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1

1 Introduction

1.1 Abstract

Digital documents are the de facto container to transfer information in our age and due

to the growing prevalence of large amounts of documents, organizations may struggle to

organise and categorize these documents into their respective categories. In this work we

show how a system that uses real-life documents can use scaling of the neural network

architecture EfficientNet and its input images and we compare its performance with

the widely used VGG-16 architecture. We explore how we can augment the input data

through RandAugment, a data augmentation strategy which has only 2 parameters which

allows the user to search through the search space of possible augmentations faster. We

show that transforming the input images can cause a classifier which is not trained on

transformed images to perform poorly. We adapt a multi modal fusion method that has

not, to this point, been applied to document image classification - tensor fusion. We

propose suitable parameters for this approach and compare it to the more standard early

and late fusion approaches by training our models on a balanced subset of the widely

used Tobacco-3482 dataset. We then apply this approach to our own dataset and draw

conclusions on which approach is the most appropriate. Our results show that tensor

fusion can be more successful than late fusion but stops short of the performance of

the simpler to implement early fusion. Additionally, tensor fusion requires more hyper

parameters to be considered which makes the implementation of this approach more

difficult. By comparing the results of humans on the ImageNet dataset, we argue that the

top 3 predictions of our approach can provide reliable category recommendations.
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1.2 Preface

Radial SG is a software product company based in Woerden, the Netherlands. Since

its start in 2010, it has actively answered the data management demands of industry.

The Viewport solution was created to solve real world problems involving information

understanding and retrieval by using the latest techniques in artificial intelligence and

machine learning. It understands various types of documents, automatically finds relations

between documents and organises information in a convenient way. In Viewport, categories

of document images are encountered in vast amounts whose correct classification is crucial

to providing value to the users. This is what prompted us to research what the state of

the art approaches to document image classification can provide. The goal is to create a

model that performs as well as possible on unseen real-life data.
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1.3 Problem definition

This work focuses on the problem of document image classification. Document image

classification is a subset of the image classification problem in which the task is to assign

a single-page document image to one of a set of predefined document classes [Chen and

Blostein (2007)]. There is no precise definition of a document [Baltrusaitis et al. (2017)].

In this work a document refers to a single-page document image. Example documents

are presented in figure 4.1. [Nagy (2000)] defines 3 distinct types of document image

classification tasks and a taxonomy of commonly used documents.

The 3 distinct types of document image classification problem types are illustrated in

figure 1.1. The document space is the range of samples of input documents which a

classifier is expected to handle [Chen and Blostein (2007)]. Gray circles represent the

document space while colored circles represent document classes.

Figure 1.1: The three document image classification problem types

1. Full coverage: The document space is fully covered by the 4 distinct classes.

2. Partial coverage: The document space is partially covered by the 4 distinct classes.

3. Partial coverage with intersecting categories: The document space is partially covered

and some documents may have multiple labels.

In this thesis we’re interested in solving the partial coverage version of this problem.

1.4 Problem relevance

The document image classification problem is relevant in the context of automatic

distribution or archiving of documents, creation of digital libraries, document image

retrieval and higher level document analysis [Chen and Blostein (2007)]. A use for the



4 1.5 Relevance of this research

document image classification problem has been identified in several industries including

passport verification at airports, identifying eye conditions and pneumonia [Kermany et al.

(2018)], video analysis [Snoek et al. (2005)], classifying documents in banking [Engin et al.

(2019)] and classifying medieval handwriting [Pondenkandath et al. (2017)]. Due to the

abundance of such documents in high resolution and their common use, they represent a

good target for machine learning.

1.5 Relevance of this research

With the increasingly large amount of data available online there is more and more

information requiring human attention. Therefore, if we can reduce the amount of time

human attention is not used optimally we can save time. Libraries, archives and other

institutions dealing with large amounts of documents can categorize incoming documents

with or without human intervention. The following stakeholders for the document image

classification problem may have interest in this research:

1. The system users have an interest in receiving answers in real-time from document

retrieval systems. In many real-life cases this can only happen if the system doesn’t

rely on humans to perform document image classification.

2. Safety critical organisations - a document image classification system for a nuclear

station may require equal or better than human accuracy in the classification of

documents.

3. Non-safety critical organisations have an interest in using automatic classification

to reduce costs of human labour and lower the proneness to error.
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2 Background

2.1 Artificial neural networks

This research uses artificial neural networks (ANN) for all experiments. Therefore, we

first summarize the necessary background knowledge in order to understand the content

of this work.

2.1.1 What is an artificial neural network?

A neural network is a computational model invented in the last century which has grown to

be increasingly used in the scientific community due to the way it can represent arbitrary

functions given sufficient data and depth [Leshno et al. (1993)]. Typical artificial neural

networks draw inspiration from the human brain. More specifically, human neurons, their

behavior and the synapses connecting them. Such a network is often represented by a

series of layers which are combined to create the whole network. There are different kinds

of layers which can have different effects on the input. For example, a fully connected

layer (often referred to as dense layer) can be seen in figure 2.1. We refer to the overall

composition of such a network as an architecture.

2.1.2 Neurons and weights

Each neuron takes in the values of input neurons and multiples it with a real value weight

wlj,k of the connection between neurons j in layer l and k in layer l − 1. al−1
k is the

activation of neuron k in layer l − 1. Each neuron also has a bias value blj which is added

to the sum of those values.

The output of the j-th neuron in layer l is:

alj = φ

(
blj +

M∑
k=1

wljka
l−1
k

)
(2.1)

where M is the number of neurons in layer l − 1 and φ is an activation function.
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Figure 2.1: An example of a neural network containing 1 input (dense) fully connected
layer, a fully connected hidden layer and a fully connected output layer. Source By
Glosser.ca - Own work, Derivative of File:Artificial neural network.svg, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=24913461

2.1.3 Activation functions

For this work we use the three activation functions listed below.

1. ReLU− relu(v) =

v v > 0

0 v ≤ 0


2. Sigmoid− hθ(v) =

1
1+e−θT v

3. Softmax− s(~x, i) = exp(~xi)∑K
j=1 exp(~xj)

The softmax function can be used to assign probabilities to each class in the final layer of

a neural network. This is useful when solving multi-class classification problems. K is the

number of classes and ~x is a vector which contains all the values (as specified in equation

2.1) from the final layer.
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2.1.4 How to train an artificial neural network?

An artificial neural network (ANN) or often in related literature known as neural network

is trained through the back propagation algorithm which through the use of a loss function

and gradients of that function is being continuously updated with the goal to decrease

the value of the loss function. Decreasing the value of the loss function aims to achieve

improvements in overall performance of the model. In order to continuously check the

value of the loss function and possibly other metrics, often a small (10%) subset of the

dataset is used. This data set is called the validation set. After the training is done we

test the resulting model on a test set.

2.1.5 Classification problems and loss functions

A classification problem is a problem in which instances drawn from some distribution

are given and the goal is to predict to which of a set of given categories each of those

instances belongs to. In classification problems two loss functions are commonly used -

the categorical cross entropy loss function and the Kullback-Leibler divergence function.

In this work we will focus on the categorical cross entropy loss function as defined in

equation 2.2. In this equation yn,k is 0 or 1 and indicates whether class label k is the

correct label and ŷn,k denotes the predicted probability that sample n belongs to class k.

N is the number of samples and K is the number of classes. We chose this function as

it makes comparison with other research in the area easier. It was used in [Afzal et al.

(2017), Engin et al. (2019), Audebert et al. (2020)].

L = − 1

N

N∑
n

K∑
k

yn,k log ŷn,k (2.2)

2.1.6 Transfer learning

Several studies [Tan et al. (2018), Yosinski et al. (2014)] show that we can initialize the

weights of a neural network by copying the weights of an already trained network which

has the same architecture. This tends to reduce the computational time required to train

a neural network and can result in improvements of accuracy. This approach has been

widely adopted in various industries such as bioinformatics and robotics. A common
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example of transfer learning is taking the weights from a model trained on the popular

ImageNet dataset and training the model with those weights as a starting point. This

can be done with other data sets. In the area of research for the problem of document

image classification, a common weight transfer is from a model trained on the RVL-CDIP

dataset (see section 4.1.1 for more details).

2.1.7 Training in batches

Being able to efficiently estimate the gradient of the loss function is one of the main

problems that neural networks face. Computing the gradients on the whole dataset may

be far too expensive for the GPU even with modern video cards such as the NVidia K80.

It is more common to use a small (compared to the dataset) batch size to compute an

approximation of the gradient. A typical value is 32 but depending on the size of the

input that can be either reduced or increased.

By setting the batch size, we can adjust how much of the memory of the GPU is used

during training. At the expense of training time, we may lower the batch size, which also

has been shown to reduce over fitting [Keskar et al. (2017)].

2.1.8 The Adam optimizer

Training a neural network is done by an optimizer. The task of the optimizer is to specify

the way weights in the neural network are updated each iteration. In recent literature

the Adam optimizer [Kingma and Ba (2014)] has proven to perform well and has become

commonly used in training of neural networks. It includes an adaptive learning rate which

means that the learning rate is automatically adjusted during training.

2.1.9 Regularization and over fitting

A notable problem that occurs during training of ANNs is that the model learns to predict

the items in the training set far too well and loses the ability to generalize to new examples.

This results in a deterioration of the performance on the test set. To avoid over fitting

dropout layers are used: a dropout layer randomly sets input units to 0 with a user

specified rate at each step during training time. [Srivastava et al. (2014)] proposed that a

drop out rate of 0.5 is suitable for most networks.
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2.1.10 Early stopping and lowering learning rate on plateaus

Training deep neural networks, or networks which have a large number of consecutive

layers, costs a significant amount of GPU time. Furthermore, it requires GPUs with a

large amount of memory in order to estimate the gradients well enough. Therefore, we

want to save as much computing power as possible and we would like to stop training once

we no longer are learning information that generalizes to unseen examples. We monitor

the value of a chosen metric of the validation set and if no improvement is seen for the

value for a number of epochs (often called patience), then the learning rate is reduced.

We also use a procedure to check if we’re in a plateau, if yes, then we lower the learning

rate in order to attempt to find a way to continue learning. Models often benefit from

reducing the learning rate once learning stagnates.

2.1.11 Convolutional neural networks

Convolutional neural networks (CNNs) are a special type of ANN which have become

increasingly popular in scientific literature due to their ability to use the spatial similarity

of features in order to learn to predict unseen examples. For example, in an image, pixels

which are closer to each other have more in common than those which are further away.

Convolutional neural networks exploit that to reduce the search space and, consequently,

improve the performance of models. A convolutional neural network applies filter regions

that extract features. Pooling layers can be used to reduce the dimensionality of the

network. For example, average pooling takes the average value in a filter region. A

typical example of a convolutional neural network architecture is shown in figure 2.2.

Convolutional neural networks can be used as feature extractors [Hertel et al. (2015)].

This is particularly important as we require a way to encode a document into a feature

vector, also known as embedding.

2.1.12 Model evaluation

In this research we use two techniques to measure and compare the performance of models

depending on the data set used. One of the data sets used in this work, the T3482 data

set, contains only 3482 samples. In order to avoid unrepresentative results we follow the

dataset balancing technique used in [Afzal et al. (2017)]. This is described later in chapter
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Figure 2.2: The AlexNet architecture, image by Krizhevsky et al.

5.2.2. In this case the main performance metric used is accuracy. For the INTERNAL

dataset we track 6 different metrics. The F1 score is the leading metric used for the

INTERNAL data set.

1. Loss function - for all experiments we track the value of the loss function categorical

cross entropy.

2. Top 1 accuracy - this corresponds to the standard definition of accuracy. We take

the max value of the softmax layer outputs. This corresponds to the label for which

the classifier is the most confident it corresponds to the input features.

3. Top 3 accuracy - in this metric the output probabilities of the model for each class

are sorted in descending order and the top k items are picked. If the true label is

part of those k items the output is true for the sample. This is important for us

because if the Top 1 accuracy isn’t high enough then the top - 3 answers can be

used instead.

4. Average precision - a metric for multi-class classification of how many selected items

are relevant.

5. Average recall - a metric for multi-class classification of how many relevant items

are selected.

6. F1 score - a metric that computes the harmonic average of the precision and recall.
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2.2 Multi modal fusion

2.2.1 What is a modality?

A modality is a source of information, a particular mode in which something exists or

is experienced or expressed. In the representation learning area of research, the word

“modality” refers to a particular way or mechanism of encoding information [Guo et al.

(2019)]. For example, in the case of document image classification, there are two modalities

- the text written on the document and the image of the document.

2.2.2 Embedding

Embedding in the context of this work refers to mapping samples of a given modality

into a subspace. This allows us to perform various operations on the mapped values and

understand how objects relate to each other. If we are given a text modality, a subspace

constructed from a set of sample text can allow us to see which words are similar to each

other with respect to the way the embedding is constructed.

2.2.3 Multi modal fusion

Multi modal fusion is a field whose focus is on learning how to combine different modalities

in order to create better models. A typical example of a situation where combining multiple

modalities may be beneficial to a learner is when a classifier is to classify whether a movie

is good or bad. When somebody says “This movie is sick! ” it can mean different things

depending on the expression of the person who says that. A negative expression might

mean that the movie is indeed horrible, while a positive expression indicates approval of

the movie. In this case there are two modalities - visual (the expression of the person)

and their speech. Multi modal fusion in essence attempts to solve a common problem

in the human brain - how to combine information from different sources into a good

representation of reality. In the context of this work, we use two modalities, text and

image. The goal is to fuse the modalities in to a common representation by mapping them

into a common subspace. This can be seen in figure 2.3.
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Figure 2.3: Multi modal fusion tries to find a common subspace between the various
semantic concepts. Source - [Guo et al. (2019)]

2.2.4 Early fusion

Early fusion is a method to combine features extracted from a set of samples from one

modality with other modalities in order to create a common representation. In this work,

we first obtain embeddings of each modality. For the image modality, that is done by the

Image model while for the text modality we use fastText [Bojanowski et al. (2016)] to get

word embeddings. These word embeddings are then transformed to a document embedding

by mapping the word embeddings of a document into a single vector. The simplest way

to construct such a document embedding is to perform some arithmetic operation on

the word embeddings of the document in order to create a document embedding. Two

of the most commonly used operations are summation and averaging. In this work we

use the averaging operation [Kenter et al. (2016a)]. This same strategy was used in

[Audebert et al. (2020), Engin et al. (2019)]. After obtaining these two representations

they are merged into a common representation. An often used approach to merging the

representations is to concatenate them.



2.2 Multi modal fusion 13

2.2.5 Late fusion

Late fusion is a method to combine the output probabilities for the classes of the individual

classifiers for each modality. Each classifier learns on its own and the predictions are

combined with a strategy. One may use a heuristic based strategy (for example, pick

the classifier which is the most confident) but in this work we will focus on model based

strategies. A useful review of possible heuristic strategies can be found in the experiments

performed in [Åberg (2018)].

2.2.6 Tensor fusion

We include an approach that has not been applied to document image classification to this

point, to our best knowledge. It is inspired by the work done in [Zadeh et al. (2017)] and

later in [Liu et al. (2018)]. In this approach tensors for each modality are obtained and

combined to generate a multi modal representation. The difference between the tensor

fusion approach and the concatenation approach in early fusion is that tensor fusion also

accounts for the the uni modal representation with addition to the bi modal representation

of the data. This should allow us to model the intra modal (within a single modality)

interactions more effectively. In comparison, in early fusion the concatenation layer acts

as a compression layer for both the unimodal and bimodal features while in tensor fusion

the unimodal and bimodal features are modelled more explicitly and therefore, should be

more expressive.

This operation is illustrated in equation 6.1 where zi and zt are the tensors from the

image and text modalities respectively and
⊗

represents the outer product operation.

zm =

zi
1

⊗zt
1

 (2.3)

This operation, however, proves to be computationally expensive when the number of

modalities becomes higher. In order to address this issue [Liu et al. (2018)] tries to create

a low rank version of the tensor representation by decomposing the computation. In this

work we use two modalities and this allowed us to apply this technique without requiring

the usage of the method proposed in [Liu et al. (2018)].
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3 Related literature

This section investigates the approaches taken to solve the document image classification

problem. Works prior to [Krizhevsky et al. (2012)] are often based on two approaches -

template matching and image descriptors. The sections 3.1 and 3.2 summarize those two

approaches while the following sections present newer solutions.

3.1 Template matching and hand-crafted features

Template matching is the process in which a document is being matched to a set of

templates through a similarity function. The templates are hand-crafted. An example of

this technique can be found in [Sato and Cipolla (1999)].

3.2 Image descriptors

Handcrafted features and templates have been found to be expensive to construct and do

not generalize well to new problems. Image descriptors are an approach used to make

local decisions at every pixel to decide whether there is an image feature of a given type

at that point or not. An example of this can be found in [Bay et al. (2008)].

3.3 Image classification

The majority of recent literature on the topic approaches the problem of image classification

through the use of supervised machine learning in order to learn important visual features

of the various image categories. After the pioneering work of [Krizhevsky et al. (2012)]

convolutional neural networks and transfer learning [Yosinski et al. (2014)] have been

applied to solve the document image classification problem - a combination that has

shown to generalize to many other computer vision classification problems as shown in

[Kornblith et al. (2019)]. The majority of recent literature uses convolutional neural

networks for the problem as their performance has been consistently better than that

of other models [Harley et al. (2015)]. In [He et al. (2015)] it was shown that features

learned by a convolutional neural network outperform handcrafted features given they are

trained on sufficient amounts of data. This has also been confirmed for the problem of
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document image classification in [Harley et al. (2015)].

3.4 Transfer learning

Transfer learning for document image classification has also drawn criticism in [Tensmeyer

and Martinez (2017)] by highlighting the difference in the domains of the images between

the ImageNet dataset [Krizhevsky et al. (2012)] and the IIT-CDIP dataset introduced

in [Harley et al. (2015)]. Indeed, only the category Web from ImageNet contains images

similar to documents [Afzal et al. (2015)]. Nonetheless, transfer learning has been shown

to both improve the accuracy of a model and reduce the training time [Tensmeyer and

Martinez (2017)].

3.5 Data augmentation

We want to create a classifier which is able to perform well on real-life images. These

images may be scanned which may affect the rotation, translation or clarity of the image.

We want to explore what possibilities exist to do that in a way that fits our resource

constraints. One such technique we experiment with is RandAugment as specified in

[Cubuk et al. (2020)] which recently managed to improve the state of art accuracy in

combination with the EfficientNet architecture [Tan and Le (2019)] on the ImageNet

dataset.

The main goal of data augmentation is to find the optimal policy by which to apply those

transformations to images. The policy specifies with what probability and magnitude

to apply an operation. In AutoAugment [Cubuk et al. (2019)], a reinforcement learning

algorithm is used to find the optimal policy, however that approach proved to be

computationally expensive. In RandAugment, there are only 2 hyper parameters that are

used:

• N - the number of transformations to apply consecutively

• M - the magnitude of each of the operations

The operations RandAugment uses are displayed below.
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1. identity

2. rotate

3. posterize

4. sharpness

5. translate-x

6. translate-y

7. auto-contrast

8. solarize

9. contrast

10. shear-x

11. shear-y

12. equalize

13. color

14. brightness

Furthermore, [Cubuk et al. (2020)] show that RandAugment performs on-par and

sometimes even better than other state of the art data augmentation approaches.

3.6 Text classification

Text classification is the process of classifying a text document by using the textual

information in it. In our situation, many of the words in our datasets can be abbreviations

or may have little meaning outside the context of the dataset. Similarly to [Audebert et al.

(2020)], we use the OCR (optical character recognition) engine Tessaract [Kay (2007)]

which may sometimes produce faulty results. Current approaches to text classification

aim to solve the problem by learning how to map the words in a text corpus into a high

dimensional space where similar words are closer to each other. This process is known

as embedding. One technique to construct such an embedding for the purpose of this

paper is the fastText [Bojanowski et al. (2016)] model used in [Audebert et al. (2020)].

fastText takes a sequence of words as input and maps every word to a set of vectors.

Word embeddings generated by fastText are used to create document embeddings. There

are several approaches to create document embeddings. The easiest way to do so is to

average the word vectors in a document. This approach was first shown in [Kenter et al.

(2016b)] and has proven to be successful.

3.7 Multi-modal learning

Previous work shows that use of a multi-modal approaches improves the accuracy of

the model when compared to approaches which use a single modality [Audebert et al.

(2020), Engin et al. (2019)]. [Engin et al. (2019)] combine the image modality (image of

document) and the text modality by extracting the latter through OCR. In structured
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Figure 3.1: Overview of fusion approaches. Source - [Ebersbach et al. (2017)]

documents, text is strongly correlated with the correct category assigned (see table 5.3).

[Audebert et al. (2020)] estimate a 7.6% absolute improvement (9% relative) in accuracy

when there’s perfect fusion between text and image on the Tobacco-3482 dataset on

resolution 384x384.

Multi-modal fusion varies by the use of early, late or hybrid fusion of modalities [Snoek

et al. (2005), Baltrusaitis et al. (2017)]. In early fusion features extracted from each

modality are concatenated together and a model is trained to make predictions from those

features. In late fusion a model is trained on the predictions made by models trained on

each modality. Examples of early fusion for document image classification can be found in

[Audebert et al. (2020)], while late fusion can be found in [Das et al. (2018)] through the

stacked generalization (stacking) technique introduced in [Wolpert (1992)]. An example

of a hybrid fusion model is presented in [Vielzeuf et al. (2019)] where the fusion type is

being dynamically chosen on a scale between fully early and fully late fusion.

A notable disadvantage of late fusion is that inter-modal interactions are not being

included. The final fully connected layer of figure 3.1 learns to guess which model to trust

more instead of learning how to interpret the features of the modalities.

An overview of early and late fusion is presented in figure 3.1.
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3.8 The effects of scaling

Due to the abundance of documents and their availability in various resolutions, we

investigate how we may take an advantage of that amount of data. There are approaches

to improve the accuracy of a neural network though the use of architecture search [Zoph

and Le (2017), Zoph et al. (2018), Jin et al. (2019)]. In this research, we decided to focus

on investigating the compound scaling approach on an architecture discovered through the

use of architecture search. Through compound scaling [Tan and Le (2019)] a relationship

between the width and depth of a neural network and the resolution of images is found and

this relationship provides a technique to find the optimal scaling coefficients for network

depth, width and image resolution. This relationship is illustrated in equation 3.1. In this

equation, φ is a user specified coefficient which controls the resources available for model

scaling. Authors performed a grid search and proposed the parameters α = 1.2, β = 1.1,

γ = 1.15.

depth : d = αφ

width : w = βφ

resolution : r = γφ

s.t. : α.β2.γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(3.1)

To our knowledge compound scaling has not been applied to the problem of document

image classification. The approach proposed in [Xie et al. (2019)] uses, in addition to

compound scaling, a combination of supervised and unsupervised learning to further

improve the performance of the model. This is a technique called semi-supervised learning.

While this approach may find its uses for the problem of document image classification, it

requires a substantial amount of unlabelled data to lead to significant improvements in the

accuracy of the model. [Xie et al. (2019)] use 300M unlabelled photos which leads to 2%

improvement in accuracy on the image classification problem on the ImageNet dataset.

For this research we primarily focus on compound scaling on the EfficientNet architecture

[Tan and Le (2019)] and investigate its effects on the model performance. EfficientNet is
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a convolutional neural network that comes with 8 different versions specified as B0 to B7

with the first version corresponding to a resolution of 224x224. Later versions are scaled

according to equation 3.1. A useful comparison between EfficientNet and other state of

art architectures is available in figure 3.2.

Figure 3.2: EfficientNet parameters - source [Tan and Le (2019)]

3.9 Attention mechanisms

Attention mechanisms are a technique that attempts to mimic the way humans perceive

information by focusing on specific features with weighted importance. For example,

when learning to differentiate between the sports ice skating and skiing, a human will

learn to focus on the part of the image where the legs of a human are while paying less

attention to the other parts of the image. Attention mechanisms have been used for both

intra modality (within a single modality) and inter modality (across several modalities)

[Guo et al. (2019)]. For single modality, it can be used to select salient features within a

modality or balance the contribution of several modalities during multi modal fusion [Guo

et al. (2019)]. Examples of intra modality applications can found in classification of ads

[Åberg (2018)]. Attention mechanisms have been used in video classification [Long et al.

(2018)], image captioning [Xu et al. (2015)], sentiment analysis and image classification
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[Bai et al. (2018)], among other practical applications [Guo et al. (2019)].

3.10 Intra-domain learning

Through the use of transfer learning, a technique called intra-domain learning aims to

improve the speed of training. This technique uses the neural network weights trained

on the whole document (often called holistic approach) and transfers them to smaller

models which are then fine-tuned on fixed regions of the document. The main advantage

of this approach is that general features such as writing style and font are learned from

the whole document while fine-tuning can occur for region-based classifiers. However,

there are problems with this approach:

• It assumes that the weights learned on ImageNet transfer well to the problem of

document image classification, while [Kornblith et al. (2019)] show that when a task

is fine-grained the weights of a network trained on ImageNet do not transfer well.

• The regions of the sub-models are fixed, it is not clear how their number and

locations should be chosen.
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4 Data

4.1 Overview

In this section we describe and analyze the datasets that will be used in this study.

4.1.1 RVL-CDIP dataset

This dataset has been made freely available online1. It consists of 16 document categories

and is a subset of the larger IIT-CDIP dataset which is created from the litigation

documents against tobacco companies. It consists of 400,000 images split into 16 classes

with 25,000 images per class and split into 3 groups - 320,000 training images, 40,000

validation images, and 40,000 test images. This dataset is often used to initialize the

weights of a neural network which is then further fine tuned to a particular task.

4.1.2 Tobacco-3482 (T3482) dataset

In this thesis we decided to use the Tobacco-3482 dataset2, a subset of the RVL-CDIP

dataset and commonly used by researchers in the field to benchmark the performance of

various approaches. This is a good fit for our purposes because it allows us to experiment

efficiently due to the small size of 3482 document images across 10 document types

(categories). Examples of Tobacco-3482 are shown in figure 4.1.

Figure 4.1: A memo, resume and scientific article from the Tobacco-3482 dataset

1https://www.cs.cmu.edu/%7Eaharley/rvl-cdip/
2https://lampsrv02.umiacs.umd.edu/projdb/project.php?id=72
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Figure 4.2: Distribution of classes in the Tobacco-3482 dataset
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4.1.3 INTERNAL dataset

We have collected a dataset of 15,258 .pdf document images - INTERNAL across 66

categories. We use this dataset to observe how well our best performing model works

on real life data. This dataset contains proprietary images, therefore we report only the

results of our analysis on it. Despite not publishing the dataset, we offer guidelines on

how to construct a training pipeline for a real world scenario where the data may require

pre-processing. The images in INTERNAL contain more geometric figures than the other

datasets. An example of 2 types of the documents present in INTERNAL can be seen in

figure 4.3. The distribution of the images per class is shown in figure 4.4.

Figure 4.3: A .dwg diagram and a loop diagram, 2 of the classes of the INTERNAL
dataset. Source -

The dataset was prepared by converting all .pdf pages into images by using a custom

made tool3. The document images, among relevant images, also contain pages containing

content table pages, introduction pages or other information. This means that some of

the documents in the dataset will be irrelevant but nonetheless labeled as belonging to

that category - for example, a content page can never be viewed as a diagram. This flaw

can be addressed in future research by for example, creating a small dataset of images

which surely belong to a class, and then training a classifier on them. The classifier can

be used to make a binary prediction whether a given image should be included in the final

dataset.

3https://github.com/ch-hristov/pdf2imgs
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Figure 4.4: Distribution of number of items per class in the INTERNAL dataset
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(a) Padded image example (b) Padded and augmented
image example, only used in
section 6.3

Figure 4.5: Preprocessed images from the T3482 used in this work

4.2 Data preprocessing

4.2.1 Images

All images used for training in this thesis are preprocessed in the following way:

1. Resize and pad - into a given resolution and padded with black color if necessary.

This is necessary because some of the original images have different resolutions,

therefore to keep the aspect ratio of the image, some of the images are padded

with black space as shown in figure 4.5. This has been shown to not affect the

accuracy of models as they simply learn that the black space does not offer any

value to a learner. An example of such an image which has been resized, padded

and normalized and augmented from the T3482 dataset is available in figure 4.5.

2. Center - After resizing and padding the image we subtract the mean pixel values of

the training images from all images to center the data. This preprocessing step is

the same as the one taken in [Afzal et al. (2017)].

4.2.2 Text

All text extracted from the images, after extracting it through Tessaract OCR, is processed

in the following way (see Appendix for detailed code snippet):

1. Non-letters are removed
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2. Text is lemmatized and tokenized

3. Non meaningful words are removed - stop words

In listing 1 we show example text extracted through OCR.

0 c i t i week septemb guid urban n i g h t l i f i aadayp l . . .

1 arthur j s teven dp l a cewsn date c oo eeeee e l . . .

2 de de de t ransmis s r epo r t x e j u l id s t a r t tim . . .

3 hoe l john hoe l john sent wednesday decemb pm m. . .

4 f e b r u a r i mr w r lybrook r e f e r attach l e t t e r mr . . .

Listing 1: Example OCR extracted text from the T3482 dataset

4.3 Data augmentation

It has been shown that augmenting the input data can create a significant improvement in

the accuracy of the model, with the shear operation being the most useful augmentation

on the RVL-CDIP dataset [Tensmeyer and Martinez (2017)]. [Tensmeyer and Martinez

(2017)] use a CNN for the problem of image classification on ImageNet and presents results

on the best way to represent the data. Research suggests that combination of grayscale

(G) and dense-SURF (S) is the best way to represent an image [Bay et al. (2008)]. For

this research we experimented with RandAugment.

4.4 Class imbalance

While the RVL-CDIP dataset is balanced, the Tobacco-3482 and the INTERNAL datasets

are unbalanced. The distribution of classes of the Tobacco-3482 dataset can be seen in

figure 4.2. Machine learning classifiers may develop a bias towards classes in the training

set which are more common and that can cause a classifier to overfit. Additionally, it can

be more difficult to compare new approaches to multi modal fusion when the distribution

is not balanced. In reality, it would be difficult to know the real distribution of the

document image categories for most document image classification tasks. In order to

address the imbalance, we use two methods - for the Tobacco-3482 dataset we use a
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balanced version of the data set. This balancing procedure is reviewed in section 5.2.2.

For the INTERNAL dataset we report measurements which we believe are representing

the performance of the model as well as possible.

4.5 Out of vocabulary words

A good way to predict how difficult the INTERNAL dataset would be for a text classifier

is to compare the OOV (out of vocabulary) count distribution between T3482 and

INTERNAL. We do not perform this analysis for RVL-CDIP as the T3482 dataset comes

from a common superset as RVL-CDIP and we assume T3482 should provide a good

understanding of the distribution for RVL-CDIP as well. Similarly to [Engin et al. (2019)]

and [Audebert et al. (2020)], we are concerned about low performance of the text model

due to faulty results by the OCR. For this task, we first extract the text for INTERNAL

and T3482 by using Tessaract OCR [Kay (2007)]. We then use a pretrained set of word

vectors4 over which we check each document word for each document. The results of

this analysis are shown in figure 4.6 for the T3482 and INTERNAL datasets respectively.

What is immediately visible is that the INTERNAL dataset seems to have a much higher

proportion of values which are OOV. This could be due to the fact that some of the

documents contain Dutch words or due to inability of the OCR engine to detect the words

correctly.

4https://fasttext.cc/docs/en/english-vectors.html
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(a) OOV words T3482

(b) OOV words INTERNAL

Figure 4.6: Comparison OOV distribution between T3482 and INTERNAL
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5 Methodology

5.1 Research questions

We consider the document image classification problem a subset of the image classification

problem. The error rate of humans on the ImageNet dataset has been reported to be

5.1% in [Russakovsky et al. (2015)]. The state of the art accuracy to this date on the

ImageNet dataset is 87.4% by the Noisy student model by [Xie et al. (2019)]. The state of

art accuracy for the document image classification problem is 92.21% on the RVL-CDIP

data set in [Das et al. (2018)] by using stacked generalization. This result, however, is not

applicable in this research as it uses a network pretrained on RVL-CDIP that is later fine

tuned to the T3482 dataset. In reality, a larger labelled dataset often does not exist from

which to perform such an initialization step and there is no guarantee that the weights

from RVL-CDIP would transfer well on our own data set. Therefore we fall back to the

results which are obtained through an ImageNet pretrained weight initialization.

The research questions for this thesis are:

1. How does EfficientNet compare to state of art architectures? Is compound scaling

applicable to the problem of document image classification?

2. Should data augmentation be applied to document image classification? Does the

RandAugment [Cubuk et al. (2020)] data augmentation technique improve the

robustness of a classifier?

3. How do tensor fusion methods [Zadeh et al. (2017)] compare to the more well known

methods of early and late fusion on the balanced data split for T3482? Does the

model configuration found do well on INTERNAL? Does the best method we find

on the balanced data set split perform the best on the all data split?

5.2 Research methodology

All experiments performed in this work are used on two dataset splits, we refer to them

as all data and balanced. The all data split is used because we’re interested in obtaining

the best possible classifier which can be used in real-life scenarios, therefore we want to
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use as much data as possible for learning. The second data set split is used to compare

our approaches to previous work and this approach balances the training and validation

set so that there are an equal number of images for every class.

5.2.1 Data set split - all data

For this approach we select 70% of the data as the training set, 10% as the validation set

and 20% as the test set. This is shown in figure 5.1. The data set is shuffled before any

selection is done. In some cases only 10% (shown in red) of the data is used for test set.

In this work we decided to use 20% as the size of the INTERNAL dataset where this split

is used isn’t large enough to use only 10% of the total dataset.

Figure 5.1: Dataset split - each circle represents 10% of the total dataset

5.2.2 Data set split - balanced

In order to get measurements which are comparable to other approaches we use the

method shown in [Afzal et al. (2017)] which is comparable to the methods used in previous

research [Kang et al. (2014)] to balance the dataset by randomly taking N = 100 samples

from each class. 80% of those N items are used as the training set while the remaining 20%

are used for validation set. The remaining items which are not part of those N samples

per class are used as the test set. The baseline for T3482 defined in [Afzal et al. (2017)]

is used and is available in table 5.1. We report the results for a split size of 100 and we

average the results over 10 different splits similar to [Afzal et al. (2017)]. This approach

is not directly comparable to a model which was initialized with weights from a model

trained on a larger data set such as the RVL-CDIP. The results from such an initialization

are illustrated in table 5.2.
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Architecture Top 1 Accuracy
VGG16 [Afzal et al. (2017)] 77.52%
AlexNet [Afzal et al. (2017)] 75.73%
GoogLeNet [Afzal et al. (2017)] 72.98%
Resnet-50 [Afzal et al. (2017)] 67.95%

Table 5.1: Dataset: T3482, Image model accuracy, resolution (224x224), ImageNet
weight initialization

Architecture Top 1 Accuracy
VGG16 [Afzal et al. (2017)] 91.01%
AlexNet [Afzal et al. (2017)] 90.04%
MobileNetV2 [Audebert et al. (2020)] 84.5%

Table 5.2: Dataset: T3482, Image model accuracy (224x224), RVL-CDIP (excl. T3482)
weight initialization

5.2.3 Text model

To train the text classifier, we use an approach taken in [Audebert et al. (2020)]. To

create word embeddings we use the fastText model (for exact software tool version see

the Appendix). As input to the Text model we use the word embeddings, averaged for

each document. The exact architecture of this approach is shown in figure 5.2. As input

we use word embeddings of size 300. This network was initialized using He’s initialization

[He et al. (2015)]. The difference between [Audebert et al. (2020)] and our approach is

that the last dense layer is of size 100 rather than 128. This is because the Image model

performed slightly better during our hyper parameter tuning process with a final layer of

size 100 for the INTERNAL dataset. We use that size for the Text model rather than 128

in order to avoid using two different sizes when training the multi modal fusion networks

presented in the experiments chapter.

Author Embedding Architecture Accuracy
[Audebert et al. (2020)] fastText MLP 70.08%
[Audebert et al. (2020)] fastText CNN 1D 73.9%

Table 5.3: Text model results on the T3482 dataset. Note: [Audebert et al. (2020)] uses
cross validation with the same train/test/validation set sizes
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Figure 5.2: Text model used in this work. Initially proposed in [Audebert et al. (2020)]
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5.2.4 Data set split for multimodal fusion models

It is not clear what is the best way to split the data in order to train a multimodal fusion

network. In [Åberg (2018)] half of the validation set is used to train a network that learns

from separately trained Image and Text models. This split is compared with training the

fusion network on the same data as both of the models were trained on. In [Åberg (2018)]

training on the same data as the two models were trained on shows better performance.

We decided to use this approach as our experiments showed that it had better performance

than training on half of the validation data or by using an additional 10% of the original

set. This is also partially supported by the results found in [Åberg (2018)] on the same

matter where a comparison is made between training on original training set and training

on half of the validation set.

5.2.5 Early stopping

For T3482 we use early stopping to choose the model which minimizes the validation loss.

For the INTERNAL data set we maximize the validation set F1 score.

5.2.6 Baseline analysis

We experiment to see what are the potential improvements from applying multi modal

fusion for the INTERNAL dataset. Such an analysis was already done in [Audebert et al.

(2020)] for the T3482 dataset. A way to quantify that, is to see how to compare the

predictions of the supervised model provided in the fastText package - [Bojanowski et al.

(2016)] and the EfficientNet B0 vision model and see in how many cases either one of

them, both of them or neither of them are correct on the test set. Note that this measure

depends on the models. Better text or vision models may reduce the possible improvement

from multi modal fusion. This does not take into account improvements that may occur

from finding patterns of bimodal features but it should be enough to tell us whether it is

worth investigating the multi modal fusion approaches for our dataset. In table 5.4 we

measure those values for the INTERNAL dataset.

The results show a possible improvement of 9.26% through perfect fusion of text and

image. Note that these results are obtained with the B0 classifier on resolution 224x224,
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INTERNAL EfficientNet B0 FastText supervised Either correct Both correct
Correct 2478 2368 2761 2085
Incorrect 579 689 296 972
Total % 81,06% 77,46% 90,32% 68,20%

Table 5.4: Potential improvement, INTERNAL dataset, resolution 224x224, all data
data split, test set samples N = 3057

therefore the vision model will perform better on higher resolution images. This example

should convince the reader for the case of multi modal fusion for this dataset.
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6 Experiments

6.1 Environment

6.1.1 Hardware

We perform experiments using an Azure GPU virtual machine of the type NC6_Promo

(6 vcpus, 56 GiB memory, Windows 10 Pro). This environment is equipped with the Tesla

K80 GPU on which all training was done.

6.1.2 Software

There are two important dependencies for this thesis:

1. Image model - The neural networks in this thesis have all been constructed using

Tensorflow 1.14 and Keras 2.3.1.

2. Text model - We use the fastText model to create word embeddings. We then use

the architecture specified in figure 5.2.

The full list of packages is available in the Appendix.
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6.2 How does EfficientNet compare to VGG-16?

In this section we perform an experiment to compare EfficientNet to the state of art

architecture VGG-16. We chose to compare it to VGG-16 because VGG-16 has consistently

shown that it performs well on the problem of document image classification - [Afzal

et al. (2017), Das et al. (2018), Audebert et al. (2020)]. Additionally, this architecture has

publicly available weight configuration trained on the RVL-CDIP dataset which decreases

the amount of training we have to do. This experiment uses the compound scaling

technique as explained in section 3.8. We train EfficientNet B3 and compare it to the

VGG-16 architecture. There are two reasons why we choose the B3 architecture instead

of using a larger model.

1. The VGG-16 model using this configuration has trainable parameters equal to

18,883,198 while the EfficientNet B3 model has 10,696,232 trainable parameters.

This makes the two architectures arguably comparable in the number of parameters.

2. The fact that the Tesla K80 video card runs out of memory when we scale up above

EfficientNet B3 and we would like to keep the experiments accessible on hardware

that is easily available.

We use the architectures shown in figure 6.1. We also ran the experiments by replacing

the final Global Average Pooling 2D by a flattening layer for the EfficientNet architecture

but that resulted in lower accuracy. This is perhaps because Global Average Pooling 2D is

a dimensionality reduction technique and we believe that adding this pooling layer results

in less over fitting. It was employed in the same manner in [Audebert et al. (2020)]. The

implementation of EfficientNet we use is open source5.

6.2.1 Hyper parameter optimization

We run a grid search on suitable values for the dense layer sizes for both the VGG-16

and EfficientNet B3 architectures. This helps us to find good hyper parameter values, a

suitable drop out rate and to investigate what the effect is of adding a dense layer that

encodes a deep representation of the image (embedding).

5https://github.com/qubvel/efficientnet



6.2 How does EfficientNet compare to VGG-16? 37

(a) The model used in this work - EfficientNet B3 as base
model, inspired by Audebert et al. (2020)

(b) VGG-16 as base model - Afzal et al.
(2017)

Figure 6.1: Image model architectures compared in this chapter

6.2.2 Optimizer

As figure 6.2 shows, a reasonable conclusion would be to use the Adam optimizer. The

encoder layer size can be changed but it conveniently matches the default size of each

word vector in FastText.

6.2.3 The effects of compound scaling

We experiment with the non-scaled version of the EfficientNet architecture to see how it

will perform in a situation where resources for scaling of the architecture are not available.

That means that the default EfficientNet architecture is not scaled. We compare that to

the VGG-16 architecture.

The value of γ = 1.15 is suggested in the original paper for EfficientNet [Tan and Le
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optimizer learn rate dropout rate encoder layer avg loss avg acc avg top-3 avg recall avg precision
Adam 1.00E-05 0.5 0 0.7914 0.7814 0.9316 0.7595 0.8184
Adam 0.0001 0.5 0 0.8647 0.7944 0.9531 0.7845 0.8126
Adam 1.00E-05 0 100 0.8924 0.7738 0.9378 0.7538 0.7967
Adam 0.0001 0 100 1.0567 0.7814 0.9326 0.7706 0.7941
Adam 1.00E-05 0.5 100 0.8095 0.7853 0.9335 0.7615 0.8161
Adam 0.0001 0.5 100 0.9493 0.8049 0.9503 0.7968 0.817
sgd 1.00E-05 0.5 0 0.8488 0.7293 0.9307 0.6793 0.7968
sgd 0.0001 0.5 0 0.846 0.7556 0.9311 0.7281 0.7946
sgd 1.00E-05 0 100 0.8968 0.7111 0.9134 0.6436 0.7824
sgd 0.0001 0 100 0.9122 0.7279 0.9177 0.6963 0.7773
sgd 1.00E-05 0.5 100 0.8672 0.7279 0.9149 0.6228 0.8224
sgd 0.0001 0.5 100 0.7479 0.7805 0.9326 0.7365 0.8385
sgd 0.0001 0 0 0.799 0.7642 0.934 0.7329 0.7972

Table 6.1: Grid search results (on the validation set) for T3482 (trained on 70% for the
training set) on resolution 224x224 for EfficientNet B0, ImageNet initialization

Figure 6.2: Optimizers tested for this work

(2019)]. We use the value specified in the official Tensorflow EfficientNet implementation6

for the B3 version. The resolution used for B3 is 300x300. Training with compound

scaling is expensive in terms of resources. We managed to train networks with compound

scaling up to EfficientNet B3 on a single Tesla K80 video card by decreasing the batch

size to as low as 16. This made training slower compared to the B0 version where a larger

batch size can be used. The results are presented in table 6.2.

We refer to the vision model as Image.

6https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_builder.pyL42
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(a) Top 1 accuracy (b) Top 3 accuracy

Figure 6.3: Validation set, balanced data set split single run, Top 1 accuracy and Top 3
accuracy, Dataset: T3482, Resolution 300x300, EfficientNet vs VGG16

(a) Training and validation top 1 accuracy (b) Training and validation loss

Figure 6.4: Balanced baseline, single run validation set measurements, EfficientNet B3
training on T3482
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6.2.4 Results

Base model Top 1 mean acc. Top 1 acc. std Top 3 mean acc. Top 3 acc. std
Text model 0.681708 0.003155 0.905261 0.005214
Text model [Audebert et al. (2020)] 0.7008 - - -
VGG-16 0.733481 0.016209 0.898791 0.014513
VGG-16 [Afzal et al. (2017) 224x224] 0.7752 - - -
EfficientNet B3 0.790894 0.009495 0.940290 0.005630

Table 6.2: Averaged results for T3482 test set (N = 2482) T3482, 10 runs, balanced split

We trained the B3 classifier on INTERNAL and obtained the following results:

Base model Top 1 mean acc. Top 3 mean acc. Training time
Text model (fig. 5.2) 0.7765 0.8861 <1 min
VGG-16 (fig. 6.1 b) 0.760341 0.84232 14.001 hrs
EfficientNet B3 (fig. 6.1 a) 0.8567 0.9368 9.53 hrs

Table 6.3: Results for test set (N = 3057) INTERNAL, 1 run, balanced split
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6.3 RandAugment - Efficient data augmentation for

real life scenarios

For this experiment, we are answering the question of whether RandAugment can benefit

our classifiers.

6.3.1 Setup

For this experiment we modify the input data by adding random transformations in order

to make the data more complex for a predictor not trained on noisy data. We use the

T3482 dataset with the all data split. We use the resolution 224x224 and use EfficientNet

B0. The results when the training dataset isn’t augmented are shown in figure 6.5. We

then perform the experiment with the same validation set but we add the augmented

images of the training set to the training set. This doubles the training set size. The

results are shown in figure 6.6. These figures show how changing the parameters N and

M affects the performance of a classifier which is trained with augmented images and one

which is trained without any augmented images.

• N - the number of transformations to apply consecutively

• M - the magnitude of each of the operations
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6.3.2 Results

(a) M = 4, N = 1 (b) M = 1, N = 4

(c) M = 4, N = 3 (d) M = 5, N = 5

Figure 6.5: T3482 dataset, all data split, EfficientNet B0, no augmentation on the
training set, validation set is replaced with transformed images. The graphics shown are
the values on the validation set.
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(a) M = 4, N = 1 (b) M = 1, N = 4

(c) M = 4, N = 3 (d) M = 5, N = 5

Figure 6.6: T3482 dataset, all data split, EfficientNet B0, both the validation and
training set are augmented. The graphics shown are the values on the validation set.
Similar results were observed for the test set as well.
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6.4 Multi modal fusion

This section compares three approaches to multi modal fusion. For this experiment, we

fix the Image and Text models and collect measurements for the multi modal fusion

approaches described. A short section about the implementation of each of the multi

modal fusion methods is included. Afterwards the results of the experiments are presented.

All our experiments follow from the idea presented in the Python-style pseudo code below.

The exact architectures for each fusion approach can be found in Appendix figures A0.1,

A0.2 and A0.3. The code is run for every data set separately.

# Choose how to split the data set

#train_xy, test_xy, val_xy = separate_set_into_train( paths_set_original )

train_xy, test_xy, val_xy = separate_afzal( paths_set_original )

# Train text model

model_text = train_text_model(train_xy, test_xy, val_xy)

# Train vision models

vgg_model = train_vision_model('vgg', train_xy, test_xy, val_xy)

effnet_b3_model = train_vision_model('enet', train_xy, test_xy, val_xy)

compare_performance( [ get_predictions(vgg_model),

get_predictions(effnet_b3_model) ] )

outputs = []

# For INTERNAL - k = 1, for T3482 - k = 10.

for i in range(k):

for fusion_approach in ['early', 'late', 'tensor']:

# apply modal fusion

output = fuse(train_xy, test_xy, val_xy, fusion_approach, vgg_model,

effnet_b3_model, model_text)

predictions = get_predictions(output)

outputs.append(predictions)

compare_performance( outputs )
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6.4.1 Early fusion

In this approach we strip the last layer which generates predictions (the softmax layer) of

the Image and Text models and we use the outputs of the final dense layer. This dense

layer outputs a compact representation of features for the input. We then concatenate

the outputs from the two final dense layers of the Image and Text models and then add

a dense layer to create a representation that combines the two sub spaces, in which the

individual representations reside, into a common space.

Figure 6.7: Early fusion

Approach

This approach uses a combination of high level features to make predictions. These high

level features are gathered from both the text and image learners and are used by a model

to make predictions. For the Text model, we average the word embeddings generated

for each document and use that vector as a document embedding. For the Image model,
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similar to [Audebert et al. (2020)], we add a dense layer after the last pooling layer of the

network in order to create a vector representation for the image. We then apply a learner

on the concatenated version of those vectors to produce predictions.

This approach is shown in figure 6.7.

6.4.2 Late fusion

We reviewed several techniques to make predictions by creating a model which is learning

from the output of the probabilities of each modality. Note that both of the Image and

Text models are trained with a final layer which uses the softmax activation function.

This means that the last layer contains the output probabilities for each class. In this

section we create a model which learns from those output probabilities to predict the final

output. To do this, we freeze the weights of the trained models, then add a layer that

concatenates the output probabilities into a single tensor. This final tensor is passed to

either one or two dense layers.

Approach

The approaches we test are:

1. Late fusion - a single dense layer learns from the concatenated list of output

probabilities for each modality.

2. Late fusion (D) - a network with two dense layers may be able to capture the

patterns of the data better. Deeper networks can estimate more complex functions.

An illustration of the two approaches can be seen in figure 6.8.

Hyper parameters

We use some of the parameters provided in [Åberg (2018)] as a base for the grid search in

this work. The full list of parameters that are searched and the parameters which perform

best for each data set are available in the Appendix.
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(a) Single layer late fusion (b) Two layer late fusion

Figure 6.8: Late fusion approaches

Selection policies

We considered 2 different policies - model based and heuristic based. The model based

approach consists of creating a model which learns from the output probabilities of each

modality. The heuristic approach is a way to predict the final outcome based on a fixed

rule. We decided against using rule based policies and decided to focus on model based

ones.
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6.4.3 Tensor fusion

We adapt an approach which was used for trimodal fusion used in [Zadeh et al. (2017)].

In our work we are working with two modalities. This approach involves computing the

outer product of the extracted features. We illustrate our approach in figure 6.9.

Figure 6.9: Tensor fusion architecture

Approach

The work of [Zadeh et al. (2017)] uses three dense layers after adding a custom layer for

the computation of the outer product. In this work we propose to use two dense layers

before the softmax layer and we perform a grid search to find suitable parameters for this

approach. Computing the outer product across the whole dataset can be very expensive

in terms of resources. Therefore, we adapt some of the work done in [Zadeh et al. (2017)]

to create a custom tensor fusion layer which works on batches of the data. In the case of

this work these are tensors of rank 2 with a dimension [N,M ] where N is the batch size

and the M is the size of the embedding. To compute zm we expand the 2D matrices into

3D cubes of size [N,M, 1] and [N, 1,M ] and then compute the outer product (equation
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6.1). After that we flatten the resulting 3D cube into a 2D matrix. The tensors produced

by this approach tend to be large, that means that after flattening to 2D there are, in our

case, 10000 features for each sample. This requires that we adapt our architecture to the

large number of features. To address this, we propose to use two dense layers, the first of

which acts as a filter for important features and the second as a layer where the multi

modal representation is aggregated.

zm =

zi
1

⊗zt
1

 (6.1)

6.4.4 Results

T3482 dataset

Top 1 acc. Top 3 acc.
Image model (fig 6.1) 0.77558 0.9452
Text model (fig 5.2) 0.70145 0.9109

Late fusion Late fusion (D) Tensor fusion Early fusion

Mean loss 0.698572 0.702117 0.796355 0.605761
Mean top 1 accuracy 0.795890 0.791297 0.793956 0.820951
Top 1 accuracy std 0.008909 0.009468 0.002647 0.003462
Mean top 3 accuracy 0.937550 0.938759 0.902297 0.960395
Top 3 accuracy std 0.004816 0.005442 0.008998 0.003435
MAX top 1 accuracy 0.811845 0.806608 0.796938 0.824738
MIN top 1 accuracy 0.783239 0.779613 0.789686 0.815471
Mean average recall 0.758894 0.756228 0.766272 0.788132
Mean average precision 0.828537 0.821711 0.834773 0.852124

Table 6.4: Multi modal fusion, 10 runs, balanced data split
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Figure 6.10: Early fusion confusion matrix for the dataset T3482, balanced baseline, 10
runs average
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Figure 6.11: Late fusion confusion matrix - single dense layer NN, balanced split, 10
runs average
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Figure 6.12: Tensor fusion confusion matrix, balanced baseline, 10 runs average
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Figure 6.13: Validation measurements for training progress for each fusion approach for
the balanced baseline on T3482. Single dense layer late fusion.
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INTERNAL dataset

For the INTERNAL dataset we used the same configurations for early and late fusion as

the one in T3482 as they seemed to work well. The tensor fusion configuration achieved

worse results than the vision model. To address that we increased the sizes of the last two

layers for the INTERNAL data set.

Image model Text model Early fusion Late fusion Late fusion (D) Tensor fusion
Top 1 Accuracy 0.8567 0.7797 0.88416 0.8759 0.8645 0.86125
Top 3 Accuracy 0.9368 0.8835 0.9541 0.9348 0.9397 0.8952
Mean recall 0.8497 0.76822 0.871 0.872 0.8593 0.8434
Mean precision 0.871 0.8127 0.9068 0.8817 0.8734 0.8964
F1 score 0.8596 0.7895 0.8883 0.8768 0.8662 0.8687

Table 6.5: Multi modal fusion results, all data split

(a) Top 1 accuracy VGG-16 (b) Top 1 accuracy EfficientNetB3

(c) Top 3 accuracy VGG-16 B3 (d) Top 3 accuracy EfficientNet B3

Figure 6.14: Validation measurements for training progress for each fusion approach for
the all data data split on INTERNAL
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7 Discussion

7.1 Image model

Our results for VGG-16 were not as good as those in [Afzal et al. (2017)] for the T3482

data set. This is perhaps due to not having access to the exact sizes of the dense layers

and their corresponding dropout rates. Additionally, it could mean that the VGG-16

architecture does not work well with higher resolutions because we use a resolution of

300x300. Nonetheless, our first experiment shows that EfficientNet B3 achieved test set

accuracy better than all base models reported in [Afzal et al. (2017)]. This is shown in

table 6.2. The EfficientNet B3 architecture also benefits from faster training time as it

converges faster than the VGG-16 architecture. For the INTERNAL dataset this speedup

was more than 4 hours. Additionally, the gains on the INTERNAL dataset are larger in

terms of accuracy by using this architecture. In conclusion, our experiments show that

the architecture which uses VGG-16 (proposed in [Afzal et al. (2017)]) performs worse

than EfficientNet B3 when the latter is used with a global max pooling layer (similar to

the way [Audebert et al. (2020)] used the MobileNet architecture).

7.2 Text models

The work done in [Audebert et al. (2020)] clearly shows that better accuracy can be

achieved with a 1D CNN model. This model is trained on the text by taking the first 500

letters of each document and ignoring the rest of the text. While this was attempted in

this thesis, we found it to be too risky to apply it because in the same article the author

specifies that the embeddings produced by fastText are far superior for words which are

similar compared to other approaches. This can be seen in figure 7.1.

7.3 RandAugment

More consecutive operations with smaller magnitude affect the classifier trained on non-

augmented data in a less negative way in comparison with fewer consecutive operations

with a larger magnitude parameter. The images created through RandAugment should

make our classifier less prone to mistakes whenever a given image is transformed for
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Figure 7.1: Source - [Audebert et al. (2020)]

example by rotating it slightly whenever that image is included through a scanner. This

is visible when the figures 6.5 and 6.6 are compared. While high values of both N (the

number of transformations to apply consecutively) and M (the magnitude of each of the

operations) seem to be less useful, it is harder to draw conclusions on what the optimal

parameters are without checking the accuracy of a classifier for each possible combination.

In this experiment we show that training only on a data set of images which are not

augmented may hurt the performance of a classifier and that RandAugment can be used

to augment the images to improve the robustness of classifiers.

7.4 Multi modal fusion

We view the results for T3482 as a test for how well a multi modal fusion can construct

the actual representation. Our experiment shows that the ranking of the approaches on

T3482 are close to the ones we achieved on the INTERNAL data set. In table 6.4 we can

see that the early fusion and late fusion approaches were first and second respectively.

This suggests that the parameters found on T3482 are a good fit for other document

image classification tasks.

7.4.1 Early fusion

We found this method to be easy to implement and tune because it only has two parameters:

the size of the dense layer after concatenation of the features and the dropout rate. Despite

the simplicity of this method, it has shown the best performance on both the T3482 and
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the INTERNAL datasets. This was surprising to us because [Åberg (2018)] achieved

better results through the late fusion approach.

7.4.2 Late fusion

The number of patterns that late fusion can learn is limited by not allowing cross

modal interactions directly from the representations of the individual modalities. This

is perhaps the limiting factor when it comes to the smaller increases in accuracy when

compared to early fusion. We also experimented with two layers after concatenation of the

output probabilities but that was not as successful as the single dense layer configuration.

Additionally, after consideration of the output probabilities of each modality, we noticed

that often one of the probabilities tends to be high, often 0.9 or more. That is perhaps

due to the model predicting the output probabilities for an image it was trained on. This

means that the late fusion model will only learn which of the two classifiers to trust more.

It appears that late fusion would be more useful when the individual classifiers are less

sure about what the category is. This could be addressed by perhaps expanding the multi

modal fusion training set by half the validation set or by using a smaller training set for

both modalities. This could however lead to lower performance of the models for each

modality and the multi modal fusion network.

7.4.3 Tensor fusion

Tensor fusion performed better than the best late fusion (with two dense layers)

configuration we found for the T3482 dataset. This configuration, however, did not

translate well to the INTERNAL dataset as it is visible in table 6.5. This is perhaps due

to different datasets requiring different sizes for the embeddings of both images and text.

We found that the search for suitable hyper parameter values for this approach can be far

more difficult than for the other two approaches to fusion. That is because this approach

has significantly more parameters - the number of dense layers, the size of the dense layers

and dropout rates. Additionally, this approach appears to be more sensitive to the size of

the embeddings. We attempted to use this approach with only a single layer with a ReLU

activation, the same way we used it for early fusion but that did not yield sizable gains

for the T3482 dataset. Additionally, we conducted a thorough search for parameter values

for the two layer approach for INTERNAL described in figure 6.9 and finding suitable
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parameter values was difficult due to the bigger size of the data set.

7.4.4 Usage of the model

The early fusion model performed best for both data sets. We propose the output of

this approach to be used as suggestions rather than the top-1 predictions to be taken as

they are. These suggestions would mean that the correct category is with a high (>.95%)

probability within the top 3 categories. When compared to the performance of humans

on the ImageNet data set which has been measured at 94.9% [Russakovsky et al. (2015)].

Despite not reaching that top-1 accuracy on the INTERNAL dataset, we can conclude

that the early fusion approach top-3 accuracy of 95.41% (see table 6.5) should provide

reliable predictions in real-life scenarios.

7.5 Hyper parameters

It is not clear what the size of the embeddings should be. In this work the size of the

embeddings was chosen based on previous work and personal observations on what the

best size may be. When it comes to comparison between the different methods multi

modal fusion methods balancing the data set seems like a step in the right direction but a

significant obstacle is that these models depend heavily on their hyper parameter values.

8 Further research

8.1 The size of images

The EfficientNet B3 network performs better than VGG-16 but training an even larger

model might provide further increases in accuracy. We decided to leave that for further

research due to the limited amount of memory available on the GPUs we have access

to. The EfficientNet B7 architecture can be used for that. [Tan and Le (2019)] show

improvements as the model scales up to B7, we suspect this will also be the case for

document image classification. For this research we wanted to keep the results accessible

to the general public but a future study may consider how a larger architecture performs.

The experiments we performed in this work have not come without some choices which
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may have decreased the performance of the model. The main ones were: what global

pooling layer should be used for EfficientNet B3 (max or average) and what the sizes

for the VGG-16 dense layers presented in [Afzal et al. (2017)] should be. Additionally,

we initially attempted the experiments with a larger resolution and later found that the

official implementation of EfficientNet includes a different resolution recommendation.

8.2 Transfer learning from RVL-CDIP

Training EfficientNet B3 on RVL-CDIP requires a lot more computational time than

training it on T3482 or INTERNAL. This is the reason why we decided to leave it for

a further study, however, the gains from having the pre-initialized weights trained on

RVL-CDIP can be large. For example, in [Afzal et al. (2017)] the gains in average accuracy

are above 10%. While such a gain happens because RVL-CDIP and T3482 are subsets of

a common set, an improvement in accuracy for our own data set is expected as well.

8.3 Text model

The BERT model [Devlin et al. (2019)] has shown promising results, achieving state of

the art accuracy on the RVL-CDIP dataset [Xu et al. (2019)]. This can help us improve

the Text model results which lacks behind the results of the Image model for both of the

data sets in this work. An interesting idea to explore is to match the OCR text into a

pre-built subspace of vectors. This matching can be done by using Levenshtein distance.

Perhaps a pre-built space can be created for fine grained tasks as the embeddings heavily

depend on the context.

8.4 Tensor fusion

The tensor fusion approach can benefit from a more thorough investigation of suitable

parameter values for larger data sets. Perhaps a sample of the data set can be used

to determine what the best values are. Additionally, perhaps a different approach is

needed to interpret the features from the tensor fusion layer. In conclusion, perhaps our

configuration for the tensor fusion approach was sub optimal, and we should not exclude

this approach as a potential improvement to early and late fusion. In figure 6.13 we can
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see that the loss for this approach fluctuates more than the other two approaches. This

perhaps means that two dense layers may be causing the model to overfit.

8.5 The effects of the data split

For the all data split we use 20% of the total data for the test set. Other work uses

a different split - [Åberg (2018)] uses 72/8/20 split. It can be worth investigating how

different approaches compare to each other. Additionally, training the multimodal fusion

network is done on the training set. We found that to be the better configuration through

running the algorithms multiple times on both configurations. However, it might be

beneficial to train on half the validation data in addition to the training set data.

8.6 Attention mechanisms

We suspect that adding inter modal attention mechanisms can improve the performance

of the tensor fusion model as it will help filter out irrelevant features. Tensor fusion

appears to be prone to over fitting and being able to focus on certain features might

improve both the performance and time to tune. An attempt to integrate attention

mechanisms in an intra-modal fashion was done in [Åberg (2018)] but that was not more

successful than the implementation-wise simpler late fusion approach.

8.7 Autoencoders

It can be interesting to explore how the representations constructed in the hidden layers

of early and tensor fusion compares to the representations learned by an auto encoder.

8.8 RandAugment

We did not test whether RandAugment resulted in improvements in accuracy as it would

increase the training set size significantly. Investigation into how to augment the images

without adding a copy for each image in the training set might be an interesting area for

further research.
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9 Conclusions

9.1 Research questions

There are three questions that we asked in this thesis.

1. For the first question, we asked how does EfficientNet compare to state of art

architectures? Is compound scaling applicable to the problem of document image

classification?

In this thesis, we performed a comparison between EfficientNet and VGG-16. In our

first experiment we saw that applying compound scaling to an EfficientNet based

architecture results in better performance than an architecture which uses VGG-16

on both the T3482 and INTERNAL data sets.

2. For our second question, we asked whether data augmentation should be applied

to the document image classification problem and if RandAugment [Cubuk et al.

(2020)] can make our classifier work better with images that are transformed (for

example, rotated or skewed).

In our second experiment, we showed that the performance of the EfficientNet model

is better when data augmentation is used on the training set. In conclusion, data

augmentation should be used for real-life scenarios. While RandAugment can help

with improving the robustness of EfficientNet, the parameter values should be chosen

carefully.

3. Our third question was: How do tensor fusion methods [Zadeh et al. (2017)] compare

to the more well known methods of early and late fusion on the balanced data split

for T3482? Does the model configuration found do well on INTERNAL? Does the

best method we find on the balanced data set split perform the best on the all data

split?

In our third experiment, tensor fusion performed worse than early fusion and has

similar performance as late fusion. The configuration found on the balanced split of

T3482 did not translate well for tensor fusion to the all data split on the INTERNAL

data set. Additionally, the tuning process for tensor fusion was more difficult due
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to the number of hyper parameters. This may have caused the classifier to under

perform. The best performing method found on the balanced split for T3482 was

also the best performing method for the INTERNAL dataset.

9.2 Conclusion

Predicting document image categories is a problem that has generated interest in both

research and commercial sense. This interest is sparked by the vast number of digital

documents that companies and institutions need to manage. There is consensus in the

scientific community about the use of machine learning models to tackle this problem. The

architecture used in this work, based on the EfficientNet B3 architecture introduced in

[Tan and Le (2019)], has achieved large improvements in accuracy in both datasets used in

this work (compared to VGG-16). Multi modal fusion approaches can effectively combine

machine learning models in order to tackle the problem but significant challenges remain.

We experimented with the tensor fusion approach and our observations suggest that there

is likely no one parameter configuration suitable for all data sets. The differences when

these documents contain, for example, more shapes (in the INTERNAL dataset) or more

text (in the T3482 dataset) are perhaps too large. There are also other factors to take into

account, such as, the number of OOV words and the size of the embeddings. Additionally,

despite our best efforts on tuning, our observations show that the hyper parameter values

for the tensor fusion approach [Zadeh et al. (2017)] we chose in this thesis do not generalize

well across datasets. This could perhaps be tackled by inter-modal attention mechanisms

to balance the contribution of the different modalities or by changing the number of

dense layers and their sizes. The tensor fusion approach did yield improvements over

our best configuration for late fusion (with two layers) but the results are still below the

early fusion and late fusion with single layer approaches. Tensor fusion also has more

parameters to be adjusted - in particular, the number of dense layers, their size and the

dropout rate that can accompany them.

In conclusion, the best result on a real life data set gathered at Radial SG was achieved

though early fusion with an F1 score of 0.8883 and a 88.41% and 95.41%, top 1 and top 3

accuracy respectively.
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Appendix

# Preprocess text

from nltk.stem import WordNetLemmatizer

from nltk import word_tokenize

from nltk.corpus import stopwords

nltk.download('stopwords')

nltk.download('wordnet')

def preprocess(s):

lemmatizer = WordNetLemmatizer( )

letters_only = re.sub("[^\w\s]", " ", s)

s = lemmatizer.lemmatize(s)

words = word_tokenize(letters_only.lower())

stops = set(stopwords.words("english"))

meaningful_words = [ stemmer.stem(re.sub('[^a-zA-Z0-9 \n\.]', '', w)) for w

in words if not w in stops ]

final = ' '.join([w for w in meaningful_words])

return final

# Hyper parameters used to train the text model

'dense_layer_1_size' : [2048],

'dropout_rate_dense_layer_1': [0.2],

'dense_layer_2_size' : [2048],

'dropout_rate_dense_layer_1': [0.2],

'dense_layer_3_size' : [100],

'dropout_rate_dense_layer_1': [0.2],

'optimizer' : ['Adam'],

'learn_rate': [0.001],

'batch_size' : [128],

'momentum' : [0.9],

'early_stopping_patience_parameter' : 'val_loss',

'early_stopping_patience_policy' : 'min',
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Figure A0.1: Early fusion architecture
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Figure A0.2: Late fusion architecture
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Figure A0.3: Tensor fusion architecture, the lambda layer computes the outer product
of the input tensors and flattens the 3D cube to a 2D matrix
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Figure A0.4: Early fusion confusion matrix. INTERNAL dataset
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Figure A0.5: Late fusion confusion matrix. INTERNAL dataset
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Figure A0.6: Tensor fusion confusion matrix. INTERNAL dataset
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'early_stopping_patience' : [10],

Reduction of learning rate on plateau: 10% and factor=0.1, patience=4,

verbose=1, epsilon=1e-4, mode='max',

# Grid search parameters used to train the image model - EfficientNet networks

'dense_layer_size' : [100],

'dropout_rate': [0.5],

'optimizer' : ['Adam'],

'learn_rate': [0.0001],

'batch_size' : [12],

'final_dense_layer_regularization' : [kernel_regularizer=regularizers.l2(0.001),

activity_regularizer=regularizers.l1(0.001)],

Reduction of learning rate on plateau: 10% and factor=0.1, patience=4,

verbose=1, epsilon=1e-4, mode='max'

# Hyper parameters used to train the image model - EfficientNet networks

'dense_layer_size' : [100],

'dropout_rate': [0.5],

'optimizer' : ['Adam'],

'learn_rate': [0.0001],

'batch_size' : [12],

'final_dense_layer_regularization' : [kernel_regularizer=regularizers.l2(0.001),

activity_regularizer=regularizers.l1(0.001)],

Reduction of learning rate on plateau: 10% and factor=0.1, patience=4,

verbose=1, epsilon=1e-4, mode='max'

# Hyper parameters used to train the image model - VGG network

'dense_layer_size' : [100],

'dropout_rate': [0.5],
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'optimizer' : ['Adam'],

'learn_rate': [0.00001],

'batch_size' : [12],

Reduction of learning rate on plateau: 10% and factor=0.1, patience=4,

verbose=1, epsilon=1e-4, mode='max'

# Grid search parameters used to train the late fusion model on T3482 for NN

model

'dense_layer_size' : [30, 50, 80, 110, 140, 170, 200, 250],

'dropout_rate': [0.2, 0.3, 0.5, 0.6, 0.7 ,0.8],

'optimizer' : ['Adam'],

'learn_rate': [0.1],

'batch_size' : [128],

'epochs' : [1000],

'early_stopping_patience_parameter' : 'val_loss',

'early_stopping_patience_policy' : 'min',

'pearly_stopping_patience' : [5]

# Optimal parameters used to train the late fusion model on T3482 for single

layer NN model, early stopping after epoch 12.

'dense_layer_size' : [30],

'dropout_rate': [0.6],

'optimizer' : ['Adam'],

'learn_rate': [0.001],

'batch_size' : [16],

'epochs' : [1000],

'early_stopping_patience_parameter' : 'val_acc',

'early_stopping_patience_policy' : 'max',

'pearly_stopping_patience' : [5]
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# Searched parameters used to train the late fusion model on T3482 for double

layer NN model

'dense_layer_1_size' : [30, 40, 50, 60, 70, 80, 90],

'dense_layer_2_size' : [30, 40, 50, 60, 70, 80, 90],

'dropout_rate': [0.5],

'optimizer' : ['Adam'],

'learn_rate': [0.001],

'batch_size' : [16],

'epochs' : [1000],

'early_stopping_patience_parameter' : 'val_loss',

'early_stopping_patience_policy' : 'min',

'early_stopping_patience' : [5],

# Found optimal parameters used to train the late fusion model on T3482 for

double layer NN model

'dense_layer_1_size' : [30],

'dense_layer_2_size' : [30],

'dropout_rate': [0.5],

'optimizer' : ['Adam'],

'learn_rate': [0.001],

'batch_size' : [16],

'epochs' : [1000],

'early_stopping_patience_parameter' : 'val_acc',

'early_stopping_patience_policy' : 'min',

'early_stopping_patience' : [5],

# Grid search parameters used to train the early fusion model on T3482 for

single layer NN model

'dense_layer_size' : [150, 170, 190, 200, 220, 240],

'dropout_rate': [0.6, 0.65, 0.7],

'optimizer' : ['Adam'],
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'learn_rate': [0.0001],

'batch_size' : [128],

'epochs' : [1000],

'early_stopping_patience_parameter' : 'val_loss',

'early_stopping_patience_policy' : 'min',

'pearly_stopping_patience' : [5]

# Optimal parameters used to train the early fusion model on T3482 for single

layer NN model

'dense_layer_size' : [200],

'dropout_rate': [0.6],

'optimizer' : ['Adam'],

'learn_rate': [0.0001],

'batch_size' : [128],

'epochs' : [1000],

'early_stopping_patience_parameter' : 'val_loss',

'early_stopping_patience_policy' : 'min',

'pearly_stopping_patience' : [5]

# Grid search parameters used to train the tensor fusion model on T3482

'post_fusion_layer_1_size' : [70, 80, 90, 100, 110, 120, 130, 200 , 300],

'post_fusion_layer_2_size' : [70, 80, 90, 100, 110, 120, 130],

'post_fusion_layer_1_activation' : 'relu',

'optimizer' : ['Adam'],

'text_embedding_size' : [300],

'dropout_rate': [0.6, 0.63, 0.7],

'learn_rate': [0.0001, 0.00001],

'batch_size' : [16],

'epochs' : [1000],

'early_stopping_patience_parameter' : 'val_loss',

'early_stopping_patience_policy' : 'min',



78

'pearly_stopping_patience' : [15]

# Optimal parameters used to train the tensor fusion model on T3482

'post_fusion_layer_1_size' : [120],

'post_fusion_layer_2_size' : [70],

'post_fusion_layer_1_activation' : 'relu',

'post_fusion_layer_2_activation' : 'sigmoid',

'text_embedding_size' : [300],

'dropout_rate': [0.6],

'optimizer' : ['Adam'],

'learn_rate': [0.0001],

'batch_size' : [16],

'epochs' : [1000],

'early_stopping_patience_parameter' : 'val_loss',

'early_stopping_patience_policy' : 'min',

'pearly_stopping_patience' : [20]

# Grid search parameters used to train the tensor fusion model on INTERNAL

'post_fusion_layer_1_size' : [70, 90, 110, 130, 200, 250, 300],

'post_fusion_layer_2_size' : [70, 80, 90, 100, 110],

'post_fusion_layer_1_activation' : 'relu',

'optimizer' : ['Adam'],

'text_embedding_size' : [300],

'dropout_rate': [0.6, 0.63, 0.7],

'learn_rate': [0.0001, 0.00001],

'batch_size' : [16],

'epochs' : [1000],

'early_stopping_patience_parameter' : 'val_loss',

'early_stopping_patience_policy' : 'min',

'pearly_stopping_patience' : [15]
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# Optimal parameters used to train the tensor fusion model on T3482

'post_fusion_layer_1_size' : [200],

'post_fusion_layer_2_size' : [70],

'post_fusion_layer_1_activation' : 'relu',

'post_fusion_layer_2_activation' : 'sigmoid',

'text_embedding_size' : [300],

'dropout_rate': [0.6],

'optimizer' : ['Adam'],

'learn_rate': [0.0001],

'batch_size' : [16],

'epochs' : [1000],

'early_stopping_patience_parameter' : 'val_loss',

'early_stopping_patience_policy' : 'min',

'pearly_stopping_patience' : [20]

(a) Correct categories (b) Early fusion predictions

(c) Late fusion predictions (d) Tensor fusion fusion predictions

Figure A0.7: Wrongly predicted items of 10 runs for each of the fusion methods for
T3482. Single dense layer late fusion. N = 3060



80

(a) Correct categories (b) Early fusion predictions

(c) Late fusion predictions (d) Tensor fusion fusion predictions

Figure A0.8: Wrongly predicted items for each of the fusion methods for INTERNAL

FastText parameters (default to date, taken from the official website7)

The following arguments for the dictionary are optional:

-minCount minimal number of word occurrences [1]

-minCountLabel minimal number of label occurrences [0]

-wordNgrams max length of word ngram [1]

-bucket number of buckets [2000000]

-minn min length of char ngram [0]

-maxn max length of char ngram [0]

-t sampling threshold [0.0001]

-label labels prefix [__label__]

The following arguments for training are optional:

-lr learning rate [0.1]

-lrUpdateRate change the rate of updates for the learning rate [100]

-dim size of word vectors [100]

7https://fasttext.cc/docs/en/options.html
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(a) Average precision VGG-16 B3 (b) Average recall VGG-16

(c) Average precision EfficientNet (d) Average recall EfficientNet

Figure A0.9: Validation measurements for training progress for each fusion approach
for the all data data split on INTERNAL

-ws size of the context window [5]

-epoch number of epochs [5]

-neg number of negatives sampled [5]

-loss loss function {ns, hs, softmax} [softmax]

-thread number of threads [12]

-pretrainedVectors pretrained word vectors for supervised learning []

-saveOutput whether output params should be saved [0]

# Packages and their versions

absl-py 0.9.0

anaconda-client 1.7.2

anaconda-navigator 1.9.12
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asn1crypto 1.3.0

astor 0.8.1

attrs 19.3.0

backcall 0.1.0

backports.functools-lru-cache 1.6.1

backports.tempfile 1.0

backports.weakref 1.0.post1

beautifulsoup4 4.8.2

bleach 3.1.0

blinker 1.4

boto 2.49.0

boto3 1.12.39

botocore 1.15.39

cachetools 4.0.0

certifi 2019.11.28

cffi 1.14.0

chardet 3.0.4

click 7.1.1

clyent 1.2.2

colorama 0.4.3

conda 4.8.3

conda-build 3.18.11

conda-package-handling 1.6.0

conda-verify 3.4.2

cryptography 2.8

cycler 0.10.0

decorator 4.4.2

defusedxml 0.6.0

docutils 0.15.2

efficientnet 1.1.0

entrypoints 0.3

fasttext 0.9.1

filelock 3.0.12

future 0.18.2
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gast 0.2.2

gensim 3.8.1

glob2 0.7

google-auth 1.11.3

google-auth-oauthlib 0.4.1

google-pasta 0.2.0

grpcio 1.27.2

h5py 2.9.0

idna 2.9

imageio 2.8.0

importlib-metadata 1.5.0

ipykernel 5.1.4

ipython 7.13.0

ipython-genutils 0.2.0

jedi 0.16.0

Jinja2 2.11.1

jmespath 0.9.5

joblib 0.14.1

json5 0.9.3

jsonschema 3.2.0

jupyter-client 6.0.0

jupyter-core 4.6.3

jupyterlab 1.2.6

jupyterlab-server 1.0.7

Keras 2.3.1

Keras-Applications 1.0.8

Keras-Preprocessing 1.1.0

kiwisolver 1.1.0

libarchive-c 2.8

Markdown 3.2.1

MarkupSafe 1.1.1

matplotlib 3.2.1

menuinst 1.4.16

mistune 0.8.4
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mkl-fft 1.0.15

mkl-random 1.1.0

mkl-service 2.3.0

navigator-updater 0.2.1

nbconvert 5.6.1

nbformat 5.0.4

networkx 2.4

nltk 3.4.5

notebook 6.0.3

numpy 1.18.2

oauthlib 3.1.0

olefile 0.46

opencv-python 4.2.0.32

opt-einsum 3.2.0

pandas 1.0.3

pandocfilters 1.4.2

parso 0.6.2

pickleshare 0.7.5

Pillow 7.0.0

pip 20.0.2

pip-autoremove 0.9.1

pkginfo 1.5.0.1

prometheus-client 0.7.1

prompt-toolkit 3.0.3

protobuf 3.11.4

psutil 5.7.0

pyasn1 0.4.8

pyasn1-modules 0.2.8

pybind11 2.5.0

pycosat 0.6.3

pycparser 2.20

Pygments 2.6.1

PyJWT 1.7.1

pyOpenSSL 19.1.0
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pyparsing 2.4.6

pyreadline 2.1

pyrsistent 0.15.7

PySocks 1.7.1

python-dateutil 2.8.1

pytz 2019.3

PyWavelets 1.1.1

pywin32 227

pywinpty 0.5.7

PyYAML 5.3.1

pyzmq 18.1.1

QtPy 1.9.0

requests 2.23.0

requests-oauthlib 1.3.0

rsa 4.0

ruamel-yaml 0.15.87

s3transfer 0.3.3

scikit-image 0.16.2

scikit-learn 0.22.2.post1

scipy 1.4.1

seaborn 0.10.0

Send2Trash 1.5.0

setuptools 46.1.1.post20200323

six 1.14.0

sklearn 0.0

smart-open 1.11.1

soupsieve 2.0

tensorboard 1.15.0

tensorflow-estimator 1.14.0

tensorflow-gpu 1.14.0

tensorflow-gpu-estimator 2.1.0

termcolor 1.1.0

terminado 0.8.3

testpath 0.4.4
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tornado 6.0.4

tqdm 4.43.0

traitlets 4.3.3

urllib3 1.25.8

wcwidth 0.1.8

webencodings 0.5.1

Werkzeug 1.0.0

wheel 0.34.2

win-inet-pton 1.1.0

wincertstore 0.2

wrapt 1.12.1

xmltodict 0.12.0

zipp 2.2.0

tesseract-ocr (4.00~git2288-10f4998a-2).
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