
MASTER’S THESIS

Active Selection of Classification Features

Author:
Thomas KOK

Supervisors:
Dr. habil. Georg KREMPL

Dr. Ad FEELDERS

External Supervisors:
Dr. Hugo SCHNACK

Dr. Rachel BROUWER
Dr. René MANDL

July 20, 2020

iii

Contents

List of Figures vii

List of Tables ix

I Introduction 1

1 Problem Statement 3
1.1 Problem Definition . 3
1.2 Research Questions . 3
1.3 Notation . 4
1.4 Implementation . 4

2 Background 5
2.1 Machine Learning . 5
2.2 Supervised Learning . 5

2.2.1 Classification . 6
2.2.2 Regression . 6

2.3 Active Learning . 6
2.4 Data Imputation . 7
2.5 Subgroup Partioning . 7
2.6 Mixture Models . 8

2.6.1 Gaussian Mixture Models . 8
2.6.2 Expectation Maximization . 9

3 Related Work 11
3.1 Active Feature Acquisition . 11

3.1.1 Active Feature-Value Acquisition 11
3.1.2 Instance Completion . 13
3.1.3 Budgeted Learning . 15
3.1.4 Active feature selection . 16
3.1.5 Active classification . 16

3.2 Active Class Selection . 16
3.2.1 Probabilistic Active Learning for Active Class Selection 17

II Approaches 19

4 Active Classification Feature Acquisition 21
4.1 Utility estimation . 22

4.1.1 GODA . 22
4.1.2 AVID . 23
4.1.3 Dual objective . 23
4.1.4 Probability-based . 24

iv

5 Active Pseudo-Class Selection 27
5.1 Pseudo-class construction . 27
5.2 Bootstrap aggregating . 28
5.3 Active Class Selection method . 28
5.4 Hyperparameters . 31

6 Expectation Maximization 33
6.1 Cluster Utility Estimation . 33

III Experiments and Results 37

7 Methodology 39
7.1 Experimental Setup . 39

7.1.1 Dataset Setup . 39
7.1.2 Algorithm Execution . 40
7.1.3 Evaluation . 41

7.2 Datasets Used . 42
7.2.1 Real-world datasets . 42
7.2.2 Synthetic datasets . 43

7.3 Baseline . 44

8 Active Classification Feature Acquisition 45
8.1 GODA . 45
8.2 AVID . 46
8.3 Dual objective . 47
8.4 Probability-based . 48
8.5 Comparing the utility methods . 49
8.6 Regression method . 53

9 Active Pseudo-Class Selection 55
9.1 Redistricting . 55
9.2 Accuracy Improvement . 57
9.3 PAL-ACS . 59
9.4 The number of pseudoclasses . 61
9.5 Comparing Active Class Selection methods 62
9.6 Increasing the number of partitions . 62

10 Expectation Maximization 65
10.1 Automatic tuning of number of clusters 66
10.2 Comparison to baseline . 69

11 Comparing the Approaches 73

12 Case Study: Schizophrenia Prediction 77
12.1 Evaluation . 77
12.2 Exploring the dataset . 78

12.2.1 Preprocessing . 78
12.2.2 Classification algorithms . 78
12.2.3 Random sampling . 79
12.2.4 Feature selection . 80

12.3 Dimensionality Reduction for the Experiments 83

v

12.4 Experimental Results . 84

IV Conclusion 91

13 Discussion 93

14 Conclusion 97

15 Future Work 99

Bibliography 101

vii

List of Figures

2.1 The pool-based active learning cycle. [57] 7

5.1 Examples of constructed pseudo-classes. 29
5.2 Results from parameter tuning experiments for redistricting, combin-

ing all classifier models and datasets. 31

6.1 Gaussian Mixture Model fit on two attributes of the Iris dataset [21]. . 34

8.1 Comparison of the F1-score of the GODA utility method and the ran-
dom baseline, on the UCI datasets. 46

8.2 Comparison of the F1-score of the GODA utility method and the ran-
dom baseline, on the synthetic datasets. 47

8.3 Comparison of the F1-score of the AVID utility method and the ran-
dom baseline, on the UCI datasets. 48

8.4 Comparison of the F1-score of the AVID utility method and the ran-
dom baseline, on the synthetic datasets. 49

8.5 Comparison of the F1-score of the Dual objective utility method and
the random baseline, on the UCI datasets. 50

8.6 Comparison of the F1-score of the Probability-based utility method
and the random baseline, on the UCI datasets. 51

8.7 Comparison of the F1-score of the Probability-based utility method
and the random baseline, on the synthetic datasets. 52

8.8 Comparison of the F1-score when using the three different regression
methods, on the UCI datasets. 53

9.1 Comparison of the F1-score of the Redistricting method and the ran-
dom baseline, on the UCI datasets. 56

9.2 Comparison of the F1-score of the Accuracy Improvement method
and the random baseline, on the UCI datasets. 58

9.3 Comparison of the F1-score of the PAL-ACS method and the random
baseline, on the UCI datasets. 60

9.4 Comparison of the three ACS methods on the UCI datasets. 62
9.5 Comparison of the F1-score of the Redistricting method with increased

number of partitions and the random baseline, on the UCI datasets. . . 63

10.1 Comparison of the F1-score of the AVID utility method with varying
number of clusters, on the UCI datasets. 66

10.2 Comparison of the F1-score of the Probability-based utility method
with varying number of clusters, on the UCI datasets. 67

10.3 Comparison of the F1-score of the different tuning methods of number
of clusters with the AVID utility method, on the UCI datasets. 68

10.4 Comparison of the F1 score of the EM-based approach and the AVID
utility method and the random baseline, on the UCI datasets. 70

viii

10.5 Comparison of the F1 score of the EM-based approach and the Probability-
based utility method and the random baseline, on the UCI datasets. . . 71

11.1 Comparison of the F1-score of the selected approaches and configura-
tions, on the UCI datasets. 74

11.2 Comparison of the ROC AUC-score of the selected approaches and
configurations, on the UCI datasets. 75

12.1 Performance of the random sampling baseline, quartiles of 100 runs. . 79
12.2 Distribution of the random sampling performance, area under the

curve. 80
12.3 Results of 5-fold cross validation with k features selected by ANOVA. . 81
12.4 Recursive feature elimination results. 83
12.5 The learning curves of the experiments, using the accuracy score. . . . 85
12.6 The learning curves of the experiments, using the F1-score. 86

ix

List of Tables

1.1 Most of the notation used in this thesis. 4

3.1 All methods for Active Class Selection introduced in [40]. 17

5.1 The parameters required for the Active Pseudo-Class Selection ap-
proach. 31

7.1 The hyperparameters used for both classifier models. 40
7.2 The numerical summaries of the learning curve. 42
7.3 The datasets used and their feature splits. 43
7.4 The synthetic datasets. 44

8.1 The Data Utilization Rate results for all ACFA methods, using the F1-
score. 49

8.2 The results for the Wilcoxon signed rank test, where critical value for
W = 0. 51

8.3 All numerical results for all Active Classification Feature Acquisition
approaches. Improvements upon random selections are bolded. 52

9.1 The Data Utilization Rate results for Redistricting, using the F1-score. . 57
9.2 The Area Under the Curve results for Redistricting, using the F1-score. 57
9.3 The Data Utilization Rate results for AccuracyImprovement, using the

F1-score. 59
9.4 The Area Under the Curve results for AccuracyImprovement, using

the F1-score. 59
9.5 The Data Utilization Rate results for PAL-ACS, using the F1-score. . . . 61
9.6 The Area Under the Curve results for PAL-ACS, using the F1-score. . . 61

10.1 Data Utilization Rates for the EM-based approach, with the AVID util-
ity method. 65

10.2 Data Utilization Rates for the EM-based approach, with the Probability-
based utility method. 65

10.3 Data Utilization Rates for the EM-based approach and the AVID util-
ity method, with estimation of number of components. 68

10.4 Numerical results for the EM-based approaches, with the AVID utility
method. Improvements upon random selections are bolded. 72

10.5 Numerical results for the EM-based approaches, with the Probability-
based utility method. Improvements upon random selections are bolded. 72

11.1 The approaches and configurations which we will compare to each
other. 73

11.2 All numerical results for comparing the several approaches. Improve-
ments upon random selections are bolded. 76

x

12.1 The binary label imbalance in both configurations of the dataset. 77
12.2 The hyperparameters used for both classifier models. 79
12.3 The results for each classification algorithm on the dataset. 79
12.4 The most and least relevant features, as determined by ANOVA. All

features are suffixed by _freesurfer. 82
12.6 Comparing the subsets of features. 83
12.5 Optimal feature sets found. All features are suffixed by _freesurfer. . 84
12.7 Comparing the subsets of features. 85
12.8 All numerical results for the considered approaches, using the accu-

racy score Improvements upon random selections are bolded. 88
12.9 All numerical results for the considered approaches, using the F1-

score Improvements upon random selections are bolded. 89

1

Part I

Introduction

3

Chapter 1

Problem Statement

Building a classification model can require data points that are costly to obtain, re-
lated either to time, money or personal comfort. To save on these fronts, it would be
optimal if the number of data points that is needed to build a model could be min-
imized with regards to its performance. An important example of such a model is
constructing a classification model for schizophrenia prediction [46]. Demographic
information is given for training, as well as the true label, but an MRI (Magnetic
Resonance Imaging) scan can be done at a relatively high cost. The final classifier
predicts the label, only from the MRI features. These scans are expensive, and any
reduction in scans needed is a notable improvement.

This problem, that we will explore in this thesis is one that is both theoretically
and practically motivated. The theoretical motivation is an academic one, expanding
on previous research on active learning, active feature acquisition, instance comple-
tion and active class selection. The practical motivation is from a medical source,
where we aim to minimize the number of MRI scans needed to more economically
build a model.

The practical motivations for this problem indicate its social relevance, as this is
a problem with relevance in its own field. Solving this problem also allows it to be
generalized to other settings. Any setting with costly features, and more cheaply
available features that can not be used for prediction can make use of a potential
solution to this problem. Other potential use cases include problems such as risk
assessment, customer modelling, and personalized recommendation systems.

1.1 Problem Definition

Given dataset D consisting of known selection features x, unknown classification fea-
tures z and known binary labels y. Use active learning to find the next subject, whose
classification features are estimated to be most useful to create classifier Γ. Γ takes
the classification features as input, and has the binary labels as output. Repeat this
process until a certain stopping condition is found. This method can be evaluated
on both the performance of Γ using known performance measures, and the number
of subjects queried which should be low. The goal is maximizing and minimizing
these respectively.

1.2 Research Questions

The following research questions have been defined for the problem:

• What approaches work best to actively select classification features?

4 Chapter 1. Problem Statement

• Does actively selecting data points with classification features improve the per-
formance, as opposed to passive learning or randomly selecting data points?

• Can we reduce the number of MRI scans (known data points) needed, while re-
taining a similar performance on classifying schizophrenia patients (unknown
data points)?

• Can we improve the performance on classifying schizophrenia patients, while
retaining the same number of MRI scans needed?

• Is it attainable to improve the general performance of active selection of classi-
fication features, using known performance measures such as AUC?

• Can we only improve performance when there is observable correlation be-
tween the two sets of features?

1.3 Notation

In this section, we will define the notation used in the thesis. The notation in the
literature study (chapters 2, 3) might differ, as previous literature discusses differing
problems.

TABLE 1.1: Most of the notation used in this thesis.

Symbol Meaning Symbol Meaning

D Dataset. i∗ The optimal instance to query.
I Incomplete instances. U () Utility function.
C Complete instances. P() Probability function.
x Selection features. θ Imputation model.
z Classification features. λ Score balance parameter.
i Input vector (x, z). Γ Classifier.
y Label. d Density.
F All input vectors. β Batch size.
Y All labels. φ Active learning method.

1.4 Implementation

The implementation used for this thesis, and all relevant experiments, has been de-
veloped using Python 3 [63]. Several packages were used for relevant components
of the project, such as:

1. scikit-learn [50] for many useful machine learning functions, such as classi-
fication models and cross validation.

2. matplotlib [29] and seaborn [66] for visualization of results from experiments,
as seen in this thesis.

3. pandas [59, 41] for data organization.

4. numpy [47, 62] and scipy [65] for scientific programming.

The entire project and source code, as well as the results from the experiments can
be downloaded from https://github.com/thomastkok/active-selection-of-
classification-features.

5

Chapter 2

Background

In this chapter, we will give a background of the general research areas which this
thesis relates to.

2.1 Machine Learning

Machine learning is a subfield of computer science and artificial intelligence, which
studies the idea of learning from examples, finding interesting patterns in data, and
being able to perform tasks without specific instructions.

Data is collected in many different fields, and machine learning allows us to ana-
lyze data in all of them, without human intervention. This can save time and effort,
while also finding patterns that a human might not notice.

Machine learning is generally split up into supervised and unsupervised learning.
Supervised learning focuses on predictive information, where the aim is to construct
an input-output mapping based on existing input-output pairs. Unsupervised learn-
ing focuses on descriptive information, where no set output is given. Instead, infor-
mation is learned from the data itself. For example, clustering divides a dataset into
several groups or clusters, based on the features of each data point.

As our problem relates to predicting a label from a given input, it is a supervised
learning problem: it learns from previous examples with this given label to find a
trend within these examples.

Additional forms of machine learning are semi-supervised learning, which lies in-
between supervised and unsupervised learning, and reinforcement learning, where
the problem is interactive and the learning process is part of the results.

For an extensive overview of machine learning, refer to [45].

2.2 Supervised Learning

Supervised learning models aim to predict an output y from a set of input values
x. This output value y can either be a categorical value or a numerical value. In the
former case it is called a classification problem, while in the latter case it is called a
regression problem.

The input vector x can consist of any number of variables, while the output vari-
able y generally consists of only one value (although it can be multiple). The dataset
consisting of previous known examples consists of any number of these vectors:
D = {(xi, yi)}N

i=1.
The aim is to construct a model or function which maps x to y: f (x) = y, with

minimal error. This error is defined by a specific performance measure, such as accu-
racy for a classification problem or the mean squared error for a regression problem.
The accuracy is defined as the ratio of correctly predicted examples, while the mean

6 Chapter 2. Background

squared error sums the squared difference between each prediction and the true
value.

To accomodate finding this error value, the dataset is split up into a training set
and a test set. The training set is used to train the model, approximating the func-
tion. The test set is then used to evaluate the performance of the function with new
data, which is sampled from the same true distribution. The reason for this split is
to avoid inherent bias to specific examples or data points, which are simply coinci-
dental within the sample. The unknown test set is still approximated with the same
distribution, but learning noise is avoided. This problem of learning coincidental
information from the sample is known as overfitting.

2.2.1 Classification

Classification problems aim to classify given instances: given a picture of an animal,
we might want to define this as either a cat or a dog. In this case, y ∈ {1, .., C} with
C being the number of classes.

A special, common case is where y only has two potential values: 0 and 1. This
is known as binary classification, where C = 2. Real-world cases are ones such as
illness diagnosis, or fraud detection. The problem we consider in this thesis is a
binary classification problem, as it relates to our practical motivations and can often
be generalized to multiclass classification.

Classification models are widespread in real-world applications. Document clas-
sification can be used to filter spam emails by either classifying them as spam (1) or
not spam (1). Handwriting recognition classifies each input letter as a, b, .., z.

2.2.2 Regression

Regression problems aim to approximate an output y ∈ R, which is a numerical
value: given a lot size, location and number of bedrooms we might want to estimate
the value of a house.

Other real-world examples of regression models are predicting the stock market
price given current conditions, predicting the age of a website’s visitor, and predict-
ing the temperature at a given location given the known weather conditions.

2.3 Active Learning

Active learning is a variant of machine learning. The resulting machine learning
model is the same as a supervised learning model, but the process is different. An
active learning problem has available data, where the majority or even all data is
unlabeled. Active learning then aims to select the most informative instances to be
labeled. A key aspect of the active learning problem is that labeling is costly, and the
goal is aiming to more economically train a model.

There are many applications for active learning, as any setting where obtaining
labels is associated with some sort of cost can help decrease these costs or increase
performance with selection. Examples are speech recognition—where noting the
desired output requires a lot of time, personalized recommendation— where the
dataset is constructed by querying the user, and document classification.

The active learning process is shown in figure 2.1. An unlabeled dataset is known,
but obtaining the labels is costly. The problem then lies in selecting the data points
that return the most useful information for their cost.

2.4. Data Imputation 7

FIGURE 2.1: The pool-based active learning cycle. [57]

The problem setting for this thesis is slightly different, but the process holds the
same principles. For each instance, its classification features z are missing. These can
be queried, where the oracle will return its true values. The training set and current
instantiation of the model can then be updated, repeating the process.

For an overview of active learning research, see [57].

2.4 Data Imputation

Data imputation is the problem of estimating, or otherwise dealing with, missing
values within a dataset. This is commonly used in situations where the dataset is
missing values, but does not have enough instances to simply drop all instances
with missing values. Imputing the missing values allows an estimation of what
those instances would be with complete information, and can then still be used for
training purposes.

An overview of data imputation for missing data is provided in [24]—although
this is missing specific feature-value pairs. It suggests general methods which in-
clude dataset reduction and other infeasible methods for our problem. For data im-
putation, it suggests methods such as selecting the mean, selecting the most similar
known data point, and training a regression model.

Older statistically-based models are used to estimate specific values in [72, 71].
Bootstrapping can then be used to estimate variance or probabilities of specific val-
ues. The relevant papers mentioned are [1, 37, 55].

A frequency-based probability estimation, purely based on the class label, is used
in [53].

2.5 Subgroup Partioning

Subgroup partioning aims to construct a partioning of the dataset, where each division
considered its own subgroup with semantic meaning. Essentially, a custom set of

8 Chapter 2. Background

classes is constructed. For example, one might construct the class of women with
positive diagnosis of age 50 and higher, from the medical diagnosis problem setting.

Similar research has been done in the area of conceptual clustering [51]. This re-
search area considers clustering of datasets, but with each cluster being explainable.

Alternatively, clusters do need to be conceptually-based, but be able to be de-
scribed in a certain way. This can be done by any grid-like partition of the feature
space. This can be enforced by clustering via decision tree construction, as in [12,
38].

Constructing a partitional clustering via decision tree construction is considered
in [12], replacing the split heuristic (as there is no classification to be optimized). The
two heuristics are box volume and graph closeness. The box volume heuristic defines
the impurity of a split by constructing a box for each partition, containing 0.95 of
samples along each feature axis. The volume of this box is then the impurity. Alter-
natively, the graph closeness constructs a graph for each partition, where each data
point is a vertex, having edges to its k nearest neighbors, with each edge weighted
with its Euclidean distance. The impurity is then defined as the inverse of the sum
of weights.

As the decision tree is constructed, the clusters are all very small. This step is
followed by a cluster agglomeration step, where the smaller clusters are combined.
This is done by one of several similarity metrics between clusters (prototype: where
the mean is compared, box distance: similar to the box volume heuristic, graph con-
nectivity: similar to the graph closeness heuristic).

The results are then compared, with graph closeness performing better than box
volume, and prototyping performing better than the two other agglomeration meth-
ods. However, all methods do not perform as well as a k-means clustering followed
by a decision tree step which uses the clusters as class labels.

2.6 Mixture Models

Data which is empirically obtained, can often be represented with Gaussian distri-
butions [42]. We can assume the same for our hidden classification features in our
specific use case, as well as a lot of other real-world scenarios. In practice, data might
actually consist of a mixture of many of these normal distributions. Using Gaussian
Mixture Models allows us to model a distribution, which consists of multiple normal
distributions.

It is easy to think of examples of this in real-world scenarios. For example, mod-
eling a distribution of the height of a set of people. Looking at the entire distribution,
it more than likely is not normally distributed. However, when considering the men
and women in this dataset, it might show that within each of these genders there is
in fact a normal distribution.

This section shows a very succinct overview of mixture models, for a more in-
depth overview, refer to [42].

2.6.1 Gaussian Mixture Models

A Gaussian or normal distribution can be defined with a mean µ and a standard de-
viation σ. The distribution is then symmetrically centered around µ, with σ defining
the spread.

Let fi(x|µ, σ) be normal distribution for the ith component. The mixture model
consisting of two normal distributions can be defined as:

2.6. Mixture Models 9

f (x) = π0 f0(x|µ0, σ0) + π1 f1(x|µ1, σ1) (2.1)

πi represents the probability of a random data point belonging to component
i. So, the complete distribution is determined by adding the proportions of each
component multiplied by their Gaussian distribution. Sampling a new instance from
this distribution can be done by first sampling from the distribution of proportions,
then sampling from the distribution of the selected component.

2.6.2 Expectation Maximization

The most commonly used method to finding the components and their proportions
and distributions, is by using the Expectation Maximization algorithm. It repeatedly
performs an expectation step and a maximization step until it converges.

The method is based on maximum likelihood. The maximum likelihood represents
the set of parameter values (π, µ, σ) for which the observed data is more probable
than for any other values of (π, µ, σ).

We find this likelihood with our expectation-maximization procedure.
Consider that for each data point x, there are K possible Gaussian models it can

belong to. Combining each of these K Gaussian models, the probability of a value
occuring can be defined as P(X = x) = ∑K

k=1 πkP(X = x|Z = k), where Z represents
the latent or unseen variable noting which Gaussian model or cluster the data point
belongs to, where P(X = x|Z = k) is the normal distribution (N(µk, σk)).

Therefore, the probability for each data point being the value that it is can be
defined as:

P(X1 = x1, ..., Xn = xn) =
n

∏
i=1

K

∑
k=1

πkN(xi; µk, σk) (2.2)

With maximum likelihood, we aim to optimize this probability. The highest
value of this probability given a set of instantations for all (π, µ, σ) values is the
most likely and thus best option.

For mathematical purposes, we use the loglikelihood, which is defined as fol-
lows:

L(θ) =
N

∑
i=1

log(
K

∑
k=1

πkN(xi; µk, σk)) (2.3)

The expectation maximization algorithm then tries to find this optimum value
with the iterative process of repeating the Expectation step (E-step) and the Maximiza-
tion step (M-step).

1. Initialize θ: all values for πk, µk, σk. This can be done randomly, or heuristically.

2. Repeat until local optimum is found:

(a) E-step: Evaluate the distributions of each of the K clusters using the cur-
rent value for θ.

(b) M-step: Estimate new values for θ using the found distributions.
(c) Evaluate the new likelihood given the new values for θ. If it has not im-

proved (significantly), the optimum is found.

Because the EM process returns a local maximum or saddle point, it can be wise
to repeat the process if the exact result is important.

11

Chapter 3

Related Work

In this chapter, we will give an overview of previous work done in related areas.
Some sections will give context for the other work, while other sections will be used
as reference material later in this thesis.

3.1 Active Feature Acquisition

Active feature acquisition aims to query missing feature-value pairs in the dataset, to
improve the classifier using this data. The exact problem statement can differ some-
what, as for some problems all feature values can be queried at once, while for other
problems all instance values can be queried at once. The most common problem in-
stantiations are emphactive feature-value acquisition, where each feature-value pair
is queried individually, and instance completion, where the features of an instance are
queried all at once.

In this section, the most relevant papers are referenced and summarized. An
overview of relevant papers is also provided in [4].

3.1.1 Active Feature-Value Acquisition

The active feature-value acquisition problem is introduced in [53]. It queries missing
feature-value, and considers the problem where an incomplete feature matrix F is
given, a complete label set and a cost matrix C corresponding to the feature matrix.
The aim is to construct the best-performing classifier given that queries for Fi,j can
be placed at cost Ci,j. The cost matrix C is optional, and can be defaulted to a matrix
of all 1’s.

The method builds on [43, 44] which introduce the Sampled Expected Utility ap-
proach. The approach of selecting the next queried feature-value is as follows:

1. Compute a score for each potential query, indicating the increase in perfor-
mance of the classifier given the new information

2. Select the query (or subset of queries with step-size β) with the highest score

3. Acquire the relevant feature-values, and repeat

The score for each potential query is calculated by multiplying the probability of
each potential value for the feature, with its utility. This utility is equal to the change
in value of the classifier, divided by the cost of this query.

score(x) = ∑
v∈V

P(v|x) ·U(v|x) (3.1)

where x is a feature-value pair, and V is all potential values for x.

12 Chapter 3. Related Work

One thing to note is the slight restriction of this method for numerical variables.
As there an infinite possible amount of values for these variables, a discretization
method must be used. A simple method, is using buckets for the values. Each bucket
represents a subset of the numerical space, such as 0 ≤ x < 10. Ten buckets are
created, and each numerical value is considered to be in exactly one of the buckets
and thus to be that category.

Applications of the expected utility framework are shown in [52] by applying it to
e-commerce datasets, and in [60] by applying it to predict protein interaction. Active
feature acquisition is applied to the problem of matrix completion in multiple papers
[11, 14, 28], where all values in a partially complete matrix are to be found.

The general pseudocode is straightforward, but the steps themselves require
some additional considerations. Computing the increase in performance needs to
be defined properly, as well as the distribution of expected probabilities of possible
values. These are used to estimate the score for each query.

Estimating contribution to induction

The contribution to induction—where induction is the ability of the model to con-
struct a generalized machine learning model—is defined by simulating the values
of the query. Higher contribution should give a higher utility value. Using the ex-
pected or possible values in addition to the known values, we retrain the classifier.
This classifier is then compared to the existing classifier to determine the utility value
of the query.

The utility value depends on the chosen performance measure to quantify the
performance of the classifier. The most intuitive option, accuracy, presents itself with
some issues. For example, consider a binary classifier. It will either classify as 0 or 1,
which makes the accuracy very black and white. The paper suggests instead using
the cross-entropy measure. This measure takes into account not just the prediction,
but also the certainty of the prediction.

A different heuristic is suggested in [60]: using the difference in probability that
the classifier predicts the label correctly. Determine the probability of label L, where
L is the correct label; add the feature-value information to the classifier, and deter-
mine the new probability. The increase in probability is the utility value.

Estimating value distributions

The other missing value is the probability for each value. As this is needed to cal-
culate the score for each potential query, a probability is necessary for each feature-
value pair. The paper suggests using only the class label to determine the probability,
as it is the only certain variable to be present. This is done by frequency analysis: if
for half of the instances in the dataset with label 1 have a specific value for a specific
feature, the conditional probability for that feature-value pair given y = 1 is 0.5.

P(v|x) = N(v|y)
N(y)

(3.2)

where N() is the count of the value within the dataset, and y is the known label
for x.

3.1. Active Feature Acquisition 13

Reducing the consideration set

This method can be computationally complex for larger datasets, as for each missing
feature-value pair a classifier needs to be trained for each potential feature-value
combination. To circumvent this, the query set can be sampled.

The first suggested approach for sampling is sampling from the query set uni-
formly. As this is sampling is at random, the best queries can potentially be sampled
out just as often as the worst queries. The second suggested approach is using error
sampling. This approach aims to select the most informative instances. Instances
that are considered informative are instances which are misclassified with the cur-
rent data, and instances where the classifier is very uncertain.

3.1.2 Instance Completion

The first introduction of the active feature acquisition problem [72], is now known
more specifically as instance completion. For this subproblem, all unknown features
of instance are queried at once.

The problem considers available labels, and data points with missing features.
The goal is to build a classifier using K data points with all available features, and
improve the performance when compared to using only features available in all N
data points. It mentions active learning as the main option for solving this problem,
and considers two specific algorithms: AVID and GODA.

Both approaches are based on imputation models. These models estimate the val-
ues of the missing data, based on the existing data. The paper does not elaborate on
these imputation models, but refers to previous papers [1, 37, 55] as imputation is a
long-studied problem within statistics.

Algorithm AVID

The AVID (Acquisition based on Variance of Imputed Data) algorithm determines
the data point with the lowest likelihood of the missing feature values being esti-
mated from the available data (the highest imputation uncertainty).

This algorithm does not take into account the labels, nor does it consider the
performance of a resulting classifier.

The pseudocode is as follows (notation has been changed to correspond with
1.3):

1. Sample an initial batch of β instances to initialize C

2. Repeat until k instances are sampled:

(a) Build B bootstrapped imputation models θ using C
(b) For each instance x in I , determine the score:

score(x) = ∑
i∈I

√√√√ B

∑
j=1

(xij − µi)2/B

(c) Select min(β, k− | C |) instances:

x∗ = max(score(x))

14 Chapter 3. Related Work

Where B is the number of bootstrap samples, β is the step size, k is the desired
number of instances sampled, θ is the imputation model, µi is the mean of xi within
all B imputation models, and I is all missing features.

The algorithm needs an initial set of instances to function, which are sampled in
step 1. Step 2 is then repeated until the necessary amount of instances is sampled.
It builds B imputation models on the known data (2a), and uses these imputation
models to determine a score for each instance (2b). This score function essentially
determines the variance for each instance, by summing the imputation variance for
each missing feature value. The instance (or instances) with the highest score is then
selected (2c), as this instance is hardest to estimate its values and thus considered
interesting to sample.

Algorithm GODA

The GODA (Goal-Oriented Data Acquisition) algorithm chooses data points to max-
imize the performance of the model using a given classifier. Its next point chosen is
the one with the highest expected improvement of the model built on the data of the
data points with all features available.

It estimates the expected improvement by guessing the data if the features of a
data point are expanded, and building the classifier with this data. It guesses this
data with the same imputation models as used in the AVID algorithm.

The pseudocode is as follows (notation has been changed to correspond with
1.3):

1. Sample an initial β instances to initialize C

2. Repeat until k instances are sampled:

(a) Build an imputation model θ from C
(b) For each instance x in I :

i. Build classifier Γ with C +x
ii. score(x) = p(Γ) where p is a performance measure

(c) Select min(β, k− | C |) instances:

x∗ = max(score(x))

The algorithm needs an initial set of instances to function, which are sampled in
step 1. In step 2, it samples new instances until the necessary amount of samples is
reached. This is done by estimating the missing values with an imputation model
(2a), and constructing a classifier with these new values (2b). The score is then the
performance of this new classifier, where the instance (or instances) with the highest
score is selected. This instance is estimated to construct the best performing classifier
when sampled, and as such is selected.

Dual objective

The authors continue in another paper [71] with the same concepts, expanding on
them by combining the score into a dual objective: both the score of the classifier
and the score of the imputation model are used to evaluate each data point after
each step. The imputation model is what is used to estimate the potential values for
each unseen feature-value combination, and improving the score of the imputation

3.1. Active Feature Acquisition 15

model intuitively implies better estimation of the score of the classifier in the next
steps. These two scores are combined by a weighted addition.

The score of the imputation model is such that points which cannot be imputed
well are more likely to be selected. This is determined by using multiple bootstrap
samples to build imputation models, and finding the variance between them. If it is
low, the data can be imputed well.

The score used in [71] is:

score(x) = λ · scoreAIVD(x) + (1− λ) · scoreGODA(x) (3.3)

In their experiments, λ = 0.5.

Joint Instance Selection

A similar, but different, goal-oriented method is introduced in [54]. It works with
batches of size k, completing all instances in each batch. For each step, it determines
which instances are misclassified with the current available information. For each of
these misclassified instances, it determines what values for the unknown data would
change the prediction of the classifier for this instance to the correct prediction. It
then estimates the probability of these values being present in this data point. This
algorithm is a more extensive version of the expected utility method, as this paper
shows by simplifying its own method to expected utility.

This method is extended on in a later paper [19]. It considers the theoretically
optimal classifier, and works towards approximating this classifier. All previous
methods do not take into account this optimal classifier, but simply aim to improve
its current classifier.

It aims to move towards this optimal classifier by defining a distance function
between two classifiers based on the dataset. This distance is defined such that bi-
nary classifiers with similar predictions have low distance, while binary classifiers
with different predictions have high distance. For multi-class classifiers, correctness
of the prediction is considered instead of the predicted class. Aiming to diverge from
the previous classifier with as large a distance as possible, by aiming to change only
misclassified instances thus leads to approximating the optimal classifier.

3.1.3 Budgeted Learning

A similar problem is mentioned in [39]. A research project for a classifier for cancer
subtypes has a fixed budget to perform tests on patients to create a dataset. This
dataset is then used to train the classifier with maximized performance.

It considers the problem of selecting the next patient-test pair as a Markov De-
cision Process, where its experimentally best policy of selecting new information is
single feature lookahead. This policy estimates the expected loss for each feature-value
pair from the current belief state, and selects the lowest one. It continues in a greedy
manner until the budget is exceeded.

An overview of Budgeted Learning research up to that point is provided in [17].
It also mentions active feature acquisition and its similarities to budgeted learning.
The main differences it considers is the set budget for budgeted learning: active
feature acquisition might have any other stopping condition, or not have costs asso-
ciated to the acquisition of features.

Fundamentally, the difference between active feature acquisition and budgeted
learning is that budgeted learning is in the realm of reinforcement learning. It con-
siders each feature an action, and aims to select any feature with the highest reward.

16 Chapter 3. Related Work

Which data point is then selected is not necessarily part of the problem, as they are
just samples from a distribution. This does not hold for our problem, as all features
are obtained at once and selecting the correct data point is the exact problem. An-
other example of this is shown in [3], as it shows the application of active learning
to the classic budgeted learning problem of the multi-armed bandit. This problem
considers n slot machines with different distributions, mapping slot machines to
features and instances to a distribution resulting from the slot machine.

3.1.4 Active feature selection

There exist several papers [7, 64] which focus on active feature selection. Active
feature selection problems consider adding all missing values for one feature. This
is in a way the opposite of instance completion, where all missing features are added
for one instance.

3.1.5 Active classification

Several papers [25, 30, 36, 70] also focus on acquiring feature values in an efficient
way, but do so during the classification step. This changes the problem, as sampling
now focuses on the performance of the selection. This leads to different approaches
from the two-step problem of active feature acquisition.

3.2 Active Class Selection

Instead of considering querying for a feature set of all classification features, we can
also consider our problem to be a instance of the active class selection approach. This
approach can be seen as the opposite of the regular active learning approach. Instead
of being given instances and querying for labels, the labels are given and instances
can be queried. For our problem, we might consider the set of classification features
as the instances, as labels are already given.

The problem of active class selection is introduced in [40]. It focuses on the prob-
lem where if n training instances can be acquired from any class, what class distri-
bution is optimal for maximizing learning performance.

This paper proposes five different methods, and compares their results. The best
performing method is redistricting, where instances are selected from volatile class
labels. This is defined as class labels from instances where their prediction from the
last round is different from the round before. This prediction is from a classifier
trained on the instances obtained by that round. The idea behind this method is
that instances that lie close to a decision boundary can still be reasonably improved.
This performs better than looking at accuracy, precisely because it does not take
into account whether the classification made is actually correct: some classes are
considered unlearnable or harder to learn than others. All methods can be seen in
table 3.1.

3.2. Active Class Selection 17

TABLE 3.1: All methods for Active Class Selection introduced in [40].

Method Description

Uniform Sample uniformly from all classes.
Inverse Sample in proportion inverse to their accuracy on the

last round.
Original Proportion Sample in proportion to the original sample, relying

on domain knowledge.
Accuracy Improvement Sample in proportion to each classes’ change in accu-

racy from the last round.
Redistricting Sample in proportion to each classes’ volatility.

A later paper [69] applies the active class selection to the arousal classification
problem. The results between methods differ, indicating that results for each method
might be application-specific.

3.2.1 Probabilistic Active Learning for Active Class Selection

An alternative approach to the active class selection problem is introduced in [33],
which adjusts and applies the Probabilistic Active Learning method to the active
class selection problem. The probabilistic active learning method is introduced in
[35], and extended upon in [34, 32].

Probabilistic active learning considers the pgain (probabilistic gain) for each po-
tential query. This probabilistic gain depends on the instances in the neighbourhood:
many known labels decrease the value and vice versa; an equal ratio of positive and
negative labels increases the value and vice versa.

This method is mapped to the active class selection problem, by transforming the
active class selection problem to a regular active learning problem. It samples mul-
tiple instances from each class, calculating the performance gain for each instance.
For each class, a weighted sum of all samples determines the predicted gain; the
class with the highest value is selected.

1. np ← 25, M← 3

2. Repeat until stopping condition is reached:

(a) For each class, model a distribution from the known instances

(b) Sample np pseudo-instances Xp from this distribution

(c) For each pseudo-instance i in Xp:

pgi = pgain(k, M)

pgain(k, M) = max
m≤M

(
1
m
(f (k, m)− f (k, 0)))

where f (k, m) is the expected performance given k and m
and k is the local label statistics

(d) For each class y:

gy =
XP

∑
i=1

pgi · ki,y/(
|XP|

∑
j=1

k j,y)

18 Chapter 3. Related Work

(e) Select class: y∗ = argmaxy(gy)

(f) Request an instance x∗ from y∗, and add (x∗, y∗) to C

Step 1 initializes the parameters of the algorithm. The second step is repeated
until the algorithm is finished: it simulates each class by creating its own distribution
from the known data (2a), and samples pseudo-instances from this distribution (2b).
This pseudo-instances are then used to estimate the increase in performance (2c),
and these estimations are combined for each class (2d). The class with the highest
score is selected (2e) and sampled (2f).

19

Part II

Approaches

21

Chapter 4

Active Classification Feature
Acquisition

The first approach to be considered is the approach that is based on previous re-
search on Active Feature Acquisition [72, 71, 53, 43, 44]. The Active Feature Acqui-
sition is the most similar known problem to our problem, and thus provides a good
base of solutions.

Most solutions to the Active Feature Acquisition problem are as follows: estimate
the values of the missing features, then estimate the utility of the estimated features.
There are some significant differences between the multiple options here, but the
method boils down to the same. If the features are discrete, ∑ P(x|i) ·U(x, i) can be
used. However, for continuous values (which we assume for our problem), it is not
possible to concretely sum up individual probabilities. Instead, we can either estimate
the mean or expected value for the distribution, or estimate an entire distribution
and sample a number of instances to represent the distribution.

We need to keep the computational expenses in mind: as we are repeating this
process for every instance, for every sample, this will be repeated a lot. Depending
on the use case, this may or may not be a problem and we can adjust our method
of utility estimation based on that. For example, a real-world method that samples
a few times each week and wants accurate results does not mind waiting an hour
for knowing the next sample. However, a real-time suggestion system or evaluation
system might want the sampling to be a lot faster.

The basic algorithm is shown in 4.1.

LISTING 4.1: Active Classification Feature Acquisition

def A c t i v e C l a s s i f i c a t i o n F e a t u r e A c q u i s i t i o n (x , z , Y) :
for each unsampled i n s t a n c e i :

e s t i m a t e d _ f e a t u r e s = Est imateFeatures (i)
e s t i m a t e d _ u t i l i t y [i] = E s t i m a t e U t i l i t y (e s t i m a t e d _ f e a t u r e s)

return argmax (e s t i m a t e d _ u t i l i t y)

Where the method can then vary is within the two substeps: the estimation of
the features and the estimation of the utility. The estimation of the missing classifi-
cation features is usually considered an imputation problem, which is the same as a
missing data problem. However, this does not apply to our problem. For there are
some features that are always available (the selection features x), and some features
that are always missing (the classification features z). This means that the input is
always the same set of features, and the output is always the same set of features.
This means the problem reduces to a regression problem, instead of an imputation
problem. For this, we can use known methods such as linear regression.

22 Chapter 4. Active Classification Feature Acquisition

4.1 Utility estimation

For the utility estimation, we dive more into the relevant theory. We base the possible
methods on the ones found in existing literature. Not all methods proposed for
Active Feature Acquisition can be mapped to our problem. This difference mainly
originates from methods focusing on the already known features and its inductive
value to the classification or the likeliness of predicting the label with the currently
known features [43, 54, 19]. This is not applicable to our case, as all classification
features z are sampled simultaneously and never known partially beforehand. We
have investigated the following four methods:

1. GODA: Goal Oriented Data Acquisition, or Expected Utility Estimation [72, 44,
53]

2. AVID: Acquisition based on Variance of Imputed Data [72]

3. Dual objective: Weighted average of GODA and AVID [71]

4. Probability-based: Based on the probability of flipping the instance [60, 19]

In the following subsections, these four methods will be discussed and extended
on. All methods assume an input of estimated classification features z and binary
label y.

4.1.1 GODA

This method most intuitively focuses on the result of the increased utility. It con-
siders the performance of the classifier as it currently is, and the performance of the
classifier if the selected instance would be added. The difference is the increase in
performance and thus the utility of sampling the instance [72].

U(z, y, C) = M(C +〈z, y〉, Γ)−M(C, Γ) (4.1)

where:

C is the sampled data,

M is the relevant performance measure,

Γ is the relevant classifier model.

This models the expected improvement of the classifier model when adding the new
instance (given the expected classification features).

As noted in [72], the performance measure used here is relevant for the end re-
sult and is an important consideration. Most measures used for evaluation purposes
simply look at the how good the model is at predicting labels correctly. However,
this is not beneficial for noting the actual improvement of the model: for the pre-
diction of each instance it can then only factually increase performance once. For
example, consider the well-known accuracy performance measure. It increases only
when the prediction of an instance is changed from 0 to 1, or 1 to 0. As such, this
means that only instances that are close to the decision boundary are affected.

The alternative is using a more informative metric that considers the distance to
the decision boundary, as suggested in [53]. For Logistic Regression, we use log loss,
and for Support Vector Machines, we use hinge loss.

4.1. Utility estimation 23

Obtaining these predictions must be done with C, as we can not use the test set
and there is no validation set available. To do this, we use cross-validation with
the leave-one-out strategy until enough instances are sampled to use 5-fold cross-
validation.

4.1.2 AVID

This method focuses on the concept of obtaining the most information by sample,
with the reasoning that the most new information will lead to the most useful clas-
sifier model in the end. To do this, we consider how well the missing classification
features can be estimated. If these classification features can be properly esimated,
then the information already known must be high. This is defined by the variance of
the imputation of the missing data.

To do this, define B regression models (for AFA these are imputation models)
that predict the classification features from the selection features. The predictions of
each of these models are then aggregated: the variance determines the amount of
information known or unknown. A high variance implies that it is at the moment
still difficult to estimate the classification features from what is known. On the other
hand, a low variance implies a certain amount of consistency within these predic-
tions and thus some level of information known. This implies that the instances
with the highest variance for the estimations of their classification features are most
informative and best to sample, having the highest utility score.

The utility is defined as follows [72]:

U(x, Θ) = var({∀θ ∈ Θ : θ(x)}) (4.2)

where:

θ is a regression model trained on a bootstrapped version of C,

Θ is the set of B imputation models.

4.1.3 Dual objective

The dual objective function combines the previous two methods—GODA and AVID.
It is simply a weighted average of the two, aiming to balance the improvement of the
model of the estimation of the classification features and the highest utility. It should
be taken into account that the former is just as important as the latter. Although it
seems logical that simply selecting the sample with the highest expected utility is
best, it helps with later queries to improve the feature estimation model as well.
With better estimations of the features, the estimated utility will also be closer to the
truth.

The utility is defined as follows [71]:

U(x, Θ, z, y, C) = λ ·UAVID(x, Θ) + (1− λ) ·UGODA(z, y, C) (4.3)

where:

λ is the hyperparameter to balance the dual objective.

As proposed in [71], we use λ = 0.5. Potential improvements could be made
here by considering a simulated annealing-like approach, where λ is initially high
and is gradually lowered.

24 Chapter 4. Active Classification Feature Acquisition

4.1.4 Probability-based

The fourth method works only with probability-based classifiers, as it requires a
probability estimation of the labels. It uses the estimated classification features to
check the probability of predicting the true label correctly, given those estimated
features. Using the probability of the classifier’s prediction allows us more infor-
mation than just the prediction, and is significantly more efficient than the GODA
method—as it only has to fit a classifier once, instead of | I |+ 1 times.

We can derive a method of selecting the probability from previous research in
Active Feature Acquisition [60]. Their method maximizes the change in probability
when sampling the specific feature-value. Consider that in the case of feature-value
acquisition, the features used for classification are partially known. A probability
can thus already be retrieved from the current classifier. Then, the estimated clas-
sification features are added, and the new probability—from the same classifier, so
no need to retrain—is noted as well. The increase should optimally be as high as
possible.

Mapping this to our problem setting results in a lack of previously known proba-
bility, as we do not have any known feature-values that can be used for classification.
This can be adjusted for by setting the previously known probability to a constant c
for all instances:

U(Γ, z, y) = P(Γ(z) = y)− c (4.4)

where:

Γ is the classifier fit on C,

c is the determined constant.

To simplify this and remove the unknown c, we can simply drop this constant:

argmax
i∈I

U(Γ, z∗i , yi) = (4.5)

argmax
i∈I

P(Γ(z∗i) = yi)− c = (4.6)

argmax
i∈I

P(Γ(z∗i) = yi)− c + c = (4.7)

argmax
i∈I

P(Γ(z∗i) = yi) (4.8)

as argmaxX = argmaxX+c, so:

U(Γ, z, y) = P(Γ(z) = y) (4.9)

where:

Γ is the classifier fit on C.

This might not make sense intuitively, as you are selecting instances where the
likely classification features are already predicted well and might not need more
information. In fact, this shows in the results in the next section as the results bi-
ases towards obtaining unnecessary information. We would in fact prefer to sample
instances where the probability is closer to 0.5, or perhaps even lower.

We consider this by generalizing this utility method as described. [19] proposes
a score function which depends on a desired probability b for a perfect sample in-
stance, and p which is the expected probability of misclassification. Using this score

4.1. Utility estimation 25

function, we can obtain a more generalized version of the Probability-based estima-
tion (and show that the above is a special case where b = 0). Note that the probability
of misclassification is considered, so not the probability of correct classification.

The score function is given as:

scorex =
p(1− p)

(−2b + 1)p + b2 (4.10)

where:

b is the asymmetry parameter,

p is the probability of misclassification.

The k instances with the highest score are then queried. We can use this score func-
tion as base for our probablity-based utility function, with the probability of misclas-
sification using the classifier fit on C and the estimated classification features z∗:

U(Γ, z, y) =
P(Γ(z) 6= y) · (1− P(Γ(z) 6= y))
(−2b + 1) · P(Γ(z) 6= y) + b2 (4.11)

which is the final probability-based utility function.
The previous version is indeed a special case of this function, where b = 0:

U(Γ, z, y) = (4.12)
P(Γ(z) 6= y) · (1− P(Γ(z) 6= y))
(−2b + 1) · P(Γ(z) 6= y) + b2 = (4.13)

P(Γ(z) 6= y) · (1− P(Γ(z) 6= y))
(−2 · 0 + 1) · P(Γ(z) 6= y) + 02 = (4.14)

P(Γ(z) 6= y) · (1− P(Γ(z) 6= y))
P(Γ(z) 6= y)

= (4.15)

P(Γ(z) 6= y)
P(Γ(z) 6= y)

· (1− P(Γ(z) 6= y)) = (4.16)

(1− P(Γ(z) 6= y)) = (4.17)
P(Γ(z) = y) (4.18)

However, as mentioned in [19], this is not an optimal value for b. More optimal
values for b should be close to but above 0.5. This accompanies the intuition that
the most useful instances to query are those that are likely to be misclassified, but
can potentially be correctly classified in the next iteration. This allows us to most
efficiently approach the optimal classifier. As such, the value for b proposed when
sampling individual instances is suggested to be equal to 0.5 + 1

2·| C | . This value is
somewhat above 0.5, and decreases when the number of queried instances increases.
This means the utility function can be rewritten to:

U(Γ, z, y) =
P(Γ(z) 6= y) · (1− P(Γ(z) 6= y))

(−2(0.5 + 1
2·| C |) + 1) · P(Γ(z) 6= y) + (0.5 + 1

2·| C |)
2
= (4.19)

P(Γ(z) 6= y) · (1− P(Γ(z) 6= y))
(− 1
| C |) · P(Γ(z) 6= y) + (0.5 + 1

2·| C |)
2

(4.20)

27

Chapter 5

Active Pseudo-Class Selection

In this chapter, we will look at the second approach. This approach is based on the
existing research on Active Class Selection [40, 33], by constructing pseudo-classes.
These pseudo-classes are then used to map the problem to an Active Class Selection
problem, allowing us to use any existing Active Class Selection approach. This idea
can be defined more concretely, as in listing 5.1.

LISTING 5.1: Active Pseudo-Class Selection

def Act ivePseudoClassSe lec t ion (x , z , Y) :
pseudoclasses = PseudoClassConstruction (x + Y)
sampled_pclass = A c t i v e C l a s s S e l e c t i o n (pseudoclasses)
i n s t a n c e = s e l e c t one i n s t a n c e from sampled_pclass
return i n s t a n c e

The main problem we need to solve, now that we have defined the idea be-
hind this approach, is how to construct these pseudo-classes to perform the map-
ping from the Active Classification Feature Selection problem to the Active Class
Selection problem. In addition, it is useful to consider which Active Class Selection
method performs the best with this problem. Presumably, these are the ones which
also work well in the regular Active Class Selection setting (3.2).

5.1 Pseudo-class construction

The pseudo-classes should be well-constructed: if these pseudo-classes are random
or nonsensical partitions of the data, then the resulting mapping leads to a useless
problem. The pseudo-classes should make some sense: they should have as high
as possible intraclass correlation and low interclass correlation. In addition, these
pseudo-classes should be semantically meaningful. In any real setting, classes are a
description of the data points. Any random selection of data points is not describable
as a group, while a meaningful selection can be a combination of existing attributes:
"female patient of over 45", "low-alcohol wine (<=10%) with high color intensity
(>=7)", "married and self-employed" are all examples of meaningful partitions of a
dataset.

Related work on similar problems is mentioned in 2.5, with the optimal [12] and
most straightforward method resulting from previous experiments being a concate-
nation of k-means clustering and decision tree construction.

The k-means clustering step finds k clusters within the data, which is a parti-
tion of the data points with high intraclass correlation and low interclass correlation.
Because this is a partition of data points, it is not semantically meaningful or de-
scribable. To achieve this, we use the resulting cluster labels as input labels for the
construction of a decision tree 5.2. The resulting fitted decision tree can then predict

28 Chapter 5. Active Pseudo-Class Selection

these labels as accurately as possible. The results from this decision tree are the final
labels which we will use. The use of this decision tree is that the final partition is
describable, as with any decision tree. The nodes in the tree all consist of rules, and
so the resulting partition (if k is not too large) is easily describable.

LISTING 5.2: Construction of the pseudo-classes.

def PseudoClassConstruction (data) :
c l u s t e r s = kMeans (data)
l a b e l s = Decis ionTree (data , c l u s t e r s)
return l a b e l s

For illustrational purposes, figure 5.1 shows the construction of these pseudo-
classes on the selection features and labels of the Breast Cancer [49] and Iris [21] as
mentioned in 7.2. The labels for the Iris dataset are converted to binary labels by
combining the two smallest classes into one class. The number of classification fea-
tures of the Breast Cancer dataset are reduced to 2 using Principal Component Anal-
ysis, and not actual features (thus the convoluted results). The maximum depth for
the decision tree construction is set to 4.

5.2 Bootstrap aggregating

To improve performance, and to combat the randomness of k-means clustering, we
can repeat the pseudo-class construction step multiple times. To do this, we use bag-
ging and our bootstrap sample is then repeatedly used for the new pseudo-classes.

When selecting the pseudo-class to sample from, we aggregate these results. This
is done with a voting process, where each of the n partitions adds a vote to each
instance within the selected pseudo-class. The instance with the most votes is then
sampled. The updated approach is seen in 5.3.

LISTING 5.3: Active Pseudo-Class Selection with bagging

def Act ivePseudoClassSe lec t ion (x , z , Y) :
for i in (0 . . n) :

pseudoclasses [i] = PseudoClassConstruction (x + Y)
for i in (0 . . n) :

p c l a s s = A c t i v e C l a s s S e l e c t i o n (pseudoclasses [i])
add one vote to each i n s t a n c e in p c l a s s

i n s t a n c e = s e l e c t the i n s t a n c e with the most votes
return i n s t a n c e

Using this voting process aims to improve results, in a similar manner to Random
Forest models [10]. This method allows finding the most interesting instances, which
are selected often regardless of the specific partioning. When not using bootstrap
aggregating, one pseudo-class is selected and one instance needs to be sampled from
this pseudo-class (randomly or heuristically). Using bootstrap aggregating allows a
better separation of specific instances.

5.3 Active Class Selection method

For this method, as we map the problem to an Active Class Selection problem, we
then use an existing approach to solve this problem. Considering previous research
on this subject [40, 69, 33], we will consider the following three methods: redis-
tricting, accuracy improvement, [40] and PAL-ACS [33]. These methods showed good

5.3. Active Class Selection method 29

(A) Constructed pseudo-classes with k = 3 on the
Iris dataset.

(B) Constructed pseudo-classes with k = 8 on the
Iris dataset.

(C) Constructed pseudo-classes with k = 3 on the
Breast Cancer dataset.

(D) Constructed pseudo-classes with k = 8 on the
Breast Cancer dataset.

FIGURE 5.1: Examples of constructed pseudo-classes.

30 Chapter 5. Active Pseudo-Class Selection

and promising results on regular Active Class Selection problems, so if this prob-
lem mapping is representative and informative we should expect these methods to
perform well.

Redistricting

The redistricting algorithm is described in 3.2, and pseudocode is given in 5.4. It
focuses on selecting instances from the most volatile class labels, as the instances
that are close to a decision boundary are most interesting to sample. In a way, this
follows a similar philosophy to the uncertainty sampling method used in regular
label-based active learning.

LISTING 5.4: Redistricting

def R e d i s t r i c t i n g (pseudoclasses) :
foreach i n s t a n c e :

p c l a s s = pseudoclasses [i n s t a n c e]
count [p c l a s s]++
i f p r e d i c t i o n changed for i n s t a n c e :

r e d i s t r i c t e d [p c l a s s]++
return argmax (r e d i s t r i c t e d / count)

Accuracy Improvement

The accuracy improvement method is referenced and described in section 3.2. Pseu-
docode for this method is given in 5.5. The method aims to find the class or pseudo-
class for which the accuracy has improved the most from the last iteration. This
pseudo-class has potential to improve its score, and thus there is still information
obtainable.

LISTING 5.5: Accuracy Improvement

def AccuracyImprovement (pseudoclasses) :
foreach i n s t a n c e :

p c l a s s = pseudoclasses [i n s t a n c e]
count [p c l a s s]++
i f p r e d i c t i o n i s c o r r e c t for i n s t a n c e :

c o r r e c t [p c l a s s]++
for each p c l a s s :

improvement [p c l a s s] = c o r r e c t / count − previous_accuracy
previous_accuracy [p c l a s s] = c o r r e c t / count

return argmax (improvement)

Probabilistic Active Learning for Active Class Selection (PAL-ACS)

The PAL-ACS method is referenced and explained in section 3.2.1, and pseudocode
for the implementation is given in 5.6. The method aims to estimate a distribution
for each pseudo-class. It then samples np pseudo-instances from these distributions
and estimates the best pseudo-class to select.

LISTING 5.6: PAL-ACS

def PAL−ACS(pseudoclasses) :
np = 25 , M = 3 , L = []

5.4. Hyperparameters 31

foreach p c l a s s in pseudoclasses :
dens i ty = es t imate_dens i ty (p c l a s s)
sample np p−i n s t a n c e s from densi ty
foreach p−i n s t a n c e :

estimate_p−gain (p−i n s t a n c e)
avg_p−gain = average (p−gain) for a l l p−i n s t a n c e s

return argmax (avg_p−gain)

5.4 Hyperparameters

For this approach, several parameters are required as shown in table 5.1.

TABLE 5.1: The parameters required for the Active Pseudo-Class Se-
lection approach.

Parameter Usage

k The number of pseudo-classes within each partition.
n The number of partitions.
ACS The Active Class Selection method used.

The first two parameters—k and n—are numerical and tuning can show reason-
able choices. k must be at least 3, otherwise the problem is mapped from a binary
class problem to a binary class problem. n must be at least 1, but should be rea-
sonably higher. It is expected that increasing n should increase the performance, or
at least never decrease. With an ensemble predictor, one does not expect the per-
formance to decrease when more of the same predictors are added. Figure 5.2 con-
firms this fact, combining preliminary experiments with the redistricting method
and comparing their results to the mean.

(A) The results by number of classes. (B) The results by number of partitions.

FIGURE 5.2: Results from parameter tuning experiments for redis-
tricting, combining all classifier models and datasets.

Broadly looking at the results, it seems that the number of pseudo-classes does
not have a large influence on the results. Instead, the number of partitions indeed
seems to increase performance when increased. This makes sense, as for example
random forests also perform better with a larger number of trees. Perhaps even
more partitions make sense, if the computational power allows it.

The last parameter—ACS—is the selection of the method used for the resulting
Active Class Selection problem, and is discussed in the previous section.

33

Chapter 6

Expectation Maximization

In this chapter, the third and final approach is considered. This approach is based on
the known Expectation Maximization method, used for creating Gaussian Mixture
Models 2.6.

Using Expectation Maximization, soft clusters are created using the complete
data. That is: the features of all instances with known classification features com-
bined. These clusters are then used as a way of modeling the true distribution of
the data. For all incomplete data—the instances of which the classification features
are not yet known and which we aim to sample—the probabilities of belonging to
each soft clusters are then estimated. With this, we can use the expected utility of
the clusters to determine the most useful instance or instances.

The method is defined in 6.1.

LISTING 6.1: EM-based ACFS

def EM_based_sampler (x , z , Y) :
gmm = ExpectationMaximization (x+ z)
for each c l u s t e r c in gmm:

u t i l i t y [c] = e s t i m a t e C l u s t e r U t i l i t y (c)
for each i n s t a n c e :

e s t i m a t e d _ u t i l i t y =
∑c∈gmm u t i l i t y [c] · gmm. prob (i n s t a n c e) [c]

return i n s t a n c e with the highes t e s t i m a t e d _ u t i l i t y

The method of Expectation Maximization and the estimation of probabilities of
instances is well known, and does not need redefining. We can simply use the es-
tablished methods here. Each clusters is then defined with its mean µ and its covari-
ances. An example of a Gaussian mixture model on a 2D plane can be seen in figure
6.1.

6.1 Cluster Utility Estimation

An important element of this approach is the definition of the estimation of the clus-
ter utility. We can use the approaches of the estimation of utility in Chapter 4, but
instead focus on an expected return for a distribution. The EM-based approach is
potentially more efficient than the AFA-based approach. This is because for the
AFA-based approach, each instance must estimate its classification features and then
determine its utility. On the other hand, the EM-based approach does not estimate
any classification features, and estimating the utility is only done for each cluster, not
for each instance. If estimating the utility of a cluster is then less expensive than the
combined estimation of the utility of all instances, it is computationally less expen-
sive.

34 Chapter 6. Expectation Maximization

FIGURE 6.1: Gaussian Mixture Model fit on two attributes of the Iris
dataset [21].

The utility for each instance given this method can be defined as follows:

E U(i) = ∑
c∈C

P(c|i) ·E U(c) (6.1)

The cluster utility can be defined as follows:

E U(c) =
∫ ∞

−∞
U(x)dx (6.2)

where:

U(x) is the defined utility method.

U(x) unfortunately is not easily definable, as it depends on retraining of the clas-
sifier model or imputation models. As such, a numerical or algebraic way of defin-
ing the expected utility is not feasible as we can see. The best option is a stochastic
Monte Carlo method of estimating the true mean.

Consider the function U as an unknown or black box function. The distribution
is known with µ and σ. We can then estimate the expected value of U(x) by sampling
instances from the distribution. For this instance, we ’query’ the black box function
to return us an output. This is repeated n times, until the expected value converges.
For obvious reasons, the higher value for n, the better, result wise. For computational
reasons though, a limit for n must be chosen. This depends on the capabilities of the
machine. Keeping true that n < |c| ensures that this method is computationally
more efficient than the AFA-based method.

This method is more efficient than the alternative method of proportional se-
leciton. This would mean that the instances are split fairly along the distribution,
with each instance representing 1/n of the cumulative distribution. When the di-
mensionality of the features is high, this causes a great increase in computational
complexity. Whereas the stochastic process just samples many points and the law

6.1. Cluster Utility Estimation 35

of large numbers implicate some convergence, the manual selection is more com-
plicated with many features. If there are eight features, splitting each up into four
sections requires 48 = 65, 536 samples. Stochastic sampling should converge by it-
self without requiring a complicated instance generation and selection.

37

Part III

Experiments and Results

39

Chapter 7

Methodology

In this chapter, we will give an overview of the methodology used for comparing,
executing and evaluating multiple approaches to the problem.

7.1 Experimental Setup

The experiments consist of three parts: setup, execution, and evaluation. In the
setup step, we prepare the given dataset D, concealing a subset of features to cre-
ate known x and unknown z. Additionally, we select all parameters, such as the
classifier model, the approach and the approach-specific hyperparameters.

In the execution step, we try to simulate a real-world scenario by allowing the
algorithm to sample instances of z. It can then update its beliefs and sample another
value.

Finally, the evaluation step then evaluates the performance of each approach in
the experiments. For example, by plotting a comparison of a performance measure
to the number of sampled instances. The same should be done for a baseline to
compare to, such as random sampling. Because this exact problem is not found yet
in literature, there are no other approaches that we can compare to.

It should be noted that evaluating any Active Learning approach is no simple
task and we should aim to optimize this. Pointers are provided in [31] as to how to
approach this problem, which we will take into account. The three critical aspects of
the evaluation are reliable evaluation, realistic evaluation, and comparable evaluation.

It concludes that the following guidelines must be implemented to attain these
three aspects:

• Use at least 50 repetitions

• Use the same selector and consumer classifier when comparing different active
learning methods

• Show the learning curves of performance measures, and show pairwise differ-
ences

• Start with an unlabeled set, or sample n instances randomly

• Use a clearly defined stopping criterion

7.1.1 Dataset Setup

An important issue regarding realistic evaluation (among others) is that most exper-
imental setups do not consider a real-world scenario, but create one using existing
or synthetic datasets meant for another use. For our problem, there is one dataset
specific to this experiment, which we will use.

40 Chapter 7. Methodology

Initializing the dataset, all classification features z must be hidden. Some ap-
proaches do not work well with an initially empty set, but the initial sample of n fea-
tures must be included within the performance of the algorithm and shown within
the learning curve [31].

The features within the dataset should be normalized.

7.1.2 Algorithm Execution

To create a more reliable evaluation, it is a good idea to perform multiple runs
(preferably, 50 or more [31]) for each approach. These multiple runs can then in the
evaluation section be pooled, plotting means and standard deviations or quartiles.

These runs are then evaluated with k-fold cross validation during the execution.
After the sampling of each instance, the evaluation is saved so that it can be used
within the evaluation step.

As for the final classifier trained on the classification features and the labels, it
must be the exact same classifier for each approach to facilitate comparable evalu-
ation. In addition, the same classifier must be used for the selection method as the
final classifier. In our case, we are using logistic regression [6] and support vector ma-
chine (SVM) [16]. The relevant parameters must all be chosen reasonable and kept
consistent among the different approaches. Changing this either induces bias or
an unfair comparison between algorithms. These default values for the parameters
([50]) are shown in table 7.1.

TABLE 7.1: The hyperparameters used for both classifier models.

Classifier Parameters

Logistic Regression C = 1.0, L2
Support Vector Machine (RBF) C = 1.0, γ = 1

n_features·var(X)

No stopping condition is implemented, and the experiment will run until all
instances are selected. The learning curve can then be plotted in its entirety.

The setup and execution is implemented as follows:

1. Define D.

2. Define x, z, Y as subsets from D.

3. Repeat the following n = 10 times:

(a) Generate a k = 5-fold split of the data.

(b) For each fold, perform the following:

i. Define Dtrain, with xtrain and Ytrain.
ii. Define the oracle with Dtrain and ztrain.

iii. For each possible combination of classifier model and sampling method,
define the classifier model Γ, referencing Dtrain, and define the sam-
pling method, referencing Dtrain and Γ.

iv. For each combination, repeat until every instance is sampled:
A. Use the defined sampling method to sample the next instance.
B. Query the classification features of this instance.
C. Retrain Γ with the new instance added to Dtrain.

7.1. Experimental Setup 41

D. Evaluate the model, using the defined metric (F1-score for the
benchmark datasets, accuracy for the schizophrenia dataset).

(c) Average the evaluation at each step (number of instances sampled).

4. Save the results, which is a DataFrame of shape (n, number of instances
sampled).

7.1.3 Evaluation

The multiple algorithms need to be evaluated in such a way, that they can be com-
pared properly to each other. To evaluate the performance of the algorithm, it needs
to be quantified. This is done with a performance measure. A common example is
accuracy, which maps the performance to (in most cases) the range of 0 to 1 based
on the proportion of correctly classified instances.

For active learning problems, not only is the quality of the classifier important,
we also want to learn as economically as possible. One option to approach this
problem is by plotting a standard performance measure (such as accuracy). This
performance measure is than plotted over time (the number of instances sampled),
which is known as the learning curve.

As we will be running each experimental configuration 50 times, we will want
to represent these many runs appropriately. The learning curve will plot the mean
of these 50 runs, as this is the expected value for each point of the learning curve.
To aid in showing the distribution, we will add a confidence interval. This confidence
interval will display the range in which the majority of the runs are contained. We
determine α = 0.10, meaning that the likelihood of any run being contained in this
confidence interval is 1− α = 0.90.

Determining the performance measure for a binary classifier is described in [48],
where multiple measures are compared with each other. Performance measures
which often disagree with the other measures, are considered to be inconsistent.
The results show the h-measure, Matthews Correlation Coefficient (MCC), and F1-score
to give the best indications. The h-measure uses relative costs of misclassification,
which might not be available for all datasets; it is also not as commonly used as
the other two performance measures. The latter is true as well for the MCC/φ-
coefficient. As such, we will use the F1-score for the evaluation and the learning
curve: the F1-score is a combination of precision (P) and recall (R), and is defined as
2·P·R
P+R .

Learning curves are often not strictly better or worse than the other. For exam-
ple, one algorithm might perform better in the earlier stages, while another algo-
rithm might perform better in the later stages. Comparing learning curves requires
contextual information. Depending on the use case, the earlier or latter stages of the
learning curve might be more important.

Additionally, we might use performance measures specifically developed for ac-
tive learning. These measures aim to summarize the shape of the learning curve.
Although we can never fully represent the learning curve and the advantages and
disadvantages of each approach within one number, we can use several methods to
allow for a more clear and statistically significant comparison.

The main measure we will use is Data Utilization Rate (DUR). DUR uses a target
accuracy, defined as the mean of the random selection strategy. The DUR is the
minimum number of samples needed to reach this accuracy, divided by the number
of samples needed to reach this accuracy with random selection.

42 Chapter 7. Methodology

To get a better overview of the results, we will use an additional number of mea-
sures that represent what we aim to achieve. Ultimately, the initial few samples are
not relevant, as we will never reduce the training set size ten-fold. Instead, we aim
to obtain a method where we can obtain a performance close to the complete one,
with a significant decrease in training set size.

To represent this, we will obtain the performance measure at two points in the
curve: 0.8 and 0.9 of the total number of instances. In addition, we measure the area
under the curve.

The numerical measures we will use for evaluation in addition to the learning
curve are noted in table 7.2.

TABLE 7.2: The numerical summaries of the learning curve.

Measure Explanation

DUR Data Utilization Rate. Represents how many instances are needed to
reach a target F1 score, derived from the random selection strategy.

F1@90% The F1-score after having sampled 0.9 of the total number of instances.
F1@80% The F1-score after having sampled 0.8 of the total number of instances.
AUC The area under the learning curve.

Now that we have numerical results, we can compare two algorithms using pair-
wise difference, using the Wilcoxon signed rank test [67], or the Friedman test [23].

7.2 Datasets Used

As the problem directly ties to a real-world scenario and dataset, this dataset [46] is
the most relevant. It is analyzed in chapter 12. The aim is to achieve good results
with this dataset, reducing the number of MRI scans needed for similar results.

7.2.1 Real-world datasets

For benchmark results, some datasets from the UCI Machine Learning Repository
[20] are used. The datasets should be binary classification datasets, with a relatively
large number of numerical features. For these datasets, there are no classification
features and they have to be selected. These features can be chosen randomly or
hand-picked. Realistically, the selection features are simpler features and the classi-
fication features are more expensive to obtain. Therefore, the feature split is hand-
picked and can be seen in table 7.3 for the used datasets.

7.2. Datasets Used 43

TABLE 7.3: The datasets used and their feature splits.

D x z

Breast Cancer (Coimbra) [49] Age Glucose
BMI Insulin

HOMA
Leptin
Adiponectin
Resistin
MCP-1

Heart Disease [18] Age Resting Blood Pressure
Sex Cholesterol
Chest Pain Type Fasting Blood Sugar

Resting ECG
Max Heart Rate
Exercise Induced Angina
Exercise Induced ST Depression
Slope of Peak ST
Number of Major Vessels
Thalassemia

Wine [22] Alcohol Malic acid
Color intensity Ash
Hue Alcalinity of ash

Magnesium
Total phenols
Flavanoids
Nonflavanoid phenols
Proanthocyanins
OD280/OD315 of diluted wines
Proline

7.2.2 Synthetic datasets

In addition to these real datasets, we will use synthetic datasets for proof of concept.
These datasets are generated from existing distribution, with an expected noise: y =
f (x) + ε.

N(µ, σ) represents the normal distribution. The reasoning behind the generation
of the datasets is to determine what correlations are necessary for approaches to
function—or for this problem to be solvable.

The synthetic datasets can more generally be defined, by defining each instance
as in equations 7.1, 7.2, 7.3. Constructing a dataset of size n is done by concatenating
n of these generated instances.

x = x0, x1, .., xk−1 = N(µ, σx), N(µ, σx), .., N(µ, σx) (7.1)
z = z0, z1, .., zk−1 = N(f (x0), σz), N(f (x1), σz), .., N(f (xk−1), σz) (7.2)

y =

{
1 if ∑xi∈x g(xi) + ∑zi∈z h(zi) + N(0, σY) > c
0 if ∑xi∈x g(xi) + ∑zi∈z h(zi) + N(0, σY) ≤ c

(7.3)

44 Chapter 7. Methodology

where:

f (x), g(x), h(x) are definable functions,

σx, σz, σY, c are definable constants.

The synthetic datasets can then be defined as seen in table 7.4. This also allows
for more complexity and more realistic datasets, by defining f , g or h as non-linear
functions, for example.

TABLE 7.4: The synthetic datasets.

D f (x) g(x) h(x) σx σz σY c

Direct correlation sin(x) 0 sin(x) 1 1 0.2 0
Indirect correlation 0 sin(x) sin(x) 1 1 0.2 0
No correlation 0 0 sin(x) 1 1 0.2 0

The first synthetic dataset represents the datasets with correlations between the
selection features and the classification features, which is the case where the ap-
proaches are expected to perform best. The second synthetic dataset shows an indi-
rect correlation via the label, which is influenced by both the selection features and
the classification features. Finally, the third synthetic dataset shows a case where
the selection features are irrelevant. This allows us to consider what correlations are
necessary for our methods to function.

7.3 Baseline

To evaluate and compare the results of the approaches, we need a baseline method
to compare to. [13] notes a set of potential baseline methods, but these are mostly
not applicable to our problem set as our setup is significantly different. For example,
the uncertainty sampling method is not usable for our problem as there is no input
available and no unknown binary output.

As such, we will use Random sampling as the baseline, as it is essentially not using
any specific approach. We would expect to improve upon this baseline, to motivate
using any potential approach. Thus we will include this as our baseline.

This is implemented by creating a query space (of all data points), and randomly
selecting one.

45

Chapter 8

Active Classification Feature
Acquisition

In this chapter, we will show an overview of the results for the Active Classification
Acquisition approach and each of the utility methods, comparing them to each to
other as well as the random baseline (where each instance is randomly selected).

For each method, we need an initial sample of instances. These instances are then
randomly selected from each label alternately. We aim to minimize this number
of initial instances so that the method is used as much as possible, this minimum
number of instances rqeuired is 4. This allows the leave-one-out cross-validation
methods as needed for a classifier to fit, with a minimum of 2 labels for each class (a
class with 1 label cannot be trained when this singular label is the separate fold).

For the estimation of the features, we use a relatively simple and reliable method:
linear regression. This allows us to properly compare the methods.

The results are averaged over 50 runs as mentioned in chapter 7, using the F1-
score.

8.1 GODA

The results for the GODA utility method are shown in figure 8.1. The results show
an obvious, and significant decrease in the performance for a major portion of the
learning curve. Up until to the very last few samples, the F1-score for the GODA
utility method is significantly lower than the Random sampling baseline.

One thing that should be noted is the slight peak at the very end of the learning
curve, as this seems to indicate that when given more instances the performance of
the GODA utility method might increase. However, there is not enough information
to indicate this. Although the datasets have a differing number of instances, the peak
in the learning curve happens near the end for all of them. This implies the peak in
the learning curve coming from the data pool setting, as only a very small possible set
of samples is left near the end of the experiment. When nearing the end, the set of
samples is near-identical for each method, and the difference in performance is not
significant for most of the dataset/classifier combinations.

The results for the synthetic datasets are shown in figure 8.2. These synthetic
datasets allows us some more information about the effectiveness of the method,
as the correlations between features are clear. These results confirm the results for
the UCI datasets, as even with a direct correlation these results are worse than ran-
dom sampling. It can be noted that although these results are subpar, they are less
worse for the direct correlation synthetic dataset than the absent correlation (with the
Logistic Regression classifier model). This means that there is some benefit in the
analysis, but it is not practical and does not compensate for the huge error.

46 Chapter 8. Active Classification Feature Acquisition

FIGURE 8.1: Comparison of the F1-score of the GODA utility method
and the random baseline, on the UCI datasets.

From these results, we can generally conclude that the GODA utility method is
ineffective, and recommend to not use this utility method for the Active Selection of
Classification Features problem setting.

8.2 AVID

The results for the AVID utility method are shown in figure 8.3. In this case, B is set
to 10. The results are differing, depending on the dataset (but perhaps surprisingly,
indepedent of the classifier model). For the Heart Disease dataset, we can clearly say
that the AVID utility method gives us an approach that performs strictly better than
the random sampling baseline. At all points in the learning curve, the performance
exceeds or is at least as good as the random sampling performance. For the Breast
Cancer and Wine datasets, there is a trade off in the learning curve. Interestingly
enough, this is the opposite for the two datasets. For the Breast Cancer dataset, there
is a significant decrease in the early phases of the experiment for an increase in the
middle stages. For the Wine dataset, the opposite is true: the performance increases
in the early phases and decreases in the later stages.

It should be noted that for the Wine dataset, a very small set of instances found
with the AVID utility method allows us a higher performance on the test set than the
complete dataset.

8.3. Dual objective 47

FIGURE 8.2: Comparison of the F1-score of the GODA utility method
and the random baseline, on the synthetic datasets.

The results for the synthetic datasets are shown in figure 8.4. These results are
quite consistent, regardless of the dataset correlations. This means that it is some-
what reliable in its results and does not provide subpar results for inappropriate
datasets.

Although we can not say that using the AVID utility method with the ACFA
approach is always effective or a strict improvement, it seems that in general it does
provide good results more often than not and we can recommend using this method.

8.3 Dual objective

The results for the Dual objective utility method are shown in figure 8.5. As sug-
gested in [71], λ is set to 0.5.

There is not much to say about these results, considering this method is a combi-
nation of the two previous already discussed methods. As the GODA utility method
was shown to be ineffective, and the AVID utility method to provide promising re-
sults, one would expect the combination of these two to have mediocre results: this
is mostly true. The results are simply worse than AVID’s results, while at least being
better than GODA’s results. This method is not recommended to use in place of the
AVID utility method.

48 Chapter 8. Active Classification Feature Acquisition

FIGURE 8.3: Comparison of the F1-score of the AVID utility method
and the random baseline, on the UCI datasets.

8.4 Probability-based

The results for the Probability-based utility method are shown in figure 8.6. As this
method only works with probability-based classifiers, only the Logistic Regression
model is used.

For comparison, we considered two options for b: the score function as noted
previously, and b = 0.

As seen in figure 8.6, b = 0 does not work well in practice. This matches with
the previous intuitions that selecting a method which is already expected to per-
form well does not add much new information, but instead introduces a bias to
non-informative instances and away from instances that are close to the decision
boundary.

On the other hand, the automatic scoring function provides acceptable results,
albeit not exceptional. For the Wine dataset, the results are strictly better than the
random sampling baseline, while on the other hand for the Breast Cancer and Heart
Disease one might be more inclined to prefer the results from the random sampling
baseline. As with previous utility methods, the results are dataset-dependent and
this is unfortunately unknown beforehand.

The results with the automatic scoring function, on the synthetic datasets are
shown in figure 8.7.

8.5. Comparing the utility methods 49

FIGURE 8.4: Comparison of the F1-score of the AVID utility method
and the random baseline, on the synthetic datasets.

8.5 Comparing the utility methods

To be able to compare the utility methods, we can use the Data Utilization Rate to
represent each averaged run as one value properly. For each experiment, we deter-
mine the mean of the random selection strategy as the target score. The number of
instances queried to reach this score, divided by the number needed by the random
selection strategy, is then set as the Data Utilization Rate value.

TABLE 8.1: The Data Utilization Rate results for all ACFA methods,
using the F1-score.

Logistic Regression Support Vector Machine
BreastCancer HeartDisease Wine BreastCancer HeartDisease Wine

GODA 3.44 5.26 5.21 2.70 4.85 4.60
AVID 1.08 0.26 0.29 1.13 0.24 0.40
Dual 1.24 0.26 0.38 1.13 0.49 0.48
Prob 2.36 0.34 0.46
Random 1 1 1 1 1 1

The results of the Data Utilization Rate are shown in table 8.1. These results show
several trends. The GODA approach is for every classifier, and for every dataset,
simply inferior to the other methods, as well as the random method. Intuitively, this
would imply that the task of predicting the classification features from the selection

50 Chapter 8. Active Classification Feature Acquisition

FIGURE 8.5: Comparison of the F1-score of the Dual objective utility
method and the random baseline, on the UCI datasets.

features plus using it for classification is computationally very complex, meaning it
does not improve the results. Instead, it introduces a bias which means the results
are worse than an unbiased random selection.

Additionally, it seems to imply that there is a difference in feasibility for each
dataset. There is not a single method that is able to improve upon the random selec-
tion method for the Breast Cancer dataset. Opposed to this, the other three methods
are able to improve upon the random selection strategy for each other dataset and
classifier combination, implying some usefulness. The most likely implication is ei-
ther a more complicated or non-existing correlation between the selection features
and classification feature. It should be noted that this also depends on the use-case
of the method, as an entire learning curve is hard to summarize with just one num-
ber. Looking at the learning curves for the Breast Cancer dataset, improvement can
be made in the intermediary period at the cost of reduction in performance in the
early period.

The best method seems to be AVID, based on the variance of the estimation of
the classification features. This method bases its results on the instances about which
essentially the least is known, and thus selects the most informative instances. It
seems this method works well in practice.

To see if there is a statistically significant difference between any of these meth-
ods and the random selection strategy, we can use the Wilcoxon signed rank test.
This statistical test can be used to compare two matched samples.

For each method, we compare it to the random baseline, where the null hypoth-
esis is that that the random selection strategy and the selected method are from the

8.5. Comparing the utility methods 51

(A) b is determined by the score function. (B) b is constant, set to 0.

FIGURE 8.6: Comparison of the F1-score of the Probability-based util-
ity method and the random baseline, on the UCI datasets.

same distribution: implying no difference in results. If this hypothesis can be re-
jected, there is a significant difference and as such a expected better method. We use
p = 0.05, giving a critical value W ≥ 0.

TABLE 8.2: The results for the Wilcoxon signed rank test, where criti-
cal value for W = 0.

Method W

GODA 0
AVID 3
Dual 3

The results for each method are shown in table 8.2. The probability-based method
is not included, as its sample size is too small. The AVID and Dual objective meth-
ods are shown to be an expected improvement on the random selection baseline,
whereas the GODA method is not. This confirms the suspicions from the initial look
at table 8.1.

To give a more extensive comparison, table 8.3 shows an overview of all numer-
ical measures mentioned in chapter 7.

52 Chapter 8. Active Classification Feature Acquisition

FIGURE 8.7: Comparison of the F1-score of the Probability-based util-
ity method and the random baseline, on the synthetic datasets.

TABLE 8.3: All numerical results for all Active Classification Feature
Acquisition approaches. Improvements upon random selections are

bolded.

Logistic Regression Support Vector Machine

Breast
Cancer

Heart
Disease

Wine Breast
Cancer

Heart
Disease

Wine

GODA DUR 3.44 5.26 5.21 2.70 4.85 4.60
AUC 0.52 0.50 0.75 0.57 0.63 0.74
F1@80% 0.64 0.77 0.80 0.67 0.77 0.84
F1@90% 0.73 0.78 0.82 0.73 0.78 0.85

AVID DUR 1.08 0.26 0.29 1.13 0.24 0.40
AUC 0.64 0.77 0.78 0.63 0.76 0.80
F1@80% 0.73 0.79 0.80 0.72 0.77 0.83
F1@90% 0.71 0.77 0.81 0.72 0.77 0.84

Dual DUR 1.24 0.26 0.38 1.13 0.49 0.48
AUC 0.63 0.77 0.78 0.62 0.75 0.80
F1@80% 0.72 0.79 0.80 0.71 0.78 0.83
F1@90% 0.71 0.77 0.82 0.71 0.77 0.85

Prob DUR 2.36 0.34 0.46
AUC 0.64 0.74 0.81
F1@80% 0.71 0.76 0.82
F1@90% 0.72 0.77 0.83

Random DUR 1 1 1 1 1 1
AUC 0.66 0.75 0.79 0.64 0.75 0.81
F1@80% 0.71 0.77 0.82 0.71 0.77 0.85
F1@90% 0.71 0.77 0.82 0.72 0.77 0.85

8.6. Regression method 53

8.6 Regression method

For the previous experiments, we have considered linear regression as the baseline
regression (or imputation) method. This provides a good baseline to compare the
multiple methods. It might be possible to improve the results with a different re-
gression mode though. In this section we will look at possible improvements by
using Lasso [61] or Ridge [27] regression.

For comparing these regression methods, we use the AVID utility method. This
method performs the best on the existing datasets, and directly uses the regression
method, allowing a good overview of the changes. The results can be seen in figure
8.8.

FIGURE 8.8: Comparison of the F1-score when using the three differ-
ent regression methods, on the UCI datasets.

These results show that linear regression performs the best on the known dataset.
For each dataset, lasso regression gives especially mediocre results, where it drops
off to below-random guessing for significant amounts of time. This is perhaps to
lasso being able to ’drop’ parameters more frequently with regularization, which
might decrease performance in complex models such as these. In addition, it might
have an effect on the variance, where it removes the informativeness of those in-
stances with high variance of the imputed features.

55

Chapter 9

Active Pseudo-Class Selection

In this chapter, we will show an overview of the results: for each of the ACS meth-
ods, comparing them to each to other as well as the Random baseline (where each
instance is randomly selected).

For each method, we need an initial sample of instances. These instances are
then randomly selected from each label alternately. We aim to minimize this num-
ber of initial instances so that the method is used as much as possible. The number
of instances selected varies: for a proper application of the method we need to have
at least one instance for each pseudoclass, in each partition. Selecting n · k as initial
sample can be unproductive though: for example with 8 pseudoclasses and 10 par-
titions, the number of initial random samples could be nearly as high as the entire
training set. To counter this, we have implemented a greedy method that selects
the most beneficial instance repeatedly until this requirement is fulfilled. The pseu-
docode is shown in 9.1.

LISTING 9.1: Greedy Initial Sample

def Ini tSample (I , p a r t i t i o n s , n = 1) :
for each i n s t a n c e ∈ I :

s core [i n s t a n c e] = 0
score [i n s t a n c e] += 1

for each pseudoclass in p a r t i t i o n s where
samples for pseudoclass < n
and p a r t i t i o n [i n s t a n c e] == pseudoclass

return argmax (score)

The results are averaged over 50 runs as mentioned in 7, using the F1-score.
For each Active Class Selection method, we first considered all numbers of pseu-

doclasses from 3 to 8, with a single partition. This allows us to compare the methods
to each other, as well as the number of needed pseudoclasses.

Increasing the number of partitions is expected to increase the performance, but
only according to the effectiveness of the method itself. Thus, we can properly com-
pare the methods and pseudoclasses hyperparameter with only a single partition.
However, for comparing to the baseline we will then increase the number of parti-
tions to get a more reasonable performance.

9.1 Redistricting

The results for the Redistricting method are shown in figure 9.1.

56 Chapter 9. Active Pseudo-Class Selection

FIGURE 9.1: Comparison of the F1-score of the Redistricting method
and the random baseline, on the UCI datasets.

There does not seem to be a significant difference in the number of pseudoclasses,
as they all follow a similar trajectory. The most significant difference is the trajectory
of the Wine dataset, where a lower number of pseudoclasses results in a dip in per-
formance in the learning curve: here, a higher number of pseudoclasses seems to
give a better performance. For the other two datasets—the Breast Cancer and the
Heart Disease dataset—the number of 5 pseudoclasses seems to give better results.

9.2. Accuracy Improvement 57

However, this does not seem to be significant, and the performance is not generally
better or worse with a higher or lower number of pseudoclasses. Thus, it does not
seem to be groundbreaking what value we select for this variable.

Table 9.1 shows the Data Utilization Rate values for each number of pseudo-
classes (with number of partitions = 1, as such a lower performance is expected).

TABLE 9.1: The Data Utilization Rate results for Redistricting, using
the F1-score.

Logistic Regression Support Vector Machine
n BreastCancer HeartDisease Wine BreastCancer HeartDisease Wine
3 2.28 0.53 3.42 2.17 3.68 4.20
4 2.28 0.68 3.45 1.93 2.70 3.84
5 1.92 0.66 0.21 1.23 2.68 3.16
6 2.12 1.63 0.25 1.63 0.51 3.40
7 2.72 0.66 0.25 1.73 2.41 2.76
8 2.24 0.74 0.29 1.63 2.41 2.00

As seen in the figures, for the Wine dataset a higher number seems to perform
better; for the other two datasets, the sweet spot seems to be around 5 or 6 pseudo-
classes. This is confirmed by the AUC statistic as seen in 9.2. Note: the F1@80% and
F1@90% metrics are excluded, as their values are too similar (as can be seen in the
learning curve).

TABLE 9.2: The Area Under the Curve results for Redistricting, using
the F1-score.

Logistic Regression Support Vector Machine
n BreastCancer HeartDisease Wine BreastCancer HeartDisease Wine
3 0.57 0.73 0.77 0.54 0.71 0.75
4 0.57 0.74 0.78 0.54 0.72 0.76
5 0.58 0.74 0.78 0.57 0.73 0.78
6 0.57 0.74 0.79 0.56 0.73 0.77
7 0.56 0.74 0.80 0.55 0.72 0.79
8 0.57 0.74 0.80 0.58 0.73 0.79

9.2 Accuracy Improvement

The results for the Accuracy Improvement method are shown in figure 9.2.

58 Chapter 9. Active Pseudo-Class Selection

FIGURE 9.2: Comparison of the F1-score of the Accuracy Improve-
ment method and the random baseline, on the UCI datasets.

When compared to the results with the Redistricting method, there is a bit more
variance albeit with the same general results: with the Wine dataset, selecting a
higher number of pseudoclasses gives the better results—for the other two datasets
such a thing cannot generally be said and selecting a more inbetween value of 5 or 6
seems appropriate. Although, it should be noted that this does not seem to be true
for the combination of the Heart Disease dataset and the Support Vector Machine

9.3. PAL-ACS 59

classifier.
Table 9.3 shows the Data Utilization Rate values for each number of pseudo-

classes (with number of partitions = 1, as such a lower performance is expected).

TABLE 9.3: The Data Utilization Rate results for AccuracyImprove-
ment, using the F1-score.

Logistic Regression Support Vector Machine
n BreastCancer HeartDisease Wine BreastCancer HeartDisease Wine
3 2.32 3.84 4.00 1.57 3.31 4.36
4 2.64 3.24 3.29 1.93 3.05 4.20
5 1.52 2.89 0.21 1.37 2.90 3.36
6 1.68 2.58 0.25 1.47 3.05 3.08
7 2.48 2.29 0.25 1.93 2.24 2.92
8 2.48 2.47 0.29 1.83 2.29 3.12

These values seem to indicate as previously with the Redistricting results. The
value of 5 or 6 pseudoclasses seems in general like a good value. This is confirmed
by the Area Under the Curve score, as shown in table 9.4. Although increasing
the number of pseudoclasses to 7 increases the results on same configurations very
slightly, the drop in results in other configurations is more significant. Selecting 5 (or
6) pseudoclasses gives the best overall results, and is never far off from optimal.

TABLE 9.4: The Area Under the Curve results for AccuracyImprove-
ment, using the F1-score.

Logistic Regression Support Vector Machine
n BreastCancer HeartDisease Wine BreastCancer HeartDisease Wine
3 0.60 0.71 0.75 0.58 0.69 0.72
4 0.56 0.72 0.77 0.55 0.70 0.74
5 0.61 0.73 0.77 0.57 0.71 0.76
6 0.59 0.72 0.79 0.57 0.72 0.77
7 0.56 0.73 0.78 0.55 0.72 0.77
8 0.58 0.72 0.78 0.57 0.72 0.77

9.3 PAL-ACS

The results for the PAL-ACS method are shown in figure 9.3.

60 Chapter 9. Active Pseudo-Class Selection

FIGURE 9.3: Comparison of the F1-score of the PAL-ACS method and
the random baseline, on the UCI datasets.

The results are mostly similar with regards to the optimal number of pseudo-
classes, to the Accuracy Improvement and the Redistricting results. For the Wine
dataset, a higher number seems to be better, while for the Breast Cancer dataset a
somewhat lower number gives better results.

Although the differences are not always major, we will have different optimal
values depending on the dataset.

9.4. The number of pseudoclasses 61

Table 9.5 shows the Data Utilization Rate values for each number of pseudo-
classes (with number of partitions = 1, as such a lower performance is expected).

TABLE 9.5: The Data Utilization Rate results for PAL-ACS, using the
F1-score.

Logistic Regression Support Vector Machine
n BreastCancer HeartDisease Wine BreastCancer HeartDisease Wine
3 0.92 0.76 4.67 0.80 2.68 4.40
4 1.56 2.66 5.08 1.37 2.61 4.08
5 1.68 1.68 0.29 1.40 1.51 4.96
6 1.36 0.95 0.25 1.10 1.44 3.44
7 1.76 1.58 0.25 1.57 1.41 4.12
8 1.60 1.03 0.29 1.23 1.39 4.36

These Data Utilization Rate values indicate that the optimal setting indeed differs
by dataset. For the Breast Cancer and Wine datasets, it is either lower or higher, for
the Heart Disease dataset it differs by classifier even and the best option seems to be
an intermediate value.

Additionally, we can look at the Area Under the Curve scores as displayed in
table 9.6 and we will be able to draw the same conclusions for each dataset. The
Breast Cancer dataset gets better results with a lower amount of pseudoclasses, the
Wine dataset gets better results with a higher number of pseudoclasses, and the
Heart Disease datasets gets the most consistent results with an intermediate number
of pseudoclasses.

TABLE 9.6: The Area Under the Curve results for PAL-ACS, using the
F1-score.

Logistic Regression Support Vector Machine
n BreastCancer HeartDisease Wine BreastCancer HeartDisease Wine
3 0.63 0.74 0.75 0.63 0.73 0.74
4 0.61 0.72 0.74 0.60 0.71 0.76
5 0.59 0.73 0.76 0.58 0.73 0.74
6 0.61 0.74 0.78 0.59 0.74 0.78
7 0.60 0.73 0.77 0.58 0.72 0.77
8 0.61 0.74 0.77 0.59 0.73 0.76

9.4 The number of pseudoclasses

It is hard to make a concrete statement about the optimal number of pseudoclasses.
The results show a variance in the results, implying no certainty about whether one
is better than the other. It is most likely also highly dependent on the dataset: all
three methods show that using only 3 or 4 pseudoclasses performs poorly on the
Wine dataset, while using 5 or more provides good results (even with k = 1).

In general, selecting n = 5 seems to give the most balanced results, which are
never far from the optimal results. As such, to compare the multiple Active Class
Selection methods to each other—and to the baseline—we will use n = 5.

Unfortunately, this problem does not allow hyperparameter tuning of this sort,
as discovering the dataset is done at the same time as the execution of the algorithm.

62 Chapter 9. Active Pseudo-Class Selection

This implies also the problem with this method as it is, and perhaps for this approach
to function properly, the number of pseudoclasses must be adjusted automatically.

9.5 Comparing Active Class Selection methods

For comparison, we use n = 5, k = 1. Figure 9.4 shows the results on each dataset
for each method.

FIGURE 9.4: Comparison of the three ACS methods on the UCI
datasets.

These results (9.4) seem to indicate a volatility in the results of Accuracy Im-
provement. In the last two datasets—which we have previously seen are the most
reasonable to expect better performance—show a dip in the results of Accuracy Im-
provement.

The Redistricting method seems to give the most consistent results: the Accuracy
Improvement has volatile results as mentioned, while the PAL-ACS method gives
worse results for the Wine dataset. The only decrease in results of the Redistricting
method is during the early phases of the Breast Cancer dataset, which is less relevant.

9.6 Increasing the number of partitions

In the previous sections, we have determined that the selection of parameters with
the most consistently good results is the combination of Redistricting as the Active
Class Selection method and n = 5. So far, we have been using k = 1 for comparison

9.6. Increasing the number of partitions 63

sake (and to reduce computation complexity), but to compare to the random base-
line and get true expected results, we will increase k to 10. Now, we will compare
Redistricting with n = 5, k = 10 to the random selecction baseline.

FIGURE 9.5: Comparison of the F1-score of the Redistricting method
with increased number of partitions and the random baseline, on the

UCI datasets.

As can be seen in figure 9.5, the results are unfortunately disappointing. For
the latter two datasets, the results are similar to the random baseline—no significant
difference in performance—whereas the performance with the Breast Cancer dataset
is significantly better when using the Random baseline method.

As such, we do not recommend further usage of the Active Pseudo Class Selec-
tion method for the Active Selection of Classification Features.

65

Chapter 10

Expectation Maximization

As was shown in chapter 8, the most effective utility methods for our problem are
AVID and Probability-based. As such, we will use these as our utility method for
this approach as well. This approach can possibly give us a more representative
indication of the true utility of an instance, removing the variance from using a single
instance.

Figures 10.1 and 10.2 indicate that the relevance of the number of clusters differs
by dataset: for both methods the results are similar. The Breast Cancer implies that
the number of clusters benefits from a higher value; while for the Wine dataset a
similar factor is implied albeit less significant. For the Heart Disease, there does not
seem to be much correlation and the results is near-identical for each value.

TABLE 10.1: Data Utilization Rates for the EM-based approach, with
the AVID utility method.

Logistic Regression Support Vector Machine
n BreastCancer HeartDisease Wine BreastCancer HeartDisease Wine
3 2.96 0.53 0.54 2.40 0.59 2.32
4 3.04 0.61 1.17 2.33 0.61 1.44
5 2.68 0.58 1.1 2.13 1.0 1.4
6 2.20 0.68 1.21 1.93 0.80 1.36
7 1.00 1.00 0.38 1.17 1.64 3.24
8 1.12 0.34 0.92 1.57 0.59 1.28

TABLE 10.2: Data Utilization Rates for the EM-based approach, with
the Probability-based utility method.

Logistic Regression
n BreastCancer HeartDisease Wine
3 3.52 0.37 2.63
4 3.48 0.34 1.83
5 3.48 0.34 1.71
6 0.72 0.26 1.83
7 0.60 0.42 0.33
8 0.76 0.42 0.42

This is also reflected in the data utilization rates in tables 10.1 and 10.2. The
probability-based method provides consistent sub-1 results for n = 7 and n = 8,
which indicates that this method works well with this approach, with those param-
eters. The AVID method generally indicates the same thing, although it should be
noted that the method performs generally worse with the Support Vector Machine
classifier which is notable.

66 Chapter 10. Expectation Maximization

FIGURE 10.1: Comparison of the F1-score of the AVID utility method
with varying number of clusters, on the UCI datasets.

10.1 Automatic tuning of number of clusters

Looking at tables 10.1 and 10.2, we can generally conclude that a value of n = 7
should provide reliable results.

However, the optimal number of clusters might depend on the dataset and even
the current selection of instances of this dataset. Tuning this hyperparameter for

10.1. Automatic tuning of number of clusters 67

FIGURE 10.2: Comparison of the F1-score of the Probability-based
utility method with varying number of clusters, on the UCI datasets.

the dataset is not easily applicable for real-world instances though, as the dataset is
unknown at the start of the experiment.

As opposed to the APCS approaches (as defined in chapter 5) though, known
methods exist with which we can try to automatically determine the number of clus-
ters or components of the Gaussian mixture model. We will use these methods to
see if they can help improve our performance.

We will use a varational Bayesian estimation of a Gaussian Mixture using a

68 Chapter 10. Expectation Maximization

Dirichlet process [8, 5, 9] as implemented in scikit-learn [50], as well as a method
that fits on a range of possible values and selects the highest scoring value—either
with the BIC score [56] or the AIC score [2].

The results are shown in figure 10.3 and table 10.3. An initial look at the Data
Utilization Rates show an indication that automatically determining the number of
clusters with this straightforward manner does not actually increase performance.
Whereas using a set number such as simply using 3 clusters allows sub-1 rate for
three of the dataset/classifier combinations, this is only true for one or two combi-
nations for all automatic methods.

FIGURE 10.3: Comparison of the F1-score of the different tuning
methods of number of clusters with the AVID utility method, on the

UCI datasets.

TABLE 10.3: Data Utilization Rates for the EM-based approach and
the AVID utility method, with estimation of number of components.

Logistic Regression Support Vector Machine
method BreastCancer HeartDisease Wine BreastCancer HeartDisease Wine
Dirichlet 2.08 1.47 1.38 1.90 0.78 2.28
BIC 1.76 0.66 1.50 1.03 1.12 2.24
AIC 1.16 0.74 1.58 2.03 0.83 1.88

Perhaps this is due to adding a layer of complexity in an already complex prob-
lem. We are fitting the Gaussian mixture model on a subset of the complete dataset,
and as such we might say that the automatic methods are more prone to overfitting.

10.2. Comparison to baseline 69

This is because they have the possibility to increase the number of components quite
easily if it allows a better description of this subset.

However, it should be noted that comparing active learning methods is not as
simple as this one metric, and looking at the plots does show that these methods
perform significantly better at the Breast Cancer dataset than using a relatively low
number of components. Still, there is a decrease in performance when compared
to random sampling. As such, we can conclude that this increase in performance
is more due to less bias in its samples, but not in better selection. The complexity
of the Breast Cancer dataset punishes methods with high bias, but does not reward
interesting selection methods.

10.2 Comparison to baseline

To evaluate the effectiveness of the Expectation Maximization-based approach, we
compare it to the Random baseline: we should expect it to get some reasonable im-
provements in at least some of the dataset/classifier combinations. We will compare
n = 7 and BIC to the Random baseline: previous sections have shown that these are
the most consistently stable results.

Figures 10.4 and 10.5 show the learning curves compared to the learning curve
of the random baseline. The results show that automatically tuning the number of
clusters can cause a significant dip in the curve; while it can indicate an increase in
the latter part of the curve. Using a set value of 7 for the number of clusters gives
more consistent results and can cause improvements upon the Random baseline—
although it can also cause some dips when compared to the baseline.

70 Chapter 10. Expectation Maximization

FIGURE 10.4: Comparison of the F1 score of the EM-based approach
and the AVID utility method and the random baseline, on the UCI

datasets.

10.2. Comparison to baseline 71

FIGURE 10.5: Comparison of the F1 score of the EM-based approach
and the Probability-based utility method and the random baseline, on

the UCI datasets.

Tables 10.4 and 10.5 show the relevant statistics for these three methods. What
these figures illustrate are where each method performs best, as one statistic cannot
summarize an entire learning curve properly, but can indicate strengths and weak-
ness of a learning curve.

Looking at the statistical figures for the Probability-based method, we can see
that the Data Utilization Rates are excellent: both parameter settings result in a
sub-1 rate for each dataset. However, the F1@80% shows only improvement upon
random selection for one dataset. This indicates that using this approach with the
Probability-based method results in improvement early on in the process, while con-
forming to random later on.

For the BIC parameter with the AVID utility method, the opposite seems to be
true. The Data Utilization Rates are not as interesting, but for most dataset and
classifier settings (and for all datasets with Logistic Regression), the F1@80% score
shows improvement upon random selection. So, one would expect a slow start but
ultimately an improvement upon random selection with a significant enough sam-
ple set size.

Both these suspicions can be confirmed in the learning curves 10.5 and 10.4. This
indicates that the correct approach to take for a problem can also depend on the
wanted effect: are we only able to query a minimal amount of instances, or do we
want to shave off the last few unnecessary ones and gain an improvement with a
larger set? For the former goal, we would prefer the Probability-based method, for
the latter we would prefer the AVID utility method with parameter tuning.

72 Chapter 10. Expectation Maximization

TABLE 10.4: Numerical results for the EM-based approaches, with
the AVID utility method. Improvements upon random selections are

bolded.

Logistic Regression Support Vector Machine

Breast
Cancer

Heart
Disease

Wine Breast
Cancer

Heart
Disease

Wine

n = 7 DUR 1.00 1.00 0.38 1.17 1.63 1.24
AUC 0.65 0.76 0.81 0.63 0.75 0.81
F1@80% 0.71 0.79 0.82 0.72 0.78 0.84
F1@90% 0.71 0.79 0.82 0.72 0.77 0.83

BIC DUR 1.76 0.66 1.50 1.03 1.12 2.24
AUC 0.64 0.76 0.80 0.61 0.75 0.79
F1@80% 0.72 0.78 0.86 0.71 0.78 0.83
F1@90% 0.71 0.78 0.85 0.71 0.77 0.85

Random DUR 1 1 1 1 1 1
AUC 0.66 0.75 0.79 0.64 0.75 0.81
F1@80% 0.71 0.77 0.82 0.71 0.77 0.85
F1@90% 0.71 0.77 0.82 0.72 0.77 0.85

TABLE 10.5: Numerical results for the EM-based approaches, with
the Probability-based utility method. Improvements upon random

selections are bolded.

Logistic Regression

Breast Cancer Heart Disease Wine

n = 7 DUR 0.60 0.42 0.33
AUC 0.65 0.77 0.81
F1@80% 0.69 0.79 0.82
F1@90% 0.70 0.78 0.82

BIC DUR 0.80 0.34 0.38
AUC 0.64 0.77 0.74
F1@80% 0.67 0.79 0.74
F1@90% 0.71 0.78 0.79

Random DUR 1 1 1
AUC 0.66 0.75 0.79
F1@80% 0.71 0.77 0.82
F1@90% 0.71 0.77 0.82

73

Chapter 11

Comparing the Approaches

In the previous chapters (8, 9, 10) we considered and evaluated each approach and
examined their results and potential parameter configurations. We concluded what
methods and parameter settings worked well, and what methods and parameter
settings had subpar results. In this chapter, we compare the three approach to see
what method generally provides the best results.

We will compare the methods as described in table 11.1, as these showed the most
consistent or best results in the previous chapters. Although the APCS approach
showed lackluster results, we will include one configuration for referential purposes.
The approaches with the Probability-based utility method (suffixed with —Prob)
will only be compared using the Logistic Regression classifier.

Approach Parameters

Active Classification Feature Acquisition—AVID B = 10, λ = 1
Active Classification Feature Acquisition—Prob b = auto
Active Pseudo-Class Selection—Redistricting n = 5, k = 10
Expectation Maximization—AVID n_clusters = 7, B = 10
Expectation Maximization—Prob n_clusters = 7, b = auto
Random -

TABLE 11.1: The approaches and configurations which we will com-
pare to each other.

The learning curves are as shown in figure 11.1, using the F1-score. For addi-
tional insight, the learning curves using the ROC AUC score are shown in figure
11.2.

The differences for the approaches are, as in all previous experiments, dependent
on the dataset (and the classifier). The Active Pseudo-Class Selection performs better
than expected on the Heart Disease and the Wine datasets, but most significantly
performs very poorly on the Breast Cancer dataset.

In general, it is hard to draw any conclusions from the Heart Disease dataset: all
approaches perform similarly; the only that differs from the rest is the ACFA-Prob
approach, which does so in a negative way. The Wine dataset shows that the ACFA-
AVID approach has a bit more disappointing results compared to the other methods,
while the Expectation Maximization-based approach seem to perform slightly better
thajn the other ones.

The Breast Cancer dataset displays the most significant differences in perfor-
mance when looking at the learning curves. The Active Pseudo-Class Selection
method has, as mentioned, very poor performance with this dataset. The approaches
using the AVID utility method, seem to have inconsistent performance here: with a
mediocre start in the process but improving later on. The Probability-based methods

74 Chapter 11. Comparing the Approaches

FIGURE 11.1: Comparison of the F1-score of the selected approaches
and configurations, on the UCI datasets.

provide the most consistent results; with a decent start but being overtaken by the
AVID utility methods when enough instances are sampled.

The resulting metrics as defined in chapter 7 are shown in table 11.2.
The combination of all these metrics allows us to consider multiple aspects si-

multaneously: the approaches, the classifiers, the datasets, and specific aspects of
the learning curves.

Considering the datasets first, these metrics show that all approaches are not
able to consistenly improve upon the baseline for the Breast Cancer dataset, and this
dataset thus creates a more complicated problem. It should be noted that although
this dataset is hard for all approaches, the results do differe significantly as this is
likely where unwanted bias can be introduced for the approaches.

The ACFA-AVID approach has a slightly (negligible) above 1 Data Utilization
Rate, but is able to improve upon the F1 score when only 80% of the instances are
able to sampled and is thus appropriate for scenarios where a similar amount of
instances can be queried. The EM-Prob approach is able to obtain a lower Data
Utilization Rate, at the cost of a lower F1 score at 80% and 90% of all instances; and
could thus be appropriate for small query sets.

Chapter 11. Comparing the Approaches 75

FIGURE 11.2: Comparison of the ROC AUC-score of the selected ap-
proaches and configurations, on the UCI datasets.

The Active Pseudo Class Selection is an outlier here when concerning Area Un-
der the Curve. Although this metric simplifies the entire learning curve into only
one number, it can still be a good general indication of the entire curve which the
other metrics cannot. It is only 0.57 and 0.54 which is almost 0.1 lower than all the
other approaches: this is a representation of the huge dip in the curve as seen in the
figures 11.1.

The Heart Disease datasets provides a much more approachable problem, and
has better results for most classifiers (considering for now the Logistic Regression
model). Especially the AVID utility method-based approaches (ACFA and EM) have
consistently better (or at least as good) results in every metric. This implies that
we can expect the entire learning curve to consistently improve upon the random
baseline. The same is true for the EM-Prob approach. The ACFA-Prob and APCS
approaches provide an improved Data Utilization Rate, but not much more than
that.

The Wine dataset (considering for now the Logistic Regression model) allows
for a consistent improvement upon the Data Utilization Rate for all approaches, as
well as the Area Under the Curve. However, with the exception of the ACFA-Prob

76 Chapter 11. Comparing the Approaches

TABLE 11.2: All numerical results for comparing the several ap-
proaches. Improvements upon random selections are bolded.

Logistic Regression Support Vector Machine

Breast
Cancer

Heart
Disease

Wine Breast
Cancer

Heart
Disease

Wine

ACFA-AVID DUR 1.08 0.26 0.29 1.13 0.24 0.40
AUC 0.64 0.77 0.78 0.63 0.76 0.80
F1@80% 0.73 0.79 0.80 0.72 0.77 0.83
F1@90% 0.71 0.77 0.81 0.72 0.77 0.84

ACFA-Prob DUR 2.36 0.34 0.46
AUC 0.64 0.74 0.81
F1@80% 0.71 0.76 0.82
F1@90% 0.72 0.77 0.83

APCS DUR 2.16 0.71 0.29 1.80 0.83 2.40
AUC 0.57 0.75 0.80 0.54 0.74 0.81
F1@80% 0.71 0.77 0.82 0.69 0.77 0.85
F1@90% 0.71 0.77 0.82 0.72 0.77 0.85

EM-AVID DUR 1.00 1.00 0.38 1.17 1.63 1.24
AUC 0.65 0.76 0.81 0.63 0.75 0.81
F1@80% 0.71 0.79 0.82 0.72 0.78 0.84
F1@90% 0.71 0.79 0.82 0.72 0.77 0.83

EM-Prob DUR 0.60 0.42 0.33
AUC 0.65 0.77 0.81
F1@80% 0.69 0.79 0.82
F1@90% 0.70 0.78 0.82

Random DUR 1 1 1 1 1 1
AUC 0.66 0.75 0.79 0.64 0.75 0.81
F1@80% 0.71 0.77 0.82 0.71 0.77 0.85
F1@90% 0.71 0.77 0.82 0.72 0.77 0.85

they cannot make improvements upon the query set of 80% or 90%. This implies
that perhasp there is not much to improve in the latter stages of the process, but
all approaches consistently find improvement in the earlier stages where this is still
possible.

Finally, it should be noted that the results for the Support Vector Machine clas-
sifier model are generally worse than the results for the Logistic Regression model
(although not for every configuration).

Unfortunately, it is hard to give a clear-cut conclusion about the ’best’ approach.
There is no approach that provides consistently better-than-random results for the
entire learning curve, for all classifiers and datasets. On the other hand, there is
no possibility for trial-and-error decisions of this kind, as the experiments are being
performed as they are evaluated. This is discussed more extensively in part IV.

77

Chapter 12

Case Study: Schizophrenia
Prediction

In this chapter, we consider the real-world problem of the prediction of schizophre-
nia diagnosis based on MRI scans. This dataset originally is from [46], and has been
reused for our purpose. In the previous four chapters—8, 9, 10, 11, we compared the
approaches and deduced the most effective approaches based on benchmark and
synthetic datasets. We will now use those methods with the setting of schizophrenia
prediction, hoping to reduce the number of MRI scans needed for a similar perfor-
mance.

12.1 Evaluation

Whereas we used just the F1-score in the previous chapters (as defined in chapter
refchap:methodology) to evaluate the approaches on the benchmark and synthetic
datasets, we will use both the F1-score and the well-known and straightforward ac-
curacy score for this case study. This performance measure is regularly used in sim-
ilar research, as well as in the previous study [46]. We will still use the F1-score, as
some of the data is not balanced regarding the binary labels and as such the F1-score
is able to illustrate more properly the performance compared to random guessing
the majority class. To illustrate the imbalance between the binary labels, table 12.1
shows the number of labels for both configurations of the dataset.

TABLE 12.1: The binary label imbalance in both configurations of the
dataset.

0 1 Total

Instances with IQ feature 400 233 633
All instances 489 325 814

As our goal for this case study is to reduce the number of instances needed with
similar performance, we will evaluate primarily using the learning curve with a
focus on the mid-to-latter part of the curve.

Although additionally we would be interested in if the performance would be
increased with the same number of samples, we can not evaluate this as we can only
sample from the existing real-world instances. The last instances are in a way forced
as well, as only the remaining instances can be selected. Thus, the goal of reducing
the instances needed can represent this goal as well: only with a smaller training set.

78 Chapter 12. Case Study: Schizophrenia Prediction

Perhaps the model could also improve on the final model, by being able to filter
out instances that are detrimental. This does not seem likely though, as the instances
that are detrimental are generally outliers and thus hard to predict or estimate.

12.2 Exploring the dataset

The dataset consists of a set of selection features—age, sex and IQ—and a much
larger set of classification features, as well as a binary label. These classification fea-
tures consist of: the rotation of the left and right hemisphere, the volume of multiple
subcortical areas, and for 68 cortical areas of interest is defined the cortical thickness,
the volume and the area.

To get some ideas about the dataset, we have done some preprocessing and fitted
several classification algorithms on the entire dataset (via passive learning). This
allows us to get an idea of the dataset and what is reasonable regarding expected
performance, as well as the appropriate models.

12.2.1 Preprocessing

The dataset needs some basic preprocessing. Two rows are faulty (5 and 481), and
are dropped. The IQ value is missing for a significant amount of instances, as such
we will run the experiment both without the IQ score (and thus a larger dataset size)
and with the IQ score (but more instances with missing values filtered out).

318 Rows contain missing values, such as the diagnosis of the patient or the IQ
score, which are all dropped as well leaving 633 rows to be included. For the instan-
tiation of the experiment without IQ scores, 814 rows are included.

All MRI features are standardized, such that the mean µ equals 0, and the stan-
dard deviation σ equals 1.

A subset of the features should also be removed: all features concerning the puta-
men, caudate, and pallidum values. These form the stratium, which is known to be
influenced by antipsychotic medication. These features can thus be used to find pa-
tients using medication, instead of patients diagnosed.

This leaves a dataset consisting of 633 or 814 instances, all with two or three
selection features—age, sex and IQ, 264 classification features deduced from the MRI
scans, and a binary label.

12.2.2 Classification algorithms

Using the dataset, we have fitted and evaluated several classification algorithms for
the purposes of considering the most appropriate classifier models for this task. For
explainability reasons, random forest and neural network methods are excluded. Other
than those two, we used standard methods. The results are shown in table 12.3.

The classifiers are evaluated via 5-fold cross-validation. The dataset is split up
into five folds, with each fold being used as the test set once; the other four folds are
then the training set. The average accuracy of those five runs is then its final metric.
Note that for this evaluation, we included all instances without an IQ score but oth-
erwise complete. These results show that SVM-RBF and Logistic Regression are the
most well-fitted models for this problem, and will be used for this experiment.

It should be noted that these results are meant to illustrate the most fit classifier
models for our problem and thus tuned the hyperparameters on the full dataset, but
for our experiments we will use default parameters for reasons explained in chapter
7. As mentioned, this is expected to slightly decrease the performance during the

12.2. Exploring the dataset 79

experiments, but it allows us to more fairly evaluate and compare the several ap-
proaches. The values for these parameters are as mentioned in chapter 7, and seen
in table 12.2. In the real-world scenario, one would tune the hyperparameters to
increase performance, but in this scenario we aim to construct a setting as similar as
possible.

TABLE 12.2: The hyperparameters used for both classifier models.

Classifier Parameters

Logistic Regression C = 1.0, L2
Support Vector Machine (RBF) C = 1.0, γ = 1

n_features·var(X)

TABLE 12.3: The results for each classification algorithm on the
dataset.

Classifier Accuracy

k-Nearest Neighbors 0.642
Support Vector Machine (linear) 0.671
Support Vector Machine (RBF) 0.688
Support Vector Machine (polynomial) 0.644
Logistic Regression 0.700

12.2.3 Random sampling

To get an idea of the difference in information between instances, we can consider
the random sampling method. This is simple to implement—and does not use the
selection features—and can be tested with the methodology described in Section 7.1.

Although it must be taken into account that because this sampling is random and
unorchestrated, with the high number of samples the ’good’ runs will be subdued.
Still, if there is a significant variance within the best and worst runs, it shows that
there is the possibility of selecting more favorably or less favorably.

Figure 12.1 shows the quartiles of 100 runs, with both support vector machines
and logistic regression.

(A) Random sampling with the RBF kernel. (B) Random sampling with Logistic Regression.

FIGURE 12.1: Performance of the random sampling baseline, quar-
tiles of 100 runs.

80 Chapter 12. Case Study: Schizophrenia Prediction

Figure 12.2 shows the distribution of the area under the learning curve for each
run. Although area under the curve is not the most effective measure, ones such as
Data Utilization Rate (7.1) are not as easy applicable for random sampling, and the
area under the curve still allows us good insight into the difference inbetween runs.

(A) Random sampling with the RBF kernel. (B) Random sampling with Logistic Regression.

FIGURE 12.2: Distribution of the random sampling performance, area
under the curve.

As can be seen from both of these figures, even within the random sampling
approach there can be seen a notable difference in performance between runs. Al-
though most runs fall within a smaller range, some runs are noticably better than the
others. If it is possible to consistently sample runs in similar performance to these,
that is already an improvement. If improvement can be found on the better random
sampling runs, that is even better.

12.2.4 Feature selection

The dataset contains 264 MRI features, which can be used for classification. In reality,
not all of these features might prove to be useful for prediction. Some features might
actually be detrimental to prediction, especially when a larger number of features
are present: this can make it more complicated for the model to converge. Even
when there are no detrimental features, we still might consider reducing the feature
set. Working with a large feature set incurs extra computational costs, so working
with less features can make for a more computationally efficient model.

There are many feature selection methods out there. For our case, we consider
those that are focused on numerical inputs and binary categorical outputs. Prefer-
ably, we use filter methods so we can keep the feature set consistent for all potential
classifiers.

ANOVA

For the case of binary classification with numerical inputs, one of the most used filter
methods is known as ANOVA (Analysis of Variance) [58]. With ANOVA, we analyse
the variance between each feature and the binary output label. The features with the
most between-group variance with the output, is most informative.

Figure 12.3 shows the performance of the model (with default hyperparame-
ters) based on the number of features, where the k best features are selected using
ANOVA.

12.2. Exploring the dataset 81

(A) Feature selection results with the RBF kernel,
without IQ features (and thus more instances).

(B) Results with Logistic Regression, without IQ
features (and thus more instances).

(C) Feature selection results with the RBF kernel,
with IQ features.

(D) Results with Logistic Regression, with IQ fea-
tures.

FIGURE 12.3: Results of 5-fold cross validation with k features se-
lected by ANOVA.

The figures show that the performance can actually be increased by reducing
the number of features. If the IQ score is included as a selection feature, around 120
classification features seems to provide the best results—and is significantly more ef-
ficient than using all 264 features. When not using the IQ score, the optimal number
of features is somewhat higher, around 150 to 200.

Other than the optimal performance, this figure shows that the number of fea-
tures can be reasonably reduced without a significant drop in performance.

Table 12.4 shows the ten most influential, and ten least influential features as
selected by ANOVA.

82 Chapter 12. Case Study: Schizophrenia Prediction

Feature F-Value

rh_parsopercularis_CT 33.4173
rh_lingual_CT 32.6225
lh_phcg_CT 31.7673
rh_rostralmiddlefrontal_-
CT

30.2867

rh_lateralorbitofrontal_-
CT

30.1568

lh_temporal_CT 29.7408
lh_fusiform_CT 29.5005
rh_frontal_CT 28.9450
lh_superiorfrontal_CT 28.8622
rh_insula_CT 28.8752

(A) Top 10 most relevant features without IQ fea-
tures (and thus more instances).

Feature F-Value

rh_frontalpole_CT 0.0000
lh_pericalcarine_VOL 0.0000
rh_paracentral_area 0.0000
lh_posteriorcingulate_VOL 0.0002
lh_accumbens_VOL 0.0003
lh_supramarginal_area 0.0003
lh_frontal_pial_area 0.0012
rh_posteriorcingulate_VOL 0.0024
lh_caudalanterior- cingu-
late_area

0.0027

lh_cingulate_pial_area 0.0043

(B) Top 10 least relevant features without IQ fea-
tures (and thus more instances).

Feature F-Value

lh_parstriangularis_CT 25.70
rh_lateralorbitofrontal_CT 24.43
lh_phcg_CT 23.90
rh_parsopercularis_CT 23.64
lh_lateralorbitofrontal_CT 23.59
lh_superiorfrontal_CT 22.93
rh_rostralmiddlefrontal_CT 22.92
lh_inferiortemporal_CT 22.13
lh_middletemporal_CT 21.64
lh_temporal_CT 21.53

(C) Top 10 most relevant features with IQ fea-
tures.

Feature F-Value

lh_middletemporal_area 0.0000
rh_temporalpole_VOL 0.0000
lh_bankssts_VOL 0.0001
rh_posteriorcingulate_VOL 0.0005
lh_insula_VOL 0.0008
cerebralWhiteMatter_VOL 0.0010
lh_amygdala_VOL 0.0021
rh_phcg_VOL 0.0023
lh_fusiform_area 0.0024
rh_cingulate_pial_area 0.0029

(D) Top 10 least relevant features with IQ fea-
tures.

TABLE 12.4: The most and least relevant features, as determined by
ANOVA. All features are suffixed by _freesurfer.

Recursive Feature Elimination

We can use recursive feature elimination to eliminate features [26], using the corre-
sponding classifier—and thus the selection of features is dependent on the classifier.
It selects features based on the cross-validated results. This method does not work
with RBF kernels and thus we show the results only for the logistic regression model
(figure 12.4). To accompany the experiments, default parameters are used.

12.3. Dimensionality Reduction for the Experiments 83

(A) Recursive feature elimination results with the
Logistic Regression model, with the instances

taken into account with missing values for IQ.

(B) Recursive feature elimination results with the
Logistic Regression model, with the instances re-

moved with missing values for IQ.

FIGURE 12.4: Recursive feature elimination results.

The optimal number of features found is respectively 33 and 9. Table 12.5 shows
those features.

Volume vs Cortical Thickness vs Area

The dataset contains three kinds of features: volume features, cortical thickness fea-
tures and area features. To get an idea of which of these feature sets can be the most
influential, we trained the classifiers on each of these feature subsets. The results are
shown in table 12.6.

Support Vector Machine (rbf)

Feature set Accuracy

Volume 0.704
Cortical Thickness 0.634
Area 0.580

Logistic Regression

Feature set Accuracy

Volume 0.698
Cortical Thickness 0.643
Area 0.576

TABLE 12.6: Comparing the subsets of features.

The results show that there is a significant difference between these feature sets,
with just Volume features performing around as well as the entire feature set, and
Area features performing much worse.

12.3 Dimensionality Reduction for the Experiments

For the experiments, we will use the feature selection as just described. We reduce
the number of features as mentioned to improve the performance of the classifier,
as well as reduce the complexity. We do this with the Recursive Feature Elimination
methods used previously for the Logistic Regression classifier, and with ANOVA for

84 Chapter 12. Case Study: Schizophrenia Prediction

Feature

lh_thalamus_VOL
lh_hippocampus_VOL
rh_thalamus_VOL
subcortgray_VOL
lh_inferiortemporal_CT
lh_middletemporal_CT
lh_parahippocampal_CT
lh_superiortemporal_CT
rh_inferiortemporal_CT
rh_lateralorbitofrontal_CT
rh_lingual_CT
rh_parsopercularis_CT
lh_inferiortemporal_VOL
lh_middletemporal_VOL
lh_parahippocampal_VOL
lh_superiortemporal_VOL
lh_insula_VOL
rh_fusiform_VOL
rh_inferiortemporal_VOL
rh_lateralorbitofrontal_VOL
rh_supramarginal_VOL
lh_inferiortemporal_area
lh_middletemporal_area
lh_parahippocampal_area
lh_superiortemporal_area
lh_insula_area
rh_fusiform_area
rh_inferiortemporal_area
rh_lateralorbitofrontal_area
rh_posteriorcingulate_area
rh_superiortemporal_area
lh_frontal_pial_area
rh_cingulate_pial_area

(A) Feature set found without the IQ selection
feature.

Feature

lh_hippocampus_VOL
rh_thalamus_VOL
subcortgray_VOL
lh_inferiortemporal_CT
rh_lateralorbitofrontal_CT
lh_inferiortemporal_VOL
rh_lateralorbitofrontal_VOL
lh_inferiortemporal_area
rh_lateralorbitofrontal_area

(B) Feature set found with the IQ selection fea-
ture.

TABLE 12.5: Optimal feature sets found. All features are suffixed by
_freesurfer.

the Support Vector Machine classifier (as the Recursive Feature Elimination method
is not available with the RBF kernel). For this, we use the top 10% of features as also
in [46]. This set of classification features and the known labels are used during the
evaluation step, where we retrain the classifier model given all sampled instances.

12.4 Experimental Results

For this section, we will consider the approaches that we considered in chapter 11 to
be most appropriate for this problem. These approaches are listed in table 12.7.

12.4. Experimental Results 85

Approach Parameters

Active Classification Feature Acquisition—AVID B = 10, λ = 1
Active Classification Feature Acquisition—Prob b = auto
Expectation Maximization—AVID n_clusters = 7, B = 10
Expectation Maximization—Prob n_clusters = 7, b = auto
Random –

TABLE 12.7: Comparing the subsets of features.

The learning curves are displayed in figures 12.5 (using the accuracy score) and
12.6 (using the F1-score).

FIGURE 12.5: The learning curves of the experiments, using the accu-
racy score.

The learning curves displaying the accuracy score by number of sampled in-
stances seems to display no advantage of any of the methods over the random base-
line. We can note some things though, when looking at these curves: most notably,
the Expectation Maximization-based approach using the AVID utility method seems
to generally give subpar results: only in the combination of using the Logistic Re-
gression classifier model on the IQ-based dataset does its learning curve not notica-
bly decrease upon the random curve. This is especially noticable with the Support
Vector Machine-based learning curves.

In the one configuration just mentioned where EM-AVID performs up to par,
the Acitve Classification Features Acqusition approach using the Probability-based

86 Chapter 12. Case Study: Schizophrenia Prediction

utility method performs subpar: up until when most of the instances are queried its
accuracy score is lower than that with random sampling.

Finally, the Active Classification Feature Acqusition approach using the AVID
utility method seems to perform better than the random baseline, only with the Lo-
gistic Regression model. It has a higher accuracy score at some points in the learning
curve, while never having a lower one.

FIGURE 12.6: The learning curves of the experiments, using the F1-
score.

When considering the learning curves displaying the F1-score, the results are sig-
nificantly different and suggest notable advantages of using an informed selection
approach instead of the random baseline. This difference is in all likelihood due to
the imbalanced label distribution in the dataset, which the F1-score is able to more
accurately display (and more similar to what the approaches aim to optimize than
the accuracy score).

First, we will consider the differences with the Logistic Regression classifier model
(as this supports all approaches, while having less erratic results). In both configura-
tions of the dataset, three out of the four approaches are able to consistently improve
over the random baseline for the entire process of the learning curve. The fourth ap-
proach in both cases (respectively EM-AVID and ACFA-AVID) improves upon the
random baseline given a reasonable number of sampled instances—depending on
the expected use case.

In both configurations of the dataset, the two approaches using the Probability-
based utility method consistently improve upon the random baseline. This suggests

12.4. Experimental Results 87

that if these approaches would have been used in the real-world scenario, the num-
ber of needed instances could have been reduced or the performance with the same
number of instances could have been improved.

This is especially support by looking at the end of the learning curve. In the
case of the learning curve of the random baseline, it consistently increases until it
reaches its best performance score at the end—as makes sense, as more information
is obtained. However, for these two approaches, the learning curve is able to reach
its most optimal performance much earlier, and even decreases near the end. This
means that these approaches are able to filter out the instances with negative usefulness.
These are instances that do not make sense with the rest of the dataset or the model,
and thus we can say that these approaches are able to select instances in a useful
manner.

As for the results with the Support Vector Machine classifier, these are more
erratic—and missing the two Probability-based approaches which perform best. How-
ever, we can still note some important information. The ACFA-AVID method pro-
vides the most erratic results, and mostly provides a more unreliable learning curve
than the random baseline. However, the EM-AVID method provides more consis-
tent and useful results, especially with the complete dataset. As can be seen, it very
significantly improves upon the random baseline and displays the same pattern as
just mentioned where it drops in the end of the curve, but even more significantly.
This again means it is able to select what instances are and are not useful in a good
manner.

To aid these learning curves, we can also analyze the statistics as mentioned in
chapter 7. Again, these are separated by classifier model, configuration of the dataset
and performance metric.

The results considering the accuracy score are shown in table 12.8, and they
broadly confirm what we were already able to conclude from the learning curves.

Broadly speaking, when looking at the accuracy score, there is no significant
change in performance when considering the mentioned approaches compared to
the random baseline. The exception here is the EM-Prob method, which provides
consistent results especially with the complete dataset. The ACFA-AVID method
also provides solid results, most notably with the IQ-based dataset.

The more significant results can again be seen in the results considering the F1-
score, as shown in table 12.9. These statistics mostly confirm and conform to the
conclusions we drew earlier from the learning curves. Considering the Logistic Re-
gresion classifier model, all four approaches are able to improve upon every single
statistic for both dataset configuration (with two exceptions where it is equal). Here
is where we can see the potential of using these approaches.

The Probability-based utility methods seem to be the most consistent, when con-
sidering the F1@80% and F1@90% statistics, with consistent improvement. This is
not surprising when looking at figure 12.6. Similarly, the EM-AVID method has
very significant improvements for the Support Vector Machine classifier model.

All in all, we can consider these approaches to be very useful in this experimenta-
tion setting, if we are to consider the F1-score performance measure. This allows for
consistent and significant improvement upon the random sampling baseline. The
most consistent seem to be the Probability-based utility method-based approaches.

However, when considering the accuracy score only, there is no significant im-
provement. We thus have to consider our evaluation of our model, as well as the
practical implications of both the improved F1-scoring as well as the implementa-
tion costs.

88 Chapter 12. Case Study: Schizophrenia Prediction

TABLE 12.8: All numerical results for the considered approaches,
using the accuracy score Improvements upon random selections are

bolded.

Logistic Regression Support Vector Machine

Instances
with IQ
score

All instances Instances
with IQ
score

All instances

ACFA-AVID DUR 0.46 0.85 1.10 1.88
AUC 0.70 0.71 0.63 0.60
Acc@80% 0.72 0.74 0.65 0.63
Acc@90% 0.72 0.74 0.65 0.63

ACFA-Prob DUR 2.99 0.81
AUC 0.68 0.71
Acc@80% 0.70 0.74
Acc@90% 0.72 0.74

EM-AVID DUR 1.13 1.89 3.20 3.46
AUC 0.69 0.69 0.60 0.54
Acc@80% 0.72 0.74 0.64 0.60
Acc@90% 0.72 0.74 0.65 0.64

EM-Prob DUR 1.03 0.78
AUC 0.69 0.71
Acc@80% 0.72 0.75
Acc@90% 0.72 0.75

Random DUR 1.00 1.00 1.00 1.00
AUC 0.69 0.71 0.64 0.63
Acc@80% 0.71 0.74 0.66 0.64
Acc@90% 0.72 0.74 0.66 0.64

12.4. Experimental Results 89

TABLE 12.9: All numerical results for the considered approaches, us-
ing the F1-score Improvements upon random selections are bolded.

Logistic Regression Support Vector Machine

Instances
with IQ
score

All instances Instances
with IQ
score

All instances

ACFA-AVID DUR 0.26 1.00 0.01 0.01
AUC 0.54 0.69 0.26 0.37
F1@80% 0.57 0.67 0.26 0.29
F1@90% 0.58 0.67 0.27 0.30

ACFA-Prob DUR 0.24 0.57
AUC 0.57 0.64
F1@80% 0.59 0.68
F1@90% 0.59 0.68

EM-AVID DUR 0.91 0.69 0.01 0.02
AUC 0.52 0.63 0.32 0.47
F1@80% 0.57 0.67 0.40 0.51
F1@90% 0.56 0.68 0.38 0.46

EM-Prob DUR 0.30 0.44
AUC 0.56 0.64
F1@80% 0.59 0.67
F1@90% 0.59 0.67

Random DUR 1.00 1.00 1.00 1.00
AUC 0.51 0.61 0.29 0.38
F1@80% 0.55 0.65 0.34 0.41
F1@90% 0.56 0.66 0.35 0.41

91

Part IV

Conclusion

93

Chapter 13

Discussion

As seen in the results in part III, there is a notable difference between results. In
this chapter, we will briefly discuss the implications of these results and any notable
correlations that imply relevant information.

First, we can say that the results are dependent on the dataset. When looking
at the results and comparing the results on the three UCI benchmark datasets, it
can be concluded that there is no ’best’ approach—as one would expect: there ain’t
no such thing as free lunch [68]. However, for the first dataset (the Breast Cancer
dataset [49]), if we base our conclusions on the Data Utilization Rate metric, the
most efficient approach seems to be the random selection baseline. This seems to
imply that for this dataset, the complexities of the features and the model are more
complicated, or missing, and thus not possible to improve upon when compared to
random selection. However, two things should be noted here:

1. This problem adds another layer to the no free lunch theorem, by definition
of being an active learning problem. As mentioned previously, the Data Uti-
lization Rate values for our approaches are worse when compared to random
selection for the Breast Cancer dataset. However, this Data Utilization Rate is
just one method of converting the learning curve into a single definable value.
In truth, the learning curve is too complex to compress into a single quantifi-
able value, and when looking at the learning curve it becomes clear that some
of our approaches actually improve upon the random selection baseline after a
disappointing startup phase. Whereas the no free lunch theorem mentions that
there is no optimization model that is better for each and every instantiation
of the problem (or dataset), for our problem we can even say that there is no
optimization model that is better for the same problem! Combining these two
factors leads us to a difficult comparison between methods, unless the learning
curves clearly improve upon the other at every stage of the curve.

2. There is actually one great advantage of the random sampling approach. If it
is properly implemented, the random selection is unbiased. This should result
in any subset at any size is averaged over multiple runs —or expected to be—
a representative sample of the entire dataset. Whereas any approach that is
more deterministic, but does not capture the complexity of the problem or is
overengineered, introduces bias. This bias can help, if this is a bias towards
more useful samples. However, if the approach is not able to do as such, a bias
is introduced that only removes the representativeness of any sample. We can
then simply expect a method that performs worse than random sampling.

Fortunately, although it is hard to conclude which approaches generally perform
the best due to these two complexities (the difference in performance by dataset as
mentioned in the no free lunch theorem and the lossy compression of the learning

94 Chapter 13. Discussion

curves to a single value), it is a lot more straightforward to say which approaches
perform worse than the others. The Active Pseudo-Class Selection approach in gen-
eral, and any approach using the Goal-Oriented Data Acquisition utility method,
perform poorly in most settings

When comparing these approaches to the ones that perform in general better—
the approaches using the Acquisition based on Variance of Imputed Data or the
Probability-based utility method—we can see an additional layer of complexity. This
implies perhaps that this problem is difficult to find much information for, and/or
that these approaches might actually be overly complex for the problem. Possibly
the correlations are generally not strong to consider an approach with multiple steps.

Consider the approaches with good results: the AVID and probability-based util-
ity methods. The first only estimates the classification features, and there the ex-
act value does not even matter. It focuses on the variance between repeated estima-
tions, which is a nice representation of how much we know or can expect to know
about the missing information—and as such how useful it would be to query. The
probability-based utility method estimates the classification features directly and
uses the estimated feature values, but does not add a second step in the approach
or retrain the model. Instead, it quantifies the uncertainty about the classification of
these estimated features, as such similarly to the AVID utility method we are focus-
ing on uncertainty of information.

Comparing this to the approaches with lesser results—Active Pseudo-Class Se-
lection and the GODA utility method—we can see an additional layer of complexity
in a second step in the approach.

For the GODA utility method, we again estimate the classification features, with
a second step in the approach of retraining the classification model (for each seperate
instance and its estimated classification features). We then evaluate the retrained
model using log or hinge loss. This has an obvious increased level of complexity,
and introduces some assumptions that impose larger restrictions than just sampling
uncertainty. If the estimation of the classification features is subpar, the estimation
of the utility is by definition subpar as well. The method requires on small margins
of increase in performance as well, considering only a single sample added to the
training set.

For the Active Pseudo-Class Selection approach, we use a notably different method
to the others, but it is clear that this introduces an additional layer of complexity as
well. We add a first step of constructing pseudo-classes from the existing data, af-
ter which we use existing Active Class Selection approaches. By definition, there
is an added additional layer as it is this construction of pseudo-classes. The results
showed that regardless of the Active Class Selection method used, the performance
of this approach was subpar. The problem thus most likely lies within the pseudo-
class construction, which does not provide a proper mapping from our problem to
the the Active Class Selection problem.

Although we can conclude that these two approaches introduce too much un-
necessary complexity to provide solid results, they do not perform just worse than
the other approaches but generally even worse than random selection. This is most
likely due to the introduction of a sampling bias. If we can say that the instances sam-
pled are not due to proper guided selection that improves performance, we are thus
querying instances based on a biased selection mechanism. This bias means we are
not constructing a less representative training set and thus reduce performance. In
this case, random selection performs better as it introduces no new biases: only the
ones that already exist in the pool.

Chapter 13. Discussion 95

Hyperparameters should also be noted: several of these approaches contain pa-
rameters that are to be set to a specific value for the approach to function. In con-
ventional algorithms and machine learning settings, these hyperparameters can be
tuned: by using the known data and retraining the model with different hyperpa-
rameters we can find the optimal setting. However, this is not possible for any ap-
proach mentioned in this thesis, nor is it a trivial problem to introduce hyperparam-
eter tuning for any of these approaches or this problem setting in general. Because
the hyperparameter tuning influences the selection of new instances and the entire
experiment process, we simply can not tune them in a real-world scenario. If any
configuration of settings is to be properly evaluated, the experiment in itself must
be performed.

This reduces us to simply configuring values for these hyperparameters, and
hoping they are appropriate. We can of course make educated guesses, based on
previous iterations on different datasets and different problem settings. If perhaps,
n = 5 generally works well, and n = 12 generally performs subpar, we can make
some conclusions. This is not the case though as far as we have seen currently: each
dataset performed optimally with different hyperparameter settings.

This problem causes any approach that requires hyperparameters to be subopti-
mal for our problem setting. This is especially relevant for the Active Pseudo-Class
Selection approach, but also in lesser relevance for the Expectation Maximization-
based approach (where we are able to tune the hyperparameters, but which was em-
pirically shown to give worse results than manual setting). Any future approaches
would thus also be wise to either not include any hyperparameters, or ones that are
able to be properly manually selected.

97

Chapter 14

Conclusion

In this chapter, we will aim to concisely summarize the contents of the thesis: the
problem, the approaches taken and the results achieved as well as their implications.

The problem is defined in chapter 1, and related to similar problems discussed
in chapter 3. Although these problems are similar, they are in the end different prob-
lems. We used these similar but different problems for inspiration in designing sev-
eral approaches aiming to obtain good results on this problem, as outlined in part
II.

The following approaches were formulated:

• Active Classification Feature Acquisition: based on the Active Feature Acquistion
problem. We use a regression or other imputation model to estimate the miss-
ing classification features, and define a utility function to quantize the expected
value of the estimated features. The instances with the highest utility is then
sampled. For more information on Active Feature Acquisition, refer to: [4, 19,
43, 44, 53, 54, 60, 71, 72].

• Active Pseudo-Class Selection: based on the Active Class Selection problem. We
use a k-means clustering process, followed by a decision tree construction to
create pseudo-classes. This simulates a new Active Class Selection problem,
which we are then able to approach with any existing method for the Active
Class Selection problem. For more information on Active Class Selection, refer
to: [33, 40, 69].

• Expectation Maximization: based on the Expectation Maximization method for
constructing Gaussian Mixture Models. Several soft clusters are used to model
the distribution of the known data, which are then used to estimate the likeli-
hood of each unknown instance belonging to what cluster. This is combined
with the same utility functions as used in the Active Classification Feature Ac-
quisition approach, which are determined for each soft cluster. The instance
with the highest expected utility is then sampled. For more information on
Expectation Maximization and Gaussian Mixture Models, refer to: [42].

These approaches were then evaluated by repeated experiments on several bench-
mark and synthetic datasets. These results showed differing results. It should be
noted that these results were dataset-dependent, as well as approach-dependent.

Several approaches showed promising results: the Active Classification Feature
Acquistion approach generally worked well with the utility methods AVID (which
favors a high variance of the estimated features) and Probability-based (which favors
a probability score dependent on the scoring funtion), as well as the Expectation
Maximization approach with the same utility methods.

98 Chapter 14. Conclusion

The Active Pseudo-Class Selection approach showed poor results, regardless of
the Active Class Selection approach used. The Active Classification Feature Acquisi-
tion and Expectation Maximization approach also performed poorly with the GODA
utility method (which retrains the classification model with the estimated features).

The Case Study, where we evaluated the most promising approaches on the
dataset for schizophrenia classification, provided interesting results. When using
the F1-score as with the evaluation of all previous experiments, the results were sig-
nificantly improved—both when compared to the previous experiments as well as
upon the random baseline. All four approaches evaluated provided solid results
and improvements upon random sampling, with especially the two approaches us-
ing the Probability-based utility method providing consistently good results.

However, it should be noted that when using the accuracy score (as is often done
in the domain of schizophrenia classification), these improvements were not really
noticable or significant: most approaches performed similarly to the random sam-
pling baseline. Considering the class imbalance and the F1-score being more appro-
priate for such suggests that it is more appropriate though.

99

Chapter 15

Future Work

This thesis is simply an introduction of the Active Selection of Classification Features
problem with one application, and the consideration of several potential approaches
for this problem. There is much potential future work left regarding this problem.
The following list summarizes some of this potential future work, but is not meant
to be an extensive list of all possible improvements.

• Improvement upon the existing approaches, or new approaches can be consid-
ered for this problem. The noted approaches in this thesis are ones that came
to mind in an initial study, but potentially other and better approaches exist.

• All current approaches are defined for use with sequential querying, with the
results of the previous query being known before selecting the next instance.
This might not be a given truth in each setting, and a batch size or step size β
could be introduced.

• The current approaches are defined given the setting of pool-based sampling.
Other potential active learning settings that could be implemented are data
stream sampling, and query synthesis.

• Automated hyperparameter selection, or removal of hyperparameters from
the approaches. As mentioned in 13 and seen in parts II and III, the selec-
tion of hyperparameters is a problem for problems such as this one due to the
impossibility of straightforward hyperparameter tuning. Potentially this selec-
tion of hyperparameter for some of the approaches can be done automatically,
or removed entirely. It should be noted that this is most relevant for the Active
Pseudo-Class Selection problem which does not produce great results regard-
less of the hyperparameter instantiation, and thus is not a priority as of right
now.

• Potential improvement on the results could be found by combining approaches
in a similar manner to the Dual objective utility method, or similarly to ensem-
ble learning such as XGBoost [15].

101

Bibliography

[1] A Acock. “Working with missing data”. In: Family Science Review 10.1 (1997),
pp. 76–102.

[2] H. Akaike. “A new look at the statistical model identification”. In: IEEE Trans-
actions on Automatic Control 19.6 (1974), pp. 716–723.

[3] András Antos, Varun Grover, and Csaba Szepesvári. “Active Learning in Multi-
armed Bandits”. In: Algorithmic Learning Theory. Ed. by Yoav Freund et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 287–302. ISBN: 978-3-
540-87987-9.

[4] J. Attenberg et al. “Selective data acquisition for machine learning”. In: Jan.
2011, pp. 101–155.

[5] Hagai Attias. “A Variational Bayesian Framework for Graphical Models”. In:
Adv. Neural Inf. Process. Syst 12 (Sept. 2000).

[6] Joseph Berkson. “Application of the Logistic Function to Bio-Assay”. In: Jour-
nal of the American Statistical Association 39.227 (1944), pp. 357–365. ISSN: 01621459.
URL: http://www.jstor.org/stable/2280041.

[7] Mustafa Bilgic and Lise Getoor. “VOILA: Efficient Feature-value Acquisition
for Classification.” In: Jan. 2007, pp. 1225–1230.

[8] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. ISBN: 0387310738.

[9] David Blei and Michael Jordan. “Variational inference for Dirichlet process
mixtures”. In: Bayesian Analysis 1 (Mar. 2006). DOI: 10.1214/06-BA104.

[10] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.

[11] Ricardo S. Cabral et al. “Matrix Completion for Multi-label Image Classifica-
tion”. In: Advances in Neural Information Processing Systems 24. Ed. by J. Shawe-
Taylor et al. Curran Associates, Inc., 2011, pp. 190–198. URL: http://papers.
nips . cc / paper / 4419 - matrix - completion - for - multi - label - image -
classification.pdf.

[12] Lauriane Castin and Benoit Frénay. “clustering with decision trees: divisive
and agglomerative approach.” In: ESANN. 2018.

[13] Gavin Cawley. “Baseline Methods for Active Learning.” In: Journal of Machine
Learning Research - Proceedings Track 16 (Jan. 2011), pp. 47–57.

[14] S. Chakraborty et al. “Active Matrix Completion”. In: 2013 IEEE 13th Interna-
tional Conference on Data Mining. Dec. 2013, pp. 81–90. DOI: 10.1109/ICDM.
2013.69.

[15] Tianqi Chen and Carlos Guestrin. “XGBoost”. In: Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (Aug.
2016). DOI: 10.1145/2939672.2939785. URL: http://dx.doi.org/10.1145/
2939672.2939785.

http://www.jstor.org/stable/2280041
https://doi.org/10.1214/06-BA104
http://papers.nips.cc/paper/4419-matrix-completion-for-multi-label-image-classification.pdf
http://papers.nips.cc/paper/4419-matrix-completion-for-multi-label-image-classification.pdf
http://papers.nips.cc/paper/4419-matrix-completion-for-multi-label-image-classification.pdf
https://doi.org/10.1109/ICDM.2013.69
https://doi.org/10.1109/ICDM.2013.69
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785

102 Bibliography

[16] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine
learning 20.3 (1995), pp. 273–297.

[17] Kun Deng et al. “New algorithms for budgeted learning”. In: Machine Learning
90.1 (Jan. 2013), pp. 59–90. ISSN: 1573-0565. DOI: 10.1007/s10994-012-5299-2.
URL: https://doi.org/10.1007/s10994-012-5299-2.

[18] Robert Detrano et al. “International application of a new probability algorithm
for the diagnosis of coronary artery disease”. In: The American journal of cardi-
ology 64.5 (1989), pp. 304–310.

[19] Amit Dhurandhar and Karthik Sankaranarayanan. “Improving classification
performance through selective instance completion”. In: Machine Learning 100.2-
3 (2015), pp. 425–447.

[20] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. URL:
http://archive.ics.uci.edu/ml.

[21] Ronald A Fisher. “The use of multiple measurements in taxonomic problems”.
In: Annals of eugenics 7.2 (1936), pp. 179–188.

[22] M Forina, S Lanteri, C Armanino, et al. “Parvus-an extendible package for
data exploration, classification and correlation, institute of pharmaceutical and
food analysis and technologies, via brigata salerno, 16147 genoa, italy (1988)”.
In: Av. Loss Av. O set Av. Hit-Rate (1991).

[23] Milton Friedman. “The Use of Ranks to Avoid the Assumption of Normality
Implicit in the Analysis of Variance”. In: Journal of the American Statistical Asso-
ciation 32.200 (1937), pp. 675–701. DOI: 10.1080/01621459.1937.10503522.

[24] Andrew Gelman and Jennifer Hill. “Missing-data imputation”. In: Data Anal-
ysis Using Regression and Multilevel/Hierarchical Models. Analytical Methods for
Social Research. Cambridge University Press, 2006, pp. 529–544. DOI: 10.1017/
CBO9780511790942.031.

[25] Russell Greiner, Adam J. Grove, and Dan Roth. “Learning Cost-sensitive Ac-
tive Classifiers”. In: Artif. Intell. 139.2 (Aug. 2002), pp. 137–174. ISSN: 0004-
3702. DOI: 10.1016/S0004-3702(02)00209-6. URL: http://dx.doi.org/10.
1016/S0004-3702(02)00209-6.

[26] Isabelle Guyon et al. “Gene Selection for Cancer Classification Using Support
Vector Machines”. In: Machine Learning 46 (Jan. 2002), pp. 389–422. DOI: 10.
1023/A:1012487302797.

[27] Arthur E Hoerl and Robert W Kennard. “Ridge regression: Biased estimation
for nonorthogonal problems”. In: Technometrics 12.1 (1970), pp. 55–67.

[28] Sheng-Jun Huang et al. “Active Feature Acquisition with Supervised Matrix
Completion”. In: CoRR abs/1802.05380 (2018). arXiv: 1802.05380. URL: http:
//arxiv.org/abs/1802.05380.

[29] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Sci-
ence & Engineering 9.3 (2007), pp. 90–95. DOI: 10.1109/MCSE.2007.55.

[30] Pallika Kanani and Prem Melville. “Prediction-time Active Feature-value Ac-
quisition for Cost-Effective Customer Targeting”. In: (Jan. 2008).

[31] Daniel Kottke et al. “Challenges of reliable, realistic and comparable active
learning evaluation”. In: Proceedings of the Workshop and Tutorial on Interactive
Adaptive Learning. 2017, pp. 2–14.

https://doi.org/10.1007/s10994-012-5299-2
https://doi.org/10.1007/s10994-012-5299-2
http://archive.ics.uci.edu/ml
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1017/CBO9780511790942.031
https://doi.org/10.1017/CBO9780511790942.031
https://doi.org/10.1016/S0004-3702(02)00209-6
http://dx.doi.org/10.1016/S0004-3702(02)00209-6
http://dx.doi.org/10.1016/S0004-3702(02)00209-6
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1023/A:1012487302797
https://arxiv.org/abs/1802.05380
http://arxiv.org/abs/1802.05380
http://arxiv.org/abs/1802.05380
https://doi.org/10.1109/MCSE.2007.55

Bibliography 103

[32] Daniel Kottke et al. “Multi-class probabilistic active learning”. In: Proceedings
of the Twenty-second European Conference on Artificial Intelligence. IOS Press. 2016,
pp. 586–594.

[33] Daniel Kottke et al. “Probabilistic Active Learning for Active Class Selection”.
In: Proc. of the NIPS Workshop on the Future of Interactive Learning Machines. 2016.

[34] Georg Krempl, Daniel Kottke, and Vincent Lemaire. “Optimised probabilistic
active learning (OPAL)”. In: Machine Learning 100.2-3 (2015), pp. 449–476.

[35] Georg Krempl, Daniel Kottke, and Myra Spiliopoulou. “Probabilistic active
learning: Towards combining versatility, optimality and efficiency”. In: Inter-
national Conference on Discovery Science. Springer. 2014, pp. 168–179.

[36] Charles X. Ling et al. “Decision Trees with Minimal Costs”. In: Proceedings of
the Twenty-first International Conference on Machine Learning. ICML ’04. Banff,
Alberta, Canada: ACM, 2004, pp. 69–. ISBN: 1-58113-838-5. DOI: 10 . 1145 /
1015330.1015369. URL: http://doi.acm.org/10.1145/1015330.1015369.

[37] Roderick J A Little and Donald B Rubin. Statistical Analysis with Missing Data.
New York, NY, USA: John Wiley & Sons, Inc., 1986. ISBN: 0-471-80254-9.

[38] B. Liu, Y. Xia, and P.S. Yu. “Clustering Via Decision Tree Construction”. In:
Foundations and Advances in Data Mining. Ed. by Wesley Chu and Tsau Young
Lin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 97–124. ISBN:
978-3-540-32393-8. DOI: 10.1007/11362197_5. URL: https://doi.org/10.
1007/11362197_5.

[39] Daniel J. Lizotte, Omid Madani, and Russell Greiner. Budgeted Learning of Naive-
Bayes Classifiers. 2012. arXiv: 1212.2472 [cs.LG].

[40] R. Lomasky et al. “Active Class Selection”. In: Machine Learning: ECML 2007.
Ed. by Joost N. Kok et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 640–647. ISBN: 978-3-540-74958-5.

[41] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-
ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and
Jarrod Millman. 2010, pp. 56–61. DOI: 10.25080/Majora-92bf1922-00a.

[42] G. J. McLachlan and D. Peel. Finite mixture models. New York: Wiley Series in
Probability and Statistics, 2000.

[43] P. Melville et al. “Active feature-value acquisition for classifier induction”.
In: Fourth IEEE International Conference on Data Mining (ICDM’04). Nov. 2004,
pp. 483–486. DOI: 10.1109/ICDM.2004.10075.

[44] P. Melville et al. “An expected utility approach to active feature-value acquisi-
tion”. In: Dec. 2005. ISBN: 0-7695-2278-5. DOI: 10.1109/ICDM.2005.23.

[45] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press,
2012. ISBN: 0262018020, 9780262018029.

[46] Mireille Nieuwenhuis et al. “Classification of schizophrenia patients and healthy
controls from structural MRI scans in two large independent samples”. In:
Neuroimage 61.3 (2012), pp. 606–612.

[47] Travis E Oliphant. A guide to NumPy. Vol. 1. Trelgol Publishing USA, 2006.

[48] C. Parker. “An Analysis of Performance Measures for Binary Classifiers”. In:
2011 IEEE 11th International Conference on Data Mining. Dec. 2011, pp. 517–526.
DOI: 10.1109/ICDM.2011.21.

https://doi.org/10.1145/1015330.1015369
https://doi.org/10.1145/1015330.1015369
http://doi.acm.org/10.1145/1015330.1015369
https://doi.org/10.1007/11362197_5
https://doi.org/10.1007/11362197_5
https://doi.org/10.1007/11362197_5
https://arxiv.org/abs/1212.2472
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/ICDM.2004.10075
https://doi.org/10.1109/ICDM.2005.23
https://doi.org/10.1109/ICDM.2011.21

104 Bibliography

[49] Miguel Patrício et al. “Using Resistin, glucose, age and BMI to predict the pres-
ence of breast cancer”. In: BMC Cancer 18 (Dec. 2018). DOI: 10.1186/s12885-
017-3877-1.

[50] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[51] Airel Pérez-Suárez, José F. Martínez-Trinidad, and Jesús A. Carrasco-Ochoa.
“A review of conceptual clustering algorithms”. In: Artificial Intelligence Review
52.2 (Aug. 2019), pp. 1267–1296. ISSN: 1573-7462. DOI: 10.1007/s10462-018-
9627-1. URL: https://doi.org/10.1007/s10462-018-9627-1.

[52] Foster J. Provost, Prem Melville, and Maytal Saar-Tsechansky. “Data acquisi-
tion and cost-effective predictive modeling: targeting offers for electronic com-
merce”. In: ICEC. 2007.

[53] Maytal Saar-Tsechansky, Prem Melville, and Foster Provost. “Active Feature-
Value Acquisition”. In: Management Science 55.4 (2009), pp. 664–684. DOI: 10.
1287/mnsc.1080.0952. URL: https://doi.org/10.1287/mnsc.1080.0952.

[54] Karthik Sankaranarayanan and Amit Dhurandhar. “Intelligently querying in-
complete instances for improving classification performance”. In: Proceedings
of the 22nd ACM international conference on Information & Knowledge Manage-
ment. ACM. 2013, pp. 2169–2178.

[55] Joseph L Schafer and Maren K Olsen. “Multiple imputation for multivariate
missing-data problems: A data analyst’s perspective”. In: Multivariate behav-
ioral research 33.4 (1998), pp. 545–571.

[56] Gideon Schwarz. “Estimating the Dimension of a Model”. In: Ann. Statist. 6.2
(Mar. 1978), pp. 461–464. DOI: 10.1214/aos/1176344136. URL: https://doi.
org/10.1214/aos/1176344136.

[57] Burr Settles. Active Learning Literature Survey. Computer Sciences Technical Re-
port 1648. University of Wisconsin–Madison, 2009.

[58] Lars St, Svante Wold, et al. “Analysis of variance (ANOVA)”. In: Chemometrics
and intelligent laboratory systems 6.4 (1989), pp. 259–272.

[59] The pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb.
2020. DOI: 10.5281/zenodo.3509134. URL: https://doi.org/10.5281/
zenodo.3509134.

[60] Mohamed Thahir, Tarun Sharma, and Madhavi Ganapathiraju. “An efficient
heuristic method for active feature acquisition and its application to protein-
protein interaction prediction”. In: BMC proceedings 6 Suppl 7 (Nov. 2012), S2.
DOI: 10.1186/1753-6561-6-S7-S2.

[61] Robert Tibshirani. “Regression Shrinkage and Selection Via the Lasso”. In:
Journal of the Royal Statistical Society: Series B (Methodological) 58.1 (1996), pp. 267–
288. DOI: 10.1111/j.2517- 6161.1996.tb02080.x. eprint: https://rss.
onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1996.tb02080.
x. URL: https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-
6161.1996.tb02080.x.

[62] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. “The NumPy array:
a structure for efficient numerical computation”. In: Computing in Science &
Engineering 13.2 (2011), p. 22.

[63] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009. ISBN: 1441412697.

https://doi.org/10.1186/s12885-017-3877-1
https://doi.org/10.1186/s12885-017-3877-1
https://doi.org/10.1007/s10462-018-9627-1
https://doi.org/10.1007/s10462-018-9627-1
https://doi.org/10.1007/s10462-018-9627-1
https://doi.org/10.1287/mnsc.1080.0952
https://doi.org/10.1287/mnsc.1080.0952
https://doi.org/10.1287/mnsc.1080.0952
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1186/1753-6561-6-S7-S2
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1996.tb02080.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1996.tb02080.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1996.tb02080.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1996.tb02080.x

Bibliography 105

[64] S. Veeramachaneni and P. Avesani. “Active sampling for feature selection”. In:
Third IEEE International Conference on Data Mining. Nov. 2003, pp. 665–668. DOI:
10.1109/ICDM.2003.1251003.

[65] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Com-
puting in Python”. In: Nature Methods 17 (2020), pp. 261–272. DOI: https://
doi.org/10.1038/s41592-019-0686-2.

[66] Michael Waskom et al. seaborn: v0.5.0 (November 2014). Version v0.5.0. Nov.
2014. DOI: 10.5281/zenodo.12710. URL: https://doi.org/10.5281/zenodo.
12710.

[67] Frank Wilcoxon. “Individual Comparisons by Ranking Methods”. In: Biomet-
rics Bulletin 1.6 (1945), pp. 80–83. ISSN: 00994987. URL: http://www.jstor.
org/stable/3001968.

[68] D. H. Wolpert and W. G. Macready. “No free lunch theorems for optimiza-
tion”. In: IEEE Transactions on Evolutionary Computation 1.1 (1997), pp. 67–82.

[69] Dongrui Wu and Thomas Parsons. “Active Class Selection for Arousal Clas-
sification”. In: Lecture Notes in Computer Science 6075 (Oct. 2011), pp. 132–141.
DOI: 10.1007/978-3-642-24571-8_14.

[70] Xiaoyong Chai et al. “Test-cost sensitive naive Bayes classification”. In: Fourth
IEEE International Conference on Data Mining (ICDM’04). Nov. 2004, pp. 51–58.
DOI: 10.1109/ICDM.2004.10092.

[71] Zhiqiang Zheng and Balaji Padmanabhan. “Selectively Acquiring Customer
Information: A New Data Acquisition Problem and an Active Learning-Based
Solution”. In: Management Science 52 (May 2006), pp. 697–712. DOI: 10.1287/
mnsc.1050.0488.

[72] Zhiqiang Zheng and B. Padmanabhan. “On active learning for data acquisi-
tion”. In: 2002 IEEE International Conference on Data Mining, 2002. Proceedings.
Dec. 2002, pp. 562–569. DOI: 10.1109/ICDM.2002.1184002.

https://doi.org/10.1109/ICDM.2003.1251003
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.5281/zenodo.12710
https://doi.org/10.5281/zenodo.12710
https://doi.org/10.5281/zenodo.12710
http://www.jstor.org/stable/3001968
http://www.jstor.org/stable/3001968
https://doi.org/10.1007/978-3-642-24571-8_14
https://doi.org/10.1109/ICDM.2004.10092
https://doi.org/10.1287/mnsc.1050.0488
https://doi.org/10.1287/mnsc.1050.0488
https://doi.org/10.1109/ICDM.2002.1184002

	List of Figures
	List of Tables
	I Introduction
	Problem Statement
	Problem Definition
	Research Questions
	Notation
	Implementation

	Background
	Machine Learning
	Supervised Learning
	Classification
	Regression

	Active Learning
	Data Imputation
	Subgroup Partioning
	Mixture Models
	Gaussian Mixture Models
	Expectation Maximization

	Related Work
	Active Feature Acquisition
	Active Feature-Value Acquisition
	Instance Completion
	Budgeted Learning
	Active feature selection
	Active classification

	Active Class Selection
	Probabilistic Active Learning for Active Class Selection

	II Approaches
	Active Classification Feature Acquisition
	Utility estimation
	GODA
	AVID
	Dual objective
	Probability-based

	Active Pseudo-Class Selection
	Pseudo-class construction
	Bootstrap aggregating
	Active Class Selection method
	Hyperparameters

	Expectation Maximization
	Cluster Utility Estimation

	III Experiments and Results
	Methodology
	Experimental Setup
	Dataset Setup
	Algorithm Execution
	Evaluation

	Datasets Used
	Real-world datasets
	Synthetic datasets

	Baseline

	Active Classification Feature Acquisition
	GODA
	AVID
	Dual objective
	Probability-based
	Comparing the utility methods
	Regression method

	Active Pseudo-Class Selection
	Redistricting
	Accuracy Improvement
	PAL-ACS
	The number of pseudoclasses
	Comparing Active Class Selection methods
	Increasing the number of partitions

	Expectation Maximization
	Automatic tuning of number of clusters
	Comparison to baseline

	Comparing the Approaches
	Case Study: Schizophrenia Prediction
	Evaluation
	Exploring the dataset
	Preprocessing
	Classification algorithms
	Random sampling
	Feature selection

	Dimensionality Reduction for the Experiments
	Experimental Results

	IV Conclusion
	Discussion
	Conclusion
	Future Work
	Bibliography

