incorrect solutions, iteratively adding guards

until a valid solution is found. The algorithm was tested with 400 polygons with sizes ranging

from 30-60 vertices and an optimal solution was found in 68% of the cases.

3.1.3 Braunschweig 2010/2012

The second algorithm proposed to solve the difficult point guard Art Gallery problem was

developed in 2012 in Braunschweig [15]. This algorithm builds on an earlier version of the

algorithm [18] in 2010 that could provide fractional solutions for the point guards variant of

the problem. What this means is that the third constraint of the IP in the previous section is

relaxed. We will now also allow fractional values, i.e., 0 ≤ J c K ≤ 1. The Art Gallery problem

demands integer solutions, which is why the newer variant was proposed. Both versions use a

primal-dual approach. The main observation that leads to this approach is that when the

sets of candidate guards and witnesses are finite and not too large, the problem can be solved

easily using an LP-solver. The idea is then to construct such finite, relatively small sets C

and W . We start by carefully choosing points and adding them to the initial sets C and W .

Afterwards, these sets are iteratively extended using a primal and a dual separation phase.

During the primal phase, an upper bound for AGP (P, P ) is computed while during the dual

phase a lower bound is computed. In the 2010 version, the primal separation phase consists

of cutting planes while the dual separation part uses column generation.

The primal separation phase aims to prevent constraint violations of the primal relaxed

linear program while the dual separation phase attempts to do the same for the dual linear

program. Both the primal and dual linear programs are shown below.

min
∑
c∈C

J c K (4)

s.t.
∑

c∈vis(w)∩C

J c K ≥ 1, ∀w ∈W (5)

0 ≤ J c K ≤ 1, ∀c ∈ C (6)

max
∑
w∈W

yw (7)

s.t.
∑

w∈vis(c)∩W

yw ≤ 1, ∀c ∈ C (8)

0 ≤ yw ≤ 1, ∀w ∈W (9)

The left side shows the relaxed primal version of AGP (C,W ). The only change compared

to the previously discussed IP is that it allows J c K to have decimal values as shown in (6).

The right side shows the dual variant of this problem which now contains a maximisation

instead of a minimisation.

The cutting planes technique works as follows: we check if there is a witness w ∈ P \W
that is not guarded and if so add it to W . If there is no such w, the current solution is feasible

for the relaxed version of AGP (C,P ) and thus an upper bound for the AGP (P, P ).
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If we then solve for the dual version we will effectively find a lower bound for the primal

linear program. This notion is used in the dual separation phase using the column generation

technique. If a constraint is violated in the dual linear program there must be a point c ∈ P
that is not yet contained in C. This candidate c should then be added to C. If there is no

such guard c the current guard set G optimally guards W and thus provides a lower bound for

the relaxed AGP (P, P ). This is known as column generation because using this dual linear

program we identify which additional column should be added to the primal problem.

Both of these phases are applied iteratively and thus the sets of C and W grow each

iteration. It is not necessary to perform both the primal and dual phase in every iteration,

one can ”steer” the computation towards an upper or lower bound by choosing to perform

either of the two phases more often than the other. This steering is heuristic. This approach

also has other heuristic aspects, such as the choice for the starting sets of C and W and how

new guards and witnesses are chosen. The authors experimented with several ideas and found

that two settings gave them the best results. The first was to set C to initially contain all

reflex vertices of P and the second was setting W to have a witness on every polygon edge

that is incident to a reflex vertex. An example of how the initial sets would be chosen is

shown in Figure 12. This idea was based on prior work done in [9] by Chwa et al.

c1 c2

c3

c4
c5

w2
w3

w4

w5

w6
w7

w8

w9

w1

Figure 12: This figure shows an example of how the sets C and W are initially constructed

for a polygon. The set of guard candidates are shown in black while the set of witnesses is

shown in red.

This approach was then extended in 2012 so that it only finds integer solutions and is

thus a valid method for AGP (P, P ). To reflect this, the primal and dual phases were changed.

In the primal phase, AGP (C,W ) is solved using IP for the current sets C and W . Then,

the visibility polygon of the sets of points C is scanned for insufficiently covered spots and

additional witnesses are generated accordingly. If there are no more witnesses to be added

we know that the current solution is optimal and thus an upper bound for AGP (P, P ). The
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dual-phase computes a lower bound for the fractional variant in a similar fashion as in 2010.

This leaves the issue of closing the gap between the upper and lower bounds. This has to

be done to make sure that the algorithm ends with integer solutions. The lower bounds are

raised using the cutting planes technique but the gap may still lead to sub-optimal solutions.

However, in this case, we at least have a lower bound. The algorithm was tested on polygons

with 60-1000 vertices including polygons with or without holes and orthogonal polygons.

Different setups were tested and even the version that did not apply the extra cutting planes

technique could identify fairly good integer solutions. However, the polygons with 1000

vertices were too large for this algorithm.

3.1.4 Campinas 2013 (1) and (2)

The next two algorithms to be discussed were both developed at the University of Campinas

in 2013. The first algorithm [24] was designed to only handle simple polygons while the

second one [25] could also handle polygons with holes. Additionally, the second algorithm

includes various improvements over the first one in terms of computational efficiency. The

approach the algorithms take is globally similar to the Braunschweig approach in the way

that it iteratively computes upper and lower bounds until it finds an optimal solution. It

does this by solving two semi-infinite discretized variants of AGP (P, P ). For the lower bound,

AGP (P,W ) is solved where P is infinite and W is finite. This might seem impossible to solve

but through a clever observation, [24] showed that is it possible.

Given a finite set of points S ⊂ P we can construct an arrangement that divides the

polygon into several regions. For each s ∈ S we overlay their visibility polygons. The more

visible a region, i.e. the more witnesses w can see it, the lighter the region is coloured. Figure

13 shows this for a small set S. In every region of the polygon, the figure displays the subset

of points that can see this region.

The aforementioned clever observation is that if we construct the above arrangement for

the finite set of witnesses W and then add the vertices of the lightest coloured regions to the

candidate set C we can draw some conclusions about W and C. If we assume that |W | is

bounded by a polynomial in n then the size of this candidate guard set C is also bounded

in n. This means that if we solve AGP (C,W ) using an IP we will find a correct lower bound

for AGP (P,W ).

To find an upper bound, we solve AGP (C,P ). The procedure starts with the same sets C

and W used for the lower bound computation and AGP (C,W ) is solved as before. We then

check if this solution covers P . If it does, then we have found an upper bound. If not, new

witnesses are added to W and the procedure continues.

A caveat of this method is that for some polygons it might run indefinitely and not find

an optimal solution. To prevent this, the program must either terminate once it finds the

optimal solution (there is no gap between the bounds) or when a certain time limit is reached.
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Figure 13: This figure shows an example of how we can create an arrangement of a set of

points S = {s1, s2, s3, s4, s5} and their visibility polygons. An overlay is created. The darker

the region the fewer points that can see it. Inside the regions the points that can see this

region are shown in different colours such that the text is legible.

The initial witnesses and guards are chosen in a similar way as in Section 3.1.3 based on the

results of [9].

The first variant of this algorithm was tested on 1440 simple polygons with a maximum of

1000 vertices. The results were quite good because, for all polygons, optimal results were found

in a matter of minutes. The second variant was tested on 2440 polygons with or without holes

and consisting of up to 2500 vertices. Again, the results were very promising as the algorithm

found an optimal solution in 98% of the cases. The speedup of this version compared to the

first one comes from the improvements made. Two changes were done to speedup the IP

process: a Lagrangian Heuristic method was added and a procedure for removing redundant

variables and constraints from the set cover formulation was used. The authors noticed that

during the computations of the algorithm there are often more points in C than in W . They

exploited this observation by, instead of computing the joint visibility polygons of guards

and then testing if the witnesses are contained within these arrangements, to do the reverse.

Because there are fewer witnesses, fewer visibility polygons need to be computed, saving a

good amount of time.
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3.1.5 Braunschweig 2013

A study of the previous algorithm found that about 90% of the run time of the algorithm

was spent on geometric computation rather than on the linear program. The 2013 version

improved the geometric subroutines dramatically leading to a much more efficient algorithm.

Three major bottlenecks were: (1) the way visibility polygons were computed, (2) the way the

visibility polygons were combined and finally (3) the way the location of a point was checked.

For each of these bottlenecks, the code was changed to be more efficient. Visibility polygons

were now computed with a new triangular expansion method [7]. The authors of this method

published it to CGAL as a library. It is also used in the practical implementation of this

thesis and is described in Section 2.3 The union of the visibility polygons was changed such

that it used a lazy-exact kernel [21]. This kernel is ”lazy” because it delays the computation

of intersection points as long as possible. By doing this, it can sometimes even avoid the

computation at all and thus save a lot of time. Finally, the point location algorithm was

changed so that it used a better strategy that uses known locations of points to compute new

ones in a better way [14]. The Braunschweig algorithms were implemented in CGAL [23] and

the triangular expansion approach to compute visibility polygons for a point was published as

a new CGAL library [7]. These improvements made the algorithm much faster and also made

it possible for it to handle polygons with more vertices. How this algorithm compares to the

other ones will be discussed in Section 3.2 later on.

3.1.6 Campinas and Braunschweig 2013

After the previous events, the research groups in both universities decided to work together

to create an algorithm based on both of their findings in the previous year. At the core

of the new algorithm was the second Campinas version discussed in Section 3.1.4. The

improvements that the research group in Braunschweig had found in 2013 were made to

this algorithm as well. The lazy-exact kernel approach was very effective for the Campinas

algorithm because the approach computes many combined visibility polygons and computes

many intersections. Additionally, some changes were done to the core algorithm. These

alterations include postponing the upper bound computation until a good lower bound has

been found, and the inclusion of a new strategy for guard selection. Moreover, for the linear

program, the CPLEX solver was used instead of XPRESS which is a more optimized tool.

All of these improvements led to better computation times and optimality of the algorithm,

as we will see in the next section.

3.2 Comparing the algorithms

The survey done in [11] compares the running time and accuracy of the five algorithms

developed in Braunschweig and Campinas. Again, we will only look at the results pertaining
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to AGP (P, P ), the complex point guarding problem. Each of the five algorithms was tested

with random polygons of six classes and multiple sizes. The six different classes are: (a) simple,

non-orthogonal polygons, (b) non-orthogonal polygons with holes, (c) floorplan-like simple

polygons with orthogonal edges, (d) floorplan-like orthogonal polygons with holes, (e) polygons

inspired by randomly pruned Koch curves, (f) spike polygons with holes as presented in [18] .

Small examples of the different test polygons are shown below in Figure 14.

(a) (b) (c)

(d) (e) (f)

Figure 14: Examples of the six different types of test polygons.

The results from [11] show, unsurprisingly, that the latest version that resulted from the

collaboration of the two universities was the most consistently accurate of the five algorithms.

The improved 2013 Braunschweig algorithm is just behind the collaboration algorithm, while

the Campinas algorithms are slightly worse. The three classes with holes, (b), (c) and (e)

were much harder for most of the algorithms. For these three classes, even the collaboration

algorithm could not find the optimal solution in any case for polygons with around 5000

vertices. The hardest class to solve were the orthogonal polygons with holes. For the other

three classes, the collaboration algorithm could almost always find optimal results, even for

these large 5000-vertex polygons. These results were quite promising especially comparing

them to the best implementation proposed by 2011 from [6], mentioned in Section 3.1.2, which

found the optimal solution in 68% of test cases for relatively small 60-vertex polygons.
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4 The iterative algorithm

In this section, we will discuss the new algorithm that was implemented as part of this thesis.

The selling point of this algorithm is that besides performing well in practice, it is the first

algorithm for the Art Gallery problem that is both practical and has theoretical guarantees.

The paper written during this thesis, [17], describes the theoretical guarantees in detail. In

this section, we will describe how the iterative algorithm works in general and how it uses

the subroutines described in Section 2. Additionally, we will discuss vision-stability and its

importance. The algorithm uses an integer linear program solver to find solutions, similar to

the newer algorithms discussed in Section 3.2. The algorithm solves the Art Gallery problem

in iterations, which is why we call it the iterative algorithm. As discussed in Section 3, the

reason that the Art Gallery problem is so complex is that the solution space of the problem is

difficult to discretize. Overcoming this challenge is why the iterative algorithm has theoretical

guarantees, it manages to discretize the solution space, without losing correctness. This is

achieved by one important aspect of the algorithm. Namely, throughout the iterations, we

will not allow only points to be guards, but we will also allow face-guards. Similarly, we also

use both points and faces as witnesses. This use of face-guards is the reason that we need the

shortest path map discussed in Section 2.4.

Solving the visibility queries. Now that we are using point-guards, face-guards, point-

witnesses and face-witnesses we should discuss how we compute the visibilities between these

types of guards in more detail. To check whether a point-guard sees a point-witness, we can

use the triangular expansion method discussed in Section 2.3. For each point-guard candidate

c that we have we use this method to compute vis(c), and save it. Then, when we want to

check if a point-guard sees a point-witness w, all we have to do is check whether w is inside

vis(c) or not.

To check whether a face-guard candidate c can see a point-witness w, we use the shortest

path map from Section 2.4. For each edge s of c, we compute the funnel between s and w

using the shortest path map. We can then use this funnel to test the visibility, as shown in

Figure 5. Visibility queries involving face-witnesses seem more complicated. However, we

can make some assumptions about the faces that make this easier. As we will show later in

this section, all faces we will use as guards or witnesses are convex. Additionally, we only

consider polygons without holes. With these assumptions, we can show that a point-guard or

face-guard c sees a face-witness w if and only if all vertices of w are seen by c. This is shown

in the proof for Lemma 3. This means that to answer these types of visibility queries, we

can use the same techniques as for guards and point-witnesses. Note that in our practical

implementation, we did queries involving face-guards in parallel. This is because these queries

turned out to be the bottleneck, as shown in Section 5.6.

Art Gallery Thesis 2020 30



4. THE ITERATIVE ALGORITHM

(a) (b)

a a

b b

p p

s s

q q

Figure 15: (a): A hole might block p from seeing s entirely if p sees a and b. (b): Part of P

can block p from seeing s. This means that p cannot see both a and b.

Lemma 1. Let s = ab be a segment and p be a point, both contained inside a simple polygon P .

If p sees a and b then p sees the entire segment s.

Proof. See Figure 15 for an illustration of this proof. Let q be any point on s. If q is a vertex, p

sees q by assumption of the lemma. If q is not a vertex, then we look at the segment pq. The

point p can see q if pq is fully contained in P . By assumption of the lemma, pq cannot be

interrupted by a hole. The only way pq is not fully contained in P is if it properly intersects

the boundary of P . Because s is contained in P , pq could only properly intersect the boundary

of P if an edge e of P intersects it between s and p. By assumption of the lemma, this is

not possible because e would also intersect pa or pb. Thus, pq must be contained in P and p

sees q. Because p can see any point q on s, p sees s completely.

(b)

a

b

s

p a

b

s

p

q q

f f

(a)

Figure 16: Every point in s has a corresponding point in pq, thus pq sees s. In (b) there is a

reflex vertex of P is in between f1 and f2, but the same still holds.

Lemma 2. Let f ⊆ P be convex polygonal region and s = ab be a segment, both contained

inside a simple polygon P . If f sees a and b then f sees s.
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Proof. Let q be any point on s. If q is a vertex, f sees q by assumption of the lemma. If q is

not a vertex, we will show that f contains a point p such that pq is contained in P . Because f

sees ab, we know that f must have the points p and q corresponding to a and b, as shown

in Figure 16 (a) or (b). Because f is convex, pq must be contained in f and in P . In both

cases, we can draw line segments from every point in s such that they hit pq. All of these line

segments are contained in P This means that pq sees s and thus f sees s.

Lemma 3. Let f ⊆ P be a convex polygonal region inside the simple polygon P . Let g be a

point or convex polygonal region in the same polygon. If g sees all the vertices of f , then g

sees f entirely.

Proof. We will prove this by showing that g can see any given point on the boundary or in

the interior of f . Let a be a point on the boundary of f . If ais a vertex of f , then a is seen by

assumption of the lemma. If a is not a vertex, then it is contained in a segment uv, where u

and v are vertices of f . Because u and v are seen by g by assumption of the lemma, g can

also see a by Lemma 1 and 2. Now let b be a point in the interior of f . We can construct a

segment pq, with p and q on the boundary of f such that b is contained in pq. We know that g

sees p and q because we showed that g can see any point on the boundary of f . Furthermore,

we know that pq is contained in f because f is convex. Then, g can see b by Lemma 1 and 2.

We showed that g can see any given point on the boundary or interior of f , thus g sees f

completely.

Arrangements and the normal IP. Throughout the iterations of the algorithm, we keep

track of an arrangement inside the polygon. We will refer to this arrangement as Ai, where i

denotes the iteration index. We update Ai at the end of every iteration i.

Figure 17: This figure shows an example of how a polygon would be pre-processed into an

arrangement for the iterative algorithm.
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To create A0, we take the original polygon P and from all of its reflex vertices, we shoot

a maximum of four rays in axis-parallel directions from each vertex. As soon as a ray hits

another ray or the boundary of the polygon we stop, resulting in a less complex arrangement.

The figure below shows an example of such an initial arrangement.

At the end of every iteration i, we use an IP to find an intermediate solution set Gi. As

candidates and witnesses, the IP uses the vertices and faces of Ai. We call the set of candidate

faces face(C), the set of candidate vertices vertex(C), the set of witness faces face(W ) and

the set of witnesses vertices vertex(W ). The IP that we use at the end of every iteration is

shown below. Note that for every witness w the set of candidates that see w completely. This

IP is called the normal IP. Hengeveld and Miltzow [17] describe different IPs that can be used

to prove theoretical correctness. Here, we will only consider the normal IP, as it was used for

the variant of the algorithm with the best practical performance.

min
∑

c∈vertex(C)

J c K +
∑

c∈face(C)

(1 + ε) J c K + ε
∑

w∈face(W )

Jw K (10)

s.t.
∑

c∈VIS(w)

J c K ≥ 1, ∀w ∈ vertex(W ) (11)

∑
c∈VIS(w)

J c K + Jw K ≥ 1, ∀w ∈ face(W ) (12)

J c K , Jw K ∈ {0, 1}, ∀c ∈ C,∀w ∈ face(W ) (13)

The ε is used so that we will always prefer vertex guards over face guards, i.e., if there

is a possible solution with m vertex guards we will always prefer it over a mixed solution

with m vertex and face guards. If we choose 0 < ε ≤ 1
|C|+|W |+1 we will guarantee that ε

is small enough to prefer vertex guards over face guards, but not too large to make sure it

always chooses the solution with the lowest number of guards in total. Note that we also

include a special rule concerning witness faces. The variables Jw K ∈ face(W ) denote whether

or not a face is wholly seen by one of the guards in the solution set. We relax the IP a

little bit by allowing some witness faces not to be wholly seen (12). Because of the other

constraints, we know that its vertices are seen. This IP finds a lower bound to the optimal

solution. This is because we have included face guards in the candidate guard set and we

have relaxed the witness constraints. If there would be an optimal solution S1 only containing

point guards we can always convert it into an optimal solution of maximally the same size

S2 that contains faces of our arrangement as guards. This is because every point in S1 must
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be contained in a face in our arrangement and a face always sees at least as much as any

of the points inside it. This means that if we find a solution when allowing face guards, we

will always find solutions at least as good as the solutions found when only allowing point

guards. Solutions are considered degenerate if they have a 1 for any of the variables J c K or

Jw K, c ∈ face(C), w ∈ face(W ). This means that if, at the end of an iteration i, we find

such a degenerate solution, we should update Ai. Furthermore, we want the update Ai in

such a way that in the next iteration we will find a different solution. We can achieve this by

splitting the faces for which J c K or Jw K was set for 1. The reasoning behind this is that if we

find a solution using a face-guard, we would like to make that face-guard smaller so that in

the next iteration, it will be able to see fewer witnesses. If we have a solution with a witness

face that is not wholly seen by one guard, we want to make it smaller, such that in the next

iteration, it may be wholly seen by one guard. The different methods used for splitting are

discussed in the next paragraph. The methods in which we split, guarantee that after a certain

number of iterations we will always find a solution that only uses point-guards. Since the

normal IP guarantees a lower bound if there are no partly seen face witnesses, this solution is

optimal, which means that we are done. Note that this guarantee only works under some

assumptions. Some polygons, such as one described in [2], require guards that have irrational

coordinates. For this polygon, the algorithm will never finish. However, after running some

tests, we can show that the intermediate guard sets found by the iterative algorithm converge

to the optimal solution. More about this experiment can be found in Section 5.5.

Splitting methods and the Power of a Face. For the iterative algorithm, we used

different splitting methods to split a face f . The most simple type of split is called a square

split, shown in Figure 18 (a). To perform this split we first identify the orthogonal bounding

box of f . Then, we draw a horizontal and a vertical segment inside this box that intersect in

the center. We use these two segments to split f . When f is incident to two reflex vertices

after a square split each new face will only be incident to at most one reflex vertex (see

(Figure 19 (a)). This split performs well in practice and is easy to implement. However, from

a theoretical standpoint, the square split is not very useful. The reason for this is that it is

hard to show an upper bound on the number of square splits needed before finding an optimal

solution. For the theoretical guarantees to exist, different types of splits are necessary. How

these splits lead to the theoretical guarantees is discussed in more detail by Hengeveld and

Miltzow [17]. The first type of these splits, the angular split, is justified using a concept that

we call the power of a face. The power of a face quantifies how much a face can maximally

see “around a corner”. This is determined by the reflex vertices that are visible from this

face. For each reflex vertex r that a face f can see, we define the power-angle α(r), as the

angle of the minimum cone with apex r that fully contains f . We then define the power of f

as the maximal power-angle amongst the reflex vertices that are seen by f . The other three
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types of splits make use of reflex vertices seen by f . The goal of the angular split is to reduce

the power of f after each split. An example of an angular split is shown in Figure 18 (b).

To do this split, we take all reflex vertices that see f and shoot rays in 2k equally diverging

directions, for a given parameter k. To make sure we reduce the power of f using these rays,

we would want to use the sine and cosine function here. However, this is not possible without

losing some precision. Instead, we use a workaround. We imagine a bounding box around the

reflex vertex and use this box to shoot the rays as shown in Figure 19 (c).

(a) (b) (c) (d)

Figure 18: This figure shows four types of splits. In (a) we see an example of a square split.

Next to it, (b) shows an angular split. The figure in (c) contains a reflex chord split. Finally,

(d) shows an extension split. The reflex vertices in red are the ones we used for the splits.

(c)(a) (b)

Figure 19: (a): After a square split, none of the new faces are incident to two reflex vertices.

(b): The power of f is the maximal angle from a reflex vertex visible from f . (c): We use a

bounding box around the reflex vertex to shoot the rays for the angular split.

We then identify the reflex vertex which has the most intersecting rays and use its middle

ray to split f . We start with k = 4, and double it if none of the reflex vertices has any rays

that intersect f . In practice, we do not shoot all rays from all reflex vertices. A more efficient

way of doing this in practice is by using a technique similar to a binary search to find the

rays intersecting f . Another useful split that we will discuss is the reflex chord split. This

split is illustrated in Figure 18 (c). In this split, we identify all chords between reflex vertices

that are seen by f . If any such chord exists, and it properly intersects f , we use it to split f

in two parts. In practice, we save all the reflex chords at the start of the algorithm. This way
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we do not have to compute them more than once. The final type of split is the extension

split, shown in Figure 18 (d). Again, we identify the reflex vertices that f sees. Then, we

extend the two edges that are incident to the reflex vertex into rays. If either of the rays

of a reflex vertex r intersect f , we use it for the split. The usefulness of this split is that it

produces points in A that are useful guard candidates because they can perfectly look around

the corner created by r.

For the practical version of the iterative algorithm, we mostly use these last three types of

splits because they have a theoretical basis. Square splits are only used when f is incident

to more than one reflex vertex. Otherwise, we use a random number to choose the other

types of splits. With 80% probability, we will perform an angular split. The other two splits

both have a 10% probability of occurring. If it turns out that a certain type of split is not

possible, we try the other options. We used this approach in all experiments, except for the

one described in Section 5.5. In that experiment we only used square splits because that led

to better results.

Vision-stability and granularity. An important factor that is part of one of the assump-

tions which lead to the theoretical guarantees of the iterative algorithm is vision-stability.

Imagine a new version of the Art Gallery problem in which guards have enhanced or diminished

vision. This version of the problem is parameterized by an angle of δ. When the guards have

enhanced vision, they can look “around a corner” by δ. When the guards have diminished

vision, their vision is “blocked” by a corner with an angle of δ. We define the visibility polygon

of a guard p with δ-enhanced vision as visδ(p) while the visibility polygon of a δ-diminished

guard p is defined as vis−δ(p). See Figure 20 to see an example of both of these types of

vision.

(a)

p

(b)

p

(c)

p

δ

δ δ

δ

Figure 20: In (a) p is a normal guard and vis(p) is shown in green. Next to it, (b) shows a

δ-enhanced guard p. The parts in darker green are added to its visibility polygon. The figure

in (c) contains vis−δ(p), the parts removed from its visibility polygon are shown in red.
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This leads to the definition of vision-stability. We say a polygon P has vision-stability

δ if the size of an optimal solution using δ-enhanced guards is the same as the size of an

optimal solution using δ-diminished guards. For some polygons, particularly those that have

optimal solutions that rely on collinearity, no δ exists for which the above is true. These

polygons are not vision-stable. The iterative algorithm only has the theoretical performance

guarantees for polygons that are vision-stable. However, in practice, the iterative algorithm

will often still find the optimal solutions for these polygons. This is because the extension split

described above makes sure that the right guard candidates are added to the arrangement in

collinear positions. An example of such a non-vision-stable polygon is shown in Figure 21.

This polygon has one unique solution which relies on collinearities.

Figure 21: The polygon shown here is not vision-stable because the solution relies on colinearity.

The orange line segments show possible extension splits that we could make. If we make at

least two of these, we will find the solution.

If we split faces at least twice using extension splits, we will add the candidate point in

the middle, enabling us to find the right solution. There is one polygon for which the iterative

algorithm cannot find the optimal solution. This is a polygon that is not vision-stable and

requires guards at irrational coordinates, as described in [2]. However, Section 5.5 describes

an experiment in which we show that for this polygon, the iterative algorithm does provide

a series of “degenerate” solutions that use face-guards or allow some faces to not be seen

completely. Moreover, this series of solutions converges to the optimal solution. Also, only one

such concrete polygon is known at the time of the writing of this thesis. Another interesting

aspect of the vision-stability of a polygon is that has explanatory value for the running time

of the iterative algorithm. The lower δ, the more splits we have to do to find an optimal

solution. We also found this correlation during our practical experiments. Recall that to

perform an angular split we shoot 2k rays, for a value k that we double throughout the

iterations when necessary. We then call λ = 2−k the granularity of such a split. The lowest

granularity we need before finding an optimal solution can be used as a crude estimation of

Art Gallery Thesis 2020 37



4. THE ITERATIVE ALGORITHM

the vision-stability of an input polygon. Section 5.1 shows that we found fairly strong positive

correlations between this minimal granularity and the running time of the iterative algorithm.

4.1 Speedup methods

In this section, we will explore two ways in which we improved the running time of the

algorithm. The first way a data-structure that can be used to both reduce the size of the

shortest path map and answer certain visibilities queries efficiently. The second way involves

making the set of witnesses smaller, while still obtaining qualitative solutions at each iteration.

This way the IP has to deal with fewer variables and we have to compute fewer visibilities.

The effect that these methods have on the running times of the iterative algorithm is shown

in Section 5.2.

Weak visibility polygon tree. In large polygons, many vertices cannot see each other.

This is because large polygons will most likely contain many turns and reflex vertices, which

will obstruct many visibilities. The idea behind the weak visibility polygon tree is that if we

save the location of the points and faces of the arrangement in an useful manner, we can prevent

the unnecessary computation of many visibilities. We achieve this by dividing the arrangement

into weak visibility polygons. Figure 22 shows an example of a large polygon divided into

weak visibility polygons. This figure was generated using the practical implementation.

Figure 22: The polygon together with a weak visibility polygon tree. The polygon has 200

vertices, but each node in the weak visibility polygon tree has only about 20 vertices. The red

segment indicates the starting edge of the weak visibility polygon tree.
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To build the weak visibility polygon tree, we begin by picking a random starting edge.

This edge is shown in red in Figure 22. We compute the weak visibility polygon of this edge,

using the subroutine described in Section 2.2. This edge and its visibility polygon become the

root of the tree. Afterwards, we identify the doors introduced by the weak visibility polygon

shown in orange in Figure 22. For each of these doors, we compute its weak visibility polygon

inside the area of the polygon that is left. These visibility polygons are considered children

of the root node. We repeat this process recursively for each of these new polygons, adding

nodes to the tree until all the weak visibility polygons cover the entire polygon. Given this

tree, we know that any point within a weak visibility polygon can only be visible from points

in either in the parent, direct children or sibling visibility polygons. The proof for this can

be found in [17]. Using this knowledge, we can optimize the shortest path map described in

Section 2.4. For all the vertices that we know cannot see each other as a result of the weak

visibility polygon tree, we do not have to compute or store the paths between them. This

means a dramatic reduction in both the memory of the data-structure and the running time

of our visibility queries.

Critical witnesses. During the iterations, the arrangements Ai have many vertices and

faces that are not particularly important to be guarded. The idea of the critical witness set is

to identify a subset W ∗ ⊆W of critical witnesses which are relevant. At the beginning, we

initialize the critical witness set W ∗ by randomly picking 10 percent of vertices and faces, for

each weak visibility polygon separately. In this way, the critical witness set is roughly equally

distributed over the whole polygon. Later, throughout the iterations, we add to the critical

witnesses set as necessary, by using the guards G given by the integer program. See Section 4

for a detailed description of the integer program. We compute all the vertices and faces that

G sees. This also gives us the sets of unseen face-witnesses and vertex-witnesses U which

were not marked as critical before. We then randomly choose a small constant size subset U+

of vertices and faces from U that we add to W ∗. The size of U+ is an interesting parameter

to the program. In the practical implementation tested in [17] and in Section 5.1, 5.3, 5.5

and 5.6 this size depends on the number of cores of the processor of the system that it is run

on. Using the number of cores is plausible because our practical implementation runs the

visibility queries in parallel. In Section 5.4 we discuss an experiment in which different sizes

for U+ were tested. Note that if we were to mark all unseen witnesses as critical this would

lead to very large numbers of visibility queries, thus defeating the purpose of using the critical

witness set. It would also increase the size of all subsequent integer programs that we need to

solve. It is important to find a good balance between adding too few critical witnesses and

adding too many.

Every time we update the critical witness set, we re-run the IP to check if we can find a

better solution given the critical witnesses. We keep adding to the critical witness set as long
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as there are unseen witnesses left that are not marked as critical. We then check if we need

to update the new critical witness set again using this new-found guard set. We keep doing

these critical cycles, until we find a guard set that can see the entire polygon. Only then we

split the faces and continue with the next iteration.

A face can only be removed from the critical witness set if it is split. For every critical

witness face, we also add a critical vertex to the interior of that face. Critical witness vertices

are only removed from the critical witness set, if they are interior to a face that is removed.

To summarize, we do not need to compute all the visibilities between all the candidates

and all the witnesses. Instead, we compute all visibilities between the critical witnesses W ∗

and candidates C and then all visibilities between the guards G and the witnesses W . As

there are much fewer guards than candidates and also much fewer critical witnesses W ∗ than

witnesses overall, this saves a lot of running time in practice.
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5 Experiments

Various experiments were conducted with the algorithm. Section 5.1 described an experiment

in which the running time of the algorithm was tested on several input polygons. The goal

of this experiment was to find out more about the average running time of the practical

implementation, and how it correlates with certain factors such as size and vision-stability.

Secondly, in Section 5.2, we also discuss how the two speedup methods, the weak visibility

polygon tree and the critical witnesses, improve the running time.

In Section 5.3, we discuss tests in which we solved the same polygons several times, in

order to find out the standard deviation introduced by the randomness of different parts of

the iterative algorithm. Furthermore, different ways of adding critical witnesses are tested

and analyzed in Section 5.4. Section 5.5 discusses tests on the irrational-guard polygon

from [2], showing that the iterative algorithm finds a series of solutions that converge to the

optimal solution. Finally, Section 5.6 analyzes the CPU usage of the program and identifies

where future improvements could be made. All experiments conducted use the version of the

algorithm that uses all speedup methods. Except for the experiment on the irrational-guard

polygon, all tests were also done using the normal split protocol.

Apart from the polygon with irrational guards [2], all input polygons were obtained from

AGPLIB library [10], a library used for other papers on the Art Gallery problem as well [11].

This library offers different types of randomly generated polygons, that are described in

Section 3.2 and illustrated in Figure 14. These polygons were generated by the research

group at the University of Campinas while developing practical solutions for the Art Gallery

problem. For all our experiments, except the one discussed in Section 5.5, we used simple,

non-orthogonal polygons, the class illustrated in 14 (a). Figure 23 also shows an example of

such a polygon. The polygons are all similar to the polygon showed in 23. They generally have

small to medium-sized rooms and a larger number of corridors. The experiments were run on

a computer with a 64-bit Windows 10 operating system, an 8-core Intel(R) Core i7-7700HQ

CPU at 2800 Mhz and 16 GB of main memory.

The practical implementation heavily makes uses of version 4.13.1 of CGAL [23]. The

IP solver used was IBM ILOG CPLEX version 12.10 [5]. This IP solver was also used by

de Rezende et al. [11].

5.1 Practical running time

In this experiment, the practical running time of the fastest variant of the iterative algorithm

was tested. Note that in [17], we also tested a variant that is based more on theory. However,

in practice, this variant could not always find the optimal solution. The results that we found

using the more practical variant of the algorithm always led to the optimal solution and did

so in a reasonably efficient manner.
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As mentioned previously, the input polygons were taken from the AGPLIB library [10].

We had access to random simple polygons of different size classes. We tested on 30 instances of

polygons of sizes 60, 100, 200 and 500 vertices. An example of one of the 200-vertex polygons

and its solution is shown in Figure 23.

Figure 23: An example of a 200-vertex input polygon and its solution, as found by the iterative

algorithm. We have also included the final arrangement at the end of the algorithm.

The averages and medians for the size classes tested are shown in Table 3. Note that the

times we report exclude the pre-processing time of computing the weak visibility decomposition

before the first iteration. This table also shows the results by Tozoni et al. [25] pertaining to

polygons of these sizes. We acknowledge the fact that the results from Tozoni et al. [25] were

improved on by de Rezende et al. [11]. However, we were not able to find the exact running

times from this improved version corresponding to these sizes. This table shows that the

running time of our algorithm is not faster than the algorithm from Tozoni et al. [25], but it is

not too far behind. Also, the median running times of this variant of the iterative algorithm

is lower than the average running times. We believe this is, amongst other reasons, because

the algorithm is sensitive to the vision-stability of a polygon. This means that some polygons

are very hard to solve and overly influence the average. The results in Table 2 confirm that

this is indeed true. In Table 2 we see all the individual running times of every polygon.

Furthermore, see Appendix A for an illustration of how the algorithm finds a solution for a

60-vertex polygon in 9 iterations.
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Size 60 100 200 500

Correlation 0.73 0.38 0.77 0.45

Table 1: The correlation coefficients between the measured minimum granularity λ and the

running time, computed per size.

Sizes
Average time (s)

Median time
Tozoni et al. (2016) Ours

60 0.26 0.67 0.47

100 0.94 2.45 1.6

200 3.77 19.67 6.29

500 35.04 64.52 56.49

Table 3: A comparison of the iterative algorithm with the results from Tozoni et al. [25]. Note

that the reported times for our algorithm do not include the pre-processing time and that the

results from Tozoni et al. [25] were found on a system with slightly less powerful hardware:

Intel Core i7-2600 at 3.40GHz and 8GB of RAM

Correlation of granularity and running time. As mentioned before, the iterative

algorithm is sensitive to the vision-stability of the input polygon. To test this, we saved

the smallest granularity λ necessary to find the solution. We then computed the correlation

coefficients between the running times and the granularity λ. These coefficients are shown in

Table 1. These are fairly strong correlations. Note that the minimum granularity λ might not

be the best indication of the vision-stability of a polygon. This is because a larger polygon

might need a very fine subdivision in one part of the polygon, but can be relatively coarse in

other parts. We have no efficient way to compute the vision-stability efficiently.

Besides this, there are several other random factors which influence the running time. For

example, the IP chooses an arbitrary optimal solution out of several possible options and the

splits we do at each iteration are also chosen randomly. Additionally, the complexity of the

weak visibility polygon tree has some effect on the running time. In particular, the number of

weak visibility polygons inside the tree and their size have fairly strong effects on the running

time. We believe that these factors account for the fluctuation in the correlations. Section 5.3

has a more in-depth analysis of the standard deviations in the running time of instances of

the same input polygons.
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Running time (s)

n = 60 n = 100 n = 200 n = 500

0.07 0.24 0.60 6.09

0.10 0.42 1.30 8.37

0.15 0.42 1.31 9.69

0.18 0.43 1.56 10.31

0.18 0.46 2.45 11.74

0.20 0.51 2.59 21.24

0.21 0.53 3.33 21.50

0.22 0.72 3.82 22.87

0.26 0.74 4.16 23.70

0.26 0.82 4.45 25.36

0.26 0.82 4.79 26.09

0.27 0.87 4.90 51.69

0.30 0.88 5.00 53.08

0.31 1.21 5.39 55.87

0.34 1.53 6.00 57.11

0.47 1.67 6.26 59.71

0.47 1.74 6.32 60.37

0.48 1.74 6.78 61.86

0.53 1.95 7.07 68.00

0.53 2.32 7.62 73.07

0.56 2.92 9.28 79.93

0.73 4.10 11.00 85.69

0.76 4.48 13.53 85.95

0.78 4.70 16.75 94.95

1.06 4.78 18.12 115.46

1.28 4.94 21.39 120.40

1.62 5.67 37.82 128.37

1.68 6.36 40.48 151.03

2.10 7.57 150.98 160.68

3.78 7.96 184.81 185.56

Table 2: The full results of the experiment. For every one of the 4 sizes, we tested 30 polygons.

We see, in seconds, how long it took for the iterative algorithm to find the optimal solution

for each instance. The running times are ordered in an ascending manner.
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5.2 The effect of the speedup methods

To find out the added value of the two speedup methods, we will look at different statistics

that were measured in the experiments. We first look at the effect of the weak visibility

polygon tree and then at the effect of the use of the critical witnesses. We show that both

methods offer large speedups.

The value of the weak visibility polygon tree. In the experiment from the previous

section, we also measured several things about the weak visibility polygon trees computed for

the different input polygons. In particular, we tracked three different characteristics of the

weak visibility polygon tree: the number of weak visibility polygons in the tree, the largest

number of normal vertices and reflex vertices of the largest weak visibility polygon in the tree.

Table 4 summarizes these three characteristics for each size class.

We see that the tree size seems to almost grow linearly with the size of the polygon.

However, the other two statistics grow much more slowly. This attests to the effectiveness of

the weak visibility polygon tree because it means that even the larger polygons are divided into

relatively small weak visibility polygons. This prevents the computation of many unnecessary

visibilities throughout the course of the iterative algorithm.

Size 60 100 200 500

Tree size 14.2 24.2 50.6 116.2

Largest polygon 45.6 50.7 58.6 66.7

Largest number of reflex vertices 10.8 11.0 13.7 15.0

Table 4: We tested 30 input polygons from the AGPLIB library [10] of four sizes. For each

size class we see the averages of three characteristics of the weak visibility polygon trees.

Critical witnesses speedup. To find if our second speedup method was also as effective,

we conducted an additional experiment. We tested the same polygons of sizes 60, 100, 200 and

500 without critical witnesses. Table 5 compares the running times of the versions with and

without critical witnesses. Additionally, we see the number of witness points and faces used

on average. For the method without critical witnesses, we list the number of total witnesses

while the method with critical witnesses shows the number of critical witnesses only. The

table shows that the critical witnesses cause large speedups of up to a factor 9. When we

compare the size of the critical witness sets to the total witness sets, we see that the ratios are

about 3 : 1 and 5 : 1 for points and faces respectively. This means we have to compute much

fewer visibilities when using critical witnesses, and the IP has to deal with smaller sets of

variables. This confirms that the overhead of maintaining and adding to the critical witness

set is small compared to the time that we save by using it.
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Sizes
Average time (s) Witness points Witness faces

With Without Speedup With Without With Without

60 0.79 7.36 9.4 172.48 518.31 39.55 211.24

100 2.53 19.67 7.8 314.27 914.59 73.13 376.24

200 22.15 59.53 2.7 801.93 2012.38 215.23 842.48

500 63.99 320.64 5.0 1768.86 5256.85 426.90 2192.10

Table 5: A comparison of the iterative algorithm with and without the use of critical witnesses,

tested 30 polygons of sizes 60, 100, 200 and 500. We compare the running times and the

number of witnesses used in the IP. Depending on the version of the algorithm, the witnesses

shown are either the number of critical witnesses or the total number of witnesses.

5.3 Standard deviation

In the previous section, we explained that the differences between the running times for

polygons within the same size class can be very large. However, it would also be interesting

to know the standard deviation of the running times if we test the same polygon multiple

times. For this experiment, we ran the algorithm 15 times on each of the 30 input polygons

of size 100 and measured the running times and computed the averages standard deviations

of each input polygon. These statistics are visualized in a graph in Figure 25. We see that

for some polygons the standard deviations can be quite large. Several random factors in the

iterative algorithm could account for these standard deviations. Firstly, the weak visibility

polygon tree has a small degree of randomness in its construction. This is because we choose a

random first edge. However, the results showed that for the 15 different instances of the same

polygon, the complexity of the weak visibility polygon tree did not change much. In fact, the

number of weak visibility polygons and the largest weak visibility polygon were often very

similar. Next, we randomly choose the type of split that we perform. For some polygons, this

may be largely responsible for the deviation from the average. That is because if a solution

relies on collinearity, an extension or chord split can often create a candidate vertex at the

necessary position. Interestingly we see that for the same polygon the minimal granularity

varies. When we look at the instances with lower granularity, it seems that extension splits

and chord splits were used more often than the instances with higher granularity for the

same polygon. Figure 24 (a) and (b) show a simple example of how this could happen. This

suggests that we can lower the standard deviation and minimal granularity by doing these

types of splits more often. Finally, when several solutions are available, the IP solver will

choose a random one. This means that the solver sometimes chooses a face that is useful to

split and other times it may choose a face that is not so interesting.
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(a) (b)

Figure 24: In (a), we perform several angular splits in a row. We are unlucky, and never

choose to do an extension split. The minimum granularity gets quite low before we find a

solution. In (b) we are lucky and do two extension splits in a row. The minimum granularity

is never updated.
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Figure 25: We tested 30 polygons of size 100 from the AGLIP [10]. Each polygon was tested

15 times. This graph shows the standard deviation of the running times for each of the 30

polygons.

5.4 Critical witness sizes

In Section 4.1 we discussed the concept of critical witnesses, which gave the practical im-

plementation a huge speedup. A parameter to this approach is the number of witnesses U+

from the unseen witnesses U we add to W ∗. Two considerations come into this. On the
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one hand, we do not want W ∗ to become too large because this would mean that we would

have to solve a lot of unnecessary visibility queries. On the other hand, if we add very few

critical witnesses before solving the IP again, we might be wasting a lot of time on the high

number of instances of the IP. This is because we will keep finding candidate solutions which

see all critical witnesses, but perhaps not all witnesses. If we add more critical witnesses to

W ∗, the quality of these solutions will be higher, requiring fewer iterations of the IP. For the

algorithms used in most of the experiments we discussed here, we based the size of U+ on the

number of physical cores of the system the program is run on. The reasoning behind this is

that we do the face-visibility queries in parallel. As Section 5.6 will show, these queries are

the bottle-neck of the running time. It makes sense to do at least as many queries as CPU

cores that we have available because the queries will be computed in parallel. The experiment

that we will describe here was conducted to verify whether this is indeed correct in practice.

Moreover, perhaps it is more advantageous to add even more witnesses to W ∗ every cycle. In

this experiment, we tested 30 input polygons of size 100 and 30 of size 500, with different

sizes of U+, ranging from 1 to 16. Considering that we found a large standard deviation in

the running times of the input polygons in the previous section, we tested every size of U+ 5

times and averaged the resulting running times. Table 6 shows the results of this experiment.

We see that for size 100, 4 seems to be the best option, while for size 500, 8 is the best. This

can be explained because, for larger sizes, we will have a larger set of witnesses. This means

that U will be larger at every critical witness cycle. Then it makes sense to use larger values

for U+ as well. Also, note that the system we tested on only has 8 cores. Then it makes more

sense for U+ to also be slightly larger. Perhaps the best option would be to make the size of

U+ depend on a combination of the number of cores in a system and the input size of the

polygon.

|U+| 1 2 4 8 12 16

Running time (s), n = 100 2.85 2.62 2.14 2.53 2.66 2.81

Running time (s), n = 500 99.82 78.61 72.30 68.89 71.68 94.07

Table 6: For every different size of U+ we tested 30 polygons of size 100 and 30 polygons of

size 500. We tested each input polygon 5 times and averaged all the results. Note that these

tests were done using an 8-core Intel(R) i7-7700HQ CPU.

5.5 Converge to the optimal solution

In this experiment, we ran the iterative algorithm for 30 minutes for the irrational-guard-

example from [2]. For these experiments, we only used square splits. The results with angular

splits and reflex chord splits are similar in spirit, but the convergence is slower. Appendix A

Art Gallery Thesis 2020 48



5. EXPERIMENTS

shows illustrations of the first 22 iterations, demonstrating the way we split faces and how

the intermediate solutions approach the optimal solution. Additionally, see Figure 26 for an

illustration of this special polygon and its optimal solution. What makes this polygon so

interesting is that the 3 point guards in the solution are at irrational coordinates.

Figure 26: This polygon has a unique solution with three guards that have irrational coordinates

guards [2].

Even though the algorithm will not be able to find the optimal solution, we get a set of

guards Gi at the end of iteration i. Note that Gi is often a combination of point-guards and

face-guards. As we know the optimal solution F , we can compute the Hausdorff distance

di = distH(Gi, F ) at the end of each iteration. See Figure 27 (a) for an illustration of

the convergence speed per iteration. Interestingly, the distance approaches the optimum

very quickly. Additionally, Figure 27 (b) shows the Hausdorff distance plotted against the

cumulative running time. Here we see that when plotted against the running time, the

Hausdorff distance does not decrease as dramatically. This comes from the fact as the

algorithm progresses, the later iterations take much more time per iterations. This is plausible

because at the end of every iteration we introduce new candidates and witnesses. Thus, in the

later iterations, the IP has to deal with more candidate variables than at the earlier iterations.

Having a larger number of candidates and witnesses not only slows down the IP but also

means we have to compute a larger number of visibilities. Furthermore, as we see in the next

section, the face visibility queries are the bottle-neck of the CPU-time.
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Figure 27: The iterative algorithm reports a sequence of solutions. Graph (a) shows on the

x-axis the iterations from 1 to about 300 and on the y-axis, the log2 of the Hausdorff distance

to the optimal solution. Graph (b) shows on the x-axis the cumulative running time and on

the y-axis, the log2 of the Hausdorff distance to the optimal solution. All times are in seconds.
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5.6 Distribution of CPU usage

This section describes how the workload of the algorithm is distributed on the CPU. To

achieve this, we picked three polygons of different sizes and analyzed their CPU usage.

These polygons were chosen how their running times compare to the average of their size

class. The first, smaller polygon performed slower than the average. The second, 500-vertex

polygon performed around average while the last 800-vertex polygon was solved faster than

average. The 200-vertex polygon used for this analysis is visualized in Figure 23. We performed

this analysis using the Visual Studio profiler [19]. Figure 28 shows the results. The CPU

usage distribution for other polygons that we tested seemed very similar. We divided the

algorithm into several parts. These different parts are shown in a pie-chart in Figure 28.

Weak visibility decomposition Shortest path map

Point-guard visibility queries Face-guard visibility queries

IP solving Other tasks

200 vertices 500 vertices 800 vertices

Figure 28: The left chart shows this distribution for a 200-vertex polygon that was slower

than average. The middle chart shows the distribution of the workload for a 500-vertex

polygon, with average completion time. Finally, the right chart shows the distribution for a

faster-than-average 800 vertex polygon.

The first parts, in dark and light blue, are both parts of the pre-processing step. As

described in Section 2.4 and Section 4.1, this is the time needed to set-up the shortest path

map we compute weak visibility polygons and shortest paths. We show in dark blue the time

it took to compute the weak visibility polygons of each window while we show in light blue the

time spent finding the necessary shortest paths within each of these weak visibility polygons.

The part shown in orange is point visibility queries, computing whether a point sees a witness

face or witness point. Practically, this is achieved by using the method described in Section 2.3.

The chart shows in green the percentage of the CPU time spent on face visibility queries, the

question of whether a candidate face guard can see a face or point witness. We also compute

these visibilities when checking whether we should add new critical witnesses, as we must
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make sure that a candidate solution sees the complete polygon. These queries are solved using

the shortest path map computed in the pre-processing stage and described in Section 2.4.

These face guard visibility queries are done in parallel in our practical implementation. The

yellow part shows the CPU time spent on solving the IP using the CPLEX solver. Finally,

in gray, other, smaller tasks are combined into one section. These tasks typically consist of

updating the intermediate arrangement, splitting faces using our different split techniques

and keeping track of the results.

In the resulting figure we see that, for an average-time polygon such as the 500-vertex

example here, most of the time is spent on face-guard visibility and solving the IP. This

shows that much running-time improvement could be gained by improving the face-guard

visibility routine. When we move on to the slower-than-average polygon, we can see that the

workload of most tasks increase at the expense of the pre-processing part. This is logical

because the pre-processing time does not depend on the difficulty of the polygon like the latter

part of the routine does. Finally, looking at the 800-vertex polygon, the inverse happens. The

pre-processing time takes a larger chunk of the distribution compared to the other sections of

the workload.

The results shown here are for three specific polygons. For the most accurate results, it

would have been desirable to repeat this experiment for a large number of polygons in the

testbed. However, running the profiler slows down the algorithm, to the point that running

such a large number of tests would be infeasible. Furthermore, after performing several more

of these experiments, we found that these results generalize. From this, we can conclude that

the running time of the algorithm is dominated by the face-visibility queries combined with

the weak visibility decomposition. Both these subroutines involve computing weak visibilities.

We thus believe that most speedup to the algorithm could be achieved by implementing more

efficient weak visibility routines.

6 Discussion and Future research

In the previous sections we showed that the iterative algorithm performs quite well in practice.

This is an important finding because it means that this algorithm is the first algorithm for the

Art Gallery problem that both practical and has a theoretical upper bound on the running

time [17]. We also provided empirical validation for the use of the two speedup methods

introduced in Section 4.1. Both the use of critical witnesses and the use of the weak visibility

polygon tree gave us large amounts of speedups. Moreover, we showed that the iterative

algorithm provides a series of solutions that converge to the optimal solution for a polygon

with guards at irrational coordinates [2]. As this is the only known concrete example of such

a difficult polygon, so we cannot clearly say if this would be the case for all polygons with

unique solutions with irrational coordinates. Future research could be done in this direction,
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answering the question of whether we can find out if the iterative algorithm converges for all

polygons that are not vision-stable.

Some results from our experiments suggest that further improvements could be made

to the practical implementation of the algorithm. For instance, the way we handle critical

witnesses could be optimized. The results from Section 5.4 imply that the size of U+, the

amount witnesses we add to the critical witness set, should by dependent on the amount of

cores of the system and the size of the input polygons. Also, further experimentation could

be done with the different types of splits. In Section 5.1 and Section 5.3 we demonstrated

that the running times the iterative algorithm have large standard deviations, both when

comparing polygons of the same size and instances of the same polygon. Making the protocol

used for choosing split types more consistent and less dependent on probability might decrease

these standard deviations. Finally, in Section 5.6 we saw that the most CPU time was spent

on face visibility queries, despite the fact that we perform them in parallel. This indicates

that future improvements could be made to the segment-point visibility queries. While we

have done quite exhaustive tests on the randomly generated simple polygons that we used in

the thesis, further experiments could be done with different types of polygons. For instance,

the types displayed in Figure 14. Because of the fact that we use extension splits, it might be

expected that the algorithms performs well on orthogonal polygons. However, how it performs

for the other types of polygons remains a question. Finally, a very important limitation of

the implementation is that it only works for polygons without holes. The weak visibility

subroutines, both used for the weak visibility polygon tree and for face visibility queries rely

on this assumption. It is also unclear if the algorithm would be much slower for polygons with

holes. A possible way of computing the weak visibility polygon of a segment could be found

by adapting the triangular expansion algorithm [7] so that it works with segments as well as

points. This would largely depend on the implementation of the weak visibility subroutines

for polygons with holes.
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A Intermediate Arrangements

Irrational-Guard Polygon.

Below we show the first 22 iterations of the Irrational-Guard polygon. Section 5.5 shows that

this iteratively updating set of guards converges to the optimal solution. The orange points and

faces represent point- and face-guards in the intermediate solution. The green faces represent faces

not fully seen by the current candidate solution. Both orange and green faces are split in the next

iteration.
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Polygon with 60 vertices.

Here, we show how the iterative algorithm finds a solution in 9 iterations for a polygon with 60

vertices. This is one of the input polygons from Couto et al. [10].
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