
Faculteit Bètawetenschappen

Parameterized Algorithms in a Streaming Setting

Master Thesis

Jelle Oostveen
ICA-5707757

Computing Science

Supervisors:

Dr. Erik Jan van Leeuwen
Department of Information and Computing Sciences

Prof. Dr. Hans L. Bodlaender
Department of Information and Computing Sciences

July 15, 2020

Abstract

Saving large graphs in memory can be problematic. Streaming the graph provides a solution, where
the graph arrives as a stream of edges. Different streaming models can be used to assume a variable
amount of information present in the stream. In combination with parameterized complexity, we can
find algorithms using sublinear memory, where for non-parameterized algorithms it can be proven that
we require linear memory. In this work, we investigate a broad range of problems in the streaming
setting, including varying approaches to solve them. Different approaches can lead to an interesting
trade-off in the number of times we inspect the stream and the memory usage. Hence, we explore
both kernelization and direct algorithmic approaches for solving problems such as Π-free Deletion,
Π-free Editing, Vertex Cover, and Edge Dominating Set. In terms of parameterization, we
focus on using the parameter vertex cover, but we will also see solution size and tree-depth being used.
We will see a range of upper bound results, which are partially direct adaptations of non-streaming
algorithms, and partially new work. We will also see some lower bounds on the memory use given
the number of passes we make over the stream.

i

CONTENTS ii

Contents

1 Introduction 1

2 Preliminaries and general remarks 1
2.1 Graph notation . 1
2.2 Parameterized Complexity . 2
2.3 Streaming . 3
2.4 On the memory complexity of branching algorithms 4

3 Previous Work on Parameterized Streaming Algorithms 4

4 Π-free Deletion 8
4.1 Problem Definition and Context . 8
4.2 Adapting Existing Kernels . 9

4.2.1 Kernel for Characterization by Few Adjacencies 9
4.2.2 Kernel for Characterization by Low-Rank Adjacencies 13

4.3 A Direct FPT Approach . 17
4.3.1 P3-free Deletion . 17
4.3.2 H-free Deletion . 20
4.3.3 Towards Π-free Deletion . 25

4.4 Π-free Deletion without explicit Π . 28
4.5 Odd Cycle Transversal . 33
4.6 Lower Bounds . 36

4.6.1 Π-free Deletion . 37
4.6.2 H-free Deletion with bounded vertex cover size 38

5 Π-free Edge Editing 44
5.1 Problem Definition and Context . 44
5.2 Cluster Editing . 44

5.2.1 Cluster Editing Kernels . 48
5.3 Π-free Editing with explicit Π . 53
5.4 Π-free Editing without explicit Π . 55

6 Vertex Cover 56
6.1 Problem Definition and Context . 56
6.2 Adapting existing branching algorithms . 56
6.3 On vertex cover kernels . 62

7 A Different Streaming Model 66
7.1 Edge Dominating Set . 67
7.2 Relating Edge Dominating Set, DFS, and tree-depth 68
7.3 A tree-depth algorithm . 69

7.3.1 Adapting the algorithm to streaming setting 74

8 Conclusion and Future Work 76
8.1 Future Work . 77

References V

A Dictionary Orderings VI

2 PRELIMINARIES AND GENERAL REMARKS 1

1 Introduction

In modern day systems, increasingly large networks occur. We can consider examples of compa-
nies like Facebook or Twitter having billions of users [27, 62], creating a network with billions of
nodes and connections. On such networks fast algorithms are essential for analysis and queries.
However, time efficiency is not the only concern with such large networks. More specifically, if we
want to run algorithms on large graphs we usually assume that the entire structure is in memory.
Sadly enough, this is not always possible due to large size, which motivates other methods of
executing algorithms on graph structures.

One of the main methods for doing this is using a graph stream. That is, the graph arrives in
memory as a stream of edges which we can read one edge at the time. This has the added benefit
that we can also look at dynamic streams, where edge deletions might occur in the stream. In
both cases we look to develop space-efficient algorithms that read the graph in one or more
passes of the stream. It is interesting to note that, although we are looking for space-efficient
algorithms, there is still a trade-off in the complexity. That is, it is not unusual to have some
algorithm be space optimal but use an exponential number of passes of the stream, while another
algorithm perhaps uses more space but drastically fewer passes of the stream.

Considering the great success of parameterized complexity in time-efficient algorithms, it is a
natural analogy to try and develop parameterized space-efficient algorithms that work on a graph
stream. The study in this field was initiated by Fafianie and Kratsch [28] and Chitnis et al. [20]
and proved some initial success. The main body of results consists of both algorithmic kernels and
direct FPT algorithms, usually parameterized by the solution size k. These results vary greatly
in space-efficiency and the number of passes used, which leaves room for an interesting analysis
on the trade-off of these two factors, where improvement on one, or both, can be obtained. We
can also wonder whether techniques from classic FPT algorithms can be used in the streaming
setting, e.g. branching algorithms. Combining this with the fact that different parameters
than the solution size are fairly unexplored in the field, we are left with a lot of room for new
discoveries.

In this master thesis, the main aim is to continue study in this field, focussing on both the
trade-off between memory use and the number of passes, as well as using the vertex cover size as
a parameter. We will first give a small overview of preliminary knowledge in Section 2, followed
by an overview of the literature in the field in Section 3. Our analysis starts with Π-free vertex
deletion problems in Section 4. Following up vertex deletion problems, Section 5 discusses Π-
free edge editing problems. We then look at vertex cover in Section 6, and discuss the use of
a different streaming model in Section 7. Finally, Section 8 contains concluding remarks and
options for future work.

2 Preliminaries and general remarks

2.1 Graph notation

A graph G = (V,E) consists of vertices v ∈ V and edges e ∈ E. An edge can also be denoted by
the vertices it spans, when u, v ∈ V then uv ∈ E. In this entire thesis, we work on undirected
graphs. We denote n as the number of vertices in G, so |V | = n, and similarly, |E| = m, the
number of edges in G. If it is not clear from context what graph we consider, we use V (G), E(G)
for respectively the vertices and edges of G. For a set vertices V ′ ⊆ V , denote the subgraph
induced by V ′ as G[V ′]. An induced subgraph consists of the vertices V ′ and all edges between
the vertices of V ′ present in G. Denote the neighbourhood of a vertex v with N(v) and for a
set S denote N(S) as

⋃
v∈S N(v). If we wish to denote v together with its neighbourhood, we

2 PRELIMINARIES AND GENERAL REMARKS 2

write N [v], where N [v] = N(v) ∪ {v}. We use standard asymptotic notation of big-O, O, and if

we wish to hide logarithmic factors in n we use Õ. Similarly for lower bounds, we use Ω and Ω̃.
Memory upper or lower bounds will be given in bits, that is, they usually include a factor log n
to accommodate for numbers up to size n requiring O(log n) bits to save in memory.

2.2 Parameterized Complexity

Let us give a short overview of notions in parameterized complexity. In parameterized complexity,
we are given some parameter as part of the problem input. The idea is that this parameter is
small, and so, we can think of algorithms that are expensive in the parameter, but efficient in
the rest of the input, giving an overall fast algorithm. Let us denote the problem parameter
with k. We call a problem Fixed Parameter Tractable (FPT) if there exists an algorithm with a
running time of O(f(k) ·nO(1)) where f is some function in k. Another approach is to preprocess
the input such that its size becomes bounded by a function in k, while it is still a YES-instance
if and only if the original instance was a YES-instance. If this preprocessing can be done in
polynomial time, then the remaining instance is called a kernel, and obtaining the instance is
called kernelization. We can then execute any algorithm on the kernel to obtain a solution. The
notions of a kernel and FPT are equivalent, that is, a problem is FPT if and only if it has a
polynomial time kernelization.

The most standard parameter is the solution size. However, in this thesis we will also see
another parameter often present, the vertex cover number. The vertex cover number is the size
of a minimum vertex cover in the graph. A vertex cover is a set of vertices such that all edges in
the graph are incident to some vertex in the vertex cover, see also Section 6 for a formal definition
of the Vertex Cover problem. Ideally, the vertex cover number is as small as possible. If both
these standard parameters are present, we will usually denote the vertex cover size with K, and
the solution size with `, to avoid confusion. We will denote the parameters of a problem in [. . .]
brackets, so a problem A parameterized by vertex cover number and solution size is denoted by
A [VC, `].

In Section 7, we will also work with the parameter tree-depth. To understand what tree-depth
is, we first need to define a tree-depth decomposition.

Definition 2.1. A tree-depth decomposition of a graph G is a rooted forest T with the same set
of vertices as G, that is, V (T) = V (G). The following property must also hold: for every pair of
vertices v, w ∈ V (G) that have vw ∈ E(G) it must be that v and w have an ancestor-descendent
relationship in T . The depth of T is the maximum height of a tree in T . The tree-depth of a
graph G is now given as the minimum depth over all tree-depth decompositions of G.

For illustration, let us go over some small examples. A graph without edges has tree-depth 1,
as we can make a tree-depth decomposition where every tree is a single vertex. A complete clique
of n vertices has tree-depth n, as all vertices must have an ancestor-descendent relationship in
any tree-depth decomposition.

To relate tree-depth to other parameters, we give the definitions of treewidth and pathwidth,
taken from [56].

Definition 2.2. A tree decomposition of an undirected graph G is a tree T together with a
collection of sets of vertices of G (called bags) Xt indexed by nodes t ∈ T , such that:

• every vertex of G is in at least one bag,

• for every edge uv of G, there is a bag containing both u and v, and

• for every vertex v of G, the set {t ∈ T | v ∈ Xt} induces a connected subtree of T .

2 PRELIMINARIES AND GENERAL REMARKS 3

The width of a tree decomposition is defined as maxt∈T |Xt| − 1. The treewidth of G is the
minimum width over all possible tree decompositions of G.

Definition 2.3. A path decomposition of an undirected graphG is a tree decomposition (T, (Xt)t∈T)
in which T is a path. The pathwidth of G is the minimum width over all possible path decom-
positions of G.

It is known that we can construct a path decomposition with pathwidth equal to the tree-
depth from any tree-depth decomposition [56]. Therefore, the pathwidth of a graph G is always
equal to or smaller than the tree-depth of G. As the path decomposition of a graph is a special
case of a tree decomposition of a graph, it then also follows that the treewidth of a graph G is
always equal to or smaller than the tree-depth of G [56].

2.3 Streaming

In this thesis, we work on the streaming model. This is a model where the input graph G is
given as a stream of edges. A pass over the stream means we view every edge in the stream once,
and so, after a pass we have seen the entire graph. There are four different streaming models we
study, with a varying degree of information. These four models are those usually studied in the
literature, for example, see [8, 21, 45, 46]. The Edge Arrival (EA) streaming model allows the
edges to appear in any order in the stream. The Vertex Arrival (VA) streaming model requires
the edges to appear per vertex, that is, if we have seen the vertices V ′ ⊆ V already, and the
next vertex is w, then the stream contains the edges between w and the vertices in V ′ present
in the graph. The Adjacency List (AL) streaming model gives us the most information, as this
model requires the edges to arrive per vertex, but also for every vertex we see every adjacency
immediately. This means we effectively see every edge twice in a single pass, once for both of its
vertices. The last model is the Dynamic Edge Arrival (DEA) streaming model, which is an EA
stream that can also contain edge removals; hence, it is dynamic.

The aim of using the streaming model is to develop memory-efficient algorithms, as Õ(m) =

Õ(n2) bits of memory is too large in our use case (we do not want to have the entire graph in
memory, hence we use a streaming model). Therefore, algorithms working in the streaming model
should have both the number of passes used and the amount of memory used listed. Optionally,
computation time between passes/for each step can also be listed, but as we focus less on this
aspect, we allow unbounded computation and omit running times. However, the number of passes
can still be viewed as some factor of running time, as passing over a (large) stream might require
quite some computation time. Given all these focus areas, we will often consider a pass/memory
trade-off, where we can opt for one algorithm using non-optimal memory but very few passes
or another using optimal memory but very many passes. This also means that there might be
value in exploring another approach to a solved problem, which could provide with an algorithm
on the other side of the pass/memory trade-off. An example of this is the Vertex Cover [k]
problem, where a kernel exists that can be found in one pass and O(k2 log n) bits of memory [18],
while on the other hand an algorithm using O(k log n) bits of memory and 2k passes exists [17].
A kernel found by a streaming algorithm we will call a streaming kernel.

Using the combination of parameterized complexity and streaming is well suited, as many
problems in the streaming setting have memory lower bounds of Ω(n) or Ω(n log n) bits [29, 30].
The use of a parameter avoids these lower bounds, as we develop algorithm specifically suited for
the scenarios where some aspect of the input is small. This should lead to much more memory-
efficient algorithms. Our goal in this regard is to find algorithms using O(f(k) · log n) bits of
memory, where f is some function dependent on k. The log n factor in the memory can hardly be
avoided, as representing sets of vertices/edges/elements requires log n bits per element. However,

3 PREVIOUS WORK ON PARAMETERIZED STREAMING ALGORITHMS 4

the function f(k) can optimally be very small, and when the parameter k is small, this creates
very memory-efficient algorithms.

2.4 On the memory complexity of branching algorithms

With the streaming model having a focus on efficient memory use, it is useful to do some analysis
on the memory complexity of a standard algorithmic type of algorithm, branching algorithms.
Let us assume we have some branching algorithm A that branches on b options at most k times,
leading to a search tree of size O(bk). Let us also assume that in each branching node, the

algorithm requires Õ(x) bits of memory to save the current branching solution and perhaps
other factors for computation (so x could be k). The worry is that the branching procedure

might only require Õ(x) bits in each step, but that the total overhead with all the branching
steps leads to far greater memory use. If we naively copy sets when we branch (so each branch
gets S ∪ {v} where v ranges over b different vertices or edges), we can get a memory complexity

of at least Ω̃(xk) bits because each of these sets is in memory.
However, we can be more diligent with our memory usage. Notice that in a branching step,

the memory needed only differs in one point: the last vertex or edge added. Therefore, instead
of copying the set to some new space, the branches can use the already existing set S in memory,
and only add their own adjustment to it. This makes the memory use already much more
efficient. However, we also need to remember on what we branch, so that when we return out of
recursion, we can correctly continue branching. Seeing as we branch on b options and the search
tree has depth at most k, this can lead to a Õ(bk) memory usage. However, if b is a constant

in the algorithm, this memory complexity will probably be negligible in comparison to Õ(x).
An alternative if b is not a constant is to recompute the b options every time we return out of
recursion, which gives some extra b factor in the number of passes. This analysis does give us
that, for the worst case memory complexity of a branching algorithm, we only have to consider
the worst case memory use of a single branching step and with b and k we can conclude the
rest of the complexity. So, in future, when we discuss some branching algorithm as described
above, showing that the worst case memory use is at most Õ(x) in a branch gets us that the

entire algorithm uses Õ(x+ bk) bits of space, which will commonly be Õ(x) bits of space when

b is a constant and k = O(x). If we opt to use extra passes to avoid having the Õ(bk) memory
complexity, we will mention this explicitly.

3 Previous Work on Parameterized Streaming Algorithms

The study of solving problems on streams has its origins in algorithms that count or estimate
some statistics over large amounts of data [32, 49, 60]. In these studies, the stream does not
always describe a graph, but is usually some sequence of numbers, elements, or events. Well-
known works include that of Alon et al. [4] and Henzinger et al. [37], results of which include
approximating frequency moments over a stream of elements, and the computation of various
degree-queries over graph streams. A survey on graph streams can be found in [45].

The study of parameterized algorithms in a streaming setting was initiated by Fafianie and
Kratsch [28] and Chitnis et al. [20].

In 2014, Fafianie and Kratsch [28] consider the Edge Arrival model, and show kernalizations
and lower bounds. One-pass kernels are given for both d-Hitting Set [k] and d-Set Matching
[k] parameterized on the solution size k. These kernels are closely related to the Sunflower
Lemma. In contrast, memory lower bounds of |E|−O(1) bits are given for a large list of problems
if only one pass is allowed, including e.g. Edge Dominating Set [k] and Cluster Vertex

3 PREVIOUS WORK ON PARAMETERIZED STREAMING ALGORITHMS 5

Deletion [k]. Intuitively, these lower bounds follow from a pigeonhole principle, where if we
use ‘too little’ memory, there must be YES-instances we cannot distinguish from NO-instances.
However, if we allow two passes, Edge Dominating Set [k] admits a O(k3 log n) size kernel.
This kernel makes use of a 2k vertex cover kernel finding algorithm as its first pass, after which
the second pass is used to ‘remember’ edges that might be very useful in finding the optimal
solution.

In 2015, Chitnis et al. [20] provide results for finding maximal matchings and vertex covers.
For the scenario where the stream contains only edge insertions, Chitnis et al. provide a space-
optimal algorithm for Vertex Cover [k] using Õ(k2) space and one pass, and show that this
is space-optimal for one pass. For dynamic streams, under the promise that at any time there
exists a vertex cover of size at most k, single pass, Õ(k2) space algorithms are given for Vertex
Cover [k] and Maximal Matching [k]. This promise can be removed, but this worsens the
results significantly. To achieve all this, sketching structures are used in combination with `0-
samplers, which makes the algorithm randomized. These sketches attempt to store the essential
information of the graph stream without using too much space, which keeps the memory of the
algorithms below Õ(k2) bits.

In 2016, Chitnis et al. [18] remove the need for the above promise and provide space efficient

kernels of size Õ(k2) for Maximal Matching [k] and Vertex Cover [k] in the dynamic
stream setting. To achieve this, they make use of a sampling method which is biased towards
maintaining the structure of the graph instead of being biased on high degree vertices. A Õ(kd)
space kernel is also given for d-Hitting Set [k], which is a generalization of the result for
Vertex Cover [k]. They also show that single pass algorithms with an insert-only stream for
d-Hitting Set [k] require at least Ω(kd) space and for Edge Dominating Set [k] at least Ω(n)
space. Furthermore, they provide many general lower bounds showing that any p-pass algorithm
requires at least Ω(n/p) space, including e.g. Triangle Packing [k] and Cluster Vertex
Deletion [k].

In 2019, Bishnu et al. [8] provided a wide variety of results best described in a table, see
Table 1. Let us highlight some of these results. The first thing to note is the use of four different
streaming models: Edge Arrival, Dynamic Edge Arrival, Vertex Arrival, and Adjacency List. The
main newly introduced component to the area is the use of other parameters than the solution
size `, namely, the vertex cover size K, which proves quite potent. This parameter in combination
with the Adjacency List model gives rise to new algorithms. The algorithm for Cluster Vertex
Deletion makes use of the same sampling primitive as in [18]. The algorithm for the general
F-Subgraph Deletion [VC] makes use of a structural subroutine called Common Neighbour,
which is a maximal matching together with sufficient common neighbours of these matched
vertices. This subroutine then leads to the result for F-Subgraph Deletion [VC], and so
also for Triangle Deletion [VC], Feedback Vertex Set [VC], and both Even Cycle
Transversal [VC] and Odd Cycle Transversal [VC].

Also in 2019, Chitnis and Cormode [17] formalize the complexity classes of space-efficient
parameterized streaming algorithms, see Figure 1. The idea of these complexity classes is their
focus on memory use. The outer complexity class, BrutePS, allows us to use O(n2) space, and
so save the entire graph into memory. Formally, a problem is in the class BrutePS if it can be
solved using O(n2) bits1. This is the outer limit, as streaming the input graph is not useful in
this class. The inner-most complexity class, Fixed-Parameter Streaming (FPS), is named after

its similarity with FPT, as a problem is in FPS if it can be solved using Õ(f(k)) bits, where
f(k) is some function in k. Without the use of parameterized complexity, most problems would

1As remarked by Chitnis and Cormode [17], formally, we would actually need to consider the following 7-
tuple when deciding the complexity class of a problem: [Problem, Parameter, Space, Number of Passes, Type of
Algorithm, Approx. Ratio, Type of Stream].

3 PREVIOUS WORK ON PARAMETERIZED STREAMING ALGORITHMS 6

Problem Parameter Upper Bound (algorithm) Lower Bound (hardness)

F-Subgraph Deletion
`

(M, n log n, 1)-hard,
(M, n/p, p)-hard*

K (AL,∆(F) ·K∆(F)+1, 1)-str (VA/EA/DEA, n/p, p)-hard

F-Minor Deletion
`

(M, n log n, 1)-hard,
(M, n/p, p)-hard

K (AL,∆(F) ·K∆(F)+1, 1)-str (VA/EA/DEA, n/p, p)-hard

Feedback Vertex Set,
Even Cycle Transversal,
Odd Cycle Transversal

`
(M, n log n, 1)-hard,
(M, n/p, p)-hard*

K (AL,K3, 1)-str (VA/EA/DEA, n/p, p)-hard

Triangle Deletion
`

(VA/EA/DEA, n log n, 1)-hard,
(VA/EA/DEA, n/p, p)-hard*

K (AL,K3, 1)-str (VA/EA/DEA, n/p, p)-hard

Cluster Vertex Deletion
` (VA/EA/DEA, n/p, p)-hard*

K (M,K2 log4 n, 1)-str

Table 1: Table overviewing results from Bishnu et al. [8]. Results marked with a * is where the
EA model result is from [18]. A problem is (M,X, Y)-str when it admits an algorithm in model

M using Y passes and Õ(X) bits of memory. A problem is (M,X, Y)-hard when any algorithm
in model M that uses Y passes requires at least X bits of memory. Here the parameter ` is the
solution size and K is the vertex cover number. M is the set of models AL, EA, VA, DEA.
∆(F) is the maximum degree over all vertices in all graphs in F .

be stuck in the classes SupPS and SemiPS, which allow Õ(f(k) · n1+ε) and Õ(f(k) · n) bits
respectively, where 1 > ε > 0 and f(k) is some function in k. Parameterized complexity allows
us to break through to the classes SubPS and FPS, where a problem is in SubPS if it can be
solved using Õ(f(k) · n1−ε) bits of memory, where 1 > ε > 0 and f(k) is some function in k.

The algorithmic results given by Chitnis and Cormode are summarized in Table 2. Particu-
larly interesting is the streaming algorithm for Vertex Cover [k] using O(k) words memory
and 2k passes, as it is a careful adaptation of the regular branching FPT algorithm for Vertex
Cover [k] into the streaming setting. Also interesting (although obsolete in efficiency) is the
streaming algorithm for Vertex Cover [k] using O(k) words memory and 22k passes, which
uses iterative compression, a technique that had not yet been used in the streaming setting. Both
these results are potentially very useful in discovering new streaming algorithms on the basis of
existing branching algorithms.

A recent paper by Agrawal et al. [3] discusses more set-oriented problems like the Min-Ones
d-SAT [k] problem, where we assume the input arrives in the stream per clause. An algorithmic
trade-off is shown where there is the possibility for a streaming algorithm for Min-Ones d-SAT
[k] using O((kd + dO(k))k log n) space and k + 1 passes, or O(k) space and O(dk) passes. These
two results also imply similar results for the Bounded IP problem. The first algorithm in this
trade-off makes use of a kernelization for d-Hitting Set [k] to find a set of minimal satisfying
assignments. The alternative algorithm is a careful adaption of a branching algorithm for Min-
Ones d-SAT [k], which makes for the large number of passes. In the specific case where d = 2,
we can obtain an algorithm using O(k6) space and k + 2 passes for Min-Ones d-SAT [k], by
simplifying the previous general result for this specific case. Complementing the positive results,
different lower bounds are given for Min-Ones d-SAT [k] depending on the number of passes,

3 PREVIOUS WORK ON PARAMETERIZED STREAMING ALGORITHMS 7

Figure 1: A visual overview of the streaming complexity classes for one pass algorithms on EA
streams as given by Chitnis and Cormode [17].

4 Π-FREE DELETION 8

Problem Passes Model Upper Bound Lower Bound

g(r)-minor-bidimensional problems 1 DEA Õ((g−1(k + 1))10n) words
Vertex Cover(k) 22k · k EA O(k) words Ω(k) words
Vertex Cover(k) 2k EA O(k) words Ω(k) words

FVS(k), Path(k),
1 EA O(k · n) words

No f(k) · n1−ε logO(1) n
Treewidth(k) bits algorithm

FVS(k), Path(k),
1 DEA Õ(k · n) words

No f(k) · n1−ε logO(1) n
Treewidth(k) bits algorithm

Girth(k),
1 DEA O(n2) bits

No f(k) · n2−ε logO(1) n
Dominating Set(k) bits algorithm
β
32 -approximation for Dominating

1 EA Õ(nβ) bits
No f(β) · n1−ε

Set(k) on graphs of arboricity β bits algorithm

AND- and OR-compatible
1 EA O(n2) bits

No Õ(f(k) · n1−ε)
problems bits algorithm

d-SAT with N variables 1 Clause Arrival Õ(d ·Nd) bits Ω((N/d)d) bits

Table 2: Overview of the results in [17]. The parameter k is the solution size.

including the common lower bound of any p-pass streaming algorithm requiring Ω(n/p) space.
In almost all of the lower bound proofs in the above papers, extensive use is made of problems

from communication complexity. These are problems where two people, Alice and Bob, both
have some information and try to find an answer to a certain question by communicating with
each other using as few bits as possible. We also distinguish scenarios where we consider one-
way communication or two-way communication. For many communication complexity problems
lower bounds in the number of bits of communication required are known. This is useful when
we reduce a communication complexity problem to a streaming problem where communication
is simulated as passing (part of) a stream to the algorithm. From the lower bound for the
communication complexity problem then follows a lower bounds in the memory use of such a
streaming algorithm. As mentioned, this is how most lower bound proofs are provided in all
the above papers. An example of lower bounds proofs using communication complexity can be
found in Section 4.6.

4 Π-free Deletion

The focus in this section is on the Π-free Deletion problem. To find streaming algorithms for
this problem, we will first look at existing kernels that can be adapted to the streaming setting.
These kernels use vertex cover as a parameter, which proves extensively useful. After these
kernels we look to create a direct algorithm, with the aim of finding a different pass/memory
trade-off. We then continue to a specific case, Odd Cycle Transversal [VC]. Lastly, we will
prove some lower bounds for the Π-free Deletion problem.

Vertex cover size as a parameter has already proven to be successful in the streaming setting,
as illustrated in [8], which motivates our focus on vertex cover as a parameter.

4.1 Problem Definition and Context

In this section we will work on a fixed family of graphs Π. The problem of Π-free Deletion
parameterized by vertex cover can be defined as follows.

4 Π-FREE DELETION 9

Π-free Deletion [VC]
Input: A graph G with a vertex cover X, and an integer ` ≥ 1.
Parameter: The size K := |X| of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at most ` such that G− S does not contain
a graph in Π as an induced subgraph?

By the problem definition, we can see that we want to delete vertices from a graph G such
that it is Π-free, that is, no graph in Π occurs as an induced subgraph of G. In regard to the
vertex cover as a parameter, it is interesting to note that whenever ` ≥ K, we are allowed to
delete the entire vertex cover, which removes every edge from the graph. If every graph in Π
has at least one edge, then this means we have a trivial solution whenever ` ≥ K. Therefore, for
the rest of this section, we will assume that every graph in Π has at least one edge (which are
interesting cases) and that ` ≤ K.

The problem of Π-free Deletion is broad, and many of its specific forms (with some given
Π) are well known. Examples include Cluster Vertex Deletion (Π = {P3}) [40], Odd
Cycle Transversal (Π is the set of all graphs containing an odd cycle, see for example [23,
Chapter 4.4]), or Vertex Cover (Π = {K2}, see Section 6).

4.2 Adapting Existing Kernels

The aim of this section is to adapt existing kernels to the streaming model to obtain new results
for Π-free Deletion [VC].

4.2.1 Kernel for Characterization by Few Adjacencies

We will first consider kernels given by Jansen in his Phd thesis [42]. In Chapter 4, Jansen
provides general kernelization theorems that make extensive use of a single property, that some
graph properties can be characterized by few adjacencies. This common property can be used
to find kernelizations for general sets of problems, even broader than just Π-free Deletion.

For completeness, we give the formal definition of being characterized by few adjacencies
here, as given in [42, Chapter 4].

Definition 4.1. ([42, Chapter 4, Definition 4.1]) A graph property Π is characterized by cΠ ∈ N
adjacencies if for all graphs G ∈ Π, for every vertex v ∈ V (G), there is a set D ⊆ V (G) \ {v} of
size at most cΠ such that all graphs G′ that are obtained from G by adding or removing edges
between v and vertices in V (G) \D, are also contained in Π.

Jansen shows that graph problems such as Π-free Deletion, parameterized by vertex cover,
can be solved efficiently through kernelization when Π is characterized by few adjacencies (and
meets some other demands), by making heavy use of the Reduce algorithm he provides. For
reference, this algorithm is provided here as Algorithm 1.

Let us shortly describe the essence of why this kernelization is correct. The idea behind the
Reduce algorithm is to save enough vertices with specific adjacencies in the vertex cover, and
those vertices that we forget have equivalent vertices saved to replace them. Which adjacencies
to the vertex cover we have to look at can be bounded by making use of the characterization by
few adjacencies, as more adjacencies than cΠ are not relevant. What amount of vertices saved
is enough is another relevant question. In the algorithm this is a variable r, which will come
to depend on the solution parameter ` and the maximum size of a (vertex-minimal) graph in
Π. This way, there are still enough vertices for any occurrence of a graph in Π to appear in
the kernel, and to make the vertex deletions as impactful as they would usually be (i.e. if in

4 Π-FREE DELETION 10

the original graph we need at least x deletions to remove an occurrence, we still need at least x
deletions).

Algorithm 1 Reduce(Graph G, Vertex Cover X ⊆ V (G), r ∈ N, c ∈ N) [42, Algorithm 1 on
p. 60]

for all Y ∈
(
X
≤c
)

and a partition of Y into Y + ∪ Y − do

Z := {v ∈ V (G) \X | v is adjacent to all of Y + and none of Y −}
Mark r arbitrary vertices of Z (if |Z| < r then mark all of them)

Delete from G all unmarked vertices that are not contained in X

If we choose the right streaming model, this algorithm can be translated into a streaming
setting without much difficulty. As the theorems given by Jansen essentially only make a call to
Reduce to achieve their results, we can exchange this algorithm for a streaming equivalent to
achieve these theorems in the streaming setting.

Adapting Reduce to the Streaming Model

We will now give an adaptation of the Reduce Algorithm in the streaming model. This adap-
tation can be found in Algorithm 2, ReduceStr. We state the following theorem on the per-
formance of Algorithm 2.

Theorem 4.2. For a fixed constant cΠ, ReduceStr(G, X, r, cΠ), where G is provided as a
stream in the AL model, is a one-pass streaming algorithm using O((|X|+ |X|cΠ) log(n)) bits of
memory resulting in a graph on O(|X|+ r · |X|cΠ) vertices, output as an EA stream.

Proof. Let us first elaborate on the working of Algorithm 2. The set Z stores all the partitions
considered in the original Reduce, together with two counters per partition. The first counter,
x, tracks the total amount of vertices already ‘marked’ with this partition, which may not exceed
r. The second counter is reset at every vertex, and tracks whether v is adjacent to the entirety
of Y +. This means these two counters mimic exactly the marking behaviour that Reduce
applies, except that the marking is not on arbitrary vertices, but dependent on the order of the
stream (this does not impact the correctness). The rest of the algorithm merely interacts with
Z correctly and uses some storage, S and V ′, to make sure the output is constructed correctly
without using too much memory. V ′ remembers which vertices in X we have already seen, to
avoid outputting the same edge twice. S saves the set of edges adjacent to a vertex v, and if we
mark v, we output S.

Let it be clear by the above motivation that the output of ReduceStr can also be an output
of Reduce, and therefore, the algorithm works correctly. Let us analyse the space usage. The
main concern is the space usage of the set Z, which contains partitions of sets in

(
X
≤c
)
. There

are at most |X|c such sets, each with at most 2c partitions, and each set has at most c elements
(using log n space). This means Z uses c · 2c · |X|c · log n = O(|X|c log n) bits of space. The set S
is reset at every vertex v (which is not part of the vertex cover), and contains at most all edges
incident on v. As v is not an element of the vertex cover, the degree of v is at most |X|. So the
set S uses at most O(|X| log n) bits of space. The set V ′ has size at most |X|, and so uses at
most O(|X| log n) bits of space. All in all, our memory never exceeds O((|X|+ |X|c) log n) bits.

An interesting observation is that Algorithm 2 outputs the kernel as an EA stream. This
should not have a lot of impact, as we probably want to store the entire kernel anyway. However,

4 Π-FREE DELETION 11

Algorithm 2 ReduceStr(Graph G = (V,E) given as a stream in the AL model, Vertex Cover
X ⊆ V (G), r ∈ N, c ∈ N)

1: for each Y ∈
(
X
≤c
)

and a partition of Y into Y + ∪ Y − do . Calculate and store partitions

2: Store (Y +, Y −, 0, 0) in Z

3: Store the output vertices V ′ ← ∅ . Required for neatly outputting X
4: for each v ∈ V in the stream do . This entire loop requires only one pass
5: if v ∈ X then
6: for each (v, w) ∈ E in the stream do
7: if w ∈ V ′ then Output (v, w) as part of the kernel

8: V ′ ← V ′ ∪ {v}
9: else . v /∈ X

10: for each (Y +, Y −, x, y) ∈ Z do . Reset local counters
11: y ← 0

12: Store an edge set S ← ∅ . Reset local edge memory
13: for each (v, w) ∈ E in the stream do
14: for each (Y +, Y −, x, y) ∈ Z where x ≤ r and y ≥ 0 do . Count ‘correct’

partitions
15: if w ∈ Y + then y ← y + 1

16: if w ∈ Y − then y ← −1

17: S ← S ∪ {(v, w)}. . If we mark v, then (v, w) needs to be added

18: if ∃(Y +, Y −, x, y) ∈ Z where y = |Y +| then . Mark v and output what we can
19: x← x+ 1 . Increment x so that this partition marks at most r vertices
20: Output S as part of the kernel

if we want the algorithm itself to store the entire kernel, this might increase the memory use, as
we would have to store all edges contained in the kernel. The same goes for if we would want to
output the kernel as an AL stream (which is how our input is provided). Let us shortly analyse
how much memory would be needed for this. For a vertex cover X in a graph G, saving G[X]
entirely can take up to O(|X|2 log n) bits. Next to the vertex cover, the output kernel consists of
O(r · |X|c) vertices, each of degree at most |X|, as these vertices are not part of the vertex cover.
Therefore, the total memory use with this approach can be O((|X|2 + r · |X|c+1) log n) bits.

Applying ReduceStr to general problems

Next, we translate the general results provided in [42, Chapter 4] into the streaming setting using
Theorem 4.2 (so using ReduceStr in place of Reduce).

The first general result is for Π-free Deletion problems. In the following, we call a graph
G vertex-minimal with respect to Π if G ∈ Π and for all S (V (G), G[S] /∈ Π. We present the
following theorem as an adaptation of [42, Theorem 4.1].

Theorem 4.3. If Π is a graph property such that:

(i) Π is characterized by cΠ adjacencies,
(ii) every graph in Π contains at least one edge, and

(iii) there is a non-decreasing polynomial p : N → N such that all graphs G that are vertex-
minimal with respect to Π satisfy |V (G)| ≤ p(K),

then Π-free Deletion [VC] admits a kernel on O((K + p(K))KcΠ) vertices in the AL strea-
ming model using one pass and O((K +KcΠ) log(n)) bits of space.

4 Π-FREE DELETION 12

Proof. Combine Theorem 4.2 with the proof of [42, Theorem 4.1], where instead of calling
Reduce(G, X, `+ p(|X|), cΠ) we call ReduceStr(G, X, `+ p(|X|), cΠ).

We note the the preconditions of Theorem 4.3 are both necessary and sufficient to achieve
the stated result. Further motivation for their necessity can be found in [42, Chapter 4].

Let us go over a few examples that make use of Theorem 4.3. Consider Cluster Vertex
Deletion parameterized by vertex cover. This problem is exactly Π-free Deletion [VC]
where Π = {P3}, as any P3-free graph can only contain clusters. Notice that cΠ = 2 and
p(K) = 3 suffice to meet the demands of Theorem 4.3. This implies that, given that we already
have a vertex cover for our graph, we have a one-pass streaming algorithm for CVD in the AL
model using O(K2 log n) space (or O(K3 log n) bits of space to save the kernel). Considering
that this algorithm is a simple adaptation of known results, it is interesting to observe that it
compares quite well to e.g. a more recent result of Bishnu et al. [8], who show that CVD admits
a one-pass (randomized) streaming algorithm in the AL model using O(K2 log4(n)) space when
parameterized by the size K of a vertex cover. Note that the kernel sizes differ, as the kernel
given by Bishnu et al. [8] uses O(K2 log2 n) bits of space, while the kernel from Algorithm 2 uses
O(K3 log n) bits of space.

Next consider Triangle Deletion parameterized by vertex cover. This problem is exactly
Π-free Deletion [VC] where Π = {C3}. Once again, it is easy to observe that cΠ = 2, and
p(K) = 3 suffice to meet the demands of Theorem 4.3. This means that, given that we already
have a vertex cover, we have a one-pass streaming algorithm for TD in the AL model using
O(K3 log n) bits of space (if we save the entire kernel). Once again, this result compares very
well to a recent result of Bishnu et al. [8], who show that TD admits a one-pass streaming
algorithm in the AL model using O(K3) words of space when parameterized by the size K of a
vertex cover.

The second general result is for finding largest induced subgraphs.

Largest Induced Π-Subgraph [VC]
Input: A graph G with a vertex cover X, and an integer ` ≥ 1.
Parameter: The size K := |X| of the vertex cover.
Question: Is there a set P ⊆ V (G) of size at least ` such that G[P] ∈ Π?

With this definition, we give the following theorem as an adaptation of [42, Theorem 4.2].

Theorem 4.4. If Π is a graph property such that:

(i) Π is characterized by cΠ adjacencies, and
(ii) there is a non-decreasing polynomial p : N→ N such that all graphs G ∈ Π satisfy |V (G)| ≤

p(K),

then Largest Induced Π-Subgraph [VC] admits a kernel on O(p(K) ·KcΠ) vertices in the
AL streaming model using one pass and O((K +KcΠ) log(n)) bits of space.

Proof. Combine Theorem 4.2 with the proof of [42, Theorem 4.2], where instead of calling
Reduce(G, X, p(|X|), cΠ) we call ReduceStr(G, X, p(|X|), cΠ).

Examples of problems fitting in the Largest Induced Π-Subgraph [VC] category, that
are also characterized by few adjacencies, are Long Cycle, Long Path, and H-Packing.

The third general result is for graph partitioning problems.

4 Π-FREE DELETION 13

Partition into q Disjoint Π-Free Subgraphs [VC]
Input: A graph G with a vertex cover X.
Parameter: The size K := |X| of the vertex cover.
Question: Is there a partition of the vertex set into q sets S1 ∪S2 ∪ . . .∪Sq such that
for each i ∈ [q] the graph G[Si] does not contain a graph in Π as an induced subgraph?

Note that q is regarded a constant.

Theorem 4.5. If Π is a graph property such that:

(i) Π is characterized by cΠ adjacencies, and
(ii) there is a non-decreasing polynomial p : N→ N such that all graphs such that all graphs G

that are vertex-minimal with respect to Π satisfy |V (G)| ≤ p(K),

then Partition into q Disjoint Π-Free Subgraphs [VC] admits a kernel on O(p(K)·Kq·cΠ)
vertices in the AL streaming model using one pass and O((K +Kq·cΠ) log(n)) bits of space.

Proof. Combine Theorem 4.2 with the proof of [42, Theorem 4.3] and [42, Lemma 4.2], where
instead of calling Reduce(G, X, q · p(|X|), q · cΠ) we call ReduceStr(G, X, q · p(|X|),
q · cΠ).

Examples of problems fitting in the Partition into q Disjoint Π-Free Subgraphs [VC]
category, that are also characterized by few adjacencies, are Partition into q Independent
Sets, Partition into q Cliques, Partition into q Planar Graphs, and Partition into
q Forests.

Theorem 4.3, Theorem 4.4, and Theorem 4.5 illustrate the broad range of problems that can
be tackled using ReduceStr. However, not all Π can be characterized by few adjacencies. Next,
we will see an improved characterization that leads to more results.

4.2.2 Kernel for Characterization by Low-Rank Adjacencies

More recently, Jansen and Kroon have given a kernel similar to the above Reduce (see Algo-
rithm 1), with a different characterization [41]. This new result provides a kernelization algorithm
for a more general set of problems, as it asks for a different characterization of the graph class Π.
As the adaptation of Reduce to the streaming setting worked out well, we can wonder whether
the same can be said for this new algorithm.

As before, we start by providing the definition of a new characterization, characterization by
low-rank adjacencies. For this, however, we need the definition of a c-rank incidence vector.

Definition 4.6. ([41, Definition 5]) Let G be a graph with vertex cover X and let c ∈ N.
Let Q′, R′ ⊆ X such that |Q′| + |R′| ≤ c and Q′ ∩ R′ = ∅. We define the c-incidence vector

inc
c,(Q′,R′)
(G,X) (u) for a vertex u ∈ V (G) \X as a vector over F2 that has an entry for each (Q,R) ⊆

X ×X with Q ∩R = ∅ such that |Q|+ |R| ≤ c, Q′ ⊆ Q and R′ ⊆ R. It is defined as follows:

inc
c,(Q′,R′)
(G,X) (u)[Q,R] =

{
1 if NG(u) ∩Q = ∅ and R ⊆ NG(u),

0 otherwise.

The superscript (Q′, R′) is dropped when Q′ = R′ = ∅. Note that the order of the coordinates
of the vector is fixed, but not explicit, as any order suffices. Therefore, we can also sum such
incidence vectors coordinate-wise.

With this, we can give the defintion of a graph property being characterized by rank-c adja-
cencies.

4 Π-FREE DELETION 14

Definition 4.7. ([41, Definition 7]) Let c ∈ N be a natural number. A graph property Π is
characterized by rank-c adjacencies if the following holds. For each graph H, for each vertex
cover X of H, for each set D ⊆ V (H) \X, for each v ∈ V (H) \ (D ∪X), if

• H −D ∈ Π, and
• incc(H,X)(v) =

∑
u∈D incc(H,X)(u) when evaluated over F2,

then there exists D′ ⊆ D such that H − v − (D \D′) ∈ Π. If there always exists such set D′ of
size 1, then we say Π is characterized by rank-c adjacencies with singleton replacements.

Jansen and Kroon note that the intuition here is that if we have a set D such that H−D ∈ Π,
and the c-incidence vectors of D sum to the vector of some vertex v over F2, then there exists
D′ ⊆ D such that removing v from H − D and adding back D′ results in a graph that is
still contained in Π. We can notice how there is some similarity in essential and non-essential
adjacencies for occurrences of graphs in Π when comparing this characterization to that of few
adjacencies (see Definition 4.1).

We will give the kernelization algorithm as given by Jansen and Kroon [41] next, but first, we
recall a linear algebraic definition, that of a basis. As Jansen and Kroon state [41], “a basis of a
set S of d-dimensional vectors over a field F is a minimum-size subset B ⊆ S such that all ~v ∈ S
can be expressed as linear combinations of elements of B, i.e., ~v =

∑
~u∈B α~u · ~u for a suitable

choice of coefficients α~u ∈ F. When working over the field F2, the only possible coefficients are
0 and 1, which gives a basis B of S the stronger property that any vector ~v ∈ S can be written
as
∑
~u∈B′ ~u, where B′ ⊆ B consists of those vectors which get a coefficient of 1 in the linear

combination”.
The essence of the kernel comes down to computing the basis of a set of incidence vectors of

the remaining graph and adding vertices corresponding to the basis to the kernel. We give this
kernel here as Algorithm 3.

Algorithm 3 Low-Rank Reduce(Graph G, Vertex Cover X ⊆ V (G), ` ∈ N, c ∈ N) [41,
Algorithm 1]

1: Let Y1 := V (G) \X
2: for i← 1 to ` do
3: Let Vi = {incc(G,X)(y) | y ∈ Yi} and compute a basis Bi of Vi over F2.
4: For each ~v ∈ Bi, choose a unique vertex y~v ∈ Yi such that ~v = incc(G,X)(y~v).
5: Let Ai := {y~v | ~v ∈ Bi} and Yi+1 = Yi \Ai.
6: return G[X ∪

⋃`
i=1Ai]

Jansen and Kroon show that Algorithm 3 runs in polynomial time in ` and the size of G (for
a constant c), and returns a graph on O(|X|+ ` · |X|c) vertices. We will now adapt Algorithm 3
to the streaming setting, and conclude a streaming equivalent of [41, Theorem 9].

Adapting Low-Rank Reduce

If we want to adapt Algorithm 3, Low-Rank Reduce, to the streaming setting, we are faced
with a few challenges. For one, the set Vi consists of O(n) vectors, so saving this entire set is
not desirable. We also have to consider how we can compute the basis of the set Vi if we do not
want to save it. Luckily, the incidence vectors are computable from local information combined
with the vertex cover, and computing a basis can be done incrementally by checking linear
(in)dependence. With this small motivation, we give the adaptation of Low-Rank Reduce
into the streaming setting, Low-Rank ReduceStr, in Algorithm 4.

4 Π-FREE DELETION 15

Algorithm 4 Low-Rank ReduceStr(Graph G as an AL stream, Vertex Cover X ⊆ V (G),
` ∈ N, c ∈ N)

1: Let A← ∅
2: for i← 1 to ` do
3: Ai ← ∅
4: B ← ∅
5: for each Vertex v ∈ V \ (X ∪A) in the stream do . Entire loop in one pass
6: Save the ≤ |X| adjacencies of v in X (until the next vertex)
7: Let ~v ← incc(G,X)(v) . Can be computed from X and the adjacencies of v
8: If ~v is linearly independent w.r.t. B over F2, do B ← B ∪ {~v} and Ai ← Ai ∪ {v}.
9: Let A← A ∪Ai.

10: return G[X ∪A]

Theorem 4.8. Algorithm 4 is a streaming equivalent of Algorithm 3, that is, given a graph G as
an AL stream with a vertex cover X, and integer ` and a constant c, Algorithm 4 returns a graph
on O(|X|+ ` · |X|c) vertices as an AL stream that could be the output of Algorithm 3 given the
same input. Algorithm 4 uses `+ 1 passes and O((|X|+ ` · |X|c) log n+ |X|2c) bits of memory.

Proof. Let us first show the equivalence of Algorithm 4 to Algorithm 3. Let G be a graph with
vertex cover X, and let ` and c be integers. Algorithm 4 and Algorithm 3 both do ` iterations
over some process over all vertices, excluding the vertices in X and a set A (for both algorithms,

A =
⋃`
i=1Ai). With these vertices, Algorithm 3 computes the incidence vector of each of them,

and then computes a basis for this set. The new vertices added to A are then vertices with
incidence vectors equivalent to those in the basis. Algorithm 4 computes the incidence vectors
of these vertices one vertex at a time. It then checks whether the current incidence vector is
linearly independent of a set B, and if so, the incidence vector is added to B. We can see that B
must consist of a basis of all incidence vectors seen so far. Therefore, after Algorithm 4 has seen
every vertex (excluding those in X and A), B is a basis that could also be found by Algorithm 3
for the same set of vertices. We conclude that in every iteration, Algorithm 4 adds to A a set of
vertices which Algorithm 3 can also add to A in the corresponding iteration. As both algorithms
return G[X ∪A], the output of Algorithm 4 can also be an output of Algorithm 3.

As the incidence vector of a vertex v can be computed from the adjacencies of v together
with X alone, and linear (in)depence checking only requires the vectors to be in memory, we
only require one pass for each 1 ≤ i ≤ `. Another pass is used to compute the output, as we can
produce an AL stream corresponding to G[X ∪A] by simply using a pass and output only those
edges between vertices in X ∪A. Therefore, Algorithm 4 uses `+ 1 passes over the stream.

In terms of memory, Algorithm 4 stores A, B, X, adjacencies of a vertex v, and an incidence
vector of v, ~v. Clearly, the memory used by the adjacencies of v and ~v is dominated by saving
X and B in memory. The computation of ~v also requires no more memory than X uses, as it
iterates subsets of X to compute entries of the vector. Saving X requires Õ(|X|) bits of memory.
B consists of at most O(|X|c) vectors, and each vector consists of O(|X|c) bits, as motivated by
Jansen and Kroon [41, Proposition 8]. It follows that B requires O(|X|2c) bits of space. The
set A consists of at most O(` · |X|c) vertices, as in every iteration B contains at most O(|X|c)
vectors. We conclude that the total memory usage is O((|X|+ ` · |X|c) log n+ |X|2c) bits.

With Theorem 4.8 we are ready to give the streaming equivalent of [41, Theorem 9].

Theorem 4.9. If Π is a graph property such that:

4 Π-FREE DELETION 16

(i) Π is characterized by rank-c adjacencies,
(ii) every graph in Π contains at least one edge, and

(iii) there is a non-decreasing polynomial p : N → N such that all graphs G that are vertex-
minimal with respect to Π satisfy |V (G)| ≤ p(K),

then Π-free Deletion [VC] in the AL streaming model admits a kernel on O((K+p(K)) ·Kc)
vertices using K + p(K) + 2 passes and O((K + p(K)) ·Kc log n+K2c) bits of memory.

Proof. See the proof of [41, Theorem 9], where instead of Low-Rank Reduce(G,X, ` := k +
1 + p(|X|), c) we call Low-Rank ReduceStr(G,X, ` := k+ 1 + p(|X|), c). By Theorem 4.8 the
theorem follows.

Let us shortly list some implications of Theorem 4.9, which consist of some problems admitting
streaming kernels. These results are derived from the results by Jansen and Kroon [41, Section 4].

The first result is for Perfect Deletion [VC]. Perfect Deletion [VC] is Π-free Dele-
tion [VC] where Π is the set of all graphs that contain an odd hole or an odd anti-hole. An odd
hole is a cycle consisting of an odd number of vertices, and an odd anti-hole is the complement
graph of an odd hole.

Theorem 4.10. Perfect Deletion [VC] in the AL streaming model admits a kernel on
O(K5) vertices using O(K) passes and O(K5 log n+K8) bits of memory.

Proof. See [41, Theorem 19], but instead of applying [41, Theorem 9] we apply Theorem 4.9.

The second result is for AT-free Deletion [VC]. This is Π-free Deletion [VC] where Π
is the set of all graphs that contain an asteroidal triple. An asteroidal tiple is a set of three vertices
where every two vertices in the triple are connected by a path that avoids the neighbourhood of
the third.

Theorem 4.11. AT-free Deletion [VC] in the AL streaming model admits a kernel on
O(K9) vertices using O(K) passes and O(K9 log n+K16) bits of memory.

Proof. See [41, Theorem 21], but instead of applying [41, Theorem 9] we apply Theorem 4.9.

The third result is for Interval Deletion [VC]. This is Π-free Deletion [VC] where Π
is the set of all graphs that contain either an asteroidal triple or an induced cycle of length at
least 4, or both.

Theorem 4.12. Interval Deletion [VC] in the AL streaming model admits a kernel on
O(K9) vertices using O(K) passes and O(K9 log n+K16) bits of memory.

Proof. See [41, Theorem 22], but instead of applying [41, Theorem 9] we apply Theorem 4.9.

The fourth result is for Wheel-free Deletion [VC]. This is Π-free Deletion [VC]
where Π is the set of all graphs that contain a wheel of size at least 3. A wheel of size n ≥ 3 is
a set of n+ 1 vertices, where n vertices form a cycle, and one vertex is connected to all vertices
on the cycle (the center of the wheel).

Theorem 4.13. Wheel-free Deletion [VC] in the AL streaming model admits a kernel on
O(K5) vertices using O(K) passes and O(K5 log n+K8) bits of memory.

4 Π-FREE DELETION 17

Proof. See [41, Theorem 24], but instead of applying [41, Theorem 9] we apply Theorem 4.9.

It is interesting to note that the above problems are not characterized by few adjacencies, but
only characterized by rank-c adjacencies, therefore requiring Algorithm 4 to admit a streaming
kernel.

4.3 A Direct FPT Approach

In the previous section we have seen how very general problems admit streaming kernels in the
Adjacency List model. It is known in folklore that a kernel implies an FPT algorithm, and
so we know that these problems admit streaming FPT algorithms. However, we can wonder
whether pursuing a direct FPT algorithm rather than through a kernel can deliver different
results than those implied by the streaming kernels. This is motivated by the fact that Chitnis
and Cormode [17] found a direct FPT algorithm for Vertex Cover using O(2k) passes and

only Õ(k) space in contrast to the kernel of Chitnis et al. [18] using one pass and Õ(k2) space.
Therefore, this section aims to explore the pass/memory trade-off for Π-free Deletion [VC],
by attempting to find a direct algorithm for the same cases as Theorem 4.3.

4.3.1 P3-free Deletion

To start exploring this approach for Π-free Deletion [VC], let us look at a specific case.
We start with the scenario where Π = {P3}, which means we consider the problem Cluster
Vertex Deletion parameterized by vertex cover.

The general idea of the algorithm is to branch on what part of the given vertex cover should
be in the solution. This gives us a lot of information to work with, as within a branch we do not
allow any vertex of the other part of the vertex cover to be part of the solution. What remains is
some case analyses where either one or two vertices of a P3 lie outside the vertex cover, for which
we deterministically know which vertices have to be removed to make the graph P3-free. Below,
the idea of this algorithm is immediately adapted to the streaming setting, and so we present a
streaming algorithm for Cluster Vertex Deletion [VC] in the AL streaming model.

To handle branching formally, we need the same dictionary ordering structure as used by
Chitnis and Cormode [17], which we define here.

Definition 4.14. ([17, Definition 9]) Let U = {u1, u2, . . . , un} and k ≤ n. Let U≤k denote

the set of all
∑k
i=0

(|U |
i

)
subsets of U which have at most k elements, and let DictU≤k be the

dictionary ordering on U≤k. Given a subset X ∈ U≤k, let DictU≤k(Next(X)) denote the subset
that comes immediately after X in the ordering DictU≤k . We denote the last subset in the
dictionary order of U≤k by Last(U≤k), and similarly the first subset as First(U≤k), and use the

notation that DictU≤k(Next(Last(U≤k))) = ♠. Similarly, we define Uk as the set of all
(|U |
k

)
subsets of U with exactly k elements, and analogously define the dictionary ordering on this set.

For a look into the inner workings of dictionary orderings and an analysis of their memory
use, see Appendix A.

The algorithm for Cluster Vertex Deletion [VC] in the AL streaming model is now
given as Algorithm 5. Remember that our aim is to use o(K2) space, as applying Theorem 4.3

to Cluster Vertex Deletion [VC] gives us an Õ(K2) space kernel. In this regard, we note
that Algorithm 5 can be improved to use less passes over the stream by saving the entire vertex
cover with edges to memory, but doing so would increase its space usage to Õ(K2).

4 Π-FREE DELETION 18

Algorithm 5 P3-free Deletion(Graph G = (V,E) given as a stream in the AL model, integer
`, Vertex Cover X ⊆ V (G))

1: S ← First(X≤`)
2: while S ∈ X≤`, S 6= ♠ do
3: Y ← X \ S . Y is the part of the vertex cover not in the solution S
4: S′ ← S . If S′ ever exceeds size `, move to the next S
5: P ← First(Y2)
6: while P = (y1, y2) ∈ Y2, P 6= ♠ do . We enumerate all pairs in Y
7: for each Vertex v ∈ Y \ P do
8: If v and P form a P3, Y is invalid, move to the next S . Requires a pass

9: P ← DictY2
(Next(P))

10: P ← First(Y2)
11: while P = (y1, y2) ∈ Y2, P 6= ♠ do . We enumerate all pairs in Y
12: if y1y2 is an edge then
13: for each Vertex v ∈ V \ (X ∪ S′) in the stream do . Entire loop in one pass
14: if Either vy1 or vy2 is present and the other is not then S′ ← S′ ∪ {v}
15: else
16: for each Vertex v ∈ V \ (X ∪ S′) in the stream do . Entire loop in one pass
17: if Both vy1 and vy2 are present then S′ ← S′ ∪ {v}
18: P ← DictY2(Next(P))

19: for each y ∈ Y do
20: b← False
21: for each Vertex v ∈ V \ (X ∪ S′) in the stream do . Entire loop in one pass
22: if The edge vy is present and b = False then b← True
23: else if The edge vy is present then S′ ← S′ ∪ {v}
24: if |S′| ≤ ` then return S′

25: S ← DictX≤`(Next(S))

26: return NO . No branch resulted in a solution

Theorem 4.15. Algorithm 5 gives a solution to Cluster Vertex Deletion [VC] if it exists,
and returns NO otherwise, using O(2KK2) passes and O(K log n) bits space, where |X| = K,
the size of the vertex cover.

Proof. Let us first reason that the number of passes and memory use are as stated. Let X be
the provided vertex cover, and let |X| = K. The number of different sets S can take is bounded
by 2K . The first and second loop enumerate all pairs of vertices in the vertex cover, and use a
single pass per pair to detect a P3, which gives us at most K2 passes. The last loop enumerates
all K vertices in the vertex cover and uses one pass per iteration. Therefore, the total number
of passes is bounded by O(2KK2).

In terms of memory, we save the sets S, S′, Y,X, P and some separate bits for boolean logic.
Notice that S and S′ never exceed O(` log n) bits of memory, as we stop whenever it does. Both
X and Y are bounded by the size of the vertex cover, which is O(K log n) bits. P is negligible in
comparison to X and Y , as are the separate bits. Therefore, assuming ` ≤ K (which we assume
because else the vertex cover itself is a trivial solution), the memory use is O(K log n) bits.

Let us now show the correctness of the algorithm. The main idea of the algorithm is to branch
on what part of the vertex cover is contained in the solution S′. This is modelled through the

4 Π-FREE DELETION 19

y1 y2

Y

y1 y2

Y

v v

Y

y

v

Case 1 Case 2 Case 3

Figure 2: The different cases how a P3 can exists with respect to Y , part of the vertex cover.
Notice that the case where the entire P3 is contained in Y is not included here. Case 3 assumes
there are no Case 1 or Case 2 P3’s in the graph anymore.

use of the sets Y and S, where in each branch, we cannot add vertices in Y to S′. Therefore, we
first check whether Y fully contains a P3, and if one is found we stop, as we may not delete any
vertex of this P3 in this branch. For a fixed pair (v, w) in the vertex cover, checking for a P3 that
contains v and w only takes one pass because the only necessary information is the adjacencies
of v and w towards another vertex, which is provided in the stream local to that vertex (see also
Case 1 and Case 2 in the following analysis).

What remains is a careful analysis of the different cases of the structure of P3’s with respect
to Y . An illustration is given in Figure 2. The loop of line 11 considers all pairs of vertices in Y .
There are two cases we are interested in: Case 1 and Case 2 in Figure 2. If we look at a single
pair of vertices y1 and y2 either there is an edge between them (Case 1) or a non-edge (Case
2). These two vertices can then form a P3 with any vertex outside Y in a very specific manner,
which the algorithm looks for. It is then trivial that the one vertex outside Y has to be removed
to make the graph P3 free if a P3 is found.

If there are no Case 1 or Case 2 P3’s in the graph any more, we move on to Case 3. Note
that this is the only remaining way a P3 can be in the graph at all, as vertices outside Y and S
cannot have edges between them, because Y ⊆ X is (part of) a vertex cover. In Case 3 we might
at first be worried that we do not know which of the two vertices outside Y to remove, as one
might lead to a solution and the other not. Let y1, v, w form a Case 3 P3, where y1 ∈ Y . Let us
consider the scenario where v has another adjacency y2 ∈ Y . Because there are no Case 2 P3’s,
y1 and y2 must be adjacent. Because there are no Case 1 P3’s, w must now also be adjacent
to y2. This means the structure extends as illustrated on the right in Case 3 in Figure 2. We
can observe that we need to delete all but one of the vertices attached to y, which is what the
algorithm does. It does not matter which vertex we do not delete, as this vertex forms triangles
if it has multiple adjacencies. Therefore, after these cases have all been handled, no induced P3’s
remain in the graph. If during the process S′ never exceeded size `, this means we have found a
solution; otherwise, we move on to the next branch.

By the above reasoning, if there exists a solution of size at most ` for the Cluster Vertex
Deletion [VC] problem, then this solution contains some subset of the vertex cover X, which
corresponds to some branch in the algorithm. As the removal of vertices is deterministic in each
branch, and there exists a solution, the algorithm must find a solution too in that branch. If
there exists no solution of size at most `, then there exists no subset of vertices S′ such that
G \ S′ is induced P3 free, and so in each branch of the algorithm S′ will exceed size ` at some
point, which results in the algorithm returning NO.

Now that we have seen Algorithm 5, it is good to closely look at some of its features, because
they can provide relevant insights. One of the first noticeable features is that this algorithm
works on the Adjacency List model. This is arguably the ‘weakest’ model, as it forces the stream

4 Π-FREE DELETION 20

to have a very specific structure, but its use is necessary here. The only reason we can do the
loops over all vertices in one pass, is because we know we get all adjacencies of a vertex towards
the vertex cover together. This allows us to immediately (locally) make some decision without
having to save information to memory. If we were to use the EA or VA model, where there
is no guarantee that this will happen, we have two options: Either save for every vertex some
information, or use for every vertex multiple passes to get the same information. Both of these
options clearly worsen the performance of the algorithm drastically. This difference indicates a
quite significant distinction between these models and the amount of information they provide.

Another noticeable feature is the heavy use of dictionary orderings, as defined in Defini-
tion 4.14. Their use is easily motivated by their purpose, enumerating certain sets while using
little memory to do so. This is clearly suited to use in the streaming model, where with bran-
ching purposes we often want to enumerate sets while using little memory. The use of dictionary
orderings in the streaming setting was introduced by Chitnis and Cormode [17], who illustrate its
potency with two algorithms for Vertex Cover heavily relying on these dictionary orderings
as well.

Lastly, let us note the implications this algorithm has outside of the streaming setting. We
can easily implement Algorithm 5 without making use of a stream, and simply executing the
foreach-statements as such. It is not difficult to see that this would lead to an algorithm for
Cluster Vertex Deletion [VC] running in O(2K ·K2 · (n+m)) time. Note that this is the
same as the number of passes Algorithm 5 does in the streaming setting, except for a difference
in a factor n+m. This is not strange, seeing as a single pass of the stream corresponds to doing
something for every vertex or edge. In Algorithm 5 we can observe that every edge adjacent to
a vertex is considered a constant number of times for that vertex, so the complexity follows. So
we have also found an FPT algorithm for Cluster Vertex Deletion [VC].

4.3.2 H-free Deletion

Let us generalize the above ideas to a more general form, H-free Deletion parameterized by
vertex cover. This is Π-free Deletion [VC] where Π = {H}, a single graph. Seeing the success
of the P3 case might incline us to think that carefully analysing the H-free case can also result in
an effective algorithm. However, in the general case it is not possible to use the structure of H so
elaborately as in the P3 case. That is, the case analysis done in Algorithm 5 works so effectively
because the structure of a P3 is very simple and very local. What this leads to is that the running
time of the FPT algorithm for H-free Deletion [VC], and so the number of passes for the
streaming algorithm (these are closely related), is quite significantly worse in comparison to the
P3 case. Nonetheless, these results are mentionable, as they are far more general than the P3

case.
The main issues arising with the more general H-free Deletion [VC] come from two

factors: It requires some effort to find an occurrence of H in the graph, and if we find an H,
it is certainly not deterministic which deletion will lead to a solution. The first problem causes
just generally a bigger running time (possibly hidden in constants) and so more passes in the
streaming setting. The second issue is more difficult, as it means we will have to do more
branching to find a solution. And, as one can imagine, branching on possible deletions within
branches of the vertex cover leads to larger running times.

We first provide an FPT algorithm for H-free Deletion [VC] (not in the streaming set-
ting), see Algorithm 6.

Let us first analyse the subroutine FindH of Algorithm 6.

Lemma 4.16. In Algorithm 6, FindH is a function that, given a graph G = (V,E) with vertex
cover X, graph H with at least one edge, and sets S, Y ⊆ X, and integer i, finds an occurrence

4 Π-FREE DELETION 21

Algorithm 6 H-free Deletion FPT(Graph G = (V,E), integer `, Vertex Cover X ⊆ V (G))

1: for each Partition of X into S, Y where |S| ≤ ` do

2: if H is not contained in Y then . Check all O(
(|X|
|H|
)
|H|!) options

3: if Branch(S, Y , 1) then
4: return YES . If any returns YES, we also return YES

5: return NO

6: function Branch(solution set S, forbidden set Y ⊆ X, integer i)
7: B ← FindH(S, Y , i) . Try to find an H with i vertices outside Y
8: if B = ∅ and i = |H| then return YES
9: else if B = ∅ then Branch(S, Y , i+ 1) . No H found

10: else if |S| = ` then return NO . Found an H but cannot remove it
11: else
12: for each v ∈ B do
13: if Branch(S ∪ {v}, Y , i) then return YES

14: function FindH(solution set S, forbidden set Y ⊆ X, integer i)
15: for each Set O of i vertices of H that can be outside Y do . Check the needed i2

non-edges in H
16: Denote H ′ = H \O
17: for each Occurrence of H ′ in Y do . Check all O(

(|X|
|H|−i

)
(|H| − i)!) options

18: S′ ← ∅, O′ ← O
19: for each Vertex v ∈ V \ (S ∪X) do
20: Check the edges/non-edges towards H ′ ∈ Y
21: if v is equivalent to some w ∈ O′ for H ′ then
22: S′ ← S′ ∪ {v}, O′ ← O′ \ {w}
23: if O′ = ∅ then return S′ . We found an occurrence of H

24: return ∅ . No occurrence of H found

4 Π-FREE DELETION 22

of H in G such that this occurrence contains no vertices in S and X \ Y , and with |V (H)| − i
vertices contained in Y . FindH runs in O

((
h
i

)
[i2 +

(
K
h−i
)
(h− i)!((h− i)2 +Kn+ (h− i)in)]

)
time, where |V (H)| = h, and |X| = K.

Proof. Let us first show the correctness of FindH, that is, we show that FindH correctly finds
occurrences of H where i vertices are outside Y with no vertices from S. The function starts by
enumerating all sets of i vertices in H that can be outside Y . This requires all these i vertices
to have no edges between them, which the algorithm checks. If the check is successful, it then
enumerates all possibilities for the part of H inside Y . For each of these options, it enumerates
all vertices outside X and S to find the vertices equivalent to those in O (we do not consider
the vertices in S as these are already removed from the graph). Clearly, if it finds these vertices
then it has found an occurrence of H with i vertices outside of Y . If it finds no occurrence and
returns the empty set, let it be clear by the above motivation that the algorithm has considered
all possibilities for such an H to occur, and therefore, there is none.

Let us analyse the running time of FindH. Checking all possible sets O takes O(
(
h
i

)
i2) time

resulting in at most O(
(
h
i

)
) options for O. There are at most O(

(
K
h−i
)
(h− i)!) options for H ′ in

Y : checking all of them costs O(
(

K
(h−i)

)
(h− i)!(h− i)2) time. Then we take O((K + (h− i)i)n)

time to, for each vertex, save adjacencies to H ′, and check whether it matches on of those in O.
The (h− i) factor is for checking adjacencies towards H ′. Therefore, the running time of FindH

is O
((
h
i

)
[i2 +

(
K
h−i
)
(h− i)!((h− i)2 +Kn+ (h− i)in)]

)
.

With Lemma 4.16 we can analyse Algorithm 6 in its entirety.

Theorem 4.17. Algorithm 6 is an FPT algorithm for H-free Deletion [VC] using O(2KhKKh+1h!h2n)
time or alternatively O(2KhKK!Kh!h2n) time, where K = |X|, the size of the vertex cover, and
|V (H)| = h and H contains at least one edge.

Proof. Let us first go into detail on the correctness of the algorithm. Assume the algorithm
returns YES for some instance G,H, `,X where |X| = K and |V (H)| = h. The only way the
algorithm returns YES, is if in some partition of X into S and Y the Branch function returns
YES. The Branch function only returns YES if any recursive call returns YES, or when B = ∅
and i = h. As the latter is the only base case, this must have occurred for this instance. As i
starts at 1 and is only ever incremented, we can conclude that for every i at some point B = ∅
while |S| ≤ `. The algorithm calls on FindH for every i to find if there is an occurrence of H
with i vertices outside of Y ∪ S and |V (H)| − i vertices in Y . By Lemma 4.16, FindH correctly
finds occurrences of H where i vertices are outside Y . As the algorithm returned YES, FindH
must have returned an empty set for each i at some point, and so no occurrences of H are present
in the graph G[V \S] (otherwise, such an occurrence must have i vertices outside Y ∪S for some
i). This means that the algorithm is correct in returning YES.

For the other direction, assume that for an instance G,H, `,X where |X| = K there exists a
smallest set Sopt such that G[V \ Sopt] is H-free and |Sopt| ≤ `. Then Sopt must contain some
part of the vertex cover X, and as we enumerate all possibilities, the algorithm considers this
option. As G[V \ Sopt] is H-free, clearly, for every set B the function FindH finds, at least one
vertex in B is also in Sopt. As we branch on each possibility of the vertices in B, the algorithm
also considers exactly the option where the set S in the algorithm is a subset of Sopt. This means
there is a branch where the algorithm terminates with S = Sopt, which means it returns YES as
G[V \ Sopt] is H-free. We conclude that the algorithm solves H-free Deletion correctly.

Let us analyse the running time of the algorithm. There are O(2K) possible partitions of
X into S and Y . Checking whether H is contained in Y takes O(

(
K
h

)
h!h2) time. Because H

4 Π-FREE DELETION 23

contains at least one edge, we can assume that ` ≤ K, as otherwise X is a trivial solution. The
function Branch is called in worst case O(h`) = O(hK) times (branching on at most h vertices
each time). FindH is called at most once for every i in every branch. By Lemma 4.16, FindH

runs in O
((
h
i

)
[i2 +

(
K
h−i
)
(h− i)!((h− i)2 +Kn+ (h− i)in)]

)
time. Here is where there is some

variance in how we round these complexities, namely when concerning e.g.
(
K
h

)
. This is because

we can both say
(
K
h

)
= O(Kh), and

(
K
h

)
= O(K!). Which of these is a tighter bound comes

down to the value of h in comparison to K. The total complexity of the algorithm comes down
to

O

(
2K

((
K

h

)
h!h2 + hK

h∑
i=1

(
h

i

)
[i2 +

(
K

h− i

)
(h− i)!((h− i)2 +Kn+ (h− i)in)]

))

time, which we can shorten to either O(2KhKKh+1h!h2n) or O(2KhKK!Kh!h2n) time.

Before we go into the translation of Algorithm 6 to the streaming model, let us discuss one
of its shortcomings. A large part of the complexity of the algorithm comes from the twofold
branching (on the vertex cover and on the possible deletions), but next to this, the function
FindH largely contributes to the complexity. We can ask ourselves whether or not this function
can be made more efficient. This means we are interested in more efficient induced subgraph
finding, which is also called induced subgraph isomorphism. This problem has been studied in
the literature, with varying degrees of success. There are a couple of main issues with regard to
applying such results to this algorithm. For one, many results focus on specific graph structures,
e.g. finding r-regular induced subgraphs [48]. These results do not help us as we are interested
in general structures. Another problematic factor is the common approach of using matrix
multiplication. The issue with matrix multiplication is that it does not translate well to the
streaming model, as often matrices require at least super-linear memory. An example of such an
algorithm can be found in [43].

Let us now translate Algorithm 6 into the streaming model, see Algorithm 7. It should be
clear that the functionality of Algorithm 7 is the same as that of Algorithm 6, but translated to
the streaming model using as little memory as possible. Once again we make use of dictionary
orderings, see Definition 4.14 for the formal definition.

Theorem 4.18. Algorithm 7 is a streaming algorithm for H-free Deletion [VC] in the AL
model using O(2KhK+2Khh!) or alternatively O(2KhK+2K!h!) passes and O((K+h2) log n) bits
of space, where K = |X|, the size of the vertex cover, and |V (H)| = h and H contains at least
one edge.

Proof. Let it be clear from the algorithm that the approach to solving H-free Deletion has
not changed from Algorithm 6. Therefore, if the graph stream is handled correctly, we can
conclude that H-free Deletion is solved correctly. As we have H in memory, we only require
to use passes of the stream to determine (parts of) X and G. The dictionary orderings require
no passes because we have the vertices of X in memory. The only places where we require passes
of the stream thus are when concerning edges of the vertex cover, and edges/vertices in the rest
of the graph (V \ X). Notice that at such points in Algorithm 7 we correctly mention the use
of a pass. The loop over all vertices in V \ (S ∪ Y) only requires one pass because of the use of
the AL model. Therefore, the algorithm is a correct adaptation of Algorithm 6 to the streaming
model.

What remains is to analyse the number of passes and memory use. Let us analyse the memory
use per function. The entire algorithm keeps track of the vertex cover X, and the forbidden graph

4 Π-FREE DELETION 24

Algorithm 7 H-free Deletion Stream(Graph G = (V,E) in the AL model, integer `, Vertex
Cover X ⊆ V (G))

1: S ← First(X≤`)
2: while S ∈ X≤`, S 6= ♠ do
3: Y ← X \ S
4: S′ ← S
5: if ¬ Check(H,Y) then
6: if Branch(S′, Y , 1) then
7: return YES . If any returns YES, we also return YES

8: S ← DictX≤`(Next(S))

9: return NO

10: function Check(set to find H, search space Y) . Tries to find an H contained in Y
11: P ← First(Y|H|)
12: while P ∈ Y|H|, P 6= ♠ do
13: for each Permutation p of the vertices of H do
14: Use a pass to check if p matches P . Go to the next p if some edges do not match
15: if p matches P then return YES

16: P ← DictY|H|(Next(P))

17: return NO

18: function Branch(solution set S, forbidden set Y ⊆ X, integer i)
19: B ← FindH(S, Y , i) . Try to find an H with i vertices outside Y
20: if B = ∅ and i = |H| then return YES
21: else if B = ∅ then Branch(S, Y , i+ 1) . No H found
22: else if |S| = ` then return NO . Found an H but cannot remove it
23: else
24: for each v ∈ B do
25: if Branch(S ∪ {v}, Y , i) then return YES

26: function FindH(solution set S, forbidden set Y ⊆ X, integer i)
27: for each Set O of i vertices of H that can be outside Y do . Check the needed i2

non-edges in H
28: Denote H ′ = H \O
29: P ← First(Y|H′|)
30: while P ∈ Y|H′|, P 6= ♠ do
31: for each Permutation p of the vertices of H ′ do
32: Use a pass to check if p matches P
33: if p matches P then
34: S′ ← ∅, O′ ← O
35: for each Vertex v ∈ V \ (S ∪ Y) do . Entire loop in one pass
36: Check the edges/non-edges towards H ′ ∈ Y . Use O(|H ′|)bits
37: if v is equivalent to some w ∈ O′ for H ′ then
38: S′ ← S′ ∪ {v}, O′ ← O′ \ {w}
39: if O′ = ∅ then return S′ . We found an H occurrence

40: P ← DictY|H′|(Next(P))

41: return ∅ . No occurrence of H found

4 Π-FREE DELETION 25

H. Denote |X| = K and |V (H)| = h. The vertex cover uses O(K) words, and because we save
the entirety of H we use O(h2) words. The main function uses the set S of at most ` elements
of X, likewise S′, and the set Y of size O(K). The function Check uses a set P of h elements,
a permutation p of h elements, and O(1) bits to check if p matches P , as it can stop when it
does not match. The function Branch uses a set B of at most h elements and increases the
size of the set S, but only when it does not exceed ` elements. The function FindH uses sets
O, H ′, P , O′, p, all of at most h vertices. It also uses O(1) bits to check if p matches P , and
O(h) bits to save the adjacencies to H ′ to check if some vertex matches one in O′. S′ can only
contain an element for each element in O′. Therefore, S′ contains at most h elements. We can
conclude the memory use of a single branch is bounded by O((K + h2) log n) bits. However, in
this algorithm we branch on h options, which is not a constant. Therefore, to be able to return
out of recursion when branching and continue where we left off, we need to save the set B, or
recompute it when we return. Saving the sets B takes Õ(hK) bits because we have at most K
active instances. Alternatively, recomputing B adds a factor h to the number of passes. Seeing
as we aim to be memory efficient, we opt for this second option here.

The number of passes used by the algorithm is closely aligned with the running time of
Algorithm 6. There are only three places in which we use a pass of the stream, namely, line 14
in the function Check, and line 32 and line 35 in the function FindH. The loop of line 35
requires only one pass because the stream is given in the Adjacency List model. The number of
passes is clearly dominated by the number of times the passes in line 32/35 are used. Now we
can use the same analysis as for Algorithm 6, but make some nuances in the running time, as
we have to distinguish running time which leads to more passes and running time which will be
‘hidden’ in the allowed unbounded computation. Consider the running time of FindH, as given

by Lemma 4.16, O
((
h
i

)
[i2 +

(
K
h−i
)
(h− i)!((h− i)2 + (h− i)in)]

)
. The running time factors i2

and (h − i)2 are checks over some amount of edges, which will be hidden by the unbounded
computation. The factor (h− i)in comes from the finding of vertices that fit the current form of
H, and can be done in one pass, which means this factor falls away as well. We now have that

the FindH function costs us O
((
h
i

)(
K
h−i
)
(h− i)!

)
passes. This can be shortened to O(Khh!) by

expanding the
(
h
i

)
factor, and bounding

(
K
h−i
)

= O(Kh). We can also bound this by O(K!h!)
as discussed before. As FindH is called for every 1 ≤ i ≤ h in every branch, we get an extra
h factor in the total number of passes. Another factor h is added for recomputing B when
returning out of recursion at every step. This means the total number of passes comes down to
either O(2KhK+2Khh!) or O(2KhK+2K!h!).

4.3.3 Towards Π-free Deletion

The running time of Algorithm 6 and the number of passes of Algorithm 7 are not ideal. If we
were to extend these algorithms to the general Π-free Deletion without further improvements
the performance would be far from desirable. One of the issues is the dependence of the size of
the graph H ∈ Π we look for, h. Without any further analysis, we have no bound on h. However,
we can look to the preconditions used by Jansen on Π in e.g. Theorem 4.3 for improvement. As
a reminder, we are trying to achieve similar results to Theorem 4.3 through another approach.
Therefore, we can freely use the same preconditions.

One of these preconditions is particularly interesting, namely the assumption that all graphs
H ∈ Π that are vertex-minimal with respect to Π have a size bounded by a polynomial in K,
the size of the vertex cover. More specifically, for these graphs H we have that |V (H)| ≤ p(K),
where p(K) is some polynomial in the vertex cover size K. We can easily prove that it suffices
to only remove vertex-minimal elements of Π to solve Π-free Deletion.

4 Π-FREE DELETION 26

Lemma 4.19. Let Π be some graph property, and denote the set of vertex-minimal graphs in Π
with Π′. Let G be some graph and S ⊆ V (G) some vertex set. Then G[V (G) \S] is Π-free if and
only if G[V (G) \ S] is Π′-free.

Proof. Assume the preconditions in the lemma, and assume that G[V (G) \ S] is not Π′-free. As
Π′ ⊆ Π, clearly, G[V (G) \ S] is not Π-free.

Now assume that G[V (G) \ S] is Π′-free. Assume there is some H ∈ Π such that H ∈
G[V (G) \ S] (that is, H is isomorphic to an induced subgraph of G[V (G) \ S]). As the graph
is Π′-free, H is a non-vertex-minimal graph with respect to Π. By definition of vertex-minimal,
removal of a specific set of one or more vertices of H results in a vertex-minimal graph I ∈ Π′.
But if we ignore the same set of vertices in H ∈ G[V (G) \ S], clearly, I ∈ G[V (G) \ S]. This
contradicts our assumption that G[V (G) \ S] is Π′-free. Therefore, there cannot be a H ∈ Π
such that H ∈ G[V (G) \ S], which means that G[V (G) \ S] is Π-free.

We can make use of Lemma 4.19 to generalize the algorithms forH-free Deletion [VC]. We
do, however, need to make the preconditions a little stronger. We want to make use of the vertex-
minimal subset of Π, and so we require knowledge of its existence or we need to preprocess the
graph class Π. Let us generalize Theorem 4.17 by repeatedly executing Algorithm 6 for different
vertex-minimal H ∈ Π.

Theorem 4.20. If Π is a graph property such that:

(i) we have explicit knowledge of Π′ ⊆ Π, which is the subset of q graphs that are vertex-
minimal with respect to Π, and

(ii) there is a non-decreasing polynomial p : N→ N such that all graphs G ∈ Π′ satisfy |V (G)| ≤
p(K), and

(iii) every graph in Π contains at least one edge,

then Π-free Deletion [VC] can be solved using O(q · 2K · p(K)K ·K! ·K · p(K)! · p(K)2 · n)
time, where K = |X|, the size of the vertex cover.

Proof. This result can be achieved by either repeatedly applying Algorithm 6 on each of the q
graphs in Π′, or adjusting Algorithm 6 to search for each of the q graphs in Π′ instead of only
H. Then, using Theorem 4.17 and Lemma 4.19, the theorem follows.

Note that we require explicit knowledge of Π′ and p(K) to achieve Theorem 4.20. Also note
that we chose to write the K! alternative here, as likely Kp(K) > K! (i.e. for p(K) = K, a simple
and small polynomial, we have that Kp(K) = KK > K!).

Next, we look to further improve this upper bound, as its running time is not ideal. Note
that so far, we have made no use at all of the characterization by few adjacencies of Π. However,
this property is essential for Theorem 4.3 and Algorithm 2. Therefore, it is logical to pursue
using this property in this setting as well. In this regard, we can consider the following lemma.

Lemma 4.21. If Π is a graph property such that

(i) every graph in Π is connected and contains at least one edge, and
(ii) Π is characterized by cΠ adjacencies,

and G is some graph with vertex cover X, |X| = K, and S ⊆ V (G) some vertex set. Then
G[V (G) \ S] is Π-free if and only if G[V (G) \ S] is Π′-free, where Π′ ⊆ Π contains only those
graphs in Π with ≤ (cΠ + 1)K vertices.

4 Π-FREE DELETION 27

Proof. Assume the preconditions in the lemma. When G[V (G) \ S] is Π-free, it must also be
Π′-free, as Π′ ⊆ Π by definition.

Now assume that G[V (G) \ S] is not Π-free, let us say some H ∈ Π occurs in the graph.
Consider a vertex v of the graph H. Because Π is characterized by cΠ adjacencies, there exists a
set D ⊆ V (H) with |D| ≤ cΠ such that changing the adjacencies between v and V (H) \D does
not change the presence of H ∈ Π. Remove all adjacencies existing between v and V (H) \ D.
Then deg(v) ≤ cΠ. Our new version of H is still contained in Π, so we can repeat this process
for every vertex in H. But then every vertex v in H has deg(v) ≤ cΠ. Given that H can contain
at most K vertices of the vertex cover in G, each with degree at most cΠ, we know that this
edited version of H can have at most (cΠ +1)K vertices. Although this version of H is still in Π,
it might not exactly be in G, as we might have deleted essential adjacencies. However, changing
all the adjacencies did not increase or decrease the number of vertices, as every graph in Π is
connected and H remains in Π at every step. Therefore, every H occurring in G[V (G) \ S] is in
Π′, and so the graph is not Π′-free either.

In summary, Lemma 4.21 tells us that whenever every graph in Π is connected, and we
already know the size of the given vertex cover, there may be graphs in Π that cannot occur in
G simply because it would not fit with the vertex cover.

Let us motivate why we require every graph in Π to be connected for Lemma 4.21. If not
every graph in Π is connected, the removal of adjacencies might leave a vertex without edges,
but then this vertex might still be required for the presence in Π, which is problematic. Seeing
that we want to bound the size of possible graphs in Π, to be able to bound the size of graphs
we need that the vertex cover together with cΠ gives us information on the size of the graph,
which is not the case for a disjoint union of graphs.

We can use Lemma 4.21 in combination with Theorem 4.20 to obtain a new result.

Theorem 4.22. Given a graph G with vertex cover X, |X| = K, if Π is a graph property such
that

(i) every graph in Π is connected and contains at least one edge, and
(ii) Π is characterized by cΠ adjacencies, and

(iii) we have explicit knowledge of Π′ ⊆ Π, which is the subset of q graphs of at most size
(cΠ + 1)K that are vertex-minimal with respect to Π,

then Π-free Deletion [VC] can be solved using O(q·2K ·((cΠ+1)K)K ·K!·K ·((cΠ+1)K)!·((cΠ+
1)K)2 ·n) time. Assuming cΠ ≥ 1 this can be simplified to O(q · 2K · cΠK ·KK+3 ·K! · (cΠK)! ·n)
time.

Proof. Given some Π characterized by cΠ adjacencies, where every graph in Π is connected, we
can see that through Lemma 4.21 we only need to consider those graphs with size ≤ (cΠ + 1)K
in Π, and with this subset, using Theorem 4.20 where p(K) = (cΠ + 1)K, the theorem follows.

This result also applies to the streaming setting, as we can simply replace the application
of Algorithm 6 in Theorem 4.20 with Algorithm 7. For completeness, we state the streaming
equivalent of Theorem 4.22 as Theorem 4.23

Theorem 4.23. Given a graph G with vertex cover X, |X| = K, if Π is a graph property such
that

(i) every graph in Π is connected and contains at least one edge, and
(ii) Π is characterized by cΠ adjacencies, and

4 Π-FREE DELETION 28

(iii) we have explicit knowledge of Π′ ⊆ Π, which is the subset of q graphs of at most size
(cΠ + 1)K that are vertex-minimal with respect to Π,

then Π-free Deletion [VC] can be solved using O(q · 2K · cKΠ ·KK+2 ·K! · (cΠK)!) passes in

the AL streaming model, using Õ((cΠK)2 + q · (cΠ + 1)K) space.

Proof. See the proof of Theorem 4.22, where instead of applying Algorithm 6 we apply Algo-
rithm 7. The factor q · (cΠ + 1)K in the memory usage comes from the fact that we need to
explicitly store Π′.

Now we have a result for Π-free Deletion [VC] in the streaming setting. However, the
explicit knowledge of Π′ gives us memory problems. That is, we have to store Π′ somewhere
to make this algorithm work, which takes Õ(q · (cΠ + 1)K) space. Note that q can range up to
approximately O(KK) if Π′ contains many graphs. Regardless of the impact q has on the number
of passes or running time, the purpose of the streaming setting is to optimize space usage, which
can be disastrous if Π is chosen adversarially.

4.4 Π-free Deletion without explicit Π

One of the issues we have seen in the previous section is that having the graph property Π
explicitly saved might cost us a lot of memory. To circumvent this, we can assume to be working
with some oracle, which we can call to learn something about Π. In general, if we have an
oracle algorithm A, let us assume that it takes a graph G as input as a stream. We then denote
PA(n),MA(n) as respectively the number of passes and the memory use of the oracle algorithm
A when called on a streamed (sub)graph G with n vertices. In this section, we will discuss
two different oracles and their use for Π-free Deletion [VC]. In this entire section, we are
concerned with the streaming model, and so our focus shall be on memory efficiency. We also
assume that the graphs in Π have a maximum size ν, and that ν is known.

The first oracle model is where our oracle algorithm A1, when called on a graph G, returns
whether or not G ∈ Π. The issue with using this oracle in comparison to Algorithm 7, is that
in Algorithm 7 we rely on knowing whether a part of the vertex cover is contained in some
H ∈ Π. This is not information the oracle can give us. Therefore, we need to approach solving
the problem differently. The general idea is the following: we still branch on what part of the
vertex cover is in the solution, and consider every subset of (the remaining part of) the vertex
cover in each branch. To avoid having to test every combination of vertices outside the vertex
cover together with this subset, we consider the notion of equivalent vertices. These are vertices
with exactly the same set of edges towards the (total) vertex cover. More formally, two vertices
u, v /∈ X, where X is a vertex cover, are called twins when N(u) = N(v), their neighbourhoods
are equal. If EC is a set of vertices where each pair u, v are twins, and EC is maximal under
this property, we call EC an equivalence class. When trying to test which graphs might be in
Π, we can ignore twin vertices if we have tested one of them before. Also, if we delete a vertex
from an equivalence class, we may need to delete the entire equivalence class. We will see the
concept of twins appear again in Section 5.2.1. The benefit of using twins in the AL streaming
model, is that we see all the necessary information, the adjacencies, local to each vertex. This
means that we can find equivalence classes using few passes over the stream.

The main problem with this approach is that saving these twins (remembering the equivalence
classes) is not memory efficient. Nonetheless, we use this idea here in Algorithm 8.

In Algorithm 8, the set EC saves the sizes of each equivalence class, and can be seen as a set
of key-value pairs (key, val), where key is a K-bit string representing the adjacencies towards
the vertex cover, and val is the number of vertices in this equivalence class. Notice that we can

4 Π-FREE DELETION 29

find the set EC using a single pass over the stream. This can be done by, for each vertex, locally
saving its adjacencies as a K-bit string, and then finding and incrementing the correct counter
in EC. As this process only requires information local to a single vertex, we need only one pass
to do this for every vertex.

We use the notation DictEC≤k to denote a dictionary ordering on choosing ≤ k ‘vertices’

out of the 2K equivalence classes such that if an equivalence class key is chosen twice, then val
is at least 2. This is essentially enumerating picking ≤ k vertices out of V \X except that we do
not pick vertices explicitly, but we pick the equivalence classes they are from. An entry of this
ordering is a set of key-value pairs (key, count), such that key corresponds to some equivalence
class, and count is the number of vertices we pick out of this equivalence class.

Algorithm 8 Π-free Deletion with A1(Graph G = (V,E) in the AL model, integer `,
integer ν, Vertex Cover X ⊆ V (G))

1: S ← First(X≤`)
2: while S ∈ X≤`, S 6= ♠ do
3: Y ← X \ S
4: S′ ← S
5: if ∀Y ′ ⊆ Y : A1(Y ′) = false then . Test if Y is Π-free
6: EC ← Count the sizes of the equivalence classes of vertices in V \ X with their

adjacencies towards Y . Use a pass for this
7: if Search(S′, Y , EC) then return YES

8: S ← DictX≤`(Next(S))

9: return NO

10: function Search(solution set S, forbidden set Y ⊆ X, equivalence class sizes EC)
11: J ← First(Y≤ν)
12: I ← First(EC≤(ν−|J|))
13: while J ∈ Y≤ν , J 6= ♠ do
14: while I ∈ EC≤(ν−|J|), I 6= ♠ do
15: if A1(I, J) then . I ∪ J ∈ Π
16: if |S| ≥ ` then return NO . No budget to branch
17: else
18: for each (k, count) ∈ I do
19: Update EC such that (k, val)← (k, count− 1) . Remove all but

count− 1 vertices from class k
20: if |S|+ val − (count− 1) > ` then return NO
21: else
22: V S ← Find val − (count− 1) vertices that belong to class k . Uses

a pass
23: if Search(S ∪ V S, Y , EC) then return YES . Branch

24: I ← DictEC≤(ν−|J|)(Next(I))

25: J ← DictY≤ν (Next(J))
26: I ← First(EC≤(ν−|J|))

27: return YES

It is good to notice that in Algorithm 8 we call A1 on sets I and J , while we previously stated
it takes a stream as input. Therefore, each call to A1 actually consists of using a pass over the

4 Π-FREE DELETION 30

stream to select the sub-stream that corresponds to I and J (selecting vertices that correspond
to the selected equivalence classes in I, and selecting the edges that are between these vertices
and those in J) and pass this to A1. Actually, to be truly memory-less with this stream for A1

we have to do this same process every time A1 requires a pass over its input.

Theorem 4.24. If Π is a graph property such that the maximum size of graphs in Π is ν, and
A1 is an oracle algorithm that, when given subgraph H on h vertices, decides whether or not
H is in Π using PA1(h) passes and MA1(h) bits of memory, then Algorithm 8 solves Π-free
Deletion [VC] on a graph G on n vertices given as an AL stream with a vertex cover of size
K using O(3KνK+12νK [1 + PA1

(ν)]) passes and O(2K(K + log n) + ν log n + MA1
(ν)) bits of

memory.

Proof. Let us argue on the correctness of Algorithm 8. In essence, the algorithm tries every
option of how an occurrence of a graph in Π can occur in G, by enumerating all subsets of
the vertex cover (J) combined with vertices from outside the vertex cover (I). This process
is optimized by use of the equivalence classes, removing multiple equivalent vertices at once to
eliminate such an occurrence. If the algorithm returns YES, then for every combination of I
and J , no occurrence of a graph in Π was found or branching happened on any such occurrence.
Each branch eliminates the found occurrence of a graph in Π, as enough vertices are removed
from an equivalence class to make the same occurrence impossible. As removing vertices from
the graph cannot create new occurrences of graphs in Π, this means that every occurrence found
was removed, and no new occurrences were created. But then there is no occurrence of a graph
in Π, as every combination of such a graph occurring was tried. So the graph is Π-free. If
the algorithm returns NO, then in every branch at some point we needed to delete vertices to
remove an occurrence of a graph in Π but had not enough budget left. Removing any less than
val − (count − 1) vertices in line 22 results in at least count vertices of that equivalence class
remaining, which means the same occurrence of a graph in Π persists. Therefore, the conclusion
that we do not have enough budget is correct, and so there is no solution to the instance. We
can conclude that the algorithm works correctly.

Let us analyse the space usage. Almost all sets used are bounded by K entries. The exceptions
are the sets EC, I, and J . J contains at most ν vertices, and so uses at most O(ν log n) bits of
space. EC contains at most 2K key-value pairs, each using K+log n bits, so EC uses O(2K(K+
log n)) bits. The set I contains only subsets of EC. The oracle algorithm A1 uses at most MA1

(ν)
bits. Therefore, the memory usage of this algorithm is O(2K(K+ log n) + ν log n+MA1

(ν)) bits
of space. Note that we branch on at most ν options together spanning at most ν vertices, which
is a constant factor in the memory use (for remembering what we branch on when returning out
of recursion). The algorithm also repeats the process for each I and J in each branch to avoid
having to keep track of these sets in memory when returning from recursion.

It remains to show the number of passes used by the algorithm. Let it be clear that the
number of passes made by the algorithm is dominated by the number of calls made to A1, which
requires at least one pass. The number of calls made is heavily dependent on the total number
of branches in the algorithm, together with how many options the sets I and J can span. This
total can be concluded to be O(3KνK+12νK). Let us elaborate on this. The factor 3K comes
from the fact that any vertex in the vertex cover is either in J , in S, or in Y (and not in J).
The factor νK comes from the worst case branching process, as we branch on at most ν different
deletions, and we branch at most ` ≤ K times. The remaining factor is the number of options
we have for the set I, which picks, for each size i between 1 and ν, i times between at most 2K

options (the equivalence classes). This number of options is bounded by O(ν2νK). This means
the total number of passes is bounded by O(3KνK+12νK [1 + PA1

(ν)]).

4 Π-FREE DELETION 31

Let us note that the memory use of Algorithm 8 is far from ideal. The aim with the oracle
approach was to save more memory by attempting to avoid saving Π explicitly, but now we have
a memory complexity with a factor K2K , which might well be more than saving Π explicitly.
To remedy this, next we look at a different oracle model, which will actually also lead to a more
memory efficient algorithm for oracle A1 as well.

The second oracle model is where our oracle algorithm A2, when called on a graph G, returns
whether or not G is induced Π-free (that is, it returns YES when it is induced Π-free, and NO
if there is an occurrence of a graph in Π in G). The advantage of this model is that we can be
less exact in our calls, namely by always passing the entire vertex cover (that is, the part that
is not in the solution) together with some set of vertices. This avoids some extra enumerations.
The idea for the algorithm with this oracle is the following: we call on the oracle with small to
increasingly large sets, such that whenever we get returned that this set is not Π-free, we can
delete a single vertex to make it Π-free. This can be done by first calling the oracle on the vertex
cover itself, and then on the vertex cover together with a single vertex for every vertex outside
the vertex cover, then with two, etc.. The problem with this method is the complexity in n that
will be present, but as we know the maximum size of graphs in Π, ν, this is still a bounded
polynomial.

Algorithm 9 Π-free Deletion with A2(Graph G = (V,E) in the streaming model, integer
`, integer ν, Vertex Cover X ⊆ V (G))

1: S ← First(X≤`)
2: while S ∈ X≤`, S 6= ♠ do
3: Y ← X \ S
4: S′ ← S
5: if A2(Y) then
6: if Search(S′, Y , ∅) then return YES

7: S ← DictX≤`(Next(S))

8: return NO

9: function Search(solution set S, forbidden set Y ⊆ X, set I)
10: if I = ∅ then I ← First((V \X)≤ν)
11: else
12: I ← Dict(V \X)≤ν (Next(I))

13: if I = ♠ then return YES
14: else if I ∩ S 6= ∅ then return Search(S, Y , I) . This I is invalid
15: else if A2(Y ∪ I) then return Search(S, Y , I) . Y ∪ I is Π-free
16: else if |S| = ` then return NO . No budget to branch
17: else
18: for each v ∈ I do
19: if Search(S ∪ {v}, Y , I) then return YES . Branch, this makes Y ∪ I Π-free

20: return NO

Let us shortly elaborate on some details of Algorithm 9. Notice that the algorithm calls on
the oracle algorithm A2 using only a vertex set V , while we previously stated that the oracle
accepts a stream as input. Once again, this difference can be solved by using a pass over the
stream, and giving only those edges between the vertices of V to the oracle. Actually, to be truly
memory-less with this stream for A2 we have to do this same process every time A2 requires a
pass over its input. Therefore, each call to the oracle algorithm requires a pass over the stream,

4 Π-FREE DELETION 32

plus a pass for the every time the oracle uses a pass over its input.
We also note that Algorithm 9 is similar to the Π-free Modification algorithm of Cai [13].
We are now ready to prove the complexity of Algorithm 9. Notice that we do not explicitly

state what streaming model we use, as this is dependent on the type of stream the oracle algorithm
accepts. So if the oracle algorithm works on a streaming model X, then so does Algorithm 9.

Theorem 4.25. If Π is a graph property such that the maximum size of graphs in Π is ν, and
A2 is an oracle algorithm that, when given subgraph H on h vertices, decides whether or not
H is Π-free using PA2(h) passes and MA2(h) bits of memory, then Algorithm 9 solves Π-free
Deletion [VC] on a graph G on n vertices given as a stream with a vertex cover of size K
using O(2KνK+1nν [1 + PA2

(K + ν)]) passes and O(νK · log n+MA2
(K + ν)) bits of memory.

Proof. The correctness of the algorithm can be seen as follows. Whenever the algorithm finds
a subset of the graph which is not induced Π-free, it branches on one of the possible vertex
deletions. This always makes this subset Π-free, as in previous iterations every subset with one
vertex less was tried, to which the oracle told us that it was Π-free (otherwise, we would have
branched there already, and this subset could not occur in the current iteration). Therefore,
the branching process removes the found occurrences of induced Π graphs. The algorithm only
returns YES when all subsets of at most ν vertices have been tried as I, and as every graph in Π
has at most ν vertices, this includes every possibility of a graph in Π appearing in G. Therefore,
if at this point we have a set S of at most ` vertices, then G[V \ S] must be Π-free, and so S
is a solution to Π-free Deletion [VC]. If the algorithm returns NO, then for every possible
subset of the vertex cover contained in S, there is not enough budget to remove all occurrences
of induced Π graphs, and therefore there is no solution to Π-free Deletion [VC]. We can
conclude the algorithm works correctly.

Let us analyse the space usage. The algorithm requires space for the sets S, S′, Y , X, I,
and for the oracle algorithm A2. The size of each of the sets S, S′, Y , and X is bounded by K
entries, so we use O(K log n) bits memory for them. The set I contains at most ν entries, and
therefore requires at most O(ν log n) bits of space. The oracle algorithm is called on graphs of at
most K+ν vertices, and so requires MA2

(K+ν) bits of memory. To handle branching correctly,
we need to save the set I and all vertices we branch on every time we branch. These sets have a
maximum size of ν, and the search tree has a maximum depth of K, so this takes O(νK log n)
bits of memory. Therefore, the total memory usage comes down to O(νK · log n+MA2

(K + ν))
bits. Seeing as ν is a constant, we could further simplify this, but we choose to be more explicit
here.

As mentioned, we require a pass over the stream to call on the oracle. Therefore, the number
of passes on the stream is dependent on the number of calls to the oracle algorithm A2. In the
worst case, we call on A2 in every branch for every set I. The number of branches is bounded
by O(2KνK), as this encompasses every subset of the vertex cover and every deletion branch is
on at most ν vertices. There are

∑ν
i=1

(
n
i

)
= O(νnν) different subsets I. This means the total

number of calls to A2 is bounded by O(2KνK+1nν), which means the total number of passes is
bounded by O(2KνK+1nν [1 + PA2

(K + ν)]).

Algorithm 9 can also be executed using oracle algorithm A1, but instead of passing the entire
vertex cover each time, we would need to do this for every subset of the vertex cover. This would
make the 2K factor in the number of passes a 3K factor (a vertex in the vertex cover can either
not be in Y , or be in Y and not passed, or in Y and passed to A1). Let us shortly formalize this
in a theorem.

Theorem 4.26. If Π is a graph property such that the maximum size of graphs in Π is ν, and
A1 is an oracle algorithm that, when given subgraph H on h vertices, decides whether or not H

4 Π-FREE DELETION 33

is in Π using PA1(h) passes and MA1(h) bits of memory, then Algorithm 9 can be adapted to
solve Π-free Deletion [VC] on a graph G on n vertices given as a stream with a vertex cover
of size K using O(3KνK+1nν [1 +PA1

(ν)]) passes and O(νK · log n+MA1
(ν)) bits of memory.

Proof. The only difference between oracle algorithm A1 and A2 is that A1 requires an exact
occurrence to be input, while for oracle A2 a larger set can suffice. As Algorithm 9 already
enumerates all of the possibilities for vertices outside the vertex cover, only refinement is necessary
for how the vertex cover itself is passed to the oracle. At each location where a call happens to
A2 in Algorithm 9, we actually want to replace this by an enumeration of calls for each subset
of the vertex cover, similar to how Algorithm 8 has a combination of sets I and J . By the
correctness of Algorithm 9, this approach also leads to a correct solution. The number of calls
to A1 does increase in comparison to A2, however. We can include the increase in complexity in
the already existing branching complexity on the vertex cover. In any branch, any vertex in the
vertex cover is either in S, or in Y and passed to A1, or in Y and not passed. This means that
the number of calls to A1 is bounded by O(3KνK+1nν), and therefore the total number of passes
is bounded by O(3KνK+1nν [1 +PA1(ν)]). The memory usage of the algorithm is asymptotically
the same as that of Algorithm 9, with A2 replaced by A1.

We have now seen some algorithms for using an oracle to obtain information about Π instead
of explicitly saving it. We do demand the maximum size for a graph in Π to be some given
constant ν, which is hopefully small. This way, we have gotten closer to a memory-optimal
algorithm, but the number of passes over the stream has increased significantly in comparison
to earlier algorithms.

4.5 Odd Cycle Transversal

Now that we have seen results for the general Π-free Deletion [VC], we can wonder whether
there are specific scenarios where we can significantly improve on the number of passes. One
of these cases is for the problem of Odd Cycle Transversal. The interest in this problem
comes from the FPT algorithm using iterative compression provided in [23, Section 4.4], based
on work by Reed et al. [57]. Although Chitnis and Cormode [17] have shown how iterative
compression can be used in the streaming setting, adapting the algorithm out of [23, Section
4.4] is difficult. The main cause for this is the use of a maximum-flow algorithm to compute a
minimum cut, which does not lend itself well to the streaming setting because of its memory
requirements. Nonetheless, this algorithm inspired us to think on an efficient algorithm for Odd
Cycle Transversal in the streaming setting, using once again vertex cover as a parameter.

Let us formally introduce the problem of Odd Cycle Transversal [VC] (OCT).

Odd Cycle Transversal [VC]
Input: A graph G with a vertex cover X, and an integer `.
Parameter: The size K := |X| of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at most ` such that G[V (G) \ S] contains
no induced odd cycles?

It is well known that a graph without odd cycles is a bipartite graph and vice versa. A useful
property in this regard is that a bipartite graph G = (V,E) always admits a proper 2-colouring,
that is, a partition of V into two sets V1 and V2 such that for every edge (u, v) ∈ E we have that
u ∈ V1 and v ∈ V2 or u ∈ V2 and v ∈ V1 (u and v are not in the same set).

The idea for the streaming algorithm for OCT is simple. We once again guess what part
of the vertex cover is in the solution, and then we guess the colouring of the remaining part of
the vertex cover. If we do this, we can deterministically determine which other vertices outside

4 Π-FREE DELETION 34

the vertex cover need to be deleted. This last step can be done in one pass if we use the AL
streaming model. We formally give this algorithm as Algorithm 10.

Algorithm 10 OCT(Graph G = (V,E) in the AL model, integer `, Vertex Cover X ⊆ V (G))

1: S ← First(X≤`)
2: while S ∈ X≤`, S 6= ♠ do
3: Y ← X \ S
4: Y1 ← First(Y)
5: Y2 ← Y \ Y1

6: while Y1 ⊆ Y, Y1 6= ♠ do
7: success← true, S′ ← S . Reset local values
8: for each v ∈ V \ S′ do . Use one pass
9: if v ∈ Y and v ∈ Yi then . v ∈ X

10: Check that all neighbours of v in Y are in Y3−i
11: If one is not, success← false
12: else . v /∈ X
13: Check if all neighbours of v in Y are in the same Yi
14: If not, and |S′| < `, S′ ← S′ ∪ {v}
15: Else, success← false

16: if |S′| ≤ ` and success then return YES

17: Y1 ← DictY(Next(Y1)) . Try the next colouring
18: Y2 ← Y \ Y1

19: S ← DictX≤`(Next(S))

20: return NO

Let us formally show the performance of Algorithm 10.

Theorem 4.27. Given a graph G given as an AL stream with vertex cover X, |X| = K,
Algorithm 10 solves Odd Cycle Transversal [VC] using O(3K) passes and O(K log n) bits
of memory.

Proof. Let us first prove the correctness of Algorithm 10. Let G = (V,E) be a graph with vertex
cover X, |X| = K. Let O, |O| ≤ ` be a solution for Odd Cycle Transversal [VC]. Denote
Y ′ = X ∩ O as the part of O that is contained in the vertex cover. Because Algorithm 10
enumerates all possibilities for the set Y , at some point it must consider Y = Y ′. As O is a
solution, G[X \ Y ′] must be bipartite, and so admits a proper 2-colouring Y ′1 , Y ′2 . For Y = Y ′,
Algorithm 10 considers at some point Y1 = Y ′1 and Y2 = Y ′2 (Y ′1 ∪ Y ′2 = Y ′ = Y because Y ′1
and Y ′2 form a proper 2 colouring), because it considers all possibilities for the set Y1 ⊆ Y . As
Y1 and Y2 now form a proper 2-colouring of Y , the check in line 10 never fails. The check in
line 13 only fails if a vertex outside of X is adjacent to two different coloured vertices in Y . But
then this vertex must also be in O, as Y1 and Y2 mimic exactly the 2-colouring in G[X \ Y ′].
Therefore, Algorithm 10 can at least find O as well, which means it returns YES. For the reverse
implication, when Algorithm 10 returns YES, it has found a set S such that |S| ≤ ` and G[V \S]
admits a proper 2-colouring given by deterministically adding vertices outside the vertex cover
to Y1 and Y2. But then S is a solution to Odd Cycle Transversal [VC]. We can conclude
that Algorithm 10 works correctly.

Let us analyse the memory usage of Algorithm 10. All sets used in the algorithm have size
at most K (` ≤ K). The only worry is whether or not the checks in lines 10 and 13 require more

4 Π-FREE DELETION 35

memory. The first check only requires us to remember in what set the vertex v is contained in,
and whether or not we have seen a ‘wrong’ colour yet, which should only take a constant number
of bits. The second check merely needs to remember in what set all neighbours up until this
point were, which should also only take a constant number of bits. Therefore, the algorithm uses
O(K log n) bits of memory.

Let us analyse the number of passes of Algorithm 10 does over the stream. Firstly, the
for-loop over all vertices only requires a single pass because the checks only need to know what
all the neighbours of the current vertex are, which is what the AL stream gives us. The total
number of times this for-loop can be executed is bounded by O(3K), as any vertex in the vertex
cover can either be in S, in Y1 or in Y2. We can conclude that Algorithm 10 uses O(3K) passes
over the graph stream.

We can ask ourselves if we can do better. After all, finding a 2-colouring can be quite
deterministic, while in Algorithm 10 we enumerate every possibility for a 2-colouring, many of
which are invalid. After branching on what part of the vertex cover is in the solution, we can
attempt to find a 2-colouring on the remainder of the vertex cover. This can be done by giving
some vertex a colour 1, and giving all its neighbours the colour 2, all their neighbours colour 1,
etc.. This process colours the entire vertex cover if it is connected. However, problems arise if
it is not. If there are a few connected components in the vertex cover, connected with vertices
outside the vertex cover, it can be difficult to decide which of these vertices should enforce a
relation in colouring, and which should be deleted. To avoid this complication, we can enumerate
all combinations of colourings on the different components of the vertex cover. That is, each
component has two unique ways of being 2-coloured (if it allows a 2-colouring at all), one by
the aforementioned expansion process, and the exact complement colouring. If each component
allows two 2-colourings, we can enumerate the combinations of what colouring each component
picks. For every such combination, we can do a simple pass over all vertices outside the vertex
cover to find whether or not this leads to a solution.

To make the process of finding the 2-colourings in the components of the vertex cover easier in
the streaming setting, we might want to save the entire vertex cover (with edges) in memory. This
does indeed increase the memory complexity, but it would mean that the worst case complexity
for the number of passes is still equivalent to that of Algorithm 10. Notice that the worst case
complexity might be the same, but in many cases, this algorithm can perform better, as the
number of components in the vertex cover might be a lot smaller than the number of vertices in
the vertex cover.

We give some pseudocode for this approach, see Algorithm 11.

Theorem 4.28. Given a graph G given as an AL stream with vertex cover X, |X| = K,
Algorithm 11 solves Odd Cycle Transversal [VC] using O(3K) passes and O(K2 log n) bits
of memory.

Proof. The correctness of Algorithm 11 quickly follows from the correctness of Algorithm 10.
Where Algorithm 10 enumerates all 2-colourings of Y , Algorithm 11 only enumerates those
which are feasible 2-colourings for Y (combinations of 2-coloured components). This means
Algorithm 11 only leaves out colourings which are not feasible anyway, which means that it still
works correctly.

The number of passes is heavily dependent on the amount of connected components in G[Y]
in an iteration. But, in worst case, this is |Y |, which would mean it considers all 2-colourings of
Y . But this is a worst case where the behaviour exactly mimics that of Algorithm 10, and so
the worst case number of passes is the same.

4 Π-FREE DELETION 36

Algorithm 11 OCT-CC(Graph G = (V,E) in the AL model, integer `, Vertex Cover X ⊆
V (G))

1: S ← First(X≤`)
2: while S ∈ X≤`, S 6= ♠ do
3: Y ← X \ S
4: Use a pass to find and save the edges in Y
5: Find the connected components and their two 2-colourings
6: If this fails, move to the next option for S
7: for each Combination of colourings of the CCs do . Does 2#CCs iterations
8: success← true, S′ ← S . Reset local values
9: for each v ∈ V \ (X ∪ S′) do . Use one pass

10: Check if all neighbours of v in Y have the same colour
11: If not, and |S′| < `, S′ ← S′ ∪ {v}
12: Else, success← false

13: if |S′| ≤ ` and success then return YES

14: S ← DictX≤`(Next(S))

15: return NO

Let it be clear that the memory use is O(K2 log n) bits, as we save (a part of) the vertex
cover with edges to enable easy colouring and component finding. The rest of the sets in the
algorithm use O(K log n) bits of memory.

Let us denote again that Algorithm 11 on paper is strictly worse than Algorithm 10 in worst
case complexity. However, we believe there to be many cases where Algorithm 11 can outperform
Algorithm 10 because of its behaviour of clever enumeration instead of trying all possibilities.

4.6 Lower Bounds

With all the positive results, we can ask ourselves if there are lower bounds for Π-free Deletion
problems as well. To prove such lower bounds, commonly, reductions are done from problems
in communication complexity. These are problems where two players, Alice and Bob, get some
input and want to learn some information using as little communication as possible. An example
of such a problem is Disjointness, which we will use, and it is defined as follows.

Disjointness
Input: Alice has a string x ∈ {0, 1}n given by x1x2 . . . xn. Bob has a string y ∈ {0, 1}n
given by y1y2 . . . yn.
Question: Bob wants to check if ∃1 ≤ i ≤ n such that xi = yi = 1. (Formally, the
answer is NO if this is the case.)

To prove lower bounds, it is useful to give a proposition that provides us with reduction
results. The following proposition is given and used by Bishnu et al. [8], and gives us one
important consequence of reductions from a problem in communication complexity to a problem
for streaming algorithms:

Proposition 4.29. (Rephrasing of item (ii) of [8, Proposition 5.6]) If we can show a reduction
from Disjointness to problem Π in streaming model M such that the reduction uses a 1-pass
streaming algorithm of Π as a subroutine, then any streaming algorithm working in the model M
for Π that uses p passes requires Ω(n/p) bits of memory, for any p ∈ N [2, 9, 19].

4 Π-FREE DELETION 37

Proposition 4.29 allows us to prove lower bounds for problems in the streaming setting by
performing a reduction. These structure of these reductions is relatively simple, have Alice and
Bob construct the input for a streaming algorithm depending on their input to Disjointness. If
we do this in such a manner that the solution the streaming algorithm outputs gives us exactly
the answer to Disjointness, we can conclude that the streaming algorithm must abide the lower
bound of Disjointness. This is essentially what Proposition 4.29 entails, and we will use this
our proofs.

4.6.1 Π-free Deletion

Chitnis et al. [18] give a lower bound proof for Π-free Deletion under some conditions of Π,
that is, when Π is bad.

Definition 4.30. ([18, Definition 6.3]) Let Π be a set of graphs such that each graph in Π is
connected. We say that Π is bad if there is a graph H ∈ Π such that

• H is a minimal element of Π under the operation of taking subgraphs, i.e., no proper
subgraph of H is in Π, and

• H has at least two distinct edges.

With a reduction from Disjointness, Chitnis et al. prove the following theorem.

Theorem 4.31. ([18, Theorem 6.3]) For a bad set of graphs Π, any p-pass (randomized) strea-
ming algorithm in the EA streaming model for the Π-free Deletion [`] problem needs Ω(n/p)
bits of space.

As mentioned, Chitnis et al. prove Theorem 4.31 by giving a reduction from Disjointness,
which consists of showing a construction where Alice and Bob use a streaming algorithm for
Π-free Deletion to solve Disjointness. However, what Chitnis et al. do not describe, is how
exactly Alice and Bob give their ‘input’ as a stream to the algorithm for Π-free Deletion.
Therefore, this proof is natively for the EA streaming model (and so also for the DEA streaming
model), as this model requires no structure on the input stream. However, if we specify how
Alice and Bob provide their input to the streaming algorithm, we can extend the proof to other
streaming models.

Theorem 4.32. For a bad set of graphs Π, any p-pass (randomized) streaming algorithm in the
VA streaming model for the Π-free Deletion [`] problem needs Ω(n/p) bits of space.

Proof. We add onto the proof of [18, Theorem 6.3], by specifying how Alice and Bob provide the
input to the p-pass streaming algorithm.

Let H be the minimal graph in Π which has at least two distinct edges, say e1 and e2. Let
H ′ := H \{e1, e2}. As a reminder, Chitnis et al. create as an input for the streaming algorithm n
copies of H ′, where in copy i we add the edges e1 and e2 if and only if the input of Disjointness
has a 1 for index i for Alice and Bob respectively.

As e1 and e2 are distinct, there must be some vertex on which e2 is incident, while e1 is not.
Call this vertex v. For every pass the algorithm requires, we do the following. We provide all the
copies of H as input to the streaming algorithm by letting Alice input all vertices V (H) \ {v} as
a VA stream. Note that Alice has enough information to do this, as the edge e2 in each copy of
H is never included in this part of the stream. Then Alice passes the memory of the streaming
algorithm to Bob, who inputs the edges adjacent to the vertex v for each copy of H (which
includes e2 if and only if the respective bit in the input of Disjointness is 1). This ends a pass
of the stream for the streaming algorithm.

4 Π-FREE DELETION 38

Note that Alice and Bob have input the exact specification of a graph as described by Chitnis
et al., but now as a VA stream. The correctness of the reduction follows from the proof given by
Chitnis et al. [18, Theorem 6.3]. Hence, the theorem follows.

Now we would like to do the same for the AL streaming model. However, difficulty comes
in when the two distinct edges e1 and e2 have an overlapping endpoint, as neither Alice nor
Bob have enough information to handle inputting the adjacencies for this vertex completely.
Therefore, we need an extra demand on the graph H ∈ Π, that not only the two edges are
distinct, but also disjoint. Let us formalize this in a theorem.

Theorem 4.33. For a set of graphs Π such that each graph in Π is connected, and there is a
graph H ∈ Π such that

• H is a minimal element of Π under the operation of taking subgraphs, i.e., no proper
subgraph of H is in Π, and

• H has at least two disjoint edges,

then any p-pass (randomized) streaming algorithm working on the AL streaming model for Π-
free Deletion [k] needs Ω(n/p) bits of space.

Proof. We add onto the proof of [18, Theorem 6.3], by specifying how Alice and Bob provide the
input to the p-pass streaming algorithm.

Let H be the minimal graph in Π which has at least two disjoint edges, say e1 and e2. Let
H ′ := H \{e1, e2}. As a reminder, Chitnis et al. create as an input for the streaming algorithm n
copies of H ′, where in copy i we add the edges e1 and e2 if and only if the input of Disjointness
has a 1 for index i for Alice and Bob respectively.

As e1 and e2 are disjoint, e2 is incident on two vertices v, w which are not incident to e1. For
every pass the algorithm requires, we do the following. We provide all the copies of H as input
to the streaming algorithm by letting Alice input all vertices V (H) \ {v, w} as an AL stream.
Note that Alice has enough information to do this, as the vertices incident on the edge e2 in each
copy of H is never included in this part of the stream. Then Alice passes the memory of the
streaming algorithm to Bob, who inputs the edges incident to the vertices v, w for each copy of
H (which includes e2 if and only if the respective bit in the input of Disjointness is 1). This
ends a pass of the stream for the streaming algorithm.

Note that Alice and Bob have input the exact specification of a graph as described by Chitnis
et al., but now as a AL stream. The correctness of the reduction follows from the proof given by
Chitnis et al. [18, Theorem 6.3]. Hence, the theorem follows.

Examples for which Theorem 4.33 provides a lower bound include Even Cycle Transver-
sal [k] (where Π = {C4, C6, . . .}), and Odd Cycle Transversal [k] (where Π = {C3, C5, C7, . . .}
and we can pick H = C5). This means it also includes Feedback Vertex Set [k], where Π is
the set of all cycles, and we can pick C4 as H.

Notice that in the above theorems the construction we make has a vertex cover size linear in
n. Therefore, it might be interesting to consider if problems are hard even when the size of a
minimum vertex cover is bounded, as many of our algorithms use a bounded vertex cover size.

4.6.2 H-free Deletion with bounded vertex cover size

It is interesting to pursue lower bounds for H-free Deletion, as Π-free Deletion is a
generalization of this problem, and so lower bounds for H-free Deletion are also lower bounds
for the more general version of the problem. It is also interesting to pursue lower bounds for

4 Π-FREE DELETION 39

A

B

A

B

Figure 3: A reduction technique which we call a double fan. The right construction can imitate
the input to the Disjointness instance, forming the left construction if and only if the answer
to Disjointness is NO.

this problem parameterized by vertex cover, as we extensively use this parameter in our upper
bounds.

In the next few proofs, we will use a construction similar to that used by Bishnu et al. [8]
to find lower bounds for H-free Deletion with bounded vertex cover size. In essence, we
reduce from the communication complexity problem Disjointness to H-free Deletion in
the following manner. We take a copy of H, and extend some path of three vertices to the
construction in Figure 3, which we will call a double fan. The n vertices in the overlap of the
two fans we will call the center vertices. The idea of this construction is that both Alice and
Bob input the edges of one of the fans in the double fan, as those edges will be determined by
the input to Disjointness. If there is some 1 ≤ i ≤ n such that the i-th bit in both Alice’s
and Bobs input is 1, then the double fan will have a completed path from A to B, creating an
induced copy of H in the graph. If we make sure the budget is ` = 0, then the answer to H-free
Deletion must be NO if and only if the answer to Disjointness is NO. If we manage this,
Proposition 4.29 gives us a lower bound result.

It is important to note that this construction does not always make a correct reduction. Most
importantly, it innately has trouble if H is some star. This is because the double fan construction
can form exactly H even if Bobs input exists entirely of zeroes. Therefore, we must be careful
to form conditions that exclude stars from the lower bounds proofs.

Theorem 4.34. If H is a connected graph with at least 3 edges and a vertex of degree 2, then
any algorithm for solving H-free Deletion [VC] on a graph G with K ≥ |VC(H)|+1 requires
at least n/p bits when using p passes in the VA/EA models, even when the solution size ` = 0.

Proof. Similar to the reductions given by Bishnu et al. [8], we give a reduction from Disjointness
to H-free Deletion [VC] in the VA model when the solution size parameter k = 0. The idea
is to build a graph G with bounded vertex cover size, and construct edges according to the input
of Disjointness, such that G is H-free if and only if the output of Disjointness is YES.

Let A be a one-pass streaming algorithm that solves H-free Deletion [K] in the VA model,
such that |VC(G)| ≤ K ≤ |VC(H)| + 1, and the space used is o(n). Let G be a graph with
n+ |V (H)|−1 vertices consisting of H where a degree-2 vertex in H is expanded to a double fan
(i.e., the two adjacencies of this degree-2 vertex correspond to A and B, and the degree-2 vertex
is replaced by the n center vertices of the double fan). Let x, y be the input strings, consisting
of n bits each, of Alice and Bob for Disjointness, respectively.

4 Π-FREE DELETION 40

Alice exposes to A all the vertices of G, except for the vertex B. Here, Alice exposes an
edge between A and the i-th center vertex of the double fan if and only if the i-th bit of x is 1.
Notice that Alice can expose all these vertices according to the VA model, as only the addition
of the vertex B will require information of the input of Bob, y. If Alice has exposed all vertices
of G except for B, then she passes the memory of A to Bob. Bob then exposes the vertex B,
including an edge between B and the i-th center vertex of the double fan if and only if the i-th
bit of y is 1. This completes the input to A.

From the construction, observe that |V C(G)| ≤ K ≤ |V C(H)|+1, as we may need to include
both A and B in the vertex cover in G while it was optimal to include the degree-2 vertex in the
vertex cover in H.

If the answer to Disjointness is NO, that is, there exists an index i such that xi = yi = 1,
then in G the edges from A and B connect in the i-th center vertex, creating an induced copy
of H in G, and so the graph is not H-free. Because k = 0, H-free Deletion [K] must also be
answered with NO.

If the answer to Disjointness is YES, that is, there is no index i such that xi = yi = 1, then
there is no path from A to B through a center vertex in G. We will show that there is no induced
occurrence of H in G. If the degree-2 vertex that we split into the double fan is contained in a
cycle in H, then now this cycle is no longer present in the graph. As the rest of the graph simply
consists of a (partial) copy of H, this means there cannot be enough cycles in the graph to get
exactly H, and so H does not appear in G. Otherwise, the degree-2 vertex is not contained in a
cycle, and so there is no path between A and B. As H has at least three edges, there must be
some edge incident to A or B that is not incident to a center vertex. Consider in H the longest
path that this degree-2 vertex is contained in. This path must have at least three edges and
contain both A and B, as H is connected. However, because there is no path between A and B,
the longest path in G containing A or B must be smaller that the longest path in H containing
A and B. Hence, the only way for H to occur in G is for this path through A and B to occur
somewhere else in G. However, this would mean there is now some other path of at least the
same length that needs ‘another place’, as it were, to make the induced copy of H appear in G.
We can see that repeating this process always yields in another path of at least the same length
which needs to occur in G. However, since we destroyed at least one path of at least this length,
all these paths cannot appear in G. Hence, the answer to H-free Deletion [VC] is YES.

Now, from Proposition 4.29 it follows that any algorithm for solving H-free Deletion [VC]
on a graph G with K ≤ |VC(H)|+1 requires at least n/p bits when using p passes in the VA/EA
models, even when ` = 0. This can be generalized for every ` by adding ` disjoint copies of H to
G, which also increases the vertex cover of G by a constant amount for each copy.

There are other conditions for which this reduction works as well.

Theorem 4.35. If H is a graph with no vertex of degree 1, then any algorithm for solving H-
free Deletion [VC] on a graph G with K ≥ |V (H)| requires at least n/p bits when using p
passes in the VA/EA models, even when the solution size ` = 0.

Proof. Similar to the reductions given by Bishnu et al. [8], we give a reduction from Disjointness
to H-free Deletion [VC] in the VA model when the solution size parameter k = 0. The idea
is to build a graph G with bounded vertex cover size, and construct edges according to the input
of Disjointness, such that G is H-free if and only if the output of Disjointness is YES.

Let A be a one-pass streaming algorithm that solves H-free Deletion [VC] in the VA
model, such that |VC(G)| ≤ K ≤ |V (H)|, and the space used is o(n). Let G be a graph with
n+ |V (H)| − 1 vertices consisting of H where a vertex of minimal degree in H is expanded to a
double fan, i.e., two adjacencies of this vertex correspond to A and B, and the vertex is replaced

4 Π-FREE DELETION 41

by the n center vertices of the double fan. All other adjacencies of this vertex are connected to
all of the center vertices. Note that this is possible, as the vertex has degree at least 2. Let x, y
be the input strings, consisting of n bits each, of Alice and Bob for Disjointness, respectively.

Alice exposes to A all the vertices of G, except for the vertex B. Here, Alice exposes an
edge between A and the i-th center vertex of the double fan if and only if the i-th bit of x is 1.
Notice that Alice can expose all these vertices according to the VA model, as only the addition
of the vertex B will require information of the input of Bob, y. If Alice has exposed all vertices
of G except for B, then she passes the memory of A to Bob. Bob then exposes the vertex B,
including an edge between B and the i-th center vertex of the double fan if and only if the i-th
bit of y is 1. This completes the input to A.

From the construction, observe that |V C(G)| ≤ K ≤ |V (H)|, as the vertex cover of G can
always be bounded by taking all vertices originally in H, which covers the edges towards the n
center vertices.

If the answer to Disjointness is NO, that is, there exists an index i such that xi = yi = 1,
then in G the edges from A and B connect in the i-th center vertex, creating an induced copy
of H in G, and so the graph is not H-free. Because ` = 0, H-free Deletion [VC] must also
be answered with NO.

If the answer to Disjointness is YES, that is, there is no index i such that xi = yi = 1, then
there is no path from A to B directly through a center vertex in G. We will show that there
is no induced occurrence of H in G. Name the minimal degree of vertices in H as d. Then the
center vertices must have degree at most d− 1, as each center vertex cannot be adjacent to both
A and B. But as d was the minimal degree in H, none of these center vertices can be used for
an induced copy of H in G. But then G only has |V (H)| − 1 vertices remaining to form a copy
of H, which is impossible. Hence, the answer to H-free Deletion [K] is YES.

Now, from Proposition 4.29 it follows that any algorithm for solving H-free Deletion [K]
on a graph G with K ≥ |V (H)| requires at least n/p bits when using p passes in the VA/EA
models, even when ` = 0. This can be generalized for every ` by adding ` disjoint copies of H to
G, which also increases the vertex cover of G by a constant amount for each copy.

The following theorem is a generalization of the above Theorem 4.35.

Theorem 4.36. If H is a graph with a vertex of degree at least 2 for which every neighbour has
an equal or larger degree, then any algorithm for solving H-free Deletion [VC] on a graph
G with K ≥ |V (H)| requires at least n/p bits when using p passes in the VA/EA models, even
when the solution size ` = 0.

Proof. Similar to the reductions given by Bishnu et al. [8], we give a reduction from Disjointness
to H-free Deletion [VC] in the VA model when the solution size parameter ` = 0. The idea
is to build a graph G with bounded vertex cover size, and construct edges according to the input
of Disjointness, such that G is H-free if and only if the output of Disjointness is YES.

Let A be a one pass streaming algorithm that solves H-free Deletion [VC] in the VA
model, such that |VC(G)| ≤ K ≤ |V (H)|, and the space used is o(n). Let G be a graph with
n+ |V (H)|−1 vertices consisting of H where a vertex degree at least 2 for which every neighbour
has an equal or larger degree in H is expanded to a double fan, i.e., two adjacencies of this vertex
correspond to A and B, and the vertex is replaced by the n center vertices of the double fan.
All other adjacencies of this vertex are connected to all of the center vertices. Note that this is
possible, as the vertex has degree at least 2. Let x, y be the input strings, consisting of n bits
each, of Alice and Bob for Disjointness, respectively.

Alice exposes to A all the vertices of G, except for the vertex B. Here, Alice exposes an
edge between A and the i-th center vertex of the double fan if and only if the i-th bit of x is 1.

4 Π-FREE DELETION 42

Notice that Alice can expose all these vertices according to the VA model, as only the addition
of the vertex B will require information of the input of Bob, y. If Alice has exposed all vertices
of G except for B, then she passes the memory of A to Bob. Bob then exposes the vertex B,
including an edge between B and the i-th center vertex of the double fan if and only if the i-th
bit of y is 1. This completes the input to A.

From the construction, observe that |V C(G)| ≤ K ≤ |V (H)|, as the vertex cover of G can
always be bounded by taking all vertices originally in H, which covers the edges towards the n
center vertices.

If the answer to Disjointness is NO, that is, there exists an index i such that xi = yi = 1,
then in G the edges from A and B connect in the i-th center vertex, creating an induced copy
of H in G, and so the graph is not H-free. Because ` = 0, H-free Deletion [VC] must also
be answered with NO.

If the answer to Disjointness is YES, that is, there is no index i such that xi = yi = 1, then
there is no path from A to B directly through a center vertex in G. We will show that there
is no induced occurrence of H in G. Let us call the vertex that was expanded into the center
vertices v, and say it has degree d ≥ 2. Then all the neighbours of this vertex must also have
degree at least d in H. However, the center vertices in G have degree at most d− 1, as no center
vertex can be adjacent to both A and B. Hence, no center vertex can be used for v or any of its
neighbours in an induced copy of H in G. Consider in H all vertices of degree at least d where
the neighbours also have degree at least d, and say there are c many of these vertices. In any
induced copy of H in G, these vertices must still have this relation of degrees. However, as none
of the center vertices has degree at least d, G contains at most c− 1 such vertices, which means
an induced copy of H cannot occur in G. Hence, the answer to H-free Deletion [VC] is YES.

Now, from Proposition 4.29 it follows that any algorithm for solving H-free Deletion [VC]
on a graph G with K ≥ |V (H)| requires at least n/p bits when using p passes in the VA/EA
models, even when ` = 0. This can be generalized for every ` by adding ` disjoint copies of H to
G, which also increases the vertex cover of G by a constant amount for each copy.

In Theorems 4.35 and 4.36 we only demand that the vertex cover size is at least |V (H)|, the
number of vertices in H. One can wonder if this bound can be tightened, as in Theorem 4.34,
where we only demand that the vertex cover size is at least |VC(H)| + 1. The problem in
Theorems 4.35 and 4.36, is that we might split a vertex of high degree. To get a valid vertex
cover without it having linear size in n, the only option is to include at least all adjacencies of
the center vertices. This makes it that the vertex cover can get a size up to |V (H)|, and so this
is the only safe demand.

Let us shortly discuss why there is difficulty in obtaining more general lower bounds for
H-free Deletion [VC].

It is important to notice that this reduction is not always correct. That is, there are instances
for which naively picking some vertex to split into the double fan will result in an instance where
a copy of H might occur while the answer to Disjointness is YES. An example of such an
instance is given in Figure 4. The same problems more trivially occur for instances where H is
a star, be it a P3 or some star with more edges. The difference in star instances compared to
instances such as those in Figure 4, is that star instances cannot work at all, while there is a
choice for splitting a vertex that does lead to a correct reduction in the instance of Figure 4.

Let us give some insight in more possibilities for incorrect reductions. Another issue occurs
when splitting a vertex of degree at least 4. This is because the adjacencies other than A and
B will be made adjacent to all center vertices in the double fan. But then we can find new
structures in this part of the graph. Namely, by traversing from a center vertex to one of these
adjacencies, to another center vertex, to another of these adjacencies and then back to the first

4 Π-FREE DELETION 43

A

B

A

B

Figure 4: An illustration that the double fan technique can lead to an incorrect reduction. The
left graph is H, where we split the degree 3 vertex, leading to the right picture. In the right
picture, although Disjointness is YES, there is still an occurrence of H as indicated by the red
edges. This counterexample is extendable by extending the path leading upwards from A.

center vertex, we can find a cycle. The size of such cycles are extendible depending on the degree
of the vertex split, but can be both odd and even length if the adjacencies other than A and B
might be adjacent to each other.

Although finding instances where these different occurrences directly make for an incorrect
reduction is difficult, this does pose a problem for proving the correctness of general reductions.
Arguments such as ‘then there is no cycle in the graph’ can be blatantly incorrect, falsifying
an entire reduction. We are left in a dubious situation, as at this point it is unsure whether
or not more general instances of H can be proven a lower bound, or whether there are very
general instances where the reduction is simply incorrect. Further development might require a
completely different lower bound technique or structure such that these problems do not occur.

It is also interesting to note that combining the AL model and a bounded vertex cover in
a lower bound proof is problematic. In the instances we construct, we want to keep the vertex
cover bounded, and so we cannot have the center vertices in the fan be center edges (or some
larger structure), because we would get a vertex cover size of at least n. However, if these center
vertices are merely vertices, then revealing their edges to an AL streaming model is something
neither Alice nor Bob can completely do, because it requires information of the other party.
Hence, it is difficult to combine these two factors in a lower bound proof.

Let us go over a few examples of problems that falling under Theorems 4.34, 4.35, and 4.36.
As any cycle as H has no degree-1 vertex, but also a degree-2 vertex, we can apply any of the

three theorems to find that any algorithm in the VA model for H-free Deletion [VC] requires
n/p bits when using p passes, when H is a cycle. As Odd Cycle Transversal [VC], Even
Cycle Transversal [VC], and Feedback Vertex Set [VC] are generalizations of H-free
Deletion [VC] where H is a cycle, these problems also require algorithms that solve them in
the VA model to use n/p bits when using p passes, even with constant vertex cover size.

The problem of Cograph Deletion [VC] is equivalent to P4-free Deletion [VC], and
a P4 has a degree-2 vertex and at least 3 edges. Hence, we can apply Theorem 4.34 to find that
any algorithm in the VA model for Cograph Deletion [VC] requires at least n/p bits when
using p passes, even with a constant vertex cover size.

5 Π-FREE EDGE EDITING 44

5 Π-free Edge Editing

In this section we will consider a problem closely related to the previous Π-free Deletion,
Π-free Edge Editing. Instead of vertex deletions, we allow edge additions and deletions in
this problem variant. Once again, we will work with parameterization by vertex cover, as this has
provided us with good results for Π-free Deletion already. However, because edge addition
and vertex cover do not exactly go well together (adding an edge might make the vertex cover
not a vertex cover anymore), we will require a second parameter, the solution size `. In contrast
to the previous section, ` ≤ |V C| does not give us a trivial solution, and so we do not assume
any relation between the size of the vertex cover and `. All in all, these two parameters enable
us to find new algorithms for Π-free Edge Editing in the streaming setting.

5.1 Problem Definition and Context

To formally define the problem, we first introduce an operation, the symmetric difference: Given
two (edge) sets A and B, the symmetric difference A4B is the set of elements that are in either,
but not both, sets. More formally, A4B = (A \ B) ∪ (B \ A). This can also be interpreted as
adding all the elements in B to A if they are not present yet, and removing from A those that
are in B.

Let us give the formal definition of Π-free Edge Editing [VC, `].

Π-Free Edge Editing [VC, `]
Input: A graph G = (V,E) with a vertex cover X, and an integer `.
Parameter: The size K := |X| of the vertex cover, the size of the solution `.
Question: Is there a set S = S− ∪ S+ ⊆ (V × V) of size at most ` such that
G′ = (V,E4S) does not contain a graph in Π as an induced subgraph?

Problems in the form of Π-free Edge Editing have extensive applications. One of the
most well-known forms of this problem is P3-free Editing, also known as Cluster Edge
Editing. This problem has applications in biology or in general with missing data. Cluster
Edge Editing asks us to add or remove edges of a graph to make it into a disjoint union of
cliques, and any graph is a disjoint union of cliques if and only if it does not contain an induced
P3. The idea of the applications is that relational data usually forms cliques (that is, the relations
are transitive), and thus we can ‘fix’ missing or corrupted data by solving the Cluster Edge
Editing problem. An overview of the Cluster Edge Editing problem can be found in [10].
An overview of the general edge editing (modification) problem can be found in [22].

5.2 Cluster Editing

To get started with streaming algorithms for Π-free Edge Editing, we focus on one specific
case: Cluster Edge Editing. Next to Cluster Edge Editing being a more specific version,
it is also a well-used version of the problem, and so streaming algorithms for this problem are
valuable results themselves. As mentioned before, Cluster Edge Editing [VC, `] is equivalent
to P3-free Edge Editing [VC, `], as a graph does not contain an induced P3 if and only if it
is a disjoint union of cliques.

There is a folklore branching algorithm for Cluster Edge Editing [`], which finds any P3

in the graph, and then branches on the three edits that remove this P3 from the graph. This
basic algorithm has a running time of 3` times some polynomial in n, and is FPT. The vertex
cover parameter can come in useful here, because any P3 must have at least one vertex in the

5 Π-FREE EDGE EDITING 45

vertex cover. Therefore, we present an adaptation of this simple branching algorithm to the
streaming setting, using both vertex cover and solution size as parameters.

To be able to branch on a P3 we first need to be able to find a P3 in the graph, for which we
give the following lemma.

Lemma 5.1. In a graph G = (V,E) given as a stream in the AL model with vertex cover X and
edge modification set S, where |X| = K and |S| ≤ `, we can find an induced P3 in (V,E4S) (if
it exists) in O(K2) passes using O((K + `) log n) bits of memory.

Proof. We assume that the vertex cover X and solutions set S are saved in memory, using
O((K + `) log n) bits of memory.

We attempt to find a P3 in two separate phases. The first phase enumerates all of the K2

edges/non-edges in the vertex cover. This can be be done with a dictionary ordering on all pairs
of vertices in the vertex cover using O(log n) bits of memory (See Definition 4.14, combined with
the vertex cover in memory). Now consider one such an edge/non-edge in the enumeration, and
let us fix the vertices that span this edge/non-edge as v and w. Any other vertex u is either
adjacent to both, just one, or none of v and w. For a vertex u, we can identify which of these
cases is present in the graph by the local information that is present for the edges of u in the
stream, combined with the edits S makes. If vw ∈ E4S, then u forms a P3 if there is just one
adjacency with v or w, and if vw /∈ E4S, then u forms a P3 if it is adjacent to both v and w.
Therefore, for a fixed pair v, w, we can identify if there is a P3 containing v and w using a single
pass and O(1) bits of memory. As we do this for every pair v, w ∈ X, we can conclude we can
identify any P3 with at least two vertices in the vertex cover using O(K2) passes and O(log n)
bits of memory.

The second phase enumerates the other possibilities for a P3 to appear. If we ignore S, then
a P3 cannot appear in the graph without any vertex in the vertex cover, as that would mean
the vertex cover is not a vertex cover. Therefore, the only remaining possibility is for a P3 to
have one vertex in the vertex cover, which is adjacent to two vertices outside the vertex cover
(which are by definition non-adjacent). So, to find a P3 in phase two we only have to enumerate
all vertices in the vertex cover and check whether it has two adjacencies outside the vertex cover
(taking into account the edits made by S). This can be done entirely in one pass, as for each
v ∈ X we get all its adjacencies in the stream.

Now the only remaining issue is that the edits made by S might make the vertex cover invalid,
and so can form a P3 in ways we did not consider so far. To find such a P3, we only have to
enumerate all the edge additions in S, and for each one we need to check if it forms a P3 (taking
into account the other edits made by S). This check is similar to that of an edge within the
vertex cover in phase one. Actually, we can find such an occurrence in a single pass, as for each
vertex in the stream we consider its adjacencies towards the edge additions in S. As S is already
in memory, we can use O(`) bits to save, for each edge uv added by S, if the current vertex in
the stream is adjacent to one of the vertices u or v. If we see that the current vertex is adjacent
to both or neither, there is no P3. However, if at the end of the current vertex in the stream we
have saved that there is a single adjacency towards one of these edge additions, this forms a P3.
So, we can find a P3 occurring because of an edge addition made by S in O(1) passes using O(`)
bits (assuming S is already saved in memory).

It should be clear that we can now find any occurrence of a P3 in the graph with these
enumerations. Phase two takes O(1) passes and O(` + log n) bits of memory (if X and S are
already in memory).

The above two phases enumerate all possibilities for a P3 to appear in the graph, and so, find
a P3 if it exists. Phase one and two together use O(K2) passes and require O((K + `) log n) bits
of memory. The lemma thus follows.

5 Π-FREE EDGE EDITING 46

We can now use Lemma 5.1 to get an algorithm for Cluster Edge Editing [VC, `].

Theorem 5.2. Given a graph G as a stream in the AL model with vertex cover X, we can solve
Cluster Edge Editing [VC, `] using O(3` ·K2) passes and O((K + `) log n) bits of memory,
where |X| = K and ` is the solution size.

Proof. The theorem essentially follows from repeatedly using Lemma 5.1 and branching on the
possible edits. Let us elaborate on this process.

We start with S = ∅ and the vertex cover X in memory. Use Lemma 5.1 to find a P3 in the
graph. We now have three options, we can either remove one of the two edges of this P3 and add
it to S, or add an edge in place of the non-edge. For a side-note, if any of these edges already
appear in S, than the edit will reverse a previous change, which is counterproductive. Therefore,
ignore a branching option if it already occurs in S. For each of the successful branching options,
continue this process by using Lemma 5.1 again. If at any point in a branch, Lemma 5.1 finds a
P3 but |S| = `, we stop in this branch. If at any point, Lemma 5.1 does not return a P3 (because
there is none), and |S| ≤ `, we return S as a solution. If no branch finds a solution, we return
NO.

Let us elaborate on the correctness of the above procedure. Notice that we always meet the
preconditions of Lemma 5.1. Therefore, Lemma 5.1 correctly tells us whether or not there is a
P3 in the graph. If it does find a P3, then this P3 must be removed in a correct solution, and
the algorithm branches on the only three ways to remove this P3. Ignoring editing an edge if it
already occurs in S is a correct operation, as reversing a previous edit is only counterproductive.
If this reverse edit could lead to an optimal solution, then there is another branch at the place
that made this original edit that leads to that optimal solution. Therefore, the algorithm works
correctly.

The number of passes of the algorithm is dependent on the complexity of Lemma 5.1 together
with the size of the search tree. Lemma 5.1 uses at most O(K2) passes each time it is called.
As we branch on three options every time, and we branch at most ` times, the total number of
passes made by the algorithm is bounded by O(3` ·K2).

For memory use, the algorithm only needs to save the sets X and S, which take O((K +
`) log n) bits of space, and the use of Lemma 5.1 does not exceed this complexity. Also, we branch
on a constant number of options in each step, which means we asymptotically need O(` log n)
memory to remember branching sets.

We can conclude that the theorem follows.

Now that we have seen a basic branching algorithm for Cluster Edge Editing [VC, `] in
the streaming setting, we can wonder whether we can do better. We can try to, for example,
look at existing branching algorithms for Cluster Edge Editing and see if their branching
strategies can be applied in the streaming setting. This turns out to be the case, we will look to
improve our branching strategy based on that of Gramm et al. [34].

In Section 4.1 Gramm et al. give three branching rules (B1), (B2), and (B3) which correspond
to the branching rules we use in Theorem 5.2, namely, if we have some P3, we branch on deleting
either one of the edges ((B1) and (B2)), or add the missing edge ((B3)). In Section 4.2 Gramm et
al. give an extension on these branching rules to improve on the size of the search tree produced
by the algorithm. Next we will show that these refined branching rules can be adapted to the
streaming setting as well.

For completeness, we first give the cases for the refined branching rules as given by Gramm
et al. [34].

Given a P3 consisting of vertices u, v, w where uv ∈ E and uw ∈ E but vw /∈ E, we have
three situations:

5 Π-FREE EDGE EDITING 47

(C1) Vertices v and w do not share a common neighbour, so @x ∈ V, x 6= u : vx ∈ E and wx ∈ E.

(C2) Vertices v and w have a common neighbour x 6= u, and ux ∈ E.

(C3) Vertices v and w have a common neighbour x 6= u, and ux /∈ E.

The first thing to notice here, is that we can identify which case we are in using a single
pass of the AL stream. Furthermore, Gramm et al. provide deterministic branching for each of
these cases, and we can simply follow up on that process. For completeness, we summarize the
branching rules for each case next. Remember, we have found a P3 with vertices u, v, w in our
graph such that uv ∈ E and uw ∈ E but vw /∈ E. We also identified which of cases (C1), (C2),
(C3) is present, using a pass over the stream. We get the following branching rules:

(C1) In this case, we get a regular branch, except that the edge addition branch can be left out.
This is proven in [34, Lemma 5]. So we only branch on deleting uv or uw.

(C2) In this case, we do the three normal branches, but we can expand the branching in two of
the cases further. This leads to the following branches:

• Add the edge vw.

• Delete the edge uv, and also delete vx.

• Delete the edge uv, and also delete ux and wx.

• Delete the edge uw, and also delete wx.

• Delete the edge uw, and also delete vx and ux.

(C3) In this case, we do the three normal branches, but we can expand the branching in two of
the cases further. This leads to the following branches:

• Delete the edge uv.

• Delete the edge uw, and also delete vx.

• Delete the edge uw, and also delete wx but add ux.

• Add the edge vw, and also delete wx and vx.

• Add the edge vw, and also add ux.

Clearly, we can use these branching rules instead of those in Theorem 5.2 and only increase
the number of passes by one in each branch. Also, the number of branches we create in each
step is still bounded by a constant, just as the edits each branch makes, which means we do not
increase the asymptotic memory use.

Before we come to the complete result, however, it is good to notice that we do one thing
different from Gramm et al.. We do not mark edges as ‘permanent’ or ‘forbidden’. We have to
ask ourselves if the algorithm then still works correctly, and if it still results in the same bounded
size search tree. The purpose of marking edges as permanent or forbidden, is that in a later
branch we do not undo the work we did previously. One can imagine removing a P3 with some
edit, which can create another P3, which we then edit such that the first P3 is back in the graph
in some branch. This can be a problem in three possible ways: it might make the algorithm loop
indefinitely, it might increase the search tree size, and it might make the algorithm incorrect.
The indefinite looping is quickly resolved: if we still decrease the parameter effectively with
each edit, we are still bounded by the parameter in the number of edits we can make. In the
algorithm, this means that the solution set S may contain duplicates, and we must allow this.
Because the parameter is still correct, the worst case search tree cannot increase in size. This

5 Π-FREE EDGE EDITING 48

simply because in the worst case, this scenario does not even have to occur, as we have enough P3

occurrences that do not overlap anyway, which all require branching. Therefore, the worst case
does not change, and so the complexity does not change either. The last concern was correctness.
To show this, consider the following. If we do all the marking into permanent and forbidden
vertices, then some branching steps do less branching, as some branches undo previously done
work. In this case, the algorithm works correctly. In our case, we do expand these branching
steps, which means our algorithm only considers more options, including all those considered by
the correct-marking algorithm. Therefore, if a solution exists, our algorithm also considers it, as
some branching order corresponds to the edits made in the solution.

With the above motivation, we can safely adjust Theorem 5.2 with the extended branching
rules, and using [34, Theorem 2], we come to the following theorem:

Theorem 5.3. Given a graph G as a stream in the AL model with vertex cover X, we can
solve Cluster Edge Editing [VC, `] using O(2.27` ·K2) passes and O((K + `) log n) bits of
memory, where |X| = K and ` is the solution size.

5.2.1 Cluster Editing Kernels

To obtain more results, we can look into adapting a kernel to the streaming setting. In exploring
kernels, this adaptation proves to be far from trivial, as many kernels use graph properties or
structures that are not easily computed in the streaming model with sub-linear memory. However,
by making use of the vertex cover parameter we can remain memory efficient in adapting such
a kernel. The kernel we will adapt is that of Jiong Guo [35], and in particular, the 6` kernel
provided. In short, the 6` kernel first computes the Critical Clique Graph of the input, over
which it has some rules depending on the size of neighbourhoods to reduce the instance. As
mentioned, this adaptation is not trivial, and we require multiple careful analyses to accomplish
this result. Our first step is to be able to compute the Critical Clique Graph of our input.

Let us first give the definition of a critical clique and a critical clique graph, just as they were
given in [35].

Definition 5.4. A critical clique of a graph G is a clique C where the vertices of C all have the
same set of neighbours in V \ C, and C is maximal under this property. A critical clique is also
known as a set of true twins.

Definition 5.5. Given a graph G = (V,E), let K be the collection of its critical cliques. Then
the critical clique graph C is a graph (K, EC) with CiCj ∈ EC ⇐⇒ ∀u ∈ Ci, v ∈ Cj : uv ∈ E.2

On a graph in memory we can compute the critical clique graph by partitioning the vertices
on their closed neighbourhood. However, in a streaming setting this is much more difficult. First
we have the problem of memory: the critical clique graph can have O(n) nodes and O(m) edges,
and furthermore, we cannot simply partition on a closed neighbourhood, as this might consist
of O(n) vertices. Thankfully, if we use the vertex cover we can make a useful observation: any
two vertices outside the vertex cover cannot be in the same critical clique, as there is no edge
between them. This means we can only have O(K) critical cliques with a size bigger than one,
as it must consist of a part of the vertex cover with at most one vertex outside the vertex cover.
This leads to the following idea: we can save only the critical cliques contained in the vertex
cover and those with size bigger than one using O(K log n) memory. Any other vertex in the
stream that is not saved in such a critical clique must therefore be a critical clique on its own.

2In more modern terminology, a critical clique is a module in the graph. The critical clique graph can then be
seen as a quotient graph of this modular decomposition. As this is very general terminology that is not required for
the contents of this thesis, we will not go into the definitions and details of modules and modular decompositions.

5 Π-FREE EDGE EDITING 49

Hence, we have enough information saved so that we can inspect the critical cliue graph C using
a pass over the stream. Let us formalize this in a lemma.

Lemma 5.6. Given a graph G as an AL stream together with a vertex cover X of G, |X| = K,
we can compute and save (the vertices of) all critical cliques of G that are either contained in
the vertex cover or of size bigger than one using O(1) passes and O(K log n) bits of memory.

Proof. Let G = (V,E) be a graph with vertex cover X such that |X| = K. We will first partition
the vertex cover into the critical cliques contained in it, and then consider options for vertices
outside the vertex cover that might belong to one of these critical cliques, making it maximal.

We first view the vertex cover X as the entire graph, and partition it into its critical cliques.
This can be done by a process described in [38, Theorem 3.3], where we iteratively refine the
current partitions with a vertex v by splitting each partition P on P ∩N [v] and P \N [v]. Notice
that we need only one pass to do this for the vertex cover X, as for each v ∈ X finding N [v]∩X
requires local information to v in the AL stream and only O(K log n) bits of memory. The set of
partitions we save can have no more than K elements making up K vertices in total, which means
we only need O(K log n) bits of memory. With this one pass we have found the partitioning of
X into its critical cliques, but this ignores all adjacencies towards vertices not in X.

So, what remains is two problems. Firstly, we might have to partition critical cliques in X
further because some vertices do not share the same adjacencies towards V \X. Secondly, some
critical cliques might include a vertex in V \X, which we will have to find as well.

The first problem can be solved in another pass. In this pass, for each vertex v ∈ (V \X),
we split each partition on N(v), that is, a set P is partitioned into P ∩ N(v) and P \ N(v).
This process splits up all critical cliques which do not share the same adjacencies towards V \X.
Notice that |N(v)| ≤ K for v ∈ (V \ X), and so, this can be done using O(K log n) bits of
memory.

At this point, each critical clique can be missing at most one vertex now, which can be a
vertex in V \X. This can only be one vertex, as no critical clique can contain two vertices from
V \ X, as those vertices form an independent set. We use two passes to find such vertices. In
the first pass, for each vertex of a critical clique, if it has a single adjacency outside of X, we
save this adjacent vertex as a potential candidate to belong in this critical clique. This first
pass nets us O(K) candidate additions to critical cliques, at most one per critical clique. We
save these candidates with their respective critical cliques in (critical clique, candidate)-pairs,
which together use O(K log n) bits of memory. In the second pass, whenever we see a vertex v
in the stream, consider its adjacencies towards the critical cliques and the candidate additions.
If this vertex is adjacent to both or neither a (critical clique, candidate)-pair, the candidate can
still belong to the critical clique. If it is not, that is, v is adjacent to one of the critical clique
or the candidate, we throw away this candidate, as it cannot belong to the critical clique. We
can do this for all of the O(K) (critical clique, candidate)-pairs by locally saving O(K) bits of
information when considering the vertex v, by saving boolean bits for the presence of adjacencies
towards (the elements of) these pairs. When we go to the next vertex w in the stream, we forget
the locally saved information, and do the same process again for w. After the pass, we have
thrown away all candidates that do not share some adjacency with the corresponding critical
clique, and hence, all remaining candidates belong to the respective critical clique. Therefore,
save these candidates as permanent elements of the critical cliques.

We claim that we now have (the vertices of) all critical cliques contained in the vertex cover,
or of size bigger than one, saved. Note that the above process takes O(1 + 1 + 2) = O(1) passes
over the stream and does not exceed O(K log n) bits of memory usage. Let us argue why we have
all such critical cliques saved. As we partitioned the vertex cover correctly by [38, Theorem 3.3],
we have all critical cliques contained in the vertex cover. Because no two vertices outside the

5 Π-FREE EDGE EDITING 50

vertex cover can belong to the same critical clique, all critical cliques of size bigger than one
can only consist of some subset of X (possibly) together with a vertex outside X. But then this
vertex outside X must be the only adjacency of the subset of X of this critical clique, and so it
is considered in the process. Therefore we have all such critical cliques in memory.

As argued before, executing Lemma 5.6 enables us to use a pass over the stream to inspect
the critical clique graph, as its complete structure can be derived from the information in the
stream together with the saved critical cliques.

The 6` kernel of Guo [35] follows from the critical clique graph by applying the following two
rules:

Rule 1 Remove any isolated critical clique from C.

Rule 2 If there is a critical clique C ∈ C such that |V (C)| > |
⋃
C′∈NC(C) V (C ′)|+|

⋃
C′∈N2

C(C) V (C ′)|,
where NC(C) and N2

C (C) denote the first and second neighbourhood of C, then we edit
G[
⋃
C′∈NC(C) V (C ′)] into a complete graph and delete all edge between

⋃
C′∈NC(C) V (C ′)

and
⋃
C′∈N2

C(C) V (C ′) and decrease ` by the corresponding amount. This means we have

made C∪
⋃
C′∈NC(C) V (C ′) into a complete graph disconnected from all other vertices, and

so we can remove it according to Rule 1.

Adapting these kernelization rules to the streaming setting provides us with a couple of
problems. We do not simply have the graph in memory with the option to edit it until we have
the kernel. Rather, we want to compute what our kernel is after applying the rules, and output
it then. Secondly, deciding the size of the first and second neighbourhood, and the necessary
edits, is also far from trivial, and must be approached carefully if we wish to execute this using
little memory. Let us first go into detail how we compute and execute Rule 2 on basis of the
information saved by Lemma 5.6.

Lemma 5.7. Given a graph G as an AL stream together with a vertex cover X of G, |X| = K,
and the critical cliques (partially) contained in X, and an edit set S with |S| ≤ `, we can
decide whether Rule 2 applies to a given critical clique C, and execute it, using O(1) passes and
O((K + `) log n) bits of memory.

Proof. In this lemma, whenever we consider some edges/non-edges, we assume we have taken
into account the edits made by S. Looking at any edge/non-edge, this can always be done using
O(|S|) time, which is insignificant as we allow unbounded computation time.

In the following analysis, we work on the critical clique graph C. Remember that we have
all critical cliques that are (partially) contained in X saved. Therefore, we can always check if
we have ‘done’ a critical clique already, by checking if the current vertex in the stream belongs
to a critical clique with a vertex we have seen earlier in the stream (and so always mark any
of these saved critical cliques as ‘done’ if any vertex of it is handled in the stream). As other
critical cliques only consist of one vertex, Rule 2 will never apply to them. This is because such
a critical clique is not isolated, as otherwise it would be removed by Rule 1. Hence, it has a
neighbour in the vertex cover. But then this neighbour has at least one vertex, which means
Rule 2 cannot apply. By this motivation, it should be clear that we can view a pass over the
stream to be equivalent to a pass over the critical clique graph.

Deciding on the exact first and second neighbourhood using little memory is hard. However,
counting their size is easier. To do this, we start with two passes over the stream. In the first pass,
we mark all neighbours of the given critical clique C that are within X as being first neighbours
of C. In the second pass, we mark all second neighbours of C as being second neighbours,
by marking all unmarked neighbours of the marked neighbours of C. We can now count the

5 Π-FREE EDGE EDITING 51

number of first and second neighbours of C (of course, ignoring C itself). We use a pass over
the stream and do the following. If the current node is in X and it is marked, we increment the
corresponding counter. If the current node u is outside of X, we look at its adjacencies, and
count the number of unmarked neighbours (ignoring C itself). If C is a neighbour of u, then
these unmarked neighbours are second neighbours and must be counted. If u is not a neighbour
of C, but is a neighbour of a first neighbour, then it is a second neighbour and it must be counted.
After this pass, we have counted all first and second neighbours, as any first-second neighbour
pair must have at least one of the two in X.

Notice that we now have enough information to decide whether to apply Rule 2, using O(1)
passes and O(K log n) bits of memory. Let us now assume that the conditions are met, and we
want to do the editing as suggested by Rule 2.

We have to add edges such that all first neighbours form a clique together with C. Note that
we already know how many first neighbours are in X and how many first neighbours we have
total. Therefore, we know how many first neighbours of C lie outside of X. Notice that these
have no edges between them, so if there are i of such nodes, we require at least (i2− i)/2 = O(i2)
edge additions. But, we are allowed to make at most ` edits. We can conclude that i2 = O(`) and
otherwise we return NO. Now we can simply use a pass to locally save all these first neighbours,
and then use a pass to find all the missing edges between them. Add these edges to S, unless
|S| > `, then return NO. Note that this process takes O(1) passes and uses O((K + `) log n) bits
of memory.

What remains is to remove all the edges between the first and second neighbours of C.
However, we have saved all the first neighbours of C in memory, so this process is not difficult.
Use a pass over the stream, and at every node, if it is a second neighbour (so it is adjacent to a
first neighbour but not C), add all its adjacencies to first neighbours to S as removals. If |S| > `,
then return NO.

It should be clear from the process that we correctly decide whether to apply Rule 2, and
correctly apply Rule 2 if needed, using in total O(1) passes and O((K+ `) log n) bits of memory.

What remains to be able to completely adapt the kernel to the streaming setting, is two
questions. How many times can we apply Rule 2 and Rule 1, and how can we make sure we
actually get the kernel. For the first matter, notice that we can ignore Rule 1 until we actually
want to output the kernel, as it makes no edits, and Rule 2 can only be applied for a critical
clique C with |C| > 1, as otherwise it only applies when a critical clique is isolated. Therefore, we
only have to check to apply Rule 2 on the saved critical cliques, which are O(K) many. Because
the edits made can make the rule apply to a previously checked critical clique, we have to execute
Lemma 5.7 at most O(K2) or O(K`) times. This is because there are only O(K) many cliques
to apply the rule to, and each application makes at least one edit, and we never apply the rule
to the same clique twice.

The second question is how we can find the actual kernel after applying Rule 2 exhaustively.
The graph now consists of a disjoint union of isolated cliques and a 6` kernel. What we can do
to solve this matter is simple: every time we apply Rule 2 to some critical cliques, we mark them
as being isolated. We have remaining some subset of the saved critical cliques which are not
isolated, and we can use a pass to decide, for every vertex outside X, whether it belongs to some
isolated clique or is adjacent to one of these non-isolated critical cliques (respecting the solution
set S).

The attentive reader might notice a possible issue: the edits made by S change the vertex
cover and the critical clique graph, while we seem to ignore this completely. That is, edges
added by S may be edges not covered by the vertex cover, and the edges added and deleted

5 Π-FREE EDGE EDITING 52

by S increase the size of some critical cliques. However, we argue that this does not matter.
First notice that we do respect the edits made by S in inspecting the stream in Theorem 5.7.
Also notice that applying Rule 2 isolates a critical clique (which now might have increased in
size). As we just mentioned that we will mark the saved critical cliques as being isolated, and an
isolated critical clique will never receive any more edges, we can safely ignore these saved critical
cliques while applying Rule 2. Even better, if we respect the edits made by S, the vertices in this
(isolated) critical clique will never be reachable, even those vertices that were added later and are
not saved as being part of this critical clique. The edges added by S that might make the vertex
cover invalid are also only contained in isolated critical cliques, which means we will not need to
look at these edges at any time. Hence, it is safe to work only work with the originally saved
critical cliques, and only respecting the edge additions and deletions made by S when inspecting
the stream.

This should be enough motivation to lead to the following theorem.

Theorem 5.8. Given a graph G as an AL stream with a vertex cover X, |X| = K, we can find
a 6` kernel for Cluster Edge Editing [VC, `] using O(min(K2,K`)) passes and O((K +
`) log n) bits of memory.

Proof. First use Lemma 5.6, which uses O(1) passes and O(K log n) bits of memory. Then
exhaustively apply Lemma 5.7 on these saved critical cliques to exhaustively apply Rule 2. If
we successfully apply Rule 2, we mark the now-isolated nodes as being isolated (we mark only
those already saved by Lemma 5.6). We can apply Lemma 5.7 at most O(K2) or O(K`) times,
depending on which is smaller, which is O(min(K2,K`)) times. Now use a pass to find the kernel
by outputting all vertices and edges which contained in, or adjacent to, some non-marked critical
clique, ignoring the edges deleted by S. Clearly, this process takes O(min(K2,K`)) passes of the
stream and uses O((K + `) log n) bits of memory. The correctness and size of the kernel follows
from the correctness of Rule 1 and Rule 2, as proven by Guo [35].

It is also possible to adapt the 4` kernel of Guo [35] to the streaming setting. However, it
is questionable whether this is worth it over the 6` kernel. This is because the rules for the 4`
kernel are more specific, meaning they might be applied much more often than those of the 6`
kernel. Because we cannot do ‘partial’ passes, a pass is a pass, this would lead to many more
passes necessary to apply these rules. To be more specific, Rule 3 for the 4` kernel in [35] asks for
critical cliques K and K ′ such that their size together meets a demand similar to that of Rule 2.
However, we can observe that the critical clique K must be in X, but not necessarily the critical
clique K ′. This would mean we possible have to apply this rule to many critical cliques K ′, or
at least, check whether it applies. These checks require passes and so the number of passes will
likely increase significantly. Therefore, we leave this adaptation as a remark and do not describe
its details in full.

Let us move on to a different kernelization. It seems from the above kernelization that the
vertex cover provides us with a lot of flexibility to work with memory and information. It might
therefore be interesting to think about a simple kernelization strategy which makes use of the
given vertex cover to derive structural information. One approach to accomplish this is to analyse
the graph with a given size of both the vertex cover and the independent set. This simple idea
leads to the following lemma.

Lemma 5.9. Given an n-vertex graph G with vertex cover X, |X| = K, if there are no isolated
vertices and n = 2K + c, then it takes at least c edge edits to make the graph into a disjoint
union of cliques.

5 Π-FREE EDGE EDITING 53

Proof. We will now show that for any K, a graph with n = 2K+ c non-isolated vertices requires
at least c edits. Let G be a graph meeting the preconditions, and let S be a minimal set of
edits which makes G into a disjoint union of cliques. Let us denote G′ = (V (G), E(G)4S), the
resulting graph after applying the edits of S to G.

To prove the lemma, we consider the cases of a vertex v /∈ X with respect to the cliques
in G′. It can be that v is alone in a clique in G′, which requires at least one edit because G
contains no isolated vertices. Another case is that v is in a clique with multiple vertices from
outside X, which requires edge additions as these vertices originally form an independent set.
The remaining scenario is that v is in a clique with only some subset of vertices from X. This
last scenario might not require edits. However, we can bound how often this scenario occurs, as
it requires at least one vertex from X and at most one vertex from outside X. Say there are
d ≤ K of such cliques in G′. Now there are at most K − d ≥ 0 vertices remaining in X, and
at least K + c − d ≥ c vertices outside of X. This means there is still a difference of at least c
vertices in the size of X and its complement (note that if some of these d cliques contain multiple
vertices from X, this difference is only larger). Now, for each v /∈ X, the clique in G′ containing
v is only of two cases: either v is a clique on its own, or v is in a clique with at least one other
vertex from outside X. Every vertex in the first case requires at least one edit, as G contains no
isolated vertices. Every clique in G′ with q ≥ 2 vertices from outside X requires at least q − 1
edits in S, because these vertices are an independent set. Because there are still at least c more
vertices outside X than in it, S must contain at least c edits to make these cliques. Therefore,
the lemma follows.

It is good to note that the bound of n = 2K + c vertices is tight. If we consider c = 0 there
is indeed an instance requiring no edits. This instance is simply K disjoint edges, each of which
has one vertex in the vertex cover. As this instance is a disjoint union of cliques, it requires no
edits.

The following kernelization theorem follows directly.

Theorem 5.10. Given a graph G in the VA/AL streaming model with a vertex cover X, |X| =
K, we can get a 2K + ` kernel for Cluster Edge Editing [VC, `] using one pass and
O((K + `) log n) bits of memory (to save the kernel).

Proof. Use a pass to save all non-isolated vertices. If at any point the number of vertices we save
exceeds 2K + ` we can conclude from Lemma 5.9 that there exists no solution.

5.3 Π-free Editing with explicit Π

Let us move on to the general Π-free Editing. To give an algorithm for this problem, we
look towards a very general result of Cai [13], that for finite Π graph modification problems
are fixed-parameter tractable. The result that Cai provides is not immediately usable in the
streaming setting, as the procedure used to find a minimum forbidden induced subgraph is
memory expensive. Luckily, in previous sections we have already seen some tools and algorithms
which enable us to build an algorithm inspired on that of Cai. To give this algorithm, we first
give some general notation as used by Cai [13]. Notice that the Cai works on a more general Π-
free Editing problem, where we also allow vertex deletions. To distinguish these versions, we
will call Π-free Edge Editing the variant which does not allow vertex deletions, and Π-free
Editing the variant which does.

If we assume that Π is a finite set of forbidden induced subgraphs, we can denote the maximum
size of a graph in Π with ν. Because the result is for general modification problems, we separate
the number of edits we can make into three variables, where i is the number of vertices we are

5 Π-FREE EDGE EDITING 54

allowed to delete, j the number of edges we can delete, and k the number of edges we can add.
Note that for Cluster Edge Editing we essentially had that ` = j + k (for some j, k) and
i = 0, while in Section 4 we had ` = i and j = k = 0.

In essence the algorithm of Cai [13] is very simple: find a minimum size induced subgraph
from Π in the graph G, and branch on all possible edits. The issue in adapting this method to
the streaming setting is finding a minimal induced subgraph. Luckily, in Section 4.3.2 we have
seen a method perfectly suitable for finding induced an induced subgraph given a vertex cover,
FindH (see Algorithm 6 and Algorithm 7). The only adjustment we have to make, is to make
FindH return the entire instance of H it found instead of only the vertices outside the vertex
cover.

From the above analysis and description, the following theorem follows.

Theorem 5.11. If Π is a graph property such that the maximum size of any graph in Π is ν,
and given a graph G as an AL stream with a vertex cover X, where |X| = K, we can solve
Π-free Editing [VC, i, j, k] where we can make i vertex deletions, j edge deletions, and k edge
additions, using O(|Π| · νi+2j+2k+1(K + k)νν!) passes and O((K + (i + j + k)ν2) log n + |Π|ν2)
bits of memory.

Proof. The idea of the algorithm is the following: take the smallest graph in Π, and call FindH
at most ν + 1 times to check whether there is an occurrence of this graph in G (once for every
x = 0 . . . ν, where x is the parameter which makes FindH look for an instance with x vertices
outside of the vertex cover). If we find an occurrence, branch on all the different edits we can
make to this occurrence, respecting i, j, k. In each branch, start this process again. If we do
not find the smallest graph in Π, try the second smallest, etc.. The total number of branches

then comes down to
(
ν
2

)j+k
νi = O(νi+2j+2k). If at any time we add an edge that makes the

vertex cover invalid, we add one of the two vertices to the vertex cover, such that the vertex
cover remains valid with the edits made.

The correctness of the algorithm follows from the correctness of FindH as given in Lemma 4.16,
combined with the branching being a simple ‘try everything’ approach.

The number of passes of this algorithm is dependent on the size of Π, the number of branches,
and the number of passes FindH makes. This comes down to O(|Π| · νi+2j+2k+1(K + k)νν!)
passes, where the (K + k) comes from the fact that we expand the vertex cover of size K with
at most k vertices, and it is to the power of ν because of the complexity of FindH, where its
parameter i is at most ν.

The memory use is a little more complicated. Clearly, we need to have Π saved, together
with the vertex cover. To be able to branch, we need the entire occurrence of any forbidden
induced graph we find to be in memory, and this simultaneously for every active instance, which
can be O(i+ j + k) many. We also need to keep track of the edits we made. The size of the rest
of possible sets we need can be bounded by one of these sets, and so the total memory use is
bounded by O((K + (i+ j + k)ν2) log n+ |Π|ν2) bits.

It is interesting to note that this gives us an alternative for Algorithm 4.3 and Algorithm 7
by setting j = k = 0 and i = `. Although the asymptotic performance of Theorem 5.11 might
look better than that of Algorithm 7, it does not necessarily perform better. This is because in
Algorithm 7 some work is done to attempt to lower the number of branches made, but is worst
case still h, while Theorem 5.11 always branches on O(ν +

(
ν
2

)
) options.

The attentive reader might notice that the problem definition has slightly shifted. We origi-
nally specified that a total of ` edits could be made, either edge additions or deletions. However,
in Theorem 5.11 we explicitly have how many additions and how many deletions we may make.
We could solve this by applying Theorem 5.11 for all j, k such that j + k = `, but this would

5 Π-FREE EDGE EDITING 55

slightly increase the complexity. A better alternative, is to edit the algorithm to work with `,

where instead of getting
(
ν
2

)j+k
νi = O(νi+2j+2k) total branches we get

(
ν
2

)`
= O(ν2`) branches.

So instead of each edit having a specific parameter to decrease when made, both the edge edits
now decrease `, and the vertex deletion edit is illegal. This leads to the following theorem.

Theorem 5.12. If Π is a graph property such that the maximum size of any graph in Π is ν,
and given a graph G as an AL stream with a vertex cover X, where |X| = K, we can solve
Π-free Edge Editing [VC, `] where we can make a total of ` edge additions or deletions,
using O(|Π| · ν2`+1(K + `)νν!) passes and O((K + `ν2) log n+ |Π|ν2) bits of memory.

5.4 Π-free Editing without explicit Π

Just like with Π-free Deletion, we can asks ourselves whether we can achieve similar results
without saving Π explicitly, which should (hopefully) decrease the memory use of the algorithms.
As before, we want to work with an oracle algorithm, which on call, gives us some information
about Π.

However, it seems we run into the same problems in using an oracle algorithm for Editing
problems. The algorithm of Theorem 5.11 relies quite heavily on FindH, and that function
requires explicit knowledge of the graph it is searching. Interestingly, Cai [13] provides an
algorithm for finding a minimal forbidden induced subgraph using some oracle algorithm that
tells us whether a graph G is Π-free or not. We can be tempted to adapt this method to the
streaming setting. However, the method requires a set of size O(n) to be in memory. This is far
from ideal if we want to save memory by not explicitly saving Π.

It seems the options are very limited. To give at least some algorithm, we can consider a brute
force approach. Say we work with oracle algorithm A1, that is, when A1 is called on a graph G,
it returns whether or not G ∈ Π. As we know that every graph in Π has a maximum size ν, we
can simply iterate over all

(
n
≤ν
)

= O(νnν) options and call the oracle algorithm on each option.
Whenever the oracle returns that the graph is in fact a forbidden graph, we can remove it by
branching on all possible edits. This brute force approach clearly leads to a correct solution, if
it exists. If we denote PA1

(n),MA1
(n) as respectively the number of passes and the memory use

of the oracle algorithm A1 when called on a graph G of size n, it is not hard to see that this
algorithm would use O(nννi+2j+2k+1(1 +PA1(ν))) passes. If we use a dictionary ordering on all
of the

(
n
≤ν
)

options, we can achieve a memory use of O((i + j + k)ν2 log n + MA1(ν)) bits. We

multiply (i+ j + k) with ν2 log n here, because to be able to continue branching when returning
out of recursion, we need to remember the edits we want to make. As the search tree has depth
at most (i+ j + k), the memory use follows.

This leads to the following theorems.

Theorem 5.13. If Π is a graph property such that the maximum size of graphs in Π is ν, and A1

is an oracle algorithm that, when given subgraph H on h vertices, tells us whether or not H is in
Π using PA1

(h) passes and MA1
(h) bits of memory, we can solve Π-free Editing [i, j, k] where

we can make i vertex deletions, j edge deletions, and k edge additions using O(nννi+2j+2k+1(1+
PA1

(ν))) passes and O((i+ j + k)ν2 log n+MA1
(ν)) bits of memory.

Theorem 5.13 implies the following result for the Π-free Deletion [`] problem.

Theorem 5.14. If Π is a graph property such that the maximum size of graphs in Π is ν, and A1

is an oracle algorithm that, when given subgraph H on h vertices, tells us whether or not H is in
Π using PA1

(h) passes and MA1
(h) bits of memory, we can solve Π-free Deletion [`], where

we can make ` vertex deletions, using O(nνν`+1(1 +PA1(ν))) passes and O(`ν2 log n+MA1(ν))
bits of memory.

6 VERTEX COVER 56

6 Vertex Cover

The Vertex Cover problem is a well-known problem with much attention in the literature
[24, 31, 55]. In previous sections, we used vertex cover as a parameter. This motivates us to
explore how well we can do in finding a vertex cover in the streaming setting.

6.1 Problem Definition and Context

Let us first formally define the Vertex Cover [k] problem.

Vertex Cover [k]
Input: A graph G = (V,E) and an integer k ≥ 1.
Parameter: The size of the solution k.
Question: Is there a set S ⊆ V of size at most k such that G[V \ S] does not contain
an edge (i.e. is an independent set)?

The vertex cover can be interpreted as a sort of reachability problem, where we place ‘stations’
on vertices such that all edges are incident on at least one station. This means the vertex cover
gives us some measure of the denseness of a graph, that is, a graph with a small vertex cover
is likely to contain very high degree vertices. Next to these interpretations, vertex cover has
been extensively studied in the literature in interest of its complexity. Vertex Cover [k] is
known to be FPT, and has also been extensively researched to improve the running time of these
FPT algorithms. See Table 3 for an overview of the running times for algorithms for Vertex
Cover [k]. Furthermore, the problem of finding a vertex cover has also received attention in the

streaming setting. Two interesting results in this regard are the one pass, Õ(k2) memory kernel

algorithm by Chitnis et al. [18], and the O(2k) passes, Õ(k) memory branching algorithm by
Chitnis and Cormode [17]. These results are already very promising, but we can wonder whether
we can improve upon them, or find an algorithm with a different pass/memory trade-off. To this
end, it interesting to consider the following theorem given by Abboud et al. [1]

Theorem 6.1. [1, Thm 16] Any algorithm for the Vertex Cover [k] problem which uses S
bits of space and R passes must satisfy RS ≥ k2.

6.2 Adapting existing branching algorithms

Let us focus on trying to improve the number of passes for the O(2k) passes, Õ(k) memory

branching algorithm by Chitnis and Cormode [17]. Notice that Õ(k) bits of memory is essentially
optimal, as we generally have to save the output, which consists of O(k) vertices.

Consider the branching algorithm given by Balasubramanian et al. [6] with a running time
of O((1.324718)kk2 + kn). This achieved through a two-step process: first a kernelization is
executed to reduce the instance to size O(k2), after which a branching algorithm is executed
with a search tree size of O(1.324718k). We can make this process into a streaming algorithm by
ignoring the kernelization step, and executing the branching algorithm in the streaming setting,
if possible. If we are able to do a single branching step in worst case O(1) passes, this would
give us an O(1.324718k) passes algorithm, as this is the size of the search tree.

Theorem 6.2. Given a graph G as an AL stream and a solution size k, we can solve Vertex
Cover [k] using O(1.324718k) passes and O(k log n) bits of memory.

Proof. We execute the branching steps as given by Balasubramanian et al. [6, Theorem 2] to
obtain a search tree with O(1.324718k) nodes. Note that we branch on at most a constant

6 VERTEX COVER 57

Source Time Complexity Year
Mehlhorn [47] O(2k(n+m)) 1984
Buss and Goldsmith [12] O(kn+ 2kk2k+2) 1993
Downey and Fellows [25] O(kn+ 2kk2) 1995
Balasubramanian et al. [6] O(kn+ 1.324718kk2) 1998
Downey et al. [26] O(kn+ 1.31951kk2) 1999
Niedermeier and Rossmanith [52] O(kn+ 1.29175kk2) 1999
Stege and Fellows [61] O(kn+ max(1.25542kk2, 1.2906kk)) 1999
Chen et al. [15] O(kn+ 1.2852k) 2001
Niedermeier and Rossmanith [54] O(kn+ 1.2832k) 2003
Chandran and Grandoni [14] O(kn+ 1.2745kk4) 2005
Chen et al. [16] O(kn+ 1.2738k) 2010

Table 3: An overview of the improvements on the Vertex Cover [k] problem. In 2000, a
general technique was developed by Niedermeier and Rossmanith [53] that allows for a polynomial
factor in k after the exponential factor to be removed in the running times of the algorithms.
Hence, these polynomial factors are still listed for algorithms before the year 2000, but can also
be removed. This does not apply to the result of Chandran and Grandoni [14], as this is an
algorithm using a different technique that uses exponential space.

number of options in each step. It remains to be proven that we can execute the branching steps
in each node in no more than O(1) passes using O(k log n) bits of memory.

At any point in the branching process, denote S as the current solution set, that is, all vertices
we deleted so far. In passes and checking properties we can respect the deletions in S by simple
enumeration of its edits, which has no effect on the number of passes or memory usage. If at
any point |S| = k, but we want to branch, return NO for that branch. We will now look at each
of the steps of the branching process and how they can be done in the streaming setting. We
always execute the first possible branching step first. These are the exact branching steps as
given by Balasubramanian et al. [6, Theorem 2].

(1) We can find a degree 1 vertex using a pass, which also gives us its neighbour, which we can
add to S.

(2) We can find a degree 2 vertex x using a pass. We can check whether its neighbours y, z
are connected with an edge in another pass. If this is the case, we add y and z to S.

(a) Otherwise, we can find the neighbours of y and z using a pass (if there are more than
k, we do not branch on including these neighbours), and we can branch on including
either {y, z}, or N({y, z}).

(b) If y and z together only have a single neighbour other than x, which we found in the
previous pass, we add x and this neighbour to S.

(3) We can find a vertex x of degree at least 5 (and at most k) using a pass. We branch on
including x or its neighbourhood.

(4) We can find a vertex x of degree 3 and its neighbours v1, v2, v3 using a pass.

(a) We can check whether there is a single edge between v1, v2, v3 (say v1v2) using a pass.
We branch on including {v1, v2, v3} or N(v3) (which we can find using a pass).

6 VERTEX COVER 58

(b) We can check for a common neighbour y of say v1 and v2 in a single pass (the AL
model gives us this information at y). We branch on including {v1, v2, v3} or {x, y}.

(c) We can check whether one of v1, v2, v3 has at least three neighbours other than x
using a pass, say this is v1. We branch on including {v1, v2, v3}, N(v1), or v1 and
N({v2, v3}) (which we can find using a pass).

(d) Now each of v1, v2, v3 has exactly two private neighbours excluding x. Name these
v4, v5; v6, v7; v8, v9. If there is no adjacency to outside the component of vertices x
and v1, . . . , v9, we can solve this locally and continue branching. Otherwise, a vertex,
say v4, has an adjacency to a vertex v10. Then we branch on including {v1, v2, v3}, or
{x, v4, v5}, or N({v2, v3, v4, v5}) (which we can find using a pass).

(5) Every vertex is now of degree 4. We pick some vertex x and its neighbours v1, v2, v3, v4

using a pass.

(a) There is an edge between v1, v2, v3, v4, say v1v2, which we can find using a pass. We
branch on including {v1, v2, v3, v4}, or N(v3), or v3 and N(v4) (which we can find
using a pass).

(b) We can check whether three vertices (say v1, v2, v3) share a common neighbour y other
than x using a pass. We branch on including {v1, v2, v3, v4} or {x, y}.

(c) Now there is a pair of vertices that in total have five neighbours other than x, which
we can identify using a pass. Say this pair is v1 and v3. We branch on including
{v1, v2, v3, v4}, or N(v2), or v2 and N(v4), or {v2, v4} and N({v1, v3}) (which we can
find using a pass).

We can see that we only needO(1) passes for these branching operations. To be able to branch
when returning out of recursion in the branching procedure, it looks like we need to remember
entire neighbourhoods, which can have up to size O(k). This would lead to an Õ(k2) memory
complexity if this happens in all nodes in the branching tree. However, instead of remembering
the entire neighbourhood, we can also remember what vertices we want the neighbourhood of,
which is a constant amount, and use a pass to find it when returning out of recursion. This
increases the number of passes by a constant factor, and makes sure that the memory use stays
at O(k log n) bits, as used by S. Therefore, the theorem follows.

Next, we will consider the branching algorithm given by Niedermeier and Rossmanith [52].
They show a O(kn+ 1.29175kk2) running time algorithm for Vertex Cover [k], relying on an
extensive branch case-by-case analysis. We can hope to do the same as in Theorem 6.2, where
we can implement the branching process using O(1) passes and so obtain a number of passes
dependant on the size of the search tree alone. However, the branching rules of Niedermeier and
Rossmanith are more complicated to implement with few passes.

To give a more self-contained argument, we will summarize the branching steps of Niedermeier
and Rossmanith [52] below. Note that we omit details and explanations, the aim is to give a
good idea of the branching steps performed. For each of these steps, we assume that we apply
them from top to bottom, that is, at step i we assume that steps 1 to i− 1 do not apply to the
graph.

Step 1. If there is a vertex x with degree 1, we branch on including N(x).

Step 2. If there is a vertex x with degree 6 or more, we branch on including x or N(x).

6 VERTEX COVER 59

Step 3. If there is a vertex of degree 2 we do the following. If the graph is 2-regular, we have a
single cycle and can find an optimal vertex cover in linear time. Otherwise, assume that x
is a degree-2 vertex with neighbours a, b such that a has degree ≥ 3.

Case 1. There is an edge between a and b, or a and b have a common degree-2 neighbour other
than x. We include {a, b} in the vertex cover.

Case 2. If |N(a)∪N(b)| ≥ 4, then we branch on including {a, b} or N(a)∪N(b) in the vertex
cover.

Case 3. If a and b have exactly one common neighbour y other than x, we branch on including
N(y) or N(a).

Case 4. Finally, a and b have two common neighbours other than x, call them y and z. We
branch on including {x, y, z} or N(y).

Step 4. If the graph is regular, choose some vertex x with maximum degree and branch on including
x or N(x).

Step 5. If there is a vertex of degree 3, let us call this vertex x with neighbours a, b, c. We have
the following cases.

Case 1. If x is part of at least one triangle (say {x, a, b}), then we can branch on including
N(x) or N(c).

Case 2. If x is part of at least two bridges (a bridge is where two neighbours of x have a
common neighbour), where y and z are the vertices on these bridges that are not
a, b, c, x, then we branch on including N(x) or {x, y, z}.

Case 3. If x is part of exactly one bridge, say {x, a, b, y}, and at least one of a and b has degree
3, say a, then we branch on including N(x) or N(a).

Case 4. Assume the same case as Case 3, but both a and b have degree at least 4. We branch
on including N(x), N(a), or {a, x,N(b), N(c)}.

Case 5. Now assume that there is no vertex of degree 3 that is contained in a bridge or triangle.

Case 5.1. If there is a vertex x of degree 3 with neighbours a, b, c, two of which have degree
4 (say a and b), we branch on including N(x), {x,N(a), N(b)}, {x, a,N(b), N(c)},
or {x, b,N(a), N(c)}.

Case 5.2. We can now assume there is at least one vertex of degree 3 with exactly one
neighbour of degree 4 or 5. We have the following cases.

Case 5.2.1. Let us assume there is no cycle of length 5 such that: (1) each vertex on the
cycle has degree 3 and (2) there is a vertex on the cycle that has a neighbour
with degree at least 4. Now, we assume we have some path of degree-3
vertices ai, of which at least one has a neighbour with degree at least 4,
say a3. Niedermeier and Rossmanith give a figure to illustrate this case, see
Figure 5. This figure is not complete: the degrees of the vertices bi can differ,
and these bi vertices may be identical to vertices elsewhere in the figure. The
branching is case-dependent, but roughly comes down to branching on the
following options: {a2, b3, a4}, {a1, b2, a3, b4, a5}, {a1, b2, N(b3), N(b4), b5, a6},
or {a0, b1, N(b2), N(b3), b4, a5}.

Case 5.2.2. Finally, we assume there is a cycle of length 5 of degree-3 vertices where
at least one vertex has a neighbour of degree at least 4. Call the cycle
a0, . . . , a4 with neighbours b0, . . . , b4 outside the cycle. We branch on inclu-
ding {a1, b2, a3}, {a0, b1, a2, b3, a4}, {a0, b1, N(b2), N(b3), b4}, or {b0, N(b1), N(b2), b3, a4}.

6 VERTEX COVER 60

Figure 5: Image taken from [52], illustration of the branching of Case 5.2.1.

Step 6. Otherwise, there is a vertex of degree 4, and all vertices are either degree 4 or 5. We have
the following cases.

Case 1. Assume there is a vertex x of degree 4 that is part of a triangle (say {a, b, x}) and has
a neighbour y of degree 5. If a, b 6= y, and c 6= a, b, y is the other neighbour of y, then
we branch on including N(x), N(y), or {x, y,N(c)}. If, on the other hand, say a = y,
and the other two neighbours of x, say c, d, are not connected by an edge (otherwise,
let them be a and b in the previous branching), we branch on including N(x), N(y),
or {x, c,N(d)}.

Case 2. Now assume there is no vertex of degree 4 with has both a neighbour y of degree
5 and is part of two bridges that do not include y. Now choose some vertex x of
degree 4 with a neighbour a of degree 5, and let b, c, d be the other neighbours of
x. We branch on including N(a), N(x), {x, a,N(b), N(d)}, {x, a, d,N(b), N(c)}, or
{x, a, b,N(c), N(d)}.

Case 3. Now there is a vertex x of degree 4 with a neighbour y of degree 5 and x is contained
in two bridges that do not include y. Call the two vertices on the bridges that are not
neighbours of x a and b. We branch on including N(x), N(y), or {x, y, a, b}.

This concludes the branching steps of the algorithm by Niedermeier and Rossmanith [52].
When translating these branching steps to a streaming setting, there is difficulty in two fac-

tors. For one, there is some search for non-trivial structures like a cycle of five vertices consisting
of degree-3 vertices where one vertex has a degree-4 neighbour. Finding such a structure in few

6 VERTEX COVER 61

passes is hard. Secondly, some branching rules require all previous branching rules to be non-
applicable, that is, the first set needs to be applied exhaustively until the last rule can be applied.
This gives us difficulty because with few passes it might be hard to check whether any of a set of
rules can still apply or not. As it turns out, these issues do lead to a significant increase in the
number of passes, as in each node the number of passes is not O(1) but some polynomial in k.
However, we can limit the size of this polynomial by making use of a previously seen function,
FindH (see Lemma 4.16 and Algorithms 6 and 7). FindH lends itself very well to finding small
structures in a graph, as most of its complexity is dependent on the size of H, the structure it
searches for. However, FindH requires a vertex cover to function, which we are searching for!
Luckily, we can easily find a vertex cover of size ≤ 2k by finding a maximal matching in the
given graph. These ideas lead to the following theorem.

Theorem 6.3. Given a graph G as an AL stream and a solution size k, we can solve Vertex
Cover [k] using O(1.29175kkO(1)) passes and O(k log n) bits of memory.

Proof. We execute the branching steps as given by Niedermeier and Rossmanith [52] to obtain
a search tree with O(1.29175k) nodes. Note that we branch on at most a constant number of
options in each step. It remains to be proven that we can execute the branching steps in each
node in no more than O(kO(1)) passes using O(k log n) bits of memory.

We assume to have a vertex cover of size ≤ 2k in memory. This can be obtained by using
one pass to find a maximal matching by using a greedy algorithm, and including all matched
vertices in the vertex cover. If there are more than 2k of such vertices, we return NO, as any
vertex cover needs to cover at least the edges in the maximal matching. This process uses no
more than O(k log n) bits of memory.

Steps 1 and 2 of the branching algorithm by Niedermeier and Rossmanith branch on degree-1
or degree-≥ 6 vertices, which we can easily find and execute in at most two passes. Instead of
saving N(x) to branch on when x is a vertex of degree ≥ 6 we can use a pass when returning
out of recursion to find it again.

For Step 3, we can check whether the graph is 2-regular in a pass, in which case the solution
can be deterministically found in O(k) passes. Otherwise, using the vertex cover of size O(k),
we can use O(k) passes to find a vertex of degree 2 with a degree-3 neighbour (for every element
of the vertex cover, if it has degree 2 or 3, we use a pass to check for the ‘correct’ case of
neighbours). All the cases in Step 3 now only require inspection of the local graph surrounding
the found degree-2 vertex, which can be done in O(1) passes. As all neighbourhoods have a
constant size (at most five vertices), we can save all vertices we branch on without increasing the
memory complexity.

Step 4 asks us to check whether the graph is regular, which we can do in a single pass, and
then branch on the highest degree vertex, which is trivial.

Step 5 is where difficulty comes in. First off, finding a degree-3 vertex and checking and
applying one of cases 1-4 requires O(1) passes, as it requires only local information. However,
Case 5 of Step 5 asks for cases 1-4 to be non-applicable to any of the degree-3 vertices available.
This is a problem, as exhaustively checking all degree-3 vertices may require O(n) passes. So, to
avoid this problem, we make use of FindH. We can exhaustively search for the O(1) many local
structures that Cases 1-4 ask for, each of which has O(1) vertices. This can be done by calling
FindH for each of these O(1) structures with O(1) vertices, which means FindH requires only
O(kO(1)) passes and O(k log n) bits of memory. Note that this does require a slight modification
of FindH, where it considers the exact degrees of vertices instead of induced degree. This change
is easy to make and does not change the complexity of the function. We are ready to apply Case
5. Case 5.1 is trivially applicable in O(k) passes. For Case 5.2, we need to distinguish whether
or not a cycle of length 5, of which each vertex has degree 3 and at least one has a neighbour of

6 VERTEX COVER 62

degree 4, is contained in the graph. This can be done by using FindH once again, enumerating
the O(1) many induced structures of such a cycle appearing in the graph. Regardless of whether
or not such a cycle exists, the remaining branching analysis of Case 5.2 consists of O(1) many,
O(1) size, complicated structures to detect, for which we use FindH again, and so we can
branch effectively. All in all, Step 5 requires O(kO(1)) passes, but does not exceed O(k log n) bits
of memory usage.

The remaining Step 6 consists of more local structure detection, for which we can easily use
FindH if necessary. There are once again O(1) many structures we search for with size O(1), so
we should not exceed O(kO(1)) passes or O(k log n) bits of memory usage.

We conclude that in each node, we require O(kO(1)) passes and do not exceed O(k log n) bits
of memory usage, and therefore, the theorem follows.

We can wonder what the O(1) in the O(1.29175kkO(1)) passes is bounded by, as this is quite
relevant to the performance of the algorithm. This constant factor is decided by the calls to
FindH, namely, by the size of the structures we make FindH find. Considering the size of the
structures in the analysis of Niedermeier and Rossmanith [52], it should be bounded by about
30. The structures in Figure 5 reach about this size, and the other structures should not be
bigger.

6.3 On vertex cover kernels

In terms of kernelization, we already have the result by Chitnis et al. [18], who provide a one-

pass, Õ(k2)-memory kernelization algorithm in the EA streaming model. It is hard to improve
upon this result. However, we can observe a similar result that might be useful in finding a more
memory-efficient algorithm.

A well-known kernel for the Vertex Cover [k] problem is one of Buss and Goldsmith [12],
which is a kernel consisting of O(k2) edges. Constructing this kernel is also simple: we find all
vertices with degree bigger than k, and remove them from the graph, and decrease the parameter
with the number of vertices removed. If the remaining instance has a new parameter value of
k′, then there is no solution if there are more than k · k′ edges. Therefore, this provides us
with a kernel consisting of O(k2) edges. We can observe that we are able to easily achieve this
same kernel in the AL model, as identifying the degree of a vertex is not difficult in this model.
Interestingly, we do not require Õ(k2) bits of memory to achieve a stream corresponding to the
kernel of O(k2) edges. Let us formalize this in a theorem.

Theorem 6.4. Given a graph G as an AL stream, we can make an AL stream corresponding
to the O(k2)-edge kernel of Buss and Goldsmith [12] for the Vertex Cover [k] problem using

two passes and Õ(k) bits of memory.

Proof. Let G be a graph, with n vertices and m edges, given as an AL stream, and let k be
the solution size parameter for the Vertex Cover [k] problem. Note that we can count the
degree of every vertex when it appears in the stream, as we are given all adjacencies of a vertex
consecutively. Therefore, in one pass over the stream we can count the degree of every vertex,
and save each vertex with a degree bigger than k in a set S, as long as |S| ≤ k. In this same
pass, we keep track of two more counters: the total number of edges in the stream m′ (which is
2m), and the number of unique edges we remove r. The second can be done by keeping a local
counter which we reset at every vertex and only increment for edges towards vertices not in S,
and adding this local counter to the number of edges removed when we decide to add the vertex
to S. If m′

2 − r > k · (k − |S|), return NO. Otherwise, make a pass over the stream, and output
only those edges between vertices not in S.

6 VERTEX COVER 63

The output must be an AL stream, as we only remove edges from an AL stream to produce
it. Let is also be clear that we use two passes over the stream.

The set S takes Õ(k) bits of memory, as finding more than k vertices will result in returning
NO. Counting the total number of edges takes O(logm) = O(log n) bits of space, and other
counters are the same size or smaller, of which there are a constant amount. Therefore, the
memory usage of this procedure is Õ(k) bits.

The behaviour of this procedure is equivalent of the kernelization algorithm of Buss and
Goldsmith [12], as it finds exactly those vertices with degree higher than k, and ‘removes’ them
by adding them to S and ignoring edges incident to them in the output. Checking the instance
size is done correctly, as the new parameter k′ is equivalent to k − |S|, and the number of

remaining edges is equal to m − r, which is m′

2 − r. r is counted correctly because we only
count unique edges by ignoring those towards vertices already in S. Therefore, this kernelization
procedure is correct.

Theorem 6.4 can prove useful if we can reduce the size of an O(k2)-edge kernel further, using

only Õ(k) bits of memory, if it is given as an AL stream. Applying Theorem 6.4 then essentially
gives us a way to convert the original graph stream into the asked form by only increasing the
number of passes by a factor 2 (we have to apply Theorem 6.4 every time the other procedure
uses a pass if we want to be truly memory-efficient).

Interestingly, Chen et al. [15] show a way to convert the kernel of Buss and Goldsmith into
a 2k-vertex kernel for Vertex Cover [k], using a theorem by Nemhauser and Trotter [51]. We
will adapt this method in the streaming setting. The kernel conversion is done by converting
the O(k2) edges kernel into a bipartite graph, in which we find a minimum vertex cover using
a maximum matching (see for example [11, Page 74, Theorem 5.3]). We can find a maximum
matching in this restricted setting, as we will show that in this setting a DFS to find augmenting
paths is possible in a polynomial number of passes in k and using only Õ(k) bits of memory.
The minimum vertex cover we find gives us the sets stated in the theorem by Nemhauser and
Trotter [51], as indicated by the constructive proof of the same theorem by Bar-Yehuda and
Even [7]. Lastly, we use these sets found to give the 2k kernel in the streaming setting as
indicated by Chen et al. [15]. We formalize these steps in a few lemmas and theorems.

Lemma 6.5. Given a graph G as a stream in model AL or EA, we can produce a stream in the
same model corresponding to the Phase 1 bipartite graph of [7, Algorithm NT] using two passes
and O(1) bits of memory.

Proof. Given a graph G = (V,E), Phase 1 of [7, Algorithm NT] asks for the bipartite graph B
with vertex sets V, V ′ and edges EB such that V ′ = {v′ | v ∈ V } and EB = {xy′ | xy ∈ E}.
This is essentially two copies of all vertices and each edge in the original graph makes two edges,
between the corresponding (original,copy)-pairs.

The process of creating a stream corresponding to B is quite simple: first we use a pass and,
for every edge xy, we output xy′, and then we use another pass and, for every edge xy, we output
x′y. If the input is an EA stream, then the output must be as well, as there are no requirements.
If the input stream is an AL stream, the output must be an AL stream too, as we are consistent
in which copy we address. That is, the output AL stream first reveals all vertices in V and then
all those in V ′. All adjacencies of these vertices are present in the stream, as all the adjacencies
were present in the input stream.

We can see that this uses two passes and O(1) bits of memory. It is trivial that the bipartite
graph B is constructed correctly, as for every edge xy we output the edges xy′ and x′y.

Before we continue to find the maximum matching in such a graph B produced by Lemma 6.5,
we need a few observations to restrict the size of the matching we want to find. The output sets

6 VERTEX COVER 64

C0 and V0 of [7, Algorithm NT] are used by Chen et al. [15] to produce a 2k kernel. The sets
C0 and V0 output by [7, Algorithm NT] are such that C0 together with a minimum vertex cover
on G[V0] forms a minimum vertex cover for G, and any minimum vertex cover for G[V0] includes
at least |V0|/2 vertices. From the conversion of these sets to a 2k kernel by Chen et al. [15], we
can conclude that it must be that |V0| ≤ 2k − 2|C0| (as this shows the kernel size). But then it
must also be that |V0|+ |C0| ≤ 2k, and, as V0 and C0 together include all vertices in the found
minimum vertex cover in B (which has the same size as the maximum matching in B, see [11,
Page 74, Theorem 5.3]). We can conclude that the maximum matching in B consists of at most
4k = O(k) edges, and otherwise we can return NO.

Theorem 6.6. Given a bipartite graph B as an AL stream, with O(k2) edges, we can find a

maximum matching of size at most O(k) using O(k2) passes and Õ(k) bits of memory. For the
models EA and VA this can be done in O(k3) passes.

Proof. We first use a pass to find a maximal matching M in the graph. This can be done in
a single pass because we can construct a maximal matching in a greedy manner, picking every
edge that appears in the stream for which both vertices are unmatched.

Then, we iteratively find an M -augmenting path P (a path starting and ending in a un-
matched vertices, alternating between edges in and not in M), and improve the matching by
switching all edges on P (i.e., remove from M the edges on P in M , and add to M the edges on
P not in M). Note that any such P has length O(k), as otherwise M would exceed size O(k). It
is known that a matching M in a bipartite graph is maximum when there is no M -augmenting
path [39]. We can also find an M -augmenting path only O(k) times, as the size of the matching
increases by at least 1 for each M -augmenting path.

Let us now describe how we find an M -augmenting path, given some matching M of size O(k).
We find M -augmenting paths by executing a Depth First Search (DFS) from each unmatched
vertex. Note that we alternate between traversing edges in M and not in M in this search. In
contrary to a normal DFS, we do not save which vertices we visited, as this would cost too much
memory. Instead, we mark edges in M as visited, together with the vertex from which we started
the search. If an edge e ∈ M has been visited once in the search tree, there is no need to visit
it again, as the search that visited e would have found an M -augmenting path containing e if it
exists. Let us discuss the exact details on the size of the search tree and recursion.

As any M -augmenting path has length at most O(k), the depth of the search tree is also O(k).
Looking at any vertex, it might have O(k2) neighbours in the given bipartite graph. However,
only O(k) of its neighbours can be in M . As visiting an unmatched vertex must end the M -
augmenting path, the search tree size is only increased by visiting matched vertices. Therefore,
the search comes down to the following process. From the initial unmatched vertex, we can
explore to at most O(k) vertices (those in the matching) or any unmatched vertex which would
end the search. If we explore to a matched vertex, the next step must traverse the edge in the
matching to make an M -augmenting path, which is deterministic. Then we again can explore
to O(k) matched vertices, or any unmatched vertex which would end the search. This process
continues. As we only visit each matched vertex at most once, we can see that the number of
vertices the search visits is bounded by O(k). In each node along the currently active path of
the search tree, we can keep a counter with value ≤ O(k2) (using O(log(k2)) = O(log k) bits) to

keep track of what edge we consider next. These counters take up O(k · log k) = Õ(k) space. In
any node, if we wish to consider the next edge incident to a vertex v with a counter value x, we
inspect the x-th edge incident to v in the stream. If it turns out we cannot visit that vertex (have
already visited it), we can increment the counter and find the next edge to consider in the same
pass (as the (x+ 1)-th edge incident to v must be later in the stream than the x-th edge incident
to v). Therefore, finding the next edge to visit in the search only takes a single pass. Notice that

6 VERTEX COVER 65

we return to nodes in the search tree at most O(k) times in total, because only visiting matched
vertices can result in a ‘failed’ search recursion. So, a search that visits all matched vertices uses
O(k) passes, and this is the maximum number of passes for a single search.

As with any search tree branching algorithm, we pass the part of the M -augmenting path
found so far to the children of a node such that the memory complexity is not increased. We start
our search at most once from each unmatched vertex that has at least one edge (for which we
can keep another counter to keep track), which means we do at most O(k2) searches. However,
for each of these searches we start from different vertices, we still keep saved the set of visited
matched vertices. If a search from a vertex visits a matched vertex and does not find an M -
augmenting path, then neither will a search from a different vertex by visiting that matched
vertex again. In particular, this is because the graph is bipartite. This would indicate that we
need to use O(k2) passes, at least one for every vertex with an edge. However, in the AL model,
if we consider the x-th vertex, and in the pass we use for it, we do no successful visit to a vertex
(all adjacencies are matched and already visited), then in the same pass we can consider the
(x+ 1)-th vertex, because all edges incident to the (x+ 1)-th vertex in the stream appear later
than the edges incident to the x-th vertex in the stream. Hence, in the AL model, over all O(k2)
searches, we only use O(k) passes, because only actually visiting vertices increases the number
of passes, and we can only visit O(k) vertices in total. In the EA and VA models, we require at
least one pass for each vertex we want to start searching from, and so the total number of passes
is O(k2).

We conclude that with O(k) passes in the AL model, and O(k2) passes in the EA/VA models,

and Õ(k) bits of memory we can execute a DFS to find an M -augmenting path (if it exists).
As mentioned, we can search for an M -augmenting path only O(k) times, as the existence

of more M -augmenting paths would result in returning NO. Therefore, we can find a maximum
matching in B using O(k2) passes and Õ(k) bits of memory in the AL model. In the EA or VA
models, we require O(k3) passes to accomplish this.

This result is particularly interesting, as there is strong evidence that, in general, a DFS
cannot be done in logarithmic space [59].

Next, we show how to convert such a maximum matching into a minimum vertex cover for
B, as asked by [7, Algorithm NT].

Lemma 6.7. Given a bipartite graph B as an AL stream and a maximum matching M of size
O(k), we can find a minimum vertex cover X for B with |X| = |M |, using O(k) passes and Õ(k)
bits of memory. For the models EA and VA, this takes O(k2) passes.

Proof. We adapt a theorem by Bondy and Murty [11, Page 74, Theorem 5.3] to the streaming
setting to achieve this lemma. Let us shortly go over what [11, Page 74, Theorem 5.3] entails.
If our bipartite graph has vertex sets V, V ′ and a maximum matching M , then we can find a
minimum vertex cover X with |X| = |M | in the following manner. Denote all unmatched vertices
in V with U , and let Z ⊆ V ∪ V ′ be the set of vertices connected to U with an M -alternating
path (a path such that edges in M and not in M alternate). If S = Z ∩ V and T = Z ∩ V ′, then
X is given by X = (V \ S) ∪ T .

As T ⊆ X and |X| = |M |, we can find and save T by executing a DFS procedure just like in

Theorem 6.6, without exceeding Õ(k) bits of memory. This takes O(k) passes and Õ(k) bits of
memory. Also, V \S must only contain matched vertices, as U ⊆ S. Therefore, in the same DFS
procedure to find T , we can also save for every matched vertex in V if it is reachable through an
M -alternating path. Then V \ S is simply given by all matched vertices in M for which we did
not save that they were reachable. We conclude that we can find X, the minimum vertex cover

7 A DIFFERENT STREAMING MODEL 66

such that |X| = |M |, in O(k5) passes and Õ(k) bits of memory. As Theorem 6.6 works on any
of the models M∈ {EA, VA, AL}, this procedure also works on any of these models.

We are now ready to combine these results into a theorem.

Theorem 6.8. Given a graph G as an AL stream, we can produce a kernel of size 2k for the
Vertex Cover [k] problem using O(k2) passes and Õ(k) bits of memory.

Proof. We execute Theorem 6.6 on the stream produced by applying Theorem 6.4 and then
Lemma 6.5 on the input stream (we have to apply these transformations every time that we
require a pass). Notice that these two applications increase the number of passes by a constant
factor. On the result of Theorem 6.6 we apply Lemma 6.7 to obtain a minimum vertex cover for
the specific bipartite graph B. As described by Bar-Yehuda and Even [7, Algorithm NT], the
sets C0 and V0 can be computed from this minimum vertex cover. This computation is a simple
process, where C0 contains the vertices v for which both v, v′ ∈ B are contained in the minimum
vertex cover of B, and V0 contains the vertices v where either v, v′ ∈ B is contained in the
minimum vertex cover of B, but not both. Finding C0 and V0 from B and its minimum vertex
cover requires no passes over the stream, as they are simply given by analysing the minimum
vertex cover of B. These sets C0 and V0 are exactly the sets in the theorem by Nemhauser
and Trotter [51], and, as described by Chen et al. [15], we can use them to obtain a 2k kernel
for vertex cover. The kernel is given by G′ = G[V0], which we can find with a pass (we can
output the kernel as a stream), and parameter k′ = k1 − |C0|, where k1 is the parameter after

application of Theorem 6.4. All in all, this process takes O(k2) passes and Õ(k) bits of memory.
The requirement of an AL stream comes from the fact that Theorem 6.4 requires an AL stream
to work in a constant number of passes, and Theorem 6.6 and Lemma 6.7 require less passes in
the AL model.

Note that we can apply any algorithm for Vertex Cover [k] on the kernel produced by
Theorem 6.8, but this would still be preferably a streaming algorithm. This is because the kernel
has 2k vertices, but might still have O(k2) edges. Nonetheless, this can lead to an algorithm
heavily outperforming e.g. the algorithm of Theorem 6.3, as we may use linear memory and still
remain in the optimal O(k log n) memory bound, while using less passes to solve the problem.

This makes a good contribution to the pass/memory trade-off for the Vertex Cover [k]
problem as we have managed a kernelization algorithm with a number of passes polynomial in
k while remaining space-optimal. Working in the AL model is necessary for Theorem 6.8, as
Theorem 6.4 would not work without it. Counting the degrees of vertices is something the AL
model trivializes in a single pass, while other models may require many more passes to accomplish
this goal. Also, the DFS procedure in Theorem 6.6 and Lemma 6.7 makes clever use of the AL
model to be more efficient in a single pass. It remains an open question whether similar results
can be obtained in other streaming models.

7 A Different Streaming Model

We can asks ourselves whether there are different streaming models with potential use and
improvement over the standard streaming models. We have seen differences in streaming models,
mainly when comparing the versatile Adjacency List model to the less informative Vertex Arrival
or Edge Arrival models. This difference suggests that there might be streaming models which
could provide even more information leading to better and more efficient algorithms.

Finding such streaming models, and problems on which they are effective, can prove difficult,
however. It seems that often different streaming models only lead to slight improvements in

7 A DIFFERENT STREAMING MODEL 67

running time, not significant differences that change the complexity entirely. Nonetheless, let us
suggest a short list of potential models which include a varying degree of information in their
streams.

• A Depth First Search (DFS) or Breadth First Search (BFS) model, where the edges arrive
in the order in which a DFS or BFS explores them, starting from an arbitrary fixed vertex.

• An AL or VA streaming model, but augmented such that the vertices arrive in order of
their degree (highest to lowest, or lowest to highest).

• An AL or VA streaming model, but we first get the vertices contained in a minimum vertex
cover of the graph, after which we get the other vertices in arbitrary order.

• A Hamiltonian Path/Cycle model, where, given that one exists, the edges arrive in order
of a Hamiltonian path or cycle (after which we get the other edges). Alternatively, an
Eulerian Path model, where the edges arrive in order of an Eulerian path.

Similar other models can be thought of, although it should always be remembered that
demanding more information of the stream might severely increase the runtime complexity of
the side producing the stream.

Let us discuss the potential uses of the suggested streaming models.
A DFS or BFS model can be useful in the regard that other structural properties of a graph

can be derived from a DFS or BFS traversal. An example of this is that a DFS traversal is
actually a tree-depth decomposition of the graph, and we will make use of this property in the
rest of this section.

In a model where the vertices arrive in order of their degree, finding the highest or lowest
degree vertex is trivialized. However, more potential use can be in algorithms that traverse or
branch exactly in this order of arrival, where the degree of the vertex impacts the decisions made
by the algorithm.

Interesting about the model where we first get the vertices contained in the vertex cover, is
that the VA model starts to behave like the AL model when we have seen the entire vertex cover.
This is because any vertex outside the vertex cover only has adjacencies in the vertex cover, and
all those vertices must have arrived before it. Therefore, where the VA model normally does not
give a guarantee on whether or not we see all the adjacencies of a vertex, we actually have this
guarantee for all vertices not in the vertex cover. This model also gives us the vertex cover of
the input graph without extra work, which is potentially useful.

If the stream first provides a Hamiltonian path or cycle, we know a lot about the reachability of
vertices in the graph. The Eulerian path model is especially interesting, as we get the information
that the order of edges in the stream make up a connected path that we ‘walk along’ throughout
the pass. These models may be useful in very specific scenarios, perhaps when we wish to identify
what type of graph the stream describes.

That being said, an interesting result can be obtained with a DFS streaming model for Edge
Dominating Set [k].

7.1 Edge Dominating Set

Let us first introduce the problem of Edge Dominating Set [k]. Here, we call two edges
adjacent when they share a vertex v as an endpoint.

Edge Dominating Set [k]
Input: A graph G = (V,E) and an integer k ≥ 1.
Parameter: The size of the solution k.
Question: Is there a set S ⊆ E of size at most k such that every edge is either in S or
adjacent to an edge in S (i.e., the edges in S dominate all edges)?

7 A DIFFERENT STREAMING MODEL 68

In the streaming setting, Edge Dominating Set [k] has already received some attention.
This is mainly through the results of Fafianie and Kratsch [28], who show a lower bound of
m − O(1) bits for a single pass algorithm, and give a kernel of size O(k3 log k) constructible in
two passes using O(k3 log n) bits of memory.

7.2 Relating Edge Dominating Set, DFS, and tree-depth

We can make an interesting observation regarding Edge Dominating Set [k] in combination
with a depth first search model: any path the DFS traverses can only be of length O(k) for a
solution to exist for Edge Dominating Set [k]. Interestingly, any depth first search traversal
over a graph gives a tree-depth decomposition of the graph. We can use these two observations
in conjunction to get the following lemma.

Lemma 7.1. Given a graph G as a DFS stream, in a single pass over the stream and using
O(k log n) bits of memory, we can produce a stream corresponding to a tree-depth decomposition
of G of depth at most 4k or conclude that there exists no solution to Edge Dominating Set
[k].

Proof. Let G = (V,E) be a graph given as a DFS stream.
Let us first argue that any DFS traversal corresponds to a tree-depth decomposition of the

graph, as claimed in [58]. Remember that a tree-depth decomposition is a tree T with the vertices
of V such that any pair v, w ∈ V : vw ∈ E has an ancestor-descendant relationship in T . We
argue that the edges traversed by the DFS to visit previously unvisited vertices make up the
edges of a tree-depth decomposition T of G. Consider any edge vw ∈ E with vertices v, w ∈ V .
One of v, w will be explored earlier than the other by the DFS, say this is v. As we consider
a DFS, w must be explored before we return out of recursion to an ancestor of v, as at least
the edge vw can be traversed to explore w. Therefore, v and w have an ancestral-descendant
relationship in T . This for any edge e ∈ E, and so indeed a tree-depth decomposition is given
by the DFS traversal.

Let us now argue that the tree-depth decomposition of G must have depth at most 4k if
there is a solution for Edge Dominating Set [k]. Consider a simple path of length x. In any
solution to Edge Dominating Set [k], every edge must either be in the solution, or adjacent to
an edge in the solution. Looking at this path, picking any edge in E to be in a solution for Edge
Dominating Set [k] can dominate at most four edges on this path (if this edge is incident on
two non-adjacent vertices of the path). Therefore, for a solution of size k to exists, x must be at
most 4k. If the depth of the DFS is more than 4k, then there is a simple path of length more
than 4k, and so we can return NO. Otherwise, the depth of the tree-depth decomposition is at
most 4k.

Lastly, we should argue that we can produce a stream corresponding to the tree-depth de-
composition of depth at most 4k using only one pass and O(k log n) bits of memory, or decide
that there is no solution to Edge Dominating Set [k]. In the pass over the DFS stream, we
save the set of parents of the current vertex in T , including the current vertex we explore. We
output every edge that is not between two saved vertices. This is exactly the set of edges of the
tree-depth decomposition, as we proved previously that the edges traversed by the DFS to visit
previously unvisited vertices make up the edges of a tree-depth decomposition T of G. We never
visit an already-forgotten vertex v, as that would mean the DFS could traverse this edge when
exploring v itself, which means we have already visited both vertices. We have already seen that
the set of vertices we save cannot exceed 4k elements, as otherwise we can return NO.

The exact workings are now as follows: If the DFS stream contains an edge vw, where only
v is the saved set, we do three things. Firstly, we remove all vertices from the set that were

7 A DIFFERENT STREAMING MODEL 69

added later than v (which we can keep track of with an index per element, or by ordering the
set). Then add w to the set, and output vw as part of the tree-depth decomposition. If the DFS
stream contains an edge vw, where both v and w are in the set, we ignore it and move to the
next edge. If the saved set exceeds size 4k we return NO.

This completes the proof of the lemma.

Lemma 7.1 illustrates the use of the DFS streaming model in conjunction with the Edge
Dominating Set [k] problem, as we can view a pass over the stream as either a pass over
all the edges of the graph, or use Lemma 7.1 and view the pass as a pass over the tree-depth
decomposition of depth at most 4k. This means we will be able to use an algorithm parameterized
by tree-depth to find an algorithm for Edge Dominating Set [k] in the DFS streaming model.

7.3 A tree-depth algorithm

In this section, we will give an algorithm for Edge Dominating Set parameterized by tree-
depth, which is an algorithm that counts the number of solutions of all possible sizes. Using
Lemma 7.1 we can then change the parameter to solution size, and adapt the algorithm to the
streaming setting for the DFS streaming model.

Previous work on space-efficient tree-depth algorithms can be found in [33, 36, 50, 56]. The
algorithms given by these authors make use of either, or both, of the following two techniques:
they make some sort of transformation to be more efficient in the saved information, or they
make use of counting certain structures. The algorithm we will give is inspired by a tree-
depth algorithm for Dominating Set parameterized by tree-depth, given by Pilipczuk and
Wrochna [56] and further explained by Ambags [5]. This algorithm will also make use of a
transformation by evaluating polynomials, and count the number of solutions instead of finding
solutions directly. This will allow us to be space-efficient.

We adapt the same notation and concepts as in [5], which we will shortly go over below.
We will work on a tree-depth decomposition of the graph, for which we require some notation.

Given the tree-depth decomposition T of a graph G = (V,E), let tail(v) denote the set of all
ancestors of v, and similarly, let tree(v) be the set of all descendants of v. Analogously, let
tail[v] and tree[v] be the sets of ancestors and descendants including v itself, respectively. In the
algorithm, we will work with a set of labels Σ, and labelling functions φ : tail(v) → Σ. When
considering some labelling function φ : tail(v) → Σ, we will use φ[v → L] for v ∈ V (T), L ∈ Σ,
to extend the mapping φ with a new (key,value)-pair, that is, v is assigned the label L. We will
denote φ−1(L) to denote the set φ−1(L) = {v ∈ V (T) | φ(v) = L}. Similarly, we will denote
ψ : tail[v]→ Σ to denote the function where v has received a label. The same syntax is used for
ψ as for φ.

Intuitively, we will work top-down on the tree-depth decomposition, exhaustively considering
the different possible labellings for each vertex, and then working bottom-up in returning the
number of possible solutions for each labelling and combining them such that we get the total
number of solutions of each possible size.

We will first define the labels we will use. The set Σ of labels will be Σ = {T, F,D}. We
interpret these labels as taken, forbidden, and dominated, respectively.

• A vertex with label T means that at least one edge incident to this vertex will be in the
solution. Hence, we can assume all edges incident to a vertex labelled T are dominated,
and may freely be chosen to be included in a solution.

• A vertex with label F means that no edge incident to this vertex is in the solution, and we
also do not care whether or not the edges incident on this vertex are dominated.

7 A DIFFERENT STREAMING MODEL 70

• A vertex with label D means that no edge incident to this vertex is in the solution, but we
require that all edges incident to this vertex must be dominated in a solution.

Let us formally define the problem of which we will compute the answer.

Definition 7.2. For a graph G = (V,E) with disjoint vertex sets X,Y ⊆ V , and a function
φ : X → Σ, we define EDS(G,φ,X, Y) to be the problem of finding the collection of all sets
y ⊆ E(G[Y ∪ φ−1(T)]) such that:

1. each edge in E(G[Y]) is either contained in y or adjacent to an edge in y (i.e., they share
a vertex as endpoint), and

2. NG(φ−1(D)) ∩ (φ−1(D) ∪ φ−1(F) ∪ A) = ∅, where A is the set of vertices in Y that have
no incident edge in y.

The second demand can be interpreted as having to dominate all edges incident on vertices
marked D, or at least make sure we dominate all edges of D that are part of the current scope.
When X = ∅, notice that this problem asks for exactly all valid solutions to Edge Dominating
Set.

In the algorithm, when considering some vertex v, the sets X,Y in Definition 7.2 will consist
of tail(v) and tree[v], respectively. We will also not return the sets y exactly, but count them
instead. To be memory efficient, we associate the different solution sizes with a polynomial
defined as follows.

Definition 7.3. For a graph G = (V,E) with disjoint vertex sets X,Y ⊆ V , and a function
φ : X → Σ, to the set of all solutions S to the problem EDS(G,φ,X, Y) we associate a polynomial
Pφ,X,Y that is defined as Pφ,X,Y =

∑
0≤k≤|Y |2+|X|·|Y | ak · xk for ak, k ∈ N0, where ak = |{y | y ∈

EDS(G,φ,X, Y) ∧ |y| = k}|.

Notice that, for a problem EDS(G,φ,X, Y), the maximum possible size of a solution y is
given by |Y |2 + |X| · |Y |, which corresponds to picking all edges in G[Y], which can be |Y |2 many,
and also picking all edges between vertices in Y and those in X labelled T , which can be up to
|X| · |Y | many.

The variable x in these polynomials does not serve a semantic purpose, but is used so that we
can combine the solutions easily. The idea of these polynomials is that they group the solutions
by size, and the coefficients count how many solutions of size k we have seen. To be able to
combine polynomials, we need a notion of independence of subproblems, defined and proven in
the following lemma.

Lemma 7.4. For a graph G, vertex sets X,Y, Z ⊆ V (G) such that there are no edges between Y
and Z, and a labelling function φ : X → Σ, the problems EDS(G,φ,X, Y) and EDS(G,φ,X,Z)
are independent, that is, for any sets y ⊆ E(G[Y ∪ φ−1(T)]), z ⊆ E(G[Z ∪ φ−1(T)]), y is a
solution to EDS(G,φ,X, Y) and z is a solution to EDS(G,φ,X,Z) if and only if y ∪ z is a
solution to EDS(G,φ,X, Y ∪ Z).

Proof. Let y, z be two arbitrary solutions to the problems EDS(G,φ,X, Y) and EDS(G,φ,X,Z),
respectively. By definition, y ⊆ E(G[Y ∪ φ−1(T)]) and z ⊆ E(G[Z ∪ φ−1(T)]) so y ∪ z ⊆
E(G[Y ∪Z ∪ φ−1(T)]). As for y all edges in E(G[Y]) are either contained in y or adjacent to an
edge in y, and analogously for z, and there are no edges between Y and Z, then also for y ∪ z all
edges in E(G[Y ∪Z]) are either contained in y ∪ z or adjacent to an edge in y ∪ z. Furthermore,
since NG(φ−1(D))∩ (φ−1(D)∪ φ−1(F)∪Ay) = ∅, where Ay is the set of vertices in Y that have
no incident edge in y, and analogously for z, then also NG(φ−1(D))∩(φ−1(D)∪φ−1(F)∪A) = ∅,

7 A DIFFERENT STREAMING MODEL 71

where A is the set of vertices in Y ∪Z that have no incident edge in y∪ z. Hence, y∪ z is a valid
solution for the problem EDS(G,φ,X, Y ∪ Z).

Now let S be a solution to the problem EDS(G,φ,X, Y ∪ Z). We can split S into edges
incident on vertices of Y and edges incident on vertices of Z. Let y, z be exactly these sets,
respectively. Now it must be that y ∪ z = S, as there are no edges between Y and Z, and so
all edges must be incident to either some vertex in Y or some vertex in Z, but not both. Since
by definition S ⊆ E(G[Y ∪ Z ∪ φ−1(T)]), and by definition y, z do not contain edges incident
to Z, Y respectively, it must be that y ⊆ E(G[Y ∪ φ−1(T)]) and z ⊆ E(G[Z ∪ φ−1(T)]). As we
argued that y ∪ z = S and there are no edges incident to both a vertex in Y and in Z it must
now be that all edges in E(G[Y]) are dominated by y and all edges in E(G[Z]) are dominated
by z, as no edge in y can possibly dominate an edge in E(G[Z]) and similarly no edge in z can
dominate an edge in E(G[Y]). Lastly, as NG(φ−1(D)) ∩ (φ−1(D) ∪ φ−1(F) ∪ AS) = ∅, where
AS is the set of vertices in Y ∪ Z that have no incident edge in S, and exactly y ∪ z = S,
then also NG(φ−1(D)) ∩ (φ−1(D) ∪ φ−1(F) ∪Ay) = ∅, where Ay is the set of vertices in Y that
have no incident edge in y, and analogously for z. Therefore, y and z are valid solutions to
EDS(G,φ,X, Y) and EDS(G,φ,X,Z), respectively.

We have now shown that y is a solution to EDS(G,φ,X, Y) and z is a solution to EDS(G,φ,X,Z)
if and only if y ∪ z is a solution to EDS(G,φ,X, Y ∪Z), and so, the problems EDS(G,φ,X, Y)
and EDS(G,φ,X,Z) are independent.

Ambags [5, Lemma 1] shows that for any two independent subproblems, we can count the
solutions to the combined problem correctly by multiplying the corresponding polynomials of
the subproblems. This property extends to combining countably many subproblems, as seen by
[5, Lemma 2]. For completeness, we formally state this lemma here.

Lemma 7.5. (Equivalent of [5, Lemma 2]) For disjoint sets of vertices W = {V0, . . . , Vn},
let {EDS(G,φ,X, V0), . . . , EDS(G,φ,X, Vn)} be a set of mutually independent subproblems of
the problem EDS(G,φ,X, Y), each having a set of solutions represented by the polynomials P =
{Pφ,X,V0

, . . . , Pφ,X,Vn}. The polynomial Pφ,X,
⋃
w∈W w, associated with the problem EDS(G,φ,X,

⋃
w∈W w),

is given by P = Πq∈P q, the product of all polynomials in P .

We will see that this is a very useful property in the algorithm.
Now, we will formally define some functions used in the algorithm, which correspond to

certain subproblems. These are:

• f(v, φ) = Pφ,tail(v),tree[v]: the polynomial associated with the problem EDS(G,φ, tail(v), tree[v]).

• g(v, ψ) = Pψ,tail[v],tree(v): the polynomial associated with the problem EDS(G,ψ, tail[v], tree(v)).

Notice that the difference between f(v, ·) and g(v, ·) is whether or not we have assigned v a
label, and so whether we are interested in the solutions of the subtree where v is the root, or
interested in the combined solution of the subtrees given by the children of v.

We are now ready to define the behaviour of the algorithm in terms of the functions f, g over
the tree-depth decomposition. First notice that if our tree-depth decomposition has root r, then
f(r,∅) returns the polynomial counting all solutions to the problem over the entire graph, as
tree[r] is the entire tree-depth decomposition and so G[E(tree[r])] = G. It remains to show how
we resolve the values of f and g.

Let us start with g. We get the following lemma.

Lemma 7.6. Given a graph G with its tree-depth decomposition T , an internal vertex v ∈ V (T),
and a labelling ψ : tail[v]→ Σ we have g(v, ψ) = Πu∈child(v)f(u, ψ).

7 A DIFFERENT STREAMING MODEL 72

Proof. This proof is equivalent to [5, Lemma 4], for our problem EDS(G,φ,X, Y).
We have seen that for any arbitrary disjoint vertex sets X,Y, Z ⊆ V (G), such that there are no

edges between Y and Z, we have that EDS(G,φ,X, Y) and EDS(G,φ,X,Z) are independent.
Now consider two arbitrary children u0, u1 of v in the tree-depth decomposition T , and let
X = tail[v] = tail(u0) = tail(u1), Y = tree[u0], Z = tree[u1]. By the properties of a tree-depth
decomposition, there are no edges between Y and Z, and so the problems EDS(G,ψ,X, Y)
and EDS(G,ψ,X,Z) are independent. Hence, by Lemma 7.5, multiplying the polynomials
associated with the subproblems EDS(G,ψ, tail(u), tree[u]) for each u ∈ child(v) results in
the polynomial associated with the subproblem EDS(G,ψ, tail[v],

⋃
u∈child(v) tree[u]), which is

exactly EDS(G,ψ, tail[v], tree(v)), as desired by g(v, ψ).

This resolves the value of g for all vertices in the tree-depth decomposition, except for leaf
vertices. Let us resolve these next.

Lemma 7.7. Given a graph G with its tree-depth decomposition T , a leaf vertex v ∈ V (T), and
a labelling ψ : tail[v]→ Σ we have

g(v, ψ) = 1 if ∀u ∈ ψ−1(D), w ∈ tail[v] : uw ∈ E(G) =⇒ w ∈ ψ−1(T), and

g(v, ψ) = 0 otherwise.

Proof. Since the subtree given by tree(v) is empty, and so the graph induced by the vertices
contains no edges, we trivially meet the requirement that all edges must be dominated. What
remains to be checked is whether or not the edges incident to the vertices marked as D are
dominated by the labelling in the path to the root. We see that g(v, ψ) gets value 1 exactly when
every vertex in ψ−1(D) has only adjacencies labelled T . This is correct, as the empty set then
is a solution to the problem. Otherwise, there is no solution and the value of g(v, ψ) is 0.

What remains is to resolve the value of f for all vertices. Note that there is no need to
distinguish between an internal and leaf vertex for f , as we can simply assign a label to the
current vertex and call g, which handles the leaf and internal vertices correctly.

Lemma 7.8. For a graph G with tree-depth decomposition T , a vertex v ∈ V (T), and a labelling
φ : tail(v)→ Σ we have

f(v, φ) = g(v, φ[v → D]) + g(v, φ[v → T])− g(v, φ[v → F]) +
∑

1≤i≤j

xi ·
(
j

i

)
· g(v, φ[v → T]),

where j = |NG(v) ∩ φ−1(T)|, the number of edges between v and vertices marked T by φ.

Proof. The transition between f and g requires f to decide on a label for v to be able to call on
g. Naturally, because we wish to count all solutions, we have to exhaustively try the different
options of labelling v and including edges in the solution that lead to different solutions.

In the case where we decide that v should not have an incident edge in the solution, we assign
it the label D. The subproblems demand that edges incident on vertices labeled D are counted
correctly, so no further work is required to count the solutions where v is labelled D.

In the case where we decide that v should have an incident edge in the solution, we will
assign it the label T . However, this is not enough to count the solutions correctly. Actually,
when labelling v, we have to decide on exactly what edges between v and vertices higher in the
tree-depth decomposition labelled T we include in the solution. If we choose to include no edges
to vertices higher in the tree, we have to make sure that we only count the solutions where v will
have an incident edge from a vertex lower in the tree. To this end, we count exactly the solutions

7 A DIFFERENT STREAMING MODEL 73

where v gets the label T , but we subtract the solutions where v does not get an incident edge in
the solution, which is given by labelling v with F . This is also why we never check whether or
not the edges of vertices labelled F are dominated, as it only matters that no edge incident to a
vertex labelled F is picked in a solution.

If we do choose to include at least one edge to a vertex higher in the tree, we have to count
all possibilities. The number of edges we can include is bounded by j = |NG(v) ∩ φ−1(T)|, as
these are the only edges that are ‘legal’ to include. Including i edges then gives us

(
j
i

)
options

for choosing the edges, and adds i edges to the solution, which is why we multiply with xi. For
every solution returned by the subproblem we have then have

(
j
i

)
options for including i edges

to make a new solution, and so multiplying the polynomial given by g with
(
j
i

)
is the correct

approach. We do this for every viable i, which is why we sum over these options.
These options have exhausted the possibilities we have with regard to the vertex v: either it

has one or more edges incident to it in the solution, or it does not. As such, f(v, φ) is given by
the sum of all these choices, i.e., adding the polynomials corresponding to the choices together.

As Ambags [5] and Pilipczuk and Wrochna [56] mention, if the graph consists of multiple
connected components, and we have multiple disconnected tree-depth decompositions, we can
multiply the respective results for calling f(r,∅) on the roots r of each of the disjoint trees. We
conclude that we now have a polynomial P consisting of terms akx

k where ak is the number of
solutions of size k, and so we can solve the Edge Dominating Set problem.

What remains is to analyse the time and space complexity of this algorithm.

Lemma 7.9. (Adaptation of [5, Lemma 7]) Given a graph G = (V,E) and its tree-depth decom-
position T of depth s, we can compute the sequence Q = {q0, q1, . . . , qm} such that G contains
exactly qk distinct edge dominating sets of size k for 0 ≤ k ≤ m using O(3s · poly(n)) time and
O(s ·m2) bits of space.

Proof. The subproblem for a vertex in the tree-depth decomposition is always defined in terms
of its direct children (or given by a constant for a leaf vertex), and so we never visit the same
vertex twice in the same call stack. We also never need to compute the values of f(v, φ) or g(v, φ)
more than once for the same pair (v, φ), since f only makes three unique calls (the value of the
call g(v, φ[v → T]) in f(v, φ) can immediately be used for all ≤ j+ 1 occurrences), each of which
assigns a unique label to v, and g only depends on its children. Hence, the maximum number of
calls to f, g is bounded by the number of unique pairs (v, φ). Our alphabet Σ has three unique
labels, so for any v there are 3|tail[v]| different functions φ, which is bounded by 3s. In total, we
have O(3s · n) calls to the functions f, g.

To resolve the value of f(v, φ) given the values of its subproblems, we need to do O(s)
operations on three polynomials of degree at most m. To resolve the value of g(v, φ) we may
need to multiply a linear number of polynomials of degree at most m. The coefficients of these
polynomials may have values up to 2m, the total number of subsets of a collection of size m.
Just like Ambags, we abstract from the exact implementation and consider just the number of
operations.

To resolve the values of f, g, we need to add and multiply a linear number of polynomials.
The resulting polynomial has degree at most m, which means we require O(nm) operations,
which each take polynomial time. We also might need to inspect the graph, checking at most
O(s2) = O(n2) edges. This means we can resolve the value for f(r,∅) in time O(3s · poly(n)).

We are required to store at most one intermediate result per call to f and one per call to g,
which consists of a polynomial of degree at most m with coefficients of size at most 2m. Storing
a constant number of such polynomials takes O(m2) space. The depth of the call stack is at

7 A DIFFERENT STREAMING MODEL 74

most 2 · s, since we call both f, g once per depth in the decomposition (in a single call stack).
This leads to a O(s ·m2) space requirement.

The space requirement of O(s ·m2) is not ideal, and can luckily be improved. Pilipczuk and
Wrochna [56] show a technique that can make the algorithm more memory-efficient. Instead of
saving the entire polynomials during the computation, we evaluate the polynomials over some
Galois Field in each step, such that each polynomial is a single value taking up space O(log n)
bits. This means we lose information, because the single value at the root does not give us the
coefficients of the polynomial anymore. However, as Pilipczuk and Wrochna [56] show, if we do
this same process for different values over which we evaluate the polynomial, and for different
primes for the modular arithmetic used, we can extract the original polynomial from which these
values were computed. This means we can still find the number of solutions of each size, while
being more memory-efficient. This procedure does come at the cost of increasing the number
of passes by a poly(n) factor, as it has to make multiple calls to the algorithm. We state the
following theorem by Pilipczuk and Wrochna that we will apply to our algorithm.

Theorem 7.10. ([56, Theorem 30]) Let P (x) =
∑n
i=0 qix

i be a polynomial over one variable x,
of degree at most n and with integer coefficients satisfying 0 ≤ qi ≤ 2n, for i = 0, . . . , n. Suppose
that given a prime number p ≤ 2n+2 and a ∈ Fp, the value of (P (a) mod p) can be computed in
time T and S space. Then given k ∈ {0, . . . , n}, the value qk can be computed in O(T · poly(n))
time and O(S + log n) space.

Theorem 7.10 asks for the time and space complexity of computing (P (a) mod p), where p is
a given prime and a ∈ Fp. We can do this by executing the tree-depth algorithm of Lemma 7.9,
where we evaluate each polynomial P to (P (a) mod p) in each step. This does not change the
time complexity of the algorithm, so T = O(3s ·poly(n)). The memory complexity goes down, as
for each element in the tail we need not save an entire polynomial, but instead only an evaluated
value, which means the memory complexity is S = O(s · log n) bits.

The following theorem now follows from applying Theorem 7.10 to Lemma 7.9 where we
substitute m for n in Theorem 7.10, with the knowledge that m = O(n2), T = O(3s · poly(n)),
and S = O(s · log n).

Theorem 7.11. Given a graph G = (V,E) and its tree-depth decomposition T of depth s, we
can compute the sequence Q = {q0, q1, . . . , qm} such that G contains exactly qk distinct edge
dominating sets of size k for 0 ≤ k ≤ m using O(3s · poly(n)) time and O(s · log n) bits of space.

We have to note that the change from Lemma 7.9 to Theorem 7.11 does not come without
downsides, as the time complexity is increased with some polynomial in n, but as we already
had an unknown polynomial in n in the running time of Lemma 7.9, this is unnoticeable.

7.3.1 Adapting the algorithm to streaming setting

Let us now adapt the algorithm of Theorem 7.11 to the streaming setting. Our aim here is to
find an algorithm for Edge Dominating Set [k] in the DFS streaming model. Luckily, we
already have almost all tools to accomplish this result.

Previously, we have seen Lemma 7.1 that allows us to view a pass over the stream as either
an inspection of the graph and its edges, or an inspection of the tree-depth decomposition. We
can use this on the algorithm of Theorem 7.11 to obtain the following result.

Theorem 7.12. Given a graph G as a DFS stream, we can solve Edge Dominating Set [k]
using O(34k · poly(n)) passes and O(k log n) bits of space.

7 A DIFFERENT STREAMING MODEL 75

Proof. First, apply Lemma 7.1 to the stream every time we wish to inspect the tree-depth
decomposition, which has depth at most 4k. Applying Lemma 7.1 takes one pass to produce one
pass over the tree-depth decomposition, and O(k log n) bits of space.

With this in hand, we can use the algorithm of Theorem 7.11. The only question that remains
is how the time complexity relates to the number of passes we make over the stream, that is,
when do we need to use passes over the stream in the algorithm of Theorem 7.11.

First, it is important to notice that Theorem 7.10 can be seen as a black-box function that
requires no knowledge of the structure of the graph, and therefore requires no passes over the
stream. However, using Theorem 7.10 means we call upon the tree-depth decomposition algo-
rithm an extra poly(n) number of times.

We only require passes for the computation of the functions f and g in the algorithm of
Lemma 7.9. Notice that both the functions f and g may require passes when computing the
(partial) value, as they both require knowledge of the structure of the tree-depth decomposition
or the structure of the graph G. The function f makes at most three calls, and so is returned to
in the call stack only a constant number of times. It only requires a constant number of passes
each time we compute a partial value (to learn of the edges in G towards other vertices marked
T), which also takes at most O(k log n) space to locally save this information, which we discard
when computing a value of one of the g functions. The function g requires a pass each time a
partial value is computed, to view its children in the tree-depth decomposition, and call on the
right child for the value of f . We return to any g function a linear number of times because it
might have a linear number of children in the tree-depth decomposition. If we call g on a leaf
vertex in the tree-depth decomposition, it requires a constant number of passes to decide on its
value. Therefore, the number of passes made by adapting Lemma 7.9 to the streaming setting
is O(3s · n2).

We can now combine all these factors to get that solving Edge Dominating Set [k] for
a graph G given as a DFS stream requires O(34k · poly(n)) passes and O(k log n) bits of space.

We have now seen an algorithm for solving Edge Dominating Set [k] in the DFS model
using O(34k · poly(n)) passes and O(k log n) bits of space. This is in contrast to the algorithm
given by Fafianie and Kratsch [28], which is a O(k3 log k)-size kernel constructible in two passes
using O(k3 log n) bits of memory in the EA model. It is interesting that the DFS model allowed
us to construct a memory-optimal direct algorithm for Edge Dominating Set [k], where the
result by Fafianie and Kratsch only provided a low-pass kernel. However, this did come at a
price, the number of passes is now exponential in the solution size, and includes a polynomial
factor in n. Nonetheless, this result provides a very interesting pass/memory trade-off for the
Edge Dominating Set [k] problem.

Let us discuss the possibility of another approach to adapting the tree-depth algorithm of
Lemma 7.9 to the DFS streaming model. If we analyse the process the DFS stream makes to
view the tree-depth decomposition, and compare this to the behaviour of the functions in the
algorithm, we might see the possibility of developing a one-pass exponential-memory algorithm.
This is where we would use the single pass over the DFS stream to traverse the tree-depth
decomposition, but use exponential space to save the intermediate results for each possible state
combination of the tail. However, doing this would require very close and careful analysis. This
is because the check that happens at a leaf cannot be done only at the leaf, as we might find
edges in the stream from the leaf to other vertices in the tail, but not edges from one vertex in
the tail to another in the tail. Hence, we would need to carefully adapt this check to be partially
executed in every vertex along the root-leaf path. There is also some trouble in counting the
number of edges from a vertex to a vertex in the tail, as the order of the stream matters greatly

8 CONCLUSION AND FUTURE WORK 76

here, which we do not have any control over. Hence, it seems that this approach might require
us to save many partially defined polynomials, which leads to a factor of n2 in the memory
use (next to the exponential factor for the number of different state combinations). Hence, it
seems this approach might not be any better than simply saving the entire graph to memory.
We cannot use the memory-saving approach suggested by Theorem 7.10, as we would need to
be able to at least evaluate the polynomials in each step, which proves difficult when the order
of the stream impacts what intermediate results we can compute. So, we leave such a low-pass
exponential-memory algorithm for a possibility of future work.

8 Conclusion and Future Work

We have seen a variety of parameterized problems tackled in the streaming model, with a main
focus on the Adjacency List streaming model and parameterization by vertex cover.

We have seen some different approaches to solving the Π-free Deletion [VC] problem in
the Adjacency List streaming model. We adapted existing kernels by Jansen [42] and Jansen
and Kroon [41] to obtain a one-pass and ` + 1-passes kernelization algorithm, which demand
general conditions on Π such that the kernel holds. We then took an FPT approach to find a
direct algorithm to solve the Π-free Deletion [VC] problem, in hopes of being more memory
efficient. This resulted in a separate algorithm for Cluster Vertex Deletion [VC] using
O(2KK2) passes and an optimal O(K log n) bits of memory. The first step to generalizing this
result came through an algorithm called FindH, and gave us an algorithm for H-free Deletion
[VC], using O(2KhK+2Khh!) or alternatively O(2KhK+2K!h!) passes and O((K+h2) log n) bits
of space. Using this algorithm for H-free Deletion [VC], we found and algorithm for Π-free

Deletion [VC] using O(q · 2K · cKΠ ·KK+2 ·K! · (cΠK)!) passes and Õ((cΠK)2 + q · (cΠ + 1)K)
space, where q is the size of a specific subset of Π. We then discussed some alternative algorithms
for when we do not want to have Π in memory, but instead use some oracle to learn information
about Π. Afterwards, we took a sidestep to a subproblem of Π-free Deletion [VC], Odd
Cycle Transversal [VC], for which we found an algorithm usingO(3K) passes andO(K log n)
bits of memory. To complement the upper bound results, we gave lower bound results for Π-
free Deletion and H-free Deletion with varying conditions on the streaming model and
parameter used.

We have also seen approaches for solving the Π-free Edge Editing [VC, `] and Π-free
Editing [VC, `] problems, which required to be parameterized by both the vertex cover size and
the solution size. In this context, we first discussed a branching algorithm for Cluster Editing
[VC, `] which we improved using existing techniques to an algorithm using O(2.27` ·K2) passes
and O((K+ `) log n) bits of memory in the Adjacency List model. We then discussed kernels for
Cluster Editing [VC, `], where we adapted a 6` kernel by Jiong Guo [35] which worked with
critical cliques to the streaming setting, and gave a 2K+` kernel using an interesting observation.
We then moved on to the more general Π-free Editing [VC,`], for which we gave an algorithm
using O(|Π| · ν2`+1(K + `)νν!) passes and O((K + `ν2) log n + |Π|ν2) bits of memory, where ν
is the maximum size of a graph in Π, which was inspired by an algorithm by Cai [13]. We also
discussed some options when it is preferable to have Π not be explicitly present in memory.

Because of our great use of vertex cover, we moved on to find algorithms for the Vertex
Cover [k] problem. We started with exploring existing branching algorithms and adapting them
to the streaming setting, resulting in an algorithm using O(1.324718k) passes and O(k log n)
bits of memory and one using O(1.29175kkO(1)) passes and O(k log n) bits of memory. These
algorithms both work in the Adjacency List streaming model, and are adaptations of algorithms
by Balasubramanian et al. [6] and Niedermeier and Rossmanith [52], respectively. We then used

8 CONCLUSION AND FUTURE WORK 77

a chain of kernels and clever conversions to obtain a kernalization algorithm using O(k2) passes

and Õ(k) bits of memory, resulting in a 2k kernel, once again for the Adjacency List model.
We have seen an approach at a new streaming model being used for Edge Dominating Set

[k], in particular, a Depth First Search model. This model allowed us to translate the solution size
parameter into a tree-depth parameter. Then, by creating an algorithm for Edge Dominating
Set parameterized by tree-depth, based on a tree-depth algorithm for Dominating Set by
Pilipczuk and Wrochna [56], we obtained an algorithm for Edge Dominating Set [k] using
O(34k · poly(n)) passes and O(k log n) bits of space in the Depth First Search model.

8.1 Future Work

The following list of open questions might prove interesting for future research.

• Are there other structural parameters like vertex cover that can lead to new results for
graph problems in the streaming setting? Examples might include treewidth, pathwidth,
or more on tree-depth.

• Can lower bounds be found for the Π-free Deletion [VC] problem in the Adjacency
List model, when the vertex cover is of constant size?

• Are there streaming models different from the EA, VA, AL, and DEA models that, like the
DFS model, can provide new results for graph problems?

• Are there other Oracle models for which algorithms for Π-free Deletion or Π-free
Editing can be memory efficient without having to save Π explicitly?

• Are there conditions under which a maximum-flow problem can be solved in the streaming
setting? As maximum-flow problems occur often, this could prove fruitful for new results.

• Is it possible to replicate the behaviour of Theorem 6.4 in a low amount of passes for other
models than the AL model? This could imply a 2k Vertex cover [k] kernel for a model
other than AL.

• Is it possible to develop aO(1)-passesO(exp(k))-memory algorithm for Edge Dominating
Set [k] with the DFS streaming model, inspired by Theorem 7.12?

REFERENCES I

References

[1] Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. Smaller cuts, higher lower
bounds. CoRR, abs/1901.01630, 2019.

[2] Deepak Agarwal, Andrew McGregor, Jeff M. Phillips, Suresh Venkatasubramanian, and
Zhengyuan Zhu. Spatial scan statistics: approximations and performance study. In Tina
Eliassi-Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos, editors, Proceedings
of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Philadelphia, PA, USA, August 20-23, 2006, pages 24–33. ACM, 2006.

[3] Akanksha Agrawal, Arindam Biswas, Édouard Bonnet, Nick Brettell, Radu Curticapean,
Dániel Marx, Tillmann Miltzow, Venkatesh Raman, and Saket Saurabh. Parameterized stre-
aming algorithms for min-ones d-sat. In Arkadev Chattopadhyay and Paul Gastin, editors,
39th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2019, December 11-13, 2019, Bombay, India, volume 150 of
LIPIcs, pages 8:1–8:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[4] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-
24, 1996, pages 20–29. ACM, 1996.

[5] M. M. Ambags. Exact algorithms for domination problems parameterized by tree-depth
using polynomial space. Master’s thesis, Technische Universiteit Eindhoven, 2019.

[6] R. Balasubramanian, Michael R. Fellows, and Venkatesh Raman. An improved fixed-
parameter algorithm for vertex cover. Information Processing Letters, 65(3):163 – 168,
1998.

[7] Reuven Bar-Yehuda and Shimon Even. A local-ratio theorem for approximating the weighted
vertex cover problem. In Manfred Nagl and Jürgen Perl, editors, Proceedings of the WG
’83, International Workshop on Graphtheoretic Concepts in Computer Science, June 16-18,
1983, Haus Ohrbeck, near Osnabrück, Germany, pages 17–28. Universitätsverlag Rudolf
Trauner, Linz, 1983.

[8] Arijit Bishnu, Arijit Ghosh, Sudeshna Kolay, Gopinath Mishra, and Saket Saurabh. Fixed-
parameter tractability of graph deletion problems over data streams. CoRR, abs/1906.05458,
2019.

[9] Arijit Bishnu, Arijit Ghosh, Gopinath Mishra, and Sandeep Sen. On the streaming com-
plexity of fundamental geometric problems. CoRR, abs/1803.06875, 2018.

[10] Sebastian Böcker and Jan Baumbach. Cluster editing. In Paola Bonizzoni, Vasco Brattka,
and Benedikt Löwe, editors, The Nature of Computation. Logic, Algorithms, Applications -
9th Conference on Computability in Europe, CiE 2013, Milan, Italy, July 1-5, 2013. Pro-
ceedings, volume 7921 of Lecture Notes in Computer Science, pages 33–44. Springer, 2013.

[11] J. Adrian Bondy and Uppaluri S. R. Murty. Graph Theory with Applications. Macmillan
Education UK, 1976.

[12] Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM J. Comput.,
22(3):560–572, 1993.

REFERENCES II

[13] Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett., 58(4):171–176, 1996.

[14] L. Sunil Chandran and Fabrizio Grandoni. Refined memorization for vertex cover. Infor-
mation Processing Letters, 93(3):125 – 131, 2005.

[15] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further
improvements. Journal of Algorithms, 41(2):280 – 301, 2001.

[16] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds for vertex cover. Theoretical
Computer Science, 411(40):3736 – 3756, 2010.

[17] Rajesh Chitnis and Graham Cormode. Towards a theory of parameterized streaming algo-
rithms. In Bart M. P. Jansen and Jan Arne Telle, editors, 14th International Symposium
on Parameterized and Exact Computation, IPEC 2019, September 11-13, 2019, Munich,
Germany, volume 148 of LIPIcs, pages 7:1–7:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019.

[18] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, Mohammad Taghi Hajiaghayi, An-
drew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling
with applications to finding matchings and related problems in dynamic graph streams. In
Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016,
pages 1326–1344. SIAM, 2016.

[19] Rajesh Hemant Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiag-
hayi, and Morteza Monemizadeh. Brief announcement: New streaming algorithms for pa-
rameterized maximal matching & beyond. In Guy E. Blelloch and Kunal Agrawal, editors,
Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures,
SPAA 2015, Portland, OR, USA, June 13-15, 2015, pages 56–58. ACM, 2015.

[20] Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza
Monemizadeh. Parameterized streaming: Maximal matching and vertex cover. In Piotr
Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1234–1251. SIAM,
2015.

[21] Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets in vertex-arrival
streams. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,
editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP
2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 45:1–45:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[22] Christophe Crespelle, P̊al Grøn̊as Drange, Fedor V. Fomin, and Petr A. Golovach. A
survey of parameterized algorithms and the complexity of edge modification. CoRR,
abs/2001.06867, 2020.

[23] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[24] Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162(1):439–485, 2005.

REFERENCES III

[25] Rodney G Downey and Michael R Fellows. Parameterized computational feasibility. In
Feasible mathematics II, pages 219–244. Springer, 1995.

[26] Rodney G. Downey, Michael R. Fellows, and Ulrike Stege. Parameterized complexity: A
framework for systematically confronting computational intractability. In Ronald L. Gra-
ham, Jan Kratochv́ıl, Jaroslav Nesetril, and Fred S. Roberts, editors, Contemporary Trends
in Discrete Mathematics: From DIMACS and DIMATIA to the Future, Proceedings of a
DIMACS Workshop, Stiŕın Castle, Czech Republic, May 19-25, 1997, volume 49 of DI-
MACS Series in Discrete Mathematics and Theoretical Computer Science, pages 49–99.
DIMACS/AMS, 1997.

[27] Facebook. Facebook reports first quarter 2020 results. Press Release, 2020 (Accessed
on July 3, 2020). https://investor.fb.com/investor-news/press-release-details/

2020/Facebook-Reports-First-Quarter-2020-Results/default.aspx.

[28] Stefan Fafianie and Stefan Kratsch. Streaming kernelization. In Erzsébet Csuhaj-Varjú,
Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Foundations of Computer
Science 2014, pages 275–286, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[29] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the streaming model: the value of space. In Proceedings of the Sixteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancouver, British
Columbia, Canada, January 23-25, 2005, pages 745–754. SIAM, 2005.

[30] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216,
2005.

[31] Michael R. Fellows, Lars Jaffke, Aliz Izabella Király, Frances A. Rosamond, and Mathias
Weller. What is known about vertex cover kernelization? In Hans-Joachim Böckenhauer,
Dennis Komm, and Walter Unger, editors, Adventures Between Lower Bounds and Higher
Altitudes - Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday,
volume 11011 of Lecture Notes in Computer Science, pages 330–356. Springer, 2018.

[32] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

[33] Martin Fürer and Huiwen Yu. Space saving by dynamic algebraization based on tree-depth.
Theory Comput. Syst., 61(2):283–304, 2017.

[34] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. Graph-modeled data clus-
tering: Fixed-parameter algorithms for clique generation. In Rossella Petreschi, Giuseppe
Persiano, and Riccardo Silvestri, editors, Algorithms and Complexity, 5th Italian Confe-
rence, CIAC 2003, Rome, Italy, May 28-30, 2003, Proceedings, volume 2653 of Lecture
Notes in Computer Science, pages 108–119. Springer, 2003.

[35] Jiong Guo. A more effective linear kernelization for cluster editing. Theor. Comput. Sci.,
410(8-10):718–726, 2009.

[36] Falko Hegerfeld and Stefan Kratsch. Solving connectivity problems parameterized by tree-
depth in single-exponential time and polynomial space. In Christophe Paul and Markus
Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer Science,
STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 29:1–
29:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-First-Quarter-2020-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2020/Facebook-Reports-First-Quarter-2020-Results/default.aspx

REFERENCES IV

[37] Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on
data streams. In James M. Abello and Jeffrey Scott Vitter, editors, External Memory Al-
gorithms, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May
20-22, 1998, volume 50 of DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, pages 107–118. DIMACS/AMS, 1998.

[38] Danny Hermelin, Matthias Mnich, Erik Jan van Leeuwen, and Gerhard J. Woeginger. Do-
mination when the stars are out. ACM Trans. Algorithms, 15(2):25:1–25:90, 2019.

[39] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.

[40] Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-
parameter algorithms for cluster vertex deletion. Theory Comput. Syst., 47(1):196–217,
2010.

[41] Bart M. P. Jansen and Jari J. H. de Kroon. Preprocessing vertex-deletion problems: Cha-
racterizing graph properties by low-rank adjacencies. CoRR, abs/2004.08818, 2020.

[42] Bart M.P. Jansen. The power of data reduction: Kernels for fundamental graph problems.
PhD thesis, Utrecht University, 2013.

[43] Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced subgraphs
efficiently. Inf. Process. Lett., 74(3-4):115–121, 2000.

[44] Donald E Knuth. Generating all n-tuples. The art of computer programming, 4:54–57, 2004.

[45] Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20, 2014.

[46] Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better algorithms for counting
triangles in data streams. In Tova Milo and Wang-Chiew Tan, editors, Proceedings of the
35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 401–411. ACM, 2016.

[47] Kurt Mehlhorn. Data Structures and Algorithms 2: Graph Algorithms and NP-
Completeness, volume 2 of EATCS Monographs on Theoretical Computer Science. Springer,
1984.

[48] Hannes Moser and Dimitrios M. Thilikos. Parameterized complexity of finding regular
induced subgraphs. J. Discrete Algorithms, 7(2):181–190, 2009.

[49] J. Ian Munro and Mike Paterson. Selection and sorting with limited storage. In 19th
Annual Symposium on Foundations of Computer Science, Ann Arbor, Michigan, USA, 16-
18 October 1978, pages 253–258. IEEE Computer Society, 1978.

[50] Jesper Nederlof, Michal Pilipczuk, Céline M. F. Swennenhuis, and Karol Wegrzycki. Hamil-
tonian cycle parameterized by treedepth in single exponential time and polynomial space.
CoRR, abs/2002.04368, 2020.

[51] George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: Structural properties and
algorithms. Math. Program., 8(1):232–248, 1975.

REFERENCES V

[52] Rolf Niedermeier and Peter Rossmanith. Upper bounds for vertex cover further improved.
In Christoph Meinel and Sophie Tison, editors, STACS 99, 16th Annual Symposium on
Theoretical Aspects of Computer Science, Trier, Germany, March 4-6, 1999, Proceedings,
volume 1563 of Lecture Notes in Computer Science, pages 561–570. Springer, 1999.

[53] Rolf Niedermeier and Peter Rossmanith. A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters, 73(3-4):125–129, 2000.

[54] Rolf Niedermeier and Peter Rossmanith. On efficient fixed-parameter algorithms for weig-
hted vertex cover. Journal of Algorithms, 47(2):63 – 77, 2003.

[55] Vangelis Th. Paschos. A survey of approximately optimal solutions to some covering and
packing problems. ACM Comput. Surv., 29(2):171–209, 1997.

[56] Michal Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on struc-
tural decompositions of graphs. ACM Trans. Comput. Theory, 9(4):18:1–18:36, 2018.

[57] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper.
Res. Lett., 32(4):299–301, 2004.

[58] Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. A fas-
ter parameterized algorithm for treedepth. In Javier Esparza, Pierre Fraigniaud, Thore
Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming - 41st
International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Procee-
dings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 931–942. Springer,
2014.

[59] John H. Reif. Depth-first search is inherently sequential. Inf. Process. Lett., 20(5):229–234,
1985.

[60] Robert H. Morris Sr. Counting large numbers of events in small registers. Commun. ACM,
21(10):840–842, 1978.

[61] Ulrike Stege and Michael Ralph Fellows. An improved fixed parameter tractable algorithm
for vertex cover. Technical report/Departement Informatik, ETH Zürich, 318, 1999.

[62] Twitter. Twitter financials and metrics. Press Release, 2020 (Accessed on
July 3, 2020). https://s22.q4cdn.com/826641620/files/doc_financials/2020/q1/

Q1-2020-Selected-Financials-and-Metrics.pdf.

https://s22.q4cdn.com/826641620/files/doc_financials/2020/q1/Q1-2020-Selected-Financials-and-Metrics.pdf
https://s22.q4cdn.com/826641620/files/doc_financials/2020/q1/Q1-2020-Selected-Financials-and-Metrics.pdf

A DICTIONARY ORDERINGS VI

A Dictionary Orderings

In this section, we will elaborate in more detail the inner workings of dictionary orderings, as
defined by Definition 4.14. As a reminder, these dictionaries have as a purpose to enumerate sets
of elements that satisfy a certain condition, e.g. being a subset of some given set, without using
too much memory. For doing exactly this, we are faced with two challenges. Firstly, we have to
find a way of enumerating such that every set that satisfies the conditions is guaranteed to occur.
Secondly, we cannot use too much memory, which may disallow us to save certain supersets.

Let us first ask ourselves what we can and cannot save in memory in the use cases in this
thesis. To this end, let us assume we enumerate sets of vertices in a graph G = (V,E) where the
vertices V are numbered 1, . . . , n. In the cases where the algorithm is parameterized by vertex
cover, we can assume that we have a subset of vertices X ⊆ V in memory corresponding to the
vertex cover. Because we focus on memory-optimality, we generally want to avoid saving a set
of unbounded size, i.e. some set with a size relational to n. However, given that we know that
the vertices are numbered 1, . . . , n, we might only require to save the value of n for enumeration.
Enumeration is then possible because we know that every value in the (discrete) interval of
1, . . . , n corresponds to a vertex. Because we generally also have the vertex cover in memory, we
can also enumerate subsets of the vertex cover or subset of the graph avoiding the vertex cover,
without the demand that this is some complete discrete interval of vertices.

Let us now go into ways of enumerating specific subsets such that all subsets meeting the
demands are enumerated. For this, we can look towards the literature, see for example Donald
Knuth’s The Art of Computer Programming [44]. However, we will give a self contained argument
here.

For this argument, let us assume we have to enumerate all subsets S of a size ≤ c of a
certain set U . We also assume that either we can contain U in memory, or U is some complete
discrete interval with maximum value n possibly excluding some set in memory. Note that all
our applications of these dictionary orderings meet these demands.

If there is no minimum size, we start with the empty set. If there is a minimum size d, start
with the first d elements of U . Then, whenever the Next function is called on a set S, we create
the next set S′ from S in the following manner. Assume S has k elements and that they are
sorted. Take the biggest number in the set (the k-th element), and increment it, that is, take
the smallest number following it that is still allowed in U , and replace the k-th element with
it. If this does not exist, we first increment the (k − 1)-th element (continuing to the (k − 2)-th
element if that is not possible, etc.) and then reset the k-th element to the value one higher than
the (k − 1)-th element. Note that in this process, the (k − i)-th element may only take values
up to and including (n− i), as otherwise some ‘bigger’ values in the set cannot take any value.
If this means that no value can be incremented, and k < c, then let S′ be the first k + 1 values
of U . If k = c and no value can be incremented let S′ = ♠.

Note that the definition of increment can differ depending on the context. If U = {1, . . . , n},
then an increment can be a literal increment of the number. However, if we consider some subset
X ⊆ V in memory that either the sets S must be contained in or not contain any elements of,
we have a different definition of increment. Here, the increment can be an iteration of literal
increments until the number is allowed again, checking it in each step. This way, enumeration is
possible for more arbitrary subsets.

For illustration, let us give a short example. Say we want to enumerate subsets of V =
{1, . . . , 5} that do not contain a value in the set X = {3} and have size at most 3. We start
with the initial value where S = ∅. Then, as no value can be incremented, the first value of V
is added, so S = {1}. In the next call this is incremented, so S = {2}. In the next call this is
incremented, but 3 is illegal so it is skipped, so S = {4}, followed by S = {5} in the next call.

A DICTIONARY ORDERINGS VII

Now 5 cannot be incremented, as it is the maximum value, so we add an element to S, which
gets us S = {1, 2}. Now the largest value is incremented and we skip 3, so S = {1, 4}. This
is followed by S = {1, 5}. 5 cannot be incremented further, so we increment one smaller value,
netting us S = {2, 4}. Note that the 5 was replaced by the value one bigger than 2, which is 4, as
3 is illegal. This process continues with the following sets for S, in order. {2, 5}, {4, 5}, {1, 2, 4},
{1, 2, 5}, {1, 4, 5}, {2, 4, 5}, {1, 2, 4, 5}, ♠. We can see that we have enumerated 16 different sets,
which is exactly

(
4
0

)
+
(

4
1

)
+
(

4
2

)
+
(

4
3

)
+
(

4
4

)
many. We can conclude that when S = ♠ we indeed

have seen every subset meeting the demands.
The memory use of this approach is easy to analyse. Saving the maximum number n takes

log n bits, which is dominated by the sets the ordering returns, which take O(c log n) bits if the
set has at most c elements. If an illegal or non-interval set is in memory, its memory usage must
also be accounted for. We can see that generally, the memory usage of a dictionary ordering is
negligible in comparison to the memory use of the algorithms it is used in.

Let us argue the correctness of enumerating all subsets that meet the requirements. For a
constant size of sets c, this process is an example of an iterative process used for example for
brute forcing a combination lock with c digits, where we skip the options where a digit appears
multiple times. Therefore, by the brute force nature, this process considers all sets of size c
within the requirements. If all options of size c have been enumerated, the process moves on to
all options of size c+ 1 (if this is allowed), and the process starts at c = 0, or the given minimum
size. We conclude that we indeed have correctly enumerated all sets that meet the requirements
when we return ♠.

	Introduction
	Preliminaries and general remarks
	Graph notation
	Parameterized Complexity
	Streaming
	On the memory complexity of branching algorithms

	Previous Work on Parameterized Streaming Algorithms
	-free Deletion
	Problem Definition and Context
	Adapting Existing Kernels
	Kernel for Characterization by Few Adjacencies
	Kernel for Characterization by Low-Rank Adjacencies

	A Direct FPT Approach
	P3-free Deletion
	H-free Deletion
	Towards -free Deletion

	-free Deletion without explicit
	Odd Cycle Transversal
	Lower Bounds
	-free Deletion
	H-free Deletion with bounded vertex cover size

	-free Edge Editing
	Problem Definition and Context
	Cluster Editing
	Cluster Editing Kernels

	-free Editing with explicit
	-free Editing without explicit

	Vertex Cover
	Problem Definition and Context
	Adapting existing branching algorithms
	On vertex cover kernels

	A Different Streaming Model
	Edge Dominating Set
	Relating Edge Dominating Set, DFS, and tree-depth
	A tree-depth algorithm
	Adapting the algorithm to streaming setting

	Conclusion and Future Work
	Future Work

	References
	Dictionary Orderings

